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ABSTRACT

According to the Global Status Report on Road Safety 2023, vehicle crashes
cause numerous annual deaths, particularly impacting vulnerable road users.
Pedestrians, lacking protective gear, face high vulnerability and substantial injury risk
in collisions. Consequently, the growing advancement of Autonomous Vehicle (AV)
technology is being explored to enhance road safety and convenience for all users. AV
technology can reduce accidents attributed to human errors like fatigue, misperception,
and inattention. Leading automotive manufacturers and tech giants like BMW, Tesla,

and Google are actively advancing AV technology in this pursuit.

Predicting pedestrians' road-crossing decisions is pivotal for achieving a
reliable driverless experience through AVs. Initial studies emphasised pedestrian
dynamics to anticipate crossing intent. Yet, analysing merely the trajectory proves
inadequate for understanding underlying intentions. Beyond trajectory, various factors
impact pedestrian road-crossing decisions. These factors fall into three primary
modalities: pedestrian-specific (encompassing pose, appearance, etc.), context-
specific (involving scene infrastructure and social interaction with co-pedestrians), and
hybrid modality encompassing comprehensive human cognitive aspects while
observing a pedestrian on the road. Nonetheless, dealing with such diverse modalities
necessitates an efficient multimodal fusion framework that can capture adequate
discriminatory features for classification. Moreover, interpreting pedestrian
interactions with the surrounding environment is highly challenging in a dynamic ego-

centric setting.

With the rise of deep learning, researchers started using deep neural networks
(DNNs) to analyse large amounts of data and automatically learn features indicative
of pedestrian intention. These models are trained on large datasets of pedestrian
behaviour and show improved accuracy over traditional rule-based methods. This has
led to the development of end-to-end models involving convolutional neural networks
(CNNss), recurrent neural networks (RNNs), and their variants that process raw sensory

data, such as camera images or lidar point clouds, to make predictions. These
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approaches are seen as more robust and capable of handling complex scenarios where
single-modality approaches may fail, as they can learn the relationships between

different modalities and make predictions in a more integrated manner.

This thesis explores deep learning-based approaches for predicting pedestrian
intentions in autonomous vehicles. Pedestrian intention prediction is a multi-stage
process comprising input acquisition, feature extraction and encoding, spatiotemporal
modelling, multimodal fusion, and final decoding or classification. Each stage plays a
crucial role in ensuring accurate predictions, with variations in approach depending on
the specific output required, such as pedestrian crossing intent classification or

trajectory anticipation.

The first stage of the process involves acquiring input data in the form of video
frames and trajectory coordinates spanning a specific time window. These inputs can
be sourced from real-time surveillance systems or pre-recorded video sequences
captured from multiple camera angles. This data undergoes pre-processing to extract
spatial and temporal features aligned with model requirements. Convolutional Neural
Networks (CNNs), such as EfficientNet, are used to derive spatial representations from
RGB sequences and segmentation maps, capturing posture, orientation, and
environmental cues. To model temporal dependencies, Long Short-Term Memory
(LSTM) and Bidirectional LSTM (BiLSTM) networks process historical trajectory

data, enabling the inference of motion trends for accurate behaviour prediction.

Following feature extraction, the system proceeds to spatiotemporal modelling,
which aims to capture the evolving interactions between pedestrians and their
surrounding environment over time. This thesis investigates two distinct approaches
for this task: Graph Convolutional Networks (GCNs) and Co-Learning Transformers.
The GCN-based approach, incorporating a multi-head adjacency matrix, structures
pedestrian trajectory data as a graph, enabling the model to learn relational
dependencies among individuals. In contrast, the Co-Learning Transformer approach
focuses on temporal modelling, capturing long-range dependencies and refining

motion features through attention mechanisms.
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Given that pedestrian intention prediction depends on multiple input
modalities, an effective fusion strategy is critical for integrating these diverse sources
of information. This thesis employs several advanced fusion mechanisms to address
this challenge. Adaptive Fusion dynamically adjusts the importance of features based
on contextual cues, allowing the model to prioritize relevant information. Co-Learning
Architectures enable different modalities to contribute distinct and informative
perspectives, enhancing the overall representation. The Multi-Head Shared Weights
Mechanism promotes feature consistency across modalities by sharing parameters,
thereby reducing redundancy and improving generalization. Finally, the Progressive
Denoising Attention Mechanism incrementally filters out irrelevant noise while
emphasizing salient patterns, leading to more refined and robust feature

representations.

The final stage of the process involves decoding the fused feature representations
to generate meaningful predictions about pedestrian behaviour. This thesis explores
two primary decoding approaches. Pedestrian Intention Classification employs a
classifier, such as a SoftMax layer to infer whether a pedestrian intends to cross the
street, based on their observed behaviour and contextual cues. Trajectory Prediction,
on the other hand, utilizes generative models such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) to forecast future trajectories by

learning from historical motion patterns.

The performance of each proposed pedestrian intention prediction approach is
tested with various publicly available datasets and compared with earlier state-of-the-
art algorithms. Finally, the research work is concluded followed by future research
direction as well as possible future applications which are highlighted and discussed

in detail.
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CHAPTER 1

INTRODUCTION

The autonomous vehicles market size is forecast to increase by USD 624
billion at a compound annual growth rate (CAGR) of 39.3% between 2024 and
2029[1]. This rapid expansion is driven by the significant economic advantages of
autonomous vehicle technology, including lower driving costs, enhanced fuel
efficiency, and broader societal benefits. Integrating autonomous vehicles into the
transportation system is expected to significantly enhance safety and efficiency by
eliminating the reliance on human drivers. Human error is a primary contributor to
road accidents, and the implementation of autonomous technology has the potential to
mitigate this risk, thereby improving overall traffic safety for both motorists and
pedestrians. Furthermore, self-driving technology redefines the travel experience by
providing a seamless and error-free journey. With no need to concentrate on road
conditions, passengers can allocate their travel time to work, leisure, or other

productive activities, ultimately increasing convenience and societal productivity [2].

Despite the highly promising future of AVs and its booming economic
ventures, creating a fully autonomously working car remains an unfulfilled desire of
many tech giants even after garnering huge success now and then in Advanced Driving
Assistance Systems (ADAS) by the research community. According to The Global
Status Report on Road Safety published by the World Health Organization (WHO)
[3], [4], the number of deaths on roads globally has reached an unprecedented high of
1.35 million annually. Nearly half of these road accidents are victims of vulnerable
road users (VRU). Huge challenges persist when developing appropriate infrastructure
and proper safety traffic regulations to facilitate the harmonious co-existence of AVs
and VRUSs in urban traffic scenarios. One of the most challenging issues autonomous
vehicles face is mimicking humans' perceptions and understanding many social cues
in everyday traffic scenarios to avoid fatal vehicle-to-VRU collisions [5]. This is to

prevent severe injury to the latter as they don’t have any special protective equipment.



Additionally, it creates a secure and more congenial atmosphere for every road user
agent. Hence, early anticipation of VRU’s intention is desired so that AVs can design

their manoeuvres accordingly [6].

There are a variety of terminologies, like action prediction, behaviour analysis,
and intention estimation, which are employed to delineate what exactly a pedestrian is
about to do or what trajectory he/she will take in a particular traffic scenario. Action
refers to physical movement, whether walking, waving hands, etc. Behaviour is a set
of observable events seen as a generalized response that one undertakes in response to
a stimulus. Hence, on one hand, action or behaviour is an observable event with
ground-truth availability. In contrast, intention, on the other hand, is the intrinsic state
of mind that can’t be discerned just by looking but requires meticulous inference from
behaviour or past actions. In other words, intention involves a deeper semantic
comprehension of a human's physical or mental activities [7]. Most AVs resort to
conservative driving to circumvent challenges associated with understanding VRU’s
intention to predict its forthcoming action. Conservative driving involves driving very
slowly, avoiding complex interactions, choosing a less complicated path regarding
scene understanding and VRU’s footfall, and often stopping to avoid road mishaps.
Such an approach ensures the safety of VRUSs, but this can adversely impact the usual
traffic flow, leading to high fuel wastage and decreased inefficiency. Action prediction
approaches find their implementation in areas where estimation of future frames or

prediction of the motion of pedestrians is required [8]-[11].

Various approaches are employed for this challenging task of intention
prediction, including interpreting the forthcoming actions of vulnerable road users,
particularly pedestrians, as they exhibit higher degrees of freedom and complexity in
their movements. They are very agile, can execute any trajectory, might not follow
designated lanes for crossing, abruptly change motion, be occluded in the presence of
scenic obstacles, engage implicitly on the road through eye gaze or hand wave, or be
diverted while talking over a phone or with fellow pedestrians. Their conduct on the
road is more or less affected by several factors, like demographics, gait, traffic density,
whether walking in a group or alone, road width, road structure, and many more. All



these factors form contextual data for pedestrian intention detection involving scene
dynamics, pedestrian kinematics and social behaviour with other co-pedestrians.
Several studies have shown the relationship between one or two factors and the
behaviour of pedestrians so that AVs can make calculated decisions beforehand to
prevent any mishap [12].

Therefore, high precision and accuracy are imperative in pedestrian intention
prediction, as they directly impact human safety and cannot be compromised for
technological advancements. This thesis explores various approaches to pedestrian
intention prediction, aiming to anticipate short- and long-term actions. This chapter
introduces the fundamental concepts of pedestrian intention prediction for autonomous
vehicles, discusses the associated challenges, and highlights the significance and
motivation behind this study, formulating the problem statement. The final section
presents the major research contributions of this thesis, including theoretical
formulation and experimental validation, followed by an outline of the thesis

organization.

1.1 Pedestrian Intention Prediction

A combination of visual, dynamic, and motion cues is exhibited by pedestrians
when they intend to cross the road, offering valuable clues to their crossing behaviour
[13]-[14]. For instance, a pedestrian may cross the road if he/she is approaching the
crosswalk and looking at the incoming vehicle to ask for a passage. On the other hand,
a person standing still at the curb, showing no signs of motion or visual gait towards
the crossing action, is less likely to cross the street in a short while. Hence, the
pedestrian's positive crossing intent refers to observable behaviour and cues exhibited
by a pedestrian, indicating a deliberate intention to cross a road or street. This intent is
manifested through various actions, such as standing or approaching marked
crosswalks, waiting at traffic lights designated for pedestrians, making eye contact
with drivers, standing at or approaching zebra crossings, and raising a hand or arm as
a signalling gesture to drivers. This kind of behaviour signifies a conscious decision

by the pedestrian to engage in the act of crossing, contributing to overall road safety



awareness. Contextual factors, including co-pedestrians' behaviour and traffic signals
or signs, may further influence the perception of positive crossing intent. Crossing
intention confidence is a numeric score estimated from human reference data [15]-
[16].

In the context of pedestrian crossing intention detection, a few fundamental
temporal parameters shape the foundation of predictive systems: short-term intention,
long-term intention, observation length and time-to-event (TTE). These parameters
intricately influence the accuracy and responsiveness of intention predictions by
determining the historical context and temporal proximity to the crossing event.
Understanding their roles is pivotal for designing efficient and contextually aware
systems that enhance pedestrian safety and optimize interactions with autonomous
technologies.

Short-term intention prediction predicts the immediate behaviour or response
of VRUs (Vulnerable Road Users) over the next few seconds (2-3 seconds), focusing
on actions such as walking, stopping, crossing, or waiting [5], [17]-[20]. Whereas
long-term intention prediction estimates the trajectory or final destination of VRUs
by incorporating contextual and scene infrastructure details to improve trajectory
accuracy beyond 3 seconds [21]-[27].

Observation Length: Observation length refers to the number of consecutive
time steps for which historical pedestrian data is considered during the training process
of a pedestrian crossing intention detection system. In other words, the duration of past
behaviour and cues are considered for predicting a pedestrian's intention to cross the

road.

Time-to-Event (TTE): Time-to-event (TTE) is the temporal difference
between the last time step of the observation length and the occurrence of the actual
crossing event. It quantifies the interval from when the system last observes the

pedestrian's behaviour to when the pedestrian starts crossing the road.
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Fig 1.1: A generalised framework for Pedestrian Intention Prediction

The observation length and TTE are interconnected parameters crucial for
designing effective pedestrian crossing intention detection systems. Striking the right
balance between these factors is essential to ensure timely, accurate, and context-aware
predictions, contributing to enhanced pedestrian safety and smoother interactions

between pedestrians and autonomous systems [17]-[18].

Fig 1.1 describes the pedestrian intention prediction process into three primary
stages: input, feature extraction and encoding, and decoding or classification, which
varies based on the desired output. The input stage consists of frames from real-time
or pre-recorded video sequences captured by various camera systems from multiple
angles. These frames undergo a pre-processing phase, during which relevant attributes
are extracted to align with the specific requirements of the proposed algorithm.
Various feature extractors can encode features across spatial and temporal dimensions.
The final stage incorporates a classifier or a neural network-based decoder to facilitate

pedestrian crossing predictions and trajectory anticipations, respectively.

A comprehensive classification of pedestrian intention estimation approaches

is presented in Fig 1.2, which encompasses a wide range of techniques explored in the
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literature. This classification is structured around three key parameters: duration of

prediction, type of model, and choice of input features.

e Duration-based classification divides prediction techniques into long-term and
short-term approaches, depending on the temporal window to anticipate pedestrian
actions [28]-[31].

e Model-based classification categorizes approaches into dynamical/physics-based
[32]-[35], goal-driven [36]-[41], and data-driven models [9], [26]-[28], [36], [42]-
[53], leveraging different methodologies to interpret pedestrian behaviour.

o Feature-based classification distinguishes between pedestrian-specific[5], [32],
[43], [50], [54]-[63], contextual[9], [64]-[73], and hybrid features[74]-[77],

highlighting the input data types contributing to intention estimation.

1.2 Challenges in Pedestrian Intention Prediction

Pedestrian intention prediction is critical to ensuring safety in urban
environments, particularly in human-vehicle interaction scenarios. Accurately
forecasting whether a pedestrian will cross a street is essential for autonomous
vehicles, driver-assistance systems, and intelligent transportation infrastructure.
However, predicting pedestrian behaviour remains a highly complex task due to
variability in human motion, environmental uncertainties, and limitations in sensor

data. Unlike vehicles, which follow predefined traffic rules, pedestrians exhibit



unstructured and often unpredictable movements, making it difficult to develop a

universally reliable prediction model.

One of the primary challenges in this domain is pedestrians' inconsistent and
erratic movement patterns, especially in crowded urban settings. Pedestrians
frequently change direction, pause, or accelerate unexpectedly, often influenced by
distractions, urgency, or social interactions. Conventional motion models struggle to
capture these non-linear behavioural variations, reducing prediction accuracy in real-
world scenarios. Moreover, the challenge intensifies at busy intersections and
crosswalks, where multiple pedestrians interact with each other and external elements,

further complicating trajectory prediction [78]-[79].

Another significant issue is the reliance on multimodal data, which includes
visual inputs, trajectory coordinates, and environmental context. While multimodal
approaches enhance prediction accuracy, they introduce missing, noisy, or unreliable
data vulnerabilities. Sensor failures, occlusions caused by vehicles or street objects,
and adverse weather conditions can disrupt data acquisition, resulting in incomplete or
erroneous inputs. Existing models often lack robust mechanisms to handle missing
modalities, making them unreliable in dynamic real-world settings. Furthermore,
current predictive architectures face challenges in contextual reasoning, particularly in
associating pedestrian behaviour with environmental cues. Traffic signals,
approaching vehicles, road infrastructure, and pedestrian flow patterns all play crucial
roles in determining crossing intentions. However, many models fail to establish a
cohesive relationship between these contextual elements and pedestrian dynamics,

leading to suboptimal performance in complex traffic conditions [20]-[80].

Finally, computational efficiency and real-time feasibility pose additional
challenges in pedestrian intention prediction. Many state-of-the-art models prioritize
accuracy but overlook memory and processing constraints, making them impractical
for real-time deployment in autonomous vehicles and edge-computing systems. High
computational overhead can lead to delayed predictions, reducing the effectiveness of

pedestrian detection in fast-moving traffic scenarios. Optimizing prediction models to



balance accuracy, speed, and efficiency is crucial for enabling their widespread

implementation in intelligent traffic management systems [81]-[82].

1.3 Role of Deep Learning in Pedestrian Intention

Prediction

In the early stages of research, researchers employed random models, including
the Gaussian mixture regression model[78] and the hidden Markov model[79] to
simulate pedestrian motion patterns based on either precise dynamical modelling or
knowledge of prior end goals, limiting their ability to reasonably predict future
interactions and their applicability to complex motion scenes. Fig. 1.3 illustrates an
example of pseudo-goal candidates generated by matching test input with expert
trajectories [80]. These candidates are then encoded, refined through a social attention
network (Social ATTN), and utilized to produce final trajectory predictions.

Nonetheless, the recent surge of deep learning algorithms has outperformed
these traditional approaches in handling complex scenarios without showing reliance
on any dynamic motion modelling or prior knowledge of end goals. Several trajectory-
based techniques [22], [23], [81], [82] that rely on past trajectories of the pedestrian to
predict its forthcoming action of whether crossing or not crossing the road also fail to
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Fig. 1.3: Example of a Goal-driven approach for trajectory prediction [80]



anticipate the covert intention of the pedestrian at times. Intention or behavioural
attributes of pedestrians might not necessarily be reflected in his past trajectories.
Instead, a holistic view and comprehension of the context, scene, pedestrian
behavioural attributes, and interaction with fellow pedestrians are vital for visual
perception of future pedestrian actions. For instance, trajectory-based techniques
might falsely predict a pedestrian checking for a bus to be a crossing event on the road.
Hence, comprehending the cardinal cause or intention of the pedestrian behind any
action event will help to anticipate its future action accurately. Furthermore, designing
such systems that can predict the underlying intention of the pedestrian not only helps
in anticipating their goal but also sheds the burden on AVs by shifting the focus on

only those pedestrians who intend to cross the road [2], [11], [83].

1.4 Research Motivation

Pedestrian intention prediction is a critical area of research, driven by the need
to enhance road safety and improve the integration of autonomous vehicles into urban
environments. As vulnerable road users, traffic incidents disproportionately affect
pedestrians, underscoring the importance of accurately anticipating their movements.
In the European Union, pedestrians account for approximately 22% of all road
fatalities, with 69% occurring within urban areas. This highlights the heightened risk
pedestrians face in city settings, where vehicle interactions are frequent. Similarly,
pedestrians constitute about 30% of all road-related deaths in Japan, emphasizing a

global concern for pedestrian safety [4].

The increasing prevalence of larger vehicles like SUVs has further exacerbated
pedestrian dangers. These vehicles often have design features that reduce driver
visibility and increase the severity of collisions. In Australia, the popularity of such
vehicles has been linked to a rise in road fatalities and serious injuries, particularly
among pedestrians, cyclists, and motorcyclists. Despite efforts to improve pedestrian
safety, recent data indicates that challenges persist. For instance, in Nashville,
Tennessee, pedestrian fatalities decreased by 30% in the first half of 2024 compared

to the same period in 2023. However, the total number of deaths remains significantly
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higher than a decade ago, with 33 pedestrian fatalities reported in 2024, up from 18 in
2014 [83]. These statistics underscore the need for advanced systems to predict

pedestrian intentions to prevent accidents.

Moreover, developing reliable pedestrian intention prediction models is crucial
for adopting autonomous vehicles. Ensuring that these vehicles can effectively
anticipate and respond to pedestrian behaviour is vital for public trust and the
successful integration of autonomous technology into daily transportation systems.
The key motivation behind studying pedestrian intention prediction lies in the pressing
need to reduce pedestrian fatalities and injuries, adapt to evolving vehicle trends, and
support the safe deployment of autonomous vehicles in complex urban landscapes.
This thesis contributes to the field by addressing key challenges in pedestrian intention
prediction, including handling multimodal data, mitigating the impact of noisy or
missing information, and improving computational efficiency for real-time
applications. The proposed approaches enhance the accuracy and robustness of
predictive models in complex urban environments by integrating advanced deep-
learning architectures, attention mechanisms, and context-aware modelling
techniques. Through these advancements, the research refines existing methodologies
and establishes a foundation for future innovations in Al-driven perception and human

behaviour modelling.

1.5 Problem Formulation

The central problem addressed in this thesis revolves around the accurate and
efficient prediction of pedestrian intentions in dynamic and uncertain urban
environments, a critical requirement for the safe operation of autonomous vehicles.
Pedestrian behaviour is inherently complex and unpredictable, often characterized by
abrupt changes such as sudden stops, accelerations, and shifts in direction, influenced
by a variety of contextual factors including distractions, urgency, and social
interactions. Capturing these nuanced motion patterns demands models capable of

understanding fine-grained spatiotemporal dependencies.
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Furthermore, the integration of multimodal data comprising visual cues,
trajectory information, and environmental context introduces additional challenges
due to potential data corruption or loss caused by sensor failures, occlusions, and
adverse weather conditions. These issues compromise model reliability, particularly
in real-world deployments. Addressing this, there is a pressing need for robust learning
strategies that can reason causally about pedestrian behaviour even in the presence of

incomplete or noisy inputs.

Another key challenge lies in interpreting the complex and often subtle
interactions between pedestrians and dynamic environmental elements, such as traffic
signals and nearby vehicles. Traditional models struggle to maintain contextual
awareness in such settings, leading to limited accuracy in intention prediction.
Furthermore, ensuring the computational efficiency of such models remains difficult,
as high memory consumption and processing overhead hinder their real-time

applicability in autonomous driving systems.

This thesis formulates the problem as a two-fold task: short-term pedestrian
intention prediction, focused on determining whether a pedestrian is likely to cross the
street (crossing intention); and long-term pedestrian behaviour prediction, which
involves forecasting the future trajectory of the pedestrian over a longer time horizon.
Both tasks require the design of a robust, context-aware, and computationally efficient
framework capable of learning from multimodal data and accurately modelling the

complex dynamics of pedestrian behaviour in real-time.

1.6 Research Objectives

The principal objective of this thesis is to address the challenges inherent in
predicting pedestrian intentions for autonomous vehicles, such as the dynamic nature
of urban traffic, the randomness of pedestrian decisions and actions, and the necessity
of interpreting these actions within diverse contextual frameworks. Furthermore, to
enhance the understanding of scene context and adaptively respond to the variability

in pedestrian dynamics, this research aims to transition from relying on single
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modalities to robustly integrating multiple modalities for improved prediction

accuracy. To this end, the following research objectives have been proposed:

RO.1 To review the different pedestrian intention prediction techniques for
Autonomous Vehicles (AVs).

RO.2 To propose an efficient pedestrian intention prediction model by utilising

various sources of contextual information of road scenes.

RO.3 To develop a multimodal architectural design for robust pedestrian intention

prediction by AVs.

RO.4 To design a pedestrian intention prediction model in long term with scene

semantic understanding.

RO.5 To build a joint framework for pedestrian intention prediction in both short

term and long term.

1.7 Research Contributions

This thesis presents a set of research contributions aimed at advancing
pedestrian intention prediction and trajectory forecasting under complex real-world
conditions. Each contribution addresses a specific challenge in multimodal modelling,

data robustness, contextual understanding, or computational efficiency.

One of the primary challenges in pedestrian intention prediction arises from
the inherently inconsistent and unpredictable nature of pedestrian movement, which
often includes sudden stops, accelerations, and abrupt changes in direction. These
behaviours are typically influenced by a range of contextual factors such as
distractions, urgency, and social interactions. To effectively model these dynamics,
this work introduces several methodologies, such as Interaction Encoder constructed
using Graph Convolutional Networks (GCNs) and a Progressive Denoising Attention
Mechanism, enabling a more nuanced understanding of spatiotemporal motion

patterns.
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The dependence on multimodal data comprising visual inputs, trajectory
coordinates, and environmental context introduces additional complexity due to the
potential for sensor failures, occlusions, and adverse weather conditions. To enhance
robustness under such conditions, a Counterfactual Training Approach is employed.
This method improves the model’s causal reasoning capabilities by explicitly
modelling the relationships between observed behaviour and contextual features,

thereby enhancing reliability in real-world deployment scenarios.

Understanding the intricate relationships between pedestrian behaviour and
environmental elements, such as traffic signals and oncoming vehicles, is critical for
accurate intention prediction. This thesis addresses this by integrating a Co-Learning
Transformer Architecture, the aforementioned GCN-based Interaction Encoder, and a
Context-Aware Feature Fusion Module (CAFFM) in the proposed works. These
components enhance the model's contextual awareness and enable more precise

prediction of pedestrian intentions in complex urban environments.

Finally, achieving real-time performance remains a significant concern due to
the high computational and memory demands of deep learning-based models. To
address this, this thesis incorporates Multi-Head Shared Weight Mechanisms
(MHSWM), Shared MLP Heads, and a Progressive Encoder-Decoder Architecture, all
of which contribute to reducing model complexity and computational overhead while

preserving predictive accuracy.

1.8 Outline of the Thesis

The thesis entitled, ‘Pedestrian Intention Prediction for Autonomous
Vehicles’ is structured into six chapters, followed by a comprehensive bibliography.

The organization of the thesis is as follows:

Chapter 1: Introduction presents the research motivation, outlines the challenges of
pedestrian intention prediction, and discusses the role of deep learning in addressing
them. It includes the problem formulation, research objectives, key contributions, and

an overview of the thesis structure.
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Chapter 2: Literature Review offers a detailed review of state-of-the-art
methodologies, assessing their strengths and limitations regarding prediction duration,
input feature types, and model architectures, thereby identifying research gaps and

defining the objectives addressed in the thesis.

Chapter 3: Short-term Intention Prediction details two innovative approaches for
short-term crossing intention prediction. The first utilises appearance, context, motion
dynamics, and social interactions, integrating a Multi-Head Attention-based Graph
Convolutional Network (MHA — AdjMat) to capture complex pedestrian behaviours
and improve predictive accuracy. The second approach introduces a three-stage
transformer encoder structure driven by a Co-learning module and Multi-Head Shared
Weight Attention for efficient multimodal data fusion, enhanced by a Co-learning

Adaptive Composite (CAC) loss to optimise training and feature representation.

Chapter 4: Long term Intention Prediction presents a GAN-based methodology for
long-term trajectory prediction, addressing pedestrian movement's complexity and
stochastic nature through adaptive learning strategies and contextual attention
mechanisms. This chapter discusses using a Dynamic Progressive Generator and an
Adaptive Fuzzified Discriminator to boost prediction accuracy, reduce mean squared

error, and enhance model generalisation, particularly in ambiguous scenarios.

Chapter 5: Unified Short-term and Long-term Intention Prediction introduces a
unified framework for concurrent short- and long-term pedestrian intention prediction,
utilising a three-phase counterfactual training method and Progressive Denoising
Attention (PDA) for effective cross-modal feature integration. The approach
incorporates a Conditional Variational Autoencoder (CVAE) refined with a Context-

Aware Feature Fusion Module (CAFFM) to optimise trajectory prediction accuracy.

Chapter 6: Conclusion, Future Scope and Social Impact presents a concise
summary of the key ideas, findings, and contributions corresponding to each research
objective addressed in the thesis. It also outlines potential directions for future research
and discusses the broader social implications of the proposed methods and their

applications.
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CHAPTER 2

LITERATURE REVIEW

This chapter reviews state-of-the-art approaches for pedestrian intention
prediction, categorized into short-term and long-term forecasting methods. Short-term
prediction focuses on anticipating immediate pedestrian actions, crucial for real-time
applications like autonomous navigation and intelligent surveillance [17]-[20]. At the
same time, long-term forecasting aims to predict movement patterns over an extended
period, benefiting urban planning and traffic management [21]-[27]. Recent
advancements in deep learning have significantly improved these models by
leveraging multimodal features such as visual data, trajectory coordinates, and
environmental context [9], [15]-[16]. Various fusion strategies, including early, late,
and adaptive fusion, enhance predictive accuracy, while social interaction modelling
through Graph Convolutional Networks (GCNs) and attention mechanisms further

refine behavioural understanding.

Short-term approaches often utilize recurrent neural networks (RNNSs),
transformers, and hybrid models to process motion cues and contextual information
for immediate decision-making [18], [85]-[86]. In contrast, long-term trajectory
forecasting relies on transformer-based architectures and generative models like GANs
and VAEs to capture uncertainty in pedestrian motion [22]-[23]. These methods
improve safety in autonomous systems by enabling proactive decision-making in
dynamic environments. By systematically evaluating multimodal architectures, fusion
techniques, and interaction-aware modelling, this chapter highlights key
advancements and identifies open challenges in pedestrian intention prediction

research as follows:
2.1 Short-term intention prediction

This section explores the critical role of multimodal feature representation,
learning architectures, fusion strategies, and spatiotemporal modelling of pedestrian

interactions in short-term pedestrian intention prediction. Integrating diverse input
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modalities, such as trajectory, pose, and visual context, is crucial in capturing
pedestrian intent, particularly in complex or ambiguous scenarios. Appropriate
learning architectures, including RNNs, CNNs, GNNSs, and Transformers, enable the
extraction of meaningful spatial and temporal dependencies, improving predictive
accuracy. Fusion strategies, ranging from early feature concatenation to advanced self-
attention mechanisms, facilitate the effective integration of multimodal information,
enhancing model generalization. Furthermore, spatiotemporal modelling of pedestrian
interactions provides deeper insights into motion patterns and environmental
influences, refining intent prediction in dynamic traffic settings. These elements
collectively contribute to developing more robust and adaptive pedestrian intention

prediction frameworks.

