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ABSTRACT  

According to the Global Status Report on Road Safety 2023, vehicle crashes 

cause numerous annual deaths, particularly impacting vulnerable road users. 

Pedestrians, lacking protective gear, face high vulnerability and substantial injury risk 

in collisions. Consequently, the growing advancement of Autonomous Vehicle (AV) 

technology is being explored to enhance road safety and convenience for all users. AV 

technology can reduce accidents attributed to human errors like fatigue, misperception, 

and inattention. Leading automotive manufacturers and tech giants like BMW, Tesla, 

and Google are actively advancing AV technology in this pursuit.  

Predicting pedestrians' road-crossing decisions is pivotal for achieving a 

reliable driverless experience through AVs. Initial studies emphasised pedestrian 

dynamics to anticipate crossing intent. Yet, analysing merely the trajectory proves 

inadequate for understanding underlying intentions. Beyond trajectory, various factors 

impact pedestrian road-crossing decisions. These factors fall into three primary 

modalities: pedestrian-specific (encompassing pose, appearance, etc.), context-

specific (involving scene infrastructure and social interaction with co-pedestrians), and 

hybrid modality encompassing comprehensive human cognitive aspects while 

observing a pedestrian on the road. Nonetheless, dealing with such diverse modalities 

necessitates an efficient multimodal fusion framework that can capture adequate 

discriminatory features for classification. Moreover, interpreting pedestrian 

interactions with the surrounding environment is highly challenging in a dynamic ego-

centric setting.  

With the rise of deep learning, researchers started using deep neural networks 

(DNNs) to analyse large amounts of data and automatically learn features indicative 

of pedestrian intention. These models are trained on large datasets of pedestrian 

behaviour and show improved accuracy over traditional rule-based methods. This has 

led to the development of end-to-end models involving convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), and their variants that process raw sensory 

data, such as camera images or lidar point clouds, to make predictions. These 
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approaches are seen as more robust and capable of handling complex scenarios where 

single-modality approaches may fail, as they can learn the relationships between 

different modalities and make predictions in a more integrated manner.  

This thesis explores deep learning-based approaches for predicting pedestrian 

intentions in autonomous vehicles. Pedestrian intention prediction is a multi-stage 

process comprising input acquisition, feature extraction and encoding, spatiotemporal 

modelling, multimodal fusion, and final decoding or classification. Each stage plays a 

crucial role in ensuring accurate predictions, with variations in approach depending on 

the specific output required, such as pedestrian crossing intent classification or 

trajectory anticipation. 

The first stage of the process involves acquiring input data in the form of video 

frames and trajectory coordinates spanning a specific time window. These inputs can 

be sourced from real-time surveillance systems or pre-recorded video sequences 

captured from multiple camera angles. This data undergoes pre-processing to extract 

spatial and temporal features aligned with model requirements. Convolutional Neural 

Networks (CNNs), such as EfficientNet, are used to derive spatial representations from 

RGB sequences and segmentation maps, capturing posture, orientation, and 

environmental cues. To model temporal dependencies, Long Short-Term Memory 

(LSTM) and Bidirectional LSTM (BiLSTM) networks process historical trajectory 

data, enabling the inference of motion trends for accurate behaviour prediction. 

Following feature extraction, the system proceeds to spatiotemporal modelling, 

which aims to capture the evolving interactions between pedestrians and their 

surrounding environment over time. This thesis investigates two distinct approaches 

for this task: Graph Convolutional Networks (GCNs) and Co-Learning Transformers. 

The GCN-based approach, incorporating a multi-head adjacency matrix, structures 

pedestrian trajectory data as a graph, enabling the model to learn relational 

dependencies among individuals. In contrast, the Co-Learning Transformer approach 

focuses on temporal modelling, capturing long-range dependencies and refining 

motion features through attention mechanisms. 
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Given that pedestrian intention prediction depends on multiple input 

modalities, an effective fusion strategy is critical for integrating these diverse sources 

of information. This thesis employs several advanced fusion mechanisms to address 

this challenge. Adaptive Fusion dynamically adjusts the importance of features based 

on contextual cues, allowing the model to prioritize relevant information. Co-Learning 

Architectures enable different modalities to contribute distinct and informative 

perspectives, enhancing the overall representation. The Multi-Head Shared Weights 

Mechanism promotes feature consistency across modalities by sharing parameters, 

thereby reducing redundancy and improving generalization. Finally, the Progressive 

Denoising Attention Mechanism incrementally filters out irrelevant noise while 

emphasizing salient patterns, leading to more refined and robust feature 

representations. 

The final stage of the process involves decoding the fused feature representations 

to generate meaningful predictions about pedestrian behaviour. This thesis explores 

two primary decoding approaches. Pedestrian Intention Classification employs a 

classifier, such as a SoftMax layer to infer whether a pedestrian intends to cross the 

street, based on their observed behaviour and contextual cues. Trajectory Prediction, 

on the other hand, utilizes generative models such as Generative Adversarial Networks 

(GANs) and Variational Autoencoders (VAEs) to forecast future trajectories by 

learning from historical motion patterns. 

The performance of each proposed pedestrian intention prediction approach is 

tested with various publicly available datasets and compared with earlier state-of-the-

art algorithms. Finally, the research work is concluded followed by future research 

direction as well as possible future applications which are highlighted and discussed 

in detail.  
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CHAPTER 1 

INTRODUCTION 

 The autonomous vehicles market size is forecast to increase by USD 624 

billion at a compound annual growth rate (CAGR) of 39.3% between 2024 and 

2029[1]. This rapid expansion is driven by the significant economic advantages of 

autonomous vehicle technology, including lower driving costs, enhanced fuel 

efficiency, and broader societal benefits. Integrating autonomous vehicles into the 

transportation system is expected to significantly enhance safety and efficiency by 

eliminating the reliance on human drivers. Human error is a primary contributor to 

road accidents, and the implementation of autonomous technology has the potential to 

mitigate this risk, thereby improving overall traffic safety for both motorists and 

pedestrians. Furthermore, self-driving technology redefines the travel experience by 

providing a seamless and error-free journey. With no need to concentrate on road 

conditions, passengers can allocate their travel time to work, leisure, or other 

productive activities, ultimately increasing convenience and societal productivity [2]. 

Despite the highly promising future of AVs and its booming economic 

ventures, creating a fully autonomously working car remains an unfulfilled desire of 

many tech giants even after garnering huge success now and then in Advanced Driving 

Assistance Systems (ADAS) by the research community. According to The Global 

Status Report on Road Safety published by the World Health Organization (WHO) 

[3], [4], the number of deaths on roads globally has reached an unprecedented high of 

1.35 million annually. Nearly half of these road accidents are victims of vulnerable 

road users (VRU). Huge challenges persist when developing appropriate infrastructure 

and proper safety traffic regulations to facilitate the harmonious co-existence of AVs 

and VRUs in urban traffic scenarios. One of the most challenging issues autonomous 

vehicles face is mimicking humans' perceptions and understanding many social cues 

in everyday traffic scenarios to avoid fatal vehicle-to-VRU collisions [5]. This is to 

prevent severe injury to the latter as they don’t have any special protective equipment. 
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Additionally, it creates a secure and more congenial atmosphere for every road user 

agent. Hence, early anticipation of VRU’s intention is desired so that AVs can design 

their manoeuvres accordingly [6].  

There are a variety of terminologies, like action prediction, behaviour analysis, 

and intention estimation, which are employed to delineate what exactly a pedestrian is 

about to do or what trajectory he/she will take in a particular traffic scenario.  Action 

refers to physical movement, whether walking, waving hands, etc. Behaviour is a set 

of observable events seen as a generalized response that one undertakes in response to 

a stimulus. Hence, on one hand, action or behaviour is an observable event with 

ground-truth availability. In contrast, intention, on the other hand, is the intrinsic state 

of mind that can’t be discerned just by looking but requires meticulous inference from 

behaviour or past actions. In other words, intention involves a deeper semantic 

comprehension of a human's physical or mental activities [7]. Most AVs resort to 

conservative driving to circumvent challenges associated with understanding VRU’s 

intention to predict its forthcoming action. Conservative driving involves driving very 

slowly, avoiding complex interactions, choosing a less complicated path regarding 

scene understanding and VRU’s footfall, and often stopping to avoid road mishaps. 

Such an approach ensures the safety of VRUs, but this can adversely impact the usual 

traffic flow, leading to high fuel wastage and decreased inefficiency. Action prediction 

approaches find their implementation in areas where estimation of future frames or 

prediction of the motion of pedestrians is required [8]-[11].  

Various approaches are employed for this challenging task of intention 

prediction, including interpreting the forthcoming actions of vulnerable road users, 

particularly pedestrians, as they exhibit higher degrees of freedom and complexity in 

their movements. They are very agile, can execute any trajectory, might not follow 

designated lanes for crossing, abruptly change motion, be occluded in the presence of 

scenic obstacles, engage implicitly on the road through eye gaze or hand wave, or be 

diverted while talking over a phone or with fellow pedestrians. Their conduct on the 

road is more or less affected by several factors, like demographics, gait, traffic density, 

whether walking in a group or alone, road width, road structure, and many more. All 



3 

 

these factors form contextual data for pedestrian intention detection involving scene 

dynamics, pedestrian kinematics and social behaviour with other co-pedestrians. 

Several studies have shown the relationship between one or two factors and the 

behaviour of pedestrians so that AVs can make calculated decisions beforehand to 

prevent any mishap [12].   

Therefore, high precision and accuracy are imperative in pedestrian intention 

prediction, as they directly impact human safety and cannot be compromised for 

technological advancements. This thesis explores various approaches to pedestrian 

intention prediction, aiming to anticipate short- and long-term actions. This chapter 

introduces the fundamental concepts of pedestrian intention prediction for autonomous 

vehicles, discusses the associated challenges, and highlights the significance and 

motivation behind this study, formulating the problem statement. The final section 

presents the major research contributions of this thesis, including theoretical 

formulation and experimental validation, followed by an outline of the thesis 

organization.  

1.1 Pedestrian Intention Prediction 

A combination of visual, dynamic, and motion cues is exhibited by pedestrians 

when they intend to cross the road, offering valuable clues to their crossing behaviour 

[13]-[14]. For instance, a pedestrian may cross the road if he/she is approaching the 

crosswalk and looking at the incoming vehicle to ask for a passage. On the other hand, 

a person standing still at the curb, showing no signs of motion or visual gait towards 

the crossing action, is less likely to cross the street in a short while. Hence, the 

pedestrian's positive crossing intent refers to observable behaviour and cues exhibited 

by a pedestrian, indicating a deliberate intention to cross a road or street. This intent is 

manifested through various actions, such as standing or approaching marked 

crosswalks, waiting at traffic lights designated for pedestrians, making eye contact 

with drivers, standing at or approaching zebra crossings, and raising a hand or arm as 

a signalling gesture to drivers. This kind of behaviour signifies a conscious decision 

by the pedestrian to engage in the act of crossing, contributing to overall road safety 
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awareness. Contextual factors, including co-pedestrians' behaviour and traffic signals 

or signs, may further influence the perception of positive crossing intent. Crossing 

intention confidence is a numeric score estimated from human reference data [15]-

[16].  

In the context of pedestrian crossing intention detection, a few fundamental 

temporal parameters shape the foundation of predictive systems: short-term intention, 

long-term intention, observation length and time-to-event (TTE). These parameters 

intricately influence the accuracy and responsiveness of intention predictions by 

determining the historical context and temporal proximity to the crossing event. 

Understanding their roles is pivotal for designing efficient and contextually aware 

systems that enhance pedestrian safety and optimize interactions with autonomous 

technologies. 

Short-term intention prediction predicts the immediate behaviour or response 

of VRUs (Vulnerable Road Users) over the next few seconds (2-3 seconds), focusing 

on actions such as walking, stopping, crossing, or waiting [5], [17]-[20]. Whereas 

long-term intention prediction estimates the trajectory or final destination of VRUs 

by incorporating contextual and scene infrastructure details to improve trajectory 

accuracy beyond 3 seconds [21]-[27]. 

Observation Length: Observation length refers to the number of consecutive 

time steps for which historical pedestrian data is considered during the training process 

of a pedestrian crossing intention detection system. In other words, the duration of past 

behaviour and cues are considered for predicting a pedestrian's intention to cross the 

road. 

Time-to-Event (TTE): Time-to-event (TTE) is the temporal difference 

between the last time step of the observation length and the occurrence of the actual 

crossing event. It quantifies the interval from when the system last observes the 

pedestrian's behaviour to when the pedestrian starts crossing the road.  
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The observation length and TTE are interconnected parameters crucial for 

designing effective pedestrian crossing intention detection systems. Striking the right 

balance between these factors is essential to ensure timely, accurate, and context-aware 

predictions, contributing to enhanced pedestrian safety and smoother interactions 

between pedestrians and autonomous systems [17]-[18]. 

Fig 1.1 describes the pedestrian intention prediction process into three primary 

stages: input, feature extraction and encoding, and decoding or classification, which 

varies based on the desired output. The input stage consists of frames from real-time 

or pre-recorded video sequences captured by various camera systems from multiple 

angles. These frames undergo a pre-processing phase, during which relevant attributes 

are extracted to align with the specific requirements of the proposed algorithm. 

Various feature extractors can encode features across spatial and temporal dimensions. 

The final stage incorporates a classifier or a neural network-based decoder to facilitate 

pedestrian crossing predictions and trajectory anticipations, respectively. 

A comprehensive classification of pedestrian intention estimation approaches 

is presented in Fig 1.2, which encompasses a wide range of techniques explored in the 
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Fig 1.1: A generalised framework for Pedestrian Intention Prediction 
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literature. This classification is structured around three key parameters: duration of 

prediction, type of model, and choice of input features. 

• Duration-based classification divides prediction techniques into long-term and 

short-term approaches, depending on the temporal window to anticipate pedestrian 

actions [28]-[31]. 

• Model-based classification categorizes approaches into dynamical/physics-based 

[32]-[35], goal-driven [36]-[41], and data-driven models [9], [26]-[28], [36], [42]-

[53], leveraging different methodologies to interpret pedestrian behaviour. 

• Feature-based classification distinguishes between pedestrian-specific[5], [32], 

[43], [50], [54]-[63], contextual[9], [64]-[73], and hybrid features[74]-[77], 

highlighting the input data types contributing to intention estimation.  

 

1.2 Challenges in Pedestrian Intention Prediction 

Pedestrian intention prediction is critical to ensuring safety in urban 

environments, particularly in human-vehicle interaction scenarios. Accurately 

forecasting whether a pedestrian will cross a street is essential for autonomous 

vehicles, driver-assistance systems, and intelligent transportation infrastructure. 

However, predicting pedestrian behaviour remains a highly complex task due to 

variability in human motion, environmental uncertainties, and limitations in sensor 

data. Unlike vehicles, which follow predefined traffic rules, pedestrians exhibit 
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Fig 1.2: Taxonomy of Pedestrian Intention Prediction 
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unstructured and often unpredictable movements, making it difficult to develop a 

universally reliable prediction model. 

One of the primary challenges in this domain is pedestrians' inconsistent and 

erratic movement patterns, especially in crowded urban settings. Pedestrians 

frequently change direction, pause, or accelerate unexpectedly, often influenced by 

distractions, urgency, or social interactions. Conventional motion models struggle to 

capture these non-linear behavioural variations, reducing prediction accuracy in real-

world scenarios. Moreover, the challenge intensifies at busy intersections and 

crosswalks, where multiple pedestrians interact with each other and external elements, 

further complicating trajectory prediction [78]-[79]. 

Another significant issue is the reliance on multimodal data, which includes 

visual inputs, trajectory coordinates, and environmental context. While multimodal 

approaches enhance prediction accuracy, they introduce missing, noisy, or unreliable 

data vulnerabilities. Sensor failures, occlusions caused by vehicles or street objects, 

and adverse weather conditions can disrupt data acquisition, resulting in incomplete or 

erroneous inputs. Existing models often lack robust mechanisms to handle missing 

modalities, making them unreliable in dynamic real-world settings. Furthermore, 

current predictive architectures face challenges in contextual reasoning, particularly in 

associating pedestrian behaviour with environmental cues. Traffic signals, 

approaching vehicles, road infrastructure, and pedestrian flow patterns all play crucial 

roles in determining crossing intentions. However, many models fail to establish a 

cohesive relationship between these contextual elements and pedestrian dynamics, 

leading to suboptimal performance in complex traffic conditions [20]-[80]. 

Finally, computational efficiency and real-time feasibility pose additional 

challenges in pedestrian intention prediction. Many state-of-the-art models prioritize 

accuracy but overlook memory and processing constraints, making them impractical 

for real-time deployment in autonomous vehicles and edge-computing systems. High 

computational overhead can lead to delayed predictions, reducing the effectiveness of 

pedestrian detection in fast-moving traffic scenarios. Optimizing prediction models to 
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balance accuracy, speed, and efficiency is crucial for enabling their widespread 

implementation in intelligent traffic management systems [81]-[82]. 

1.3 Role of Deep Learning in Pedestrian Intention 

Prediction 

In the early stages of research, researchers employed random models, including 

the Gaussian mixture regression model[78] and the hidden Markov model[79] to 

simulate pedestrian motion patterns based on either precise dynamical modelling or 

knowledge of prior end goals, limiting their ability to reasonably predict future 

interactions and their applicability to complex motion scenes. Fig. 1.3 illustrates an 

example of pseudo-goal candidates generated by matching test input with expert 

trajectories [80]. These candidates are then encoded, refined through a social attention 

network (Social ATTN), and utilized to produce final trajectory predictions.  

Nonetheless, the recent surge of deep learning algorithms has outperformed 

these traditional approaches in handling complex scenarios without showing reliance 

on any dynamic motion modelling or prior knowledge of end goals. Several trajectory-

based techniques [22], [23], [81], [82] that rely on past trajectories of the pedestrian to 

predict its forthcoming action of whether crossing or not crossing the road also fail to 
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anticipate the covert intention of the pedestrian at times. Intention or behavioural 

attributes of pedestrians might not necessarily be reflected in his past trajectories. 

Instead, a holistic view and comprehension of the context, scene, pedestrian 

behavioural attributes, and interaction with fellow pedestrians are vital for visual 

perception of future pedestrian actions. For instance, trajectory-based techniques 

might falsely predict a pedestrian checking for a bus to be a crossing event on the road. 

Hence, comprehending the cardinal cause or intention of the pedestrian behind any 

action event will help to anticipate its future action accurately. Furthermore, designing 

such systems that can predict the underlying intention of the pedestrian not only helps 

in anticipating their goal but also sheds the burden on AVs by shifting the focus on 

only those pedestrians who intend to cross the road [2], [11], [83].  

 

1.4 Research Motivation 

Pedestrian intention prediction is a critical area of research, driven by the need 

to enhance road safety and improve the integration of autonomous vehicles into urban 

environments. As vulnerable road users, traffic incidents disproportionately affect 

pedestrians, underscoring the importance of accurately anticipating their movements. 

In the European Union, pedestrians account for approximately 22% of all road 

fatalities, with 69% occurring within urban areas. This highlights the heightened risk 

pedestrians face in city settings, where vehicle interactions are frequent. Similarly, 

pedestrians constitute about 30% of all road-related deaths in Japan, emphasizing a 

global concern for pedestrian safety [4].  

The increasing prevalence of larger vehicles like SUVs has further exacerbated 

pedestrian dangers. These vehicles often have design features that reduce driver 

visibility and increase the severity of collisions. In Australia, the popularity of such 

vehicles has been linked to a rise in road fatalities and serious injuries, particularly 

among pedestrians, cyclists, and motorcyclists. Despite efforts to improve pedestrian 

safety, recent data indicates that challenges persist. For instance, in Nashville, 

Tennessee, pedestrian fatalities decreased by 30% in the first half of 2024 compared 

to the same period in 2023. However, the total number of deaths remains significantly 
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higher than a decade ago, with 33 pedestrian fatalities reported in 2024, up from 18 in 

2014 [83]. These statistics underscore the need for advanced systems to predict 

pedestrian intentions to prevent accidents.  

Moreover, developing reliable pedestrian intention prediction models is crucial 

for adopting autonomous vehicles. Ensuring that these vehicles can effectively 

anticipate and respond to pedestrian behaviour is vital for public trust and the 

successful integration of autonomous technology into daily transportation systems. 

The key motivation behind studying pedestrian intention prediction lies in the pressing 

need to reduce pedestrian fatalities and injuries, adapt to evolving vehicle trends, and 

support the safe deployment of autonomous vehicles in complex urban landscapes. 

This thesis contributes to the field by addressing key challenges in pedestrian intention 

prediction, including handling multimodal data, mitigating the impact of noisy or 

missing information, and improving computational efficiency for real-time 

applications. The proposed approaches enhance the accuracy and robustness of 

predictive models in complex urban environments by integrating advanced deep-

learning architectures, attention mechanisms, and context-aware modelling 

techniques. Through these advancements, the research refines existing methodologies 

and establishes a foundation for future innovations in AI-driven perception and human 

behaviour modelling.  

1.5 Problem Formulation 

 The central problem addressed in this thesis revolves around the accurate and 

efficient prediction of pedestrian intentions in dynamic and uncertain urban 

environments, a critical requirement for the safe operation of autonomous vehicles. 

Pedestrian behaviour is inherently complex and unpredictable, often characterized by 

abrupt changes such as sudden stops, accelerations, and shifts in direction, influenced 

by a variety of contextual factors including distractions, urgency, and social 

interactions. Capturing these nuanced motion patterns demands models capable of 

understanding fine-grained spatiotemporal dependencies. 
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 Furthermore, the integration of multimodal data comprising visual cues, 

trajectory information, and environmental context introduces additional challenges 

due to potential data corruption or loss caused by sensor failures, occlusions, and 

adverse weather conditions. These issues compromise model reliability, particularly 

in real-world deployments. Addressing this, there is a pressing need for robust learning 

strategies that can reason causally about pedestrian behaviour even in the presence of 

incomplete or noisy inputs. 

 Another key challenge lies in interpreting the complex and often subtle 

interactions between pedestrians and dynamic environmental elements, such as traffic 

signals and nearby vehicles. Traditional models struggle to maintain contextual 

awareness in such settings, leading to limited accuracy in intention prediction. 

Furthermore, ensuring the computational efficiency of such models remains difficult, 

as high memory consumption and processing overhead hinder their real-time 

applicability in autonomous driving systems. 

 This thesis formulates the problem as a two-fold task: short-term pedestrian 

intention prediction, focused on determining whether a pedestrian is likely to cross the 

street (crossing intention); and long-term pedestrian behaviour prediction, which 

involves forecasting the future trajectory of the pedestrian over a longer time horizon. 

Both tasks require the design of a robust, context-aware, and computationally efficient 

framework capable of learning from multimodal data and accurately modelling the 

complex dynamics of pedestrian behaviour in real-time. 

1.6 Research Objectives 

The principal objective of this thesis is to address the challenges inherent in 

predicting pedestrian intentions for autonomous vehicles, such as the dynamic nature 

of urban traffic, the randomness of pedestrian decisions and actions, and the necessity 

of interpreting these actions within diverse contextual frameworks. Furthermore, to 

enhance the understanding of scene context and adaptively respond to the variability 

in pedestrian dynamics, this research aims to transition from relying on single 
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modalities to robustly integrating multiple modalities for improved prediction 

accuracy. To this end, the following research objectives have been proposed: 

RO.1 To review the different pedestrian intention prediction techniques for 

Autonomous Vehicles (AVs). 

RO.2 To propose an efficient pedestrian intention prediction model by utilising 

various sources of contextual information of road scenes. 

RO.3 To develop a multimodal architectural design for robust pedestrian intention 

prediction by AVs.  

RO.4 To design a pedestrian intention prediction model in long term with scene 

semantic understanding.  

RO.5 To build a joint framework for pedestrian intention prediction in both short 

term and long term.  

1.7 Research Contributions 

 This thesis presents a set of research contributions aimed at advancing 

pedestrian intention prediction and trajectory forecasting under complex real-world 

conditions. Each contribution addresses a specific challenge in multimodal modelling, 

data robustness, contextual understanding, or computational efficiency. 

 One of the primary challenges in pedestrian intention prediction arises from 

the inherently inconsistent and unpredictable nature of pedestrian movement, which 

often includes sudden stops, accelerations, and abrupt changes in direction. These 

behaviours are typically influenced by a range of contextual factors such as 

distractions, urgency, and social interactions. To effectively model these dynamics, 

this work introduces several methodologies, such as Interaction Encoder constructed 

using Graph Convolutional Networks (GCNs) and a Progressive Denoising Attention 

Mechanism, enabling a more nuanced understanding of spatiotemporal motion 

patterns. 
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 The dependence on multimodal data comprising visual inputs, trajectory 

coordinates, and environmental context introduces additional complexity due to the 

potential for sensor failures, occlusions, and adverse weather conditions. To enhance 

robustness under such conditions, a Counterfactual Training Approach is employed. 

This method improves the model’s causal reasoning capabilities by explicitly 

modelling the relationships between observed behaviour and contextual features, 

thereby enhancing reliability in real-world deployment scenarios. 

 Understanding the intricate relationships between pedestrian behaviour and 

environmental elements, such as traffic signals and oncoming vehicles, is critical for 

accurate intention prediction. This thesis addresses this by integrating a Co-Learning 

Transformer Architecture, the aforementioned GCN-based Interaction Encoder, and a 

Context-Aware Feature Fusion Module (CAFFM) in the proposed works. These 

components enhance the model's contextual awareness and enable more precise 

prediction of pedestrian intentions in complex urban environments. 

 Finally, achieving real-time performance remains a significant concern due to 

the high computational and memory demands of deep learning-based models. To 

address this, this thesis incorporates Multi-Head Shared Weight Mechanisms 

(MHSWM), Shared MLP Heads, and a Progressive Encoder-Decoder Architecture, all 

of which contribute to reducing model complexity and computational overhead while 

preserving predictive accuracy. 

1.8 Outline of the Thesis 

The thesis entitled, ‘Pedestrian Intention Prediction for Autonomous 

Vehicles’ is structured into six chapters, followed by a comprehensive bibliography. 

The organization of the thesis is as follows: 

Chapter 1: Introduction presents the research motivation, outlines the challenges of 

pedestrian intention prediction, and discusses the role of deep learning in addressing 

them. It includes the problem formulation, research objectives, key contributions, and 

an overview of the thesis structure. 



14 

 

Chapter 2: Literature Review offers a detailed review of state-of-the-art 

methodologies, assessing their strengths and limitations regarding prediction duration, 

input feature types, and model architectures, thereby identifying research gaps and 

defining the objectives addressed in the thesis. 

Chapter 3: Short-term Intention Prediction details two innovative approaches for 

short-term crossing intention prediction. The first utilises appearance, context, motion 

dynamics, and social interactions, integrating a Multi-Head Attention-based Graph 

Convolutional Network (𝑀𝐻𝐴 − 𝐴𝑑𝑗𝑀𝑎𝑡) to capture complex pedestrian behaviours 

and improve predictive accuracy. The second approach introduces a three-stage 

transformer encoder structure driven by a Co-learning module and Multi-Head Shared 

Weight Attention for efficient multimodal data fusion, enhanced by a Co-learning 

Adaptive Composite (CAC) loss to optimise training and feature representation. 

Chapter 4: Long term Intention Prediction presents a GAN-based methodology for 

long-term trajectory prediction, addressing pedestrian movement's complexity and 

stochastic nature through adaptive learning strategies and contextual attention 

mechanisms. This chapter discusses using a Dynamic Progressive Generator and an 

Adaptive Fuzzified Discriminator to boost prediction accuracy, reduce mean squared 

error, and enhance model generalisation, particularly in ambiguous scenarios.  

Chapter 5: Unified Short-term and Long-term Intention Prediction introduces a 

unified framework for concurrent short- and long-term pedestrian intention prediction, 

utilising a three-phase counterfactual training method and Progressive Denoising 

Attention (PDA) for effective cross-modal feature integration. The approach 

incorporates a Conditional Variational Autoencoder (CVAE) refined with a Context-

Aware Feature Fusion Module (CAFFM) to optimise trajectory prediction accuracy.  

Chapter 6: Conclusion, Future Scope and Social Impact presents a concise 

summary of the key ideas, findings, and contributions corresponding to each research 

objective addressed in the thesis. It also outlines potential directions for future research 

and discusses the broader social implications of the proposed methods and their 

applications. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter reviews state-of-the-art approaches for pedestrian intention 

prediction, categorized into short-term and long-term forecasting methods. Short-term 

prediction focuses on anticipating immediate pedestrian actions, crucial for real-time 

applications like autonomous navigation and intelligent surveillance [17]-[20]. At the 

same time, long-term forecasting aims to predict movement patterns over an extended 

period, benefiting urban planning and traffic management [21]-[27]. Recent 

advancements in deep learning have significantly improved these models by 

leveraging multimodal features such as visual data, trajectory coordinates, and 

environmental context [9], [15]-[16]. Various fusion strategies, including early, late, 

and adaptive fusion, enhance predictive accuracy, while social interaction modelling 

through Graph Convolutional Networks (GCNs) and attention mechanisms further 

refine behavioural understanding.   

