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CONTROL TECHNIQUES FOR IMPROVED PERFORMANCE 

OF MICROGRID INTEGRATED WITH RES 

 

Abstract 
Environmental, economic, and technological concerns have prompted the 

development of electrical systems based on the distributed generation (DG) model, 

which is associated with small-scale power generation and is primarily comprised of 

renewable energy sources (RES). These RES have significantly contributed to the 

advancement of microgrids, making them a viable alternative to conventional grids. 

Among all RES, solar photovoltaic (PV) is one of the most widely utilized due to its 

accessibility, ease of installation, and low maintenance requirements. Solar energy 

plays a significant role in environmental conservation and fostering a cleaner society. 

Additionally, advancements in technology have made PV modules increasingly cost-

effective and efficient. 

However, due to their dependence on meteorological conditions for energy generation, 

solar photovoltaic systems (SPS) exhibit uncertainty in power output. Solar cells 

display nonlinear I-V and P-V characteristics that are influenced by external variables 

such as solar irradiation, humidity, temperature, geographical location, and various 

dynamic conditions. Consequently, the development of sophisticated control strategies 

is critical to ensure the efficient operation of solar PV systems. 

To address these challenges, a novel MPPT algorithm is developed by integrating the 

Incremental Conductance (INC) method with a double closed-loop voltage control 

strategy. This hybrid approach enables accurate MPP tracking while simultaneously 

regulating the DC bus voltage, thus enhancing the reliability of standalone hybrid 

microgrids. The proposed strategy is supported by a bidirectional DC-DC converter 

that facilitates intelligent charge/discharge control of the BESS, maintaining DC 

voltage stability within state-of-charge (SOC) limits. 

In the subsequent phase, the research advances to the development of intelligent, data-

driven MPPT algorithms for grid-connected PV systems. An Artificial Neural Network 

(ANN)-based MPPT controller is designed and trained using a diverse dataset that 

captures the spatiotemporal variations in solar irradiance and temperature. To enhance 

the adaptability and generalization capabilities of the ANN model, the Horned Lizard 

Optimization (HLO) algorithm—a recent bio-inspired metaheuristic technique—is 

employed to optimally tune the ANN’s internal parameters. The resulting ANN-HLO 

MPPT controller demonstrates superior tracking accuracy, faster convergence, and 

robust performance under rapidly changing irradiance conditions. 

Performance robustness is validated using a three-month real-time solar irradiance 

dataset obtained from NASA and NREL for two geographically distinct locations: 

Shahabad Daulatpur (Delhi) in northern India and Chikkaballapur (Karnataka) in 

southern India. These datasets enable realistic and comprehensive testing of the MPPT 

controller under dynamic conditions, including irradiance fluctuations, temperature 

changes, voltage sag/swell events, and nonlinear load disturbances. Compliance with 

the EN50530 MPPT efficiency standard is also established for both fast and slow-
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changing irradiance scenarios. Performance benchmarking confirms higher tracking 

accuracy, reduced settling time, and enhanced energy yield in comparison to existing 

techniques. Additionally, sensitivity analysis substantiates the algorithm’s robustness 

across a wide range of operating conditions. 

Recognizing the crucial role of inverter control in grid-tied systems, the thesis proceeds 

with an exhaustive study of DC link voltage regulation techniques. While conventional 

PI controllers are widely used, they often struggle to maintain voltage stability under 

fluctuating irradiance and nonlinear load conditions. To overcome this limitation, 

metaheuristic optimization techniques such as Cuckoo Search Optimization (CSO) and 

Honey Badger Algorithm (HBA) are introduced to optimally tune the PI controller 

gains (Kp and Ki). These techniques minimize integral error criteria and improve 

dynamic system response. The proposed control scheme maintains unity power factor 

operation and ensures harmonic distortion remains within IEEE-519 limits, even under 

complex nonlinear loading scenarios. 

The thesis also includes performance evaluation using statistical metrics such as Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Square Error 

(MSE), offering quantitative validation of the proposed control strategies. 

Comparative analysis of conventional PI, ANN-PI, CSO-PI, and HBA-PI controllers 

is carried out through MATLAB/Simulink simulations under varying scenarios, 

including sudden load changes and irradiance dips, demonstrating the superiority of 

the optimization-enhanced approaches. 

In addition to advanced control methodologies, the thesis addresses one of the most 

critical protection challenges in grid-connected PV systems: islanding detection. A 

voltage ripple-based islanding detection method is studied, which accurately identifies 

grid disconnection events by analysing characteristic disturbances in the DC link 

voltage waveform. This method ensures minimal non-detection zones (NDZ), rapid 

response time, and compliance with IEEE 1547 and IEC 62116 standards. 

Overall, this thesis contributes significantly to the domain of solar PV-based power 

systems by integrating classical control theories with cutting-edge artificial 

intelligence and optimization methods. The proposed control strategies deliver 

improved energy efficiency, enhanced system reliability, and resilient performance 

under diverse environmental and operational scenarios. The outcomes of this work 

have direct applications in the design and deployment of next-generation smart 

microgrids, aligning with the global pursuit of clean, sustainable energy solutions. 

 

 

. 
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CHAPTER- 1 

 INTRODUCTION 

1.1 INTRODUCTION 

The global energy crisis has raised concern about energy resources and climate 

impact worldwide. Fuel-based electricity generation significantly increases 

greenhouse gas (GHG) emissions, exacerbating the situation. As electricity demand 

rises, the need for sustainable alternatives increases. The global electrical industry is 

undergoing a significant transformation as it transitions from fossil fuels to renewable 

energy sources (RESs) to meet the growing demand for electricity. This 

transformation, driven by the demand for sustainability, poses a huge challenge to the 

sector, which formerly relied on fossil fuels. The development and integration of 

renewable energy solutions have become a key priority for ensuring a more reliable 

and sustainable power supply. This shift is essential for mitigating climate change and 

lowering the carbon footprint of energy production by replacing high-emission fuels 

with renewable resources. These sources are naturally decentralized, plentiful, and 

locally accessible. In the face of shifting global energy markets, they are essential in 

reducing reliance on imported fossil fuels and offering stability [1]. 

Global renewable electricity generation is expected to exceed 17,000 terawatt-hours 

(TWh) by 2030, an increase of about 90% over 2023[2] as can be seen in Fig.1.1. This 

would be sufficient to supply China and the United States' combined electricity needs 

by 2030. 

 

Fig.1.1 Global Renewable Energy Growth Trends (2000-2030) – IEA [2] 

Renewable energy is expected to surpass coal-fired generation by 2025. In 2026, wind 

and solar power generation are both expected to outperform nuclear power generation.  

In 2029, solar PV energy generation will overtake hydropower, making it the world's 

greatest renewable power source, with wind-based generation predicted to surpass 

hydropower in 2030.[2] 

Solar PV and wind energy have become more cost-effective than most fossil fuel and 
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non-fossil fuel alternatives in the majority of countries. Supported by favorable 

government policies, the deployment of these renewable technologies is expected to 

continue increasing over the next five years, with solar PV and wind projected to 

account for a record 96% of total new power capacity additions. 

India is strategically harnessing the output of electrical energy from renewable energy 

resources by utilizing its advantageous geographic location. India offers numerous 

opportunities to develop robust renewable energy infrastructure due to its diverse 

climate and topography. India is moving quickly to fulfil the higher benchmark for 

generating electricity from renewable resources, according to the Ministry of New and 

Renewable Energy (MNRE). India's Total Renewable Energy Installed Capacity 

(MW) as on 31st March 2025 is 172.36GW(Fig.1.2). Total Capacity Installed (in FY 

2024–25) is 28,723.65 MW (or 28.72 GW) (Fig.1.3) [3]. 