2.1.1 Multimodal Feature Representations

Within existing literature, various features have been employed to alleviate the
cognitive load of employed intelligent frameworks. The predominant feature for
predicting pedestrian intent has been trajectory or historical motion data, evident in
numerous studies [9]. Nonetheless, relying solely on trajectory proves inadequate
when no historical data exists, or the trajectory is abrupt [12]. Combining pose key-
point information with trajectory has shown promise in advancing intention prediction
[54]. Visual appearance features also offer significant cues regarding pedestrian intent
and future actions. Recent pioneering research highlights the critical role of visual
context features in understanding a pedestrian’s traffic environment, as these features
provide essential cues for predicting pedestrian behaviour. Additionally, in dynamic
scenes, integrating ego-vehicle motion information enhances the assessment of a
pedestrian’s relative movement concerning onboard cameras, thereby improving
situational awareness and predictive accuracy [17]-[18]. However, existing
approaches have often overlooked the incorporation of richer contextual information,
which is crucial for robust and generalizable pedestrian intention prediction. The Biped
model [84] attempted to address this limitation by independently and jointly encoding
multiple modalities, offering a more comprehensive understanding of pedestrian

behaviour. Nevertheless, its heavy reliance on semantic scene parsing constrained its



17

adaptability, making it less effective in diverse and unstructured environments where

contextual variations are significant.

2.1.2 Multimodal Learning Architectures

Several seminal architectures [17], [18], [84] are proposed hitherto that
endeavour to fuse multi-source inputs optimally for efficient and accurate pedestrian
crossing prediction. SF-GRU [17] fused local context, appearance, bounding box, pose
and ego-vehicle speed hierarchically using GRU as the encoder. Along similar lines,
Yang et al. [18] proposed the fusion of two different channels for visual: local context
and are proposed hitherto that endeavour to fuse multi-source inputs optimally for
efficient and accurate pedestrian crossing prediction. Nonetheless, these approaches
were restricted since they do not consider the impact of human social conduct and
interactions with the surrounding environment, which are inevitable in assessing a
pedestrian’s  short-term intention. Moreover, these works lack rich feature
representations of distinct pedestrian modalities and efficient integration of these
modalities for enhancement. Subsequent seminal works [80], [81], [85] demonstrated
the potential of attention mechanisms and transformers to fuse spatiotemporal features.
In a recent work, Bai et al. [86] introduced a progressive feature fusion module with a
self-attention mechanism to extract relevant multimodal features selectively.
Pedestrian Graph+.[87] infers spatiotemporal relationships autonomously through
network learning. In another seminal work, Yao et al. [88] designed a human visual
learning-inspired Attention Relation Network for deeper traffic scene comprehension.
However, such evolved multimodal architectures that seamlessly integrate diverse
modalities, enhancing both the learning efficacy of the model and the intention

prediction performance, remain limited.

2.1.3 Fusion Strategies

In deep learning architectures, fusion techniques are pivotal for integrating
information across multiple modalities to enhance prediction accuracy, thereby

influencing the effectiveness of intention prediction tasks. Early feature fusion
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methods, such as straightforward or weighted concatenation of features before the final
classification network, are employed in notable works [89], [90]. However, these
approaches may not fully capture the complex intermodal relationships essential for
optimal performance, potentially limiting the integration of diverse modal information.
Several pioneering works [17], [18] employ Multi-Stream Architecture, processing
each modality separately within network branches and combining their outputs later.
While this allows for learning modality-specific representations and weighting each
modality's importance in predictions, it may hinder capturing critical intermodal

dependencies and interactions.

In contrast, advanced fusion techniques like self-attention mechanisms, as seen
in noteworthy works [86], [91], [92], enhance pedestrian intention prediction by
emphasizing relevant factors and dynamically selecting multimodal features. For
instance, Bai et al. [86] introduce a progressive feature fusion module using a self-
attention mechanism to select useful multimodal features from global to local
perspectives for pedestrian crossing prediction. Sharma et al. [91] propose an adaptive
fusion module to dynamically weigh all the visual, motion and interaction features,
enhancing performance. Additionally, cross-modal Transformer architectures, as
explored in another notable study [93], capture dependencies between data types and
model interactions between pedestrians and traffic agents, considering both pedestrian
and ego-vehicle dynamics. Despite recent advancements, current methodologies often
face challenges in effectively interpreting correlations across different modalities,

limiting their generalizability to unseen cases.

2.1.4 Spatiotemporal Modelling of Pedestrian interactions

Modelling subtle nuances of interactions among pedestrians in a dynamic
traffic scene, influencing their crossing intention, is pivotal in mimicking human-like
subconscious decision-making in AVs and ADAS systems. The inherent randomness
and dynamic nature of these interactions in space and time pose challenges for learning
models. Recently, spatiotemporal modelling has been widely used in pedestrian
intention prediction, particularly with the development of deep learning models
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capable of handling spatial and temporal information. Spatio-temporal modelling is a
crucial aspect of pedestrian intention prediction as it allows for modelling both
pedestrian behaviour's spatial and temporal dimensions. Spatial modelling refers to the
modelling of the physical space in which the pedestrian is operating, including the
location and orientation of the pedestrian in the environment. This information is vital
for understanding the pedestrian's surroundings, potential obstacles, and interactions
with other objects. On the other hand, temporal modelling refers to the time aspect of
pedestrian behaviour. This information is essential for identifying sudden behavioural

changes that may indicate an intention to cross the street [81], [94].

Leveraging the unprecedented success of RNNs and CNNs in several computer
vision applications, the last decade has witnessed an increase in their usage in
modelling sequential behaviour of pedestrians over time. RNNs help capture their
motion patterns by allowing the network to maintain information about the pedestrian's
motion over time. CNNs learn to identify significant features, such as the shape and
movement of the pedestrian and the fully connected layers, and then use these features
to make a prediction. Hamed et al. [89] employed a combination of CNN and Time-
Distributed Layers (TDL) to visually represent pedestrians, with the LSTM layer
learning the temporal context. Rasouli et al. [17] introduced an RNN encoder-decoder
architecture that captures a visual representation of the image surrounding pedestrians
concatenated with pedestrian dynamics. Inspired by this, Yao et al. [18] utilized an
encoder-decoder architecture and a novel Attention Relation Network (ARN) to
induce a spatiotemporal understanding for anticipating pedestrian crossing intentions.
Other groundbreaking works [95], [96] integrated a hybrid combination of CNNs and
RNNs for spatiotemporal encoding. However, RNNs and CNNs are challenging to
train when there is sparse data, which could be the case in most pedestrian datasets.
Furthermore, the vanishing gradient issue in RNNs for longer sequences and
inefficiency in capturing the global relationship of the pedestrian with scene objects
by CNNs make the overall performance of the CNN-RNN-based architectures suffer
in the long run [97].



20

Several approaches [29], [82], [87], [98], [99], [100], [101] have also explored
Graph Neural Networks (GNNSs) to capture the interactions between pedestrians and
their environment. These approaches depict each pedestrian as a node in the graph,
and edges are added between nodes to model pedestrian relationships. Liu et al. [81]
utilised graph convolution to understand the intricate spatiotemporal relationships in a
scene, incorporating both pedestrian-centric and location-centric perspectives.
Similarly, Naik et al. [99] analysed the relationship between pedestrians and the scene
using a Scene Spatio-temporal Graph Convolution Network. Chen et al. [29] advanced
this concept further by employing graph autoencoders to comprehend the impact of
the surroundings on pedestrian crossing decisions. Zhang et al. [100] integrated Graph
Attention Networks (GAT) into Graph Convolutional Networks(GCNS) to strengthen
further the ability to model complex social interactions. In another interesting work,
Riaz et al. [82] proposed a GNN-GRU-based architecture PedGNN that takes a
sequence of pedestrian skeletons as input to predict crossing intentions. Ling et al.
[101] utilised GCN(Graph Convolutional Network) with spatial, temporal and channel
attention to strengthen feature extraction for more accurate and fast prediction.
However, GNNs can struggle to generalize to unseen graphs, as they depend heavily
on the graph structure and node features. This can be a limitation for anticipating

pedestrian intention where the graph structure is subject to change over time [102].

To the extent of our knowledge, the examination of Transformers in pedestrian
intention prediction is a novel and under-researched area, with only a handful of works
that have addressed it [85], [103], [104], [105]. Achaji et al. [103] proposed a
Transformer model with bounding boxes as the only required input. However, it relies
solely on bounding box information, which fails to capture the road context and may
misinterpret movements similar to crossing behaviour. The PIT framework [104]
incorporated a sophisticated integration of a temporal fusion block and a self-attention
mechanism, enabling the modelling of the dynamic relationships between the
pedestrian, ego-vehicle, and environment. This progressive processing of temporal
information enables the capture of dynamic interactions between elements in a manner
that is more congruent with human-like behaviour. Additionally, Osman et al. [85]

introduced a novel adaptive mechanism that dynamically assigns weights to the
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significance of current and previous frames, utilizing an attention mask within the
Transformer, thereby promoting dynamic spatiotemporal modelling. In another
seminal work, Zhang et al. [105] capture temporal correlations within pedestrian video
sequences using a Transformer module and address the uncertainty of complex
pedestrian crossing scenes.

2.2 Long-term Intention Prediction

This section analyses long-term pedestrian intention prediction, focusing on the
challenges of forecasting movement over extended time horizons, including non-linear
motion patterns, abrupt directional changes, and multimodal trajectory distributions.
An overview is provided of recurrent and Transformer-based models, assessing their
effectiveness in capturing temporal dependencies and spatial interactions. The
discussion then extends to advanced generative models, such as GANs and CVAEs,
which have been developed to model the inherent uncertainty of pedestrian motion by
generating diverse trajectory distributions. Finally, key limitations are highlighted,
including integrating environmental context, multimodal fusion, and stability in
generative learning. These remain critical for improving the accuracy and

generalizability of long-term intention prediction models.

2.2.1 Recurrent and Transformer-based Trajectory Prediction

Trajectory prediction methodologies have significantly progressed,
particularly with integrating recurrent and transformer-based models. Xue et al. [106]
presented a novel method featuring dual temporal attention mechanisms and an
embedded location-velocity attention layer within a specialized tweak module. Yu et
al. [107] leveraged transformative mechanisms to adeptly model intra-graph crowd
interactions and inter-graph temporal dependencies to capture intricate spatial-
temporal dynamics. Taking a distinctive approach, Tao et al. [108] integrated rich
information into Long Short-Term Memory (LSTM), effectively addressing dynamic
interactions, long-trajectory correlations, and semantic scene layouts. In parallel,

Wong et al. [109] estimated continuous key points and defined spectrum interpolation
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sub-networks for trajectory modelling at both key points and interaction levels. These
advancements [106], [107] showcase a nuanced understanding of advanced scene
dynamics and pedestrian interactions within dynamic environments. However,
inherent challenges, including abrupt directional changes and irregular non-linear
motion patterns, such as sudden stops or velocity fluctuations, contribute to systematic
errors in trajectory predictions [12], [23], [94], [106], [110].

2.2.2 Deep Generative Models for Trajectory Prediction

In contrast to preceding recurrent and transformer-based methodologies,
generative models like GANs and CVAEs demonstrate unparalleled adaptability to
abrupt changes and irregular motion patterns. Furthermore, the recent evolution in
deep generative models has marked a transformative shift from predicting a single
optimal trajectory to generating a distribution of potential future trajectories. lvanovic
et al. [111] adopted a Gaussian Mixture Model (GMM) for target trajectory
assumption, presenting the Trajectron network to predict GMM parameters through a
spatio-temporal graph. Trajectron++ [110] extended this approach to accommodate
dynamics and heterogeneous input data. BiTrap [22] and SGNet [23] both leverage
Conditional Variational Autoencoders (CVAESs) to handle the multimodality and
uncertainty of human movements. BiTrap [22] enhances prediction accuracy through
a goal-conditioned bidirectional approach that considers past and future contexts.
However, its emphasis on a single endpoint may limit its capacity to model the full
range of possible trajectories. SGNet [23] incorporates multi-temporal goal estimation,
improving long-term accuracy and adding granularity to predictions. However, both
models could benefit from better integration of environmental context to refine their

predictions.

Mangalam et al. [24] addressed human trajectory prediction by modelling
intermediate stochastic goals known as endpoints. Recognizing the inherent
stochasticity in future human motion patterns, Y-Net [25] learned goal and path
multimodalities by leveraging scene semantics. Su et al. [112] designed SIT to learn

the spatiotemporal correlation of pedestrian trajectories via attention mechanisms.
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Wang et al. [23] acknowledged the temporal variance in the goal of a moving agent by
estimating goals at multiple temporal scales for more accurate trajectory prediction.
Gao et al. [113] enhanced the model's awareness of diverse social interaction patterns
through Social-DualCVAE, conditioned on past trajectories and unsupervised
classification of interaction patterns. Recently, Yue et al. [114] integrated neural social
physics to model pedestrian stochastic motion patterns followed by a CVAE to
generate predictions. While GANs are known for generating realistic outputs, they face
challenges like mode collapse and training instability. In contrast, Variational
Autoencoders (VAEs) offer a more stable and reliable approach by learning latent
space representations that encapsulate the underlying structure of trajectory data,

making them better suited for precise and diverse predictions [115].

2.3 Research Gaps

Through an analysis of prior state-of-the-art methods for pedestrian intention
prediction for autonomous vehicles, several research gaps have been identified as

follows:

e Limited studies [14], [16] address the unpredictable movements of pedestrians
in busy urban areas.

e Existing models [18], [87] fail to predict crossing intention effectively at TTES
greater than 1 second.

e There is a notable lack of research [14], [116] focused on addressing noisy or
missing modality data in multimodal pedestrian crossing intention models.

e Prior multimodal architectures [106], [117] lack efficient integration of
contextual understanding, such as the relationship between environmental
factors and the dynamic behaviour of pedestrians.

e Although recent advancements have focused on improving prediction
performance, limited attention has been given to optimizing memory footprint,

resulting in architectures that are computationally demanding [15], [72].
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2.4 Conclusion and Future Scope

This chapter has provided an in-depth review of state-of-the-art approaches for
pedestrian intention prediction, distinguishing between short-term and long-term
forecasting techniques. It highlighted the evolution of multimodal learning, advanced
fusion strategies, and spatiotemporal modelling methods that have significantly
enhanced predictive performance in dynamic environments. Short-term models benefit
from real-time multimodal integration, whereas long-term models emphasize
trajectory uncertainty and contextual reasoning through generative frameworks.
Despite these advances, challenges remain in dealing with noisy or missing modalities,
modelling social and contextual interactions effectively, and ensuring computational
efficiency.

Addressing these gaps serves as the principal motivation for the present thesis.
The subsequent chapters will introduce four novel methodologies, each specifically
designed to tackle the limitations identified in short-term and long-term intention
prediction, respectively. These contributions aim to advance the development of
robust, context-aware, and computationally efficient predictive frameworks that are

better aligned with the demands of real-world autonomous and assistive systems.
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CHAPTER 3

SHORT-TERM INTENTION PREDICTION

In complex urban environments, accurately anticipating pedestrian behaviour
is essential for ensuring the safety and reliability of autonomous vehicles and
intelligent transportation systems. Among the various facets of human motion
forecasting, short-term pedestrian intention prediction, focused on forecasting
immediate actions such as initiating a crossing, plays a critical role in enabling timely
decision-making in real-world traffic scenarios. Its applications are particularly
significant in autonomous driving, where vehicles must respond rapidly to sudden

pedestrian movements to avoid potential collisions.

Building upon this premise, this chapter introduces two short-term pedestrian
intention prediction models aimed at overcoming key challenges in multimodal
scenarios, particularly contextual integration and computational efficiency. A major
limitation of existing approaches is their inability to effectively model the relationship
between environmental factors and pedestrian behaviour, resulting in suboptimal
contextual understanding. Furthermore, the high computational complexity of current
models necessitates memory optimization to enhance efficiency without
compromising predictive accuracy. To address these issues, the proposed frameworks
undergo systematic experimental evaluation and a comprehensive analysis of results,

discussions, and a comparative assessment against state-of-the-art methods.

3.1 Visual-Motion-Interaction Guided Pedestrian
Intention Prediction Framework

The capability to comprehend the intentions of pedestrians on the road is one
of the most crucial skills that the current autonomous vehicles (AVs) are striving for
to become fully autonomous. In recent years, multimodal methods have gained traction
by employing trajectory, appearance, context, etc., to predict pedestrian crossing
intention. However, most existing research works still lag rich feature representational

ability in a multimodal scenario, restricting their performance. Moreover, less
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Fig 3.1: Illustration of the Visual-Motion-Interaction-Guided (V-M-I) framework

emphasis is put on pedestrian interactions with the surroundings for predicting short-
term pedestrian intention in a challenging ego-centric vision. An efficient Visual-
Motion-Interaction-guided (VMI) intention prediction framework has been proposed
to address these challenges. This framework comprises a Visual Encoder (VE), Motion
Encoder (ME) and Interaction Encoder (IE) to capture rich multimodal features of the
pedestrian and its interactions with the surroundings, followed by temporal attention
and adaptive fusion module to integrate these multimodal features efficiently. The
proposed framework outperforms several SOTAs on benchmark datasets: PIE/JJAAD
with Accuracy, AUC, Fl1-score, Precision and Recall as 0.92/0.89, 0.91/0.90,
0.87/0.81, 0.86/0.79, 0.88/0.83 respectively. Furthermore, extensive experiments are
carried out to investigate different fusion architectures and design parameters of all
encoders. The proposed VMI framework predicts pedestrian crossing intention 2.5 sec

ahead of the crossing event.

3.1.1 Proposed Methodology

The traffic scene environment is dynamically varying, and with onboard
cameras, not just the traffic scene but the relative size and distance of the
objects/pedestrians to the ego-vehicle in motion is also changing continuously. Unlike

human drivers, who can decipher non-verbal cues of the surrounding traffic
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environment and make decisions accordingly, AVs lack this inherent capability. This
complex scenario motivates us to utilise multimodal information involving visual,
motion and contextual features from the dynamic traffic scene to make AVs mimic
human’s cognitive ability to anticipate pedestrians' intentions on the road. In this work,
the pedestrian crossing intention prediction can be formulated as a binary classification
task wherein the motive is to find the probability of a pedestrian j” intention to cross

ornot, 2; € (0,1), provided the past observations of visual, dynamic and interaction

information of the pedestrian and the ego-vehicle speed for 'q' time steps. The
proposed implementation of the Visual-Motion-Interaction-Guided (V-M-I)
framework for intention prediction of pedestrians is described in Fig 3.1. This
architecture employs multimodal features extracted from a traffic scene, involving
target pedestrian visual appearance and non-visual dynamic features. Furthermore,
interaction features are extracted from the surrounding context, since pedestrian
interactions with co-pedestrians on the road also play a pivotal role in influencing
crossing behaviour. This architecture is comprised of the following essential

components.

3.1.1.1 Visual Encoder (VE)

The VE encodes the visual features of the pedestrian and its surroundings as
described below:

Appearance — The sequence of RGB images of a traffic scene captures the variations
of pedestrians’ appearance temporally [18], [119]. The visual appearance features

4; = {a},a?,a}, ......a"} of the pedestrian ’j" € (1, m) for past observed 'q" time steps

are captured using image portions of the size of the bounding box consisting of the

pedestrian in a scene.

Context — The local contextual information of the target pedestrian depicts its

relationship with the dynamic traffic scene elements in its surrounding [12] [29]. The

surrounding local environment features C; = {c/, ¢/, ¢/, ... ...c/'} are extracted using a

larger image portion size to include the immediate contextual details. This is achieved

I

by extending the dimension by at least twice the size of the pedestrian 'j' bounding
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box and masking it to include only the surrounding details.

In generating image representations, transfer learning has emerged as a
formidable approach, leveraging pre-trained models to extract meaningful features.
Inspired by the insights derived from such transfer learning paradigms [120]-[122], the
proposed framework endeavours to balance the trade-off between the model’s
performance and complexity in terms of size and number of parameters of the model
by utilising the EfficientNetB4 [123] model. This model has 82.9% Top-1 Accuracy
on ImageNet [124], while being 17.47x smaller and having 18x fewer parameters
than best existing ConvNet [125] so far. Both the appearance and the local context
features are processed in parallel through EfficientNetB4 pre-trained on ImageNet.
This is followed by Convolutional Block Attention Module (CBAM) [126] to
emphasize relevant features across both channel and spatial dimensions as depicted in
Fig. 3.1. Let the appearance and context features after processing via EfficientNetB4

A, ={ag;, a2, a3, ... ..al;} and Co ={cojnclicdjs e of
dimension C x H x W where C,H and W  denotes the number of channels,
height and width dimension of the feature space. These processed features are then
passed through an average pooling mechanism to reduce feature dimensions. The
parallel branches are finally concatenated to give a modified visual feature

representation as shown in Eqgns. (1)- (3) as follows:

Ae, = FC(AE) & Ae; Ae” = 1J:"S(Ael) X Ae, (3-1)
C' =F(C)®C.: C = F(CH®C,' (3.2)
AS"® C" ={A."C."}, A"C"S, o AL C"Y V j(1,m) (3.3)

]

where ., € RO and £, € RP>*H*W corresponds to 1-D channel attention and 2-
D spatial attention map, respectively. The procedure of mapping attention both
spatially and channel-wise via CBAM is represented in Fig. 3.1, the darker the colour,
the higher the weight assigned to the feature. The CBAM output then undergoes global
average pooling to reduce the dimensions of the feature vector for further

computations.
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Fig. 3.2: Visualisation of Interaction Encoder

3.1.1.2 Motion Encoder (ME)

The representation of these features is described as follows:

Pose: In this work, HRNet [127] generates a set of 17 pose key points per pedestrian
sample using a bounding box sequence. This network has achieved ~76% mAP on the
MS COCO [128] dataset while maintaining higher resolution representation
throughout the estimation process. This network surpasses the performance of several
SOTA pose estimation modules [129] utilised in quite a few existing works[17], [18].
The key points are obtained in the form of x and y coordinates resulting in a vector of
34 values per pedestrian sample. These values undergo normalization and then

concatenation into a feature vector for further processing for 'q" past observations and
are represented as P; = {p},p?,p}, ... ..p}}
Trajectory: The location of a pedestrian ’j’ in a 2D coordinate space is provided with

top-left {x., y,} and bottom-right {x,,,y;,} coordinate points represented as B; =

{bj, b}, b}, ... ...bJ"}.

Speed: This consists of speed value measurements of the ego-vehicle in km/h given as

={s!,s?s? ... .. s}

Motivated by the scientific findings [130] about the low computational
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complexity and faster training time of Conv 1-D over Conv 2-D for one-dimensional
data, the ME processes pose, trajectory and speed through a Conv 1-D parallelly with
32 filters of kernel size, 3 and stride, 1. These transformed features are then combined
and passed to the TAM.

3.1.1.3 Interaction Encoder (IE)

Pedestrians’ interactions with traffic scene elements dynamically impact the
road crossing intention [12], [87]. Inspired by some of the seminal works [29], [87],
the proposed approach leverages graph convolutional networks (GCNs) [131] to
model the temporal relationship of pedestrian interactions across consecutive frames.

In the proposed architecture, the nodes of the graph G: {N;, E;} represents "t time-

!

step encoded feature map of the target pedestrian 'j’ context and edges E; represents
the associations existing among these feature maps corresponding to different time
steps in a traffic scene as shown in Fig. 3.2. These inter- associations within a graph

are reflected via an adjacency matrix R, ., computed as shown in Algorithm 3.1,
where ‘q’ is the total time steps considered per sample. For each j* pedestrian sample,
received context feature map is applied with linear transformation followed by a
reshape operation to extract Query, Key and Value matrices, as described in Step 4,

Algorithm 3.1. Step 5 computes multi-head attention H, 4 by calculating individual
attention heads h' and then concatenating all 'b’ attention heads. Following this,
Hgxpxa 1S then mapped with number of timesteps again as H,y,. Hence, the Multi-
Head Attention-based Adjacency Matrix [132], R,y4, derived at Step 6, ensures
extraction of the implicit contextual details of the dynamic interactions of the target
pedestrian at consecutive timesteps. Further, GCN is applied to the graph
representation derived above with nodes 'N;" and multi-head attention-based adjacency
matrix 'R;" depicting the relationship between nodes. The adjacency matrix requires a
normalisation step to curb issues of vanishing or exploding gradients as network
training may be sensitive to the range of scale of values. The normalization step

includes generating the Laplacian matrix as represented below:
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o 1 1
R=D:z(R+DD:2 (3.4)

wherein self-loops are also considered to incorporate the target node’s features in the
propagation, by adding Identity matrix I to the adjacency matrix R and D is the
diagonal degree matrix containing row-wise summation of (D + I) matrix. Here, the
spectral propagation rule for the convolution of the graph features is employed [133].
Where, GCN layer is modelled by applying a linear transformation operation as a
scalar product of the adjacency matrix and the hidden feature, followed by a Gaussian
Error Linear Unit (GeLU) [134] activation function for the next layer ‘I’ as shown in
Eqgn. (3.5)

G(L+1) = GeLU ((D—%(R + I)D‘%) Xlwl> (3.5)

where X (1) is the previously hidden layer output of the GCN convolution layer. For
1=0,X(0)=C¢,".

3.1.1.4. Temporal Attention Module (TAM)

In this module, the Bidirectional long short-term memory (BiLSTM) layer
provides enhanced temporal representations of the input sequence by leveraging
learning through bi-directional layers. The following attention module weighs the most
relevant parts of the feature map "Y'along the temporal dimension. The attention

weight vector 1, for k" branch of the architecture is given in Eqn. (6) and (7) as

follows:
s, = softmax(tanh(WY,, + bias)) (3.6)
W = Xaax Vi (3.7)

Where d is the dimension along which attention vector computation is carried out. In
this case, it is the output vector length of the BiLSTM layer. The number of hidden
units of the BILSTM layer employed is 64.
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Table 3.1: Training specifications of the proposed framework

Training Parameters JAAD PIE
Optimizer ADAM ADAM
Learning Rate 2x107° 5x107°
# Epochs 60 70
L2 Regularization 0.0001 0.0001
Loss Function Binary Cross Entropy Binary Cross Entropy
Batch Size 8 16

3.1.1.5 Adaptive Fusion Module (AFM)

The generated features from the VE, IE and ME, followed by the TAM, have
varying impacts on the pedestrian intention prediction, therefore, an adaptive fusion is
introduced to accordingly weigh all the encoded features. These hidden representations
of the proposed fusion have been accumulated in a vector representation, 'E’ as shown

in the Egn. (3.8) as follows:

E = Yi=1 Wik (3.8)
where %, represents the encoded hidden states of the prior TAM and wy, are the
trainable weights with HeNormal initialisation [135]. This is followed by dense layers
of 64 and 8 units and a final activation function to give ‘crossing’ or 'not crossing'
predictions.

3.1.2 Experimental Work and Results

This section presents the experimental evaluation of the proposed pedestrian
intention prediction model. The implementation details, including architectural
configurations, training procedures, and computational setup, are outlined, followed
by a description of the datasets used for evaluation. A comparative analysis with state-
of-the-art methods is then conducted to assess the effectiveness of the proposed
models. Finally, an ablation study is performed to examine the contribution of
individual components, providing insights into their impact on overall model

performance.
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3.1.2.1  Implementation Details

The experimental settings for implementation are outlined in Table 3.1. The
computation of the pose key points, appearance and contextual features is done before
training. Data augmentation involves horizonal image flipping for balancing

crossing/non-crossing samples to mitigate prediction bias.

3.1.2.2 Datasets

The proposed framework is evaluated using two publicly available benchmark
datasets, namely JAAD[136] and PIE[6]. The JAAD dataset is having 346 video clips
with a total duration of 240 hours recorded at 30 frames per sec(fps). Each clip ranges
from 5 — 15 sec with a resolution of 1920 x 1080 and 1280 x 720. The bounding
boxes and tracking ids are provided for each pedestrian. The driver’s action is
implicitly encoded as vehicle speed for training the model. The PIE dataset consists of
1842 pedestrian tracks with longer sequences and increased pedestrian samples with
annotations compared to JAAD. The dataset configuration follows the
training/validation/test split as recommended in [137] for JAAD [6] for PIE.