Short-term approaches often utilize recurrent neural networks (RNNs), 

transformers, and hybrid models to process motion cues and contextual information 

for immediate decision-making [18], [85]-[86]. In contrast, long-term trajectory 

forecasting relies on transformer-based architectures and generative models like GANs 

and VAEs to capture uncertainty in pedestrian motion [22]-[23]. These methods 

improve safety in autonomous systems by enabling proactive decision-making in 

dynamic environments. By systematically evaluating multimodal architectures, fusion 

techniques, and interaction-aware modelling, this chapter highlights key 

advancements and identifies open challenges in pedestrian intention prediction 

research as follows: 

2.1 Short-term intention prediction 

This section explores the critical role of multimodal feature representation, 

learning architectures, fusion strategies, and spatiotemporal modelling of pedestrian 

interactions in short-term pedestrian intention prediction. Integrating diverse input 
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modalities, such as trajectory, pose, and visual context, is crucial in capturing 

pedestrian intent, particularly in complex or ambiguous scenarios. Appropriate 

learning architectures, including RNNs, CNNs, GNNs, and Transformers, enable the 

extraction of meaningful spatial and temporal dependencies, improving predictive 

accuracy. Fusion strategies, ranging from early feature concatenation to advanced self-

attention mechanisms, facilitate the effective integration of multimodal information, 

enhancing model generalization. Furthermore, spatiotemporal modelling of pedestrian 

interactions provides deeper insights into motion patterns and environmental 

influences, refining intent prediction in dynamic traffic settings. These elements 

collectively contribute to developing more robust and adaptive pedestrian intention 

prediction frameworks. 

2.1.1 Multimodal Feature Representations 

Within existing literature, various features have been employed to alleviate the 

cognitive load of employed intelligent frameworks. The predominant feature for 

predicting pedestrian intent has been trajectory or historical motion data, evident in 

numerous studies [9]. Nonetheless, relying solely on trajectory proves inadequate 

when no historical data exists, or the trajectory is abrupt [12]. Combining pose key-

point information with trajectory has shown promise in advancing intention prediction 

[54]. Visual appearance features also offer significant cues regarding pedestrian intent 

and future actions. Recent pioneering research highlights the critical role of visual 

context features in understanding a pedestrian’s traffic environment, as these features 

provide essential cues for predicting pedestrian behaviour. Additionally, in dynamic 

scenes, integrating ego-vehicle motion information enhances the assessment of a 

pedestrian’s relative movement concerning onboard cameras, thereby improving 

situational awareness and predictive accuracy [17]-[18]. However, existing 

approaches have often overlooked the incorporation of richer contextual information, 

which is crucial for robust and generalizable pedestrian intention prediction. The Biped 

model [84] attempted to address this limitation by independently and jointly encoding 

multiple modalities, offering a more comprehensive understanding of pedestrian 

behaviour. Nevertheless, its heavy reliance on semantic scene parsing constrained its 
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adaptability, making it less effective in diverse and unstructured environments where 

contextual variations are significant. 

2.1.2 Multimodal Learning Architectures 

Several seminal architectures [17], [18], [84] are proposed hitherto that 

endeavour to fuse multi-source inputs optimally for efficient and accurate pedestrian 

crossing prediction. SF-GRU [17] fused local context, appearance, bounding box, pose 

and ego-vehicle speed hierarchically using GRU as the encoder. Along similar lines, 

Yang et al. [18] proposed the fusion of two different channels for visual: local context 

and are proposed hitherto that endeavour to fuse multi-source inputs optimally for 

efficient and accurate pedestrian crossing prediction. Nonetheless, these approaches 

were restricted since they do not consider the impact of human social conduct and 

interactions with the surrounding environment, which are inevitable in assessing a 

pedestrian’s short-term intention. Moreover, these works lack rich feature 

representations of distinct pedestrian modalities and efficient integration of these 

modalities for enhancement. Subsequent seminal works [80], [81], [85] demonstrated 

the potential of attention mechanisms and transformers to fuse spatiotemporal features. 

In a recent work, Bai et al. [86] introduced a progressive feature fusion module with a 

self-attention mechanism to extract relevant multimodal features selectively. 

Pedestrian Graph+.[87] infers spatiotemporal relationships autonomously through 

network learning. In another seminal work, Yao et al. [88] designed a human visual 

learning-inspired Attention Relation Network for deeper traffic scene comprehension. 

However, such evolved multimodal architectures that seamlessly integrate diverse 

modalities, enhancing both the learning efficacy of the model and the intention 

prediction performance, remain limited. 

2.1.3 Fusion Strategies 

In deep learning architectures, fusion techniques are pivotal for integrating 

information across multiple modalities to enhance prediction accuracy, thereby 

influencing the effectiveness of intention prediction tasks. Early feature fusion 
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methods, such as straightforward or weighted concatenation of features before the final 

classification network, are employed in notable works [89], [90]. However, these 

approaches may not fully capture the complex intermodal relationships essential for 

optimal performance, potentially limiting the integration of diverse modal information. 

Several pioneering works [17], [18] employ Multi-Stream Architecture, processing 

each modality separately within network branches and combining their outputs later. 

While this allows for learning modality-specific representations and weighting each 

modality's importance in predictions, it may hinder capturing critical intermodal 

dependencies and interactions.  

In contrast, advanced fusion techniques like self-attention mechanisms, as seen 

in noteworthy works [86], [91], [92], enhance pedestrian intention prediction by 

emphasizing relevant factors and dynamically selecting multimodal features. For 

instance, Bai et al. [86] introduce a progressive feature fusion module using a self-

attention mechanism to select useful multimodal features from global to local 

perspectives for pedestrian crossing prediction. Sharma et al. [91] propose an adaptive 

fusion module to dynamically weigh all the visual, motion and interaction features, 

enhancing performance. Additionally, cross-modal Transformer architectures, as 

explored in another notable study [93], capture dependencies between data types and 

model interactions between pedestrians and traffic agents, considering both pedestrian 

and ego-vehicle dynamics. Despite recent advancements, current methodologies often 

face challenges in effectively interpreting correlations across different modalities, 

limiting their generalizability to unseen cases.  

2.1.4 Spatiotemporal Modelling of Pedestrian interactions 

Modelling subtle nuances of interactions among pedestrians in a dynamic 

traffic scene, influencing their crossing intention, is pivotal in mimicking human-like 

subconscious decision-making in AVs and ADAS systems. The inherent randomness 

and dynamic nature of these interactions in space and time pose challenges for learning 

models. Recently, spatiotemporal modelling has been widely used in pedestrian 

intention prediction, particularly with the development of deep learning models 
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capable of handling spatial and temporal information. Spatio-temporal modelling is a 

crucial aspect of pedestrian intention prediction as it allows for modelling both 

pedestrian behaviour's spatial and temporal dimensions. Spatial modelling refers to the 

modelling of the physical space in which the pedestrian is operating, including the 

location and orientation of the pedestrian in the environment. This information is vital 

for understanding the pedestrian's surroundings, potential obstacles, and interactions 

with other objects. On the other hand, temporal modelling refers to the time aspect of 

pedestrian behaviour. This information is essential for identifying sudden behavioural 

changes that may indicate an intention to cross the street [81], [94].  

Leveraging the unprecedented success of RNNs and CNNs in several computer 

vision applications, the last decade has witnessed an increase in their usage in 

modelling sequential behaviour of pedestrians over time. RNNs help capture their 

motion patterns by allowing the network to maintain information about the pedestrian's 

motion over time. CNNs learn to identify significant features, such as the shape and 

movement of the pedestrian and the fully connected layers, and then use these features 

to make a prediction. Hamed et al. [89] employed a combination of CNN and Time-

Distributed Layers (TDL) to visually represent pedestrians, with the LSTM layer 

learning the temporal context. Rasouli et al. [17] introduced an RNN encoder-decoder 

architecture that captures a visual representation of the image surrounding pedestrians 

concatenated with pedestrian dynamics. Inspired by this, Yao et al. [18] utilized an 

encoder-decoder architecture and a novel Attention Relation Network (ARN) to 

induce a spatiotemporal understanding for anticipating pedestrian crossing intentions. 

Other groundbreaking works [95], [96] integrated a hybrid combination of CNNs and 

RNNs for spatiotemporal encoding. However, RNNs and CNNs are challenging to 

train when there is sparse data, which could be the case in most pedestrian datasets. 

Furthermore, the vanishing gradient issue in RNNs for longer sequences and 

inefficiency in capturing the global relationship of the pedestrian with scene objects 

by CNNs make the overall performance of the CNN-RNN-based architectures suffer 

in the long run [97]. 
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Several approaches [29], [82], [87], [98], [99], [100], [101] have also explored 

Graph Neural Networks (GNNs) to capture the interactions between pedestrians and 

their environment. These approaches depict each pedestrian as a node in the graph, 

and edges are added between nodes to model pedestrian relationships.  Liu et al. [81] 

utilised graph convolution to understand the intricate spatiotemporal relationships in a 

scene, incorporating both pedestrian-centric and location-centric perspectives. 

Similarly, Naik et al. [99] analysed the relationship between pedestrians and the scene 

using a Scene Spatio-temporal Graph Convolution Network. Chen et al. [29] advanced 

this concept further by employing graph autoencoders to comprehend the impact of 

the surroundings on pedestrian crossing decisions. Zhang et al. [100] integrated Graph 

Attention Networks (GAT) into Graph Convolutional Networks(GCNs) to strengthen 

further the ability to model complex social interactions. In another interesting work, 

Riaz et al. [82] proposed a GNN-GRU-based architecture PedGNN that takes a 

sequence of pedestrian skeletons as input to predict crossing intentions. Ling et al. 

[101] utilised GCN(Graph Convolutional Network) with spatial, temporal and channel 

attention to strengthen feature extraction for more accurate and fast prediction. 

However, GNNs can struggle to generalize to unseen graphs, as they depend heavily 

on the graph structure and node features. This can be a limitation for anticipating 

pedestrian intention where the graph structure is subject to change over time [102].  

To the extent of our knowledge, the examination of Transformers in pedestrian 

intention prediction is a novel and under-researched area, with only a handful of works 

that have addressed it [85], [103], [104], [105]. Achaji et al. [103] proposed a 

Transformer model with bounding boxes as the only required input. However, it relies 

solely on bounding box information, which fails to capture the road context and may 

misinterpret movements similar to crossing behaviour. The PIT framework [104] 

incorporated a sophisticated integration of a temporal fusion block and a self-attention 

mechanism, enabling the modelling of the dynamic relationships between the 

pedestrian, ego-vehicle, and environment. This progressive processing of temporal 

information enables the capture of dynamic interactions between elements in a manner 

that is more congruent with human-like behaviour. Additionally, Osman et al. [85] 

introduced a novel adaptive mechanism that dynamically assigns weights to the 
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significance of current and previous frames, utilizing an attention mask within the 

Transformer, thereby promoting dynamic spatiotemporal modelling. In another 

seminal work, Zhang et al. [105] capture temporal correlations within pedestrian video 

sequences using a Transformer module and address the uncertainty of complex 

pedestrian crossing scenes. 

2.2 Long-term Intention Prediction 

This section analyses long-term pedestrian intention prediction, focusing on the 

challenges of forecasting movement over extended time horizons, including non-linear 

motion patterns, abrupt directional changes, and multimodal trajectory distributions. 

An overview is provided of recurrent and Transformer-based models, assessing their 

effectiveness in capturing temporal dependencies and spatial interactions. The 

discussion then extends to advanced generative models, such as GANs and CVAEs, 

which have been developed to model the inherent uncertainty of pedestrian motion by 

generating diverse trajectory distributions. Finally, key limitations are highlighted, 

including integrating environmental context, multimodal fusion, and stability in 

generative learning. These remain critical for improving the accuracy and 

generalizability of long-term intention prediction models. 

2.2.1 Recurrent and Transformer-based Trajectory Prediction 

Trajectory prediction methodologies have significantly progressed, 

particularly with integrating recurrent and transformer-based models. Xue et al. [106] 

presented a novel method featuring dual temporal attention mechanisms and an 

embedded location-velocity attention layer within a specialized tweak module. Yu et 

al. [107] leveraged transformative mechanisms to adeptly model intra-graph crowd 

interactions and inter-graph temporal dependencies to capture intricate spatial-

temporal dynamics. Taking a distinctive approach, Tao et al. [108] integrated rich 

information into Long Short-Term Memory (LSTM), effectively addressing dynamic 

interactions, long-trajectory correlations, and semantic scene layouts. In parallel, 

Wong et al. [109] estimated continuous key points and defined spectrum interpolation 
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sub-networks for trajectory modelling at both key points and interaction levels. These 

advancements [106], [107] showcase a nuanced understanding of advanced scene 

dynamics and pedestrian interactions within dynamic environments. However, 

inherent challenges, including abrupt directional changes and irregular non-linear 

motion patterns, such as sudden stops or velocity fluctuations, contribute to systematic 

errors in trajectory predictions [12], [23], [94], [106], [110].  

2.2.2 Deep Generative Models for Trajectory Prediction 

In contrast to preceding recurrent and transformer-based methodologies, 

generative models like GANs and CVAEs demonstrate unparalleled adaptability to 

abrupt changes and irregular motion patterns. Furthermore, the recent evolution in 

deep generative models has marked a transformative shift from predicting a single 

optimal trajectory to generating a distribution of potential future trajectories. Ivanovic 

et al. [111] adopted a Gaussian Mixture Model (GMM) for target trajectory 

assumption, presenting the Trajectron network to predict GMM parameters through a 

spatio-temporal graph. Trajectron++ [110] extended this approach to accommodate 

dynamics and heterogeneous input data. BiTrap [22] and SGNet [23] both leverage 

Conditional Variational Autoencoders (CVAEs) to handle the multimodality and 

uncertainty of human movements. BiTrap [22] enhances prediction accuracy through 

a goal-conditioned bidirectional approach that considers past and future contexts. 

However, its emphasis on a single endpoint may limit its capacity to model the full 

range of possible trajectories. SGNet [23] incorporates multi-temporal goal estimation, 

improving long-term accuracy and adding granularity to predictions. However, both 

models could benefit from better integration of environmental context to refine their 

predictions. 

Mangalam et al. [24] addressed human trajectory prediction by modelling 

intermediate stochastic goals known as endpoints. Recognizing the inherent 

stochasticity in future human motion patterns, Y-Net [25] learned goal and path 

multimodalities by leveraging scene semantics. Su et al. [112] designed SIT to learn 

the spatiotemporal correlation of pedestrian trajectories via attention mechanisms. 
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Wang et al. [23] acknowledged the temporal variance in the goal of a moving agent by 

estimating goals at multiple temporal scales for more accurate trajectory prediction. 

Gao et al. [113] enhanced the model's awareness of diverse social interaction patterns 

through Social-DualCVAE, conditioned on past trajectories and unsupervised 

classification of interaction patterns. Recently, Yue et al. [114] integrated neural social 

physics to model pedestrian stochastic motion patterns followed by a CVAE to 

generate predictions. While GANs are known for generating realistic outputs, they face 

challenges like mode collapse and training instability. In contrast, Variational 

Autoencoders (VAEs) offer a more stable and reliable approach by learning latent 

space representations that encapsulate the underlying structure of trajectory data, 

making them better suited for precise and diverse predictions [115]. 

2.3 Research Gaps 

Through an analysis of prior state-of-the-art methods for pedestrian intention 

prediction for autonomous vehicles, several research gaps have been identified as 

follows:  

• Limited studies [14], [16] address the unpredictable movements of pedestrians 

in busy urban areas. 

• Existing models [18], [87] fail to predict crossing intention effectively at TTEs 

greater than 1 second. 

• There is a notable lack of research [14], [116] focused on addressing noisy or 

missing modality data in multimodal pedestrian crossing intention models. 

• Prior multimodal architectures [106], [117] lack efficient integration of 

contextual understanding, such as the relationship between environmental 

factors and the dynamic behaviour of pedestrians. 

• Although recent advancements have focused on improving prediction 

performance, limited attention has been given to optimizing memory footprint, 

resulting in architectures that are computationally demanding [15], [72]. 
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2.4 Conclusion and Future Scope 

This chapter has provided an in-depth review of state-of-the-art approaches for 

pedestrian intention prediction, distinguishing between short-term and long-term 

forecasting techniques. It highlighted the evolution of multimodal learning, advanced 

fusion strategies, and spatiotemporal modelling methods that have significantly 

enhanced predictive performance in dynamic environments. Short-term models benefit 

from real-time multimodal integration, whereas long-term models emphasize 

trajectory uncertainty and contextual reasoning through generative frameworks. 

Despite these advances, challenges remain in dealing with noisy or missing modalities, 

modelling social and contextual interactions effectively, and ensuring computational 

efficiency. 

Addressing these gaps serves as the principal motivation for the present thesis. 

The subsequent chapters will introduce four novel methodologies, each specifically 

designed to tackle the limitations identified in short-term and long-term intention 

prediction, respectively. These contributions aim to advance the development of 

robust, context-aware, and computationally efficient predictive frameworks that are 

better aligned with the demands of real-world autonomous and assistive systems.  
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CHAPTER 3 

SHORT-TERM INTENTION PREDICTION 

In complex urban environments, accurately anticipating pedestrian behaviour 

is essential for ensuring the safety and reliability of autonomous vehicles and 

intelligent transportation systems. Among the various facets of human motion 

forecasting, short-term pedestrian intention prediction, focused on forecasting 

immediate actions such as initiating a crossing, plays a critical role in enabling timely 

decision-making in real-world traffic scenarios. Its applications are particularly 

significant in autonomous driving, where vehicles must respond rapidly to sudden 

pedestrian movements to avoid potential collisions.  

Building upon this premise, this chapter introduces two short-term pedestrian 

intention prediction models aimed at overcoming key challenges in multimodal 

scenarios, particularly contextual integration and computational efficiency. A major 

limitation of existing approaches is their inability to effectively model the relationship 

between environmental factors and pedestrian behaviour, resulting in suboptimal 

contextual understanding. Furthermore, the high computational complexity of current 

models necessitates memory optimization to enhance efficiency without 

compromising predictive accuracy. To address these issues, the proposed frameworks 

undergo systematic experimental evaluation and a comprehensive analysis of results, 

discussions, and a comparative assessment against state-of-the-art methods. 

3.1 Visual-Motion-Interaction Guided Pedestrian 

Intention Prediction Framework 

The capability to comprehend the intentions of pedestrians on the road is one 

of the most crucial skills that the current autonomous vehicles (AVs) are striving for 

to become fully autonomous. In recent years, multimodal methods have gained traction 

by employing trajectory, appearance, context, etc., to predict pedestrian crossing 

intention. However, most existing research works still lag rich feature representational 

ability in a multimodal scenario, restricting their performance. Moreover, less 
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emphasis is put on pedestrian interactions with the surroundings for predicting short-

term pedestrian intention in a challenging ego-centric vision. An efficient Visual-

Motion-Interaction-guided (VMI) intention prediction framework has been proposed 

to address these challenges. This framework comprises a Visual Encoder (VE), Motion 

Encoder (ME) and Interaction Encoder (IE) to capture rich multimodal features of the 

pedestrian and its interactions with the surroundings, followed by temporal attention 

and adaptive fusion module to integrate these multimodal features efficiently. The 

proposed framework outperforms several SOTAs on benchmark datasets: PIE/JAAD 

with Accuracy, AUC, F1-score, Precision and Recall as 0.92/0.89, 0.91/0.90, 

0.87/0.81, 0.86/0.79, 0.88/0.83 respectively. Furthermore, extensive experiments are 

carried out to investigate different fusion architectures and design parameters of all 

encoders. The proposed VMI framework predicts pedestrian crossing intention 2.5 sec 

ahead of the crossing event. 

3.1.1 Proposed Methodology  

The traffic scene environment is dynamically varying, and with onboard 

cameras, not just the traffic scene but the relative size and distance of the 

objects/pedestrians to the ego-vehicle in motion is also changing continuously. Unlike 

human drivers, who can decipher non-verbal cues of the surrounding traffic 
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Fig 3.1: Illustration of the Visual-Motion-Interaction-Guided (V-M-I) framework 
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environment and make decisions accordingly, AVs lack this inherent capability. This 

complex scenario motivates us to utilise multimodal information involving visual, 

motion and contextual features from the dynamic traffic scene to make AVs mimic 

human’s cognitive ability to anticipate pedestrians' intentions on the road. In this work, 

the pedestrian crossing intention prediction can be formulated as a binary classification 

task wherein the motive is to find the probability of a pedestrian ‘𝑗’ intention to cross 

or not, ℶ𝑗  ∈  (0,1), provided the past observations of visual, dynamic and interaction 

information of the pedestrian and the ego-vehicle speed for ′𝑞′ time steps. The 

proposed implementation of the Visual-Motion-Interaction-Guided (V-M-I) 

framework for intention prediction of pedestrians is described in Fig 3.1. This 

architecture employs multimodal features extracted from a traffic scene, involving 

target pedestrian visual appearance and non-visual dynamic features. Furthermore, 

interaction features are extracted from the surrounding context, since pedestrian 

interactions with co-pedestrians on the road also play a pivotal role in influencing 

crossing behaviour. This architecture is comprised of the following essential 

components.  

3.1.1.1 Visual Encoder (VE) 

The VE encodes the visual features of the pedestrian and its surroundings as 

described below: 

Appearance – The sequence of RGB images of a traffic scene captures the variations 

of pedestrians’ appearance temporally [18], [119]. The visual appearance features 

𝐴𝑗 = ൛𝑎𝑗
1, 𝑎𝑗

2, 𝑎𝑗
3, … … 𝑎𝑗

𝑞ൟ of the pedestrian ′𝑗′ ∈ (1, 𝑚) for past observed ′𝑞′ time steps 

are captured using image portions of the size of the bounding box consisting of the 

pedestrian in a scene.  

Context – The local contextual information of the target pedestrian depicts its 

relationship with the dynamic traffic scene elements in its surrounding [12] [29]. The 

surrounding local environment features 𝐶𝑗 = ൛𝑐𝑗
1, 𝑐𝑗

2, 𝑐𝑗
3, … … 𝑐𝑗

𝑞ൟ  are extracted using a 

larger image portion size to include the immediate contextual details. This is achieved 

by extending the dimension by at least twice the size of the pedestrian  ′𝑗′ bounding 
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box and masking it to include only the surrounding details. 

In generating image representations, transfer learning has emerged as a 

formidable approach, leveraging pre-trained models to extract meaningful features. 

Inspired by the insights derived from such transfer learning paradigms [120]-[122], the 

proposed framework endeavours to balance the trade-off between the model’s 

performance and complexity in terms of size and number of parameters of the model 

by utilising the EfficientNetB4 [123] model. This model has 82.9% Top-1 Accuracy 

on ImageNet [124], while being 17.47𝑥 smaller and having 18𝑥 fewer parameters 

than best existing ConvNet [125] so far. Both the appearance and the local context 

features are processed in parallel through EfficientNetB4 pre-trained on ImageNet. 

This is followed by Convolutional Block Attention Module (CBAM) [126] to 

emphasize relevant features across both channel and spatial dimensions as depicted in 

Fig. 3.1. Let the appearance and context features after processing via EfficientNetB4 

 𝐴𝑒 = ൛𝑎𝑒𝑗
1 , 𝑎𝑒𝑗

2 , 𝑎𝑒𝑗
3 , … … 𝑎𝑒𝑗

𝑞 ൟ and  𝐶𝑒 = ൛𝑐𝑒𝑗
1 , 𝑐𝑒𝑗

2 , 𝑐𝑒𝑗
3 , … … 𝑐𝑒𝑗

𝑞 ൟ  of 

dimension  𝐶 ×  𝐻 ×  𝑊 where  𝐶, 𝐻 and 𝑊 denotes the number of channels, 

height and width dimension of the feature space.  These processed features are then 

passed through an average pooling mechanism to reduce feature dimensions. The 

parallel branches are finally concatenated to give a modified visual feature 

representation as shown in Eqns. (1)- (3) as follows: 

𝐴𝑒
′ = ₣𝑐(𝐴𝑒) ⊗ 𝐴𝑒; 𝐴𝑒

′′ =  ₣𝑠(𝐴𝑒′) ⊗ 𝐴𝑒′                                                         (3.1)  

𝐶𝑒
′ = ₣𝑐(𝐶𝑒) ⊗ 𝐶𝑒 :  𝐶𝑒

′′ =  ₣𝑠(𝐶𝑒′) ⊗ 𝐶𝑒′                                                          (3.2)                

𝐴𝑒"⨁ 𝐶𝑒" = {𝐴𝑒"𝐶𝑒"𝑗
1,  𝐴𝑒"𝐶𝑒"𝑗

2, … … 𝐴𝑒"𝐶𝑒"𝑗
𝑞
} ∀ 𝑗(1, 𝑛)                                      (3.3) 

where ₣𝑐  ∈  ℝ𝐶×1×1 and ₣𝑠  ∈  ℝ1×𝐻×𝑊 corresponds to 1-D channel attention and 2-

D spatial attention map, respectively. The procedure of mapping attention both 

spatially and channel-wise via CBAM is represented in Fig. 3.1, the darker the colour, 

the higher the weight assigned to the feature. The CBAM output then undergoes global 

average pooling to reduce the dimensions of the feature vector for further 

computations. 
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3.1.1.2 Motion Encoder (ME) 

The representation of these features is described as follows:         

Pose: In this work, HRNet [127] generates a set of 17 pose key points per pedestrian 

sample using a bounding box sequence. This network has achieved ~76%  mAP on the 

MS COCO [128] dataset while maintaining higher resolution representation 

throughout the estimation process. This network surpasses the performance of several 

SOTA pose estimation modules [129] utilised in quite a few existing works[17], [18].  

The key points are obtained in the form of 𝑥 and 𝑦 coordinates resulting in a vector of 

34 values per pedestrian sample. These values undergo normalization and then 

concatenation into a feature vector for further processing for ′𝑞′ past observations and 

are represented as 𝑃𝑗 = ൛𝑝𝑗
1, 𝑝𝑗

2, 𝑝𝑗
3, … … 𝑝𝑗

𝑞ൟ 

Trajectory: The location of a pedestrian ′𝑗′ in a 2D coordinate space is provided with 

top-left ሼ𝑥𝑡𝑙 , 𝑦𝑡𝑙ሽ  and bottom-right ሼ𝑥𝑏𝑟, 𝑦𝑏𝑟ሽ coordinate points represented as 𝐵𝑗 =

൛𝑏𝑗
1, 𝑏𝑗

2, 𝑏𝑗
3, … … 𝑏𝑗

𝑞ൟ. 

Speed: This consists of speed value measurements of the ego-vehicle in km/h given as 

- 𝑆𝑗 = ൛𝑠𝑗
1, 𝑠𝑗

2, 𝑠𝑗
3, … … 𝑠𝑗

𝑞ൟ 

Motivated by the scientific findings [130] about the low computational 
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complexity and faster training time of Conv 1-D over Conv 2-D for one-dimensional 

data, the ME processes pose, trajectory and speed through a Conv 1-D parallelly with 

32 filters of kernel size, 3 and stride, 1. These transformed features are then combined 

and passed to the TAM.  

3.1.1.3 Interaction Encoder (IE) 

Pedestrians’ interactions with traffic scene elements dynamically impact the 

road crossing intention [12], [87]. Inspired by some of the seminal works [29], [87], 

the proposed approach leverages graph convolutional networks (GCNs) [131] to 

model the temporal relationship of pedestrian interactions across consecutive frames. 

In the proposed architecture, the nodes of the graph 𝐺: ሼ𝑁𝑗 , 𝐸𝑗ሽ represents ′𝑡𝑡ℎ′time-

step encoded feature map of the target pedestrian  ′𝑗′ context and edges 𝐸𝑗 represents 

the associations existing among these feature maps corresponding to different time 

steps in a traffic scene as shown in Fig. 3.2. These inter- associations within a graph 

are reflected via an adjacency matrix 𝑅𝑞 × 𝑞  computed as shown in Algorithm 3.1, 

where ‘𝑞’ is the total time steps considered per sample. For each 𝑗𝑡ℎ pedestrian sample, 

received context feature map is applied with linear transformation followed by a 

reshape operation to extract Query, Key and Value matrices, as described in Step 4, 

Algorithm 3.1. Step 5 computes multi-head attention 𝐻𝑞×𝑏×𝑑 by calculating individual 

attention heads ℎ𝑖 and then concatenating all ′𝑏′ attention heads. Following this, 

𝐻𝑞×𝑏×𝑑 is then mapped with number of timesteps again as 𝐻𝑞×𝑟. Hence, the Multi-

Head Attention-based Adjacency Matrix [132], 𝑅𝑞×𝑞, derived at Step 6, ensures 

extraction of the implicit contextual details of the dynamic interactions of the target 

pedestrian at consecutive timesteps. Further, GCN is applied to the graph 

representation derived above with nodes ′𝑁𝑗′ and multi-head attention-based adjacency 

matrix ′𝑅𝑗′ depicting the relationship between nodes. The adjacency matrix requires a 

normalisation step to curb issues of vanishing or exploding gradients as network 

training may be sensitive to the range of scale of values. The normalization step 

includes generating the Laplacian matrix as represented below: 
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𝑅̌ = 𝐷−
1

2(𝑅 + 𝐼)𝐷−
1

2                                                                                                (3.4) 

wherein self-loops are also considered to incorporate the target node’s features in the 

propagation, by adding Identity matrix 𝐼 to the adjacency matrix 𝑅 and 𝐷 is the 

diagonal degree matrix containing row-wise summation of (𝐷 + 𝐼) matrix. Here, the 

spectral propagation rule for the convolution of the graph features is employed [133].  