 

Fig.1.2 India's Installed Renewable Energy Capacities (MW) as of 31st March 2025 – 

MNRE [3] 

 

Fig.1.3 Installed Renewable Energy Capacity Achieved in FY 2024–25 (April 1, 2024 

– March 31, 2025) in MW MNRE [3] 

 

50037.82

105646.49

5100.559821.32921.79
309.34 530.87

172368.18

0

50000

100000

150000

200000

Installed Renewable Energy Capacity (in MW) –

Cumulative Achievements as of 31st March 2025

4151.31

23832.87

97.3 387.76 0 59.6 194.81

28723.65

0
5000
10000
15000
20000
25000
30000
35000

Installed Renewable Energy Capacity Achieved 

in FY 2024–25 (April 1, 2024 – March 31, 2025) 

in MW



3 

 

1.2 OVERVIEW OF RES BASED MICROGRID 

Conventional fossil fuel-based power plants have a number of drawbacks, including 

power losses, higher prices, decreased system efficiency, and environmental 

contamination. A number of distributed generators, including photovoltaic cells, wind 

turbines, and micro-hydro units, are employed in the distribution network in place of 

a single major power source. Although these micro-sources utilize renewable energy 

sources such as solar and wind, which are environmentally friendly, they are inherently 

intermittent in nature. These micro-sources and loads are grouped together because 

they may be controlled to supply electricity to the surrounding area, giving rise to the 

idea of a microgrid as shown in Fig.1.4. A microgrid is a group of interconnected loads 

and distributed energy resources within clearly defined electrical boundaries that acts 

as a single controllable entity with respect to the grid and can operate in both grid-

connected and islanded modes. Typically, a microgrid integrates renewable energy 

sources such as solar PV, along with energy storage systems, to enhance local 

reliability, sustainability, and resilience. An effective, affordable, and robust local 

power system made up of distributed energy resources (DERs), a microgrid provides 

power to nearby loads with fewer losses than a conventional system with lengthy 

transmission lines. An independent section of the electrical network, a microgrid can 

be deployed with local loads without the need for a transmission system, according to 

utilities. For the customer, it is a carefully designed system that uses a power optimizer, 

local controller, and protective system to deliver effective, dependable, and steady 

electricity. 

 

Fig.1.4 Renewable energy-based microgrid system 

 

In general, microgrids can operate in two different modes: grid-connected mode and 

islanded mode. In grid-connected mode, the microgrid draws power from both the 

utility grid and distributed energy resources (DERs), with DERs serving as the main 

source of power. The utility grid supplements any additional power requirements and 

helps maintain voltage and frequency stability, ensuring the reliable operation of the 

microgrid. In islanded mode, DERs become the sole source of power, as the microgrid 

operates independently from the main grid. Effective energy management is especially 

important in this mode to match power generation with varying load demands [4]. 
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1.3 SOLAR PV BASED MICROGRID 

The popularity of solar energy sources has grown exponentially in recent years among 

the different kinds of renewable energy sources. This is brought about by factors 

including higher solar cell efficiency, significant improvements in power electronic 

device interface, modular solar energy systems, lower maintenance requirements, 

noiseless operation, and a decline in solar energy costs. By 2050, solar energy is 

predicted to rank among the world's main sources of electricity. A solar photovoltaic 

(PV)-based microgrid is a decentralized energy system that generates electricity using 

solar panels, stores excess energy in battery storage systems, and distributes power to 

connected loads. Such microgrids can operate independently in standalone mode or 

remain connected to the main grid, thereby enhancing the flexibility, reliability, and 

resilience of the power supply. [5] 

 

1.3.1 STANDALONE SOLAR PV BASED MICROGRID 

Standalone solar PV based microgrid function autonomously of the central power 

utility grid, delivering power to remote areas where utility grid expansion is not viable. 

The amount of electricity delivered to the load in a standalone photovoltaic system is 

determined by the amount of solar energy that is available. Solar PV is an intermittent 

energy source which poses significant technological and financial hurdles for 

controlling loads. An energy storage system must be included in addition to a PV 

system in order to solve this problem. The most widely utilized storage device is the 

battery, which is essential to ensuring that the load constantly has power.  

The standalone system is being studied extensively as a standard standalone microgrid 

since energy storage has been integrated into the system. In addition to 

critical installations, this stand-alone power system can be utilized in remote rural 

locations with limited access to the grid and solar energy.[6] A standalone SPV-based 

microgrid can be constructed as single or three phase. Fig.1.5 is a block diagram for a 

stand-alone PV system with battery energy storage system (BESS). The system 

consists of a PV array, a battery energy storage system, a DC-DC converter, an 

inverter, and a load. 

 

Fig.1.5 Standalone solar PV based microgrid 
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1.3.2 GRID CONNECTED SOLAR   PV BASED MICROGRID 

Grid-connected SPV-based microgrid is a system that allows for bidirectional power 

transfer. It consists of solar panels, a dc-dc converter, a power source inverter, interface 

inductors, and loads. The power flow through a grid-connected microgrid is 

bidirectional. If the load demand is less than the output of the SPV power generation, 

the excess power from the SPV is transmitted to the grid; if the load demand exceeds the 

SPV power generation, the grid supplies the remaining load power. The inverter is one 

of the most critical components in the SPV-based microgrid. A PV inverter is employed 

to convert the generated dc voltage to ac voltage. A grid-tied SPV-based microgrid can 

be structured as single, two, or three phases. Single-stage and two-stage systems can be 

employed as single or three-phase. Three phase grid-tied SPV-based microgrids can be 

configured as three phase three wire or three phase four wire systems. Fig.1.6 depicts a 

two-stage grid-tied PV-based microgrid with the PV array integrated into a three-phase 

grid.[7]. 

       The fundamental unit of a PV array is the PV cell, which is an active transducer that 

transforms energy from sunlight (photons) into electricity (current). PV cells are 

connected in series or parallel to form PV modules. These modules can then be 

connected in series or parallel to build a PV array with specified output voltage and 

current. The system comprises of two stages of conversion: first, variable dc from the 

solar PV array is converted into fixed dc of the required magnitude by a boost converter, 

and then a grid-connected PV inverter is utilized to convert this dc voltage into ac voltage 

of the desired magnitude and frequency for supplying an ac load.[8] 

 

Fig.1.6 Grid connected solar PV based microgrid 

 

1.4 MPPT TECHNIQUE FOR STANDALONE AND GRID CONNECTED RES 

BASED MICROGRIDS 

       The increased PV installation capacity has also resulted in the advancement of the PV 

power conversion stage. PV power converters have become more efficient, compact, 
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and reliable, allowing for maximum power from the sun in residential, commercial, and 

industrial application. This advancement is due to the PV converter market's stringent 

requirements, which include maximum power point tracker (MPPT) [2].  

The Maximum Power Point Tracker (MPPT) is a critical component of a photovoltaic 

(PV) system, enabling optimal power extraction at the Maximum Power Point (MPP). 

Given the nonlinear I-V and P-V characteristics influenced by solar irradiance and cell 

temperature, implementing a real-time control strategy is essential for effective MPP 

tracking. 

 

Fig.1.7 I-V and P-V characteristic of SPV 

The Maximum Power Point Tracking (MPPT) technique focuses the peak of the solar 

panel’s I-V and P-V characteristic curves, as shown in Fig.1.7, to ensure operation at 

maximum efficiency. This peak, known as the Maximum Power Point (MPP), is 

achieved by a DC-DC power converter that dynamically adjusts the operating voltage 

of the photovoltaic (PV) system to extract the maximum available power.[9]-[10] 

 

1.5.  INVERTER CONTROL AND DC BUS VOLTAGE REGULATION OF 

STANDALONE AND GRID CONNECTED RES BASED MICROGRID 

Power converters are integral to modern industrial systems, enabling reliable and 

efficient energy transfer between electrical sources, loads, and the utility grid. Typical 

power converter topologies include a dc-link as an intermediate step, a grid-connected 

converter, and a passive filter. Examples include renewable energy sources, active power 

filters, and back-up (such as battery energy storage) systems. Efficient dc-link voltage 

control is crucial for reducing voltage variations produced by random changes in the 

power drawn by the grid-connected converter [11]. 

PV arrays with maximum power point tracking are integrated with the primary voltage 

source inverter (VSI) and auxiliary VSI dc links. The primary VSI functions in a grid-

interfaced mode with current control. Voltage control, on the other hand, is used in an 

autonomous mode as a grid forming inverter during grid interruption, maintaining 

frequency and voltage across the point of common coupling (PCC) to provide loads 

with continuous power. To ensure steady MG performance under dynamic settings, 
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the voltage source inverter (VSI) control algorithm must be proficient.  