3.1.2.3  Comparison with State-of-the-art methods

The performance of the proposed framework has been compared against the
following SOTA methods:

e Pie_traj [6]: employs an RNN-based encoder-decoder to extract vital information
regarding pedestrian appearance and surrounding context and pedestrian dynamics.

e Stacked Fusion GRU (SF-GRU) [17]: hierarchically stacks GRU encoder that fuses
features of high relevance like appearance at the beginning and others like ego-
speed at the last.

e Feature Fusion and Spatio-temporal Attention (FFSTA) [18]: employs a hybrid
architecture to fuse features from visual and non-visual branches. The local and

global context are combined in the visual branch while other features like pose,
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Table 3.2: Comparison of existing SOTAs with the proposed method on the PIE

and JAAD dataset
PIE/JAAD
Methods Year
Acc AUC F1 Prec Rec
PIE traj [6] 2019 0.79 - 0.87 - -

SF-GRU
[17]
FFSTA[18] 2022 0.85/0.83 0.83/0.82 0.71/0.63 0.69/0.51  0.72/0.81

2020 0.87/0.84 0.85/0.80 0.78/0.62 0.74/0.54  0.64/0.73

BiPed [84] 2020 0.91 0.90 0.85 0.82 0.88
MMAT[119] 2020 0.89/0.89 0.88/0.88 0.81/0.81 0.77/0.77  0.85/0.85
IA [88] 2021  0.84/0.87 0.90/0.70  0.88/0.92 0.96 /0.66 0.81
PG+[87] 2022 0.89/0.86 0.90/0.88 0.81/0.65 0.83/0.58  0.79/0.75
Ours - 0.92/0.89 0.91/0.90 0.87/0.81 0.86/0.79  0.88/0.83

bounding box and vehicle speed are hierarchically fused in the non-visual branch.

e BiPed [84]: proposes a bifold encoding approach for the individual and shared
representation encompassing trajectory, grid locations, ego speed and global
context.

e Multi-model Atrous( MMA) [119]: processes diverse input modalities through the
visual encoding and dynamics encoding branch, followed by corresponding
attention modules and subsequent fusion for joint representation.

e Intent and Action (IA) [88]: presents a human visual learning-inspired Attention
Relation Network ensuring a deeper understanding of the scene semantics and other
pedestrian-specific features.

e Pedestrian Graph+(PG+) [87]: employs a fully convolutional graph-based neural

network that inputs context, human pose key points, and ego-speed.

The performance of the proposed approach in comparison to the state of the
arts is represented in Table 3.2. It is evident from the table that the proposed VMI-
guided framework performs better in terms of all evaluation metrics against SOTA
models, except for the F1 score and precision on the PIE dataset and the F1 score and
recall on the JAAD dataset. The intent and action [88] perform a little better (~1%)
in the F1 score and also have a significant leap in precision approximately by 10 %.

This drop-in precision in our proposed work is compensated with an overall
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Fig. 3.3: Impact of Time to Event (TTE) and Observation Sequence Lengths (OSL)
on Crossing Intention Prediction, evaluated in terms of (a) Accuracy, (b) AUC, (c) F1
Score, (d) Precision, and (e¢) Recall metrics.

improvement in accuracy (~ 8.7%), AUC score (~1%) and recall (~8.7%) on the
PIE dataset. Similarly, the considerable jump in performance metrics like accuracy
(~8.64%), AUC(~2.3%) and precision(~28.6%) overcomes the decline in F1 score
(~12%) in the JAAD dataset against [88] by our proposed approach. The optimal
observation length of 0.5 sec with 2.5 sec time-to-event has been found empirically

which will be discussed later in the ablation study.

3.1.2.4 Ablation Study

This section presents an ablation study to assess the impact of key design
choices in the proposed framework. The effects of varying Time to Event (TTE) and
Observation Sequence Lengths (OSL) are examined, followed by an analysis of
different fusion strategies. Furthermore, the contributions of the Motion Encoder,
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Fig. 3.4: Qualitative samples of pedestrian short-term intention prediction: (a)
Correctly predicted intention. (b) Failure case where Green indicates crossing, Red
denotes non-crossing based on TTE.
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Fig. 3.5: Overview of Pedestrian Intention Prediction Fusion Architectures. (a) Parallel
Fusion (PF), (b) Hierarchical Fusion (HF), and (c) Adaptive Fusion (AF) approaches.

Interaction Encoder, and Visual Encoder are evaluated to understand their relevance.
providing a stronger rationale for the architectural and methodological choices. The

analysis are as follows:

i. Impact of choosing different Time to event (TTE) and Observation Sequence
Lengths (OSL): The high variability in traffic scene dynamics with every passing
second has a considerable impact on the crossing intention prediction of the
pedestrian. OSL also impacts the prediction process. The longer the OSL, the
greater the information acquired. However, it may also add some insignificant
details that may result in erroneous prediction results. In this section, different TTE

points are considered on the timeline of the crossing/not crossing event ranging



Table 3.3: Ablation study on different fusion architectures

PIE/JAAD
Fusion  Encoder
Acc AUC F1 Prec Rec
GRU 0.83/0.84 0.78/0.81 0.73/0.71 0.76/0.71 0.71/0.71
LST™M 0.85/0.84 0.80/0.83 0.74/0.74 0.78/0.72 0.70/0.76
HE BiLSTM 0.85/0.85 0.80/0.85 0.77/0.75 0.78/0.74 0.75/0.77
BiLSTM+#&  0.86/0.85 0.85/0.86 0.77/0.76 0.79/0.74 0.76/0.78
GRU 0.85/0.83 0.83/0.82 0.78/0.72 0.77/0.69 0.78/0.75
LST™M 0.86/0.83 0.83/0.82 0.78/0.74 0.77/0.72 0.79/0.77
Pr BiLSTM 0.86/0.85 0.81/0.84 0.78/0.76 0.80/0.74 0.77/0.79
BiLSTM+A&  0.88/0.86 0.84/0.87 0.80/0.77 0.81/0.75 0.79/0.80
GRU 0.87/0.85 0.85/0.81 0.80/0.77 0.79/0.75 0.81/0.79
LST™M 0.87/0.85 0.84/0.84 0.82/0.78 0.84/0.76 0.80/0.81
AR BiLSTM 0.90/0.87 0.90/0.86 0.84/0.79 0.85/0.77 0.83/0.82
BiLSTM+A&  0.92/0.90 0.91/0.89 0.87/0.81 0.85/0.78 0.88/0.83
# : Attention
1
@ 0.8
i
% 0.6 HE
£ 0.4 — 7
S —AF
= 0.2
0
0 0.2 0.4 0.6 0.8

Fig. 3.6: ROC Curves illustrate the Performance of Parallel Fusion (PF),
Hierarchical Fusion (HF), and Proposed Adaptive Fusion (AF) architectures
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from 0-4 sec, sampled at every 0.2 sec and 2 secs long OSL is sampled at every 0.2

sec as shown in Fig. 3.3. It is observed that there is a gradual decline in the overall

performance of the proposed approach as the TTE increases and vice versa as the

TTE approaches close to 0 since the intention of the pedestrians becomes evident

by that time. There is also a slight gain in accuracy, AUC and precision up to

1.5 sec of OSL but at the expense of a decrease in recall. Moreover, a more

balanced metric F1 score shows no huge variations (~3%) with the increase in

OSL. Notably, the proposed approach works satisfactorily with all parameters ~(>
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Fig. 3.7: Training and validation loss analysis for encoder combinations (VE,
VE+ME, VE+ME+IE), with validation losses (---) and training losses (—).

80%) even 3 secs to TTE as opposed to SF- GRU [17] where F1 score, precision
and recall drop to ~60 —65% at 3 sec to TTE. Furthermore, the overall
performance of the proposed approach does not drop below 12 — 13% with respect
to the highest attained metric value even at the end TTE and OSL values.
Nonetheless, in SF-GRU[17], the TTE and OSL variations cause a drop as high as
33.3%. This proves the robustness of our approach against varying OSL and TTE.
Fig. 3.4 (a) illustrates a qualitative sample prediction on the PIE dataset 2.5 sec
ahead of the crossing event, while Fig. 3.4 (b) depicts a failure case by a sudden
pedestrian direction change.

i. Fusion Strategies: Different fusion architectures for multimodal features have

been employed in this ablation study inspired by the works [17], [18] as depicted in
Fig. 3.5. Table 3.3 shows the performance of different fusion architectures on the
PIE and JAAD datasets. It is observed that the proposed adaptive fusion with the
BiLSTM + Attention layer achieves the best performance overall. The ROC Curve
visualisations for different fusion approaches on the PIE dataset are shown in Fig.
3.6. This study also explores four encoder variations (GRU, LSTM, BIiLSTM,
BiLSTM + Attention), highlighting the apparent increasing performance trend of

the BILSTM followed by the attention layer across different fusion architectures.
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Fig. 3.8: Hyperparameter analysis of the convolutional layer in the Motion
Encoder (ME) _

Relevance of different encoders: This section studies the training performance of
VE, ME and IE both individually and jointly. The analysis of loss curves in Fig. 3.7
indicates effective training for all combinations, with a steeper validation loss curve
observed when utilising all three encoders VE+ME+IE, showcasing the model’s
enhanced generalisation capability achieved through integration of multiple

modalities.

Motion Encoder: The ME utilises the Conv-1D layer to extract significant motion
features from the pedestrian’s pose, trajectory and ego speed. The impact of the
number of filters and the kernel size of the Conv-1D layer on the training
performance is shown in Fig. 3.8, where kernel size of 3 and 32 filters yields the
highest validation accuracy of ~92 % on the PIE dataset after 100 epochs. This is
attributed to the smaller kernel size’s ability to generate fine-grained features,
though it lacks neighbouring context. Conversely, larger kernel sizes like 5,7 or 9
may overlook intricate details. The plot indicates that more filters are required for
the ME to capture complex and stochastic pedestrian motion. A significant drop of
~ 10-20% in accuracy is observed if the number of filters is increased or decreased
from 32 during training for a fixed kernel size. However, the number of parameters
also grows as we increase the kernel size or the number of filters. Therefore, a
Conv-1D layer with 32 filters and a kernel size of 3 is employed in this work to

minimise the trade-off between accuracy and the number of parameters.
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Table 3.4: Ablation study on Interaction Encoder Components

PIE/JAAD
Graph Node Features Adjacency Matrix
Acc AUC F1 Prec Rec
Uni 0.81/0.81 0.84/0.82 0.78/0.75 0.77/0.72  0.78/0.77
P DI 0.82/0.82 0.83/0.80 0.79/0.74 0.78/0.71 0.79/0.76
ose
SHA 0.84/0.84 0.83/0.82 0.80/0.76  0.80/0.73  0.79/0.78
MHA 0.84/0.83 0.82/0.81 0.78/0.73 0.79/0.71 0.77/0.75
Uni 0.82/0.83 0.83/0.84 0.79/0.74 0.79/0.71 0.79/0.78
DI 0.81/0.81 0.83/0.81 0.79/0.72 0.80/0.69 0.77/0.76
Trajectory
SHA 0.82/0.85 0.87/0.86 0.80/0.76 0.81/0.73 0.78/0.79
MHA 0.86/0.83 0.83/0.82 0.82/0.75 0.83/0.72 0.80/0.77
Uni 0.83/0.86 0.85/0.84 0.79/0.76 0.81/0.73 0.77/0.78
DI 0.83/0.85 0.84/0.83 0.80/0.75 0.82/0.74 0.78/0.76
Appearance
SHA 0.85/0.86 0.85/0.85 0.81/0.77 0.81/0.74 0.80/0.79
MHA 0.87/0.85 0.87/0.83 0.79/0.77 0.79/0.76  0.79/0.77
Uni 0.88/0.86  0.85/0.83 0.84/0.76  0.82/0.74 0.86/0.78
c DI 0.87/0.85 0.87/0.83 0.83/0.74 0.80/0.72 0.85/0.76
ontext
SHA 0.91/0.87 0.88/0.85 0.84/0.78 0.81/0.75 0.87/0.81
MHA 0.92/0.89 0.90/0.89 0.87/0.81 0.85/0.79 0.88/0.84

Interaction Encoder: The graph node features and the adjacency matrix
significantly enhance the graph’s efficiency in modeling subtle interactions of the
target pedestrians within a traffic scene. Table 3.4 shows the impact of diverse node
features on performance metrics. It is observed that the context features secure the
highest metric values, followed by appearance. The ablation study also explores
distinct adjacency matrix computation methods: Uniform(Uni) which involves
random initialisation of the adjacency matrix with values ranging from 0 to 1,
Distance-Inverse(DI) that employs inverse Euclidean distance between pedestrians
[138], Single-head Attention(SHA) that utilises a self-attention module inspired by
the work [139] and lastly the adjacency computation using Multi-head attention
(MHA) described in this work [132]. Notably, the MHA method outperforms other
adjacency matrix computation methods in terms of classification performance. This
is attributed to SHA’s limited human behavioural learning range and Uni’s inability
to adequately represent intrinsic human interaction randomness. The DI method too

restricts the interaction to sheer separation based limiting its performance.
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PIE Samples JAAD Samples

Fig. 3.9: GradCAM [140] visualizations showing key focus areas: (a) pedestrian
ROI, (b) pedestrian image with surrounding context and (c) contextual cues
influencing intent prediction.

vi. Visual Encoder: The GradCAM [140] visualisations for the CBAM feature maps
in the VE are obtained by superimposing on the real cropped images enhancing
model explainability as depicted in Fig. 3.9. It is inferred from both the PIE and
JAAD dataset images that the torso region is given higher weights in comparison
to other body parts. This affirms that the head, gaze, shoulder and posture forming
the torso region of the human body, play an integral part in assessing road-crossing
intentions. Additionally, the GradCAM visualisations for context show that the VE
pays higher attention towards co-pedestrians in the vicinity that are influencing the

pedestrian’s crossing intent.

This work introduces a multimodal pedestrian intention prediction framework
that adaptively fuses visual, motion, and interaction features using spatial, channel,
and temporal attention mechanisms. A novel MHA — AdjMat based GCN in
Interaction Encoder leads to superior performance over state-of-the-art models on the
JAAD and PIE datasets, predicting crossing intent up to 2.5 seconds in advance.
However, limitations in capturing high-frequency temporal dependencies with GCNs
persist. To address this, the subsequent section investigates transformer-based

architectures for more robust modelling of pedestrian—environment interactions.
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3.2 Predicting Pedestrian Intentions with Multimodal

IntentFormer: A Co-Learning Approach

The prediction of pedestrian crossing intention is a crucial task in the context
of autonomous driving to ensure traffic safety and reduce the risk of accidents without
human intervention. Nevertheless, the complexity of pedestrian behaviour, which is
influenced by numerous contextual factors in conjunction with visual appearance cues
and past trajectory, poses a significant challenge. Several state-of-the-art approaches
have recently emerged that incorporate multiple modalities. Nonetheless, the
suboptimal modality integration techniques in these approaches fail to capture the
intricate intermodal relationships and robustly represent pedestrian-environment
interactions in challenging scenarios. To address these issues, a novel Multimodal
IntentFormer architecture is presented. It works with three transformer encoders
{TE, TE,, TE;;} which learn RGB, segmentation maps, and trajectory paths in a co-
learning environment controlled by a Co-learning module. A novel Co-learning
Adaptive Composite (CAC) loss function is also proposed, which penalizes different

stages of the architecture, regularizes the model, and mitigates the risk of overfitting.
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Fig. 3.10: Visualization of various input modalities for a sample input
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Each encoder {TE,} applies the concept of the Multi-Head Shared Weight Attention

(MHSWA) mechanism while learning three modalities in the proposed co-learning
approach. The proposed architecture outperforms existing state-of-the-art approaches
on benchmark datasets, PIE and JAAD, with 93% and 92% accuracy, respectively.
Furthermore, extensive ablation studies demonstrate the efficiency and robustness of

the architecture, even under varying Time-to-event (TTE) and observation lengths.

3.2.1 Proposed Methodology

Predicting pedestrian crossing intention is a challenging task with significant
implications for pedestrian safety and developing advanced driver assistance systems.
In this work, a brief window of 'K' timesteps is analysed from the ego vehicle's
perspective, considering the pedestrian's RGB frames and trajectory coordinates. The
objective is to ascertain the probability accurately p € (0,1) of the pedestrian's
intention to cross the road and, thus, classify the pedestrian as a crossing "1™ or non-
crossing "0" entity. To predict pedestrian crossing intention in traffic scenes, it is
crucial to leverage a variety of modalities that can provide a comprehensive
understanding of the pedestrian's surroundings. Therefore, the proposed approach
combines three distinct modalities: RGB images, segmentation maps, and trajectory
data.

RGB images capture the temporal variations of pedestrian appearance using a
sequence of images cropped to the bounding box coordinates provided in the dataset.
By analysing a sequence of images, changes in the pedestrian's pose, facial expression,
and other visual cues can be tracked, which may indicate crossing intention.
Segmentation maps provide a global context of the traffic scene surrounding the
pedestrian. This facilitates the identification of areas that affect the pedestrian's
crossing intention by segmenting the scene into distinct regions based on their visual
characteristics. SegFormer [141] generates segmentation maps of the scene that

encode different pixel regions in the road scene, including buildings, roads, vehicles,
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Fig. 3.11: Illustration of proposed IntentFormer architecture for pedestrian crossing
intention prediction

and pedestrians, where each region is assigned a distinct label. SegFormer is pre-
trained using the ADE20k dataset with 150 distinct classes, enabling effective
segmentation of various road scene elements. Visualisations are also provided in Fig.
3.10 for a better understanding of segmentation maps. Trajectory provides the
pedestrian's location in a 2D coordinate space, denoted by top-left (x!, y') and bottom-
right (x?,y?) pixel coordinates, enabling the tracking of their movement and
predicting their future paths. Each coordinate is measured in the image frame with
reference to the origin corner. Any amount of change in the top-left corner and bottom-

right corner coordinates are measured as (Ax,', Ay,)), and (Ax.”, Ay.?), at
kt" timestep. The coordinates at the new time step k' are given by (x! + Ax;/*, y' +
Ay, Hand (x? + Axy®, y? + Ay,?). Fig. 3.10 illustrates the trajectory coordinates

of a pedestrian in a sample trajectory.

Together, these modalities provide a comprehensive representation of the

pedestrian and their surroundings, enabling the proposed architecture to accurately
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predict their crossing intention and ultimately enhance pedestrian safety in traffic

scenes. The mathematical representation of the modalities is as follows:

Mic = {m{, miyq, M5 oo e Miyje_q (3.9)
Mg = {mi,miy 1, Miyg e Miypeq } (3.10)
MY = {mb,ml,,mb . oomby g (3.11)

where M%, M$ and M} are RGB images, segmentation maps and trajectory data
for a total of 'K’ consecutive frames, respectively. Each modality is taken from it"

index to i + k — 1" frames where 'i’ is the starting index number.

The architecture of the proposed Multimodal IntentFormer is illustrated in Fig.
3.11. The proposed architecture harnesses the power of three transformer encoder
stages {TE;, TE;;, TE;;} to process a heterogeneous array of input modalities. The
inputs are diligently sequentially fed to the encoder stages, conforming to the order in
which they are presented. Notably, each encoder stage is endowed with Projection,
Layer Normalization, Multi-head Attention (MHA), Multi-head Shared Weights
Attention (MHSWA), and Multi-layer Perceptron layers that operate seamlessly in
tandem to process the corresponding modality as represented in the Egns. (3.12) -
(3.25) as follows:

TE,: PE"™? = Positional_Encoder(Conv3d(M,Z)) (3.12)
Att79b = MHA(LN(PET!J")) + PET9 (3.13)
Features' = MLPygy 04 (LN(AttTgb)) + Att79b (3.14)

TE,;: PE’®9 = Positional_Encoder(Conv3d(Mg)) (3.15)
LN%¢9 = Layer_Normalization(PE%¢9) (3.16)
LN' = Layer_Normalization(Features") (3.17)
Attse9 I = MHSWA(LN®®9,LN") + LN5¢9 (3.18)
Features' = MLPgpareq (LN (Att5e9 1)) + Attse9 ! (3.19)

TE;,;. PEY% = Positional_Encoder (GRU(ME)) (3.20)

LN'% = Layer_Normalization(PE‘"%) (3.21)
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Algorithm 3.2: PCP Module

Input:
-Tensor X (batchg,e: b ; feature_dim: N; embed_dim: M)
Hyperparameters:
- N°, Convolution filter: 1 x 1 kernel
Output:
-Tensor Y pcp
Step 1: Permutation (P) Operation
Perform permutation P; on the input tensor X, mathematically given as follows:
Xpermutea = P1 (X) , where X € ROXNXM Xpermuted € RPXMXN

Step 2: Convolution filtering
Apply convolution operation with kernel size [1 X 1] using trainable filter weight as W, on the
permuted tensor X, ermyteq, Obtained from step 1.

Yeonw = Conv(Xpermutea» W), where tensor Yoo, € RPXMXN

Step 3: Permutation (P,) Operation
Perform permutation operation P, on the convolved tensor Y,,,,,, obtained from step 2.

Yp, = P;(Yeony ), where final tensor Yp, € RDXN M
return YPCP = YPZ
LN = Layer_Normalization(Features') (3.22)
Ate'r® I = pCP(MHSWA(LN®,LN'")) + LN®T%J (3.23)
Features'! = MLPg,4req (LN(Att”aj’ ”)) + Atttral, 11 (3.24)

Final output, Y = sigmoid(GAP(Layer_Normalization(Features'"))) (3.25)

Where PET9%, PES¢9, PE!™% represent positional encodings for RGB images,
segmentation maps and trajectories, respectively. It is essential to underscore that two
distinct types of projections are leveraged in this architecture: Tubelet projections
Conv3d(M}) and recurrent projections GRU(Mf). Firstly, the tubelet projections
(TP) [142] given by Conv3d(M}) are deployed to assimilate both RGB pedestrian
crops and segmentation maps, as utilised in Eqn. (3.12) and Eqgn. (3.15). Secondly,
recurrent projections (RP) given as GRU(Mf), serve as a pivotal tool in processing
complex trajectory data, as shown in Eqn. (20). Features’, Features' and
Features!! represent the output feature vectors coming from the transformer encoder
stages: TE;, TE;; and TE,;;. The objective of the Projection layer is to transform the
input data into a latent representation space. The Layer Normalization layer is utilized

to normalize the activations of the neurons in each layer, thereby facilitating the



47

optimization process. The mid-level fusion of different modalities commences with
the second stage encoder inspired by [143]. The proposed architecture builds on it by
employing a novel shared weight attention mechanism for cohesive learning of
parameters. The following section explores the technical intricacies of the
IntentFormer shedding light on the PCP (Permutation Convolution Permutation)
module, Shared MLP (Multi-Layer Perceptron) layers, and Multi-Head Shared Weight
Attention Module (MHSWA), and expounds on their functions and workings:

e Co-learning Module: It enables the integration of different modalities, i.e. RGB
Images, segmentation maps and trajectory in a unified framework, as illustrated
in Fig. 3.11. This module is designed to share the MLP head across different
layers, which helps to reduce the complexity of the framework while
preserving the cross-modality relationships. In practice, this means that the
module can simultaneously learn to map the input features to the correct
pedestrian class using different modalities. It ensures that the learned
representations are consistent across modalities, thus producing multi-modality

enriched models for predicting pedestrian crossing intention.

e Permutation-Convolution-Permutation (PCP) Module: The PCP module, as
shown in Fig. 3.11, facilitates the establishment of skip connections between
two transformer layers despite the different dimensions of the output tensors:

fswac,2), and f,. It performs a sequence of permutation operations, a

1 x 1 convolution operation followed by a permutation operation again. This
sequence of operations ensures that the pattern of features stays unaltered
without any parameter overhead, as observed when reshaping after dense
operation. The steps of the algorithm are provided in Algorithm 3.2.

e Multi-Head Shared Weight Attention Module (MHSWA): The proposed multi-
head shared weight attention (MHSWA) module enables the simultaneous
learning of attention matrices for heterogeneous modalities, fostering a more
cohesive approach to modality fusion, as shown in Fig. 3.11. This module uses

multiple instances of the same multi-head attention layer for different
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Fig. 3.12: Co-learning Composite (CAC) Loss Function
modalities, eliminating the need for separate attention layers and promoting
efficient parameter usage. It employs key, query, and value matrices, which are
computed by linearly projecting the inputs for each modality. These matrices
are used to compute the attention weights for each modality. When multiple
instances of the same multi-head attention layer are called for different
modalities, the weights for each modality are adjusted simultaneously in the

shared weight attention mechanism.

3.2.1.1 Co-learning Adaptive Composite (CAC) loss function

The most commonly used loss function for binary classification is the binary
cross-entropy loss that measures the difference between predicted and true probability
distributions. To achieve the goal of fine-tuning the training process and optimizing
the model's performance in case of multiple modalities, this work presents a Co-
learning Adaptive Composite (CAC) loss function to penalize different stages of the
network's architecture, where 'n’ denotes the stages of the architecture, namely RGB
head, segmentation head and trajectory head, as described in Fig. 3.12. Y; and ?j"
represents the ground truth values and predicted probabilities at stage 'n’ respectively

for 'jt"" pedestrian sample. The loss computations for the stages I, II and I11 follow a

path A - B,A = C and A — D, respectively. The final loss function is an adaptive
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summation of individual binary cross entropy loss terms calculated from various stages
of the architecture for a total of “m’ samples in the dataset, as represented in Egn. (18)

and (19) as follows:

Licg = =27 Ylog(Y") + (1 =Y log(1 - Y/") (3.26)
Lfinal = /1LI + ,UL” + V[«”I (327)

3.2.2 Experimental Work and Results

This section presents the experimental evaluation of the proposed pedestrian
intention prediction model. The implementation details, including architectural
configurations, training procedures, and computational setup, are outlined, followed
by a description of the datasets used for evaluation. A comparative analysis with state-
of-the-art methods is then conducted to assess the effectiveness of the proposed
models. Finally, an ablation study is performed to examine the contribution of
individual components, providing insights into their impact on overall model

performance.

3221 Implementation Details

The proposed architecture is trained on a Google Colab Pro instance with
access to a high-performance NVIDIA Tesla T4 GPU equipped with 16 GB of
memory, running on the CUDA 12.0 platform. The model architecture is built using
the TensorFlow 2.10.1 framework. The training regimen involves executing
28 epochs and utilizing a batch size of 2in conjunction with a tuning phase
incorporating the L2 regularizer with a regularization factor of 1e~°. The ADAM
optimizer is employed in these experiments, with learning rates 1e~*and 1e~° for the
PIE and JAAD datasets, respectively, that decay by 0.1 every 10 epochs. Early
stopping callback is also employed to prevent overfitting by monitoring validation loss
improvement and halting the training if no improvement is observed for the next
7 epochs. The benchmark protocol is followed to address the dataset imbalance,

which involves adding flipped versions of underrepresented sequences and
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subsampling from the overrepresented samples to balance the number of samples[17].

The computation of segmentation maps using Segformer [141] for the whole
dataset has been executed before training. Each transformer block is configured to
include 4 heads, a projection dimension of 64, and a shared MLP head consisting of
64 X 4 and 64 MLP heads. The patch size for inputting RGB and segmentation maps
is set to (2,8,8). The Tubelet Projection (TP), implemented as a 3D convolutional
layer, efficiently extracts features by aligning the number of filters with the projection
dimension, using a kernel size matching the specified patch size, and employing strides
and padding configurations. The Recurrent Projection (RP), realized through a GRU
layer with the number of hidden units equivalent to the projection dimension, is crucial
in capturing temporal dependencies and patterns within the input data. The MLP layers
are initialized using the HeNormal initializer, including a 50% dropout rate between
layers to mitigate overfitting. The entire experiment is initialized with a random seed
to ensure the reproducibility of results. Through empirical analysis, it has been
determined that an observation length of 0.5 seconds and a time-to-event of 2.5
seconds represents an optimal configuration. Thus, the IntentFormer is trained with
the number of observation frames fixed at 15, i.e. 0.5-second observation length at a

frame rate of 30fps.

@ (b

Fig. 3.13: Diverse data augmentations on pedestrian samples: (a)Original, (b)Rotation
+15°, (¢) Horizontal flip, (d) Gaussian blur (0.9 kernel), (e) Intensity +50, (f) Intensity
-50, (g) Intensity x2.