Where, GCN layer is modelled by applying a linear transformation operation as a 

scalar product of the adjacency matrix and the hidden feature, followed by a Gaussian 

Error Linear Unit (GeLU) [134] activation function for the next layer ′𝑙′ as shown in 

Eqn. (3.5) 

𝐺(𝑙 + 1) = 𝐺𝑒𝐿𝑈 ((𝐷−
1

2(𝑅 + 𝐼)𝐷−
1

2) 𝑋𝑙𝑊𝑙)                                                        (3.5) 

where 𝑋(𝑙) is the previously hidden layer output of the GCN convolution layer. For 

𝑙 = 0 , 𝑋(0) = 𝐶𝑒
′′. 

3.1.1.4. Temporal Attention Module (TAM) 

In this module, the Bidirectional long short-term memory (BiLSTM) layer 

provides enhanced temporal representations of the input sequence by leveraging 

learning through bi-directional layers. The following attention module weighs the most 

relevant parts of the feature map ′Υ′along the temporal dimension. The attention 

weight vector ϰ̂𝑘 for 𝑘𝑡ℎ branch of the architecture is given in Eqn. (6) and (7) as 

follows: 

𝑠𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(tanh(𝑊Υ𝑘 + 𝑏𝑖𝑎𝑠))                                                                      (3.6) 

ϰ̂𝑘 =  ∑ 𝛼𝑘𝑑 Υ𝑘                                                                                                        (3.7) 

Where 𝑑 is the dimension along which attention vector computation is carried out. In 

this case, it is the output vector length of the BiLSTM layer. The number of hidden 

units of the BiLSTM layer employed is 64. 
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3.1.1.5 Adaptive Fusion Module (AFM) 

The generated features from the VE, IE and ME, followed by the TAM, have 

varying impacts on the pedestrian intention prediction, therefore, an adaptive fusion is 

introduced to accordingly weigh all the encoded features. These hidden representations 

of the proposed fusion have been accumulated in a vector representation, ′𝐸′ as shown 

in the Eqn. (3.8) as follows:                

𝐸 =  ∑ 𝑤𝑘ϰ̂𝑘
3
𝑘=1                                                                                                       (3.8) 

where   ϰ̂𝑘 represents the encoded hidden states of the prior TAM and 𝑤𝑘 are the 

trainable weights with HeNormal initialisation [135]. This is followed by dense layers 

of 64 and 8 units and a final activation function to give 'crossing' or 'not crossing' 

predictions. 

3.1.2 Experimental Work and Results 

This section presents the experimental evaluation of the proposed pedestrian 

intention prediction model. The implementation details, including architectural 

configurations, training procedures, and computational setup, are outlined, followed 

by a description of the datasets used for evaluation. A comparative analysis with state-

of-the-art methods is then conducted to assess the effectiveness of the proposed 

models. Finally, an ablation study is performed to examine the contribution of 

individual components, providing insights into their impact on overall model 

performance. 

Table 3.1: Training specifications of the proposed framework 

Training Parameters JAAD PIE 

Optimizer ADAM ADAM 

Learning Rate 2 × 10−5 5 × 10−5 

# Epochs 60 70 

L2 Regularization 0.0001 0.0001 

Loss Function Binary Cross Entropy Binary Cross Entropy 

Batch Size 8 16 
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3.1.2.1 Implementation Details 

The experimental settings for implementation are outlined in Table 3.1. The 

computation of the pose key points, appearance and contextual features is done before 

training. Data augmentation involves horizonal image flipping for balancing 

crossing/non-crossing samples to mitigate prediction bias.  

3.1.2.2 Datasets 

The proposed framework is evaluated using two publicly available benchmark 

datasets, namely JAAD[136] and PIE[6]. The JAAD dataset is having 346 video clips 

with a total duration of 240 hours recorded at 30 frames per sec(fps). Each clip ranges 

from 5 − 15 𝑠𝑒𝑐 with a resolution of 1920 ×  1080 and 1280 ×  720. The bounding 

boxes and tracking ids are provided for each pedestrian. The driver’s action is 

implicitly encoded as vehicle speed for training the model. The PIE dataset consists of 

1842 pedestrian tracks with longer sequences and increased pedestrian samples with 

annotations compared to JAAD. The dataset configuration follows the 

training/validation/test split as recommended in [137] for JAAD  [6] for PIE.  

3.1.2.3 Comparison with State-of-the-art methods 

The performance of the proposed framework has been compared against the 

following SOTA methods: 

• Pie_traj [6]: employs an RNN-based encoder-decoder to extract vital information 

regarding pedestrian appearance and surrounding context and pedestrian dynamics. 

• Stacked Fusion GRU (SF-GRU) [17]: hierarchically stacks GRU encoder that fuses 

features of high relevance like appearance at the beginning and others like ego-

speed at the last.  

• Feature Fusion and Spatio-temporal Attention (FFSTA) [18]: employs a hybrid 

architecture to fuse features from visual and non-visual branches. The local and 

global context are combined in the visual branch while other features like pose, 
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bounding box and vehicle speed are hierarchically fused in the non-visual branch. 

• BiPed [84]:  proposes a bifold encoding approach for the individual and shared 

representation encompassing trajectory, grid locations, ego speed and global 

context.  

• Multi-model Atrous( MMA) [119]: processes diverse input modalities through the 

visual encoding and dynamics encoding branch, followed by corresponding 

attention modules and subsequent fusion for joint representation. 

• Intent and Action (IA) [88]: presents a human visual learning-inspired Attention 

Relation Network ensuring a deeper understanding of the scene semantics and other 

pedestrian-specific features.  

• Pedestrian Graph+(PG+) [87]: employs a fully convolutional graph-based neural 

network that inputs context, human pose key points, and ego-speed.  

 

The performance of the proposed approach in comparison to the state of the 

arts is represented in Table 3.2. It is evident from the table that the proposed VMI-

guided framework performs better in terms of all evaluation metrics against SOTA 

models, except for the F1 score and precision on the PIE dataset and the F1 score and 

recall on the JAAD dataset. The intent and action [88] perform a little better (~1%) 

in the F1 score and also have a significant leap in precision approximately by 10 %. 

This drop-in precision in our proposed work is compensated with an overall 

Table 3.2: Comparison of existing SOTAs with the proposed method on the PIE 

and JAAD dataset 

Methods Year 
PIE/JAAD 

Acc AUC F1 Prec Rec 

PIE_traj [6]       2019 0.79 - 0.87 - - 

SF-GRU 

[17] 
     2020 0.87/0.84 0.85/0.80 0.78/0.62 0.74/0.54 0.64/0.73 

FFSTA [18]      2022 0.85/0.83 0.83/0.82 0.71/0.63 0.69/0.51 0.72/0.81 

BiPed [84]      2020 0.91 0.90 0.85 0.82 0.88 

MMA [119]     2020 0.89/0.89 0.88/0.88 0.81/0.81 0.77/0.77 0.85/0.85 

IA [88]     2021 0.84/0.87 0.90/0.70 0.88/0.92 0.96 /0.66 0.81 

PG+[87]     2022 0.89/0.86 0.90/0.88 0.81/0.65 0.83/0.58 0.79/0.75 

Ours - 0.92/0.89 0.91/0.90 0.87/0.81 0.86/0.79 0.88/0.83 
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improvement in accuracy   (~ 8.7%), AUC score (~1%) and recall (~8.7%) on the 

PIE dataset.  Similarly, the considerable jump in performance metrics like accuracy 

(~8.64%), AUC(~2.3%) and precision(~28.6%) overcomes the decline in F1 score 

(~12%) in the JAAD dataset against [88] by our proposed approach. The optimal 

observation length of 0.5 sec with 2.5 sec time-to-event has been found empirically 

which will be discussed later in the ablation study. 

 

3.1.2.4 Ablation Study 

This section presents an ablation study to assess the impact of key design 

choices in the proposed framework. The effects of varying Time to Event (TTE) and 

Observation Sequence Lengths (OSL) are examined, followed by an analysis of 

different fusion strategies. Furthermore, the contributions of the Motion Encoder, 

Fig. 3.3: Impact of Time to Event (TTE) and Observation Sequence Lengths (OSL) 

on Crossing Intention Prediction, evaluated in terms of (a) Accuracy, (b) AUC, (c) F1 

Score, (d) Precision, and (e) Recall metrics. 
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Interaction Encoder, and Visual Encoder are evaluated to understand their relevance. 

providing a stronger rationale for the architectural and methodological choices. The 

analysis are as follows: 

i. Impact of choosing different Time to event (TTE) and Observation Sequence 

Lengths (OSL):  The high variability in traffic scene dynamics with every passing 

second has a considerable impact on the crossing intention prediction of the 

pedestrian. OSL also impacts the prediction process. The longer the OSL, the 

greater the information acquired. However, it may also add some insignificant 

details that may result in erroneous prediction results. In this section, different TTE 

points are considered on the timeline of the crossing/not crossing event ranging 

 

TTE (sec) 
0 0.5 1 1.5 2 2.5 

Crossing event 

(a) 

(b) 

Fig. 3.4: Qualitative samples of pedestrian short-term intention prediction: (a) 

Correctly predicted intention. (b) Failure case where Green indicates crossing, Red 

denotes non-crossing based on TTE. 

ATTENTION LAYER VISUAL ENCODER 

MOTION ENCODER INTERACTION 

ENCODER 

BiLSTM LAYER 

DENSE LAYER 

  
SOFTMAX  

CONCATENATION 

(a) (b) (c) 

w1 

w2 

w3 

Fig. 3.5: Overview of Pedestrian Intention Prediction Fusion Architectures. (a) Parallel 

Fusion (PF), (b) Hierarchical Fusion (HF), and (c) Adaptive Fusion (AF) approaches. 
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from 0-4 sec, sampled at every 0.2 sec and 2 secs long OSL is sampled at every 0.2 

sec as shown in Fig. 3.3. It is observed that there is a gradual decline in the overall 

performance of the proposed approach as the TTE increases and vice versa as the 

TTE approaches close to 0 since the intention of the pedestrians becomes evident 

by that time. There is also a slight gain in accuracy, AUC and precision up to 

1.5 𝑠𝑒𝑐 of OSL but at the expense of a decrease in recall. Moreover, a more 

balanced metric F1 score shows no huge variations (~3%) with the increase in 

OSL. Notably, the proposed approach works satisfactorily with all parameters ~(>

Table 3.3: Ablation study on different fusion architectures 

Fusion Encoder 
PIE/JAAD 

Acc AUC F1 Prec Rec 

HF 

GRU 0.83/0.84    0.78/0.81 0.73/0.71 0.76/0.71 0.71/0.71 

LSTM 0.85/0.84 0.80/0.83 0.74/0.74 0.78/0.72 0.70/0.76 

BiLSTM 0.85/0.85 0.80/0.85 0.77/0.75 0.78/0.74 0.75/0.77 

BiLSTM+₳ 0.86/0.85 0.85/0.86 0.77/0.76 0.79/0.74 0.76/0.78 

PF 

GRU 0.85/0.83 0.83/0.82 0.78/0.72 0.77/0.69 0.78/0.75 

LSTM 0.86/0.83 0.83/0.82 0.78/0.74 0.77/0.72 0.79/0.77 

BiLSTM 0.86/0.85 0.81/0.84 0.78/0.76 0.80/0.74 0.77/0.79 

BiLSTM+₳ 0.88/0.86 0.84/0.87 0.80/0.77 0.81/0.75 0.79/0.80 

AF 

GRU 0.87/0.85 0.85/0.81 0.80/0.77 0.79/0.75 0.81/0.79 

LSTM 0.87/0.85 0.84/0.84 0.82/0.78 0.84/0.76 0.80/0.81 

BiLSTM 0.90/0.87 0.90/0.86 0.84/0.79 0.85/0.77 0.83/0.82 

BiLSTM+₳ 0.92/0.90 0.91/0.89 0.87/0.81 0.85/0.78 0.88/0.83 

₳ : Attention 
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Fig. 3.6: ROC Curves illustrate the Performance of Parallel Fusion (PF), 

Hierarchical Fusion (HF), and Proposed Adaptive Fusion (AF) architectures 
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80%) even 3 𝑠𝑒𝑐𝑠 to TTE as opposed to SF- GRU [17] where F1 score, precision 

and recall drop to ~60 − 65% at 3 sec to TTE. Furthermore, the overall 

performance of the proposed approach does not drop below 12 − 13% with respect 

to the highest attained metric value even at the end TTE and OSL values. 

Nonetheless, in SF-GRU[17], the TTE and OSL variations cause a drop as high as 

33.3%. This proves the robustness of our approach against varying OSL and TTE. 

Fig. 3.4 (a) illustrates a qualitative sample prediction on the PIE dataset 2.5 sec 

ahead of the crossing event, while Fig. 3.4 (b) depicts a failure case by a sudden 

pedestrian direction change. 

 

ii. Fusion Strategies: Different fusion architectures for multimodal features have 

been employed in this ablation study inspired by the works [17], [18] as depicted in 

Fig. 3.5. Table 3.3 shows the performance of different fusion architectures on the 

PIE and JAAD datasets. It is observed that the proposed adaptive fusion with the 

BiLSTM + Attention layer achieves the best performance overall. The ROC Curve 

visualisations for different fusion approaches on the PIE dataset are shown in Fig. 

3.6. This study also explores four encoder variations (GRU, LSTM, BiLSTM, 

BiLSTM + Attention), highlighting the apparent increasing performance trend of 

the BiLSTM followed by the attention layer across different fusion architectures.  
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Fig. 3.7: Training and validation loss analysis for encoder combinations (VE, 

VE+ME, VE+ME+IE), with validation losses (---) and training losses (−). 
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iii. Relevance of different encoders: This section studies the training performance of 

VE, ME and IE both individually and jointly. The analysis of loss curves in Fig. 3.7 

indicates effective training for all combinations, with a steeper validation loss curve 

observed when utilising all three encoders VE+ME+IE, showcasing the model’s 

enhanced generalisation capability achieved through integration of multiple 

modalities. 

 

iv. Motion Encoder: The ME utilises the Conv-1D layer to extract significant motion 

features from the pedestrian’s pose, trajectory and ego speed.  The impact of the 

number of filters and the kernel size of the Conv-1D layer on the training 

performance is shown in Fig. 3.8, where kernel size of 3 and 32 filters yields the 

highest validation accuracy of ~92 % on the PIE dataset after 100 epochs. This is 

attributed to the smaller kernel size’s ability to generate fine-grained features, 

though it lacks neighbouring context. Conversely, larger kernel sizes like 5,7 or 9 

may overlook intricate details. The plot indicates that more filters are required for 

the ME to capture complex and stochastic pedestrian motion. A significant drop of 

~ 10-20% in accuracy is observed if the number of filters is increased or decreased 

from 32 during training for a fixed kernel size. However, the number of parameters 

also grows as we increase the kernel size or the number of filters. Therefore, a 

Conv-1D layer with 32 filters and a kernel size of 3 is employed in this work to 

minimise the trade-off between accuracy and the number of parameters. 

Fig. 3.8: Hyperparameter analysis of the convolutional layer in the Motion 

Encoder (ME) 
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v. Interaction Encoder: The graph node features and the adjacency matrix 

significantly enhance the graph’s efficiency in modeling subtle interactions of the 

target pedestrians within a traffic scene. Table 3.4 shows the impact of diverse node 

features on performance metrics. It is observed that the context features secure the 

highest metric values, followed by appearance. The ablation study also explores 

distinct adjacency matrix computation methods: Uniform(Uni) which involves 

random initialisation of the adjacency matrix with values ranging from 0 to 1, 

Distance-Inverse(DI) that employs inverse Euclidean distance between pedestrians 

[138], Single-head Attention(SHA) that utilises a self-attention module inspired by 

the work [139] and lastly the adjacency computation using Multi-head attention 

(MHA) described in this work [132].  Notably, the MHA method outperforms other 

adjacency matrix computation methods in terms of classification performance. This 

is attributed to SHA’s limited human behavioural learning range and Uni’s inability 

to adequately represent intrinsic human interaction randomness. The DI method too 

restricts the interaction to sheer separation based limiting its performance. 

Table 3.4: Ablation study on Interaction Encoder Components 

Graph Node Features Adjacency Matrix 
PIE/JAAD 

Acc AUC F1 Prec Rec 

Pose 

Uni 0.81/0.81 0.84/0.82 0.78/0.75 0.77/0.72 0.78/0.77 

DI 0.82/0.82 0.83/0.80 0.79/0.74 0.78/0.71 0.79/0.76 

SHA 0.84/0.84 0.83/0.82 0.80/0.76 0.80/0.73 0.79/0.78 

MHA 0.84/0.83 0.82/0.81 0.78/0.73 0.79/0.71 0.77/0.75 

Trajectory 

Uni 0.82/0.83 0.83/0.84 0.79/0.74 0.79/0.71 0.79/0.78 

DI 0.81/0.81 0.83/0.81 0.79/0.72 0.80/0.69 0.77/0.76 

SHA 0.82/0.85 0.87/0.86 0.80/0.76 0.81/0.73 0.78/0.79 

MHA 0.86/0.83 0.83/0.82 0.82/0.75 0.83/0.72 0.80/0.77 

Appearance 

Uni 0.83/0.86 0.85/0.84 0.79/0.76 0.81/0.73 0.77/0.78 

DI 0.83/0.85 0.84/0.83 0.80/0.75 0.82/0.74 0.78/0.76 

SHA 0.85/0.86 0.85/0.85 0.81/0.77 0.81/0.74 0.80/0.79 

MHA 0.87/0.85 0.87/0.83 0.79/0.77 0.79/0.76 0.79/0.77 

Context 

Uni 0.88/0.86 0.85/0.83 0.84/0.76 0.82/0.74 0.86/0.78 

DI 0.87/0.85 0.87/0.83 0.83/0.74 0.80/0.72 0.85/0.76 

SHA 0.91/0.87 0.88/0.85 0.84/0.78 0.81/0.75 0.87/0.81 

MHA 0.92/0.89 0.90/0.89 0.87/0.81 0.85/0.79 0.88/0.84 
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vi. Visual Encoder: The GradCAM [140] visualisations for the CBAM feature maps 

in the VE are obtained by superimposing on the real cropped images enhancing 

model explainability as depicted in Fig. 3.9. It is inferred from both the PIE and 

JAAD dataset images that the torso region is given higher weights in comparison 

to other body parts. This affirms that the head, gaze, shoulder and posture forming 

the torso region of the human body, play an integral part in assessing road-crossing 

intentions. Additionally, the GradCAM visualisations for context show that the VE 

pays higher attention towards co-pedestrians in the vicinity that are influencing the 

pedestrian’s crossing intent. 

This work introduces a multimodal pedestrian intention prediction framework 

that adaptively fuses visual, motion, and interaction features using spatial, channel, 

and temporal attention mechanisms. A novel 𝑀𝐻𝐴 − 𝐴𝑑𝑗𝑀𝑎t based GCN in 

Interaction Encoder leads to superior performance over state-of-the-art models on the 

JAAD and PIE datasets, predicting crossing intent up to 2.5 seconds in advance. 

However, limitations in capturing high-frequency temporal dependencies with GCNs 

persist. To address this, the subsequent section investigates transformer-based 

architectures for more robust modelling of pedestrian–environment interactions.  

Fig. 3.9: GradCAM [140] visualizations showing key focus areas: (a) pedestrian 

ROI, (b) pedestrian image with surrounding context and (c) contextual cues 

influencing intent prediction. 
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3.2 Predicting Pedestrian Intentions with Multimodal 

IntentFormer: A Co-Learning Approach 

The prediction of pedestrian crossing intention is a crucial task in the context 

of autonomous driving to ensure traffic safety and reduce the risk of accidents without 

human intervention. Nevertheless, the complexity of pedestrian behaviour, which is 

influenced by numerous contextual factors in conjunction with visual appearance cues 

and past trajectory, poses a significant challenge. Several state-of-the-art approaches 

have recently emerged that incorporate multiple modalities. Nonetheless, the 

suboptimal modality integration techniques in these approaches fail to capture the 

intricate intermodal relationships and robustly represent pedestrian-environment 

interactions in challenging scenarios. To address these issues, a novel Multimodal 

IntentFormer architecture is presented. It works with three transformer encoders 

ሼ𝑇𝐸𝐼 , 𝑇𝐸𝐼𝐼 , 𝑇𝐸𝐼𝐼𝐼ሽ  which learn RGB, segmentation maps, and trajectory paths in a co-

learning environment controlled by a Co-learning module. A novel Co-learning 

Adaptive Composite (CAC) loss function is also proposed, which penalizes different 

stages of the architecture, regularizes the model, and mitigates the risk of overfitting.  
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Each encoder ሼ𝑇𝐸𝜂ሽ  applies the concept of the Multi-Head Shared Weight Attention 

(MHSWA) mechanism while learning three modalities in the proposed co-learning 

approach. The proposed architecture outperforms existing state-of-the-art approaches 

on benchmark datasets, PIE and JAAD, with 93% and 92% accuracy, respectively. 

Furthermore, extensive ablation studies demonstrate the efficiency and robustness of 

the architecture, even under varying Time-to-event (TTE) and observation lengths.   

3.2.1 Proposed Methodology 

Predicting pedestrian crossing intention is a challenging task with significant 

implications for pedestrian safety and developing advanced driver assistance systems. 

In this work, a brief window of '𝐾' timesteps is analysed from the ego vehicle's 

perspective, considering the pedestrian's RGB frames and trajectory coordinates. The 

objective is to ascertain the probability accurately 𝜌 𝜖 (0,1) of the pedestrian's 

intention to cross the road and, thus, classify the pedestrian as a crossing "1" or non-

crossing "0" entity. To predict pedestrian crossing intention in traffic scenes, it is 

crucial to leverage a variety of modalities that can provide a comprehensive 

understanding of the pedestrian's surroundings. Therefore, the proposed approach 

combines three distinct modalities: RGB images, segmentation maps, and trajectory 

data.  

RGB images capture the temporal variations of pedestrian appearance using a 

sequence of images cropped to the bounding box coordinates provided in the dataset. 

By analysing a sequence of images, changes in the pedestrian's pose, facial expression, 

and other visual cues can be tracked, which may indicate crossing intention. 

Segmentation maps provide a global context of the traffic scene surrounding the 

pedestrian. This facilitates the identification of areas that affect the pedestrian's 

crossing intention by segmenting the scene into distinct regions based on their visual 

characteristics. SegFormer [141] generates segmentation maps of the scene that 

encode different pixel regions in the road scene, including buildings, roads, vehicles, 
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and pedestrians, where each region is assigned a distinct label. SegFormer is pre-

trained using the ADE20k dataset with 150 distinct classes, enabling effective 

segmentation of various road scene elements. Visualisations are also provided in Fig. 

3.10 for a better understanding of segmentation maps. Trajectory provides the 

pedestrian's location in a 2D coordinate space, denoted by top-left (𝑥𝑙 , 𝑦𝑙) and bottom-

right (𝑥𝑏 , 𝑦𝑏) pixel coordinates, enabling the tracking of their movement and 

predicting their future paths. Each coordinate is measured in the image frame with 

reference to the origin corner. Any amount of change in the top-left corner and bottom-

right corner coordinates are measured as (Δ𝑥𝑘 
𝑙, Δ𝑦𝑘 

𝑙), and (Δ𝑥𝑘 
𝑏, Δ𝑦𝑘 

𝑏), at 

𝑘𝑡ℎ timestep. The coordinates at the new time step 𝑘′ are given by (𝑥𝑙 + Δ𝑥𝑘′
 
𝑙, 𝑦𝑙 +

Δ𝑦𝑘′
 
𝑙)and (𝑥𝑏 + Δ𝑥𝑘′

 
𝑏 , 𝑦𝑏 + Δ𝑦𝑘′

 
𝑏). Fig. 3.10 illustrates the trajectory coordinates 

of a pedestrian in a sample trajectory. 

Together, these modalities provide a comprehensive representation of the 

pedestrian and their surroundings, enabling the proposed architecture to accurately 
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predict their crossing intention and ultimately enhance pedestrian safety in traffic 

scenes. The mathematical representation of the modalities is as follows: 

𝑀𝐾
𝑟 = ሼ𝑚𝑖

𝑟 , 𝑚𝑖+1
𝑟 , 𝑚𝑖+2

𝑟 , … … . 𝑚𝑖+𝑘−1
𝑟  ሽ                                                                   (3.9)               

𝑀𝐾
𝑠 = ሼ𝑚𝑖

𝑠, 𝑚𝑖+1
𝑠 , 𝑚𝑖+2

𝑠 , … … . 𝑚𝑖+𝑘−1
𝑠  ሽ                                                                 (3.10)                                                                                                            

𝑀𝐾
𝑡 = ሼ𝑚𝑖

𝑡, 𝑚𝑖+1
𝑡 , 𝑚𝑖+2

𝑡 , … … . 𝑚𝑖+𝑘−1
𝑡  ሽ                                                                 (3.11) 

where  𝑀𝐾
𝑟 , 𝑀𝐾

𝑠  and 𝑀𝐾
𝑡  are RGB images, segmentation maps and trajectory data 

for a total of ′𝐾′ consecutive frames, respectively.  Each modality is taken from 𝑖𝑡ℎ 

index to 𝑖 + 𝑘 − 1𝑡ℎ frames where ′𝑖′ is the starting index number. 

 The architecture of the proposed Multimodal IntentFormer is illustrated in Fig. 

3.11. The proposed architecture harnesses the power of three transformer encoder 

stages ሼ𝑇𝐸𝐼 , 𝑇𝐸𝐼𝐼 , 𝑇𝐸𝐼𝐼𝐼ሽ to process a heterogeneous array of input modalities. The 

inputs are diligently sequentially fed to the encoder stages, conforming to the order in 

which they are presented. Notably, each encoder stage is endowed with Projection, 

Layer Normalization, Multi-head Attention (MHA), Multi-head Shared Weights 

Attention (MHSWA), and Multi-layer Perceptron layers that operate seamlessly in 

tandem to process the corresponding modality as represented in the Eqns. (3.12) -

(3.25) as follows: 

𝑇𝐸𝐼:     PE𝑟𝑔𝑏 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐶𝑜𝑛𝑣3𝑑(𝑀𝐾
𝑟 ))                                       (3.12)                                                                                       

 Att𝑟𝑔𝑏 = 𝑀𝐻𝐴(𝐿𝑁(PE𝑟𝑔𝑏)) + PE𝑟𝑔𝑏                                                     (3.13)                                                                                                  

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼 = 𝑀𝐿𝑃𝑠ℎ𝑎𝑟𝑒𝑑(𝐿𝑁(Att𝑟𝑔𝑏)) + Att𝑟𝑔𝑏                                    (3.14)             

𝑇𝐸𝐼𝐼:   PE𝑠𝑒𝑔 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐶𝑜𝑛𝑣3𝑑(𝑀𝐾
𝑠 ))                                        (3.15)                                                           

 𝐿𝑁𝑠𝑒𝑔 = 𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(PE𝑠𝑒𝑔)                                                (3.16)                                                                                                  

 𝐿𝑁𝐼 = 𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼)                                           (3.17) 

 𝐴𝑡𝑡𝑠𝑒𝑔,   𝐼 = 𝑀𝐻𝑆𝑊𝐴(𝐿𝑁𝑠𝑒𝑔, 𝐿𝑁𝐼) + 𝐿𝑁𝑠𝑒𝑔                                           (3.18)                                                                                            

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼𝐼 = 𝑀𝐿𝑃𝑠ℎ𝑎𝑟𝑒𝑑(𝐿𝑁(𝐴𝑡𝑡𝑠𝑒𝑔,   𝐼)) + 𝐴𝑡𝑡𝑠𝑒𝑔,   𝐼                           (3.19)            

𝑇𝐸𝐼𝐼𝐼:  PE𝑡𝑟𝑎𝑗 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐺𝑅𝑈(𝑀𝐾
𝑡 ))                                            (3.20)                                                                                                           

 𝐿𝑁𝑡𝑟𝑎𝑗 = 𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(PE𝑡𝑟𝑎𝑗)                                             (3.21)                                                                  
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 𝐿𝑁𝐼𝐼 = 𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼𝐼)                                         (3.22)                                                 

 𝐴𝑡𝑡𝑡𝑟𝑎𝑗,   𝐼𝐼 = 𝑃𝐶𝑃(𝑀𝐻𝑆𝑊𝐴(𝐿𝑁𝑡𝑟𝑎𝑗 , 𝐿𝑁𝐼𝐼)) + 𝐿𝑁𝑡𝑟𝑎𝑗                           (3.23)                              

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼𝐼𝐼 = 𝑀𝐿𝑃𝑠ℎ𝑎𝑟𝑒𝑑 (𝐿𝑁(𝐴𝑡𝑡𝑡𝑟𝑎𝑗,   𝐼𝐼)) + 𝐴𝑡𝑡𝑡𝑟𝑎𝑗,   𝐼𝐼                     (3.24)                                                                                                                    

Final output,    Υ෡ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐺𝐴𝑃(𝐿𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼𝐼𝐼)))   (3.25)                                                                      

Where PE𝑟𝑔𝑏, PE𝑠𝑒𝑔, PE𝑡𝑟𝑎𝑗 represent positional encodings for RGB images, 

segmentation maps and trajectories, respectively. It is essential to underscore that two 

distinct types of projections are leveraged in this architecture: Tubelet projections 

𝐶𝑜𝑛𝑣3𝑑(𝑀𝐾
𝑟 ) and recurrent projections 𝐺𝑅𝑈(𝑀𝐾

𝑡 ). Firstly, the tubelet projections 

(TP) [142] given by 𝐶𝑜𝑛𝑣3𝑑(𝑀𝐾
𝑟 ) are deployed to assimilate both RGB pedestrian 

crops and segmentation maps, as utilised in Eqn. (3.12) and Eqn. (3.15). Secondly, 

recurrent projections (RP) given as 𝐺𝑅𝑈(𝑀𝐾
𝑡 ), serve as a pivotal tool in processing 

complex trajectory data, as shown in Eqn. (20). 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼 , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼𝐼 and 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐼𝐼𝐼 represent the output feature vectors coming from the transformer encoder 

stages: 𝑇𝐸𝐼 , 𝑇𝐸𝐼𝐼 and 𝑇𝐸𝐼𝐼𝐼. The objective of the Projection layer is to transform the 

input data into a latent representation space. The Layer Normalization layer is utilized 

to normalize the activations of the neurons in each layer, thereby facilitating the 

Algorithm 3.2: PCP Module 

Input:  

-Tensor X (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 : 𝒃  ; 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_ dim : 𝑵; 𝑒𝑚𝑏𝑒𝑑_𝑑𝑖𝑚: 𝑴) 

Hyperparameters: 

- 𝑁°, Convolution filter: 1 × 1  kernel 

Output: 

-Tensor 𝒀𝑷𝑪𝑷  

Step 1: Permutation (𝑷𝟏) Operation 

Perform permutation  𝑃1 on the input tensor 𝑋, mathematically given as follows: 

  𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑 = 𝑃1 (𝑋) , where X ∈ ℝ𝑏×𝑁×𝑀 , 𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑 ∈ ℝ𝑏×𝑀×𝑁 

              

Step 2: Convolution filtering  

Apply convolution operation with kernel size [1 × 1] using trainable filter weight as 𝑊1×1 on the    

permuted tensor 𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑 , obtained from step 1. 