Inverters are essential components of microgrids, as they can be controlled to maintain 

optimal network performance by synchronizing frequency and voltage, as well as by 

sharing active and reactive power among multiple inverters. Inverter-based microgrids 

are controlled at three levels: primary, secondary, and tertiary. Each level's control 

design considers both frequency and voltage control. A droop controller manages 

active/reactive power sharing and inverter frequency/voltage synchronization at the 

primary level. The secondary level, often an integral-type controller, compensates for 

frequency/voltage steady-state error while maintaining active/reactive power 

distribution. When the microgrid is connected to the main grid, the tertiary control 

level manages power flows among the solar PV, battery, load, and the grid. Recent 

research on inverter-based microgrids has focused on developing control models to 

address key challenges such as frequency and voltage regulation, synchronization, 

active and reactive power sharing, inverter power limitations, and overall system 

stability. [12]-[14] 

 

1.6.  ISLANDING DETECTION OF SOLAR PV BASED MICROGRID 

Three-phase power converters connect distributed energy resources, such as renewable 

sources and energy storage systems, to the AC grid or microgrid. The technical 

challenges of distributed or local control of these converters include achieving stable 

steady-state operations, seamless power transitions between grid-connected and islanded 

modes, and ensuring compliance with IEEE standards and grid codes.[15] 

Despite the advantages of renewable energy sources (RES), they also present certain 

risks, such as unintended islanding, safety issues, and reverse power flow. As a result, 

integrating distributed generators (DGs) into the grid requires addressing protection and 

safety concerns within the distribution network. Islanding occurs when a portion of the 

utility system, which includes both load and distributed resources, continues to operate 

while disconnected from the main utility grid. In this situation, distributed generators 

(DGs) remain energized and supply power solely to local loads, without being connected 

to the larger power grid.[16] 

 

1.7.  MOTIVATION AND RESEARCH OBJECTIVES 

Developing SPV-based solar microgrids can provide solutions that overcome energy 

challenges with their sustainability, accessibility, and resilience. SPV microgrids rely on 

clean and renewable energy from the sun and contribute significantly in reducing fossil 

fuel utilization, greenhouse gas emissions and slowing down the adverse impacts of 

climate change. Furthermore, SPV based microgrids aid in conserving the environment 

and building a future with lesser impulses through discontinuation of traditional power 

generating systems. These microgrids, in particular, facilitate the electrification of rural, 

mountainous and remote areas that lack traditional infrastructure and have a grid 

extension that is spreads vertically which is expensive. These microgrids eliminate 

energy poverty by improving life for the millions of people that do not have 



8 

 

uninterrupted SPV electricity through a decentralized and self-sustained energy 

provision. There is accessibility to modern healthcare, education and jobs, along with 

boosted community empowerment by energy autonomy, which all contribute to socio-

economic progress. The relatively new technologies that consist of solar panels, energy 

storage devices and additional infrastructure have witnessed a considerable drop in their 

cost. As a result, solar photovoltaic based micros grids become economically viable for 

both the developed and developing regions. Combined with the advent of lithium-ion 

batteries as energy storage devices, these microgrids provide power even during non-

sunny hours, and therefore, ensure the availability of electricity. This reinforces energy 

security by minimizing reliance on centralized networks that are inherently susceptible 

to outages or damage during extreme weather conditions. Therefore, solar photovoltaic 

based microgrids are instrumental in the development of resilient energy systems 

especially in the disaster afflicted regions where the demand for self-sufficient power 

systems is inevitable. 

The support extended for developing microgrids by governments, international agencies 

and private enterprises is on the rise as a result of fiscal and policy changes, research 

funding and taxation incentives. Due to their scalability varying from small rural 

settlements to sprawling industrial plants, these SPV based micro grids are a cost 

effective and efficient answer to the global energy requirements. The research being 

undertaken right now will have a long-lasting effect and will also serve the purpose of 

offering contemporary clean energy solutions, supporting the cause of sustainable 

development in the process. By focusing on solar photovoltaic (SPV)-based microgrids, 

some of the most challenging global energy issues can be addressed, paving the way for 

universal access to renewable energy. This approach supports the development of robust 

and sustainable communities powered by clean energy sources. 

As discussed above, the benefits of PV-based microgrids inspired and led to the 

following research objectives: 

1) Development of novel MPPT technique for grid connected solar photovoltaic 

system for enhanced performance. 

2) Development of novel control algorithms for grid connected photovoltaic inverter 

system. 

3) Design and development of hybrid micro-grid and efficient control technique to 

improve the performance of the system. 

4) Islanding detection and development of control technique of microgrid under 

islanding condition. 

 

1.8.  PROBLEM IDENTIFICATION 

Based on the above objectives, following problems are identified: 

1. Solar PV output is inherently intermittent and unpredictable due to climatic variations. 

While traditional MPPT methods are widely used, they often suffer from slow 

convergence, oscillations, and the risk of locking into local maxima under rapidly 

changing irradiance or partial shading. These limitations reduce energy yield and 
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compromise system stability in both standalone and grid-connected settings. Although 

intelligent methods—such as ANN, fuzzy logic, ANFIS, and various metaheuristics—

have been explored, they tend to be complex, computationally demanding, and costly. 

Hybrid approaches offer promise by enhancing tracking speed and accuracy while 

reducing oscillations. 

2.  Existing inverter control strategies perform adequately under steady-state conditions 

but often fail to maintain optimal power output during grid disturbances and transients, 

such as voltage sags, frequency shifts, and harmonics. As a result, power quality 

degrades and grid stability and reliability are undermined. There’s a pressing need for 

advanced control algorithms that dynamically adapt to grid fluctuations, ensuring 

consistent, high performance under both normal and abnormal conditions. 

3.  Hybrid solar/battery microgrids face challenges in maintaining grid stability amid 

fluctuating supply and demand, especially when powering linear, nonlinear, or 

unbalanced loads. Poorly designed control systems can lead to voltage and frequency 

deviations, inefficient resource dispatch, and power-quality issues. While several control 

strategies exist, comprehensive solutions that integrate effective stability control with 

DC-bus voltage regulation remain lacking. 

4.    Unintentional islanding—when a microgrid continues to power local loads after grid 

disconnection—is a major safety and reliability concern. Passive and active detection 

methods frequently exhibit large non-detection zones (NDZ), slow detection times, and 

negative impacts on power quality. Delays in islanding detection can endanger 

maintenance personnel and damage equipment. Faster, more reliable detection methods 

with minimal NDZ and enhanced control during islanding are urgently required to 

preserve microgrid stability in all operating modes. 

 

1.9 ORGANISATION OF THESIS 

Chapter-1 contains the introduction of the research work, its motivation, research 

objectives, and the problem statements. This chapter also describes the organization of 

the thesis. 

 

Chapter-2 presents a comprehensive review of standalone and grid-connected solar 

photovoltaic (SPV) microgrids and their control technologies. It begins with the 

operational strategies, design aspects, and efficiency challenges of standalone SPV 

systems integrated with battery energy storage. The focus then shifts to grid-connected 

systems, emphasizing grid integration, inverter control, synchronization, and 

compliance with grid codes. The chapter reviews various MPPT techniques—classical, 

intelligent, optimization-based, and hybrid—evaluating their performance under 

changing atmospheric conditions. It also examines inverter control methods, including 

linear, non-linear, robust, adaptive, predictive, and intelligent controllers. Unintentional 

islanding and its detection methods, both classical and modern, are discussed to ensure 

grid stability and safety. The chapter concludes by identifying key research gaps for 

future investigation. 
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Chapter-3 This chapter focuses on a hybrid standalone solar PV microgrid system with 

integrated battery energy storage, with a particular emphasis on effective DC link 

voltage control. This chapter introduces a novel MPPT strategy that combines the 

strengths of the Incremental Conductance (INC) method with a double closed-loop 

controller. The proposed technique is intended to achieve two key goals: maximising 

power extraction from the PV system and ensuring a steady DC bus voltage during 

dynamic operation. Furthermore, the control method adds to harmonic mitigation, 

which improves overall power quality and system performance. Furthermore, this 

chapter describes control for a hybrid standalone inverter that provides quick and 

precise dynamic responses to varying load needs. The given control mechanism has 

been thoroughly evaluated for efficacy and robustness. The system's performance is 

analysed using MATLAB/Simulink, providing insights into its operation under 

various operating conditions. 

 

Chapter-4 This chapter describes the design and implementation of a novel Horned 

Lizard Optimized Artificial Neural Network (HLO-ANN) MPPT technique for grid-

connected solar PV systems. The proposed HLO-ANN technique combines the fast-

learning capability of ANN with the global optimization strength of the Horned Lizard 

Optimization technique, allowing for precise and adaptive tracking of the maximum 

power point under dynamic environmental and load conditions. This methodology 

outperforms traditional and standard ANN-based MPPT methods, making it ideal for 

modern grid-connected PV systems. 