Table 3.5: Evaluation of the Proposed Architecture in Comparison to Other
Methods on the PIE Dataset

PIE

Methods Year e AUC F1 Prec Rec
PIE_traj[6] 2019 0.79 - 087 - -
SF-GRUJ[17] 2020 0.87 0.85 0.78 0.74 0.64
PCPA[96] 2021 0.87 086 077 - -
TED[103] 2021 091 091 083 - -
PG+[87] 2022 0.89 0.90 0.81 0.83 0.79
TAMFORMER[85] 2022 087 0.84 076 - -
V-PedCross[86] 2022 0.89 0.88 0.67 0.74 0.84
MFFN[92] 2023 0.88 0.89 0.81 0.79 0.80
PedGNNI[82] 2023 0.71 - 0.75 0.83 0.79
TrEP[105] 2023 093 0.94 087 0.89 0.88
PedFormer[93] 2023 093 0.90 0.87 0.89 0.88
VMI[91] 2023 092 091 087 0.86 0.88
IntentFormer(Ours) - 0.93 090 0.88 0.86 0.89

Table 3.6: Evaluation of the Proposed Architecture in Comparison to Other
Methods on the JAADyen Dataset

JAAD

Methods Year 2 AUC F1 . Prec Rec
PCPA[96] 2021 058 05 071 - -
FFSTA[18] 2022 0.62 054 074 065 085
PG+[87] 2022 070 070 076 077 0.75
TAMFORMER[85] 2022 073 070 079 - -
V-PedCross[86] 2022 0.64 066 076 070 0.89
STMA-GCN PedCross[101] 2023 069 058 080 068 0.97
IntentFormer(Ours) - 075 0.70 0.82 0.74 0.88

Table 3.7: Evaluation of the Proposed Architecture in Comparison to Other
Methods on the JAAD.n Dataset

JAAD,

Methods Year Acc AUC F1 ] Prec Rec
SF-GRUJ17] 2020 0.84 0.80 0.62 054 0.73
PCPA[96] 2021 0.85 0.86 0.68 - -
FFSTA[18] 2022 0.83 0.82 0.63 051 0.81
PG+[87] 2022 0.86 0.88 0.65 058 0.75
TAMFORMER[85] 2022 0.89 0.82 0.7 - -
V-PedCross[86] 2022 086 0.81 0.77 0.74 081
MFFN[92] 2023 091 0.90 0.81 0.80 0.81
PedGNN[82] 2023 0.86 - 0.77 0.96 0.86
TrEP[105] 2023 091 0.86 0.69 0.71 0.70
PedFormer[93] 2023 093 0.76 054 0.65 0.60
VMI[91] 2023 0.89 0.90 0.81 0.79 0.83

IntentFormer(Ours) - 0.92 0.90 0.83 081 0.85
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3.2.2.2 Datasets

The proposed method is evaluated using two commonly used benchmark
datasets, JAAD[144] and PIE[6]. The JAAD dataset consists of 346 high-resolution
video clips depicting various driving scenarios in an urban setting, with pedestrians
performing activities such as crossing the road, walking along the road, and waiting
on the side. The dataset is split into two subsets, JAADa and JAADyen, with the former
containing 2100 visible pedestrians who are not crossing or near the end, and the latter
comprising 495 crossings and 191 non-crossings. The PIE dataset offers a more
extensive pedestrian data collection than JAAD, with 1,842 sections of the roadside
annotated across different street structures and population densities. The dataset
includes 1,842 behaviourally annotated pedestrians, with 519 crossings and 1323 non-
crossings, as well as ego-vehicle speed annotations. Both datasets follow the same
recommended training/validation/test split configuration for a thorough evaluation[6],
[96]. Standard classification metrics such as Accuracy, AUC, F1 score, Precision, and
Recall are employed to assess the proposed method's performance. Numerous pixel
and geometric transformation techniques have been implemented to augment
pedestrian crops to counteract overfitting. Fig. 3.13 showcases several data
augmentation techniques applied to a subset of pedestrian crops from the dataset,
including rotation by an angle of +6, horizontal flip, Gaussian blur, with a kernel o ,

addition/subtraction by €, and multiplication by a & to pixel intensities.

3.2.2.3 Comparison with State-of-the-art Methods

The proposed architecture is evaluated against state-of-the-art methods as
follows:  PIE_traj[6], SF-GRU[17], PCPA[96], TED[103], PG+[87],
TAMFORMER[85], V-PedCross[86], MFFN[92],  PedGNN[82], TrEP[105],
PedFormer[93], FFSTA[18], STMA-GCN PedCross[101] and VMI[91]. Table 3.5 and
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Fig. 3.14: Performance evaluation of the proposed architecture across (a) Time-to-
Event (TTE) and (b) Observation Length, sampled at 0.5s and 0.25s intervals,
respectively.

3.7 illustrate that the proposed architecture, IntentFormer, achieves performance levels
comparable to PedFormer [93] and TrEP [105]. This can be primarily attributed to
integrating the Transformer encoder, a fundamental architectural component common
to all these methods. Nonetheless, IntentFormer outperforms these methodologies
[93], [105] on the JAADa dataset, with a substantial improvement ranging from 14%
to 54% in AUC, F1 score, precision, and recall. Moreover, while prior methodologies
[87], [93], [105] typically confine time-to-event (TTE) predictions to 1-2 seconds,
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IntentFormer attains superior results with the highest reported TTE of 2.5 seconds. On
the JAADg dataset, PedGNN [82] achieves the highest precision of 0.96; however,
our proposed method compensates with superior accuracy and F1 score of 0.92 and
0.83, respectively, compared to 0.86 and 0.77 of PedGNN [82]. Furthermore, Table
3.6 demonstrates that IntentFormer exhibits the highest performance among methods
evaluated on the JAADyen dataset.

These findings indicate enhanced generalizability of the proposed
IntentFormer across diverse datasets. This is attributed to an enriched understanding
of pedestrian intentions facilitated by co-learning-induced shared training of the MLP
layer. Incorporating Co-learning Adaptive Composite (CAC) loss has contributed to
the model's generalizability by providing regularization. Moreover, deploying the
Multi- Head Shared Weight Attention (MHSWA) module has effectively modelled
intermodal relationships, further bolstering the model's superior performance.

3.2.2.3  Ablation Study

This section presents an ablation study to evaluate the impact of various design
choices in the proposed framework. The effects of different Time to Event (TTE) and
Observation Sequence Lengths (OSL) are examined, along with an analysis of
modality fusion approaches, loss functions (CAC vs. BCE), and the comparison
between co-learning and a vanilla architecture. Additionally, the contributions of
individual modalities, their fusion order and combinations, and the effect of data
augmentation are assessed. The relevance of different encoders, including the Motion
Encoder, Interaction Encoder, and Visual Encoder, is also investigated. The analyses

are as follows:

i. Effect of Time-to-Event (TTE) and Observation Length: The influence of time-
to- event (TTE) and observation length on predictive performance is examined by
considering various TTE points and observation lengths along the timeline of the
crossing event. TTE points, ranging from 0 to 4 seconds, are sampled at intervals

of 0.5 seconds, while observation lengths from 0 to 2 seconds are taken at intervals
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of 0.25 seconds, as depicted in Fig. 3.14(a). TTE=0 represents the time of the
crossing event. Performance improves as TTE approaches 0 seconds, indicating
increased confidence in predicting crossing events. However, the variability in
performance is also high, indicating that the performance at these timesteps does
not consistently ensure high accuracy. For an efficient intention prediction model,
the prediction confidence score should be high right before the crossing event, i.e.,
TTE > 0. At 2.5 seconds, the statistical measures of accuracy, AUC, and F1 score
demonstrate high and relatively stable values with varying observation lengths, as
depicted in Fig. 3.14(a). Beyond 2.5 seconds, there is a notable decline in overall
performance, with accuracy decreasing by up to 6.5%.

Fig. 3.14(b) demonstrated that the optimal performance is observed within
the 0.5-1.25 seconds observation length range, exhibiting minimal variation with
changing TTE. The performance metrics peak at an observation length of 0.5
seconds and show minimal fluctuation. Hence, this observation length is ideal for
achieving optimal performance, as the accuracy, AUC, and F1 scores remain
consistently high within this range. Moreover, accuracy, the area under the curve
(AUC), and the F1 score show a modest gain up to an observation length of 1.25
seconds since such a prolonged duration leads to higher information acquisition.
However, beyond that, the performance drops as prolonged observation periods
may contain irrelevant details about the scene dynamics that can undermine the
prediction accuracy. Larger observation lengths signify a more significant number

of frames required for analysing crossing intention, resulting in high computational
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Fig. 3.15: Illustration of three Multi-Head Attention types: (a) Cross-Modal
Attention (MHCMA), (b) Multimodal Attention (MHMMA), and (c) Shared-
Weights Attention (MHSWA).
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demands. Therefore, an efficient intention prediction model should make confident
predictions with the least possible observation length. The proposed model
demonstrates robustness by achieving optimal performance with an observation
length of just 0.5 seconds, thereby minimizing computational demands and
ensuring efficient prediction. These results highlight the efficiency of the proposed
architecture in predicting crossing events even with fewer frames and high TTE
(upto 3.5 secs), with performance metrics dropping by no more than 12-14%. This
starkly contrasts the SF-GRU [17] method, which exhibited a substantial decline in
performance metrics, reaching up to 33% when TTE is increased beyond 3 seconds.
Furthermore, the PG+ [87] approach restricts TTE to 1-2 seconds, limiting its
suitability for real-time scenarios. Notably, the proposed approach achieves
superior accuracy compared to VMI [91] and comparable metrics, with the highest
reported TTE to date while maintaining a significantly reduced computational

footprint and inference time.

i. Analysis of modality fusion approaches: In the field of multimodal deep learning,

multi-head cross-modal attention (MHCMA) and multi-head multimodal attention
(MHMMA) based fusion techniques have emerged as popular mid-level
transformer-based approaches [143]. These attention mechanisms have unique
characteristics and functionalities that may cater to specific application domains.
The proposed model employs a multi-head shared weight attention (MHSWA)
mechanism to facilitate the synergistic fusion of information across distinct

modalities. The shared weight attribute capitalizes on the synergy of attention
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Fig. 3.16: Precision-Recall curves for different types of modality fusion attention
mechanisms
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weights from various heads to exploit cross-modal correlations efficiently. It
comprises two scaled dot product attention instances tailored to specific modalities.
The first instance, trained on the initial modality data, captures intricate
interdependencies among elements. Subsequently, the second instance, initialized
with learned weights from the first modality, refines its training on the subsequent
modality, fostering a sequential, contextual understanding enriched by prior
knowledge.

The distinct design characteristics of these three attention-based fusion
strategies are elucidated in Fig. 3.15. An ablation study is conducted using the
Precision-Recall curve, as depicted in Fig. 3.16, to assess the impact of the various
fusion strategies on performance. The study's results revealed that the MHSWA
method's precision-recall curve is notably closer to the ideal curve compared to the
other two approaches. The varying behaviour of attention coefficients across the
different stages of the proposed shared weight attention model is illustrated in Fig.
3.17. At stage I, Fig. 3.17(a), a high range of attention coefficients indicates that
the model assigns varying levels of importance to different embeddings within the
RGB data. This stage focuses on capturing fine-grained details and relationships
specific to the RGB input, as it is the primary modality. A slight decrease in the
attention coefficient range at this stage I is observed in Fig. 3.17(b), suggesting
that the model focuses on commonalities and interactions between RGB and
segmentation embeddings. The shared weight attention mechanism allows the
model to emphasize cross-modal correlations and jointly process features from both

modalities. In the last stage 111, Fig. 3.17(c) highlights attention coefficients
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Fig. 3.17: Evolution of Attention Coefficients across Sequential Stages in the

Proposed Shared Weight Attention Model
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distinguished by a much shorter range, indicating that the model is assigning more
consistent attention across embeddings from different modalities. It is inferred that
the model is integrating information from previous stages (RGB and segmentation)
and trajectory more uniformly. The change in attention behaviour from varying
ranges to more uniform attention signifies that the model progressively shifts its
emphasis from capturing modality-specific details to integrating multimodal
information for decision-making. Hence, the observed behaviour aligns with the
objective of multimodal learning: to learn robust representations that capture inter-
modal relationships and produce consistent outputs despite the varied nature of the
input sources.

In Fig. 3.18. Guided Integrated Gradient (IG) [145] Visualizations
corresponding to individual attention map heads are presented for RGB sequences.
It highlights the areas where Multi-head Shared Weights Attention (MHSWA)
mechanisms positively influence the model's classification decision. This
configuration comprises a total of four discrete attention map heads. The first
attention map head primarily emphasizes the outline or shape of the target
pedestrian. The second and third attention maps appear to capture details related to
the target's immediate surroundings and the pedestrian's dynamic variations across
the sequence of frames. The fourth attention map identifies contours and distinct

patterns within the cropped image.

Image Sequence Head 1 Head 2 Head 3 Head 4

Fig. 3.18: Guided Integrated Gradient [145] Visualisation of IntentFormer
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iii. CAC vs BCE: This section explores the impact of the proposed Co-learning

Adaptive Composite (CAC) loss function on validation performance and the
dynamic relationship between adaptive loss weights and training progress. Fig.
3.19(a) presents the validation accuracy curves for models trained using the
standard Binary Cross-Entropy (BCE) and the proposed CAC loss function. The
CAC loss function notably enhances the stability of validation accuracy throughout
the training phase, reducing fluctuations compared to BCE and achieving superior
validation accuracy. In Fig. 3.19(b), the validation loss curves show that BCE
induces more frequent fluctuations than the CAC loss, leading to difficulties in
convergence. In contrast, the CAC loss function achieves the lowest validation loss.

These results indicate that the CAC loss function effectively mitigates overfitting
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Fig. 3.19: Effect of CAC and BCE loss functions on (a) validation accuracy and
(b) validation loss curves.
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Fig. 3.21: Learned feature representations from the shared MLP layer in the co-
learning architecture, across epochs (a) 3, (b) 15, and (c¢) 22
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Fig. 3.22: Qualitative predictions on PIE/JAAD where IntentFormer correctly
classifies intent, unlike the vanilla transformer. Red: non-crossing, Green: crossing.

during training, thereby enhancing the generalization capacity of the proposed
architecture.

Fig. 3.20 illustrates the evolution of the training and validation loss
alongside the changes in adaptive loss weights (w;, w,, w3), throughout training
epochs. The adaptive loss weights, initialised randomly, exhibit dynamic
adjustments in response to the changing training landscape. Specifically, weights
w, and ws, exhibit a gradual and consistent increment throughout epochs
culminating at respective maximal values of 0.46 and 0.60. Contrastingly, weight
w; display more intricate behaviour, initially decreasing, followed by a gradual and
consistent increase over epochs, reaching a maximum value of 0.35. This suggests
that the w; loss term contributes significantly less to the overall loss as the model
refines its representations. The vertical line denotes the epoch at which the
minimum loss is attained, providing insight into the optimal point (w;:0.29,

w,: 0.36 and wy: 0.52) in the training process. This allows us to fine-tune training
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strategies and highlights the potential for adaptive loss weighting to enhance model

training efficiency and performance.

Co-learning v/s Vanilla transformer architecture: This section discusses the
adaptive learning process of the proposed co-learning architecture that leverages
shared MLP heads. The pairwise scatter plots in Fig. 21 illustrate a notable
evolution in the alignment of learned representations across the three epochs
(Epochs 3, 15, and 22) for the Co-learning multimodal architecture employing
shared MLP heads. As training progresses, the shared MLP layers output at three
stages increasingly converges along a linear trajectory. This highlights that the
architecture effectively captures the shared semantics across modalities, allowing
for improved feature extraction and cross-modal interaction. Furthermore, the
dynamic alignment of representations over epochs suggests that the shared MLP
layer effectively captures cross-modal relationships, allowing different modalities
to learn and adapt coherently.

Furthermore, a comparative analysis of the proposed architecture with a
vanilla transformer model without a shared MLP head is also carried out. The term
"Vanilla transformer" here denotes a model variant in which the shared MLP in the
co-learning architecture is substituted with three independent trainable MLPs, each
assigned to a specific modality (RGB, segmentation, and trajectory). This

modification facilitates a comparative analysis between the co-learning architecture

Without Co- learning

Increasing epochs Increasing epochs

(@ (b)

Fig. 3.23: Grad-CAM visualization of IntentFormer at 3, 15, and 22 epochs: (a) With
co-learning (right to left), (b) Without co-learning (left to right).

A

»
»



62

utilizing shared MLPs and an alternative configuration employing non-shared,
individual MLPs for each modality. The goal is to evaluate the influence of shared
semantics across modalities on the learning dynamics. Qualitative results for the
few samples from the JAAD/PIE dataset are presented in Fig. 3.22. Notably, Fig.
3.22 (d)-(e) depicts instances of no eye contact between the pedestrian and the
camera, resulting in uncertainty regarding the direction in which the pedestrian
would move. For instance, Fig. 3.22 (e) shows a pedestrian looking at a phone,
making it difficult for the model to interpret intention from visual appearance cues
such as gaze.

Conversely, Fig. 3.22 (f)-(g) illustrated examples of poor illuminations or
reflections that tampered with the supposed appearance cues. Finally, Fig. 3.22 (h)-
(i) showcases examples where the pedestrian sample is too small. The vanilla
architecture does not perform well in these hard classification samples. However,
the correct predictions by the proposed model can be attributed to the fact that it
caters to the cross-modal relationships among visual appearance, segmentation
maps and trajectory with consistent learned representations. Thus, even if one
representation fails to capture the pedestrian's intention correctly, its relationship
with the other two modalities strives to decipher it correctly, albeit with less
confidence.

The Grad-CAM visualizations for the IntentFormer with and without the co-
learning module (Vanilla transformer) are depicted in Fig. 3.23(a) and (b),
respectively. Analysis of Fig. 3.23(a) reveals a progressive refinement in the Grad-
CAM attention maps in the co-learning environment as the number of training
epochs increases. Initially, at epoch 3, the Grad-CAM outputs are dispersed across
the input image, lacking specific focus on any element. However, as training
progresses, the importance weights become increasingly localized to image regions
pertinent to classifying the pedestrian's intention. The attention maps become more
precise, effectively highlighting the silhouette of the target pedestrian. Additionally,
with the incorporation of segmentation maps and trajectory data in the second and
third stages, respectively, it is observed that co-pedestrians and certain scene
elements, such as road boundaries, also receive higher weightage as observed for

models trained for epochs 15 and 22. This indicates an enhanced understanding of
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the context and contributing factors to pedestrian intention prediction. Conversely,
in Fig. 3.23(b), where IntentFormer is trained without the co-learning module, the
pedestrian torso and some scene elements sparsely receive higher weights by the
last training epoch. The input pixels are not highlighted precisely or
comprehensively as in the co-learning training mode. This less effective
localization of important features reduces the ability to identify the most relevant

features for intention prediction.

. Impact of individual modalities, their combinations and fusion order: This
section investigates the impact of different modalities and fusion order
permutations on the overall performance of pedestrian intention prediction. In our
recent work[91], pedestrian appearance, scene context, pose, trajectory, and ego-
vehicle speed were utilised for pedestrian intention prediction. The analysis
demonstrated that context features achieved the highest performance metrics,
followed by appearance features. In contrast, pose features contributed the least
when utilized as graph node features to model the temporal relationships of
pedestrian interactions. Based on these findings, the proposed work incorporates
only RGB crops, trajectory, and segmentation maps for context as the primary

modalities for the proposed intention prediction model. This approach minimizes

Table 3.8: Performance comparison of the IntentFormer model with different
modalities, their combinations, and the order of fusion

. Accuracy
Modalities
PIE JAADpen JAADai

T 0.56 0.41 0.55

R 0.59 0.45 0.60

S 0.43 0.39 0.40
T+R 0.63 0.52 0.64
T+S 0.58 0.48 0.61
R+S 0.66 0.54 0.69
T+S+R 0.78 0.68 0.82
T+R+S 0.76 0.67 0.80
S+T+R 0.88 0.69 0.86
S+R+T 0.89 0.70 0.88
R+T+S 0.90 0.69 0.85
R+S+T 0.93 0.75 0.92

*R: RGB Images, S=Segmentation Maps, T: Trajectory
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the additional memory footprint associated with pose features without significantly
impacting the model's overall performance. It can be observed from Table 3.8 that
individual modality (R: RGB pedestrian crops, S: Segmentation maps and T:
Trajectory) achieve the lowest accuracy. When assessing single modality
performance, input feed is given only through the first encoder stage; no other feed
is given through subsequent encoder stages. In subsequent ablations involving
combinations of two modalities, input feed is given through the first and second
encoder stages. Combining these modalities leads to substantial performance
improvements. For instance, combining T+R increases accuracy by 12.5% on PIE,
T+S increases accuracy by 3.6%, and R+S increases accuracy by 16.4%,
considering accuracy with only T as baseline. The highest accuracy is obtained with
the combination R+S+T, resulting in a 66.1% increase in PIE, a 66.7% increase in
JAADgen, and a 53.3% increase in JAADa over baseline, demonstrating the
effectiveness of integrating these modalities. In the case of a single modality in any
of the encoder stages with no other modality feed, the modality in any of the encoder
stages with no other modality feed, the MHSWA, designed for the fusion of two
diverse modalities within the encoder, operates as standard MHA.

The experiments with different orders of fusion, as reported in Table 3.8,

highlight that a noticeable dip in performance is observed when features such as
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Fig. 3.24: Visual comparison of IntentFormer trained with different augmentations.
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RGB images and segmentation maps are integrated at later stages of the network.
By selecting the correct permutation by feeding trajectory at the last stage of the
network, the accuracy performance improves by up to 9% on PIE, 5% on JAADhgen,
and more than 8% on JAADa. This observation can be attributed to the proposed
architecture's ability to leverage visual features in the earlier network stages
effectively. The subsequent integration of dynamic features like trajectory
coordinates at later stages optimally takes advantage of the enriched contextual
understanding constructed by prior modalities. By aligning the integration order
with the intrinsic complexity of features, the architecture maximizes the
information captured by each modality. These findings highlight the pivotal role of

the chosen sequence of feature integration in enhancing prediction accuracy.

Table 3.9: Quantitative Evaluation On The PIE/JAAD Dataset

Model Variants

Ablations MLP Heads Multi-Head Attention Loss Accuracy

MLP sr;ri-d MHCMA MHMMA MHSWA BCE CAC PIE JAADben JAADan
1 v x v x x v x 0.89 0.69 0.88
2 v x x v x v x 0.89 0.70 0.87
3 v x x x v 4 x 091 0.69 091
4 x v v x x v x 0.90 0.70 0.90
5 x 4 x v x v x 091 0.71 091
6 x v x x 4 4 x 0.90 0.70 0.90
7 v x v x x x 4 0.86 0.69 0.89
8 v x x v % x v 087 0.65 0.88
9 v x x x v x v 0.88 0.63 0.87
10 x v v x x x v 0.91 0.70 0.88
11 x v x v x x v 0.92 0.71 0.89
12 x v x x v x v 093 0.75 0.92

Table 3.10: Comparison of IntentFormer with state-of-the-art models on the
PIE, JAADpeh, and JAADay datasets, highlighting memory footprint, inference
time, and highest achieved accuracy.

Size . Accuracy Accuracy Accuracy

Model (MB) Inference time(ms) (PIE) (JAADber)  (JAADan)
PCPA[96] 118.8 38.6 86 50 70
FFSTA[18] 374.2 70.83 - 62 83
PG+[87] 0.28 5.47 89 70 86
TED[103] 12.8 2.76 91 - -
V-PedCross[86] 4.8 - 89 64 86
PedGNNI[82] 0.027 0.58 70.52 - 86.22
VMI[91] 19.07 11.03 92 - 89

IntentFormer 2.13 3.8 93 75 92
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Table 3.11: Model Architecture and Hyperparameter Configuration

Trainable Parameters

Proposed Vanilla
Modules/Layers/Encoders IntentFormer Transformer Hyperparameters
Non-

Shared Shared Non-shared

TP: Conv 3D: Filters-64, Kernel

Tubelet/Recurrent Projection 38K (total) i 38K (total) Size-(2.8.8)

(TP/RP) RP: GRU: Hidden units-64
Positional Encoder_TP 351K - 351K Er_nbedd_lng Layer Output
Dimension- 64
Positional Encoder_RP 896 - 896 Embedding Layer Output
Dimension- 64
No. of heads (4), Size of each
MHSA/MHSWA 16.6K 16.6K attention head (64), Dropout-50%
PCP 82K - 82K Convi1D:1x1
Two sequential MLPS with 64x4
Shared MLP ) 33K ) and 64 neurons, Dropout-50%
Layer Normalization (LN) 128 -
Layer Normalization, GAP,
Classification Head 130 - 130 Dropout-50%, MLP with 2
neurons
TE, + TE; + TE, 132K 33K 231K -
Total

522K 33K 621K -

Effect of Data Augmentation: Fig. 3.24 illustrates the impact of various
augmentation techniques on the performance of our pedestrian intention prediction
model. Among the techniques evaluated, horizontal flipping (F) and rotation (R)
provided minimal enhancements compared to the baseline without augmentation.
Additionally, Gaussian blur (G), addition/subtraction (A/S), and multiplication (M)
demonstrated notable improvements, increasing overall performance metrics by
2.71%, 2.01%, and 3.63%, respectively, relative to the baseline. The combination
of Gaussian blur, addition/subtraction, and multiplication (G + A/S + M) resulted
in substantial enhancements, boosting accuracy by 8.24%, F1 score by 4.88%,
precision by 5%, and recall by 4.76%. The inclusion of all five augmentations (G +
A/S + M + F + R) yielded the highest overall improvements, with increases in
accuracy by 9.41%, F1 score by 7.32%, precision by 7.50%, and recall by 5.95%.
These results demonstrate that complex augmentations such as Gaussian
blur, addition/subtraction, and multiplication significantly enhance the model's
ability to predict pedestrian intentions. Although primary augmentations like
horizontal flipping and rotation are insufficient to capture the complexities of
pedestrian movements and interactions, the synergistic effect observed from

combining multiple augmentations highlights that diverse and comprehensive
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augmentations can collectively enhance the model's robustness and accuracy in

pedestrian intention prediction tasks.

Quantitative Analysis: The analysis of model ablations in Table 3.9 reveals a
notable 3-4% increase in accuracy for shared MLP configurations compared to their
non-shared MLP counterparts. The multi-head attention configurations (MHCMA,
MHMMA, MHSWA) demonstrate a systematic rise in accuracy across all datasets,
with MHCMA exhibiting the lowest accuracy and the proposed MHSWA achieving
the highest levels. This validates the impact of shared weight attention among
diverse modalities (RGB images, Segmentation maps and trajectory) in a co-
learning framework. The proposed Co-learning Adaptive Composite (CAC) loss
also shows comparable performance to the widely used Binary Cross-Entropy
(BCE) loss. It also introduces a significant improvement in regularization, leading
to reduced fluctuations in validation accuracy. These collective findings underscore
the effectiveness and efficiency of the proposed IntentFormer architecture in
capturing intricate relationships among modalities for robust pedestrian intention
prediction.

The IntentFormer model achieves superior accuracy of 93% on the PIE
dataset, 75% on the JAADgen dataset, and 92% on the JAADai dataset while
maintaining a competitive memory footprint of 2.13 MB and an inference time of
3.8 ms, as shown in Table 3.10. It consists of 555k parameters, showcasing a
substantial decrease in parameters by approximately 11% compared to the vanilla
transformer with 621K parameters, suggesting more parameter-efficient learning
(Table 3.11). This parameter reduction also results in a 10% decrease in memory
footprint. One of the key reasons behind the competitive memory footprint achieved
for the proposed architecture is the co-learning module and the Multi-head Shared
Weights Attention devised for model training that keeps the trainable parameters
limited in numbers. Although the memory footprint is higher than that of PedGNN
[88], IntentFormer offers a significant accuracy improvement, with a 27.62%
increase on the PIE dataset and a 3.22% increase on the JAADa) dataset compared
to PedGNN [82]. Thus, despite PedGNN's minimal memory footprint of 0.027 MB,

it fails to adequately address the complex dynamics of real-time scenes compared
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to the proposed IntentFormer. These results highlight the model's efficiency and
effectiveness, making it well-suited for real-time applications in autonomous

driving.

3.3 Conclusion and Future Scope

This chapter presented two successive approaches to pedestrian crossing
intention prediction. The first work introduced a multimodal framework employing
attention mechanisms across spatial, channel, and temporal dimensions, along with a
novel multi-head-attention adjacency-matrix-based GCN (MHA — AdjMat GCN) to
fuse visual, motion, and interaction features. This model demonstrated superior early
intent prediction on the JAAD and PIE benchmarks (accurately anticipating crossing

up to 2.5 s before the event).