   𝑌𝑐𝑜𝑛𝑣  = 𝐶𝑜𝑛𝑣(𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑 , 𝑊), where tensor 𝑌𝑐𝑜𝑛𝑣  ∈ ℝ𝑏×𝑀×𝑁°
 

Step 3: Permutation (𝑷𝟐) Operation 

Perform permutation operation 𝑃2 on the convolved tensor 𝑌𝑐𝑜𝑛𝑣 , obtained from step 2.  

   𝑌𝑃2
=  𝑃2(𝑌𝑐𝑜𝑛𝑣 ), where final tensor  𝑌𝑃2

∈ ℝ𝑏×𝑁°×𝑀 

return 𝑌𝑃𝐶𝑃 
= 𝑌𝑃2
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optimization process. The mid-level fusion of different modalities commences with 

the second stage encoder inspired by [143]. The proposed architecture builds on it by 

employing a novel shared weight attention mechanism for cohesive learning of 

parameters. The following section explores the technical intricacies of the 

IntentFormer shedding light on the PCP (Permutation Convolution Permutation) 

module, Shared MLP (Multi-Layer Perceptron) layers, and Multi-Head Shared Weight 

Attention Module (MHSWA), and expounds on their functions and workings:  

• Co-learning Module: It enables the integration of different modalities, i.e. RGB 

images, segmentation maps and trajectory in a unified framework, as illustrated 

in Fig. 3.11. This module is designed to share the MLP head across different 

layers, which helps to reduce the complexity of the framework while 

preserving the cross-modality relationships. In practice, this means that the 

module can simultaneously learn to map the input features to the correct 

pedestrian class using different modalities. It ensures that the learned 

representations are consistent across modalities, thus producing multi-modality 

enriched models for predicting pedestrian crossing intention. 

• Permutation-Convolution-Permutation (PCP) Module: The PCP module, as 

shown in Fig. 3.11, facilitates the establishment of skip connections between 

two transformer layers despite the different dimensions of the output tensors: 

𝑓𝑆𝑊𝐴(1,2), and 𝑓2. It performs a sequence of permutation operations, a 

1 × 1 convolution operation followed by a permutation operation again. This 

sequence of operations ensures that the pattern of features stays unaltered 

without any parameter overhead, as observed when reshaping after dense 

operation. The steps of the algorithm are provided in Algorithm 3.2. 

• Multi-Head Shared Weight Attention Module (MHSWA):  The proposed multi-

head shared weight attention (MHSWA) module enables the simultaneous 

learning of attention matrices for heterogeneous modalities, fostering a more 

cohesive approach to modality fusion, as shown in Fig. 3.11. This module uses 

multiple instances of the same multi-head attention layer for different 
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modalities, eliminating the need for separate attention layers and promoting 

efficient parameter usage. It employs key, query, and value matrices, which are 

computed by linearly projecting the inputs for each modality. These matrices 

are used to compute the attention weights for each modality. When multiple 

instances of the same multi-head attention layer are called for different 

modalities, the weights for each modality are adjusted simultaneously in the 

shared weight attention mechanism. 

3.2.1.1   Co-learning Adaptive Composite (CAC) loss function 

The most commonly used loss function for binary classification is the binary 

cross-entropy loss that measures the difference between predicted and true probability 

distributions. To achieve the goal of fine-tuning the training process and optimizing 

the model's performance in case of multiple modalities, this work presents a Co-

learning Adaptive Composite (CAC) loss function to penalize different stages of the 

network's architecture, where ′𝜂′ denotes the stages of the architecture, namely RGB 

head, segmentation head and trajectory head, as described in Fig. 3.12. Υ𝑗 and Υ෡𝑗
𝜂
 

represents the ground truth values and predicted probabilities at stage  ′𝜂′ respectively 

for ′𝑗𝑡ℎ′ pedestrian sample. The loss computations for the stages 𝐼, 𝐼𝐼 and 𝐼𝐼𝐼 follow a 

path 𝐴 → 𝐵, 𝐴 → 𝐶 and 𝐴 → 𝐷, respectively. The final loss function is an adaptive 
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summation of individual binary cross entropy loss terms calculated from various stages 

of the architecture for a total of ′𝑚′ samples in the dataset, as represented in Eqn. (18) 

and (19) as follows: 

ℒ𝐵𝐶𝐸
𝜂

= − ∑ Υ𝑗 log(Υ෡𝑗
𝜂

) + (1 − Υ𝑗) log(1 − Υ෡𝑗
𝜂

)𝑚
𝑗=1                                              (3.26) 

ℒ𝑓𝑖𝑛𝑎𝑙 =  𝜆ℒ𝐼 + 𝜇ℒ𝐼𝐼 + 𝜈ℒ𝐼𝐼𝐼                                                                                (3.27)                                         

3.2.2 Experimental Work and Results 

This section presents the experimental evaluation of the proposed pedestrian 

intention prediction model. The implementation details, including architectural 

configurations, training procedures, and computational setup, are outlined, followed 

by a description of the datasets used for evaluation. A comparative analysis with state- 

of-the-art methods is then conducted to assess the effectiveness of the proposed 

models. Finally, an ablation study is performed to examine the contribution of 

individual components, providing insights into their impact on overall model 

performance. 

3.2.2.1 Implementation Details 

The proposed architecture is trained on a Google Colab Pro instance with 

access to a high-performance NVIDIA Tesla T4 GPU equipped with 16 GB of 

memory, running on the CUDA 12.0 platform. The model architecture is built using 

the TensorFlow 2.10.1 framework. The training regimen involves executing 

28 𝑒𝑝𝑜𝑐ℎ𝑠 and utilizing a batch size of 2 in conjunction with a tuning phase 

incorporating the 𝐿2 regularizer with a regularization factor of 1𝑒−6. The ADAM 

optimizer is employed in these experiments, with learning rates  1𝑒−4and 1𝑒−5 for the 

PIE and JAAD datasets, respectively, that decay by 0.1 every 10 𝑒𝑝𝑜𝑐ℎ𝑠. Early 

stopping callback is also employed to prevent overfitting by monitoring validation loss 

improvement and halting the training if no improvement is observed for the next 

7 𝑒𝑝𝑜𝑐ℎ𝑠. The benchmark protocol is followed to address the dataset imbalance, 

which involves adding flipped versions of underrepresented sequences and 
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subsampling from the overrepresented samples to balance the number of samples[17].  

The computation of segmentation maps using Segformer [141] for the whole 

dataset has been executed before training. Each transformer block is configured to 

include 4 heads, a projection dimension of 64, and a shared MLP head consisting of 

64 × 4 and 64 MLP heads. The patch size for inputting RGB and segmentation maps 

is set to (2,8,8). The Tubelet Projection (TP), implemented as a 3D convolutional 

layer, efficiently extracts features by aligning the number of filters with the projection 

dimension, using a kernel size matching the specified patch size, and employing strides 

and padding configurations. The Recurrent Projection (RP), realized through a GRU 

layer with the number of hidden units equivalent to the projection dimension, is crucial 

in capturing temporal dependencies and patterns within the input data. The MLP layers 

are initialized using the HeNormal initializer, including a 50% dropout rate between 

layers to mitigate overfitting. The entire experiment is initialized with a random seed 

to ensure the reproducibility of results. Through empirical analysis, it has been 

determined that an observation length of 0.5 seconds and a time-to-event of 2.5 

seconds represents an optimal configuration. Thus, the IntentFormer is trained with 

the number of observation frames fixed at 15, i.e. 0.5-second observation length at a 

frame rate of 30fps.  

(a) (b) (c) (d) (e) (f

) 

(g) 

Fig. 3.13: Diverse data augmentations on pedestrian samples: (a)Original, (b)Rotation 

±15°, (c) Horizontal flip, (d) Gaussian blur (0.9 kernel), (e) Intensity +50, (f) Intensity 

-50, (g) Intensity ×2. 
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Table 3.5: Evaluation of the Proposed Architecture in Comparison to Other 

Methods on the PIE Dataset 

Methods Year 
PIE 

Acc AUC F1 Prec Rec 

PIE_traj[6] 2019 0.79 - 0.87 - - 

SF-GRU[17] 2020 0.87 0.85 0.78 0.74 0.64 

PCPA[96] 2021 0.87 0.86 0.77 - - 

TED[103] 2021 0.91 0.91 0.83 - - 

PG+[87] 2022 0.89 0.90 0.81 0.83 0.79 

TAMFORMER[85] 2022 0.87 0.84 0.76 - - 

V-PedCross[86] 2022 0.89 0.88 0.67 0.74 0.84 

MFFN[92] 2023 0.88 0.89 0.81 0.79 0.80 

PedGNN[82] 2023 0.71 - 0.75 0.83 0.79 

TrEP[105] 2023 0.93 0.94 0.87 0.89 0.88 

PedFormer[93] 2023 0.93 0.90 0.87 0.89 0.88 

VMI[91] 2023 0.92 0.91 0.87 0.86 0.88 

IntentFormer(Ours) - 0.93 0.90 0.88 0.86 0.89 

 

Table 3.6: Evaluation of the Proposed Architecture in Comparison to Other 

Methods on the JAADbeh Dataset 

Methods Year 
JAADbeh 

Acc AUC F1 Prec Rec 

PCPA[96] 2021 0.58 0.5 0.71 - - 

FFSTA[18] 2022 0.62 0.54 0.74 0.65 0.85 

PG+[87] 2022 0.70 0.70 0.76 0.77 0.75 

TAMFORMER[85] 2022 0.73 0.70 0.79 - - 

V-PedCross[86] 2022 0.64 0.66 0.76 0.70 0.89 

STMA-GCN PedCross[101] 2023 0.69 0.58 0.80 0.68 0.97 

IntentFormer(Ours) - 0.75 0.70 0.82 0.74 0.88 

 

Table 3.7: Evaluation of the Proposed Architecture in Comparison to Other 

Methods on the JAADall Dataset 

Methods Year 
JAADall 

Acc AUC F1 Prec Rec 

SF-GRU[17] 2020 0.84 0.80 0.62 0.54 0.73 

PCPA[96] 2021 0.85 0.86 0.68 - - 

FFSTA[18] 2022 0.83 0.82 0.63 0.51 0.81 

PG+[87] 2022 0.86 0.88 0.65 0.58 0.75 

TAMFORMER[85] 2022 0.89 0.82 0.7 - - 

V-PedCross[86] 2022 0.86 0.81 0.77 0.74 0.81 

MFFN[92] 2023 0.91 0.90 0.81 0.80 0.81 

PedGNN[82] 2023 0.86 - 0.77 0.96 0.86 

TrEP[105] 2023 0.91 0.86 0.69 0.71 0.70 

PedFormer[93] 2023 0.93 0.76 0.54 0.65 0.60 

VMI[91] 2023 0.89 0.90 0.81 0.79 0.83 

IntentFormer(Ours) - 0.92 0.90 0.83 0.81 0.85 
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3.2.2.2 Datasets 

The proposed method is evaluated using two commonly used benchmark 

datasets, JAAD[144] and PIE[6]. The JAAD dataset consists of 346 high-resolution 

video clips depicting various driving scenarios in an urban setting, with pedestrians 

performing activities such as crossing the road, walking along the road, and waiting 

on the side. The dataset is split into two subsets, JAADall and JAADbeh, with the former 

containing 2100 visible pedestrians who are not crossing or near the end, and the latter 

comprising 495 crossings and 191 non-crossings. The PIE dataset offers a more 

extensive pedestrian data collection than JAAD, with 1,842 sections of the roadside 

annotated across different street structures and population densities. The dataset 

includes 1,842 behaviourally annotated pedestrians, with 519 crossings and 1323 non-

crossings, as well as ego-vehicle speed annotations. Both datasets follow the same 

recommended training/validation/test split configuration for a thorough evaluation[6], 

[96]. Standard classification metrics such as Accuracy, AUC, F1 score, Precision, and 

Recall are employed to assess the proposed method's performance. Numerous pixel 

and geometric transformation techniques have been implemented to augment 

pedestrian crops to counteract overfitting. Fig. 3.13 showcases several data 

augmentation techniques applied to a subset of pedestrian crops from the dataset, 

including rotation by an angle of ±𝜃, horizontal flip, Gaussian blur, with a kernel 𝜎 , 

addition/subtraction by ∈, and multiplication by a 𝛿 to pixel intensities.  

 

3.2.2.3 Comparison with State-of-the-art Methods 

The proposed architecture is evaluated against state-of-the-art methods as 

follows: PIE_traj[6], SF-GRU[17], PCPA[96], TED[103], PG+[87], 

TAMFORMER[85], V-PedCross[86], MFFN[92],  PedGNN[82], TrEP[105], 

PedFormer[93], FFSTA[18], STMA-GCN PedCross[101] and VMI[91]. Table 3.5 and 
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3.7 illustrate that the proposed architecture, IntentFormer, achieves performance levels 

comparable to PedFormer [93] and TrEP [105]. This can be primarily attributed to 

integrating the Transformer encoder, a fundamental architectural component common 

to all these methods. Nonetheless, IntentFormer outperforms these methodologies 

[93], [105] on the JAADall dataset, with a substantial improvement ranging from 14% 

to 54% in AUC, F1 score, precision, and recall. Moreover, while prior methodologies 

[87], [93], [105] typically confine time-to-event (TTE) predictions to 1-2 seconds, 
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Fig. 3.14: Performance evaluation of the proposed architecture across (a) Time-to-

Event (TTE) and (b) Observation Length, sampled at 0.5s and 0.25s intervals, 

respectively. 

(b) 
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IntentFormer attains superior results with the highest reported TTE of 2.5 seconds. On 

the JAADall dataset, PedGNN [82] achieves the highest precision of 0.96; however, 

our proposed method compensates with superior accuracy and F1 score of 0.92 and 

0.83, respectively, compared to 0.86 and 0.77 of PedGNN [82]. Furthermore, Table 

3.6 demonstrates that IntentFormer exhibits the highest performance among methods 

evaluated on the JAADbeh dataset.  

These findings indicate enhanced generalizability of the proposed 

IntentFormer across diverse datasets. This is attributed to an enriched understanding 

of pedestrian intentions facilitated by co-learning-induced shared training of the MLP 

layer. Incorporating Co-learning Adaptive Composite (CAC) loss has contributed to 

the model's generalizability by providing regularization. Moreover, deploying the 

Multi- Head Shared Weight Attention (MHSWA) module has effectively modelled 

intermodal relationships, further bolstering the model's superior performance.     

3.2.2.3 Ablation Study 

This section presents an ablation study to evaluate the impact of various design 

choices in the proposed framework. The effects of different Time to Event (TTE) and 

Observation Sequence Lengths (OSL) are examined, along with an analysis of 

modality fusion approaches, loss functions (CAC vs. BCE), and the comparison 

between co-learning and a vanilla architecture. Additionally, the contributions of 

individual modalities, their fusion order and combinations, and the effect of data 

augmentation are assessed. The relevance of different encoders, including the Motion 

Encoder, Interaction Encoder, and Visual Encoder, is also investigated. The analyses 

are as follows:  

 

i. Effect of Time-to-Event (TTE) and Observation Length: The influence of time-

to- event (TTE) and observation length on predictive performance is examined by 

considering various TTE points and observation lengths along the timeline of the 

crossing event. TTE points, ranging from 0 to 4 seconds, are sampled at intervals 

of 0.5 seconds, while observation lengths from 0 to 2 seconds are taken at intervals 
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of 0.25 seconds, as depicted in Fig. 3.14(a). TTE=0 represents the time of the 

crossing event. Performance improves as TTE approaches 0 seconds, indicating 

increased confidence in predicting crossing events. However, the variability in 

performance is also high, indicating that the performance at these timesteps does 

not consistently ensure high accuracy. For an efficient intention prediction model, 

the prediction confidence score should be high right before the crossing event, i.e., 

𝑇𝑇𝐸 > 0. At 2.5 seconds, the statistical measures of accuracy, AUC, and F1 score 

demonstrate high and relatively stable values with varying observation lengths, as 

depicted in Fig. 3.14(a). Beyond 2.5 seconds, there is a notable decline in overall 

performance, with accuracy decreasing by up to 6.5%.  

Fig. 3.14(b) demonstrated that the optimal performance is observed within 

the 0.5-1.25 seconds observation length range, exhibiting minimal variation with 

changing TTE. The performance metrics peak at an observation length of 0.5 

seconds and show minimal fluctuation. Hence, this observation length is ideal for 

achieving optimal performance, as the accuracy, AUC, and F1 scores remain 

consistently high within this range. Moreover, accuracy, the area under the curve 

(AUC), and the F1 score show a modest gain up to an observation length of 1.25 

seconds since such a prolonged duration leads to higher information acquisition. 

However, beyond that, the performance drops as prolonged observation periods 

may contain irrelevant details about the scene dynamics that can undermine the 

prediction accuracy. Larger observation lengths signify a more significant number 

of frames required for analysing crossing intention, resulting in high computational 
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Fig. 3.15: Illustration of three Multi-Head Attention types: (a) Cross-Modal 

Attention (MHCMA), (b) Multimodal Attention (MHMMA), and (c) Shared-

Weights Attention (MHSWA). 
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demands. Therefore, an efficient intention prediction model should make confident 

predictions with the least possible observation length. The proposed model 

demonstrates robustness by achieving optimal performance with an observation 

length of just 0.5 seconds, thereby minimizing computational demands and 

ensuring efficient prediction. These results highlight the efficiency of the proposed 

architecture in predicting crossing events even with fewer frames and high TTE 

(upto 3.5 secs), with performance metrics dropping by no more than 12-14%. This 

starkly contrasts the SF-GRU [17] method, which exhibited a substantial decline in 

performance metrics, reaching up to 33% when TTE is increased beyond 3 seconds. 

Furthermore, the PG+ [87] approach restricts TTE to 1-2 seconds, limiting its 

suitability for real-time scenarios. Notably, the proposed approach achieves 

superior accuracy compared to VMI [91] and comparable metrics, with the highest 

reported TTE to date while maintaining a significantly reduced computational 

footprint and inference time.  

ii. Analysis of modality fusion approaches: In the field of multimodal deep learning, 

multi-head cross-modal attention (MHCMA) and multi-head multimodal attention 

(MHMMA) based fusion techniques have emerged as popular mid-level 

transformer-based approaches [143]. These attention mechanisms have unique 

characteristics and functionalities that may cater to specific application domains. 

The proposed model employs a multi-head shared weight attention (MHSWA) 

mechanism to facilitate the synergistic fusion of information across distinct 

modalities. The shared weight attribute capitalizes on the synergy of attention 
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weights from various heads to exploit cross-modal correlations efficiently. It 

comprises two scaled dot product attention instances tailored to specific modalities. 

The first instance, trained on the initial modality data, captures intricate 

interdependencies among elements. Subsequently, the second instance, initialized 

with learned weights from the first modality, refines its training on the subsequent 

modality, fostering a sequential, contextual understanding enriched by prior 

knowledge.  

The distinct design characteristics of these three attention-based fusion 

strategies are elucidated in Fig. 3.15. An ablation study is conducted using the 

Precision-Recall curve, as depicted in Fig. 3.16, to assess the impact of the various 

fusion strategies on performance. The study's results revealed that the MHSWA 

method's precision-recall curve is notably closer to the ideal curve compared to the 

other two approaches. The varying behaviour of attention coefficients across the 

different stages of the proposed shared weight attention model is illustrated in Fig. 

3.17. At stage 𝐼, Fig. 3.17(a), a high range of attention coefficients indicates that 

the model assigns varying levels of importance to different embeddings within the 

RGB data. This stage focuses on capturing fine-grained details and relationships 

specific to the RGB input, as it is the primary modality. A slight decrease in the 

attention coefficient range at this stage 𝐼𝐼 is observed in Fig. 3.17(b), suggesting 

that the model focuses on commonalities and interactions between RGB and 

segmentation embeddings. The shared weight attention mechanism allows the 

model to emphasize cross-modal correlations and jointly process features from both 

modalities. In the last stage 𝐼𝐼𝐼, Fig. 3.17(c) highlights attention coefficients 
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distinguished by a much shorter range, indicating that the model is assigning more 

consistent attention across embeddings from different modalities. It is inferred that 

the model is integrating information from previous stages (RGB and segmentation) 

and trajectory more uniformly. The change in attention behaviour from varying 

ranges to more uniform attention signifies that the model progressively shifts its 

emphasis from capturing modality-specific details to integrating multimodal 

information for decision-making. Hence, the observed behaviour aligns with the 

objective of multimodal learning: to learn robust representations that capture inter-

modal relationships and produce consistent outputs despite the varied nature of the 

input sources.  

In Fig. 3.18. Guided Integrated Gradient (IG) [145] Visualizations 

corresponding to individual attention map heads are presented for RGB sequences. 

It highlights the areas where Multi-head Shared Weights Attention (MHSWA) 

mechanisms positively influence the model's classification decision.  This 

configuration comprises a total of four discrete attention map heads. The first   

attention map head primarily emphasizes the outline or shape of the target 

pedestrian. The second and third attention maps appear to capture details related to 

the target's immediate surroundings and the pedestrian's dynamic variations across 

the sequence of frames. The fourth attention map identifies contours and distinct 

patterns within the cropped image. 

Image Sequence Head 1 Head 2 Head 3 Head 4 

Fig. 3.18: Guided Integrated Gradient [145] Visualisation of IntentFormer 
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iii. CAC vs BCE: This section explores the impact of the proposed Co-learning 

Adaptive Composite (CAC) loss function on validation performance and the 

dynamic relationship between adaptive loss weights and training progress. Fig. 

3.19(a) presents the validation accuracy curves for models trained using the 

standard Binary Cross-Entropy (BCE) and the proposed CAC loss function. The 

CAC loss function notably enhances the stability of validation accuracy throughout 

the training phase, reducing fluctuations compared to BCE and achieving superior 

validation accuracy. In Fig. 3.19(b), the validation loss curves show that BCE 

induces more frequent fluctuations than the CAC loss, leading to difficulties in 

convergence. In contrast, the CAC loss function achieves the lowest validation loss. 

These results indicate that the CAC loss function effectively mitigates overfitting 
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during training, thereby enhancing the generalization capacity of the proposed 

architecture.  

Fig. 3.20 illustrates the evolution of the training and validation loss 

alongside the changes in adaptive loss weights (𝑤1, 𝑤2, 𝑤3), throughout training 

epochs. The adaptive loss weights, initialised randomly, exhibit dynamic 

adjustments in response to the changing training landscape. Specifically, weights 

𝑤2 and 𝑤3, exhibit a gradual and consistent increment throughout epochs 

culminating at respective maximal values of 0.46 and 0.60. Contrastingly, weight 

𝑤1 display more intricate behaviour, initially decreasing, followed by a gradual and 

consistent increase over epochs, reaching a maximum value of 0.35. This suggests 

that the 𝑤1 loss term contributes significantly less to the overall loss as the model 

refines its representations. The vertical line denotes the epoch at which the 

minimum loss is attained, providing insight into the optimal point (𝑤1: 0.29, 

𝑤2: 0.36 and 𝑤3: 0.52) in the training process. This allows us to fine-tune training 
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Fig. 3.21: Learned feature representations from the shared MLP layer in the co-

learning architecture, across epochs (a) 3, (b) 15, and (c) 22 
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Fig. 3.22: Qualitative predictions on PIE/JAAD where IntentFormer correctly 

classifies intent, unlike the vanilla transformer. Red: non-crossing, Green: crossing. 
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strategies and highlights the potential for adaptive loss weighting to enhance model 

training efficiency and performance. 

 

iv. Co-learning v/s Vanilla transformer architecture: This section discusses the 

adaptive learning process of the proposed co-learning architecture that leverages 

shared MLP heads. The pairwise scatter plots in Fig. 21 illustrate a notable 

evolution in the alignment of learned representations across the three epochs 

(Epochs 3, 15, and 22) for the Co-learning multimodal architecture employing 

shared MLP heads.  As training progresses, the shared MLP layers output at three 

stages increasingly converges along a linear trajectory. This highlights that the 

architecture effectively captures the shared semantics across modalities, allowing 

for improved feature extraction and cross-modal interaction. Furthermore, the 

dynamic alignment of representations over epochs suggests that the shared MLP 

layer effectively captures cross-modal relationships, allowing different modalities 

to learn and adapt coherently. 

Furthermore, a comparative analysis of the proposed architecture with a 

vanilla transformer model without a shared MLP head is also carried out. The term 

"Vanilla transformer" here denotes a model variant in which the shared MLP in the 

co-learning architecture is substituted with three independent trainable MLPs, each 

assigned to a specific modality (RGB, segmentation, and trajectory). This 

modification facilitates a comparative analysis between the co-learning architecture 

                              (a)                                                                                    (b) 
  

Increasing epochs Increasing epochs 

With Co- learning Without Co- learning Input 

Fig. 3.23: Grad-CAM visualization of IntentFormer at 3, 15, and 22 epochs: (a) With 

co-learning (right to left), (b) Without co-learning (left to right). 
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utilizing shared MLPs and an alternative configuration employing non-shared, 

individual MLPs for each modality. The goal is to evaluate the influence of shared 

semantics across modalities on the learning dynamics. Qualitative results for the 

few samples from the JAAD/PIE dataset are presented in Fig. 3.22. Notably, Fig. 

3.22 (d)-(e) depicts instances of no eye contact between the pedestrian and the 

camera, resulting in uncertainty regarding the direction in which the pedestrian 

would move. For instance, Fig. 3.22 (e) shows a pedestrian looking at a phone, 

making it difficult for the model to interpret intention from visual appearance cues 

such as gaze. 

Conversely, Fig. 3.22 (f)-(g) illustrated examples of poor illuminations or 

reflections that tampered with the supposed appearance cues. Finally, Fig. 3.22 (h)-

(i) showcases examples where the pedestrian sample is too small. The vanilla 

architecture does not perform well in these hard classification samples. However, 

the correct predictions by the proposed model can be attributed to the fact that it 

caters to the cross-modal relationships among visual appearance, segmentation 

maps and trajectory with consistent learned representations. Thus, even if one 

representation fails to capture the pedestrian's intention correctly, its relationship 

with the other two modalities strives to decipher it correctly, albeit with less 

confidence. 