 

Chapter-5 This chapter focuses on the design and implementation of a novel Honey 

Badger Algorithm-based PI (HBA-PI) controller for inverter control in grid-integrated 

solar PV systems. Inverter control plays a vital role in ensuring efficient DC-AC 

conversion, grid synchronization, and stable system performance under fluctuating 

environmental and load conditions. The proposed HBA-PI controller is specifically 

developed to achieve precise regulation of the DC link voltage, ensuring reliable power 

delivery from the PV array to the grid. In addition to the HBA-PI approach, this chapter 

also explores other optimization-based control techniques, including Cuckoo Search 

Optimized PI (CSO-PI) and Artificial Neural Network-based PI (ANN-PI) controllers. 

However, the primary focus remains on the HBA-PI controller due to its superior 

convergence speed, robustness, and dynamic response in maintaining voltage stability 

and enhancing overall system efficacy. 

 

 Chapter-6 This chapter presents a passive islanding detection technique for grid-

integrated solar PV systems based on voltage ripple analysis at the point of common 

coupling (PCC). The proposed method uses time-domain spectral analysis to detect 

abnormal ripple content in the VSI output voltage. Islanding is confirmed when the 

ripple exceeds a defined threshold for a specific duration. Unlike conventional passive 
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techniques, this method effectively detects islanding even under minimal power 

mismatch without false detections. It demonstrates high accuracy and rapid detection 

within 3ms across various operating conditions, with no non-detection zones observed. 

 

Chapter-7 This chapter summarizes the key findings and conclusions of the proposed 

work, highlighting the contributions made toward improving solar PV-based 

microgrid systems. It also outlines potential directions for future research and 

discusses the broader social impact of the work in promoting clean energy access, 

especially in remote and underserved areas. The thesis concludes with a comprehensive 

list of references and relevant appendices 

 

1.10 CONCLUDING REMARKS 

This chapter provides a summary of the research work conducted and included in this 

dissertation. This chapter discusses the need for solar PV-based microgrids, including 

hybrid stand-alone systems, grid-connected systems, and grid-tied systems with 

islanding detection. The motivation and objectives of the research work are laid out, and 

the research issues are outlined. The research objectives highlight the need for unique 

approaches for tracking maximum power points, controlling DC link voltages 

regulation, and detecting islanding. Additionally, the structure and organization of the 

thesis have been outlined to support a coherent presentation of the proposed 

methodologies and findings. 
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CHAPTER-2  

LITERATURE REVIEW 

2.1 INTRODUCTION 

A literature survey in the relevant fields of the research activity has been conducted in 

order to obtain the proper perspective of the research challenges. The following topics 

are briefly reviewed in this chapter: (i) the maximum power point tracking algorithm 

for solar PV systems, both standalone and grid-connected; and (ii) the regulation of 

DC link voltage for standalone PV systems with battery energy storage systems. 

(iii)PV inverter control algorithm for grid-connected solar photovoltaic systems ((iv) 

Grid-tied photovoltaic system islanding detection. 

 

2.2 MPPT CONTROL TECHNIQUES FOR HYBRID STANDALONE AND 

GRID CONNECTED SOLAR PV SYSTEM 

Solar photovoltaic (PV) is a promising power generating alternative for sustainable 

energy development among the other RE resources. However, solar power generation 

varies greatly because of seasonal weather patterns and the non-linear nature of solar 

irradiation, necessitating backup systems or hybrid applications. Solar irradiation is 

not highly correlated across close locations on a small-time scale, contributing to 

fluctuations in PV power output and losses. The maximum power point tracking 

(MPPT) technology is crucial for improving the efficiency of PV systems. To optimize 

the output power of a solar power system, it is necessary to develop effective maximum 

power point tracking due to the non-linear nature of PV arrays [17]-[18]. 

 

Fig.2.1 Classification of MPPT algorithm 

A reliable technique for tracking maximum power points (MPPs) is crucial. This 

chapter provides a comprehensive overview of MPPT approaches used in PV systems, 

including recent articles on design methodologies. MPP is classified into four 

categories: classical, intelligent, optimum, and hybrid, based on the tracking algorithm 

used under different circumstances as shown in Fig.2.1 [19].   
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2.2.1 Classical MPPT Techniques: 

Traditional MPPT methods can be classified as online or offline approaches. It is 

essentially the simplest and easiest MPPT algorithm. The maximal conventional 

MPPT algorithm proceeds through the fundamental phases to reach the MPP point. 

They calculate power and compare it to prior levels at each stage. The algorithm's 

direction and movement were determined by the power change value. Many standard 

MPPT algorithms have previously been released. The hill climbing technique, perturb 

and observe (P&O), and incremental conductance (INC) are most commonly 

employed in real-world PV systems because to their ease of implementation. The P&O 

MPPT approach compares recent power output samples to previous ones. For example, 

𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = ∆𝑃 . If ΔP > 0, the algorithm continues to change the voltage 

in the same direction as the last adjustment; if ΔP < 0, it reverses the direction. When 

ΔP = 0, it maintains the current voltage. The P&O MPPT algorithm modifies the 

perturbation size at predefined intervals [20]-[21]. The Hill climbing (HC) and P&O 

approaches differ only in one aspect: the perturbation parameter. To track the MPP, 

the P&O senses and perturb voltage or current, while the HC perturb the duty cycle. 

Both techniques face the challenge of balancing performance between steady-state and 

dynamic response error. The HC technique, which uses voltage control, faces a greater 

challenge.[22] The incremental conductance technique compares the PV module's 

incremental and instantaneous conductance to calculate its terminal voltage. The 

maximum power point is achieved when the incremental conductance matches the 

instantaneous conductance. The power curve shows a positive slope, with output 

power increasing as the PV module's terminal voltage reaches operational limits. As 

the terminal voltage of PV modules exceeds MPP, the output power decreases and the 

power curve slopes negatively [23]-[24]. Ripple Correlation Control (RCC) is an 

MPPT approach that uses ripple in PV voltage and current. To achieve the 

maximum power point and reduce the power gradient, RCC correlates the time 

derivative of the PV array's time-varying power with the time derivative of its current 

or voltage. RCC can be created using simple and inexpensive analogue circuitry [25]. 

Adaptive reference voltage. MPPT dynamically adjusts the PV system's reference 

voltage in response to real-time factors such as irradiance and temperature, allowing it 

to more efficiently monitor the Maximum Power Point but Adaptive reference voltage. 

MPPT necessitates complicated algorithms and real-time data processing, which raises 

computational demands and implementation costs [26]. 

 

2.2.2 Intelligent MPPT Techniques: 

Enhancing the MPPT method is crucial in maximizing efficiency, specifically during 

dynamic changes in climatic conditions. Controllers have been developed for 

conventional PV systems with the aid of mathematical modeling, but this approach is 

quite complex and unmanageable for a large class of systems. Nevertheless, other 

approaches such as Artificial Neural Networks (ANN), Fuzzy Logic, Model Predictive 

Control (MPC), and Sliding Mode Control (SMC) are coming into the spotlight 
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because they do not need an accurate mathematical description of the system to find 

the MPP. These methods increase the performance of tracking and provide more 

degrees of freedom to the system using learning from data, prediction algorithms, or 

robust control techniques. This FLC has two benefits over other strategies: 1) it does 

not require a perfect mathematical model of the system, and 2) controller design is 

solely in the hands of humans. Fuzzy techniques typically involve three stages: 

fuzzification, fuzzy rules, and defuzzification. Fuzzification is transforming PV 

parameters into language variables using if-then rules. Human knowledge is used to 

design for specific application needs. Defuzzification is an inversion of fuzzification 

that uses mathematical interactions to extract linguistic or crisp inputs. This procedure 

uses the maximum membership function, centroid method, and weighted average 

approaches for computation. The defuzzification technique converts the FLC output 

from a linguistic variable to a numerical variable, which is then sent as an analogue 

signal to the converter. One significant disadvantage is that they rely on expert 

knowledge to define membership functions and rule sets, which may not necessarily 

translate well across different PV systems.[27]-[28]. The procedure of convergence is 

the most crucial feature for any controller. This process may take longer if there are 

abrupt changes or unforeseen interruptions. A powerful intelligence-based SMC tracks 

the MPP swiftly and efficiently. The sliding mode process can be represented in three 

modes: travers ability, reachability, and equivalent control. First, select the appropriate 

sliding surface for the application. This technique manages the system's non-

linear characteristics. This technique's key advantage is its independence from PV 

arrays and configuration size. This non-linear approach effectively tracks the MPP and 

reduces converter ripple when integrated into the grid Although it is fast, the switching 

frequency in the converter used is unstable. [29]-[30]. Model Predictive Control 

(MPC) for MPPT is an advanced method that use a mathematical model of the solar 

PV system to predict network behaviour and optimize power output. In this method, 

the controller predicts future power generation utilizing current conditions (such as 

irradiance and temperature) and adjusts the operating point to match the MPP. The 

MPC approach determines the optimal control actions by solving an optimization 

problem at each sample interval, taking into account future states and 

restrictions. However, MPC necessitates accurate system simulation and extensive 

computational resources, which can be difficult in real-time applications.[31]-[32]. 