Building on these insights, the second work proposed ‘IntentFormer’, a
multimodal transformer-based architecture. It integrates RGB images, semantic
segmentation maps, and trajectory features through three co-trained transformer
encoders. Each encoder uses a multi-head shared-weight self-attention mechanism,
and the system is trained with a shared-MLP output head under a novel Co-learning
Adaptive Composite (CAC) loss. This design excels with very short observation
windows (0.5-1.25 s) and maintains strong prediction accuracy even up to 3.5 s before

crossing, outperforming prior state-of-the-art methods.

Taken together, these sequential contributions illustrate that shifting from GCN-
based feature fusion to transformer-based co-learning improves temporal modelling
and cross-modal integration. To further enhance real-world robustness and
applicability, future research should focus on modelling uncertainty and unpredictable
behaviour and optimizing for real-time adaptation and generalization, enabling models

to remain reliable across diverse urban scenarios and unseen conditions.
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CHAPTER 4

LONG TERM INTENTION PREDICTION

Long-term pedestrian intention prediction is a critical task in fields such as
autonomous driving, robotics, and smart city infrastructure. Accurately forecasting the
future movements of pedestrians over extended periods involves significant challenges
due to the complex, non-linear nature of human motion, sudden changes in behaviour,
and the influence of environmental factors. These challenges are further compounded
by the difficulty of capturing and modelling the wide range of contextual information
that affects pedestrian decisions. Traditional trajectory prediction methods often
struggle to account for these dynamic interactions and the inherent uncertainty in long-
term predictions. This chapter addresses the challenges of long-term pedestrian
intention prediction, focusing on the complexities of non-linear motion, sudden
behavioral changes, and environmental interactions. A novel framework is introduced
to enhance trajectory forecasting, incorporating mechanisms for adaptive learning,

contextual integration, and uncertainty-aware prediction.

4.1 Progressive Contextual Trajectory Prediction with
Adaptive Gating and Fuzzy Logic Integration

Despite the rapid advancement of highly automated vehicles poised to mitigate
accidents caused by human errors, understanding the behaviours of road users,
especially vulnerable pedestrians, remains a significant challenge. The evolution of
pedestrian trajectory prediction, transitioning from early motion models to recent deep
learning approaches, has highlighted persistent challenges in accurately predicting
future trajectories, particularly in complex scenarios. To address this, this paper
presents a Progressive Contextual Trajectory Prediction with Adaptive Gating and
Fuzzy Logic Integration (PCTP-AGFL). The proposed method incorporates a dynamic
progressive generator (DPG) comprising multiple LSTM layers that adapt
progressively to pedestrian motion pattern complexities. The DPG is trained using a
learned scheduled sampling strategy implemented through an Adaptive Gating

Mechanism (AGM), allowing dynamic switching between teacher forcing and normal
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mode. This is augmented with an Encoder-Decoder Contextual Attention (EDCA)
module to enhance contextual awareness. A novel Adaptive Fuzzified Discriminator
(AFD) is also introduced to enhance the model's capability to handle ambiguous
trajectories. Experimental results on JAAD/PIE and ETH/UCY datasets demonstrate
the method's superiority over baselines and state-of-the-art approaches. Furthermore,
a comprehensive ablation study is carried out to tune the progression parameters,

training strategy, and the type of classifier logic in the discriminator.

4.1.1 Proposed Approach

At time step n, the observed trajectory of a pedestrian in the last k timesteps is
represented as P, = {Pn—k+1,Pn-k+2, --»Pn} Where p,, includes its top-left (x;;, y¢1)
and bottom-right (x;,, y,,) bounding box coordinates. The primary objective is to
predict its v future coordinate positions Q,, = {¥n+1, Vnt2, «+-» Yn+v}- 10 address this
challenge, a novel Progressive Contextual Trajectory Prediction with Adaptive Gating
and Fuzzy Logic Integration is proposed as illustrated in Fig. 4.1. This architectural
framework employs a learned scheduled sampling training strategy to provide

essential guidance for pedestrian trajectory prediction. The Adaptive Fuzzified
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Fig. 4.1: Proposed trajectory prediction architecture.
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Fig. 4.2: Illustration of features alignment in multi-pedestrian frames for X pedestrians
in a frame

Discriminator (AFD) enhances its ability to discriminate between real and fake
trajectories by providingl increased levels of nuanced confidence in its classifications.
Moreover, the model leverages supplementary features derived from RGB images i.e.
RGB crops R, = {rm_kx+1,Tn-k+2 - T} and segmentation maps S, =
{Sn—k+1>Sn—k+2, -, Sn} 10 capture contextual information, thereby enriching the
understanding of the environment, which plays a pivotal role in improving the quality
of trajectory predictions. Fig. 4.2 demonstrates how the model aligns trajectories with
the visual context, leading to a richer representation of a pedestrian sample in a multi-

pedestrian scenario. For all the pedestrians in a single frame, same segmentation maps

e O D
B S
e S S B B B
D3

Fig. 4.3: Progressive encoder architecture
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are used. Thus, segmentation map S; for each i" pedestrian in a frame is S; = S, =
53 I SN'

4.1.1.1 Dynamic Progressive Generator (DPG)

The proposed dynamic progressive generator employs a hierarchical structure
consisting of multiple layers of Long Short-Term Memory (LSTM) units, with the
number of LSTM layers [, increasing progressively from 1 to r, to adapt to complex
input patterns. A parameter governs the control over the progression a; which is
initialized and updated during training at each iteration within the range 0 to 1 as
illustrated in Fig 4.3. This progressive growth strategy ensures that the model
dynamically adjusts its depth to effectively capture the intricacies of the input data,
effectively balancing model complexity with performance. A similar progressive layer
is mirrored on the decoder side, preserving architectural design symmetry. The
encoder captures the target pedestrian's motion pattern B, as a latent vector using a
recurrent cell i.e. LSTM. The new hidden state hf,, at (n — k + 1), timestep is
updated through an LSTM Cell given by Eqn (4.1).

h£+1 = LSTMg(Pp— , hlli) (4.1)

In training an RNN encoder-decoder for sequence-to-sequence prediction tasks

like machine translation, etc., different training strategies impact the learning process.
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Fig. 4.4: (a) Adaptive Gating Mechanism (AGM) for learned scheduled sampling; (b)
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Normal mode involves processing input sequences step by step, potentially leading to
error propagation. The teacher-forcing strategy, on the other hand, utilizes ground truth
target outputs from the training dataset as inputs during the training process to mitigate
error accumulation over time. Chen et al.[146] successfully employed teacher forcing
to address the speaker permutation problem, enhancing speaker embedding
representation. Huang et al.[147] proposed teacher-forcing training strategy for image
captioning. However, when using teacher forcing training strategy, the model might
become overly reliant on the ground truth inputs and may not generalize well to unseen
data during inference. To address this, another seminal work[148] employed a
scheduled sampling strategy that gradually transfers the training phase from a teacher-
forced manner to a normal training mode for video captioning. Leveraging these
advancements of teacher-forcing framework in sequence-to-sequence modeling tasks,
the proposed PCTP-AGFL presents a learned scheduled sampling strategy via
Adaptive Gating Mechanism (AGM) as illustrated in Fig. 4.4. It allows dynamic
switching between teacher forcing and normal mode training strategy, striking a
balance between accuracy and generalization. This mitigates potential biases and
errors associated with static training strategies. This mechanism utilizes the encoder’s
hidden state to decide whether to use teacher-forced input or the previous prediction
as the input to the decoder at each timestep using a gating layer ‘gL’ defined as a fully

connected layer with sigmoid activation. The gating factor ¢ is computed as:

&= gL(hQ) (4.2)

It defines a schedule that determines how the model switches between teacher
forcing and using its predictions. The intial_teacher_force_rate 6, within a
schedule typically starts with a high probability (~1) of using teacher forcing and
gradually decreases this probability as training proceeds. The current teacher-forcing

rate @ is defined as follows:

0 =0, *&+*min(1.0, global_step /y) (4.3
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Where global_step is the total count of the training steps executed, and y is
the teacher forcing decay rate. As training progresses, teacher forcing gradually
decreases, and the probability of using the model's predictions increases. A randomly
sampled number t is generated between 0 and 1 as the threshold for deciding whether
to use teacher-forcing or the model's predictions. It introduces stochasticity into the
decision process and encourages the model to explore different behaviours during
training. In the case of deterministic predictions, 7 is set to 0.5. Finally, t is compared
with 0 to assign the input to the decoder. During testing, the decoder is set to utilize

its predictions due to the non-availability of ground truth trajectories.

Furthermore, an Encoder-Decoder Contextual Attention (EDCA) module is
employed to regulate the attention allocation of the decoder at each time step towards

the encoder's hidden states as shown in Fig. 4.5. It is mathematically denoted as
Cm = ?:1 pmj(hr[:l—l: h’]E) h]E (4.4)

where m represents the current decoder timestep, hf corresponds to the
encoder's hidden state at the jt* timestep with j ranging from 1 to k; h2,_, denotes the
input hidden state of the decoder at the (m — 1)** timestep and pm;j is the attention
coefficient. This coefficient assesses the influence and significance of prior encoder
states on the current state of the decoder. The final context vector C,, is acquired
through the concatenation of visual context features obtained from RGB images with

Regions of Interest (ROIs) encompassing the pedestrian and full scene segmentation

I 1 I—=—=-== 1
| EDCA | @ VISUAL \ EDCA | @ VISUAL
| CONTEXT | CONTEXT

Bl e
3 8

Fig. 4.5: Encoder-Decoder Contextual Attention at decoder timesteps, (a) t = 2 and
(b)t = 3.
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maps. This context vector is used to update the decoder's hidden state at mt" timestep.
The spatio-temporal visual context features are derived through using EfficientNetB6,
followed by Global Average Pooling and an LSTM layer. Therefore, the future hidden

state kP, ; of the decoder at the (m + 1)" timestep is given as:

D {LSTMD(Qn+m 1, m), if 6 ZT}
" LSTMD(Qn+m 1Cm), if 0 <t

(4.5)
where g% _, and g¥M _, corresponds to ground truth coordinates and

predicted coordinates from the previous decoder timestep, respectively.

4.1.1.2 Adaptive Fuzzified Discriminator (AFD)

In computer vision applications, binary logic classifiers in Convolutional
Neural Networks (CNNSs) excel at deterministic tasks like binary image categorization
and object presence detection. Conversely, Fuzzy logic allows values to be represented
as degrees of truth using membership functions to model uncertainty. It has
demonstrated effectiveness in various computer vision classification applications,
including image classification and reasoning problems [149], [150]. Capitalizing on
the distinctive capabilities of Fuzzy logic, the proposed PCTP-AGFL strategically
incorporates it into the discriminator. This integration augments prediction

Backpropagating G _loss to update generator weights
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discriminator weights ’
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Fig. 4.6: Comprehensive Training Overview of the Proposed Architecture
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Algorithm 4.1: Computation of Fuzzy Scores

Inputs:
- Ib: Left boundary of the triangular function.
- p: Peak (center) of the triangular function.
- rb: Right boundary of the triangular function.
- 3: Discriminator Output.
Output:
Fuzzy Scores [’
Initialization:
Initialize Ib, p, and rb during model training for real and fake samples, respectively.
Procedure:
for each batch of sample:
Step 1: Calculate real and fake membership scores using membership function pg (5) =
3, ug} and pp (5) = {3, up} where pip and up are degree of membership of the element x to the
real class R and fake class F respectively.
for the left segment: if b < 3 < p:
HR(i) =3 — Ibg) / (pr — lbg)
.UF(ﬁ) = (5 — lbg) / (br — lbg)
for the right segment: ifp < x < rb:
HUr (5) = (rbp — 5) / (rbg — pg)
UF (5) = (rbp — 3)/ (rbr — pr)
Outside the function's range:
.“R(ﬁ):.“F(ﬁ) =0
Step 2: Now the fuzzy rule is the union operation between real and fake sets:
T = urur (5) = maX(.UR (3)' HF(j))
If max(ug (5)'#1?(3) == ur()
P =ué(3) =10 — (3,
where p$ is a complement operation
return T

capabilities, especially in challenging scenarios where discriminating between fake
and real instances is ambiguous [150]. The complete training overview is illustrated in
Fig. 4.6. It illustrates the interplay between real ground truth Q,, and generated fake
trajectory samples Q,, fed to the discriminator. It is followed by adaptive fuzzification
to address ambiguous cases where distinguishing between real and fake trajectories is
challenging. Loss computation involves Huber loss for comparing real and fake
trajectory samples, alongside binary cross-entropy (BCE) loss for adversarial training
that are backpropagated to update generator and discriminator weights. Real and fake
trajectory samples SE™ ~p(QL™, Qi™) are input to the discriminator, which

generates real and fake output respectively as in Eqn (4.6):
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3 = Linear(LSTM_;s(SE™, hy;s) (4.6)

where 3z and 3y are the discriminator output labels corresponding to real
(ground truth) and fake (generated) trajectory samples, respectively. Linear serves as
a fully connected layer with no activation. Subsequently, the output undergoes an
adaptive fuzzification process, as detailed in Algorithm 4.1. For adaptive
Fuzzification, two membership functions, uz(3) and ur(3), are defined for real and
fake trajectory classes. These membership functions take the form of triangles with
adaptable parameters, including left boundary (Ib), right boundary (rb), and peak (p).
These parameters are fine-tuned in each training epoch to ensure a clear separation
between the distributions of real and fake trajectory samples. The algorithm computes
the degree of membership, pg/ug, Of the discriminator output 3 to the real/fake class,
as defined in Step 1. The final fuzzy score denoted as T, is determined through the
union operation between the real and fake sets. This operation captures the maximum
degree of membership of the input 3 to the real or fake class as described in Step 2. In
cases where the maximum degree of membership is associated with the fake class,
complementation is necessary. This allows the fuzzy scores to be employed for
training and backpropagation with now 3™ and 2™ denoting the predicted fuzzy
probability scores for real and fake samples with ground truth labels TA™ = 1 and
IF™ = 0 respectively. This process ensures that the fuzzy scores effectively guide
training by leveraging membership degrees and complementation, refining the

discriminator's ability to distinguish real from fake samples.

4.1.2 Experimental Results and Works

In this section, the efficacy of the proposed method is assessed against several
state-of-the-art approaches using two first-person view (FPV) datasets, JAAD [137]
and PIE [6], and two bird's eye view (BEV) datasets, ETH [151] and UCY [152].
Furthermore, the evaluation entails a comprehensive comparative analysis and
discussion on the impact of progression parameters, training strategies, and the type of
discriminator logic, shedding light on the method's adaptability and performance
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Algorithm 4.2: PCTP-AGFL Training Procedure

Inputs and Definitions:
(i) Mini-batch size: s’
(ii) Foru e (1,s),

° Q(”):
. Q‘(u):
o PV
e RW.

° S(u)
o s

(iii)

Pedestrian ground truth trajectory space
Pedestrian generated trajectory space
Pedestrian historical trajectory space
RGB image space

: Segmentation maps space
: Random noise sampled from a normal distribution ~ N(0,1)
(w)
e Cp:

Context Vector
Dynamic Progressive Generator (DPG) with model parameters 9,:{W,, B} where W,

and By, are set of weights and biases of layers constituting DPG

o FEncpp; and Encpp, are encoders and decoders of DPG respectively
e EDCA: Encoder-Decoder Contextual Attention Module

(iv)

Adaptive Fuzzified Discriminator (AFD) with model parameters 9,;:{W,, B;} where W,

and B, are set of weights and biases of layers constituting AFD
(v) agand a4: Learning rate for DPG and AFD respectively.

Outputs
Trained DPG and AFD model with updated parameters 1§g and 9, respectively.

Procedure
forepochs 1, ...,e do
// Train Discriminator (AFD); Freeze Generator (DPG)
for discriminator steps 1, ..., 8 do
Step 1d: Sample minibatch of size s from {Q®), P, R, 5}
Step 2d: P = pW 4 ¢ where e™ ~ N(0,1)
Step 3d: Construct the input space: ZW = {pW, RW, s}
Step 4d: DPG generates the trajectory in three steps:
(i) ¢ = EDCA(Encppe{P™?})
(i) € = {c @RV 5}
(i) if teacher-forcing mode == True
0™ = Decpps (C, Encppe{P™}, @®)=DPG(2™)
else: // normal mode
QW = Decppg ((CE::)' EnCDPG{P(u)}): DPG(Z™)
Step 5d: Update 9, by ascending its stochastic gradient as:

(i)
(i)

pa = Vo, > Ties [log AFD(QW) +log (1 - AFD(Q™))|
94= 94 + ag. RMSProp( 94, pq)

end for

//Train Generator (DPG); Freeze Discriminator (AFD)
for generator steps 1, ..., 5 do
Step 1g—4g: Repeat the Steps (1d — 4d) as in AFD training
Step 5g: Update 9, by descending its stochastic gradient as:

(1)
(i)

end for

Py = Vo, *S5e1 [log (1= AFD(Q™)) + Luuper (@, Q)]
d,= 9, — a,. Adam( 9y, p,)
end for

return 9,, 9,

across varied experimental conditions.
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4.1.2.1 Implementation Details

The proposed model's training is executed on a Google Colab Pro instance
equipped with a high-performance NVIDIA Tesla T4 GPU, boasting 16 GB of
memory, and operated within the CUDA 12.0 platform. The model architecture is
constructed using the TensorFlow 2.10.1 framework. In terms of optimization, the
Adam optimizer is applied to the Generator, with default parameters and an initial
learning rate of 1 x 107°. In contrast, the Discriminator employs the RMSprop
optimizer with an equivalent learning rate. The training procedure involves a batch
size of 4, and training is concluded after 15 epochs. The segmentation maps are
generated using state-of-the-art Segformer (MiT-B5)[141], a semantic segmentation
model. RGB and segmentation features are precomputed using the EfficientNetB6
network. Consistently, the hidden size for all encoders and decoder LSTMs within the
proposed method is set to 64 across all datasets. A dual Monte Carlo sampling strategy
is employed in the generator implementation for stochastic predictions. It involves the
introduction of random noise to the input data, particularly the past bounding box
coordinates, simulating inherent uncertainties in observed data. Concurrently, random
sampling is implemented at each iteration, incorporating a random threshold (7)

between 0 and 1 to switch between teacher-forcing and model predictions.

A comprehensive training procedure for the proposed PCTP-AGFL is
presented in Algorithm 4.2. The algorithm entails alternating training phases over
epochs, optimizing the DPG and AFD models iteratively. In phase I (Steps 1d-5d),
AFD undergoes training while DPG parameters (8,) remain fixed. During this phase,
batches of pedestrian trajectory data, along with corresponding images and
segmentation maps are processed to update the discriminator's parameters, enhancing
its ability to distinguish between ground truth trajectories and generated ones.
Subsequently, in phase Il (Steps 1g-5g), the AFD parameters (94) are held constant
while the DPG is trained. This phase improves the trajectory generation by minimizing
the Huber loss between generated trajectories and ground truth ones, while the AFD

provides adversarial feedback.
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The following metrics are used for the evaluation of the proposed trajectory
prediction algorithm for FPV datasets: MSE over bounding box coordinates, Cy,s and
Crmsg Which are the MSEs of the centre of the bounding boxes averaged over the
entire predicted sequence and only the last time step, respectively. The average
displacement error (ADE), which measures accuracy along the whole trajectory, and
the final displacement error (FDE), which measures accuracy only at the trajectory
endpoint, are utilized for BEV datasets. All results metrics used for JAAD and the PIE
dataset are in pixels, while for ETH and UCY, ADE and FDE are computed in

Euclidean space.

Loss Function: The Huber loss, also known as the Huber penalty or smooth L1
loss is a function used here to measure how far the generated samples are from the
ground truth. It is a compromise between L1 loss and the L2 loss and is less sensitive

to outliers compared to the L2 loss. It is defined as follows:

%(Qn - Qn)zlilen - in <6

~ 1 (4.7)
2 .
8|Qn = Qu| = 8% otherwise

Lhuber(Qn: Qn) =

where § is a threshold at which the loss function transitions from L2 loss to L1 loss.
It is chosen to balance the trade-off between outliers' robustness and the loss function's

smoothness. This experiment is empirically set at 1.

Another loss for adversarial training is defined in Egn (4.8) as:

minmax _ o
Laaversariat =", p Esy-pin[Tr™ 10g Ta™] +
Es,~p(a [(LTF™) log (1 — [F™)] (4.8)

represents the min-max game where the generator minimizes the function while the

discriminator maximizes it.
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4.1.2.2 Datasets

The PIE dataset comprises 1,842 pedestrian trajectories annotated at 30 Hz,
characterized by extended trajectory lengths and detailed annotations encompassing
semantic intention, ego-motion, and neighbouring objects. The dataset includes 880,
243, and 719 pedestrian tracks in the train, validation, and test sets, respectively [6]. A
sampling approach with a 0.5 overlap ratio ensures comprehensive coverage,
excluding tracks below the minimum length of 2 seconds (observation + prediction)

during trajectory prediction training.

JAAD features a comprehensive collection of 2,800 pedestrian trajectories
captured from dash cameras, annotated at 30 Hz. The dataset is partitioned according
to the specifications in [137], with divisions into 177, 117, and 29 clips for training,
testing, and validation, respectively. Given its smaller sample size and shorter tracks,

a sampling approach with an overlap ratio of 0.8 is implemented.

The ETH-UCY datasets comprise five sub-datasets, aggregating 1,536
annotated pedestrian trajectories across four unique scenes. Trajectories are observed
for 3.2 seconds, with predictions extending for the subsequent 4.8 seconds, sampled at
a rate of 2.5 Hz. Pedestrian centroids, featuring single x and y coordinates, are
employed in line with the model's input requirements. Notably, visual context is
omitted due to the absence of a first-person view. Following prior work [116], a leave-

one-out strategy is applied to partition the train and test sets.

4.1.2.3 Comparison with SOTA methods

In this section, the proposed model undergoes a comprehensive comparison
with state-of-the-art methods, including B-LSTM[153], PIE_traj[6], BiTrap[22],
SGNet[23], DSCMP[108], PECNet[24], STAR[107], SIT[112], Trajectron++[110],
LVTA[106], STI-GAN[94], S-DualCVAE[113], Y-Net[25], VV2-Net[109], and NSP-

SFM[114]. The evaluation is conducted under two distinct settings: deterministic,



Table 4.1: Deterministic Results on PIE/JAAD Dataset

PIE JAAD
Methods MSE Cwmse | CFmse MSE Cwmse | CFmse
055 1s 15s | 1.5s 155 | 05s 1s 15s | 1.5s 1.5s
B-LSTM[153] | 101 296 855 | 811 3259 | 159 539 1535 | 1447 | 5615
P1Er4[6] 58 200 636 | 596 2477 | 110 399 1248 | 1183 | 4780
BiTraP[22] 41 161 511 | 481 1949 93 378 1206 | 1105 | 4565
SGNet[23] 34 133 442 | 413 1761 82 328 1049 | 996 4076
Ours 12 75 300 | 223 1299 35 205 825 784 3383
Table 4.2: Stochastic Results on PIE/JAAD Dataset
PIE JAAD
Methods MSE Cwmse | CFmse MSE Cwmse | CFmse
055 1s 15s| 15s 155 | 05s 1s 15s| 1b5s 1.5s
BiTraP(GMM)[22] | 38 90 209 | 171 | 368 | 53 250 585 | 501 | 998
BiTraP(NP)[22] | 23 48 102 | 81 | 261 | 38 94 222| 177 | 565
SGNet[23] 16 39 88 66 206 37 86 197 | 146 443
Qurs 6 21 59 45 138 19 55 147 | 105 301
Table 4.3: Deterministic Results on ETH/UCY Dataset
ADE(4.8s)/FDE(4.85)
Methods ETH HOTEL UNIV ZARA1 ZARA2 Avg
STAR[107] 0.56/1.11 0.26/0.50 0.52/1.15 0.41/0.90 0.31/0.71 0.41/0.87
SIT[112] 0.59/1.28 0.22/0.45 0.40/0.98 0.30/0.75 0.23/0.59 0.35/0.81
Trajectron++[110] 0.71/1.68 0.22/0.46 0.41/1.07 0.30/0.77 0.23/0.59 0.37/0.91
SGNet-ED[23] 0.63/1.38 0.27/0.63 0.40/0.96 0.26/0.64 0.21/0.53 0.35/0.83
LVTA[106] 0.57/1.10 0.42/0.69 0.55/1.19 0.42/0.92 0.35/0.75 0.46/0.92
Ours 0.48/1.01 0.15/0.57 0.31/0.94 0.21/0.55 0.17/0.49 0.27/0.71
Table 4.4: Stochastic Results on ETH/UCY Dataset
ADE(4.8s)/FDE(4.8s)
Methods ETH HOTEL UNIV ZARA1 ZARA2 Avg
STI-GAN[94] 0.77/1.53 0.70/0.73 0.53/1.20 0.33/0.66 0.33/0.66 0.53/0.96
S-DualCVAE[113] 0.66/1.18 0.34/0.61 0.39/0.74 0.27/0.48 0.24/0.42 0.38/0.69
DSCMP[108] 0.66/1.21 0.27/0.46 0.50/1.07 0.33/0.68 0.28/0.60 0.41/0.80
PECNet[24] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
STAR [107] 0.36/0.45 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
Trajectron++[110] 0.43/0.86 0.12/0.19 0.22/0.43 0.17/0.32 0.12/0.25 0.21/0.41
BiTrap-NP[22] 0.37/0.69 0.12/0.21 0.17/0.37 0.13/0.29 0.10/0.21 0.18/0.35
SGNet[23] 0.35/0.65 0.12/0.24 0.20/0.42 0.12/0.24 0.10/0.21 0.18/0.35
Y-Net[25] 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27
V2 Net[109] 0.23/0.37 0.11/0.16 0.21/0.35 0.19/0.30 0.14/0.24 0.18/0.28
NSP-SFM[114] 0.25/0.24 0.09/0.13 0.21/0.38 0.16/0.27 0.12/0.20 0.17/0.24
Ours 0.26/0.54 0.05/0.17 0.11/0.33 0.07/0.15 0.07/0.17 0.11/0.27
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where the model yields a single trajectory, and stochastic, generating a set of K = 20

possible trajectories, with the best-performing sample subsequently reported.
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Table 4.1 and 4.2 provide a comparative analysis of the proposed model's
performance against prior baselines and state-of-the-art methods on first-person view
(FPV) datasets. On JAAD, the proposed model demonstrates a substantial reduction
in MSE by 57%, 38%, and 21% for prediction intervals of 0.5s, 1.0s, and 1.5s,
respectively, outperforming the previous state-of-the-art[23]. Similarly, on the PIE
dataset, the proposed model exhibits MSE reductions of 65%, 44%, and 32% for
prediction intervals of 0.5s, 1.0s, and 1.5s, respectively, compared to the previous
state-of-the-art[23]. Notably, as the prediction length extends, the proposed model
showcases even more significant improvements when compared to prior work,
particularly highlighting its efficacy in long-term prediction scenarios. To ensure a fair
comparison with [23] on FPV datasets under stochastic settings, where K = 20
possible proposals are generated, and the best-performing sample is reported during
evaluation. The proposed method consistently outperforms the state-of-the-art by an
average of 35% on JAAD and 41% on PIE.

For the ETH/UCY dataset, deterministic and stochastic results are summarized
in Table 4.3 and 4.4. These tables illustrate that, on average, the proposed model
surpasses the state-of-the-art methods[23] by more than 23% and 12% in ADE and
FDE, respectively. These outcomes highlight the model's ability to predict persistent
and stable future trajectories. Compared with the FPV datasets, the improvements on
the ETH/UCY dataset are relatively lower, attributed to the absence of a first-person
view context and scene semantics. Nevertheless, the proposed method demonstrates
remarkable efficacy, achieving a significant reduction of 36% and 19% in ADE and
FDE, respectively, compared to the lowest ADE and FDE observed in the stochastic
setting. It also achieves comparable performance in ETH and Hotel sets.

4.1.2.4 Ablation Study

This section presents an ablation study to assess the impact of key
methodological choices in the proposed framework. The influence of progression

parameters is examined, followed by comparing Normal, Teacher Forcing, and
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Fig. 4.7: Impact of Encoder-Decoder Progression where (a), (b), and (¢) correspond to
r =1,r = 2 and r = 3 respectively.

Learned Scheduled Sampling strategies. Additionally, the effectiveness of an Adaptive

Fuzzified Discriminator is evaluated against a Binary Discriminator, and the
computational time cost is analysed. The analyses are as follows.