The Grad-CAM visualizations for the IntentFormer with and without the co-

learning module (Vanilla transformer) are depicted in Fig. 3.23(a) and (b), 

respectively. Analysis of Fig. 3.23(a) reveals a progressive refinement in the Grad-

CAM attention maps in the co-learning environment as the number of training 

epochs increases. Initially, at epoch 3, the Grad-CAM outputs are dispersed across 

the input image, lacking specific focus on any element. However, as training 

progresses, the importance weights become increasingly localized to image regions 

pertinent to classifying the pedestrian's intention. The attention maps become more 

precise, effectively highlighting the silhouette of the target pedestrian. Additionally, 

with the incorporation of segmentation maps and trajectory data in the second and 

third stages, respectively, it is observed that co-pedestrians and certain scene 

elements, such as road boundaries, also receive higher weightage as observed for 

models trained for epochs 15 and 22. This indicates an enhanced understanding of 
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the context and contributing factors to pedestrian intention prediction. Conversely, 

in Fig. 3.23(b), where IntentFormer is trained without the co-learning module, the 

pedestrian torso and some scene elements sparsely receive higher weights by the 

last training epoch. The input pixels are not highlighted precisely or 

comprehensively as in the co-learning training mode. This less effective 

localization of important features reduces the ability to identify the most relevant 

features for intention prediction. 

v. Impact of individual modalities, their combinations and fusion order: This 

section investigates the impact of different modalities and fusion order 

permutations on the overall performance of pedestrian intention prediction. In our 

recent work[91], pedestrian appearance, scene context, pose, trajectory, and ego-

vehicle speed were utilised for pedestrian intention prediction. The analysis 

demonstrated that context features achieved the highest performance metrics, 

followed by appearance features. In contrast, pose features contributed the least 

when utilized as graph node features to model the temporal relationships of 

pedestrian interactions. Based on these findings, the proposed work incorporates 

only RGB crops, trajectory, and segmentation maps for context as the primary 

modalities for the proposed intention prediction model. This approach minimizes 

Table 3.8: Performance comparison of the IntentFormer model with different 

modalities, their combinations, and the order of fusion 

Modalities 
Accuracy  

PIE JAADbeh JAADall 

T 0.56 0.41 0.55 

R 0.59 0.45 0.60 

S 0.43 0.39 0.40 

T+R 0.63 0.52 0.64 

T+S 0.58 0.48 0.61 

R+S 0.66 0.54 0.69 

T+S+R 0.78 0.68 0.82 

T+R+S 0.76 0.67 0.80 

S+T+R 0.88 0.69 0.86 

S+R+T 0.89 0.70 0.88 

R+T+S 0.90 0.69 0.85 

R+S+T 0.93 0.75 0.92 

*R: RGB Images, S=Segmentation Maps, T: Trajectory 

 



64 

 

the additional memory footprint associated with pose features without significantly 

impacting the model's overall performance. It can be observed from Table 3.8 that 

individual modality (R: RGB pedestrian crops, S: Segmentation maps and T: 

Trajectory) achieve the lowest accuracy. When assessing single modality 

performance, input feed is given only through the first encoder stage; no other feed 

is given through subsequent encoder stages. In subsequent ablations involving 

combinations of two modalities, input feed is given through the first and second 

encoder stages. Combining these modalities leads to substantial performance 

improvements. For instance, combining T+R increases accuracy by 12.5% on PIE, 

T+S increases accuracy by 3.6%, and R+S increases accuracy by 16.4%, 

considering accuracy with only T as baseline. The highest accuracy is obtained with 

the combination R+S+T, resulting in a 66.1% increase in PIE, a 66.7% increase in 

JAADbeh, and a 53.3% increase in JAADall over baseline, demonstrating the 

effectiveness of integrating these modalities. In the case of a single modality in any 

of the encoder stages with no other modality feed, the modality in any of the encoder 

stages with no other modality feed, the MHSWA, designed for the fusion of two 

diverse modalities within the encoder, operates as standard MHA. 

The experiments with different orders of fusion, as reported in Table 3.8, 

highlight that a noticeable dip in performance is observed when features such as 

Fig. 3.24: Visual comparison of IntentFormer trained with different augmentations. 
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RGB images and segmentation maps are integrated at later stages of the network. 

By selecting the correct permutation by feeding trajectory at the last stage of the 

network, the accuracy performance improves by up to 9% on PIE, 5% on JAADbeh, 

and more than 8% on JAADall. This observation can be attributed to the proposed 

architecture's ability to leverage visual features in the earlier network stages 

effectively. The subsequent integration of dynamic features like trajectory 

coordinates at later stages optimally takes advantage of the enriched contextual 

understanding constructed by prior modalities. By aligning the integration order 

with the intrinsic complexity of features, the architecture maximizes the 

information captured by each modality. These findings highlight the pivotal role of 

the chosen sequence of feature integration in enhancing prediction accuracy.  

Table 3.9: Quantitative Evaluation On The PIE/JAAD Dataset 

Ablations 

Model Variants 
Accuracy 

MLP Heads Multi-Head Attention Loss 

MLP 
MLP-

shared 
MHCMA MHMMA MHSWA BCE CAC PIE JAADbeh JAADall 

1 ✓  ✓   ✓  0.89 0.69 0.88 

2 ✓   ✓  ✓  0.89 0.70 0.87 

         3 ✓    ✓ ✓  0.91 0.69 0.91 

4  ✓ ✓   ✓  0.90 0.70 0.90 

         5  ✓  ✓  ✓  0.91 0.71 0.91 

6  ✓   ✓ ✓  0.90 0.70 0.90 

7 ✓  ✓    ✓ 0.86 0.69 0.89 

8 ✓   ✓   ✓ 0.87 0.65 0.88 
9 ✓    ✓  ✓ 0.88 0.63 0.87 

10  ✓ ✓    ✓ 0.91 0.70 0.88 

11  ✓  ✓   ✓ 0.92 0.71 0.89 

12  ✓   ✓  ✓ 0.93 0.75 0.92 

Table 3.10: Comparison of IntentFormer with state-of-the-art models on the 

PIE, JAADbeh, and JAADall datasets, highlighting memory footprint, inference 

time, and highest achieved accuracy. 

Model 
Size 

(MB) 
Inference time(ms) 

Accuracy 

(PIE) 

Accuracy 

(JAADbeh) 

Accuracy 

(JAADall) 

PCPA[96] 118.8 38.6 86 50 70 

FFSTA[18] 374.2 70.83 - 62 83 

PG+[87] 0.28 5.47 89 70 86 

TED[103] 12.8 2.76 91 - - 

V-PedCross[86] 4.8 - 89 64 86 

PedGNN[82] 0.027 0.58 70.52 - 86.22 

VMI[91] 19.07 11.03 92 - 89 

IntentFormer 2.13 3.8 93 75 92 
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vi. Effect of Data Augmentation: Fig. 3.24 illustrates the impact of various 

augmentation techniques on the performance of our pedestrian intention prediction 

model. Among the techniques evaluated, horizontal flipping (F) and rotation (R) 

provided minimal enhancements compared to the baseline without augmentation. 

Additionally, Gaussian blur (G), addition/subtraction (A/S), and multiplication (M) 

demonstrated notable improvements, increasing overall performance metrics by 

2.71%, 2.01%, and 3.63%, respectively, relative to the baseline. The combination 

of Gaussian blur, addition/subtraction, and multiplication (G + A/S + M) resulted 

in substantial enhancements, boosting accuracy by 8.24%, F1 score by 4.88%, 

precision by 5%, and recall by 4.76%. The inclusion of all five augmentations (G + 

A/S + M + F + R) yielded the highest overall improvements, with increases in 

accuracy by 9.41%, F1 score by 7.32%, precision by 7.50%, and recall by 5.95%.  

 These results demonstrate that complex augmentations such as Gaussian 

blur, addition/subtraction, and multiplication significantly enhance the model's 

ability to predict pedestrian intentions. Although primary augmentations like 

horizontal flipping and rotation are insufficient to capture the complexities of 

pedestrian movements and interactions, the synergistic effect observed from 

combining multiple augmentations highlights that diverse and comprehensive 

Table 3.11: Model Architecture and Hyperparameter Configuration 

Modules/Layers/Encoders 

Trainable Parameters 

Hyperparameters 

Proposed 

IntentFormer 

Vanilla 

Transformer 

Non-

Shared 
Shared Non-shared 

Tubelet/Recurrent Projection 

(TP/RP) 
38K(total) - 38K(total) 

TP: Conv 3D: Filters-64, Kernel 

Size-(2,8,8) 

RP: GRU: Hidden units-64 

Positional Encoder_TP 351K - 351K 
Embedding Layer Output 

Dimension- 64 

Positional Encoder_RP 896 - 896 
Embedding Layer Output 

Dimension- 64 

MHSA/MHSWA 16.6K  16.6K 
No. of heads (4), Size of each 

attention head (64), Dropout-50% 

PCP 82K - 82K Conv 1D: 1 × 1 

Shared MLP - 33K - 
Two sequential MLPS with 64x4 

and 64 neurons, Dropout-50% 

Layer Normalization (LN) 128   - 

Classification Head 130 - 130 

Layer Normalization, GAP, 

Dropout-50%, MLP with 2 

neurons 

𝑻𝑬𝑰 + 𝑻𝑬𝑰𝑰 + 𝑻𝑬𝑰𝑰𝑰 132K 33K 231K - 

Total 

 
522K 33K 621K - 

 



67 

 

augmentations can collectively enhance the model's robustness and accuracy in 

pedestrian intention prediction tasks.  

 

vii. Quantitative Analysis: The analysis of model ablations in Table 3.9 reveals a 

notable 3-4% increase in accuracy for shared MLP configurations compared to their 

non-shared MLP counterparts. The multi-head attention configurations (MHCMA, 

MHMMA, MHSWA) demonstrate a systematic rise in accuracy across all datasets, 

with MHCMA exhibiting the lowest accuracy and the proposed MHSWA achieving 

the highest levels. This validates the impact of shared weight attention among 

diverse modalities (RGB images, Segmentation maps and trajectory) in a co-

learning framework. The proposed Co-learning Adaptive Composite (CAC) loss 

also shows comparable performance to the widely used Binary Cross-Entropy 

(BCE) loss. It also introduces a significant improvement in regularization, leading 

to reduced fluctuations in validation accuracy. These collective findings underscore 

the effectiveness and efficiency of the proposed IntentFormer architecture in 

capturing intricate relationships among modalities for robust pedestrian intention 

prediction.  

The IntentFormer model achieves superior accuracy of 93% on the PIE 

dataset, 75% on the JAADbeh dataset, and 92% on the JAADall dataset while 

maintaining a competitive memory footprint of 2.13 MB and an inference time of 

3.8 ms, as shown in Table 3.10. It consists of 555k parameters, showcasing a 

substantial decrease in parameters by approximately 11% compared to the vanilla 

transformer with 621K parameters, suggesting more parameter-efficient learning 

(Table 3.11). This parameter reduction also results in a 10% decrease in memory 

footprint. One of the key reasons behind the competitive memory footprint achieved 

for the proposed architecture is the co-learning module and the Multi-head Shared 

Weights Attention devised for model training that keeps the trainable parameters 

limited in numbers. Although the memory footprint is higher than that of PedGNN 

[88], IntentFormer offers a significant accuracy improvement, with a 27.62% 

increase on the PIE dataset and a 3.22% increase on the JAADall dataset compared 

to PedGNN [82]. Thus, despite PedGNN's minimal memory footprint of 0.027 MB, 

it fails to adequately address the complex dynamics of real-time scenes compared 
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to the proposed IntentFormer. These results highlight the model's efficiency and 

effectiveness, making it well-suited for real-time applications in autonomous 

driving.  

 

3.3 Conclusion and Future Scope 

This chapter presented two successive approaches to pedestrian crossing 

intention prediction. The first work introduced a multimodal framework employing 

attention mechanisms across spatial, channel, and temporal dimensions, along with a 

novel multi-head-attention adjacency-matrix-based GCN (𝑀𝐻𝐴 − 𝐴𝑑𝑗𝑀𝑎𝑡 𝐺𝐶𝑁) to 

fuse visual, motion, and interaction features. This model demonstrated superior early 

intent prediction on the JAAD and PIE benchmarks (accurately anticipating crossing 

up to 2.5 s before the event).  

 

Building on these insights, the second work proposed ‘IntentFormer’, a 

multimodal transformer-based architecture. It integrates RGB images, semantic 

segmentation maps, and trajectory features through three co-trained transformer 

encoders. Each encoder uses a multi-head shared-weight self-attention mechanism, 

and the system is trained with a shared-MLP output head under a novel Co-learning 

Adaptive Composite (CAC) loss. This design excels with very short observation 

windows (0.5–1.25 s) and maintains strong prediction accuracy even up to 3.5 s before 

crossing, outperforming prior state-of-the-art methods.  

 

Taken together, these sequential contributions illustrate that shifting from GCN-

based feature fusion to transformer-based co-learning improves temporal modelling 

and cross-modal integration. To further enhance real-world robustness and 

applicability, future research should focus on modelling uncertainty and unpredictable 

behaviour and optimizing for real-time adaptation and generalization, enabling models 

to remain reliable across diverse urban scenarios and unseen conditions. 
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CHAPTER 4 

LONG TERM INTENTION PREDICTION  

Long-term pedestrian intention prediction is a critical task in fields such as 

autonomous driving, robotics, and smart city infrastructure. Accurately forecasting the 

future movements of pedestrians over extended periods involves significant challenges 

due to the complex, non-linear nature of human motion, sudden changes in behaviour, 

and the influence of environmental factors. These challenges are further compounded 

by the difficulty of capturing and modelling the wide range of contextual information 

that affects pedestrian decisions. Traditional trajectory prediction methods often 

struggle to account for these dynamic interactions and the inherent uncertainty in long-

term predictions. This chapter addresses the challenges of long-term pedestrian 

intention prediction, focusing on the complexities of non-linear motion, sudden 

behavioral changes, and environmental interactions. A novel framework is introduced 

to enhance trajectory forecasting, incorporating mechanisms for adaptive learning, 

contextual integration, and uncertainty-aware prediction. 

4.1 Progressive Contextual Trajectory Prediction with 

Adaptive Gating and Fuzzy Logic Integration  

Despite the rapid advancement of highly automated vehicles poised to mitigate 

accidents caused by human errors, understanding the behaviours of road users, 

especially vulnerable pedestrians, remains a significant challenge. The evolution of 

pedestrian trajectory prediction, transitioning from early motion models to recent deep 

learning approaches, has highlighted persistent challenges in accurately predicting 

future trajectories, particularly in complex scenarios. To address this, this paper 

presents a Progressive Contextual Trajectory Prediction with Adaptive Gating and 

Fuzzy Logic Integration (PCTP-AGFL). The proposed method incorporates a dynamic 

progressive generator (DPG) comprising multiple LSTM layers that adapt 

progressively to pedestrian motion pattern complexities. The DPG is trained using a 

learned scheduled sampling strategy implemented through an Adaptive Gating 

Mechanism (AGM), allowing dynamic switching between teacher forcing and normal 
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mode. This is augmented with an Encoder-Decoder Contextual Attention (EDCA) 

module to enhance contextual awareness. A novel Adaptive Fuzzified Discriminator 

(AFD) is also introduced to enhance the model's capability to handle ambiguous 

trajectories. Experimental results on JAAD/PIE and ETH/UCY datasets demonstrate 

the method's superiority over baselines and state-of-the-art approaches. Furthermore, 

a comprehensive ablation study is carried out to tune the progression parameters, 

training strategy, and the type of classifier logic in the discriminator.   

4.1.1 Proposed Approach  

At time step 𝑛, the observed trajectory of a pedestrian in the last 𝑘 timesteps is 

represented as 𝑃𝑛 = {𝑝𝑛−𝑘+1, 𝑝𝑛−𝑘+2, … , 𝑝𝑛} where 𝑝𝑛 includes its top-left (𝑥𝑡𝑙, 𝑦𝑡𝑙) 

and bottom-right (𝑥𝑏𝑟 , 𝑦𝑏𝑟) bounding box coordinates. The primary objective is to 

predict its 𝜈 future coordinate positions 𝑄𝑛 = {𝑦𝑛+1, 𝑦𝑛+2, … , 𝑦𝑛+𝜈}. To address this 

challenge, a novel Progressive Contextual Trajectory Prediction with Adaptive Gating 

and Fuzzy Logic Integration is proposed as illustrated in Fig. 4.1. This architectural 

framework employs a learned scheduled sampling training strategy to provide 

essential guidance for pedestrian trajectory prediction.  The Adaptive Fuzzified 
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Fig. 4.1: Proposed trajectory prediction architecture. 
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Discriminator (AFD) enhances its ability to discriminate between real and fake 

trajectories by providing1 increased levels of nuanced confidence in its classifications. 

Moreover, the model leverages supplementary features derived from RGB images i.e. 

RGB crops 𝑅𝑛 = {𝑟𝑛−𝑘+1, 𝑟𝑛−𝑘+2, … , 𝑟𝑛} and segmentation maps 𝑆𝑛 =

{𝑠𝑛−𝑘+1, 𝑠𝑛−𝑘+2, … , 𝑠𝑛} to capture contextual information, thereby enriching the 

understanding of the environment, which  plays a pivotal role in improving the quality 

of trajectory predictions. Fig. 4.2 demonstrates how the model aligns trajectories with 

the visual context, leading to a richer representation of a pedestrian sample in a multi-

pedestrian scenario. For all the pedestrians in a single frame, same segmentation maps 
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are used. Thus, segmentation map 𝒮𝑖  for each 𝑖𝑡ℎ pedestrian in a frame is 𝑆1 = 𝑆2 =

𝑆3 … . . . = 𝑆ℵ.  

4.1.1.1 Dynamic Progressive Generator (DPG) 

The proposed dynamic progressive generator employs a hierarchical structure 

consisting of multiple layers of Long Short-Term Memory (LSTM) units, with the 

number of LSTM layers 𝑙, increasing progressively from 1 to 𝑟, to adapt to complex 

input patterns. A parameter governs the control over the progression 𝛼𝑙 which is 

initialized and updated during training at each iteration within the range 0 to 1 as 

illustrated in Fig 4.3. This progressive growth strategy ensures that the model 

dynamically adjusts its depth to effectively capture the intricacies of the input data, 

effectively balancing model complexity with performance. A similar progressive layer 

is mirrored on the decoder side, preserving architectural design symmetry. The 

encoder captures the target pedestrian's motion pattern 𝑃𝑛  as a latent vector using a 

recurrent cell i.e. LSTM. The new hidden state ℎ𝑘+1
𝐸  at (𝑛 − 𝑘 + 1)𝑡ℎ timestep is 

updated through an LSTM Cell given by Eqn (4.1).  

ℎ𝑘+1
𝐸 = 𝐿𝑆𝑇𝑀𝐸(𝑝𝑛−𝑘 , ℎ𝑘

𝐸)                                                                                      (4.1) 

In training an RNN encoder-decoder for sequence-to-sequence prediction tasks 

like machine translation, etc., different training strategies impact the learning process. 
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Normal mode involves processing input sequences step by step, potentially leading to 

error propagation. The teacher-forcing strategy, on the other hand, utilizes ground truth 

target outputs from the training dataset as inputs during the training process to mitigate 

error accumulation over time. Chen et al.[146] successfully employed teacher forcing 

to address the speaker permutation problem, enhancing speaker embedding 

representation. Huang et al.[147] proposed teacher-forcing training strategy for image 

captioning. However, when using teacher forcing training strategy, the model might 

become overly reliant on the ground truth inputs and may not generalize well to unseen 

data during inference. To address this, another seminal work[148] employed a 

scheduled sampling strategy that gradually transfers the training phase from a teacher-

forced manner to a normal training mode for video captioning. Leveraging these 

advancements of teacher-forcing framework in sequence-to-sequence modeling tasks, 

the proposed PCTP-AGFL presents a learned scheduled sampling strategy via 

Adaptive Gating Mechanism (AGM) as illustrated in Fig. 4.4. It allows dynamic 

switching between teacher forcing and normal mode training strategy, striking a 

balance between accuracy and generalization. This mitigates potential biases and 

errors associated with static training strategies. This mechanism utilizes the encoder's 

hidden state to decide whether to use teacher-forced input or the previous prediction 

as the input to the decoder at each timestep using a gating layer ‘𝑔𝐿’ defined as a fully 

connected layer with sigmoid activation. The gating factor 𝜉 is computed as: 

𝜉 =  𝑔𝐿(ℎ𝑘
𝐸)                                                                                                            (4.2) 

It defines a schedule that determines how the model switches between teacher 

forcing and using its predictions. The 𝑖𝑛𝑡𝑖𝑎𝑙_𝑡𝑒𝑎𝑐ℎ𝑒𝑟_𝑓𝑜𝑟𝑐𝑒_𝑟𝑎𝑡𝑒 𝜃𝑂 within a 

schedule typically starts with a high probability (~1) of using teacher forcing and 

gradually decreases this probability as training proceeds. The current teacher-forcing 

rate 𝜃 is defined as follows:  

𝜃 = 𝜃𝑂  ∗ 𝜉 ∗ 𝑚𝑖𝑛(1.0, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝 /𝛾)                                                                (4.3) 
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Where 𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝 is the total count of the training steps executed, and 𝛾 is 

the teacher forcing decay rate. As training progresses, teacher forcing gradually 

decreases, and the probability of using the model's predictions increases. A randomly 

sampled number 𝜏 is generated between 0 and 1 as the threshold for deciding whether 

to use teacher-forcing or the model's predictions. It introduces stochasticity into the 

decision process and encourages the model to explore different behaviours during 

training. In the case of deterministic predictions, τ is set to 0.5. Finally, τ is compared 

with θ to assign the input to the decoder.  During testing, the decoder is set to utilize 

its predictions due to the non-availability of ground truth trajectories.  

Furthermore, an Encoder-Decoder Contextual Attention (EDCA) module is 

employed to regulate the attention allocation of the decoder at each time step towards 

the encoder's hidden states as shown in Fig. 4.5. It is mathematically denoted as  

𝑐𝑚 = ∑ 𝜌𝑚𝑗൫ℎ𝑚−1
𝐷 , ℎ𝑗

𝐸൯𝑘
𝑗=1 ℎ𝑗

𝐸                                                                                 (4.4) 

where 𝑚 represents the current decoder timestep, ℎ𝑗
𝐸   corresponds to the 

encoder's hidden state at the 𝑗𝑡ℎ timestep with 𝑗 ranging from 1 to 𝑘; ℎ𝑚−1
𝐷  denotes the 

input hidden state of the decoder at the (𝑚 − 1)𝑡ℎ timestep and 𝜌𝑚𝑗 is the attention 

coefficient. This coefficient assesses the influence and significance of prior encoder 

states on the current state of the decoder. The final context vector 𝐶𝑚 is acquired 

through the concatenation of visual context features obtained from RGB images with 

Regions of Interest (ROIs) encompassing the pedestrian and full scene segmentation 
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maps. This context vector is used to update the decoder's hidden state at 𝑚𝑡ℎ   timestep.  

The spatio-temporal visual context features are derived through using EfficientNetB6, 

followed by Global Average Pooling and an LSTM layer.  Therefore, the future hidden 

state ℎ𝑚+1
𝐷  of the decoder at the (𝑚 + 1)𝑡ℎ timestep is given as: 

ℎ𝑚
𝐷 = {

𝐿𝑆𝑇𝑀𝐷(𝑞𝑛+𝑚−1
𝑇𝐹 , 𝐶𝑚),         𝑖𝑓  𝜃 ≥ 𝜏

𝐿𝑆𝑇𝑀𝐷(𝑞𝑛+𝑚−1
𝑁𝑀 , 𝐶𝑚),         𝑖𝑓  𝜃 < 𝜏

}                                                        (4.5) 

where 𝑞𝑛+𝑚−1
𝑇𝐹  and 𝑞𝑛+𝑚−1

𝑁𝑀  corresponds to ground truth coordinates and 

predicted coordinates from the previous decoder timestep, respectively.  

4.1.1.2 Adaptive Fuzzified Discriminator (AFD) 

In computer vision applications, binary logic classifiers in Convolutional 

Neural Networks (CNNs) excel at deterministic tasks like binary image categorization 

and object presence detection. Conversely, Fuzzy logic allows values to be represented 

as degrees of truth using membership functions to model uncertainty. It has 

demonstrated effectiveness in various computer vision classification applications, 

including image classification and reasoning problems [149], [150]. Capitalizing on 

the distinctive capabilities of Fuzzy logic, the proposed PCTP-AGFL strategically 

incorporates it into the discriminator. This integration augments prediction 

𝑙𝑏 𝑟𝑏 𝑝 

AFD 

DPG 

Real Trajectory samples 

𝑄𝑛 

Fake Trajectory samples 

𝑄෠𝑛 

Backpropagating D_loss to update 

discriminator weights 

Backpropagating G_loss to update generator weights 

BCE loss 

(Real output, Fake labels) 

BCE loss 

(Real output, Real labels) + 

(Fake output, Fake labels) 

 

Huber Loss 

Fuzzified Fake o/p Γ෠෠𝐹 

Fuzzified Real o/p Γ෠𝑅 

Fig. 4.6: Comprehensive Training Overview of the Proposed Architecture 
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capabilities, especially in challenging scenarios where discriminating between fake 

and real instances is ambiguous [150]. The complete training overview is illustrated in 

Fig. 4.6. It illustrates the interplay between real ground truth 𝑄𝑛 and generated fake 

trajectory samples 𝑄෠𝑛 fed to the discriminator. It is followed by adaptive fuzzification 

to address ambiguous cases where distinguishing between real and fake trajectories is 

challenging. Loss computation involves Huber loss for comparing real and fake 

trajectory samples, alongside binary cross-entropy (BCE) loss for adversarial training 

that are backpropagated to update generator and discriminator weights.   Real and fake 

trajectory samples 𝑆𝑛
1:𝑚 ~𝑝(𝑄𝑛

1:𝑚, 𝑄෠𝑛
1:𝑚) are input to the discriminator, which 

generates real and fake output respectively as in Eqn (4.6):     

Inputs: 

  - 𝑙𝑏: Left boundary of the triangular function. 

  - 𝑝: Peak (center) of the triangular function. 

  - 𝑟𝑏: Right boundary of the triangular function. 

  - ℶ෠: Discriminator Output. 

Output: 

  Fuzzy Scores Γ෠ 

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏: 

Initialize 𝑙𝑏, 𝑝, and 𝑟𝑏 during model training for real and fake samples, respectively.  

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆:  

𝒇𝒐𝒓 each batch of sample: 

𝑺𝒕𝒆𝒑 𝟏: Calculate real and fake membership scores using membership function 𝜇𝑅൫ℶ෠൯ =

{ℶ෠, 𝜇𝑅} and 𝜇𝐹൫ℶ෠൯ = {ℶ෠, 𝜇𝐹} where 𝜇𝑅 and 𝜇𝐹 are degree of membership of the element 𝑥 to the 

real class 𝑅 and fake class F respectively. 

         for the left segment: if 𝑙𝑏 ≤  ℶ෠  <  𝑝: 

               𝜇𝑅൫ℶ෠൯ = (ℶ෠  −  𝑙𝑏𝑅) / (𝑝𝑅  −  𝑙𝑏𝑅) 

               𝜇𝐹൫ℶ෠൯ = (ℶ෠  −  𝑙𝑏𝐹) / (𝑝𝐹  −  𝑙𝑏𝐹) 

         for the right segment: if 𝑝 ≤  𝑥 ≤  𝑟𝑏: 

               𝜇𝑅൫ℶ෠൯ = (𝑟𝑏𝑅  −  ℶ෠) / (𝑟𝑏𝑅  −  𝑝𝑅) 

               𝜇𝐹൫ℶ෠൯ = (𝑟𝑏𝐹  −  ℶ෠) / (𝑟𝑏𝐹  −  𝑝𝐹) 

         Outside the function's range: 

                         𝜇𝑅൫ℶ෠൯, 𝜇𝐹(ℶ෠) =  0 

𝑺𝒕𝒆𝒑 𝟐: Now the fuzzy rule is the union operation between real and fake sets:  

Γ෠ = 𝜇𝑅𝑈𝐹൫ℶ෠൯ = max൫𝜇𝑅൫ℶ෠൯, 𝜇𝐹(ℶ෠)൯  

  𝑰𝒇 𝑚𝑎𝑥(𝜇𝑅൫ℶ෠൯, 𝜇𝐹൫ℶ෠൯ == 𝜇𝐹(ℶ෠) 

                           Γ෠  = 𝜇𝐹
𝐶൫ℶ෠൯ = 1.0 −  𝜇𝐹(ℶ෠) ,  

                   where 𝜇𝐹
𝐶  is a complement operation 

𝒓𝒆𝒕𝒖𝒓𝒏 Γ෠ 

 

Algorithm 4.1: Computation of Fuzzy Scores 
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ℶ෠ = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐿𝑆𝑇𝑀𝑑𝑖𝑠(𝑆𝑛
1:𝑚, ℎ𝑑𝑖𝑠)                                                                           (4.6) 

where ℶ෠𝑅 and  ℶ෠𝐹 are the discriminator output labels corresponding to real 

(ground truth) and fake (generated) trajectory samples, respectively. 𝐿𝑖𝑛𝑒𝑎𝑟 serves as 

a fully connected layer with no activation. Subsequently, the output undergoes an 

adaptive fuzzification process, as detailed in Algorithm 4.1. For adaptive 

Fuzzification, two membership functions, 𝜇𝑅(ℶ෠) and 𝜇𝐹(ℶ෠), are defined for real and 

fake trajectory classes. These membership functions take the form of triangles with 

adaptable parameters, including left boundary (𝑙𝑏), right boundary (𝑟𝑏), and peak (𝑝). 