This intelligence-based ANN is the most effective solution for complicated problems. 

These ANN applications do not require detailed system or mathematical modelling 

knowledge. By properly mapping the system's input-output, they may effectively 

manage complicated challenges. ANN is an intelligence-based improved MPPT 

technology that relies on the learning process and biological properties of neurons. The 

ANN consists of three layers: input, hidden, and output, and is part of a multi-layer 

feed-forward system. This technique can use PV module data like 𝑉𝑜𝑐 and 𝐼𝑠𝑐, ambient 

information like irradiance and temperature, or a combination of both. The result will 

be either 𝑉𝑀𝑃𝑃, 𝑉𝑟𝑒𝑓, or GMPP. The hidden layer modifies weights and biases to 
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estimate the best-targeted value (GMPP) based on available inputs. The duty signal 

directs the converter to follow the MPP based on the calculations performed in that 

layer but selection of PV panels is crucial for optimal application of the ANN approach 

in predicting real-time difficulties [33]-[34]. 

 

2.2.3 Optimization based MPPT Techniques: 

Optimization-based MPPT controllers can iteratively reach maximum power points 

utilizing mathematical formulae. The literature has numerous metaheuristic 

optimization techniques that investigate the successful performance of solar PV 

systems. This PSO uses a bio-inspired algorithm modelled after bird flocking. 

Obtaining the best answer requires a few or fewer assumptions. This bio-process 

considers each PV array or module as a molecule, with MPP as the target objective to 

track. The PSO technique focuses on the search method, allowing for easy tracking of 

the GMPP [35]. Research suggests that improving the PSO approach can reduce 

steady-state oscillations and fluctuations by following the MPP point. The particles 

can be effectively instated around the MPP to avoid both unneeded and excessive 

seeking, and a situation in which the swarm efficiently looks the zone turns out to be 

too small, returning the genuine MPP in less time [36]. CS-based MPP, also known as 

cuckoo-oriented brood parasitism, is another optimization strategy. The cuckoo's 

nature serves as a metaphor for selecting the optimum option during MPP tracking. 

The analogy is shown in [37] will demonstrate a clear tracking mechanism. The 

cuckoo's egg is the current best solution, while the eggs already in the nest are the 

solutions. Using suitable fitness functions, the inferior solution (old egg) is removed 

and replaced with the best solution (cuckoo's egg). Although these techniques are 

inexpensive, they require more time to reach MPP. In [38] author has proposed a new 

strategy to improve this technique by combining with the golden section search (GSS) 

technique. The first CS approach tracks the area closest to the MPP, followed by an 

iterative search for the exact GMPP using GSS. This hybrid methodology accelerates 

GMPP while maintaining tracking speed. GWO, a nature-inspired algorithm, is an 

effective way to monitor MPP when the problem is unformatted or incomplete. S. 

Mirjalili et al. [39] suggested a GWO calculation-based MPPT approach to illustrate 

the leadership hierarchy and chase mechanism of grey wolves. The GWO-MPPT 

technique is comparatively simple to use, operates smoothly, and has less oscillation 

compare to conventional and improved conventional MPPT technique making it ideal 

for hybrid PV systems with multiple MPP. Additionally, the literature recommends 

several optimizations algorithm-based MPPT controllers for improved performance, 

including Ant Colony Optimization (ACO) [40], Harmonic Search [41], Teacher 

Learning Based Optimization (TLBO) [42], Honey Badger Algorithm (HBA) [43], 

and Dwarf Mongoose Optimizer (DMO) [44]. 
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2.2.4 Hybrid MPPT Techniques: 

Hybrid MPPT controllers aim to overcome the limitations of independent algorithms, 

representing current advancements in the field. MPPT controllers can combine 

traditional and advanced algorithms for optimization, among others. In [45] a hybrid 

technique (PSO+INC and PSO+P&O) for a single-stage grid-connected PV system. 

This approach optimizes a single objective function with restrictions to maximize PV 

system output power while penalizing step size. The hybrid technique enhances system 

efficiency by reducing settling time and ripple output power, resulting in faster 

tracking and less oscillation in steady state. For the precise distribution of active power 

in a system, an improved mixed droop technique (IMDT) with a sliding mode (SM) 

controller was used in [46]. The improvement in the quality of power delivered to the 

customers in terms of lower settling time, voltage undershoot/overshoot, and THD 

demonstrated the potential of the proposed hybrid approach. To achieve the best 

efficiency for solar PV systems, a new hybrid Maximum Power Point Tracking 

(MPPT) technique utilizing Flying Squirrel Search Optimization (PSO_ML_FSSO) 

and machine learning trained on particle swarm optimization (PSO_ML) was 

suggested in [47]. This hybrid approach decreased the settling time and increased 

efficiency. Several other hybrid MPPT technique such as ANN-PSO [48], adaptive 

neuro-fuzzy inference system (ANFIS).[49], HC-ANFIS [50], GWO-P&O [51] etc. 

has been studied in the literature. 

 

2.3 INVERTER CONTROL TECHNIQUE AND DC BUS VOLTAGE 

REGULATION OF STANDALONE AND GRID INTEGRATED RES SYSTEM 

Environmental, economic, and technological concerns have prompted the 

development of electrical systems based on the distributed generation (DG) model, 

which is associated with small-scale power generation and mostly comprised of 

renewable energy sources (RES). These renewable energy sources have significantly 

aided in the development of microgrids, enabling them to become a viable substitute 

for traditional grids. Due to the rising penetration of RES and its inconsistent 

availability, ancillary services like the BESS are required to make sure continuous 

power supply especially when utility grid is not available. Among all the RES, solar 

photovoltaic is one of the most widely used renewable energy sources due to its 

accessibility, ease of installation. Also, as power electronics technology advances, 

renewable energy sources are increasingly being used as primary energy sources in 

standalone power systems. This lowers generation costs, reduces environmental 

pollution, and improves power supply in remote areas. Droop control is a popular grid-

forming control approach that allows inverters to regulate frequency and voltage using 

active and reactive power control, respectively.[52].  

Stand-alone systems are the most cost-effective option for remote PV installations. 

Examples include distant stations, emergency power units, and manufacturing plants 

with delicate electronics. Standalone systems have disadvantages such as low capacity, 

high battery costs, and limited storage capacity, resulting in wasted energy and 
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increased costs. Adoption of Grid Connected or Standalone systems depends on 

economic feasibility and load considerations, in addition to accessibility and climate 

change benefits. In grid-connected systems, surplus electricity can be utilized back 

into the grid. Grid-connected systems are not affected by low load factors, which are 

common in rural electricity scenarios. The grid acts as an infinite storage unit, allowing 

for continuous operation and eliminating the need for additional storage batteries for 

wind and solar PV [53] 

Control techniques for inverter and DC bus voltage regulation vary significantly 

between standalone and grid integrated system due to their different operational 

challenges and requirements. In stand-alone systems, inverters must operate in grid-

forming mode to provide voltage and frequency stability in the absence of a grid 

reference, as well as to deal with load variations and fluctuations in renewable energy. 

These systems rely largely on control loops and effective voltage regulation 

techniques, especially during nonlinear or severe loading conditions. 

 

Fig.2.2 Classification of Inverter control techniques [54] 

In contrast, grid-connected systems run in grid-following mode, which requires 

inverters to synchronize with grid parameters and handle power injection, harmonics, 

and grid code compliance.  

To address these issues, several kinds of advanced control technique have been 

developed. These techniques are generally classed as linear, nonlinear, robust, 

adaptive, predictive, and intelligent control systems, with each having its own set of 

advantages and disadvantages as shown in Fig.2.2[54]. In both standalone and grid-

integrated systems, the control strategy chosen is crucial for assuring system stability, 

enhancing power quality, and effective energy management. 