I. Impact of Progression Parameters on Performance: The investigation of
progression parameters on the performance of the proposed approach reveals
significant insights pertaining to predictive performance, as shown in Fig. 4.7. For
r =1, it is observed that the MSE experiences a notable reduction, with the best
performance achieved when «a; is approximately 0.8. Upon further increasing the
model complexity to r = 2 with three LSTM layers, the MSE demonstrates a
further decrease. In this scenario, the best performance is achieved with a; and a,
values of approximately 0.7 and 0.3 for the respective LSTM layers. This trend
suggests that enhancing model complexity, along with appropriately tuned a values,
has a positive impact on predictive performance. However, the transition to r = 3

with four LSTM layers yields an unexpected deviation from the decreasing MSE
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Fig. 4.8: Training and Validation Loss Curves for three training modes: learned
scheduled sampling (LSS), teacher forcing (TF), and normal mode (NM).

trend. Contrary to expectations, the MSE increases despite the a,, a, and a5
values optimized to approximately 0.6, 0.2, and 0.09 adaptively for the respective
LSTM layers. Furthermore, it is evident that a5 does not contribute to the same
extent as a; and a,, , rendering it the least important in this configuration. It implies
that while increasing the number of LSTM layers may enable the model to represent
more intricate data features, it can potentially introduce overfitting or model

complexity that fails to generalize effectively to unseen data. Through empirical

(a) (b) (©) (d) (e)

Fig. 4.9. Qualitative samples of complex trajectory patterns. Row | shows the
pedestrian’s trajectory with the start (red box) and end (green box) coordinates. The
red line represents centre coordinates over 15 timesteps, while future ground-truth
bounding boxes (next 45 timesteps) are in green. Row Il depicts the 2D spatial
projection of bounding box centres in the x-y plane. The blue dashed line represents
the average stochastic trajectory from 20 multimodal predictions, with the shaded
region indicating the range of possible pathways.
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analysis, it has been determined that the optimal configuration corresponds to r =
2 and {a,, @} = {0.7,0.3} and {0.8, 0.1} for FPV and BEV datasets, respectively.

. Comparison of Normal vs Teacher Forcing vs Learned Scheduled Sampling

Strategy: The training and validation loss curves presented in Fig. 4.8 demonstrate
the consistent outperformance of both the learned scheduled sampling mechanism
and the teacher forcing mode in comparison to the conventional normal training
mode within the context of trajectory prediction. It is inferred that both the normal
training mode and the teacher forcing mode exhibit fluctuations in their validation
loss, suggesting limitations in their capacity to generalize to previously unseen and
complex data patterns effectively. In contrast, the learned scheduled sampling
mechanism, which dynamically determines the probability of employing teacher-
forced or normal training modes, maintains a remarkable level of stability in its
validation loss curve.

Furthermore, the impact of the proposed methodology on addressing non-
linear and intricate trajectory patterns is also evident in Fig 4.9 (a)-(e). These
trajectories are characterized by multiple turns before ultimately reaching their
respective destinations. For instance, in Fig. 4.9 (b), it is noticeable that the target
pedestrian is somewhat occluded in preceding frames. In Fig. 4.9 (c) and (e), the
visual is disconnected from the trajectory as the individual gazes in a different
direction. Fig. 4.9 (d) introduces another dimension as the pedestrian initially has
their back turned, as evident from the past trajectory, but subsequently executes an
entirely distinct path. In all the cases, the average path predicted by our method

closely matches the groundtruth motion pattern.

5 3.5 N
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2 3| 220
g g 15
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00 03 04 05 06 07 0.0 02 04 06 08 1.0
Binary Classification Scores Fuzzy Membership Scores
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Fig. 4.10: KDE-based distribution of (a) binary classification and (b) fuzzy
membership scores, with fake trajectories in red and real trajectories in blue.
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(blue), mitigating mode collapse.

Table 4.5: Quantitative results of PCTP-AGFL Across FPV and BEV Datasets

Model IT(ms) | MSE(1.5s) | ADE/FDE(4.85)
Ablations | N T L[ FIE VR Vs €S 545000 [JAADIPIE ETH/UCY (Avg)
Ablation 1 [ v x x| x[x x x 1 77/80 186/86 0.21/0.36
Ablation 2 | x v x| x| x x x | 12 | 77/80 191/90 0.26/0.39
Ablation 3 | x x v | x| x x x [109| 77/80 181/79 0.18/0.31
Ablation 4 | x x v |v | x x x |105]| 79/82 163/71 0.14/0.30
Ablation 5 | x % v |v |v x x | 104 | 8081 156/62 0.11/0.27
Ablation 6 | x x v |v |v v x |095| 82/85 151/60 -
Ablation 7 | x x v |v |v v v 090 | 84/87 147/59

*N: Normal Mode, T: Teacher-forcing, L: Learned Scheduled Sampling using AGM, F: AFD, E: EDCA, Vz: RGB
context, Vs: Segmentation context, CS: Convergence Speed, IT: Inference Time

iii. Adaptive Fuzzified Discriminator vs Binary Discriminator: KDE plots offer a

robust means of depicting data distribution by estimating the probability density
function. In the case of binary discriminator training with binary labels, the plot in
Fig. 4.10(a) displays a certain degree of overlap between real and fake trajectories,
implying a degree of ambiguity in classification. This convergence of curves
underscores the limitations of binary classification, particularly when confronted
with trajectories exhibiting intermediate characteristics. Conversely, the KDE plot
for the fuzzy discriminator in Fig. 4.10(b) reveals two distinct, well-separated
curves representing real and fake trajectories, highlighting the efficacy of the fuzzy
approach in classifying trajectories.

The t-SNE plots in Fig. 4.11 visualize the high-dimensional trajectory
embeddings, providing insights into the impact of AFD on the GAN's ability to
capture and generate diverse trajectories. Without Adaptive Fuzzy Logic, the t-SNE
plot in Fig. 4.11 (a) demonstrates a discernible divergence between the predicted

and ground truth trajectory distributions. The generated trajectories exhibit a limited
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coverage of the real distribution space, indicative of challenges in training the GAN
model, resulting in a potential mode collapse. In contrast, the t-SNE plot in Fig.
4.11 (b) showcases a remarkable coverage of the entire trajectory space by the GAN
model, even in its inherent complexity. The incorporation of adaptive Fuzzification
mitigates mode collapse, enabling the generator to capture diverse modes within
the data.

Computational time cost: In the ablation study of PCTP-AGFL, various
components are analysed for their impact on convergence speed (CS), inference
time (IT), and accuracy, as shown in. Table 4.5. The convergence speed (CS) is
computed relative to Ablation 1, where it is set as the baseline, while others are
expressed as factors. The teacher forcing training strategy (Ablation_2) accelerates
convergence by 1.2 times but exhibits overfitting, resulting in a 4% and 16%
increase in error on FPV and BEV datasets compared to normal training
(Ablation_1). Integration of AGM for learned scheduled sampling (Ablation_3)
achieves a 5% reduction in errors across datasets, with a marginal 9% speed drop
from Ablation_2. Adaptive Fuzzification causes a massive drop of 10% in MSE
across FPV datasets. Furthermore, contextual awareness proves vital, as seen in
Ablation_6 and Ablation_7 w.r.t. Ablation_5. It is observed that RGB Context
(VR) alone leads to a 3 —4%error reduction on FPV datasets, whereas
incorporating segmentation context (Vs+VRr) results in a significant 5 — 6%
reduction in errors on average on FPV datasets, though with a slower relative
convergence speed of 0.90. This emphasizes the importance of visual context in
capturing complex spatio-temporal interactions, compensating for slower
convergence with improved trajectory prediction accuracy. Even without visual
context (Ablation_5), the proposed approach achieves a noteworthy reduction in
ADE and FDE, as reflected in Table 4.5, while maintaining a reasonable relative
convergence speed of 1.04.

Considering the computational efficiency, the proposed DPG (Dynamic
Progressive Generator) and AFD (Adaptive Fuzzy Discriminator) utilize a minimal
parameter count of 0.16M and 0.042M, respectively, leveraging precomputed

EfficientNetB6 feature maps and segmentation maps. Furthermore, the number of
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LSTM layers in DPG corresponds to the complexity of motion patterns, but with
simple patterns, a single LSTM layer suffices. The AFD employs an adaptive
membership function to mitigate decision ambiguity during classification,
enhancing model interpretability and accelerating training convergence.

The computational times for 20 and 2000 samples are also compared in Table
4.5. Notably, the proposed PCTP-AGFL demonstrates minimal time differences
between generating 20 and 2000 samples, with only a 2-3ms variation. In inference
stage, the inference time remains independent of the training strategy adopted, i.e.,
teacher forcing training and normal mode training, as reflected in Table 4.5. The
Adaptive Fuzzification (Ablation_4) incurs negligible impact on inference time.
However, the inclusion of EDCA only (Ablation 5) and EDCA+Vgr+Vs
(Ablation_7) results in more accurate predictions, accompanied by a marginal
increase of 5 ms in inference time. It is noteworthy that the inference time of
Ablation_5 is comparable with state-of-the-art [22], [116] as reported in [22].

4.2 Conclusion and Future Scope

This work introduces a novel Progressive Contextual Trajectory Prediction
with Adaptive Gating and Fuzzy Logic Integration (PCTP-AGFL) and evaluates its
effectiveness on both FPV and BEV datasets. The experimental results reveal our
methodology’s remarkable capability to closely emulate the complex trajectory
patterns and their final destinations with significantly reduced mean squared error in
comparison to other SOTA methods. Consequently, it simultaneously addresses the
challenges associated with overfitting and generalization to complex data patterns that
are often encountered in trajectory prediction methodologies. Furthermore, the
Adaptive Fuzzified Discriminator (AFD) enhances discrimination in ambiguous cases.
Future work includes exploring a combined short-term and long-term intention

prediction approach for further advancements in trajectory prediction.
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CHAPTER 5

UNIFIED SHORT-TERM AND LONG-TERM INTENTION
PREDICTION

In the preceding chapters, we explored approaches to short-term and long-term
pedestrian intention prediction as separate tasks, each with its own set of
methodologies and challenges. Short-term prediction focuses on immediate actions
such as crossing intentions, while long-term forecasting aims to anticipate extended
trajectories based on historical motion patterns and environmental cues. Although
treating these tasks independently has yielded meaningful insights, it often overlooks
the interdependence between immediate pedestrian intent and longer-term behavioural

outcomes.

Integrating short-term and long-term prediction within a unified framework
leverage shared contextual and motion features, enabling more coherent and accurate
predictions. Short-term cues, such as the decision to cross, provide strong signals that
can influence and constrain long-term motion forecasts. To this end, this chapter
introduces a dual-task approach that predicts short-term crossing intentions and long-
term trajectories using pedestrian ROIs, scene attributes, and past trajectories. The
framework addresses key limitations in feature fusion and adaptive prediction,
contributing to more reliable pedestrian behaviour modelling across both short-term

and long-term horizons.

5.1 Cross-Modal Pedestrian Behaviour Prediction: A Dual-
Task Approach with Progressive Denoising Attention
and CVAE

Pedestrian intention and trajectory prediction are crucial for advancing
intelligent transportation systems and autonomous vehicles, significantly enhancing
urban mobility's safety and efficiency. Traditional approaches have evolved from
capturing pedestrian dynamics through image features and bounding box coordinates

to leveraging multiple modalities and attention mechanisms. However, challenges in
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robust cross-modal feature integration and adaptation to complex scenarios persist.
This paper introduces a dual-task approach that simultaneously predicts short-term
pedestrian crossing intentions and long-term trajectories by integrating features from
pedestrian regions of interest (ROIs), scene attributes, and past trajectories. For
crossing intention prediction, Progressive Denoising Attention (PDA) is developed,

which iteratively refines cross-modal features to augment inter-class variations.
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Additionally, a three-phase counterfactual training approach is employed that
manipulates pedestrian ROIs and segmentation maps to further enhance model
robustness in complex scenarios. For trajectory prediction, a Conditional Variational
Autoencoder (CVAE) is implemented, guided by contextual embeddings from the
novel Context-Aware Feature Fusion Module (CAFFM) to significantly reduce mean
squared error by integrating rich spatiotemporal ROl and context information.
Experimental results on benchmark datasets JAAD and PIE demonstrate the superior
performance of the proposed approach in understanding and predicting pedestrian

intent.
5.1.1 Proposed Approach

The proposed work introduces a dual-task approach designed to predict
pedestrians' short-term and long-term intentions. The short-term intention anticipates
the pedestrian crossing intention 7, where (0 < 7 < 1), while the long-term intention

predicts the future trajectory V over future time steps m.

5.1.1.1 Intention Prediction

Pedestrian crossing intentions on the road are significantly influenced by past
motion history. To address this, transformers are employed to process refined
pedestrian and scene features conditioned on historical motion data, utilizing the
proposed Progressive Denoising Attention (PDA). The input to the trajectory
coordinates U comprising top-left (x;,y;) and bottom-right (x,, y,) coordinates are
processed through a BiLSTM encoder to capture the trajectory information as
illustrated in Fig. 5.1 (a).

Transformer A process the RGB pedestrian appearance features p conditioned
on trajectory data. Similarly, Transformer B process segmentation map features
$ conditioned on trajectory data. The outputs of the two transformers and the encoded
trajectory are dynamically weighted and concatenated to produce the final feature
representation that is fed to the classifier for prediction. This transformer consists of
layers such as Position Encoder and tokenization, Layer Normalization, MLP and the
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Algorithm 5.1: Progressive Denoising Attention (PDA)

Inputs:

i) xy€ RY*P1: Input sequence 1

i) x,€ RY*P2 : Input sequence 2

iii) T: Maximum number of iterations (default: 5)
iv) €: Convergence tolerance (default: 1 X 1073%)
v) o : Standard deviation of the noise (default: 0.1)

Output:
Z € RV*P: Refined attention output
Steps:

1. Initialization:
Initialize query @Q, key K, and value V:
Q = Dense(D)(x,),K = Dense(D)(x,),
V = Dense(D)(x,)
2. Self-Attention Calculation:

Compute initial attention scores and output:
T

VD

Z = softmax( )14

3. Iterative Refinement:
® SetZprey, =0
o Whilei < 1&& ||Z - Zyrer| > €
- Add Gaussian noise to Q, K and V:
Q< Q+N(0,0%
K< K+ 2N(0,0%)
VeV+nN(0,0%)
- Update Z,,.c, < Z
- Apply self-attention: Z = softmax(%)V
- Denoise Z using the Denoising UNet:
Z «— softmax(Denoising UNet(Z))
-SetQ,K,V « Z
- Increment i
4. Return: The final refined attention output Z

novel PDA. The attention process incorporates the influence of pedestrian or scene
attributes {x; } on the pedestrian's motion {x,} as shown in Algorithm 5.1. For instance,
the model might focus more on sudden directional changes if the environment has
obstacles or if the pedestrian is younger, indicating higher risk- taking behaviour.
Conversely, in a clear environment with an elderly pedestrian, the model might reduce

the influence of these signals, considering the lower likelihood of abrupt movements.

Attention: Diffusion-based denoising modules reduce noise while preserving

essential structural features like edges and textures. Their adaptability to various data
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Fig. 5.2: Overview of the counterfactual training process.

and noise conditions makes them a robust choice for denoising tasks [154]. Inspired
by their effectiveness, our proposed work introduces a diffusion-inspired attention
mechanism to refine and denoise cross-modal features iteratively. Traditional attention
mechanisms can struggle with initial misalignments between modalities. By
incorporating a denoising process inspired by diffusion models, the proposed
Progressive Denoising Attention (PDA) aims to enhance attention outputs iteratively,
mimicking the human cognitive process of progressively improving understanding
through successive refinements and reassessments. The key steps of PDA are outlined
in Algorithm 5.1. Initially, query, key, and value matrices are initialized from the input
sequences, as shown in step 1. Self-attention scores are then computed using these
matrices, as demonstrated in step 2. The addition of Gaussian noise followed by
denoising via U-Net architecture in Step 3 leads to more robust and accurate models,

especially in complex environments where dynamic factors influence pedestrian
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intentions. This iterative refinement allows the model to refine its focus over multiple
steps, which is particularly beneficial for cross-modal tasks where initial alignments
might be imprecise. Furthermore, convergence tolerance enables the mechanism to
adapt dynamically to different sequences and contexts, ensuring that each scenario's
attention mechanism is fine-tuned. The PDA updates attention outputs iteratively until
reaching t iterations or meeting a convergence threshold as shown in Step 3. The noise

addition step is skipped during testing.

Counterfactual Training: The proposed methodology advances the concept of
counterfactual training [155] through a structured, multi-phase approach that
manipulates pedestrian ROIs and segmentation maps. The proposed approach deepens
the model's understanding of the causal relationships between contextual elements and
pedestrian behaviour by systematically introducing counterfactual values in distinct
phases and incorporating alignment losses to maintain consistency. The three phases
of the counterfactual training are illustrated in Fig. 5.2. In Phase 1, the model is trained
on pedestrian ROIs, segmentation maps, and past trajectories, establishing a baseline
understanding by minimizing the binary cross-entropy loss between predictions and
ground truth. In Phase 2, pedestrian ROIs are replaced with counterfactual values
(p") which are zero tensors, while segmentation maps and past trajectories remain
intact. This phase forces the model to depend on structured scene information,
enhancing abstract feature interpretation. The loss function includes both binary cross-
entropy and an alignment loss to ensure consistency with Phase 1. Phase 3 builds on
Phase 2 by replacing segmentation maps with counterfactual values (s¢/), also zero
tensors, keeping pedestrian ROIs and trajectories unchanged, which refines the
model's understanding of pedestrian appearance. Similar to Phase 2, alignment losses

Table 5.1: Performance using different counterfactual values on short term
intention prediction

pf sf Accuracy
PIE JAADa1 JAADpen
Random Random | 0.75 0.79 0.40
Random  Zeros 0.83 0.85 0.52
Zeros  Random | 0.88 0.86 0.67
Zeros Zeros | 0.95 0.94 0.75

Note: p' and s denote counterfactual values for pedestrian ROIs and segmentation maps, respectively.
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maintain consistency with Phase 1. Through exposure to these diverse counterfactual
scenarios, the methodology significantly improves the model's generalization to new

and unseen environments.

The goal of counterfactual training is to enable the model to learn to identify
and reason about the impact of missing or altered information, without introducing
noise or irrelevant features. Table 5.1 represents the ablation study conducted with
different counterfactual values like random noise where values range from [-0.1, 0.1]
and zeros as demonstrated. The counterfactual values are also switched between

phases to assess their impact on performance.

Our findings revealed that maintaining zero tensors as counterfactual values
for both Phase 2: Pedestrian ROIs (p¢/) and Phase 3: Segmentation Maps (s¢/) yielded
the higher performance. Zero tensors represent the absence of the feature, allowing the
model to focus solely on learning how the system behaves when that specific feature
is absent. In contrast, introducing random values can introduce arbitrary and
potentially distracting features, making it harder for the model to identify meaningful
patterns, which leads to decreased performance. Based on these observations, zero
tensors are chosen to preserve the integrity of the counterfactual training setup,
ensuring that the model learns to deal with missing or altered information in a realistic

and meaningful way.

5.1.1.2 Trajectory Prediction

The pedestrian’s trajectory over the last n timesteps is represented as U =
{U,,U,, ... U, } with each trajectory point comprising the top-left (x;, y;) and bottom-
right (x,,, y;-) bounding box coordinates. The objective is to predict m future positions,
denotedasV = {V,.41, Vis2, - Vnam}- TO address this, the proposed model leverages
a Variational Autoencoder (VAE) enhanced by a Context-Aware Feature Fusion
Module (CAFFM) to accurately predict pedestrian trajectories by integrating both
spatial and temporal contextual information as demonstrated in Fig 5.1 (b).

Let S = {U,V} be a training dataset of history trajectories U and future



97

trajectories V; from a statistical perspective, the goal of multimodal human trajectory
prediction is to draw a data distribution p(v|u) about target data v e V, where u € U
is known conditions. An encoder, parameterized by a, takes the input u and produces
a distribution. p,(¢|u, c) where ( is a latent variable, and c is the learned contextual
embeddings. A decoder parameterized by 8 used u and samples from p,({|u,c) to

produce pg(y|u,{, c). The latent variable is then marginalized out to obtain p(v|u),

rlu,c) = [ pp(vlw,{,)pa({lu,c) dg (5.1)

Variational inference is employed to approximate the intractable integral. A
variational distribution gs({|u, c) to approximate the true posterior p,({|u). The
evidence lower bound (ELBO) can be used to optimize the parameters «, f and §

through reconstruction and KL divergence loss:

logp(lu,¢) = Eyyzjuc [log 2p(wlw, ¢, 0)] = Dgr(gs(|w, Ollpa(Slu,c))  (5.2)
The optimization objective is to maximize the ELBO:

L(a,B,6) = Egscpe) log pp(vlu, §, )] = D1 (g5 (S lu, O llpa(Slu, ©)) (5.3)

Content-Aware Feature Fusion Module (CAFFM): The modalities, pedestrian
ROIls and segmentation maps are essential for capturing specific spatial information
about the pedestrians and the contextual layout of the environment. Processing these
inputs through transformers conditioned on past motion history allows the model to
incorporate temporal aspects crucial for trajectory prediction. The proposed Context-
Aware Feature Fusion Module (CAFFM) plays a pivotal role in guiding the Variational
Autoencoder (VAE) for trajectory prediction, as shown in Fig. 5.1(b). By integrating
raw features with attention-driven enhancements, the module ensures that the VAE is
conditioned on a rich and informative context. This improves the accuracy of the
predicted trajectories and ensures that the predictions are contextually relevant and

dynamically responsive to changes in the environment.
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Initially, the module concatenates the features from the MLP heads of
transformers A and B, which process pedestrian ROIs and segmentation maps,
respectively. These transformers are conditioned on past motion history to capture
relevant spatiotemporal information. The concatenated inputs denoted as a||b, are
passed through a dense layer followed by a ReLU activation function to produce the

output y, expressed mathematically as:
y = ReLU(Dense(al|b)) (5.4)

The output y is then divided into two branches. The first branch processes y

through a dense layer followed by a GELU activation function, yielding y;:
y1 = GeLU(Dense(y)) (5.5)

The second branch processes y, through a dense layer without an activation

function:
¥, = Dense(y) (5.6)

An attention mechanism is subsequently applied, where the q is derived from
¥, and the k and value v are derived from y;. This attention mechanism can be

mathematically represented as:

_ ak”
Apeq = softmax Wers v (5.7)

The attention output is then multiplied element-wise with y, to produce the

attentive features. This can be denoted as:
Fped = Aped Q72 (5.8)

Finally, a residual connection adds the original output y back to the attentive

features to yield the final refined feature:

N

Fped =y + Fped (5.9)
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The first branch, enhanced with a GELU activation function, introduces non-
linearity and captures more complex feature interactions, forming the key and value
representations that define the contextual relevance. In contrast, the second branch
maintains a more linear and less transformed representation of the features to keep the
query closely aligned with the original feature space. This alignment allows the
attention mechanism to modulate the linear representation of features effectively y,
based on the richer, non-linear context provided by y;. The residual connection ensures
that the model considers both the raw information and the attention-driven
adjustments, preserving long-term context (e.g., overall scene layout) along with
dynamic changes captured by the attention mechanism. Consequently, this approach
ensures that the refined feature output retains essential information from the original

input while being enriched with contextually relevant modifications.

5.1.2 Experimental work and Results

This section outlines the implementation details for the dual-task approach
focused on pedestrian intention and trajectory prediction including evaluation metrics
and datasets used. It also presents comparisons with state-of-the-art methods and
ablation studies on the impact of Progressive Denoising Attention (PDA),
counterfactual training, the Context-Aware Feature Fusion Module (CAFFM), and the

effects of different contextual embeddings along with memory footprint details.

5.1.2.1 Implementation details

Intention Prediction: The cross-modal transformer employs two projection
mechanisms: Conv1D for capturing local temporal relationships from EfficientNet
features of pedestrian ROIs and segmentation maps and a Gated Recurrent Unit (GRU)
for leveraging temporal dependencies across the past trajectory sequence. The output
is then flattened to prepare it for further processing within the transformer. The
PositionalEncoder layer incorporates positional information into token embeddings

initializing with an embedding dimension of 64. It assigns a unique positional
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encoding to each token in the input sequence, ensuring the model can distinguish

between tokens based on their position within the sequence.

The PDA utilizes a UNet architecture with a series of convolutional and
deconvolutional blocks. The encoder starts with two convolutional blocks, first with
16 filters and then 32 filters, using Conv1D layers with ReLU activation to reduce
spatial dimensions while increasing depth. At the core of the network lies a middle
block, which further processes the encoded features using convolutions with 64 filters,
maintaining the same structure but at a higher level of abstraction. Following this, the
decoder part mirrors the encoder, utilizing deconvolutional (Conv1DTranspose)
layers with ReLU activation to upsample feature maps back to the original dimensions,
with each block followed by a Conv1D layer with the same number of filters.
Laiign(y = ||Tpnase j = Tpnase A (5.10)
where J,pqse ; are the predictions from the j th phase while Jpnase 1 denotes predictions
derived from a model initialized with weights optimized during Phase 1. The asterisk
(*) signifies that this model's inputs do not include counterfactuals. This loss ensures
that the counterfactual manipulations introduced in later phases do not disrupt the

model’s learned representations. The total loss function utilized during training is

expressed as:
Liotar = Acelpce + AalignLalign (5.11)

Here, Agcp and Aq;4, are coefficients that balance the contribution of each
loss, enabling the model to prioritize accurate predictions while maintaining
consistency across phases. This combined loss approach reinforces causal
relationships through counterfactual training, enhancing the model's ability to
generalize to unseen scenarios. Optimal performance is achieved with Az-r = 1 and
Aatign = 0.36.
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Trajectory Prediction: The encoder architecture for the CVAE processes time-
series data and an embedding vector. It begins with two inputs: a sequence of bounding
box coordinates and a conditional embedding vector. The bounding box data is
processed through two Bidirectional LSTM layers, with 32 units in the first layer and
16 units in the second, capturing both past and future dependencies while reducing
dimensionality. The encoded sequence is concatenated with the embedding vector,
forming a combined feature set. This set is further refined through two Dense layers
with 256 and 128 units, respectively, activated by ReLU. Dropout and batch
normalization are applied to improve generalization. The network outputs two Dense
layers representing the mean and log variance of the latent space distribution, each
with 64 units. These parameters are passed to a Lambda layer for reparameterization,

producing the latent variable h.

The decoder architecture is designed to reconstruct sequences from a latent
representation and conditional embedding. The inputs are concatenated first and
processed through two Dense layers with 128 and 256 units, respectively, both
activated by ReLU. Dropout and batch normalization are applied after each Dense
layer to enhance generalization. The processed features are then replicated across 45
timesteps using a RepeatVector layer, preparing the data for sequence generation.
The sequence is generated through two LSTM layers, with 16 units in the first and 32
units in the second, each set to return sequences. Finally, a TimeDistributed Dense
layer with 4 units and a linear activation function is applied to reconstruct the output

sequence.

The intention prediction model is trained independently; however, the
trajectory prediction model utilizes the pretrained intention model to generate the
embedding vector. The intention and trajectory models are trained using the RMSProp
optimizer with learning rates of 10~> and 1072, respectively. The intention model is
trained for 100 epochs with a batch size of 128 and L2 regularization of 0.001. The
trajectory model is trained for 60 epochs with a batch size of 64 and L2 regularization

of 0.0001. All the experiments are conducted on a Google Colab Pro instance with
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Table 5.2: Deterministic Results on PIE/JAAD Dataset

(CMSE and CFMSE are the mean square error between the predicted and ground truth centres of bounding
boxes, over all future time steps and the final predicted time step, respectively)

PIE JAAD

Methods MSE Cmse  CFwmse MSE Cmse  CFwmse
0.5s Is L15s | L5s 15s | 055 Is L5s | L5s 1.5s
PIE traj[6] 58 200 636 | 596 2477 | 110 399 1248 | 1183 4780
BiTraP[22] 41 161 511 | 481 1949 93 378 1206 | 1105 4565
SGNet[23] 34 133 442 | 413 1761 82 328 1049 | 996 4076
MigtNet[156] 459 | 418 1629 1002 | 938 3489
PCTP-AGFL[157] 12 75 300 | 223 1299 35 205 825 784 3383
Ours 8 71 225 | 201 1132 34 199 789 | 756 3121

Table 5.3: Stochastic Results on PIE/JAAD Dataset

PIE JAAD
Methods MSE Cvse CFwmse MSE Cmse  CFwmse
0.5s 1s 155 | 1.5s 15s | 055 Is 15s| 15s 1.5s
BiTraP(GMM)[22] 38 90 209 | 171 368 53 250 585 | 501 998
BiTraP(NP)[22] 23 48 102 | 81 261 38 94 222 | 177 565

SGNet[23] 16 39 88 66 206 37 8 197 | 146 443
PCTP-AGFL[157] 6 21 59 45 138 19 55 147 | 105 301
Ours 5 16 51 42 128 11 40 126 | 99 289

access to an NVIDIA Tesla T4 GPU (16 GB memory), running on the CUDA 12.0

platform. The implementation is done using TensorFlow 2.10.1.