These parameters are fine-tuned in each training epoch to ensure a clear separation 

between the distributions of real and fake trajectory samples. The algorithm computes 

the degree of membership, 𝜇𝑅/𝜇𝐹, of the discriminator output ℶ෠ to the real/fake class, 

as defined in Step 1. The final fuzzy score denoted as Γ෠, is determined through the 

union operation between the real and fake sets. This operation captures the maximum 

degree of membership of the input ℶ෠ to the real or fake class as described in Step 2. In 

cases where the maximum degree of membership is associated with the fake class, 

complementation is necessary. This allows the fuzzy scores to be employed for 

training and backpropagation with now Γ෠𝑅
1:𝑚 and Γ෠𝐹

1:𝑚 denoting the predicted fuzzy 

probability scores for real and fake samples with ground truth labels Γ𝑅
1:m = 1 and 

Γ𝐹
1:m = 0 respectively. This process ensures that the fuzzy scores effectively guide 

training by leveraging membership degrees and complementation, refining the 

discriminator's ability to distinguish real from fake samples. 

4.1.2 Experimental Results and Works 

 In this section, the efficacy of the proposed method is assessed against several 

state-of-the-art approaches using two first-person view (FPV) datasets, JAAD [137] 

and PIE [6], and two bird's eye view (BEV) datasets, ETH [151] and UCY [152]. 

Furthermore, the evaluation entails a comprehensive comparative analysis and 

discussion on the impact of progression parameters, training strategies, and the type of 

discriminator logic, shedding light on the method's adaptability and performance 
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across varied experimental conditions.  

Algorithm 4.2: PCTP-AGFL Training Procedure 

𝑰𝒏𝒑𝒖𝒕𝒔 𝒂𝒏𝒅 𝑫𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏𝒔: 
(i) Mini-batch size: ′𝑠′ 

(ii) For 𝑢 𝜖 (1, 𝑠), 
• 𝑄(𝑢): Pedestrian ground truth trajectory space 

• 𝑄෠ (𝑢): Pedestrian generated trajectory space 

• 𝑃(𝑢): Pedestrian historical trajectory space 

• 𝑅(𝑢): RGB image space 

• 𝑆(𝑢) : Segmentation maps space 

• 𝜀(𝑢):  Random noise sampled from a normal distribution ~ 𝑁(0,1) 

• ℂ𝒎
(𝒖)

: Context Vector 

(iii) Dynamic Progressive Generator (𝐷𝑃𝐺) with model parameters 𝜗𝑔:{𝒲𝑔, ℬ𝑔} where 𝒲𝑔 

and ℬ𝑔 are set of weights and biases of layers constituting 𝐷𝑃𝐺 

• 𝐸𝑛𝑐𝐷𝑃𝐺  and 𝐸𝑛𝑐𝐷𝑃𝐺 are encoders and decoders of 𝐷𝑃𝐺 respectively 

• 𝐸𝐷𝐶𝐴: Encoder-Decoder Contextual Attention Module 

(iv) Adaptive Fuzzified Discriminator (𝐴𝐹𝐷) with model parameters 𝜗𝑑:{𝒲𝑑 , ℬ𝑑} where 𝒲𝑑  

and ℬ𝑑 are set of weights and biases of layers constituting 𝐴𝐹𝐷 

(v) 𝛼𝑔and 𝛼𝑑: Learning rate for 𝐷𝑃𝐺 and 𝐴𝐹𝐷 respectively. 

 

𝑶𝒖𝒕𝒑𝒖𝒕𝒔 

Trained 𝐷𝑃𝐺 and 𝐴𝐹𝐷 model with updated parameters 𝜗መ𝑔 and 𝜗መ𝑑 respectively. 

  

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 

for epochs 1, … , 𝑒 do 

 // Train Discriminator (𝐴𝐹𝐷); Freeze Generator (𝐷𝑃𝐺) 

for discriminator steps 1, … , 𝛽 do  

𝑺𝒕𝒆𝒑 𝟏d: Sample minibatch of size 𝑠 from {𝑄(𝑢), 𝑃(𝑢), 𝑅(𝑢), 𝑆(𝑢)} 

𝑺𝒕𝒆𝒑 𝟐d:  𝑃(𝑢)   =  𝑃(𝑢)   +  𝜀(𝑢), where 𝜀(𝑢)  ~ 𝑁(0,1) 

𝑺𝒕𝒆𝒑 𝟑d: Construct the input space: 𝑍(𝑢)  =   ൛𝑃(𝑢), 𝑅(𝑢), 𝑆(𝑢)ൟ  

𝑺𝒕𝒆𝒑 𝟒d: 𝐷𝑃𝐺 generates the trajectory in three steps: 

(i)  𝑐𝑚
(𝑢)

=  𝐸𝐷𝐶𝐴(𝐸𝑛𝑐𝐷𝑃𝐺{𝑃(𝑢)})  

(ii)  ℂ𝒎
(𝒖)

= ቄ𝑐𝑚
(𝑢)

 ⨁𝑅(𝑢)⨁ 𝑆(𝑢)ቅ  

(iii) 𝒊𝒇 teacher-forcing mode = = True 

𝑄෠ (𝑢) = 𝐷𝑒𝑐𝐷𝑃𝐺൫ℂ𝒎
(𝒖)

, 𝐸𝑛𝑐𝐷𝑃𝐺൛𝑃(𝑢)ൟ, 𝑄(𝑢)൯= 𝐷𝑃𝐺(𝑍(𝑢))  
𝒆𝒍𝒔𝒆: // normal mode 

𝑄෠ (𝑢) = 𝐷𝑒𝑐𝐷𝑃𝐺൫ℂ𝒎
(𝒖)

, 𝐸𝑛𝑐𝐷𝑃𝐺{𝑃(𝑢)}൯= 𝐷𝑃𝐺(𝑍(𝑢))  
𝑺𝒕𝒆𝒑 𝟓d: Update  𝜗𝑑 by ascending its stochastic gradient as: 

(i) ρd = ∇𝜗𝑑

1

𝑠
∑ ቂlog 𝐴𝐹𝐷൫𝑄(𝑢)൯ + log ቀ1 − 𝐴𝐹𝐷൫𝑄෠ (𝑢)൯ቁቃ𝑠

𝜅=1  

(ii)           𝜗መ𝑑=  𝜗𝑑 + 𝛼𝑑 . 𝑅𝑀𝑆𝑃𝑟𝑜𝑝( 𝜗𝑑 , ρd) 

𝒆𝒏𝒅 𝒇𝒐𝒓   

 

  //Train Generator (𝐷𝑃𝐺); Freeze Discriminator (𝐴𝐹𝐷) 

for generator steps 1, … , 𝛽 do 

𝑺𝒕𝒆𝒑 𝟏g−𝟒g: Repeat the 𝑺𝒕𝒆𝒑𝒔 (𝟏𝐝 − 𝟒𝐝) as in 𝐴𝐹𝐷 training 

𝑺𝒕𝒆𝒑 𝟓g: Update 𝜗𝑔 by descending its stochastic gradient as: 

(i) 𝜌𝑔 = ∇𝜗𝑔

1

𝑠
∑ ቂlog ቀ1 − 𝐴𝐹𝐷൫𝑄෠ (𝑢)൯ቁ + ℒℎ𝑢𝑏𝑒𝑟൫𝑄(𝑢), 𝑄෠ (𝑢)൯ቃ𝑠

𝜅=1  

(ii)           𝜗መ𝑔=  𝜗𝑔 − 𝛼𝑔. 𝐴𝑑𝑎𝑚( 𝜗𝑔, ρ𝑔) 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

    𝒆𝒏𝒅 𝒇𝒐𝒓 

𝒓𝒆𝒕𝒖𝒓𝒏  𝜗መ𝑑,  𝜗መ𝑔 
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4.1.2.1 Implementation Details 

The proposed model's training is executed on a Google Colab Pro instance 

equipped with a high-performance NVIDIA Tesla T4 GPU, boasting 16 GB of 

memory, and operated within the CUDA 12.0 platform. The model architecture is 

constructed using the TensorFlow 2.10.1 framework. In terms of optimization, the 

Adam optimizer is applied to the Generator, with default parameters and an initial 

learning rate of 1 ×  10⁻⁶. In contrast, the Discriminator employs the RMSprop 

optimizer with an equivalent learning rate. The training procedure involves a batch 

size of 4, and training is concluded after 15 epochs. The segmentation maps are 

generated using state-of-the-art Segformer (MiT-B5)[141], a semantic segmentation 

model. RGB and segmentation features are precomputed using the EfficientNetB6 

network.  Consistently, the hidden size for all encoders and decoder LSTMs within the 

proposed method is set to 64 across all datasets. A dual Monte Carlo sampling strategy 

is employed in the generator implementation for stochastic predictions. It involves the 

introduction of random noise to the input data, particularly the past bounding box 

coordinates, simulating inherent uncertainties in observed data. Concurrently, random 

sampling is implemented at each iteration, incorporating a random threshold (𝜏) 

between 0 and 1 to switch between teacher-forcing and model predictions. 

 A comprehensive training procedure for the proposed PCTP-AGFL is 

presented in Algorithm 4.2. The algorithm entails alternating training phases over 

epochs, optimizing the DPG and AFD models iteratively. In phase I (Steps 1d-5d), 

AFD undergoes training while DPG parameters (ϑg) remain fixed. During this phase, 

batches of pedestrian trajectory data, along with corresponding images and 

segmentation maps are processed to update the discriminator's parameters, enhancing 

its ability to distinguish between ground truth trajectories and generated ones. 

Subsequently, in phase II (Steps 1g-5g), the AFD parameters (ϑd) are held constant 

while the DPG is trained. This phase improves the trajectory generation by minimizing 

the Huber loss between generated trajectories and ground truth ones, while the AFD 

provides adversarial feedback. 
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The following metrics are used for the evaluation of the proposed trajectory 

prediction algorithm for FPV datasets: MSE over bounding box coordinates, 𝐶𝑀𝑆𝐸 and  

𝐶𝐹𝑀𝑆𝐸  which are the MSEs of the centre of the bounding boxes averaged over the 

entire predicted sequence and only the last time step, respectively. The average 

displacement error (ADE), which measures accuracy along the whole trajectory, and 

the final displacement error (FDE), which measures accuracy only at the trajectory 

endpoint, are utilized for BEV datasets. All results metrics used for JAAD and the PIE 

dataset are in pixels, while for ETH and UCY, ADE and FDE are computed in 

Euclidean space. 

Loss Function: The Huber loss, also known as the Huber penalty or smooth 𝐿1 

loss is a function used here to measure how far the generated samples are from the 

ground truth. It is a compromise between 𝐿1 loss and the 𝐿2 loss and is less sensitive 

to outliers compared to the 𝐿2 loss. It is defined as follows: 

ℒℎ𝑢𝑏𝑒𝑟൫𝑄𝑛, 𝑄෠𝑛൯ = {

1

2
൫𝑄𝑛  −  𝑄෠𝑛൯

2
 , 𝑖𝑓 |𝑄𝑛  −  𝑄෠𝑛| ≤ 𝛿

𝛿|𝑄𝑛  −  𝑄෠𝑛| −  
1

2
𝛿2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                                     (4.7) 

where 𝛿 is a threshold at which the loss function transitions from 𝐿2 loss to 𝐿1 loss.  

It is chosen to balance the trade-off between outliers' robustness and the loss function's 

smoothness. This experiment is empirically set at 1. 

Another loss for adversarial training is defined in Eqn (4.8) as: 

ℒ𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 =
𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥
𝐷

 Ε𝑆𝑛∼𝑝(𝑄𝑛)[ΓR
1:m log Γ෠𝑅

1:𝑚] +

 Ε𝑆መ𝑛∼𝑝(𝑄෠𝑛)[(1ΓF
1:𝑚) log (1 − Γ෠𝐹

1:𝑚)]                                                                        (4.8) 

represents the min-max game where the generator minimizes the function while the 

discriminator maximizes it. 
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4.1.2.2 Datasets  

The PIE dataset comprises 1,842 pedestrian trajectories annotated at 30 Hz, 

characterized by extended trajectory lengths and detailed annotations encompassing 

semantic intention, ego-motion, and neighbouring objects. The dataset includes 880, 

243, and 719 pedestrian tracks in the train, validation, and test sets, respectively [6]. A 

sampling approach with a 0.5 overlap ratio ensures comprehensive coverage, 

excluding tracks below the minimum length of 2 seconds (observation + prediction) 

during trajectory prediction training. 

JAAD features a comprehensive collection of 2,800 pedestrian trajectories 

captured from dash cameras, annotated at 30 Hz. The dataset is partitioned according 

to the specifications in [137], with divisions into 177, 117, and 29 clips for training, 

testing, and validation, respectively. Given its smaller sample size and shorter tracks, 

a sampling approach with an overlap ratio of 0.8 is implemented. 

The ETH-UCY datasets comprise five sub-datasets, aggregating 1,536 

annotated pedestrian trajectories across four unique scenes. Trajectories are observed 

for 3.2 seconds, with predictions extending for the subsequent 4.8 seconds, sampled at 

a rate of 2.5 Hz. Pedestrian centroids, featuring single x and y coordinates, are 

employed in line with the model's input requirements. Notably, visual context is 

omitted due to the absence of a first-person view. Following prior work [116], a leave-

one-out strategy is applied to partition the train and test sets.  

 

4.1.2.3 Comparison with SOTA methods 

In this section, the proposed model undergoes a comprehensive comparison 

with state-of-the-art methods, including B-LSTM[153], PIE_traj[6], BiTrap[22], 

SGNet[23], DSCMP[108], PECNet[24], STAR[107], SIT[112], Trajectron++[110], 

LVTA[106], STI-GAN[94], S-DualCVAE[113], Y-Net[25], V2-Net[109], and NSP-

SFM[114]. The evaluation is conducted under two distinct settings: deterministic, 
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where the model yields a single trajectory, and stochastic, generating a set of 𝐾 = 20 

possible trajectories, with the best-performing sample subsequently reported.  

Table 4.1: Deterministic Results on PIE/JAAD Dataset 

Methods 

PIE JAAD 

MSE CMSE CFMSE MSE CMSE CFMSE 

0.5s 1s 1.5s 1.5s 1.5s 0.5s 1s 1.5s 1.5s 1.5s 

B-LSTM[153] 101 296 855 811 3259 159 539 1535 1447 5615 

PIEtraj[6] 58 200 636 596 2477 110 399 1248 1183 4780 

BiTraP[22] 41 161 511 481 1949 93 378 1206 1105 4565 

SGNet[23] 34 133 442 413 1761 82 328 1049 996 4076 

Ours 12 75 300 223 1299 35 205 825 784 3383 

Table 4.2: Stochastic Results on PIE/JAAD Dataset 

Methods 

PIE JAAD 

MSE CMSE CFMSE MSE CMSE CFMSE 

0.5s 1s 1.5s 1.5s 1.5s 0.5s 1s 1.5s 1.5s 1.5s 

BiTraP(GMM)[22] 38 90 209 171 368 53 250 585 501 998 

BiTraP(NP)[22] 23 48 102 81 261 38 94 222 177 565 

SGNet[23] 16 39 88 66 206 37 86 197 146 443 

Ours 6 21 59 45 138 19 55 147 105 301 

 

Table 4.3: Deterministic Results on ETH/UCY Dataset 

Methods 
ADE(4.8s)/FDE(4.8s) 

ETH HOTEL UNIV ZARA1 ZARA2 Avg 

STAR[107] 0.56/1.11 0.26/0.50 0.52/1.15 0.41/0.90 0.31/0.71 0.41/0.87 

SIT[112] 0.59/1.28 0.22/0.45 0.40/0.98 0.30/0.75 0.23/0.59 0.35/0.81 

Trajectron++[110] 0.71/1.68 0.22/0.46 0.41/1.07 0.30/0.77 0.23/0.59 0.37/0.91 

SGNet-ED[23] 0.63/1.38 0.27/0.63 0.40/0.96 0.26/0.64 0.21/0.53 0.35/0.83 

LVTA[106] 0.57/1.10 0.42/0.69 0.55/1.19 0.42/0.92 0.35/0.75 0.46/0.92 

Ours 0.48/1.01 0.15/0.57 0.31/0.94 0.21/0.55 0.17/0.49 0.27/0.71 

 

Table 4.4: Stochastic Results on ETH/UCY Dataset 

Methods 
ADE(4.8s)/FDE(4.8s) 

ETH HOTEL UNIV ZARA1 ZARA2 Avg 

STI-GAN[94] 0.77/1.53 0.70/0.73 0.53/1.20 0.33/0.66 0.33/0.66 0.53/0.96 

S-DualCVAE[113] 0.66/1.18 0.34/0.61 0.39/0.74 0.27/0.48 0.24/0.42 0.38/0.69 

DSCMP[108] 0.66/1.21 0.27/0.46 0.50/1.07 0.33/0.68 0.28/0.60 0.41/0.80 

PECNet[24] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48 

STAR [107] 0.36/0.45 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53 

Trajectron++[110] 0.43/0.86 0.12/0.19 0.22/0.43 0.17/0.32 0.12/0.25 0.21/0.41 

BiTrap-NP[22] 0.37/0.69 0.12/0.21 0.17/0.37 0.13/0.29 0.10/0.21 0.18/0.35 

SGNet[23] 0.35/0.65 0.12/0.24 0.20/0.42 0.12/0.24 0.10/0.21 0.18/0.35 

Y-Net[25] 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27 

V2-Net[109] 0.23/0.37 0.11/0.16 0.21/0.35 0.19/0.30 0.14/0.24 0.18/0.28 

NSP-SFM[114] 0.25/0.24 0.09/0.13 0.21/0.38 0.16/0.27 0.12/0.20 0.17/0.24 

Ours 0.26/0.54 0.05/0.17 0.11/0.33 0.07/0.15 0.07/0.17 0.11/0.27 
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Table 4.1 and 4.2 provide a comparative analysis of the proposed model's 

performance against prior baselines and state-of-the-art methods on first-person view 

(FPV) datasets. On JAAD, the proposed model demonstrates a substantial reduction 

in MSE by 57%, 38%, and 21% for prediction intervals of 0.5𝑠, 1.0𝑠, and 1.5𝑠, 

respectively, outperforming the previous state-of-the-art[23]. Similarly, on the PIE 

dataset, the proposed model exhibits MSE reductions of 65%, 44%, and 32% for 

prediction intervals of 0.5𝑠, 1.0𝑠, and 1.5𝑠, respectively, compared to the previous 

state-of-the-art[23]. Notably, as the prediction length extends, the proposed model 

showcases even more significant improvements when compared to prior work, 

particularly highlighting its efficacy in long-term prediction scenarios. To ensure a fair 

comparison with [23] on FPV datasets under stochastic settings, where 𝐾 =  20 

possible proposals are generated, and the best-performing sample is reported during 

evaluation. The proposed method consistently outperforms the state-of-the-art by an 

average of 35% on JAAD and 41% on PIE.  

For the ETH/UCY dataset, deterministic and stochastic results are summarized 

in Table 4.3 and 4.4. These tables illustrate that, on average, the proposed model 

surpasses the state-of-the-art methods[23] by more than 23% and 12% in ADE and 

FDE, respectively. These outcomes highlight the model's ability to predict persistent 

and stable future trajectories. Compared with the FPV datasets, the improvements on 

the ETH/UCY dataset are relatively lower, attributed to the absence of a first-person 

view context and scene semantics. Nevertheless, the proposed method demonstrates 

remarkable efficacy, achieving a significant reduction of 36% and 19% in ADE and 

FDE, respectively, compared to the lowest ADE and FDE observed in the stochastic 

setting. It also achieves comparable performance in ETH and Hotel sets.   

4.1.2.4 Ablation Study 

This section presents an ablation study to assess the impact of key 

methodological choices in the proposed framework. The influence of progression 

parameters is examined, followed by comparing Normal, Teacher Forcing, and 
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Learned Scheduled Sampling strategies. Additionally, the effectiveness of an Adaptive 

Fuzzified Discriminator is evaluated against a Binary Discriminator, and the 

computational time cost is analysed. The analyses are as follows. 

i. Impact of Progression Parameters on Performance: The investigation of 

progression parameters on the performance of the proposed approach reveals 

significant insights pertaining to predictive performance, as shown in Fig. 4.7. For 

𝑟 = 1, it is observed that the MSE experiences a notable reduction, with the best 

performance achieved when 𝛼1 is approximately 0.8. Upon further increasing the 

model complexity to 𝑟 = 2 with three LSTM layers, the MSE demonstrates a 

further decrease. In this scenario, the best performance is achieved with 𝛼1 and 𝛼2 

values of approximately 0.7 and 0.3 for the respective LSTM layers. This trend 

suggests that enhancing model complexity, along with appropriately tuned α values, 

has a positive impact on predictive performance. However, the transition to 𝑟 = 3 

with four LSTM layers yields an unexpected deviation from the decreasing MSE 
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Fig. 4.7: Impact of Encoder-Decoder Progression where (a), (b), and (c) correspond to 

𝑟 = 1, 𝑟 = 2 and 𝑟 = 3 respectively. 
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trend. Contrary to expectations, the MSE increases despite the 𝛼1, 𝛼2 and  𝛼3  

values optimized to approximately 0.6, 0.2, and 0.09 adaptively for the respective 

LSTM layers. Furthermore, it is evident that 𝛼3 does not contribute to the same 

extent as 𝛼1 and 𝛼2 , rendering it the least important in this configuration. It implies 

that while increasing the number of LSTM layers may enable the model to represent 

more intricate data features, it can potentially introduce overfitting or model 

complexity that fails to generalize effectively to unseen data. Through empirical 
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Fig. 4.8: Training and Validation Loss Curves for three training modes: learned 

scheduled sampling (LSS), teacher forcing (TF), and normal mode (NM).   

               (a)                      (b)                      (c)                       (d)                     (e) 

Fig. 4.9. Qualitative samples of complex trajectory patterns. Row I shows the 

pedestrian's trajectory with the start (red box) and end (green box) coordinates. The 

red line represents centre coordinates over 15 timesteps, while future ground-truth 

bounding boxes (next 45 timesteps) are in green. Row II depicts the 2D spatial 

projection of bounding box centres in the x-y plane. The blue dashed line represents 

the average stochastic trajectory from 20 multimodal predictions, with the shaded 

region indicating the range of possible pathways. 
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analysis, it has been determined that the optimal configuration corresponds to 𝑟 =

2 and {𝛼1, 𝛼2} = {0.7, 0.3} and {0.8, 0.1} for FPV and BEV datasets, respectively. 

 

ii. Comparison of Normal vs Teacher Forcing vs Learned Scheduled Sampling 

Strategy: The training and validation loss curves presented in Fig. 4.8 demonstrate 

the consistent outperformance of both the learned scheduled sampling mechanism 

and the teacher forcing mode in comparison to the conventional normal training 

mode within the context of trajectory prediction. It is inferred that both the normal 

training mode and the teacher forcing mode exhibit fluctuations in their validation 

loss, suggesting limitations in their capacity to generalize to previously unseen and 

complex data patterns effectively. In contrast, the learned scheduled sampling 

mechanism, which dynamically determines the probability of employing teacher-

forced or normal training modes, maintains a remarkable level of stability in its 

validation loss curve. 

Furthermore, the impact of the proposed methodology on addressing non-

linear and intricate trajectory patterns is also evident in Fig 4.9 (a)-(e).  These 

trajectories are characterized by multiple turns before ultimately reaching their 

respective destinations. For instance, in Fig. 4.9 (b), it is noticeable that the target 

pedestrian is somewhat occluded in preceding frames. In Fig. 4.9 (c) and (e), the 

visual is disconnected from the trajectory as the individual gazes in a different 

direction. Fig. 4.9 (d) introduces another dimension as the pedestrian initially has 

their back turned, as evident from the past trajectory, but subsequently executes an 

entirely distinct path. In all the cases, the average path predicted by our method 

closely matches the groundtruth motion pattern. 
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Fig. 4.10: KDE-based distribution of (a) binary classification and (b) fuzzy 

membership scores, with fake trajectories in red and real trajectories in blue. 
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iii. Adaptive Fuzzified Discriminator vs Binary Discriminator: KDE plots offer a 

robust means of depicting data distribution by estimating the probability density 

function. In the case of binary discriminator training with binary labels, the plot in 

Fig. 4.10(a) displays a certain degree of overlap between real and fake trajectories, 

implying a degree of ambiguity in classification. This convergence of curves 

underscores the limitations of binary classification, particularly when confronted 

with trajectories exhibiting intermediate characteristics. Conversely, the KDE plot 

for the fuzzy discriminator in Fig. 4.10(b) reveals two distinct, well-separated 

curves representing real and fake trajectories, highlighting the efficacy of the fuzzy 

approach in classifying trajectories. 

The t-SNE plots in Fig. 4.11 visualize the high-dimensional trajectory 

embeddings, providing insights into the impact of AFD on the GAN's ability to 

capture and generate diverse trajectories. Without Adaptive Fuzzy Logic, the t-SNE 

plot in Fig. 4.11 (a) demonstrates a discernible divergence between the predicted 

and ground truth trajectory distributions. The generated trajectories exhibit a limited 
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Fig. 4.11: t-SNE Visualization of Predicted vs. Ground Truth Trajectories: (a) 

Without AFD, predicted trajectories (orange) are confined, showing mode 

collapse. (b) With AFD, their distribution expands and aligns with ground truth 

(blue), mitigating mode collapse. 

Table 4.5: Quantitative results of PCTP-AGFL Across FPV and BEV Datasets 

Model 

 Ablations 
N T L F E VR VS 𝑪𝑺 

IT(ms) 

20/2000 

MSE(1.5s) ADE/FDE(4.8s) 

JAAD/PIE ETH/UCY(Avg) 

Ablation_1 ✓       1 77/80 186/86 0.21/0.36 

Ablation_2  ✓      1.2 77/80 191/90 0.26/0.39 

Ablation_3   ✓     1.09 77/80 181/79 0.18/0.31 

Ablation_4   ✓ ✓    1.05 79/82 163/71 0.14/0.30 

Ablation_5   ✓ ✓ ✓   1.04 80/81 156/62 0.11/0.27 

Ablation_6   ✓ ✓ ✓ ✓  0.95 82/85 151/60 - 

Ablation_7   ✓ ✓ ✓ ✓ ✓ 0.90 84/87 147/59 - 

*N:  Normal Mode, T: Teacher-forcing, L: Learned Scheduled Sampling using AGM, F: AFD, E: EDCA, VR: RGB 

context, VS: Segmentation context, CS: Convergence Speed, IT: Inference Time 



88 

 

coverage of the real distribution space, indicative of challenges in training the GAN 

model, resulting in a potential mode collapse. In contrast, the t-SNE plot in Fig. 

4.11 (b) showcases a remarkable coverage of the entire trajectory space by the GAN 

model, even in its inherent complexity. The incorporation of adaptive Fuzzification 

mitigates mode collapse, enabling the generator to capture diverse modes within 

the data.  

iv. Computational time cost: In the ablation study of PCTP-AGFL, various 

components are analysed for their impact on convergence speed (𝐶𝑆), inference 

time (𝐼𝑇), and accuracy, as shown in. Table 4.5. The convergence speed (𝐶𝑆) is 

computed relative to Ablation 1, where it is set as the baseline, while others are 

expressed as factors. The teacher forcing training strategy (Ablation_2) accelerates 

convergence by 1.2 times but exhibits overfitting, resulting in a 4% and 16% 

increase in error on FPV and BEV datasets compared to normal training 

(Ablation_1). Integration of AGM for learned scheduled sampling (Ablation_3) 

achieves a 5% reduction in errors across datasets, with a marginal 9% speed drop 

from Ablation_2. Adaptive Fuzzification causes a massive drop of 10% in MSE 

across FPV datasets. Furthermore, contextual awareness proves vital, as seen in 

Ablation_6 and Ablation_7 𝑤. 𝑟. 𝑡. Ablation_5.  It is observed that RGB Context 

(VR) alone leads to a 3 − 4% error reduction on FPV datasets, whereas 

incorporating segmentation context (VS+VR) results in a significant 5 − 6% 

reduction in errors on average on FPV datasets, though with a slower relative 

convergence speed of 0.90. This emphasizes the importance of visual context in 

capturing complex spatio-temporal interactions, compensating for slower 

convergence with improved trajectory prediction accuracy. Even without visual 

context (Ablation_5), the proposed approach achieves a noteworthy reduction in 

ADE and FDE, as reflected in Table 4.5, while maintaining a reasonable relative 

convergence speed of 1.04.  

Considering the computational efficiency, the proposed DPG (Dynamic 

Progressive Generator) and AFD (Adaptive Fuzzy Discriminator) utilize a minimal 

parameter count of 0.16M and 0.042M, respectively, leveraging precomputed 

EfficientNetB6 feature maps and segmentation maps. Furthermore, the number of 
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LSTM layers in DPG corresponds to the complexity of motion patterns, but with 

simple patterns, a single LSTM layer suffices. The AFD employs an adaptive 

membership function to mitigate decision ambiguity during classification, 

enhancing model interpretability and accelerating training convergence.  

The computational times for 20 and 2000 samples are also compared in Table 

4.5. Notably, the proposed PCTP-AGFL demonstrates minimal time differences 

between generating 20 and 2000 samples, with only a 2-3ms variation. In inference 

stage, the inference time remains independent of the training strategy adopted, i.e., 

teacher forcing training and normal mode training, as reflected in Table 4.5. The 

Adaptive Fuzzification (Ablation_4) incurs negligible impact on inference time. 

However, the inclusion of EDCA only (Ablation_5) and EDCA+VR+Vs 

(Ablation_7) results in more accurate predictions, accompanied by a marginal 

increase of 5 ms in inference time.  It is noteworthy that the inference time of 

Ablation_5 is comparable with state-of-the-art [22], [116] as reported in [22].  