 

2.3.1 Linear Controller: 

Linear control techniques, such as proportional-integral (PI), proportional-resonant 

(PR), and tilt-integral (TI) controllers, constitute the backbone of inverter control 

techniques in both standalone and grid integrated solar PV systems because of their 

simplicity and ease of implementation. In standalone systems, TI controllers have 
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showed promise in regulating DC bus voltage and maximizing energy extraction under 

a variety of environmental conditions. However, the practical application of such 

systems faces obstacles such as sensor reliance, tuning complexity, and poor 

robustness under major shocks. 

In grid-tied systems, however, linear controllers like as PI (in synchronous reference 

frame) and PR (in stationary frame) are extensively used for current regulation and 

harmonic attenuation using LCL-filtered inverters. While these controllers meet power 

quality standards and support dynamic performance, they also require extensive tuning 

and may have limitations in disturbance rejection or multi-harmonic correction. The 

PR controller's harmonic compensators can only handle a limited number of low-order 

harmonics due to system instability when the compensated frequency exceeds the 

system bandwidth. [55-59]. 

 

2.3.2Non-linear Controller: 

Nonlinear controllers provide considerable advantages over classical and linear 

controllers for dealing with system uncertainties, external disturbances, and nonlinear 

dynamics. Nonlinear control approaches, as opposed to classic controllers such as PID 

or PR, which rely on linear assumptions, provide increased robustness, faster transient 

response, and more stability under variable operating conditions. As stated in [60] a 

feedback linearization control approach takes into account system nonlinearity to 

obtain reduced THD under nonlinear loads. However, as this approach lacks memory, 

any system performance issues can be observed in subsequent cycles. 

The Sliding Mode Control (SMC) approach is used to regulate output voltage in PWM 

inverters. This approach has the main advantage of being insensitive to load 

disruptions and parameter fluctuations. In an ideal scenario, invariant steady-state 

response is possible. However, finding an appropriate sliding surface can be difficult. 

SMC performance suffers at low sampling rates. One disadvantage of using SMC for 

tracking variables is chattering [61]-[63] A hysteresis controller is a type of nonlinear 

controller. To create a hysteresis controller, an adaptive band must be designed to 

maintain a fixed switching frequency. Isolated neutral considerations are crucial as the 

controller's output determines the status of switches [64-65]. A Lyapunov-based 

controller is a nonlinear control method that provides system stability by establishing 

a control law based on a Lyapunov function, which is a mathematical function that 

reduces with time, guaranteeing convergence to a desired state [66]. In [67] author 

proposed control technique which is based on Direct Lyapunov technique to control 

the DC link voltage of a standalone system. The Direct Lyapunov technique ensures 

control system stability, is robust against un certainties, and is well-suited for nonlinear 

systems. However, it can be difficult to construct a suitable Lyapunov function and to 

demonstrate its features. The Direct Lyapunov technique can be computationally 

challenging for analysis and design, particularly for large-scale systems 
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2.3.3 Robust Controller: 

Robust control is a control theory that designs controllers to handle uncertainty. These 

strategies aim to achieve robust performance and stability with minimum modelling 

errors. Robust control requires clearly defined criteria, explanations, and boundaries. 

This controller ensures stable and high-performing closed loop systems, even in 

multivariable systems [68]. H-infinity approaches involve representing a control 

problem as an optimization problem, which is subsequently solved. H-infinity 

approaches are suitable for multivariable system challenges. However, it is 

computationally difficult and requires a good model of the system being regulated. 

Additionally, nonlinear constraints are often not effectively managed [69]-[70]. The 

Mu-synthesis approach takes into account both structured and unstructured 

uncertainties when analysing system performance. This approach uses structured 

singular values to create the controller [71].  In [72] a robust μ value control approach 

that employs hybrid sensitivity theory is proposed. This technique not only achieves 

effective maximum power point tracking (MPPT), but it also improves DC bus voltage 

regulation and grid-connected current quality by including parameter perturbations 

into the DC/DC converter's average-state model. 

 

2.3.4Adaptive Controller: 

Adaptive control methods can automatically alter the control action in response to the 

system's operating conditions. Accurate system parameters are not necessary for 

optimal performance. 

Standard PI controllers with constant gains are commonly employed for dc-link 

voltage management in single-phase grid-connected converters (GCCs), however they 

face a trade-off between eliminating voltage swings and decreasing grid current 

harmonics. An adaptive PI controller overcomes this constraint by dynamically 

modifying its parameters, resulting in improved performance, stability, and power 

quality under varying operating situations [73]-[74]. The study in [75] proposes a self-

tuning adaptive control method with a robust system identification approach for a 

single-phase full-bridge inverter with an LC filter, ensuring stability and improved 

performance in dynamic situations. The adaptive self-tuning controller with recursive 

least squares identification and pole shifting control outperformed the standard PI 

controller in all test conditions. It performed reliably and consistently under various 

system conditions, giving it a suitable solution for dynamic micro-grid applications. 

One of the primary benefits of this method is its ability to improve transient response 

and robustness to shocks, making it ideal for modern grid-connected inverters. 

However, the complexity of implementation and increasing computational 

requirements are possible downsides. [76] 

 

2.3.5 Predictive Controller: 

Predictive controllers utilize a system model to forecast future behaviour of regulated 

parameters. The controller optimizes actuation based on stated criteria. This 
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controller's fast dynamic response, ability to accommodate nonlinearities and 

limitations, and ease of construction make it suitable for a variety of systems, including 

multivariable cases. Predictive controllers demand more calculations compared to 

conventional controllers. Model predictive control (MPC) incorporates a flexible 

criterion that minimizes a cost function to determine the optimal actions. This 

approach uses a system model to anticipate the behaviour of variables till a specified 

time. MPC can simply include nonlinearities and system restrictions into controller 

design [77]- [79]. In [80] a model predictive current control technique for multilevel 

converters and its application to a three-phase cascaded H-bridge inverter. This control 

approach uses a discrete-time system model to anticipate future current values for all 

voltage vectors and select the vector with the lowest cost function. Finite control set 

model predictive control (FCS-MPC) is frequently used in nonlinear power converters, 

including multilevel converters, due to its intuitive handling of multivariable 

optimization, constraints, and nonlinearities. FCS-MPC provides greater dynamic 

performance than standard proportional-integral control techniques [81]. Unlike FCS-

MPC, PWM modulators have a set switching frequency, resulting in harmonic spectra 

focused around the carrier frequency and multiples. To improve converter predictive 

control, several writers suggest using continuous control set MPC (CCS-MPC) with a 

PWM modulator [82]. In [83], an improved Deadbeat Controller (DBC) for a grid-tied 

Flying Capacitors Inverter is investigated. DBC balances capacitor voltages and injects 

current into the grid with minimal Total Harmonic Distortion (THD) [84]-[85]. This 

approach provides the following advantages, using a weighted state space model 

improves current tracking quality at zero crossing instants and provides superior 

steady-state performance (reduced current THD) compared to other prediction-based 

control systems like Finite-Control-Set Model Predictive Control.  

 

2.3.6 Intelligent Controller  

Although traditional control techniques are simple and dependable, they are always 

unable to deal with the complex coupling and interaction issues in PV inverter systems. 

AI-based control system optimization improves PV inverter efficiency by addressing 

complex control concerns such nonlinear dynamic interaction and multiple time-scale 

coupling. 

Fuzzy control is a popular method for controlling PV inverter systems, including fuzzy 

PID, repetitive-fuzzy, and fuzzy PCI (proportional complex integral with PR control). 

The most significant advantage of fuzzy control is its ability to achieve self-tuning of 

parameters, allowing for real-time controller adjustment based on system operation 

state [86].  