5.1.2.2 Datasets

Intention: The proposed method is evaluated using the JAAD [137] and PIE [6]
benchmark datasets. JAAD includes 346 high-resolution video clips of urban driving
scenarios, with two subsets: JAADan (2,100 visible pedestrians not near crossings) and
JAADweh (495 crossings and 191 non-crossings). PIE offers a broader dataset with 1,842
roadside sections at 30 Hz, including 519 crossings, 1,323 non-crossings, and ego-vehicle
speed annotations. Both datasets follow the recommended training/validation/test split
for comprehensive evaluation [6], [137]. It is evaluated using standard classification

metrics: Accuracy, AUC, F1 score, Precision, and Recall.
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Table 5.4: Performance of the proposed method on short term intention prediction
on PIE dataset

PIE

Methods Acc AUC F1_Prec  Rec
PedGNN[8Z] 071 - 075 083 079
PIE_traj[6] 079 - 087 - -
TAMFORMER[85] 0.87 084 076 - -
IPIPF[158] 0.88 085 080 082 078
V-PedCross[86] ~ 0.89 088 067 074 0.84
PG+[87] 089 090 081 083 079
TED[103] 091 091 083 - -
VMI[91] 002 091 087 086 088
Bipeds4] 092 091 086 083 -
MTMGN[159] 090 0.87 092 095 0.90
TrEP[105] 093 094 087 089 088
PedFormer[93] 093 090 087 089 088
IntentFormer[160] 0.93 0.90 088 086 0.89
ours 095| 094 092 094 093

Table 5.5: Performance of the proposed method on short term intention prediction
on JAADall/JAADbeh dataset

JAADaII/JAADbeh

Methods

Acc AUC F1 Prec Rec

FFSTA[18] 0.83/0.62 0.82/0.54 0.63/0.74 0.51/0.650 0.81/0.85
Biped[84] 0.84/- 0.79/- 0.61/- 0.54/- -
V-PedCross[86] -/0.64 -/0.66 -/0.76 -/0.70 -/0.89
PG+[87] 0.86/0.70 0.88/0.70 0.65/0.76 0.58/0.77  0.75/0.75
IPIPF[158] 0.86/- 0.84/- 0.69/- 0.74/- 0.66/-
TAMFORMER[85] 0.89/0.73 0.82/0.70 0.70/0.79 - -
VMI[91] 0.89/- 0.90/- 0.81/- 0.79/- 0.83/-
MTMGN][159] 0.89/0.70 0.89/0.70 0.73/0.83 0.66/0.79  0.89/0.87
TrEP[105] 0.91/- 0.86/- 0.69/- 0.71/- 0.70/-
PedFormer[93] 0.93/- 0.76/- 0.54/- 0.65/- 0.60/-
IntentFormer[160]  0.92/0.75 0.90/0.70 0.83/0.82 0.81/0.74  0.85/0.88
Ours 0.94/0.75 0.91/0.71 0.81/0.85 0.80/0.81  0.82/0.89

Trajectory: Trajectory prediction is assessed using MSE over bounding box
coordinates and Cwse and CFwse, which measure the MSE of the bounding box centre
over the entire sequence and the final time step, respectively. All metrics for the JAAD
and PIE datasets are reported in pixels. It is assessed using MSE over bounding box
coordinates and Cwse and CFwse, which measure the MSE of the bounding box centre
over the entire sequence and the final time step, respectively. All metrics for the JAAD
and PIE datasets are reported in pixels. JAAD [137] features 2,800 pedestrian
trajectories captured at 30 Hz, divided into 177 training, 117 testing, and 29 validation
clips, using a 0.8 overlap ratio for sampling. PIE [6] contains 880, 243, and 719 pedestrian
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tracks in the training, validation, and test sets, respectively, with a 0.5 overlap ratio,

excluding tracks shorter than 2 seconds during trajectory prediction training.

5.2.2.3 Comparison with SOTA methods

The proposed method exhibits superior performance in short-term intention
prediction across multiple datasets, including PIE, JAADai, and JAADgen. On the PIE
dataset (Table 5.2), our work achieves the highest accuracy (0.95) and an AUC of 0.94,
comparable to leading model IntentFormer[160]. With an F1 score of 0.92, the method
surpasses all other approaches in precision (0.94) and recall (0.93), demonstrating a
robust and reliable solution for pedestrian intention prediction in dynamic
environments. Similarly, on the JAADa dataset (Table 5.3), the proposed method
attains the highest accuracy (0.94) and AUC (0.91), outperforming models like
PedFormer[93]. On the JAADxen dataset, our work matches the highest accuracy (0.75)
and achieves the top F1 score (0.85) with strong precision (0.81) and recall (0.89).
Compared to other methods, the proposed method consistently demonstrates superior
performance, particularly in challenging conditions, underscoring its robustness and

reliability across diverse scenarios.

The trajectory prediction assessment is performed under two distinct settings:
deterministic, where a single trajectory is predicted, and stochastic, where aset of K =
20 potential trajectories is generated, with the best-performing sample reported. The
proposed approach significantly improves deterministic trajectory prediction, as
detailed in Table 5.4. On the PIE dataset, the method achieves a 25% reduction in MSE
at the 1.5-second interval compared to PCTP-AGFL[157], and demonstrates a 10%
improvement in Cuse and a 13% improvement in CFwmseg, indicating superior accuracy
over extended prediction periods. Similarly, on the JAAD dataset, the method reports
an 18.4% reduction in MSE, a 3.6% improvement in Cusg, and a 7.7% reduction in
CFmse compared to PCTP-AGFL [157].

Table 5.5, which presents results for stochastic trajectory prediction, further

highlights that the proposed approach achieves an average reduction of 16.3% in MSE
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Fig. 5.3: Case studies illustrating how attention mechanisms influence prediction

outcomes across three scenarios (Rows I-III).
on the PIE dataset and 20.2% on the JAAD dataset relative to PCTP-AGFL.
Additionally, the approach shows an average improvement of 7% in CMSE and
CFMSE combined on the PIE dataset and 4.8% on the JAAD dataset. These findings
collectively underscore the effectiveness of the proposed work in reducing prediction

errors and enhancing overall performance across a range of datasets.

5.2.2.4 Ablation Study

This section presents an ablation study to evaluate the impact of key
components in the proposed framework. The effectiveness of the progressive
denoising mechanism and counterfactual training is examined, along with an analysis
of memory footprint and computational complexity. Additionally, the role of
alignment loss is investigated to assess its contribution to model performance. These
analyses offer deeper insights into the trade-offs and benefits of the proposed design
choices. The analyses are as follows.

i. PDA: From a cognitive perspective, pedestrians adjust their behaviour based on

environmental cues and their attributes. The proposed Progressive Denoising
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Attention analyses pedestrian crossing intentions on the road, leveraging iterative
refinement of attention scores based on historical motion data, pedestrian visual
appearance, and semantic scene features. Fig. 5.3(a) illustrates input scenes with
salient contextual cues highlighted using yellow dashed lines; (b—c) Temporal
attention weights along the pedestrian’s past trajectory where solid dots denote
discrete time steps and circles radii indicate corresponding attention weights, shown
without PDA (b) and with PDA (c). Attention weights corresponding to sharp turns
and directional changes are highlighted in black. (d—e) Grad-CAM visualisation
without (d) and with PDA (e). Ground truth and predicted pedestrian intention
labels: Crossing (C) or Not Crossing (NC) are shown along with associated
confidence scores in each row. Rows I and Il depict scenarios involving pedestrian
interaction with traffic infrastructure such as stop signs and traffic lights. These
environmental cues result in changes in pedestrian motion—such as halts, starts, or
turning behaviour which is clearly visible in the past trajectory segment over the
last 15 timesteps (Fig. 5.3(b—c)). Without PDA, the temporal attention weights
assigned by the cross-modal transformer remain relatively uniform, showing little
sensitivity to such behavioural transitions. In contrast, with PDA, higher attention
weights are allocated specifically to the turning or decision-critical points along the
path, reflecting the model’s increased responsiveness to contextual cues (Fig.
5.3(c)). The Grad-CAM maps further demonstrate that, without PDA (Fig. 5.3(d)),
the attention tends to diffuse across less relevant areas, reducing the alignment
between visual cues and behavioural outcomes. However, in the presence of PDA
(Fig. 5.3(e)), the model concentrates more accurately on semantically meaningful
regions—specifically traffic signals and pedestrian appearance. This shift in focus
leads to improved predicted label accuracy and higher confidence scores.

Row Il in Fig. 3 presents a scenario involving an elderly pedestrian following
a smooth and linear trajectory. Here, the temporal attention weights remain uniform
in both model variants (Fig. 5.3(b-c)), reflecting the low variability and
predictability of motion typically associated with elderly individuals. The Grad-
CAM visualizations (Fig. 5.3(d—e)) show that, in both cases, the spatial focus

remains consistently centred on the pedestrian, suggesting minimal dependence on
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Fig. 5.4: t-SNE embeddings of the attention outputs from MHSA (Row I) and

PDA (Row II)

(c) Atepoch 28

107

additional contextual cues. Accordingly, both models yield similar prediction

outcomes and confidence levels.

The t-SNE embeddings of attention outputs for MHSA (Row ) and PDA
(Row I1) are presented in Fig. 5.4. In the case of MHSA, the embeddings initially

appear crowded (Row-I (a)), with some separation emerging in later epochs, as

shown in Row-I (b) and (c). However, this separation remains poorly defined,

potentially leading to less confident predictions. In contrast, interclass variation

increases for PDA as training progresses, and by the final epoch, the distinction

between the two classes becomes significantly more apparent. This illustrates

PDA's iterative refinement process, where the model dynamically adjusts its

Table 5.6: Impact of iterative denoising and number of iterations on convergence
and performance in PDA-based cross-modal feature refinement

Ablations Attention T N & T(mins) Accuracy
Al SHA(Baseline) -- x 200 4 86
A2 PDA 1 x 180 5 88.5
A3 PDA 3 x 150 6.5 89.2
A 4 PDA 5 x 130 8.5 90
A5 PDA 10 x 110 12 90.5
A6 PDA Dynamic % 105 10 91
A7 PDA 1 v 160 5.5 90
A 8 PDA 3 v 130 7 91.5
A9 PDA 5 v 110 9 92

A 10 PDA 10 v 100 13 92.8
A 11 PDA Dynamic  ¥v' 100 8 95

t=Total iterations per step; T= Average training time/epochs, € = Total number of epochs to

convergence: N : Noise Injection
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attention outputs over multiple steps, enhancing prediction accuracy and ensuring

efficient convergence.

Table 5.6 shows the impact of PDA on training time and model performance
by varying the number of iterations (t) and the presence of noise injection. The
introduction of PDA significantly enhances accuracy while reducing the total
number of epochs required for convergence (£). The baseline model (A_1) requires
200 epochs to achieve 86.0% accuracy, whereas PDA in its optimal configuration
(A_11) reduces £ by 50% (100 epochs) while improving accuracy by 10%,
demonstrating its effectiveness in cross-modal feature representation.

The impact of t on training efficiency is evident in Table 5.6 where increasing
T generally improves accuracy but also raises the average training time per epoch
(T). For instance, A 5 (t = 10, no noise) achieves 90.5% accuracy but requires
12 min/epoch, whereas A_3 (t = 3, no noise) reaches 89.2% accuracy at a reduced
computational cost of 6.5 min/epoch. However, dynamic iteration control, as
implemented in A 6 and A_11, consistently outperforms fixed t settings by
achieving better accuracy with lower training overhead. Specifically, A_6 (dynamic
T, no noise) converges in 105 epochs, reaching 91.0% accuracy with T = 10
min/epoch, demonstrating improved efficiency.

Noise injection (N) further enhances accuracy while maintaining efficiency.
Comparing A 3 (1t = 3, no noise) and A 8 (t = 3, noise) in Table 5.6, the latter
achieves 2.6% higher accuracy with only a 0.5 min increase in T, highlighting its
role in improving cross-modal alignment. This suggests that noise injection helps
refine feature representations while adding minimal computational cost.

The optimal PDA configuration, A_11 (dynamic t, noise V'), achieves 95.0%

accuracy, reduces £ to 100 epochs, and maintains T at 8.0 min/epoch, making it the
most effective balance between computational cost and performance. While PDA
introduces additional computational complexity per epoch, its ability to accelerate
convergence offsets this overhead, demonstrating its efficiency in cross-modal

feature refinement.

. Counterfactual Training: In this study, an ablation analysis is conducted to

evaluate the effectiveness of a three-phase counterfactual training methodology in
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NM: 0.32 NM: 0.17 NM: 0.61 NM: 0.16
CFM: 0.72 CFM: 0.52 CFM: 0.91 CFM: 0.56

Fig. 5.5: Qualitative Samples: Crossing intention confidence scores for NM single-
phase training vs. three-phase training with counterfactual samples. Green:
crossing, Red: non-crossing.

Table 5.7: Performance metrics across different phases of counterfactual training

with and without PDA
Training Mod PDA PIE JAADa/JAADbeh
raining Modes
& Accuracy AUC F1 | Accuracy AUC F1

Phase-1 (NM)
Phase-2 (CFF)
Phase-3 (CF®)
Phase-1 (NM)
Phase-2 (CFF)
Phase-3 (CFY)

0.85 0.86 0.80 | 0.87/0.67 0.83/0.66 0.75/0.76
0.88 0.89 0.85 | 0.87/0.68 0.86/0.67 0.75/0.80
0.86 090 0.88 | 0.89/0.71 0.87/0.68 0.76/0.78
0.94 0.93 0.83 | 0.93/0.74 0.91/0.70 0.74/0.79
0.94 094 0.89 | 0.94/0.73 0.90/0.71 0.77/0.80
0.95 0.94 0.92 | 0.94/0.75 0.91/0.71 0.81/0.85

SAKix ® %

enhancing pedestrian intention prediction. The methodology is designed to improve
the model's robustness to challenging visual conditions, such as blurred and noisy
images, by encouraging a deeper understanding of contextual cues. As illustrated
in Fig. 5.5, the model trained with the three-phase counterfactual approach achieves
significantly higher confidence scores than a conventional single-phase training
model. This suggests that the counterfactual training enhances the model's focus on
causal relationships among various contextual elements while reducing reliance on
compromised visual information, thus lowering the risk of overfitting to specific
noise patterns.

Table 5.7 further supports these findings by comparing model performance
across different training phases, specifically on the PIE and JAADai/JAADnoen
datasets. The results show a clear and consistent improvement in Accuracy, AUC,
and F1 scores from Phase-I (normal training) to Phase-3 (counterfactual training
with segmentation maps). In Phase-1, the model establishes a baseline performance
but struggles with more complex scenarios, as indicated by the relatively lower F1
scores. However, in Phase-2, where counterfactual training with pedestrian ROIs is

introduced, there is a notable enhancement in all metrics, reflecting a refined
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Fig. 5.6: Training (blue) and validation ( ) accuracy over epochs during
counterfactual training.

understanding of contextual elements and improved robustness to variations in
pedestrian appearances. Finally, Phase-3, with the implementation of
counterfactual training using segmentation maps, leads to significant improvements
in the F1 score (PIE: 0.92; JAADai/JAADh=0.81/0.85) and incremental gains in
other performance metrics. These results show that incrementally adding
counterfactual scenarios during training significantly improves the model's
resilience to real-world data challenges.

Fig. 5.6 illustrates the training progression of the proposed intention
prediction model across different phases. Training progresses in each phase until
the validation accuracy plateaus. Early stopping is triggered when the validation
accuracy improvement is <2% over five consecutive epochs. Phase transitions are
denoted by vertical dashed lines. Introducing counterfactuals in Phases 2 and 3
leads to temporary accuracy dips, but the final validation accuracy stabilizes at 95%
in Phase 3, indicating successful convergence.

The transition from Phase 1 (Baseline) to Phase 2 (ROI Counterfactuals)
occurs at epoch 44, when validation accuracy stabilizes at 94% with no further
improvement. The transition from Phase 2 to Phase 3 (Segmentation
Counterfactuals) occurs at epoch 75, following validation accuracy stabilization at
94% after introducing ROI counterfactuals. Training concludes at epoch 100, when

validation accuracy plateaus at 95%, reflecting the model’s adaptation to
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Table 5.8: Evaluation of trajectory prediction performance using different
contextual embeddings and fusion strategies

- . . MSE

Training Mode Contextual Embeddings Fusion Strategy PIEJAAD

No context - 390 887

Only RGB - 350 862

Normal Only Segmentation - 369 859

RGB+ Segmentation Concatenation 350 824

RGB+ Segmentation CAFFM 333 803

No context - 389 885

Only RGB - 290 795

Counterfactual Only Segmentation - 320 850

RGB+ Segmentation Concatenation 250 800

RGB+ Segmentation CAFFM 225 789

segmentation counterfactuals. Notably, the training convergence in Phases 2 and 3
occurs more quickly than in Phase 1. Furthermore, a 5-6% improvement is
observed in performance metrics, due to PDA’s iterative refinement, resulting in

more precise and confident predictions in complex cross-modal scenarios.

CAFFM: The impact of different contextual embeddings and fusion methods on
trajectory prediction is analysed on the PIE and JAAD datasets, as summarized in
Table 5.8. The results indicate that the model's performance improves by including
contextual information and using the Context-Aware Feature Fusion Module
(CAFFM). Notably, the CAFFM achieves the lowest MSE across both datasets,
with 333 on PIE and 803 on JAAD in the baseline model embeddings and further
reduction to 225 on PIE and 789 on JAAD under counterfactual model embeddings.
This suggests that the CAFFM effectively leverages spatial and temporal contexts,
enhancing the accuracy of trajectory prediction.

The analysis reveals that the counterfactual training significantly improves
the model's performance. When no context is used, the baseline models show higher
MSE values (MSE(PIE): 389, MSE(JAAD): 885), indicating lower prediction
accuracy. Incorporating RGB and segmentation embeddings separately reduces the
MSE, showing that each modality contributes valuable contextual information. The
concatenation of these embeddings further improves the performance, suggesting a
more comprehensive representation of the scene. The most substantial performance
gains are observed when using the CAFFM embeddings derived from the
counterfactual model. The MSE values decrease significantly (MSE(PIE): 225,
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Table 5.9: Comparison of computational efficiency of DPITRA-short term
intention model with SOTA methods

Model Size Ir_1ference Accuracy
(MB) time(ms) PIE JAADwnh JAADa

PCPA[102] 118.8 38.6 86 50 70
FFSTA[18] 374.2 70.83 - 62 83
PG+[93] 0.28 5.47 89 70 86
TEDJ[109] 12.8 2.76 91 - -
V-PedCross[92] 4.8 - 89 64 86
PedGNNI88] 0.027 0.58 70.52 - 86.22
VMI[97] 19.07 11.03 92 - 89
IntentFormer[162] 2.13 3.8 93 75 92
DPITRA 4.46 2.53 95 75 94

Table 5.10: Comparison of computational efficiency of DPITRA-long term with
SOTA methods

IT(ms) MSE(1.5s)

Model 20/2000 JAAD/PIE
PCTP-AGFL[163]  84/87 147/59
DPITRA 80/82 | 126/51

Table 5.11: Inference Time Per Batch Breakdown for Trajectory Prediction

Intention
Batch b odiction CAFpm CYAE ~ CVAE - Total
Size Encoder Decoder Time
Module

20 5.05 ms 499 ms 20.22ms 50.19ms 80.15ms
500 5.06 ms 501l ms 20.73ms 5028 ms 81.08 ms
2000 5.07 ms 503ms 21.0lms 5099ms 82.10ms

MSE(JAAD): 789. This suggests that the embeddings generated from the
counterfactual training capture richer, more nuanced information, which enhances

the VAE's ability to produce accurate trajectory predictions.

iv. Memory footprint and computational complexity: The proposed dual-task
approach for intention and trajectory prediction effectively balances memory usage
and inference speed. The model has a total memory footprint of 14.41 MB,
including a 4.46 MB short-term intention module. This short-term model delivers a
peak accuracy of 95% on the PIE dataset, outperforming smaller footprint models
like PedGNN[88] (accuracy: 70.52%) and PG+[93] (accuracy: 89%) while
maintaining a minimal inference time of 2.53 ms as shown in Table 5.9.

Furthermore, the trajectory prediction model exhibits minimal time variation
between processing 20 and 2000 samples, with an inference time of 80 and 82ms,

respectively, demonstrating superior efficiency compared to models like PCTP-
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Fig. 5.7: Prediction Correlation Matrix demonstrating the role of alignment loss in
counterfactual training. (a) Without alignment loss. (b) With alignment loss

AGFL[157] as reported in Table 5.10. Additionally, Table 5.11 provides a
component-wise breakdown of inference time per batch for trajectory prediction.
The observed consistency in per-batch inference time, regardless of sample size,
can be attributed to the use of custom TensorFlow data pipeline that minimizes data
loading and preprocessing overhead while maximizing GPU utilization. This setup
enables efficient parallel processing of all samples within a batch, preventing
computational overhead from scaling with batch size.

. Role of Alignment loss: Alignment loss enforces consistency by penalizing
deviations between predictions from later phases (Phases 2 and 3) and the baseline
Phase 1. This regularization ensures that the counterfactual manipulations
introduced in later phases do not disrupt the model’s learned representations. The
model maintains stable and coherent predictions across phases by minimising the
alignment loss, enabling it to generalize better to unseen scenarios. Fig. 5.7
illustrates the effect of alignment loss using prediction correlation matrices. Panel
(a) shows the correlation between predictions across phases when alignment loss is
excluded. The lower correlation values indicate inconsistencies in predictions
across phases. In contrast, panel (b) displays the correlation matrix when alignment
loss is included. The significantly higher correlation values demonstrate that
alignment loss maintains consistent predictions, even with counterfactual

modifications in Phases 2 and 3. These results validate the role of alignment loss in
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maintaining consistency in predictions across phases, enhancing the model’s ability

to generalize to unseen data, and improving both robustness and reliability.
5.2 Conclusion and Future Scope

The work presents a dual-task approach excels in short-term pedestrian
intention and long-term trajectory forecasting, as demonstrated by its superior
benchmark performance. The iterative refinement through Progressive Denoising
Attention (PDA) enhanced the inter-class separation between crossing and non-
crossing samples, improving prediction accuracy. Moreover, the three-phase
counterfactual training improved significantly on noisy and blurred samples. The
Context-Aware Feature Fusion Module (CAFFM) embeddings further reduced MSE
in trajectory predictions by leveraging spatial and temporal information from
pedestrian ROl and scene context. The proposed model also achieved an optimal
balance between performance and computational complexity, surpassing existing
solutions while maintaining a minimal inference time. Future work should focus on
further minimizing the model's memory footprint and computational complexity

without compromising performance.
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CHAPTER 6

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT

In this thesis, we addressed two key tasks: short-term pedestrian intention
prediction, specifically crossing behaviour, and long-term trajectory forecasting in
complex urban environments. The comprehensive methodologies introduced are
robust and demonstrate strong predictive performance across both temporal horizons.
A detailed evaluation confirms the potential of the proposed approach for deployment
in safety-critical applications such as autonomous driving and intelligent
transportation systems. Section 6.1 presents a summary of the contributions made in
this thesis, followed by a discussion on future research directions in Section 6.2 and

the broader societal impact of this work in Section 6.3.
6.1 Summary of the Work Done in the Thesis

This thesis presented four major approaches to pedestrian intention prediction,
each addressing distinct challenges across short-term intention recognition and long-
term trajectory forecasting. Together, these approaches contribute to a comprehensive

understanding of pedestrian behaviour in complex, real-world environments.

The first approach introduced a multimodal pedestrian intention prediction
framework that adaptively fuses rich visual, motion, and interaction features. By
applying attention mechanisms across spatial, channel, and temporal dimensions, and
incorporating a novel Multi-Head Attention with Adjacency Matrix-based Graph
Convolutional Network (MHA-AdjMat GCN) in the interaction encoder, the model
significantly enriched pedestrian feature representations. This framework
demonstrated superior performance in predicting pedestrian crossing intentions up to
2.5 seconds in advance on the JAAD and PIE datasets, outperforming several state-of-
the-art (SOTA) baselines. Despite its effectiveness, the model exhibited limitations in
capturing high-frequency temporal dependencies, a common challenge when using

GCNs in dynamic sequence modelling.
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The second approach proposed a novel transformer-based architecture,
‘IntentFormer’, which predicts pedestrian crossing intentions in a co-learning
environment. This architecture integrates RGB features, segmentation maps, and
pedestrian trajectories, enabling robust multimodal learning. Three key innovations
characterize this model: a shared-MLP head for collaborative co-learning, Multi-Head
Shared Weights Attention (MHSWA) for efficient inter-modal representation learning,
and a Co-learning Adaptive Composite (CAC) loss function designed to reduce
overfitting by penalizing intermediate prediction errors. ‘IntentFormer’ performs
optimally within a 0.5 to 1.25-second observation window, requiring fewer frames
while maintaining high time-to-event (TTE) accuracy. Nonetheless, the model
encounters challenges in scenarios involving abrupt or erratic pedestrian behaviors—
such as sudden direction changes or variable speeds—Ilimiting its robustness in highly

dynamic environments.

In the third approach, a Progressive Contextual Trajectory Prediction
framework with Adaptive Gating and Fuzzy Logic Integration (PCTP-AGFL) was
developed to address the complexity of long-term trajectory prediction. Evaluated on
both first-person view (FPV) and bird’s eye view (BEV) datasets, the proposed model
demonstrated its ability to accurately emulate complex trajectory patterns and predict
final destinations, achieving a significantly lower mean squared error compared to
existing methods. This framework effectively tackles overfitting and generalization
issues, which are common in trajectory forecasting. Additionally, the integration of the
Adaptive Fuzzified Discriminator (AFD) improves performance in ambiguous
scenarios by enhancing the model's ability to distinguish subtle variations in motion

intent.

Finally, the thesis introduced a unified dual-task framework capable of jointly
performing short-term pedestrian intention prediction and long-term trajectory
forecasting. The proposed model achieved strong benchmark performance through

iterative refinement enabled by the Progressive Denoising Attention (PDA)
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mechanism, which enhanced inter-class separation between crossing and non-crossing
intentions. The incorporation of a three-phase counterfactual training strategy further
improved the model's robustness, especially when dealing with noisy or blurred visual
inputs. Furthermore, the Context-Aware Feature Fusion Module (CAFFM) leveraged
spatial and temporal cues from pedestrian regions of interest (ROIs) and the
surrounding scene, substantially reducing prediction error while maintaining
computational efficiency. This approach achieves a balance between accuracy,
memory footprint, and inference speed, making it highly suitable for real-time

deployment in intelligent transportation systems.

In summary, the methodologies proposed in this thesis advance the field of
pedestrian intention prediction by effectively capturing the complex interactions
between pedestrians and their surrounding environment, enabling accurate short-term
crossing intention recognition and long-term trajectory forecasting in dynamic traffic

SCeENes.

6.2 Future Research Scope

Building upon the advancements made in this study, several key research
directions can be pursued to further refine pedestrian intention prediction and its
applications in autonomous navigation. The integration of Reinforcement Learning
(RL) presents a promising avenue for enhancing the adaptability of multimodal
pedestrian intention models. While the proposed Co-Learning Transformer and
Interaction Encoder effectively capture pedestrian-environment interactions,
incorporating RL-based mechanisms can enable adaptive decision-making in dynamic
and unseen scenarios, improving the ability of autonomous vehicles (AVs) to respond

to unpredictable pedestrian movements.

Another crucial direction is the expansion of datasets to include diverse urban
and rural settings, varied weather conditions, and cultural contexts. The current study
has demonstrated strong performance across benchmark datasets; however, models
often struggle with generalization due to limited dataset diversity. Extending training

data to encompass a broader spectrum of pedestrian behaviours, environmental
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influences, and scene complexities can significantly enhance robustness. The proposed
counterfactual training approach and context-aware feature fusion techniques offer a
foundation for handling missing and noisy data, which can be further extended to adapt

models to diverse real-world conditions.

For real-time applications, efficient feature extraction remains a key challenge.
While the proposed Multi-Head Shared Weight Attention Mechanism and Progressive
Denoising Attention (PDA) have optimized inference time and computational
efficiency, further improvements can be made to ensure real-time deployment in AV
systems. Future research can explore lightweight, hardware-efficient feature extraction
techniques that reduce computational load while preserving accuracy, making

pedestrian intention models more practical for real-world AV implementation.

Additionally, real-time scene semantic map generation can significantly
improve contextual awareness in pedestrian prediction. The Encoder-Decoder
Contextual Attention (EDCA) mechanism and Interaction Encoder (IE) with Graph
Convolutional Networks have shown effectiveness in modelling pedestrian
interactions, but incorporating real-time scene understanding through dynamic
semantic mapping can further enhance decision-making capabilities. By integrating
spatial-temporal pedestrian behaviours with road semantics, traffic signals, and
environmental cues, models can achieve higher predictive accuracy and adaptability

in complex urban environments.