4.2 Conclusion and Future Scope 

This work introduces a novel Progressive Contextual Trajectory Prediction 

with Adaptive Gating and Fuzzy Logic Integration (PCTP-AGFL) and evaluates its 

effectiveness on both FPV and BEV datasets. The experimental results reveal our 

methodology’s remarkable capability to closely emulate the complex trajectory 

patterns and their final destinations with significantly reduced mean squared error in 

comparison to other SOTA methods. Consequently, it simultaneously addresses the 

challenges associated with overfitting and generalization to complex data patterns that 

are often encountered in trajectory prediction methodologies. Furthermore, the 

Adaptive Fuzzified Discriminator (AFD) enhances discrimination in ambiguous cases. 

Future work includes exploring a combined short-term and long-term intention 

prediction approach for further advancements in trajectory prediction. 
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CHAPTER 5 

UNIFIED SHORT-TERM AND LONG-TERM INTENTION 

PREDICTION  

In the preceding chapters, we explored approaches to short-term and long-term 

pedestrian intention prediction as separate tasks, each with its own set of 

methodologies and challenges. Short-term prediction focuses on immediate actions 

such as crossing intentions, while long-term forecasting aims to anticipate extended 

trajectories based on historical motion patterns and environmental cues. Although 

treating these tasks independently has yielded meaningful insights, it often overlooks 

the interdependence between immediate pedestrian intent and longer-term behavioural 

outcomes.  

Integrating short-term and long-term prediction within a unified framework 

leverage shared contextual and motion features, enabling more coherent and accurate 

predictions. Short-term cues, such as the decision to cross, provide strong signals that 

can influence and constrain long-term motion forecasts. To this end, this chapter 

introduces a dual-task approach that predicts short-term crossing intentions and long-

term trajectories using pedestrian ROIs, scene attributes, and past trajectories. The 

framework addresses key limitations in feature fusion and adaptive prediction, 

contributing to more reliable pedestrian behaviour modelling across both short-term 

and long-term horizons. 

5.1 Cross-Modal Pedestrian Behaviour Prediction: A Dual-

Task Approach with Progressive Denoising Attention 

and CVAE 

Pedestrian intention and trajectory prediction are crucial for advancing 

intelligent transportation systems and autonomous vehicles, significantly enhancing 

urban mobility's safety and efficiency. Traditional approaches have evolved from 

capturing pedestrian dynamics through image features and bounding box coordinates 

to leveraging multiple modalities and attention mechanisms. However, challenges in 
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robust cross-modal feature integration and adaptation to complex scenarios persist. 

This paper introduces a dual-task approach that simultaneously predicts short-term 

pedestrian crossing intentions and long-term trajectories by integrating features from 

pedestrian regions of interest (ROIs), scene attributes, and past trajectories. For 

crossing intention prediction, Progressive Denoising Attention (PDA) is developed, 

which iteratively refines cross-modal features to augment inter-class variations. 
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Fig. 5.1: Proposed Dual-task approach for pedestrian behaviour prediction. (a) 

Intention Estimation: (b) Trajectory Estimation  
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Additionally, a three-phase counterfactual training approach is employed that 

manipulates pedestrian ROIs and segmentation maps to further enhance model 

robustness in complex scenarios. For trajectory prediction, a Conditional Variational 

Autoencoder (CVAE) is implemented, guided by contextual embeddings from the 

novel Context-Aware Feature Fusion Module (CAFFM) to significantly reduce mean 

squared error by integrating rich spatiotemporal ROI and context information. 

Experimental results on benchmark datasets JAAD and PIE demonstrate the superior 

performance of the proposed approach in understanding and predicting pedestrian 

intent.  

5.1.1 Proposed Approach  

 The proposed work introduces a dual-task approach designed to predict 

pedestrians' short-term and long-term intentions. The short-term intention anticipates 

the pedestrian crossing intention ℐ, where (0 < ℐ < 1), while the long-term intention 

predicts the future trajectory 𝒱 over future time steps 𝑚.  

5.1.1.1 Intention Prediction 

Pedestrian crossing intentions on the road are significantly influenced by past   

motion history. To address this, transformers are employed to process refined 

pedestrian and scene features conditioned on historical motion data, utilizing the 

proposed Progressive Denoising Attention (PDA).  The input to the trajectory 

coordinates 𝒰 comprising top-left (𝑥𝑙 , 𝑦𝑙) and bottom-right (𝑥𝑟 , 𝑦𝑟) coordinates are 

processed through a BiLSTM encoder to capture the trajectory information as 

illustrated in Fig. 5.1 (a).  

Transformer A process the RGB pedestrian appearance features 𝑝̂ conditioned 

on trajectory data. Similarly, Transformer B process segmentation map features 

𝑠̂ conditioned on trajectory data.  The outputs of the two transformers and the encoded 

trajectory are dynamically weighted and concatenated to produce the final feature 

representation that is fed to the classifier for prediction. This transformer consists of 

layers such as Position Encoder and tokenization, Layer Normalization, MLP and the 
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novel PDA. The attention process incorporates the influence of pedestrian or scene 

attributes {𝑥1} on the pedestrian's motion {𝑥2} as shown in Algorithm 5.1. For instance, 

the model might focus more on sudden directional changes if the environment has 

obstacles or if the pedestrian is younger, indicating higher risk- taking behaviour. 

Conversely, in a clear environment with an elderly pedestrian, the model might reduce 

the influence of these signals, considering the lower likelihood of abrupt movements. 

Attention: Diffusion-based denoising modules reduce noise while preserving 

essential structural features like edges and textures. Their adaptability to various data  

Algorithm 5.1: Progressive Denoising Attention (PDA)  

𝑰𝒏𝒑𝒖𝒕𝒔: 

i) 𝒙𝟏𝜖 𝑅𝑁×𝐷1 : Input sequence 1 

ii) 𝒙𝟐𝜖 𝑅𝑁×𝐷2 : Input sequence 2 

iii) 𝝉: Maximum number of iterations (default: 5) 

iv) 𝝐: Convergence tolerance (default: 1 × 10−3 ) 

v) 𝝈 : Standard deviation of the noise (default: 0.1) 

𝑶𝒖𝒕𝒑𝒖𝒕: 

𝒁 𝜖 𝑅𝑁×𝐷: Refined attention output 

𝑺𝒕𝒆𝒑𝒔: 

1. Initialization: 

Initialize query 𝑸, key 𝑲, and value 𝑽: 

𝑄 =  𝐷𝑒𝑛𝑠𝑒(𝐷)(𝑥1), 𝐾 = 𝐷𝑒𝑛𝑠𝑒(𝐷)(𝑥2),  
𝑉 =  𝐷𝑒𝑛𝑠𝑒(𝐷)(𝑥2) 

2. Self-Attention Calculation: 

Compute initial attention scores and output: 

𝑍 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝐷
)𝑉 

3. Iterative Refinement: 

• Set 𝑍𝑝𝑟𝑒𝑣 = 0 

• 𝑊ℎ𝑖𝑙𝑒 𝑖 <  𝜏 &&  ‖𝑍 − 𝑍𝑝𝑟𝑒𝑣‖ > 𝜖: 

    - Add Gaussian noise to 𝑄, 𝐾 and 𝑉:      

𝑄 ← 𝑄 + 𝒩(0, 𝜎2) 

             𝐾 ← 𝐾 + 𝒩(0, 𝜎2) 

𝑉 ← 𝑉 + 𝒩(0, 𝜎2) 

- Update 𝑍𝑝𝑟𝑒𝑣 ← 𝑍 

- Apply self-attention: 𝑍 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝐷
)𝑉  

- Denoise 𝑍 using the 𝐷𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 𝑈𝑁𝑒𝑡:  

   𝑍 ⟵ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 𝑈𝑁𝑒𝑡(𝑍)) 

- Set 𝑄, 𝐾, 𝑉 ← 𝑍 

- Increment 𝑖 
4. Return: The final refined attention output 𝒁  
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and noise conditions makes them a robust choice for denoising tasks [154]. Inspired 

by their effectiveness, our proposed work introduces a diffusion-inspired attention 

mechanism to refine and denoise cross-modal features iteratively. Traditional attention 

mechanisms can struggle with initial misalignments between modalities. By 

incorporating a denoising process inspired by diffusion models, the proposed 

Progressive Denoising Attention (PDA) aims to enhance attention outputs iteratively, 

mimicking the human cognitive process of progressively improving understanding 

through successive refinements and reassessments. The key steps of PDA are outlined 

in Algorithm 5.1. Initially, query, key, and value matrices are initialized from the input 

sequences, as shown in step 1. Self-attention scores are then computed using these 

matrices, as demonstrated in step 2. The addition of Gaussian noise followed by 

denoising via U-Net architecture in Step 3 leads to more robust and accurate models, 

especially in complex environments where dynamic factors influence pedestrian 
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Fig. 5.2: Overview of the counterfactual training process.  
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intentions. This iterative refinement allows the model to refine its focus over multiple 

steps, which is particularly beneficial for cross-modal tasks where initial alignments 

might be imprecise. Furthermore, convergence tolerance enables the mechanism to 

adapt dynamically to different sequences and contexts, ensuring that each scenario's 

attention mechanism is fine-tuned. The PDA updates attention outputs iteratively until 

reaching τ iterations or meeting a convergence threshold as shown in Step 3. The noise 

addition step is skipped during testing. 

Counterfactual Training: The proposed methodology advances the concept of 

counterfactual training [155] through a structured, multi-phase approach that 

manipulates pedestrian ROIs and segmentation maps. The proposed approach deepens 

the model's understanding of the causal relationships between contextual elements and 

pedestrian behaviour by systematically introducing counterfactual values in distinct 

phases and incorporating alignment losses to maintain consistency. The three phases 

of the counterfactual training are illustrated in Fig. 5.2. In Phase 1, the model is trained 

on pedestrian ROIs, segmentation maps, and past trajectories, establishing a baseline 

understanding by minimizing the binary cross-entropy loss between predictions and 

ground truth. In Phase 2, pedestrian ROIs are replaced with counterfactual values 

(𝑝𝑐𝑓) which are zero tensors, while segmentation maps and past trajectories remain 

intact. This phase forces the model to depend on structured scene information, 

enhancing abstract feature interpretation. The loss function includes both binary cross-

entropy and an alignment loss to ensure consistency with Phase 1. Phase 3 builds on 

Phase 2 by replacing segmentation maps with counterfactual values (𝑠𝑐𝑓), also zero 

tensors, keeping pedestrian ROIs and trajectories unchanged, which refines the 

model's understanding of pedestrian appearance. Similar to Phase 2, alignment losses 

Table 5.1: Performance using different counterfactual values on short term 

intention prediction 

𝒑𝒄𝒇 𝒔𝒄𝒇 
Accuracy 

PIE JAADall JAADbeh 

Random Random 0.75 0.79 0.40 

Random Zeros 0.83 0.85 0.52 

Zeros Random 0.88 0.86 0.67 

Zeros Zeros 0.95 0.94 0.75 
Note: 𝒑𝒄𝒇 and 𝒔𝒄𝒇 denote counterfactual values for pedestrian ROIs and segmentation maps, respectively.  
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maintain consistency with Phase 1. Through exposure to these diverse counterfactual 

scenarios, the methodology significantly improves the model's generalization to new 

and unseen environments. 

The goal of counterfactual training is to enable the model to learn to identify 

and reason about the impact of missing or altered information, without introducing 

noise or irrelevant features. Table 5.1 represents the ablation study conducted with 

different counterfactual values like random noise where values range from [-0.1, 0.1] 

and zeros as demonstrated. The counterfactual values are also switched between 

phases to assess their impact on performance.  

Our findings revealed that maintaining zero tensors as counterfactual values 

for both Phase 2: Pedestrian ROIs (𝑝𝑐𝑓) and Phase 3: Segmentation Maps (𝑠𝑐𝑓) yielded 

the higher performance. Zero tensors represent the absence of the feature, allowing the 

model to focus solely on learning how the system behaves when that specific feature 

is absent. In contrast, introducing random values can introduce arbitrary and 

potentially distracting features, making it harder for the model to identify meaningful 

patterns, which leads to decreased performance. Based on these observations, zero 

tensors are chosen to preserve the integrity of the counterfactual training setup, 

ensuring that the model learns to deal with missing or altered information in a realistic 

and meaningful way. 

5.1.1.2 Trajectory Prediction 

The pedestrian's trajectory over the last 𝑛 timesteps is represented as 𝒰 =

{𝒰1, 𝒰2, … 𝒰𝑛} with each trajectory point comprising the top-left (𝑥𝑙, 𝑦𝑙) and bottom-

right (𝑥𝑟 , 𝑦𝑟) bounding box coordinates. The objective is to predict 𝑚 future positions, 

denoted as 𝒱 = {𝒱𝑛+1, 𝒱𝑛+2,  … 𝒱𝑛+𝑚}. To address this, the proposed model leverages 

a Variational Autoencoder (VAE) enhanced by a Context-Aware Feature Fusion 

Module (CAFFM) to accurately predict pedestrian trajectories by integrating both 

spatial and temporal contextual information as demonstrated in Fig 5.1 (b). 

Let 𝒮 = {𝒰, 𝒱} be a training dataset of history trajectories 𝒰 and future 
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trajectories 𝒱; from a statistical perspective, the goal of multimodal human trajectory 

prediction is to draw a data distribution 𝓅(𝑣|𝑢) about target data 𝑣 𝜖 𝒱, where 𝑢 𝜖 𝒰 

is known conditions. An encoder, parameterized by α, takes the input 𝑢 and produces 

a distribution. 𝓅α(𝜁|𝑢, 𝑐) where ζ is a latent variable, and 𝑐 is the learned contextual 

embeddings. A decoder parameterized by β used 𝑢 and samples from  𝓅α(𝜁|𝑢, 𝑐) to 

produce 𝓅β(𝑦|𝑢, 𝜁, 𝑐). The latent variable is then marginalized out to obtain 𝓅(𝑣|𝑢), 

𝓅(𝑣|𝑢, 𝑐) = ∫ 𝓅𝛽(𝑣|𝑢, 𝜁, 𝑐)𝓅α(𝜁|𝑢, 𝑐) 𝑑𝜁                                                             (5.1) 

Variational inference is employed to approximate the intractable integral. A 

variational distribution 𝓆δ(𝜁|𝑢, 𝑐) to approximate the true posterior 𝓅α(𝜁|𝑢). The 

evidence lower bound (ELBO) can be used to optimize the parameters 𝛼, 𝛽 and 𝛿 

through reconstruction and KL divergence loss:  

log 𝓅(𝑣|𝑢, 𝑐)  ≥ 𝔼𝓆δ(𝜁|𝑢,𝑐) [log 𝓅𝛽(𝑣|𝑢, 𝜁, 𝑐)] − 𝐷𝐾𝐿(𝓆δ(𝜁|𝑢, 𝑐)||𝓅α(𝜁|𝑢, 𝑐))     (5.2)  

The optimization objective is to maximize the ELBO: 

ℒ(𝛼, 𝛽, 𝛿) = 𝔼𝓆δ(𝜁|𝑢,𝑐) [log 𝓅𝛽(𝑣|𝑢, 𝜁, 𝑐)] − 𝐷𝐾𝐿(𝓆δ(𝜁|𝑢, 𝑐)||𝓅α(𝜁|𝑢, 𝑐))           (5.3) 

Content-Aware Feature Fusion Module (CAFFM): The modalities, pedestrian 

ROIs and segmentation maps are essential for capturing specific spatial information 

about the pedestrians and the contextual layout of the environment. Processing these 

inputs through transformers conditioned on past motion history allows the model to 

incorporate temporal aspects crucial for trajectory prediction. The proposed Context-

Aware Feature Fusion Module (CAFFM) plays a pivotal role in guiding the Variational 

Autoencoder (VAE) for trajectory prediction, as shown in Fig. 5.1(b). By integrating 

raw features with attention-driven enhancements, the module ensures that the VAE is 

conditioned on a rich and informative context. This improves the accuracy of the 

predicted trajectories and ensures that the predictions are contextually relevant and 

dynamically responsive to changes in the environment.  
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Initially, the module concatenates the features from the MLP heads of 

transformers A and B, which process pedestrian ROIs and segmentation maps, 

respectively. These transformers are conditioned on past motion history to capture 

relevant spatiotemporal information. The concatenated inputs denoted as 𝑎||𝑏, are 

passed through a dense layer followed by a 𝑅𝑒𝐿𝑈 activation function to produce the 

output 𝛾, expressed mathematically as:  

𝛾 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑎||𝑏))                                                                                       (5.4) 

The output 𝛾 is then divided into two branches. The first branch processes 𝛾 

through a dense layer followed by a 𝐺𝐸𝐿𝑈 activation function, yielding 𝛾1: 

𝛾1 = 𝐺𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝛾))                                                                                           (5.5) 

The second branch processes 𝛾2 through a dense layer without an activation 

function: 

𝛾2 = 𝐷𝑒𝑛𝑠𝑒(𝛾)                                                                                                       (5.6)                                  

An attention mechanism is subsequently applied, where the 𝑞 is derived from 

𝛾2, and the 𝑘 and value 𝑣 are derived from 𝛾1. This attention mechanism can be 

mathematically represented as: 

 𝐴𝑝𝑒𝑑 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞.𝑘𝑇

√𝑑𝑘
) . 𝑣                                                                                   (5.7) 

The attention output is then multiplied element-wise with 𝛾2 to produce the 

attentive features. This can be denoted as: 

𝐹𝑝𝑒𝑑 = 𝐴𝑝𝑒𝑑  ⊙ 𝛾2                                                                                                  (5.8) 

Finally, a residual connection adds the original output 𝛾 back to the attentive 

features to yield the final refined feature: 

𝐹̂𝑝𝑒𝑑 = 𝛾 + 𝐹𝑝𝑒𝑑                                                                                                      (5.9) 
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The first branch, enhanced with a 𝐺𝐸𝐿𝑈 activation function, introduces non-

linearity and captures more complex feature interactions, forming the key and value 

representations that define the contextual relevance. In contrast, the second branch 

maintains a more linear and less transformed representation of the features to keep the 

query closely aligned with the original feature space. This alignment allows the 

attention mechanism to modulate the linear representation of features effectively 𝛾2 

based on the richer, non-linear context provided by 𝛾1. The residual connection ensures 

that the model considers both the raw information and the attention-driven 

adjustments, preserving long-term context (e.g., overall scene layout) along with 

dynamic changes captured by the attention mechanism. Consequently, this approach 

ensures that the refined feature output retains essential information from the original 

input while being enriched with contextually relevant modifications. 

5.1.2 Experimental work and Results 

This section outlines the implementation details for the dual-task approach 

focused on pedestrian intention and trajectory prediction including evaluation metrics 

and datasets used. It also presents comparisons with state-of-the-art methods and 

ablation studies on the impact of Progressive Denoising Attention (PDA), 

counterfactual training, the Context-Aware Feature Fusion Module (CAFFM), and the 

effects of different contextual embeddings along with memory footprint details. 

5.1.2.1 Implementation details 

Intention Prediction: The cross-modal transformer employs two projection 

mechanisms: 𝐶𝑜𝑛𝑣1𝐷 for capturing local temporal relationships from EfficientNet 

features of pedestrian ROIs and segmentation maps and a Gated Recurrent Unit (GRU) 

for leveraging temporal dependencies across the past trajectory sequence. The output 

is then flattened to prepare it for further processing within the transformer. The 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟 layer incorporates positional information into token embeddings 

initializing with an embedding dimension of 64. It assigns a unique positional 
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encoding to each token in the input sequence, ensuring the model can distinguish 

between tokens based on their position within the sequence.  

The PDA utilizes a UNet architecture with a series of convolutional and 

deconvolutional blocks. The encoder starts with two convolutional blocks, first with 

16 filters and then 32 filters, using 𝐶𝑜𝑛𝑣1𝐷 layers with 𝑅𝑒𝐿𝑈 activation to reduce 

spatial dimensions while increasing depth. At the core of the network lies a middle 

block, which further processes the encoded features using convolutions with 64 filters, 

maintaining the same structure but at a higher level of abstraction. Following this, the 

decoder part mirrors the encoder, utilizing deconvolutional (𝐶𝑜𝑛𝑣1𝐷𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒) 

layers with 𝑅𝑒𝐿𝑈 activation to upsample feature maps back to the original dimensions, 

with each block followed by a 𝐶𝑜𝑛𝑣1𝐷 layer with the same number of filters. 

𝐿𝑎𝑙𝑖𝑔𝑛(𝑗) = ‖ℐ𝑝ℎ𝑎𝑠𝑒 𝑗 − ℐ𝑝ℎ𝑎𝑠𝑒 1
∗ ‖

2
                                                                         (5.10) 

where ℐ𝑝ℎ𝑎𝑠𝑒 𝑗 are the predictions from the 𝑗𝑡ℎ phase while ℐ𝑝ℎ𝑎𝑠𝑒 1
∗  denotes predictions 

derived from a model initialized with weights optimized during Phase 1. The asterisk 

(*) signifies that this model's inputs do not include counterfactuals. This loss ensures 

that the counterfactual manipulations introduced in later phases do not disrupt the 

model’s learned representations.  The total loss function utilized during training is 

expressed as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐵𝐶𝐸𝐿𝐵𝐶𝐸  + 𝜆𝑎𝑙𝑖𝑔𝑛𝐿𝑎𝑙𝑖𝑔𝑛                                                                       (5.11) 

Here, 𝜆𝐵𝐶𝐸 and 𝜆𝑎𝑙𝑖𝑔𝑛 are coefficients that balance the contribution of each 

loss, enabling the model to prioritize accurate predictions while maintaining 

consistency across phases. This combined loss approach reinforces causal 

relationships through counterfactual training, enhancing the model's ability to 

generalize to unseen scenarios. Optimal performance is achieved with 𝜆𝐵𝐶𝐸 = 1 and 

𝜆𝑎𝑙𝑖𝑔𝑛 = 0.36. 
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Trajectory Prediction: The encoder architecture for the CVAE processes time-

series data and an embedding vector. It begins with two inputs: a sequence of bounding 

box coordinates and a conditional embedding vector. The bounding box data is 

processed through two Bidirectional LSTM layers, with 32 units in the first layer and 

16 units in the second, capturing both past and future dependencies while reducing 

dimensionality. The encoded sequence is concatenated with the embedding vector, 

forming a combined feature set. This set is further refined through two Dense layers 

with 256 and 128 units, respectively, activated by ReLU. Dropout and batch 

normalization are applied to improve generalization. The network outputs two Dense 

layers representing the mean and log variance of the latent space distribution, each 

with 64 units. These parameters are passed to a Lambda layer for reparameterization, 

producing the latent variable ℎ. 

The decoder architecture is designed to reconstruct sequences from a latent 

representation and conditional embedding. The inputs are concatenated first and 

processed through two Dense layers with 128 and 256 units, respectively, both 

activated by 𝑅𝑒𝐿𝑈. Dropout and batch normalization are applied after each Dense 

layer to enhance generalization. The processed features are then replicated across 45 

timesteps using a 𝑅𝑒𝑝𝑒𝑎𝑡𝑉𝑒𝑐𝑡𝑜𝑟 layer, preparing the data for sequence generation. 

The sequence is generated through two 𝐿𝑆𝑇𝑀 layers, with 16 units in the first and 32 

units in the second, each set to return sequences.  Finally, a 𝑇𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝐷𝑒𝑛𝑠𝑒 

layer with 4 units and a linear activation function is applied to reconstruct the output 

sequence.  

The intention prediction model is trained independently; however, the 

trajectory prediction model utilizes the pretrained intention model to generate the 

embedding vector. The intention and trajectory models are trained using the RMSProp 

optimizer with learning rates of 10−5 and 10−2, respectively. The intention model is 

trained for 100 epochs with a batch size of 128 and L2 regularization of 0.001. The 

trajectory model is trained for 60 epochs with a batch size of 64 and L2 regularization 

of 0.0001. All the experiments are conducted on a Google Colab Pro instance with 
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access to an NVIDIA Tesla T4 GPU (16 GB memory), running on the CUDA 12.0 

platform. The implementation is done using TensorFlow 2.10.1. 

5.1.2.2 Datasets 

Intention: The proposed method is evaluated using the JAAD [137] and PIE [6] 

benchmark datasets. JAAD includes 346 high-resolution video clips of urban driving 

scenarios, with two subsets: JAADall (2,100 visible pedestrians not near crossings) and 

JAADbeh (495 crossings and 191 non-crossings). PIE offers a broader dataset with 1,842 

roadside sections at 30 Hz, including 519 crossings, 1,323 non-crossings, and ego-vehicle 

speed annotations. Both datasets follow the recommended training/validation/test split 

for comprehensive evaluation [6], [137]. It is evaluated using standard classification 

metrics: Accuracy, AUC, F1 score, Precision, and Recall. 

Table 5.2: Deterministic Results on PIE/JAAD Dataset 

(CMSE and CFMSE are the mean square error between the predicted and ground truth centres of bounding 

boxes, over all future time steps and the final predicted time step, respectively) 

Methods 

PIE JAAD 

MSE CMSE CFMSE MSE CMSE CFMSE 

0.5s 1s 1.5s 1.5s 1.5s 0.5s 1s 1.5s 1.5s 1.5s 

PIE_traj[6] 58 200 636 596 2477 110 399 1248 1183 4780 

BiTraP[22] 41 161 511 481 1949 93 378 1206 1105 4565 

SGNet[23] 34 133 442 413 1761 82 328 1049 996 4076 

MlgtNet[156]   459 418 1629   1002 938 3489 

PCTP-AGFL[157] 12 75 300 223 1299 35 205 825 784 3383 

Ours 8 71 225 201 1132 34 199 789 756 3121 

Table 5.3: Stochastic Results on PIE/JAAD Dataset 

Methods 

PIE JAAD 

MSE CMSE CFMSE MSE CMSE CFMSE 

0.5s 1s 1.5s 1.5s 1.5s 0.5s 1s 1.5s 1.5s 1.5s 

BiTraP(GMM)[22]  38 90 209 171 368 53 250 585 501 998 

BiTraP(NP)[22] 23 48 102 81 261 38 94 222 177 565 

SGNet[23] 16 39 88 66 206 37 86 197 146 443 

PCTP-AGFL[157] 6 21 59 45 138 19 55 147 105 301 

Ours 5 16 51 42 128 11 40 126 99 289 
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Trajectory: Trajectory prediction is assessed using MSE over bounding box 

coordinates and CMSE and CFMSE, which measure the MSE of the bounding box centre 

over the entire sequence and the final time step, respectively. All metrics for the JAAD 

and PIE datasets are reported in pixels. It is assessed using MSE over bounding box 

coordinates and CMSE and CFMSE, which measure the MSE of the bounding box centre 

over the entire sequence and the final time step, respectively. All metrics for the JAAD 

and PIE datasets are reported in pixels. JAAD [137] features 2,800 pedestrian 

trajectories captured at 30 Hz, divided into 177 training, 117 testing, and 29 validation 

clips, using a 0.8 overlap ratio for sampling. PIE [6] contains 880, 243, and 719 pedestrian 

Table 5.4: Performance of the proposed method on short term intention prediction 

on PIE dataset 

Methods 
PIE 

Acc AUC F1 Prec Rec 

PedGNN[82] 0.71 - 0.75 0.83 0.79 

PIE_traj[6] 0.79 - 0.87 - - 

TAMFORMER[85] 0.87 0.84 0.76 - - 

IPIPF[158] 0.88 0.85 0.80 0.82 0.78 

V-PedCross[86] 0.89 0.88 0.67 0.74 0.84 

PG+[87] 0.89 0.90 0.81 0.83 0.79 

TED[103] 0.91 0.91 0.83 - - 

VMI[91] 0.92 0.91 0.87 0.86 0.88 

Biped84] 0.92 0.91 0.86 0.83 - 

MTMGN[159] 0.90 0.87 0.92 0.95 0.90 

TrEP[105] 0.93 0.94 0.87 0.89 0.88 

PedFormer[93] 0.93 0.90 0.87 0.89 0.88 

IntentFormer[160] 0.93 0.90 0.88 0.86 0.89 

Ours 0.95 0.94 0.92 0.94 0.93 

 

Table 5.5: Performance of the proposed method on short term intention prediction 

on JAADall/JAADbeh dataset 

 

Methods 
JAADall/JAADbeh 

Acc AUC F1 Prec Rec 

FFSTA[18] 0.83/0.62 0.82/0.54 0.63/0.74 0.51/0.650 0.81/0.85 

Biped[84] 0.84/- 0.79/- 0.61/- 0.54/- - 

V-PedCross[86] -/0.64 -/0.66 -/0.76 -/0.70 -/0.89 

PG+[87] 0.86/0.70 0.88/0.70 0.65/0.76 0.58/0.77 0.75/0.75 

IPIPF[158] 0.86/- 0.84/- 0.69/- 0.74/- 0.66/- 

TAMFORMER[85] 0.89/0.73 0.82/0.70 0.70/0.79 - - 

VMI[91] 0.89/- 0.90/- 0.81/- 0.79/- 0.83/- 

MTMGN[159] 0.89/0.70 0.89/0.70 0.73/0.83 0.66/0.79 0.89/0.87 

TrEP[105] 0.91/- 0.86/- 0.69/- 0.71/- 0.70/- 

PedFormer[93] 0.93/- 0.76/- 0.54/- 0.65/- 0.60/- 

IntentFormer[160] 0.92/0.75 0.90/0.70 0.83/0.82 0.81/0.74 0.85/0.88 

Ours 0.94/0.75 0.91/0.71 0.81/0.85 0.80/0.81 0.82/0.89 
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tracks in the training, validation, and test sets, respectively, with a 0.5 overlap ratio, 

excluding tracks shorter than 2 seconds during trajectory prediction training. 