Intelligent control methods, including fuzzy logic control (FLC), expert system control 

(ES), artificial neural networks (ANN), and adaptive neuro-fuzzy inference system 

(ANFIS), provide considerable benefits for dealing with complex and uncertain 

models. These solutions improve the stability and reliability of PV systems. As PV 

plants expand and power grids become more complicated, it becomes challenging to 
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effectively predict and regulate the nonlinear and multi-coupled PV inverter system 

[87]-[89]. Fuzzy logic control (FLC) is one of the more established intelligent control 

techniques that works well with objects whose dynamic properties are difficult to 

obtain. FLC does not necessitate a mathematical model to accurately explain the 

system or insight into its intricate parameters and structure. In terms of response time, 

stability time, and robustness, FLC performs better than traditional controllers and is 

less sensitive to changes in parameters and load [90]-[91]. In contrast to fuzzy control 

ANN control can accurately mimic any non-linear continuous function and is 

extremely adaptable to complex settings. It also has self-learning capabilities and can 

handle multiple objectives. Furthermore, ANN distributes and stores information in 

the neurons of the neural network, making it very robust and fault-tolerant. ANN's 

self-learning, self-organizing, and self-adaptive qualities can assist in dealing with 

uncertain or unfamiliar systems [92]-[93]. The use of ANNs in a PV inverter system 

can alleviate the challenges of defining controller parameters for complicated coupled 

nonlinear systems. However, training an artificial neural network requires a significant 

quantity of data and effort. Designing a neural network involves maximizing desired 

parameters after selecting the number of layers and neurons in each layer. The gradient 

descent optimization (GDO) method can be used to train the MLP controller (MLPC). 

ANN can be more efficient and reliable than sliding mode controllers [94]-[96]. The 

neuro-fuzzy controller combines fuzzy control concepts with FLC and ANN, offering 

benefits such as neural network learning, parallel knowledge/data processing, and 

human-like fuzzy logic reasoning. The ANFIS fuzzy inference system uses the Takagi-

Sugeno model. Neural networks implement the essential fuzzy control processes 

(fuzzification, fuzzy inference, and defuzzification). Neural networks may extract 

rules from input and output data, resulting in an adaptive neuro-fuzzy controller. The 

system can self-adapt, organize, and learn by altering fuzzy inference control rules 

through offline training and online learning algorithms [97]-[98] 

Several strategies have been proposed in the literature to accomplish effective PQ 

control while maintaining power quality. All of the experiments listed above aimed to 

obtain a quick dynamic response with the least static error. The controllers in the 

mentioned studies achieve the desired power sharing ratio with appropriate dynamic 

response. However, the lack of automatic parameter tuning leads to significant 

overshoot and settling time during abrupt load changes. To improve the system's 

performance and stability, an optimization approach is needed to determine optimal 

values for controlling parameters [99]-[100]. Some of the optimization approaches 

utilized in microgrid application are explained here, as it is difficult to cover them all. 

One of the most popular metaheuristic optimization methods for improving power 

quality and controlling the voltage-frequency of AC MGs is the PSO. PSO has several 

advantages over genetic algorithms (GA), such as being easier to construct with fewer 

tuning factors, having a more effective memory capacity, and being more effective at 

preserving the swarm's variety. Additionally, in contrast to GA, PSO lacks 

sophisticated evolution operators like crossover and mutation and does not place a 
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heavy computing load on the microcontroller [101]-[102]. The Firefly optimization 

algorithm (FOA) was created and simulated in another investigation [103] in order to 

optimize the tuning of PI controllers in a grid-tied hybrid wind/photovoltaic system. 

The study's goal was to control the system frequency and voltage at the PCC during 

fault and load-changing scenarios. In [104], the PI parameters for controlling active 

and reactive power in an AC MG were adjusted using the Artificial Bee Colony (ABC) 

method. In both islanded and grid-connected modes of operation, droop control was 

used to regulate voltage and frequency variations. Additionally, the ABC optimization 

technique was used to improve the power and current controller settings in order to 

provide the best dynamic response of the MG system under study. Choosing the right 

optimization method for a specific problem is crucial for achieving minimization or 

maximizing of a fitness function. This literature review examines popular and recent 

algorithms. 

 

2.4 ISLANDING DETECTION TECHNIQUES FOR GRID INTEGRATED 

SOLAR PV SYSTEM 

Integrating microgrids with distributed energy resources (DERs) offers numerous 

benefits to the power grid, including improved power quality, increased energy 

efficiency, and lower carbon emissions. Microgrids function in either grid-connected 

or island modes, using distinct methodologies. Unintentional islanding is a critical 

technical concern in microgrids. Failure to trip the system can have substantial 

consequences for protection, security, voltage and frequency stability, and safety. Fast 

and efficient islanding detection is crucial for reliable microgrid operations. There are 

two types of islanding detection techniques (IDT): classic and modern as depicted in 

Fig.2.3. A number of methods are examined, such as remote and local IDTs. Once 

more, the local IDTs are categorized into three groups: active, passive, and hybrid. 

Additionally, a quick illustration of intelligently based IDTs and signal processing has 

been discussed.[105] 

 

Fig.2.3 Classifications of Islanding detection techniques 
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2.4.1 Classical Islanding Detection Techniques: 

Classical islanding detection methods are classified as local or remote, as illustrated in 

Fig. Local approaches, such as passive, active, and hybrid, measure certain parameters 

or variables on the microgrid side. Remote approaches use communication between 

microgrids and the main grid to monitor breakers quickly. Passive islanding strategies 

are based on parameter thresholds.  Their benefits include simple implementation (no 

controller needed), no decrease of PV inverter power quality, and low cost. Their main 

shortcomings are a huge NDZ and in effectiveness in multi-inverter systems. Passive 

islanding detection techniques include over/under voltage and frequency 

(OV/UV/UF), phase jump detection (PJD), voltage harmonic monitoring, current 

harmonic monitoring, rate of change of power output (ROCOP), and rate of change of 

frequency (ROCOF). The OVP/UVP and OFP/UFP techniques include defining a 

threshold value for voltage and frequency at the point of common coupling (PCC).  

Disconnection occurs when voltage or frequency values exceed specified limitations 

in the circuit. Most standards have specific typical voltage/frequency ranges. Phase 

jump detection disables an inverter when there is a phase discrepancy between the 

output voltage and current, such as during islanding. Its primary benefit is its 

efficiency, even with many inverters [106]-[107]. Active approaches detect islanding 

by injecting minor disturbances at the PV inverter output. Their key advantage is a 

lower NDZ than passive approaches. The main disadvantages include worsening 

output power quality, which can cause instability in the PV inverter, and the 

requirement for additional controllers, which adds complexity [108]. A few examples 

of active islanding detection techniques are impedance measurement (IM), sliding 

mode frequency shift (SMFS), active phase shift (APS), Sandia frequency shift (SFS), 

or active frequency drift with positive feedback. The Impedance Measurement (IM) 

approach detects islanding by monitoring variations in inverter output impedance 

caused by a loss of the main power supply. When the grid connection fails, differences 

in impedance indicate an islanding condition. In the Sliding Mode Frequency Shift 

(SMS) or Active Phase Shift (APS) approach, the current-voltage phase angle is 

designed to be proportional to the frequency of the Point of Common Coupling (PCC) 

voltage. This technique is commonly done by connecting an input filter to the Phase-

Locked Loop (PLL), which tracks frequency deviations to identify islanding 

effectively. Sandia Frequency Shift (SFS) or Active Frequency Drift (AFD) with 

Positive Feedback method is an improved version of AFD) that uses positive feedback 

to expedite the islanding detection process. SFS effectively prevents islanding by 

introducing controlled frequency perturbations that cause the system frequency to 

wander away from normal operating circumstances, resulting in disconnection when 

an islanding event occurs. [109]-[112]. 

Hybrid strategies use both active and passive detection methods. Passive techniques 

detect islanding before using active procedures. These solutions reduce NDZ and have 

no substantial impact on grid power quality. Positive Feedback (PF) and Voltage 



24 

 

Unbalance (VU) This approach detects islanding by utilizing both active and passive 

(VU). Combining the two strategies overcomes their weaknesses. The system 

continuously monitors the three phase output voltages of the DG to determine the VU 

as specified. Disturbances to DGs cause a surge in VU. An island is detected when the 

spike exceeds the set value. [113]-[114]. The Voltage and Reactive Power Shift 

approach monitors voltage change over time to calculate covariance. The adaptive 

reactive power shift algorithm (ARPS) is then used for identification. When an island 

is suspected, the reactive power shift increases the phase shift action, resulting in a 

rapid frequency change during islanding [115]. 

Remote islanding detection methods rely on communication between the utility and 

PV inverter units. This approach does not have NDZ and does not affect the power 

quality of PV inverters. While effective in multi-inverter systems, it is costly to 

implement (particularly in small systems) and requires a complex communication 

strategy. The following section outlines common communication tactics [116]. 