Lastly, lightweight architectures optimized for AV hardware are essential to
ensure the seamless integration of pedestrian intention models into autonomous
navigation systems. While the proposed Multimodal IntentFormer and Dynamic
Progressive Generator (DPG) with Adaptive Fuzzified Discriminator (AFD) have
successfully minimized model complexity without sacrificing performance, further
advancements in model compression, quantization, and efficient transformer-based
architectures can improve inference speed and energy efficiency. Optimizing models
to operate under real-world AV constraints will ensure their practical applicability,

enabling safer and more intelligent pedestrian-aware navigation. By addressing these
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future directions, pedestrian intention prediction can be further refined, leading to
more robust, adaptable, and computationally efficient models that enhance the safety

and decision-making capabilities of AVs in real-world environments.

6.3  Social Impact

Beyond safety, the proposed multimodal intention prediction frameworks also
have profound implications for urban mobility and traffic efficiency. With the rise of
smart cities and intelligent transportation networks, integrating pedestrian behaviour
prediction into traffic management systems, crosswalk automation, and vehicle-to-
infrastructure (V2I) communication can lead to smoother traffic flow, reduced
congestion, and optimized pedestrian crossings. The ability to accurately predict
pedestrian intent ensures that AVs and human-driven vehicles can coexist more
harmoniously, minimizing abrupt stops, reducing fuel consumption, and lowering

carbon emissions associated with traffic inefficiencies.

Moreover, the focus on lightweight architectures and real-time deployment
ensures that these solutions are accessible and scalable. Many regions, particularly in
developing countries, struggle with the adoption of high-end autonomous technologies
due to hardware and computational constraints. By optimizing model efficiency
without compromising accuracy, this research ensures that pedestrian safety solutions
can be deployed in a wide range of settings, including low-cost AVs, public
transportation systems, and surveillance networks, making roads safer for all

pedestrians, regardless of technological infrastructure.

This work also has broader applications in assistive technologies. The ability
to predict human movement and intent can be leveraged for mobility assistance in
elderly care facilities, smart navigation for visually impaired individuals, and robotic
assistance in crowded public spaces. The counterfactual training approach and context-
aware feature fusion developed in this research enhance the robustness of human
motion understanding, which can be extended to improve human-robot interaction,

healthcare monitoring, and public safety surveillance in various social contexts.
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Lately, Autonomous wehicles (AV) have been gaining traction globally owing to their huge social,
economic and environmental benefits. However, the rising safety apprehensions for vulnerable road
users (VRU) alongside have become a stumbling block to the large-scale implementation of AVs.

i [ in advance all social norms and context surrounding the VRU is a
highly challenging task due to the huge amount of variability in their motion, actions and end goals.
Based on this pensiveness, this paper extensively surveys the variety of techniques applied to anticipate

Vulnerable road user
Long-term intention
Short-term intention

and dassifies them from multiple perspectives. Some newly introduced datasets
with added complexities of human behaviour on road have also been outlined. It also provides a compar-
ative analysis of the of ped: on several benchmark
datasets as per the various assessment parameters available. In addition to this, several potential chal-
lenges and their possible solutions paving way for future research have also been

analysed in this endeavour.

Dynamical-based models
Coal-driven models
Path-planning models

© 2022 Elsevier BV. All rights reserved.

1. Introduction

The autonomous vehicle market is expected to have enor-
mous growth potential by 2023 at a compound annual growth
rate (CAGR) of around 17 per cent even after a sudden unex-
pected halt owing to worldwide lockdown in wake of contain-
ment for the ¢ d Nnj
vehicular technology comes with enormous economic benefits
for society ranging from reducing costs of driving to increasing
fuel efficiency and many more. The absence of humans from dri-
ver seats is sought to make the driving experience error-free,
stress-free both for the driver and passenger, and thus reducing
human errors which ¢ ly leads to all ng accident
rates. This ensures a safe traffic environment for both car and
non-car users. Moreover, the level of comfort that it brings with
it allows one to engage in other productive work or recreation
while on their way to the destination without sparing attention
to the road traffic |2).

Despite the highly promising future of AVs, and its booming
economic ventures, creating a fully autonomously working car
remains an unfulfilled desire of many tech giants even after gar-

* Corresponding author.
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nering huge success now and then in Advanced Driving Assis-
tance System (ADAS) by the research community. According to
The Global Status Report on Road Safety published by the World
Health Organization (WHO) [3]. the number of deaths on roads
globally has reached an unprecedented high of 1.35 million
deaths annually. Out of which, victims of nearly half of the road
accidents are vulnerable road users (VRU). Huge challenges per-
sist when it comes to developing appropriate infrastructure and
proper safety traffic regulations to facilitate the harmonious co-
existence of AVs and VRUs in urban traffic scenarios. Therefore,
a high level of precision and accuracy is required as several lives
are involved which can't be risked in the name of technological
advancements [4].

One of the most challenging issues faced by autonomous
vehicles is mimicking the perception that humans have in an
understanding multitude of social cues in everyday traffic sce-
narios to avoid fatal vehicle-to-VRU collisions [5]. This is to pre-
vent any severe injury to the latter as they don't have any
special protective equipment. Additionally, it creates a secure
and more congenial atmosphere for every road user agent.
Hence, early anticipation of VRU's intention is desired so that
AVs get adequate time to design their manoeuvres accordingly
[6]. A variety of approaches are employed for this challenging
task which includes interpreting the forthcoming actions of vul-
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Abstract—The capability to

has been vbc.l (VE), motion encoder (ME), and interaction
mduaﬂlomﬂd-mﬂmodﬂ of the p with the
by ap n-hn(mmn(mbmmnnummmmmcmvym
prop several SOT) (PIE)/Joint
Attention in Autonomous Drivin (M)Mhm%ﬁm.mmrﬂlnom 0.91/0.90,
0.87/0.81, 0.86/0.79, -uom.ga, y. Fi Xp are carried out to investigate
different fusion architectures and design of all The prop Vll
crossing intention 2.5 s ahead of the crossing event. Code is at: https/github. VMLgit.

Index Te (Avs), pr

I. INTRODUCTION Initial studics emphasized pedestrian dynamics to anticipate

CCORDING to the Global Status Report on Road Safety  crossing intent [2). Yet, analyzing merely the trajectory
2018, vehicle crashes cause numerous annual deaths. proves inadequate for understanding underlying intentions
particularly impacting vulncrable road users [1]. Pedestrians, [3). Beyond trajectory, various factors impact pedestrian

lacking protective gear, face high vulnerability, and sub-
stantial injury risk in collisions. Consequently, the growing
advancement of autonomous vehicle (AV) technology is being
explored to cnhance road safety and convenience for all
users. AV technology holds the potential to reduce accidents
nnnbuln:d to human crrors IILc Iauguc misperception, and
Leading s and tech giants

like Bayerische Motoren Werke (BMW), Tesla, and Google are
actively advancing .-\V lcchnology in this pur\uu
Predicting ped road- 1 is pivotal
for achicving a reliable driverless cxpcn:nc: through AVs.

Manuscript received 22 August 2023; accepted 16 Seplember 2023.
Date of publcation 26 September 2023; date of current version
14 2023. The editor the review of
lmumewmrgnbtwuwmmﬁd Yu-Dong Zhang.

(Corresponding author.
mmmmmmmmmmmsnwmuw
and University

road-crossing decisions. These factors fall into three pri-
mary modalitics: pedestrian-specific (encompassing pose and
appearance), context-specific (involving scene infrastructure
and social mlcmcmn with co—pcdcslnam) and hybrid modal-
ity ve human cognitive aspects
while obﬂcn ing a pcdt\lnan on the road [3].

Inspired by how human drivers interact with pedestrians
and make decisions intuitively, n:ccm endecavors [4]. [5] aim
to deciph destrians’ crossing i by analyzing a
varied combmanon of pedestrian-specific and context-specific
features. Nonctheless, dealing with such diverse modalitics
necessitates an cfficient multimodal fusion framework that
can cap(urc ndcqu:nc dw:nmln;\lor) fc.'mm:\ for classifica-
tion. T i with the

ing envi is mgm) hall in a dynamic
cgo-centric setting. Quite a few approaches [6]. [7] could
exploit the social interaction features for short-term inten-

(DYU) Dedhi 110042, India (e-mu Lcom;
chiman@adiu.ac.in; s.indu@dtu.ac.in).
Dqlal Object Identifier 10.1109/JSEN.2023.3317426

tion prediction, so fu 'l‘ to address these issues,
the proposed multi y fusion fi rk for ped
intention prediction focu\ts on a holistic nnder\l;\ndmg of the

requires IEEE
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Progressive Contextual Trajectory Prediction With
Adaptive Gating and Fuzzy Logic Integration

Neha Sharma ®, Member, IEEE, Chhavi Dhiman®, Member, IEEE, and S. Indu®, Senior Member, IEEE

Abstract—Despite the rapid of highly
vehicles poised to mitigate accidents caused by human errors,
understanding the bthnvhrs of road users, especially vulnerable
destrians, remains a sk hall The evolution of pedes-
trian itioni n'om ud) lnollon models
to recent d«p h d persistent

chﬂkngfshmnlclypfvdkﬂnghlmlmmsmﬂy
in complex scenarios. To address this, this paper presents a Pro-
gressive Contextual Trajectory Prediction with Adaplhe Gating
and Fuzzy lqkl-mh-(m?.A(‘FLLTbepmMM

In the carly stages of h h loyed
dom models, including the G: mixture regression model
[6] and the hidden Markov model (7] to simulate pedestrian
motion patterns based on cither precise dynamical modeling
or knowledge of prior end goals, limiting their ability to rea-
sonably predict future interactions and their applicability to
complex motion scenes. The rapid advancement in decp leam-
ing in recent yecars mlm‘hccd data-driven methods for com-

hending and di the plex motion of f

incorporates (DPG)
multiple Lml hyusl.hﬂnthp( progressively to pedestrian mo-
Mpnemmpksm&mbl’(‘kuimdm-hrn«l

! d lhmugh nn Adap(lve
Gating Mechani (A(‘\li. lowing d.

teacher forcing and normal mode. Thkls-mne-leduithn
Encoder-Decoder Conlzn-al Attention (EDCA) module to en-

Whllc mecthods involving recurrent neural networks (RNN‘) and
transformers have proven effective in addressing time serics
problems, their efficacy was hampered by msufhclcm comcx-
tual [8] [‘)l“L g hodologi

visual and i 1

y still urug-

hance anovel Adapun Fuzzi- gled to explain sudden motion pancms duc to the adoption of
fied Discrimi (AFD) is introduced to enh the model’s hmncd training strategics in RNN-based sequence-to-sequence
capability to handle ambiguous trajectories. Experi I results y deling via encoder-decoder structures [10], [11].
on JAAD/PIE and ETH/UCY datasets demonstrate the methods destrian motion can not be explained

superhrn) over baselines and state-of-the-art Fur-
blation study is carried out to tune the

by a smglc lm)cclou'y To introduce stochasticity and generate

P s ink and the type of classif
logic in the discriminator.

Index Terms—Autonomous driving, pedestrian trajectory
prediction, ADAS, intelligent vehicles, GANs.

L. INTRODUCTION

HE advancement of highly and fully automated vehicles
has gained considerable traction in recent years, pnm:n'-

ily ibutable to their anti d cfficacy in i
idents and fataliti g from human crrors. Despite
these advancements, challenges persist in comprehending the
behaviors and intentions of vulnerable road users, particularly
pedestrians, contributing to 22% of global traffic accident fatali-
ties [1]. [2]. Despite typically exhibiting lower speeds than other
traffic participants, pedestrians posscss lh: capacity to :\llﬂ lhclr
movement pattems abruptly.
prediction for implementation in lmclhgcm Vehicles (IVs) |1|

[4). [5].

Manescript received 25 February 2024; revised 6 Apeil 2024; accepeed 15
April 2024. Date of publication 22 Apeil 2024; date of current version 30 June
2025. (Covresponding author: Chhavi Dhiman. )
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Color versions of onc o more figures in this aticle are available at
hatps://doi.ong/10.1 109/TIV.2024 3391898,
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P bable future traj y distributions, recent works
mcutpomlcd generative networks such as GANs [3] and CVAE
|l’| |I3]|nm jectory prediction hod:

Nonctheless to the best of our k.nonlcdgc
lhcn: has hccn no exploration into enhancing the disc -
ing ability of the discriminator in the context of ambiguous
trajectories.

Taking cognizance of the intricately complex and stochastic
nature of the pedestrian motion endeavors owing to dynamic
context and scene semantics, the proposed method employs
a Progressive Contextual Trajectory Prediction with Adaptive
Gating and Fuzzy Logic Integration (PCTP-AGFL). The pro-
posed method shows remarkable jormance on both First-
person-view(FPV) datasets like JAAD/PIE [10]. [14] and Bird's
cye view(BEV) datasets like ETH/UCY [15], [16] surpassing
basclines and state-of-the-art trajectory prediction methods. The

principal ibutions of the proposed work are del d as
follows:
e A novel Dynamic Progressive Generator (DPG) is de-
signed to adapt progressively to the pl

in pedestrian motion p:mcm‘ in a teacher-forcing Imining
environment.

e To handle abrupt motion patterns of the pedestrians, a novel
leamed scheduled sampling strategy through an Adaptive
Gating Mcchanism (AGM) is presented that allows dy-
namic switching between teacher forcing and normal mode
training strategy.

2379.8858 © 2024 Personal use is permitted. but republ requires IEEE
See hitps://www.icec dex html for more
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Predicting pedestrian intentions with multimodal IntentFormer: A L
Co-learning approach
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ARTICLE INFO ABSTRACT
Keywords: mmmdmcmummuamunﬁmlhmnd.wmn’m
Pedestrian intentan predatios traffic safety and reduce the risk of accidents without human of
a";-;h i which ts by factoes in with m.u

. trissformes

divieg :anymmmangnﬂc&tmkqe Sﬂmlnkddrmwurmrﬁym:

proaches fail to capture the Intricate intermodal relationships and robustly represent pedestrian.environment
Interactions in challenging scenarios. To address these issues, a novel Multimodal IntentFormer architecture is
presented. It works with three transformer encoders (TE,. TEy. TEw) which leamn RGB, segmentation maps, and
trajectory paths in a co-leaming environment controlled by a Co-learning module. A novel Co-learning Adaptive
Composite (CAC) loss function is also proposed, which penalizes different stages of the architecture, regularizes
the model, and mitigates the risk of overfitting. Each encoder {TE, | applies the concept of the Multi-Head Shared
Weight Attention (MHSWA) mechantsm while learning three modalities in the proposed co-Jeaming approach.
The propased architecture outperforms existing state-of the-art approaches on benchmark datasets, PIE and
JAAD, with 93 % and 92 % accuracy, respectively. Purthermore, extensive ablation studies demoastrate the
mnnqndmumo(mmnnmm mmdﬂnlymm—lmu(mlndmmm
The code Is available at thut m h, 4

1. Introduction environments can impede the reliabl, of AVs. The

wvehicle conflicts in a crowded urban road environment are one of the

As of 2021, the global market size for autonomous vehicles(AVs) is
estimated to reach $125.67 billica by 2030, according to a recent report
published by Market Research Future [1]. The market is expected to
witness substantial growth in the coming years, with key players such as
Alphabet, Uber, Tesla, and General Motors investing heavily in the

of wehicle This growth is attrib-
uted to the i demand for in the auto-
motive industry to increase safety, improve efficiency, and provide
comfort and ility to all, i ive of age, disability, or other
factors. the COVIDJ9 by that curbed
mobility for the risk of infecti i the
olAVsnlhtyand'kcnvﬂyndu(vanyhm interaction. These
could ic food items, and other essen-

mlsmthnpmm;-mtdd:xhdmmnnun{m
Nonetheless, the full realization of these benefits is still several years
away, as the challenges posed by the complexity of urban traffic

Coeresponding
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dol.org/10.1016/). patcog. 202

»m (N. Sharma), chhavi dhimangrdu.ac b

most crucial problems that have recently elicited enormous attention
from the AV research community. Pedestrians crossing the street are
nnrep(ihlemvvhxlcmﬂm lndmglonﬁ-lym Therefore, a

crossing our cues can
assist in interpreting pedestrian intentions and expected crossing ac-
tions, leading to improved road safety and fewer conflicts between pe-
destrians and vehicles.

A combination of visual, dynamic, and motion cues is exhibited by
pedestrians when they intend to cross the road, offering valuable clues to
their crossing . For instance, a may cross the road if
he/she is approaching the crosswalk and looking at the incoming vehicle
to ask for a passage. On the other hand, a person standing still at the
curb, showing no signs of motica or visual gait towards the crossing
action, is less likely to cross the street in a short while. Hence, the pe-
destrian’s positive umg lmem rdm to ohuﬁblebdu\nourmd
cues ited by a a to cross

(C. Dhtman), 5. indudfdee.ac i (S. Indu).
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Absi F and traj Y P are dicti accuracy. Subsequent  ad |4] invo-
crucial for ad ing intelli P ion systems and l\v:d di dal o i
o _\thlc‘lls."L n fi .'. h . h:::::ol.\’:ml:: Nevertheless, lhc\c modcl‘ often struggled lo ad.\pl to diverse
4 Jes through Image features n-d environments duc to their heavy reliance on semantic scene
b ding box 10 k ging multiple dalith p;u'\mg Morc n:ccm cfforts |i| [6]. [7]. [8] have cmplmcd
i in robust “' and s to fuse sp
feature integration and adaptation to complex: rios persist. features. Yet, these models frequently encountered difficul-
:::v Boper M_‘"; ‘::;‘:;;" "I::" tions ana ticS With mhu\( cross-modal feature integration, particularly
long-term trajectories by integrating features from pedestrian 0 chall h izcd by moisy or missing
regions of interest (ROIs), scene attributes, and past trajec- data.
tories. For crossing dicti iy Concurrently, the ficld of pedestrian trajectory prediction

Attention (PDA) is 'k‘fbﬁd- “M “ﬂ"“‘d‘ refines cross-  hag scen the exploration of various methodologies, including

modal features to :
a three-phase m-lerbdnal lrdnlng approach is employed that  © models [9]. [10]. [11]. that address the multimodal-

rian ROIs and maps to further n} nnd uncertainty inherent in human movements. While
enhance model s in complex rios. For traj C Adversarial (GANs) have been inves-
predicti a Conditi s der (CVAE) h tigated for trajectory prediction, they often suffer from issues
impl d, guided by beddings from the novel  ch 55 mode collapse and training instability. In contrast,

Context-Aware Feature Fusion Module (CAFFM) to significantly - ) -
Foliaca isaa’ e S Wy ek Variational Autoencoders (VAEs) provide a more stable and

poral ROI and context information. Experimental results on 'cliable approach by leaming latent space representations
bendmnrk datasets JAAD and PIE demonstrate the supe- that capture the underlying structure of trajectory data [12].

ric of the h in Despite these advancements, integrating environmental context
“‘ predicting l"‘"’"‘“ "‘“‘" The code is available at: remains a significant challenge, limiting the optimal perfor-
hittps://github.com/neha013/DPITRA maasce of these modéls.
Index Terms— P y Pedestrian To address these limitations, this vmd lnlroducc\ a
ADAS, vehicles, CVAEs. Dual-task approach for Prediction of Pedestri
and TRAjectory (DPITRA) utilizing pedestrian ROIs, scene
L. INTRODUCTION ib and past traj ics. The salient ibutions of
EDESTRIAN intention and trajectory prediction pl:w our P“P“ are the following:
a pivotal role in advancing intelligent P « Develop of the Progressive Denoising Attention
s)\lcmt and autonomous vehicles. Accurate forecasting of (PDA), inspired by diffusion models, which itcratively
jan behaviour can sub ially cnh. the safety and refines cross-modal features to enhance inter-class sepa-
:lhcncnm of urban mobility by addressing the dynamic ;md ration between crossing and non-crossing samples.
complex nature of human actions within diverse env o 1 ion of a sy ic three-phase counterfactual
contexts. Early approaches [1]. [2]. [3] to pedestrian intention u:umng approach manipulating pedestrian ROIs and scg-
prediction primarily focused on capturing pedestrian dynam- mentation maps to \lmnglh:n the model’s understanding
ics through image features and bounding box coordinates. of causal relationshi ! el and
Thcsc models, however, were comu:uncd by their inability P‘d“"“" b‘h-“"""
to P richer 5 limiting their . ion of a Conditional Variational Autoencoder

(CVA!:) for long-term trajectory prediction, guided by

Received 4 December 2024; revised 28 February 2025 and 23 April 2025 contextual embeddings from the novel Context-Aware
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Abstract—Pedestrian detection is one of the important appli-
cations of computer vision with key contributions in various
leldsolhmltemdsslnulllgml\rhlds.smﬂlam
and d robotics. C h has taken place
|l i ! bl ﬂ-dm destri. due
mlkhighrkkduﬂdemmemnﬂﬂyumdsm

uhmudbvhlmmmm()lhrcmdalkumﬂke fusi

YL ) : Lonslits

The current p used in ADAS
still have difficulty in d i destrians with sati y
accuracy and precision [4), ISI

As per the recent rescarch findings, advanced decp leamning
architectures are proving to be a boon for augmcnung accumq

and the number of correct predi in a

(6]. Bul mh current decp Icamlng framework used in such an

kgr lead to loss of y in final
results. De i "‘md:n.lllnbjeﬁshl
complex dataset like p with has
ma)sbmnmqumkmpmwwkulﬂslw
families of detectors, the first is one stage detector

is focusing on the issuc of cither accuracy or a total

number of correct pmdlmons No framework yet can justify

both the causes to be able to get employed in the pedestrian

detection system. Hence, there is a need for the amalgamation
‘o

for precise bounding boxes but low recall value while the other
one is a family of two-stage detectors, giving a high recall value
but an imprecise number of bounding boxes. Adapﬂ\e fusion
of two g and d the
overall lag Average Miss Rate (LAMR). The performance of
the proposed work has been evaluated and assessed on three
publicly available datasets: ETH, INRIA, and Central Pedestrian
crossing sequence, which exhibits superior pedestrian detection
performance over the existing state-of-the-art.

Index Terms—pedestrian detection, YOLOv3, Faster RCNN, Log
Average Miss Rate

1. INTRODUCTION
Rising casualties, disabilitics, and injuries duc to road
accidents hn\'c become a  grave canse of concem for the road

user d Th there is
a lot of ongomg mh over lhc last few decades, within
the s in collab with the bil

industry for the ud\znccm:m of road safety using technol-
ogy embedded vehicles on roads, more popularly known as
Advanced driver assistance systems (ADAS) which includes
a tool for safe detection of a pedestrian on roads and thus
employing required operation to prevent unf h

of decp | g rks to include the advantages of both
frameworks in a single shot (7).

Therefore, in this paper, we address the issue of inaccuracy
and low recall value by an appropriate fusion of the two most
famous object detectors namely. YOLOv3 (8] and Faster R-
CNN [9]. As YOLOv3 (8] comes from a family of one-stage
detectors which has difficulty in dealing with small objects
and has comparatively less number of relevant detections.
On the other hand, Faster R-CNN [9)-[11] comes from the
family of two-stage dctectors who are good at predicting
objects at a smaller scale but their time-consuming bounding
box regression process at times is less precise. Morcover,
owing to overlapping objects in the dataset, predictions often
involve multiple bounding boxes for the same object or person
leading to redundancy in results. Hence our unifying proposed
approach, in the paper. can beat the shortcomings of both 8]
(9] and benefit from their ad ges. As a g an

8! d number of d with an ble amount
of accuracy is received at the output.

The paper has been structured as follows:

« Section Il provides a comprehensive review of the related

on roads due to collision between cars and pedestrians. Dc1ccl-
ing pedestrian presence on road serves as an important cuc in
decision making for or s driving
as proposed in ADAS [1], [2].

In urgent cascs, drivers of the vehicle need to be alerted in
time of the pedestrian’s presence on-road or more precisely
possibility of collision, so that appropriate action can be taken
cither by thc driver or in an automatic fashion. This alert can
be g d by p ing real-time videos or photographs
capiun:d by a camera mounted atop a vehicle [3]. Processing of
such input requires a hlgh dcgn:c of accuracy in pfcdxcuom as
well as precise enclh of ians in the b g box.

Ao g

978.1.6654.5883.222/$31.00 ©2022 IEEE

h in the domain of pedestrian detection taken so
far;

o In Section IlI, the proposed methodology for p
detection is described;

o Section IV claborates datasets used, and presents ex-
perimental analysis and performance of the proposed
framework, and

o Section V gives the conclusion and future scope of our
work.

II. RELATED WORKS

Owing to various applications of the domain of Pedes-
trian detection, like video surveillance, road user safety, au-
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Ahm—ou uf lbe most critical tasks in autonomous driving
s crossing on roads to ensure
safe and reliable driving. This will instil trust in the road user
community in driving assistance endeavours from Advanced
Driving Assistance Systems (ADAS) to Autonomous Vehicles
(AVs) encouraging their co-existence. In this paper, a cascade of
three modules is employed, the convolution module that acts as a
feature extractor, the recurrent module that is used for

sources of information like visual features and also the cgo-
vehicle speed that shall help mxk: the model leamning more
robust and ffected by in pedestrian motion
dynamics with respect to the onboard camera 3].

In this paper, a data-driven decp k g-based ped:
intention prediction model is poposcd cmploymg lhn:c mod-

tasks followed by classification module. It is shown that with the
help of the past traj Yo of
pedestrians and the ego-vehicle speed, the proposed data-driven
approach is nNe to predict pedestrian crossing intention reliably.
The p is able to anticij crossing
in two pnblidy available benchmark datasets, JAAD and PIE
with an accuracy of 88% and 86% respectively.

Index Te vehicles, ad-
vanced driver assistance systems, data-driven, deep learning

1. INTRODUCTION

During the span of the last few ycars, there scems to
be substantial cvolution in ADAS and AV technology when
it comes to object classification and localisation [1]. This
can be attributed to the success of advanced deep learning
architectures that are improving cvery day with the amount
of increasing data offered to them. However, comprehension
of the environmental stimulus and human response to it is
still a daunting task for AV systems. Human intuition helps in
g and chall g real-life dmmg
scenarios where there is a p:usagc of p
vehicles and other road users. Autonomous dnvmg systems,

ing in

ules in that are © I fusion and
classification. The convolution module process visual features
that can be extracted from the image while the recurrent
module processes non-visual features like trajectory. The cgo-
vehicle speed is also taken into consideration since the relative
distance and speed of the pedestrian with respect to the cgo-
vehicle is not constant but dynamic in nature. The rest of the
paper is structured in the following fashion: Section II in-
troduces several state-of-the-art methods and their nolcwonhy
ibutions: Section III clab on thc d method-
ology for pedestri ing i prediction, Section
IV covers the discussion of dalav:ls the experimental sctup,
results, and their analysis. Finally, in Section V, the paper’s
conclusions and potential future directions are presented.”

II. RELATED WORKS
This section outlines several state-of-the-art methods pro-
posed for pedestrian crossing intention predictions in the last
few years. The preliminary works (4], [5] in the field of
desiguing pedcstiian | o cks forpiired dynam
motion modelling. These works fail to be robust in case of
abrupt motion vaniations of a pedestrian. The next category

however, programmed well, fail to und d this inh of \mfh 6). [7] demanded a set of prior end goals
complexity of human behavi Theref an that b a bottl pm\ ided the difficulty in assessing
vehicle must imbibe this behavioural and | under- d from the onboard camera. The last and most recent
ding of the ding to achicve a smooth and  category is data-driven approaches (8], [9] that do not require
human- hk: dn\'lng experience. cither motion modelling or prior end goal estimates. Motivated
The h of ped: q decper by the success of decp leaming approaches in several other
analysis and undcnundmg of prior action states. Several ficlds and their increasing utilisation in predicting human-
pwotal »\orki (2] employ mo(mn history to anticipate the ion, this section limits the discussion to data-
's forthcoming crossing i or even the whole dn\cn approaches provided the demerits of former techniques

lra)cclory However, iuch works fail to capture pedestrians’
dictable motion dynamics such as an abrupt change

as discussed before.
Qullc a few pioncer rescarch “ork‘ in lhc ficld of pedestrian

in mouon direction or velocity and even i lar walking
patterns that confuse the learning models leading to erroncous
predictions. Therefore, the need arises to employ other vital

979-8-3503-3224-7/22/$31.00 ©2022 IEEE

prediction utilised mull related to
pedestrians and their surroundings hk: pose [10], [11], motion
history [2]. [12]. head oricntation [13], ego-vehicle speed
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