5.2.2.3 Comparison with SOTA methods 

The proposed method exhibits superior performance in short-term intention 

prediction across multiple datasets, including PIE, JAADall, and JAADbeh. On the PIE 

dataset (Table 5.2), our work achieves the highest accuracy (0.95) and an AUC of 0.94, 

comparable to leading model IntentFormer[160]. With an F1 score of 0.92, the method 

surpasses all other approaches in precision (0.94) and recall (0.93), demonstrating a 

robust and reliable solution for pedestrian intention prediction in dynamic 

environments. Similarly, on the JAADall dataset (Table 5.3), the proposed method 

attains the highest accuracy (0.94) and AUC (0.91), outperforming models like 

PedFormer[93]. On the JAADbeh dataset, our work matches the highest accuracy (0.75) 

and achieves the top F1 score (0.85) with strong precision (0.81) and recall (0.89). 

Compared to other methods, the proposed method consistently demonstrates superior 

performance, particularly in challenging conditions, underscoring its robustness and 

reliability across diverse scenarios.  

The trajectory prediction assessment is performed under two distinct settings: 

deterministic, where a single trajectory is predicted, and stochastic, where a set of 𝐾 =

 20 potential trajectories is generated, with the best-performing sample reported. The 

proposed approach significantly improves deterministic trajectory prediction, as 

detailed in Table 5.4. On the PIE dataset, the method achieves a 25% reduction in MSE 

at the 1.5-second interval compared to PCTP-AGFL[157], and demonstrates a 10% 

improvement in CMSE and a 13% improvement in CFMSE, indicating superior accuracy 

over extended prediction periods. Similarly, on the JAAD dataset, the method reports 

an 18.4% reduction in MSE, a 3.6% improvement in CMSE, and a 7.7% reduction in 

CFMSE compared to PCTP-AGFL [157]. 

Table 5.5, which presents results for stochastic trajectory prediction, further 

highlights that the proposed approach achieves an average reduction of 16.3% in MSE 
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on the PIE dataset and 20.2% on the JAAD dataset relative to PCTP-AGFL. 

Additionally, the approach shows an average improvement of 7% in CMSE and 

CFMSE combined on the PIE dataset and 4.8% on the JAAD dataset. These findings 

collectively underscore the effectiveness of the proposed work in reducing prediction 

errors and enhancing overall performance across a range of datasets. 

5.2.2.4 Ablation Study 

This section presents an ablation study to evaluate the impact of key 

components in the proposed framework. The effectiveness of the progressive 

denoising mechanism and counterfactual training is examined, along with an analysis 

of memory footprint and computational complexity. Additionally, the role of 

alignment loss is investigated to assess its contribution to model performance. These 

analyses offer deeper insights into the trade-offs and benefits of the proposed design 

choices. The analyses are as follows. 

i. PDA: From a cognitive perspective, pedestrians adjust their behaviour based on 

environmental cues and their attributes. The proposed Progressive Denoising 

with PDA 

with PDA 
w/o PDA 

w/o PDA 

y
-co

o
r
d

in
a

te
 (in

 p
ixels) 

x-coordinate (in pixels) 

Fig. 5.3: Case studies illustrating how attention mechanisms influence prediction 

outcomes across three scenarios (Rows I-III). 
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Attention analyses pedestrian crossing intentions on the road, leveraging iterative 

refinement of attention scores based on historical motion data, pedestrian visual 

appearance, and semantic scene features. Fig. 5.3(a) illustrates input scenes with 

salient contextual cues highlighted using yellow dashed lines; (b–c) Temporal 

attention weights along the pedestrian’s past trajectory where solid dots denote 

discrete time steps and circles radii indicate corresponding attention weights, shown 

without PDA (b) and with PDA (c). Attention weights corresponding to sharp turns 

and directional changes are highlighted in black. (d–e) Grad-CAM visualisation 

without (d) and with PDA (e). Ground truth and predicted pedestrian intention 

labels: Crossing (C) or Not Crossing (NC) are shown along with associated 

confidence scores in each row. Rows I and II depict scenarios involving pedestrian 

interaction with traffic infrastructure such as stop signs and traffic lights. These 

environmental cues result in changes in pedestrian motion—such as halts, starts, or 

turning behaviour which is clearly visible in the past trajectory segment over the 

last 15 timesteps (Fig. 5.3(b–c)). Without PDA, the temporal attention weights 

assigned by the cross-modal transformer remain relatively uniform, showing little 

sensitivity to such behavioural transitions. In contrast, with PDA, higher attention 

weights are allocated specifically to the turning or decision-critical points along the 

path, reflecting the model’s increased responsiveness to contextual cues (Fig. 

5.3(c)). The Grad-CAM maps further demonstrate that, without PDA (Fig. 5.3(d)), 

the attention tends to diffuse across less relevant areas, reducing the alignment 

between visual cues and behavioural outcomes. However, in the presence of PDA 

(Fig. 5.3(e)), the model concentrates more accurately on semantically meaningful 

regions—specifically traffic signals and pedestrian appearance. This shift in focus 

leads to improved predicted label accuracy and higher confidence scores.  

Row III in Fig. 3 presents a scenario involving an elderly pedestrian following 

a smooth and linear trajectory. Here, the temporal attention weights remain uniform 

in both model variants (Fig. 5.3(b-c)), reflecting the low variability and 

predictability of motion typically associated with elderly individuals. The Grad-

CAM visualizations (Fig. 5.3(d–e)) show that, in both cases, the spatial focus 

remains consistently centred on the pedestrian, suggesting minimal dependence on 
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additional contextual cues. Accordingly, both models yield similar prediction 

outcomes and confidence levels.  

The t-SNE embeddings of attention outputs for MHSA (Row I) and PDA 

(Row II) are presented in Fig. 5.4. In the case of MHSA, the embeddings initially 

appear crowded (Row-I (a)), with some separation emerging in later epochs, as 

shown in Row-I (b) and (c). However, this separation remains poorly defined, 

potentially leading to less confident predictions. In contrast, interclass variation 

increases for PDA as training progresses, and by the final epoch, the distinction 

between the two classes becomes significantly more apparent. This illustrates 

PDA's iterative refinement process, where the model dynamically adjusts its 

(a) At epoch 1 (b)  At epoch 10 
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Fig. 5.4: t-SNE embeddings of the attention outputs from MHSA (Row I) and 

PDA (Row II) 

Table 5.6: Impact of iterative denoising and number of iterations on convergence 

and performance in PDA-based cross-modal feature refinement 

Ablations Attention 𝜏 𝒩 ℰ Τ(mins) Accuracy 

A_1 SHA(Baseline) --  200 4 86 

A_2 PDA 1  180 5 88.5 

A_3 PDA 3  150 6.5 89.2 

A_4 PDA 5  130 8.5 90 

A_5 PDA 10  110 12 90.5 

A_6 PDA Dynamic  105 10 91 

A_7 PDA 1 ✓ 160 5.5 90 

A_8 PDA 3 ✓ 130 7 91.5 

A_9 PDA 5 ✓ 110 9 92 

A_10 PDA 10 ✓ 100 13 92.8 

A_11 PDA Dynamic ✓ 100 8 95 

𝜏=Total iterations per step; 𝛵= Average training time/epochs; ℰ = Total number of epochs to 

convergence: 𝒩: Noise Injection 
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attention outputs over multiple steps, enhancing prediction accuracy and ensuring 

efficient convergence.  

Table 5.6 shows the impact of PDA on training time and model performance 

by varying the number of iterations (𝜏) and the presence of noise injection. The 

introduction of PDA significantly enhances accuracy while reducing the total 

number of epochs required for convergence (ℰ). The baseline model (A_1) requires 

200 epochs to achieve 86.0% accuracy, whereas PDA in its optimal configuration 

(A_11) reduces ℰ by 50% (100 epochs) while improving accuracy by 10%, 

demonstrating its effectiveness in cross-modal feature representation. 

The impact of τ on training efficiency is evident in Table 5.6 where increasing 

𝜏 generally improves accuracy but also raises the average training time per epoch 

(𝛵). For instance, A_5 (𝜏 =  10, no noise) achieves 90.5% accuracy but requires 

12 min/epoch, whereas A_3 (τ = 3, no noise) reaches 89.2% accuracy at a reduced 

computational cost of 6.5 min/epoch. However, dynamic iteration control, as 

implemented in A_6 and A_11, consistently outperforms fixed 𝜏 settings by 

achieving better accuracy with lower training overhead. Specifically, A_6 (dynamic 

τ, no noise) converges in 105 epochs, reaching 91.0% accuracy with 𝛵 =  10 

min/epoch, demonstrating improved efficiency. 

Noise injection (N) further enhances accuracy while maintaining efficiency. 

Comparing A_3 (τ = 3, no noise) and A_8 (τ = 3, noise) in Table 5.6, the latter 

achieves 2.6% higher accuracy with only a 0.5 min increase in Τ, highlighting its 

role in improving cross-modal alignment. This suggests that noise injection helps 

refine feature representations while adding minimal computational cost. 

The optimal PDA configuration, A_11 (dynamic τ, noise ✓), achieves 95.0% 

accuracy, reduces ℰ to 100 epochs, and maintains 𝛵 at 8.0 min/epoch, making it the 

most effective balance between computational cost and performance. While PDA 

introduces additional computational complexity per epoch, its ability to accelerate 

convergence offsets this overhead, demonstrating its efficiency in cross-modal 

feature refinement. 

ii. Counterfactual Training: In this study, an ablation analysis is conducted to 

evaluate the effectiveness of a three-phase counterfactual training methodology in 
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enhancing pedestrian intention prediction. The methodology is designed to improve 

the model's robustness to challenging visual conditions, such as blurred and noisy 

images, by encouraging a deeper understanding of contextual cues. As illustrated 

in Fig. 5.5, the model trained with the three-phase counterfactual approach achieves 

significantly higher confidence scores than a conventional single-phase training 

model. This suggests that the counterfactual training enhances the model's focus on 

causal relationships among various contextual elements while reducing reliance on 

compromised visual information, thus lowering the risk of overfitting to specific 

noise patterns. 

Table 5.7 further supports these findings by comparing model performance 

across different training phases, specifically on the PIE and JAADall/JAADbeh 

datasets. The results show a clear and consistent improvement in Accuracy, AUC, 

and F1 scores from Phase-I (normal training) to Phase-3 (counterfactual training 

with segmentation maps). In Phase-I, the model establishes a baseline performance 

but struggles with more complex scenarios, as indicated by the relatively lower F1 

scores. However, in Phase-2, where counterfactual training with pedestrian ROIs is 

introduced, there is a notable enhancement in all metrics, reflecting a refined 

  NM:   0.32                  NM:   0.17                      NM:   0.61                NM:   0.16 

  CFM: 0.72                 CFM: 0.52                      CFM: 0.91               CFM: 0.56 

Fig. 5.5: Qualitative Samples: Crossing intention confidence scores for NM single-

phase training vs. three-phase training with counterfactual samples. Green: 

crossing, Red: non-crossing. 

Table 5.7: Performance metrics across different phases of counterfactual training 

with and without PDA 

Training Modes PDA 
PIE JAADall/JAADbeh 

Accuracy AUC F1 Accuracy AUC F1 

Phase-1 (𝑁𝑀)  0.85 0.86 0.80 0.87/0.67 0.83/0.66 0.75/0.76 

Phase-2 (𝐶𝐹𝑅)  0.88 0.89 0.85 0.87/0.68 0.86/0.67 0.75/0.80 

Phase-3 (𝐶𝐹𝑆)  0.86 0.90 0.88 0.89/0.71 0.87/0.68 0.76/0.78 

Phase-1 (𝑁𝑀) ✓ 0.94 0.93 0.83 0.93/0.74 0.91/0.70 0.74/0.79 

Phase-2 (𝐶𝐹𝑅) ✓ 0.94 0.94 0.89 0.94/0.73 0.90/0.71 0.77/0.80 

Phase-3 (𝐶𝐹𝑆) ✓ 0.95 0.94 0.92 0.94/0.75 0.91/0.71 0.81/0.85 
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understanding of contextual elements and improved robustness to variations in 

pedestrian appearances. Finally, Phase-3, with the implementation of 

counterfactual training using segmentation maps, leads to significant improvements 

in the F1 score (PIE: 0.92; JAADall/JAADbeh=0.81/0.85) and incremental gains in 

other performance metrics. These results show that incrementally adding 

counterfactual scenarios during training significantly improves the model's 

resilience to real-world data challenges.  

Fig. 5.6 illustrates the training progression of the proposed intention 

prediction model across different phases. Training progresses in each phase until 

the validation accuracy plateaus. Early stopping is triggered when the validation 

accuracy improvement is ≤2% over five consecutive epochs. Phase transitions are 

denoted by vertical dashed lines. Introducing counterfactuals in Phases 2 and 3 

leads to temporary accuracy dips, but the final validation accuracy stabilizes at 95% 

in Phase 3, indicating successful convergence.  

The transition from Phase 1 (Baseline) to Phase 2 (ROI Counterfactuals) 

occurs at epoch 44, when validation accuracy stabilizes at 94% with no further 

improvement. The transition from Phase 2 to Phase 3 (Segmentation 

Counterfactuals) occurs at epoch 75, following validation accuracy stabilization at 

94% after introducing ROI counterfactuals. Training concludes at epoch 100, when 

validation accuracy plateaus at 95%, reflecting the model’s adaptation to 
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segmentation counterfactuals. Notably, the training convergence in Phases 2 and 3 

occurs more quickly than in Phase 1. Furthermore, a 5–6% improvement is 

observed in performance metrics, due to PDA’s iterative refinement, resulting in 

more precise and confident predictions in complex cross-modal scenarios. 

iii. CAFFM: The impact of different contextual embeddings and fusion methods on 

trajectory prediction is analysed on the PIE and JAAD datasets, as summarized in 

Table 5.8. The results indicate that the model's performance improves by including 

contextual information and using the Context-Aware Feature Fusion Module 

(CAFFM). Notably, the CAFFM achieves the lowest MSE across both datasets, 

with 333 on PIE and 803 on JAAD in the baseline model embeddings and further 

reduction to 225 on PIE and 789 on JAAD under counterfactual model embeddings. 

This suggests that the CAFFM effectively leverages spatial and temporal contexts, 

enhancing the accuracy of trajectory prediction. 

The analysis reveals that the counterfactual training significantly improves 

the model's performance. When no context is used, the baseline models show higher 

MSE values (MSE(PIE): 389, MSE(JAAD): 885), indicating lower prediction 

accuracy. Incorporating RGB and segmentation embeddings separately reduces the 

MSE, showing that each modality contributes valuable contextual information. The 

concatenation of these embeddings further improves the performance, suggesting a 

more comprehensive representation of the scene. The most substantial performance 

gains are observed when using the CAFFM embeddings derived from the 

counterfactual model. The MSE values decrease significantly (MSE(PIE): 225, 

 

Table 5.8: Evaluation of trajectory prediction performance using different 

contextual embeddings and fusion strategies 

Training Mode Contextual Embeddings Fusion Strategy 
MSE 

PIE JAAD 

Normal 

No context - 390 887 

Only RGB - 350 862 

Only Segmentation - 369 859 

RGB+ Segmentation Concatenation 350 824 

RGB+ Segmentation CAFFM 333 803 

Counterfactual 

No context - 389 885 

Only RGB - 290 795 

Only Segmentation - 320 850 

RGB+ Segmentation Concatenation 250 800 

RGB+ Segmentation CAFFM 225 789 
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MSE(JAAD): 789. This suggests that the embeddings generated from the 

counterfactual training capture richer, more nuanced information, which enhances 

the VAE's ability to produce accurate trajectory predictions. 

iv. Memory footprint and computational complexity: The proposed dual-task 

approach for intention and trajectory prediction effectively balances memory usage 

and inference speed. The model has a total memory footprint of 14.41 MB, 

including a 4.46 MB short-term intention module. This short-term model delivers a 

peak accuracy of 95% on the PIE dataset, outperforming smaller footprint models 

like PedGNN[88] (accuracy: 70.52%) and PG+[93] (accuracy: 89%) while 

maintaining a minimal inference time of 2.53 ms as shown in Table 5.9.   

Furthermore, the trajectory prediction model exhibits minimal time variation 

between processing 20 and 2000 samples, with an inference time of 80 and 82ms, 

respectively, demonstrating superior efficiency compared to models like PCTP-

Table 5.9: Comparison of computational efficiency of DPITRA-short term 

intention model with SOTA methods 

Model 
Size 

(MB) 

Inference  

time(ms) 

Accuracy 

PIE JAADbeh JAADall 

PCPA[102] 118.8 38.6 86 50 70 

FFSTA[18] 374.2 70.83 - 62 83 

PG+[93] 0.28 5.47 89 70 86 

TED[109] 12.8 2.76 91 - - 

V-PedCross[92] 4.8 - 89 64 86 

PedGNN[88] 0.027 0.58 70.52 - 86.22 

VMI[97] 19.07 11.03 92 - 89 

IntentFormer[162] 2.13 3.8 93 75 92 

DPITRA 4.46 2.53 95 75 94 

 
Table 5.10: Comparison of computational efficiency of DPITRA-long term with 

SOTA methods 

Model 
IT(ms) 

20/2000 

MSE(1.5s) 

JAAD/PIE 

PCTP-AGFL[163] 84/87 147/59 

DPITRA 80/82 126/51 

 

Table 5.11: Inference Time Per Batch Breakdown for Trajectory Prediction  

Batch 

Size  

Intention  

Prediction 

Module 

CAFFM 
CVAE  

Encoder 

CVAE  

Decoder 

Total  

Time 

20 5.05 ms 4.99 ms 20.22 ms 50.19 ms 80.15 ms 

500 5.06 ms 5.01 ms 20.73 ms 50.28 ms 81.08 ms 

2000 5.07 ms 5.03 ms 21.01 ms 50.99 ms 82.10 ms 
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AGFL[157] as reported in Table 5.10. Additionally, Table 5.11 provides a 

component-wise breakdown of inference time per batch for trajectory prediction.  

The observed consistency in per-batch inference time, regardless of sample size, 

can be attributed to the use of custom TensorFlow data pipeline that minimizes data 

loading and preprocessing overhead while maximizing GPU utilization. This setup 

enables efficient parallel processing of all samples within a batch, preventing 

computational overhead from scaling with batch size. 

 

v. Role of Alignment loss: Alignment loss enforces consistency by penalizing 

deviations between predictions from later phases (Phases 2 and 3) and the baseline 

Phase 1. This regularization ensures that the counterfactual manipulations 

introduced in later phases do not disrupt the model’s learned representations. The 

model maintains stable and coherent predictions across phases by minimising the 

alignment loss, enabling it to generalize better to unseen scenarios. Fig. 5.7 

illustrates the effect of alignment loss using prediction correlation matrices. Panel 

(a) shows the correlation between predictions across phases when alignment loss is 

excluded. The lower correlation values indicate inconsistencies in predictions 

across phases. In contrast, panel (b) displays the correlation matrix when alignment 

loss is included. The significantly higher correlation values demonstrate that 

alignment loss maintains consistent predictions, even with counterfactual 

modifications in Phases 2 and 3. These results validate the role of alignment loss in 
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maintaining consistency in predictions across phases, enhancing the model’s ability 

to generalize to unseen data, and improving both robustness and reliability. 

5.2 Conclusion and Future Scope 

The work presents a dual-task approach excels in short-term pedestrian 

intention and long-term trajectory forecasting, as demonstrated by its superior 

benchmark performance. The iterative refinement through Progressive Denoising 

Attention (PDA) enhanced the inter-class separation between crossing and non-

crossing samples, improving prediction accuracy. Moreover, the three-phase 

counterfactual training improved significantly on noisy and blurred samples. The 

Context-Aware Feature Fusion Module (CAFFM) embeddings further reduced MSE 

in trajectory predictions by leveraging spatial and temporal information from 

pedestrian ROI and scene context. The proposed model also achieved an optimal 

balance between performance and computational complexity, surpassing existing 

solutions while maintaining a minimal inference time. Future work should focus on 

further minimizing the model's memory footprint and computational complexity 

without compromising performance. 
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CHAPTER 6 

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

In this thesis, we addressed two key tasks: short-term pedestrian intention 

prediction, specifically crossing behaviour, and long-term trajectory forecasting in 

complex urban environments. The comprehensive methodologies introduced are 

robust and demonstrate strong predictive performance across both temporal horizons. 

A detailed evaluation confirms the potential of the proposed approach for deployment 

in safety-critical applications such as autonomous driving and intelligent 

transportation systems. Section 6.1 presents a summary of the contributions made in 

this thesis, followed by a discussion on future research directions in Section 6.2 and 

the broader societal impact of this work in Section 6.3. 

6.1 Summary of the Work Done in the Thesis 

This thesis presented four major approaches to pedestrian intention prediction, 

each addressing distinct challenges across short-term intention recognition and long-

term trajectory forecasting. Together, these approaches contribute to a comprehensive 

understanding of pedestrian behaviour in complex, real-world environments. 

The first approach introduced a multimodal pedestrian intention prediction 

framework that adaptively fuses rich visual, motion, and interaction features. By 

applying attention mechanisms across spatial, channel, and temporal dimensions, and 

incorporating a novel Multi-Head Attention with Adjacency Matrix-based Graph 

Convolutional Network (MHA-AdjMat GCN) in the interaction encoder, the model 

significantly enriched pedestrian feature representations. This framework 

demonstrated superior performance in predicting pedestrian crossing intentions up to 

2.5 seconds in advance on the JAAD and PIE datasets, outperforming several state-of-

the-art (SOTA) baselines. Despite its effectiveness, the model exhibited limitations in 

capturing high-frequency temporal dependencies, a common challenge when using 

GCNs in dynamic sequence modelling. 
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The second approach proposed a novel transformer-based architecture, 

‘IntentFormer’, which predicts pedestrian crossing intentions in a co-learning 

environment. This architecture integrates RGB features, segmentation maps, and 

pedestrian trajectories, enabling robust multimodal learning. Three key innovations 

characterize this model: a shared-MLP head for collaborative co-learning, Multi-Head 

Shared Weights Attention (MHSWA) for efficient inter-modal representation learning, 

and a Co-learning Adaptive Composite (CAC) loss function designed to reduce 

overfitting by penalizing intermediate prediction errors. ‘IntentFormer’ performs 

optimally within a 0.5 to 1.25-second observation window, requiring fewer frames 

while maintaining high time-to-event (TTE) accuracy. Nonetheless, the model 

encounters challenges in scenarios involving abrupt or erratic pedestrian behaviors—

such as sudden direction changes or variable speeds—limiting its robustness in highly 

dynamic environments. 

In the third approach, a Progressive Contextual Trajectory Prediction 

framework with Adaptive Gating and Fuzzy Logic Integration (PCTP-AGFL) was 

developed to address the complexity of long-term trajectory prediction. Evaluated on 

both first-person view (FPV) and bird’s eye view (BEV) datasets, the proposed model 

demonstrated its ability to accurately emulate complex trajectory patterns and predict 

final destinations, achieving a significantly lower mean squared error compared to 

existing methods. This framework effectively tackles overfitting and generalization 

issues, which are common in trajectory forecasting. Additionally, the integration of the 

Adaptive Fuzzified Discriminator (AFD) improves performance in ambiguous 

scenarios by enhancing the model's ability to distinguish subtle variations in motion 

intent. 

Finally, the thesis introduced a unified dual-task framework capable of jointly 

performing short-term pedestrian intention prediction and long-term trajectory 

forecasting. The proposed model achieved strong benchmark performance through 

iterative refinement enabled by the Progressive Denoising Attention (PDA) 
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mechanism, which enhanced inter-class separation between crossing and non-crossing 

intentions. The incorporation of a three-phase counterfactual training strategy further 

improved the model's robustness, especially when dealing with noisy or blurred visual 

inputs. Furthermore, the Context-Aware Feature Fusion Module (CAFFM) leveraged 

spatial and temporal cues from pedestrian regions of interest (ROIs) and the 

surrounding scene, substantially reducing prediction error while maintaining 

computational efficiency. This approach achieves a balance between accuracy, 

memory footprint, and inference speed, making it highly suitable for real-time 

deployment in intelligent transportation systems.  

In summary, the methodologies proposed in this thesis advance the field of 

pedestrian intention prediction by effectively capturing the complex interactions 

between pedestrians and their surrounding environment, enabling accurate short-term 

crossing intention recognition and long-term trajectory forecasting in dynamic traffic 

scenes. 

6.2 Future Research Scope 

Building upon the advancements made in this study, several key research 

directions can be pursued to further refine pedestrian intention prediction and its 

applications in autonomous navigation. The integration of Reinforcement Learning 

(RL) presents a promising avenue for enhancing the adaptability of multimodal 

pedestrian intention models. While the proposed Co-Learning Transformer and 

Interaction Encoder effectively capture pedestrian-environment interactions, 

incorporating RL-based mechanisms can enable adaptive decision-making in dynamic 

and unseen scenarios, improving the ability of autonomous vehicles (AVs) to respond 

to unpredictable pedestrian movements. 

Another crucial direction is the expansion of datasets to include diverse urban 

and rural settings, varied weather conditions, and cultural contexts. The current study 

has demonstrated strong performance across benchmark datasets; however, models 

often struggle with generalization due to limited dataset diversity. Extending training 

data to encompass a broader spectrum of pedestrian behaviours, environmental 
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influences, and scene complexities can significantly enhance robustness. The proposed 

counterfactual training approach and context-aware feature fusion techniques offer a 

foundation for handling missing and noisy data, which can be further extended to adapt 

models to diverse real-world conditions. 

For real-time applications, efficient feature extraction remains a key challenge. 

While the proposed Multi-Head Shared Weight Attention Mechanism and Progressive 

Denoising Attention (PDA) have optimized inference time and computational 

efficiency, further improvements can be made to ensure real-time deployment in AV 

systems. Future research can explore lightweight, hardware-efficient feature extraction 

techniques that reduce computational load while preserving accuracy, making 

pedestrian intention models more practical for real-world AV implementation. 

Additionally, real-time scene semantic map generation can significantly 

improve contextual awareness in pedestrian prediction. The Encoder-Decoder 

Contextual Attention (EDCA) mechanism and Interaction Encoder (IE) with Graph 

Convolutional Networks have shown effectiveness in modelling pedestrian 

interactions, but incorporating real-time scene understanding through dynamic 

semantic mapping can further enhance decision-making capabilities. By integrating 

spatial-temporal pedestrian behaviours with road semantics, traffic signals, and 

environmental cues, models can achieve higher predictive accuracy and adaptability 

in complex urban environments. 

Lastly, lightweight architectures optimized for AV hardware are essential to 

ensure the seamless integration of pedestrian intention models into autonomous 

navigation systems. While the proposed Multimodal IntentFormer and Dynamic 

Progressive Generator (DPG) with Adaptive Fuzzified Discriminator (AFD) have 

successfully minimized model complexity without sacrificing performance, further 

advancements in model compression, quantization, and efficient transformer-based 

architectures can improve inference speed and energy efficiency. Optimizing models 

to operate under real-world AV constraints will ensure their practical applicability, 

enabling safer and more intelligent pedestrian-aware navigation. By addressing these 
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future directions, pedestrian intention prediction can be further refined, leading to 

more robust, adaptable, and computationally efficient models that enhance the safety 

and decision-making capabilities of AVs in real-world environments. 

6.3 Social Impact 

Beyond safety, the proposed multimodal intention prediction frameworks also 

have profound implications for urban mobility and traffic efficiency. With the rise of 

smart cities and intelligent transportation networks, integrating pedestrian behaviour 

prediction into traffic management systems, crosswalk automation, and vehicle-to-

infrastructure (V2I) communication can lead to smoother traffic flow, reduced 

congestion, and optimized pedestrian crossings. The ability to accurately predict 

pedestrian intent ensures that AVs and human-driven vehicles can coexist more 

harmoniously, minimizing abrupt stops, reducing fuel consumption, and lowering 

carbon emissions associated with traffic inefficiencies.   

Moreover, the focus on lightweight architectures and real-time deployment 

ensures that these solutions are accessible and scalable. Many regions, particularly in 

developing countries, struggle with the adoption of high-end autonomous technologies 

due to hardware and computational constraints. By optimizing model efficiency 

without compromising accuracy, this research ensures that pedestrian safety solutions 

can be deployed in a wide range of settings, including low-cost AVs, public 

transportation systems, and surveillance networks, making roads safer for all 

pedestrians, regardless of technological infrastructure.   

This work also has broader applications in assistive technologies. The ability 

to predict human movement and intent can be leveraged for mobility assistance in 

elderly care facilities, smart navigation for visually impaired individuals, and robotic 

assistance in crowded public spaces. The counterfactual training approach and context-

aware feature fusion developed in this research enhance the robustness of human 

motion understanding, which can be extended to improve human-robot interaction, 

healthcare monitoring, and public safety surveillance in various social contexts.   
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