 

2.4.2 Modern Islanding Detection Techniques: 

Modern methods rely on signal processing and classifiers, but traditional IDMs, which 

are essentially passive, remain the foundation. These strategies increase the 

performance of traditional IDMs. Signal processing approaches first appeared in the 

literature in 2005, as they gained traction in power systems. These methods use signal 

processing technologies to extract features from signals for identification. Some useful 

tools include the Wavelet transform (WT), Stockwell transform (ST), Hilbert Huyang 

transform (HHT), time-time transform (TT), and mathematical morphology (MM). 

Over the past two decades, WT has been widely used in signal processing. Its key 

advantage is its capacity to expand a signal in the frequency domain while maintaining 

time information. For applications that require both time and frequency, use WT. 

There are various variations of WT available. Depending on the application, several 

methods are preferable over others. There are three types of wavelets transforms: 

continuous (CWT), discrete (DWT), and wavelet packet transform (WPT).[117]-

[118]. Soft computing and intelligent-based IDMs are similar to signal processing and 

communication technologies, but do not need thresholds. We suggest intelligent ways 

to limit the NDZ and its impact on power quality, and have created high-precision 

classification models. Various intelligent classifiers, data mining techniques, and soft 

computing algorithms based on human, bird, fish, or animal intelligence are commonly 

employed to detect islanding. These strategies can solve multi-objective problems 

(MOPs) that standard approaches cannot [119]-[120]. 

 

2.5 IDENTIFIED RESEARCH GAPS 

The production of power from renewable sources has become necessary to preserve 

the ecological balance due to the ongoing depletion of fossil fuels and their adverse 

impacts on the environment. One of the most promising choices among the many 

renewable resources is the solar photovoltaic system, and early characterization studies 
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are necessary to choose the ideal operating conditions for maximum utilization.  

• Current control methods concentrate on keeping the DC bus voltage constant, but 

more research is needed to develop real-time adaptive control solutions in extremely 

dynamic environments. Predictive control powered by AI can improve response time 

and voltage stability. While voltage regulation and harmonic abatement are addressed 

by existing hybrid standalone inverter control techniques, more work is required to 

incorporate sophisticated nonlinear control algorithms for improved performance 

under dynamically varying load situations. 

• When irradiation changes quickly, traditional MPPT systems have trouble in 

tracking. Although ANN-based optimization has been investigated, hybrid AI-

optimization methods (such evolutionary computing and deep reinforcement learning) 

may improve accuracy and response time even further. 

• The adaptability of current ANN-optimized MPPT techniques to real-time 

environmental variations is limited by their reliance on offline training datasets. 

System flexibility may be increased by creating ANN MPPT algorithms based on 

online learning. It is still difficult to strike a balance between computational load and 

high-precision optimization. For real-world grid applications, more compact and 

effective AI models ought to be researched. 

• Existing inverter control solutions have difficulties when dealing with an unbalanced 

and distorted grid. Advanced control approaches, such as model predictive control 

(MPC) and sliding mode control (SMC), need to be improved to provide steady 

synchronization. 

DC-Link Voltage Stability with High Renewable Penetration: With increased PV 

integration into the grid, maintaining DC bus voltage stability in the face of high 

temperature and load demand fluctuations remains a concern. AI-powered predictive 

controllers may provide more accurate and adaptable voltage management. Traditional 

inverter controllers focus on harmonic abatement, while deep learning-based control 

strategies could improve real-time harmonic compensation and power quality. 

• Existing passive and active islanding detection systems have issues with detection 

speed and non-detection zones (NDZ). AI-powered classification methods, such as 

machine learning-based pattern recognition, may boost detection accuracy. Modern 

grids necessitate islanding detection solutions that are smoothly integrated with smart 

grid communication protocols. The role of IoT and cloud-based monitoring in real-

time island detection has yet to be investigated. Conventional islanding detection 

methods may produce false positives, resulting in wasteful disconnections. Hybrid AI 

techniques that combine deep learning with real-time voltage and frequency analysis 

may improve reliability. 

 

2.6 CONCLUDING REMARKS 

This chapter presents a comprehensive review of the literature on MPPT control 

techniques for both standalone and grid-connected solar PV-based microgrids. It 

highlights key research contributions in the design and development of grid integrated 
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solar PV systems, focusing on voltage source inverter (VSI) control strategies and DC-

link voltage regulation. Furthermore, various islanding detection techniques for grid-

connected PV systems are examined. The chapter also reviews the work of numerous 

researchers in the field of control and optimization of grid-connected solar PV 

microgrids. Based on the surveyed literature, the research gaps have been identified, 

which form the foundation for the subsequent work presented in this thesis. 
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CHAPTER-3 

 PERFORMANCE ENHANCEMENT OF HYBRID 

STANDALONE RES BASED MICROGRID 

3.1 INTRODUCTION 

Standalone PV based microgrid has emerged as potential solutions to electricity 

challenges in the region where grid is not available. The battery energy storage system 

(BESS) is integrated into the system to facilitate synchronized load control and power 

flow. Variation in solar irradiation, load demand and fluctuation in battery SOC results 

in DC voltage fluctuation and maximum power point tracking challenges. Hybrid PV-

Battery systems therefore must require control algorithms that can both flexibly adjust 

power flows as well as stabilize bus voltages.  

This chapter focuses on the design and development of a hybrid standalone solar PV-

based microgrid. The system is modeled and simulated using the MATLAB/Simulink 

environment to evaluate its performance under various operating conditions. Detailed 

mathematical modeling and parameter design of the proposed microgrid are presented 

in the subsequent sections. 

A modified MPPT technique is proposed, which integrates the Incremental 

Conductance (INC) algorithm with a double closed-loop controller to effectively track 

the maximum power point and regulate the DC bus voltage under various dynamic and 

atmospheric conditions. To demonstrate the superiority of the proposed algorithm, its 

performance is compared with existing MPPT algorithms. 

 

3.2 MODELLING AND DESIGN OF HYBRID MICROGRID SYSTEM 

A hybrid standalone microgrid system consists of multiple renewable energy sources, 

such as a solar photovoltaic (SPV) system and a wind energy conversion system, 

integrated with a battery energy storage unit. These sources work together to ensure a 

continuous and reliable power supply without dependence on the main grid. Maximum 

power point tracking (MPPT) techniques and bidirectional battery control are 

employed for efficient energy extraction, storage, and management. Inverters with 

dedicated control strategies maintain voltage and frequency stability while supplying 

both linear and nonlinear loads. The detailed modeling of each subsystem—Solar PV, 

wind turbine with permanent magnet synchronous generator (PMSG), power 

converters, and battery storage—is presented in the following section. 

 

3.2.1 Solar PV modelling 

The term ‘solar photovoltaic (PV) modelling’ refers to the mathematical representation 

of a PV system’s performance under various operating conditions and environmental 

factors. Hierarchal configuration of PV array is depicted in Fig.3.1. Using variables 

like solar irradiation, temperature, and load conditions, it simulates the PV module's 

electrical properties, such as current, voltage, power production, and efficiency. 
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Fig.3.1 Hierarchal configuration of solar PV array 

PV arrays consist of multiple modules connected in series and parallel to attain the 

required voltage and current. Fig. 3.2 (a) and 3.2 (b) show equivalent circuit diagrams 

of ideal and practical solar cells. By using Kirchhoff's law (KCL), the mathematical 

equations of a photovoltaic cell can be determined from Fig.3.2 (a) and 3.2 (b) equation 

(1) can be used to represent the ideal photovoltaic cell output current for Fig. 3.2 (a). 

[121] 

 

Fig. 3.2 (a) Equivalent circuit of a solar PV with ideal single diode model  

 

Fig. 3.2 (b) Equivalent circuit of a solar PV with practical model with 𝑅𝑠 𝑎𝑛𝑑 𝑅𝑝 

𝐼 = 𝐼𝑝ℎ𝑡 − 𝐼𝑑                                                                                                               (3.1) 

𝐼𝑑 = 𝐼0 [𝑒𝑥𝑝 (
𝑉

Υ𝑉𝑇
) − 1]                                                                                              (3.2) 

𝐼𝑝ℎ =
1

ℛ𝑝ℎ𝑡−𝑆𝑇𝐶 
(𝐼𝑝ℎ𝑡𝑆𝑇𝐶 + 𝐾𝑡(𝑇 − 𝑇𝑆𝑇𝐶)) × ℛ                                                        (3.3) 

 𝑉𝑇  =
𝑘.𝑇

𝑞
                                                                                                                  (3.4) 

where, Ipht, Id and I0 are photo, diode and leakage currents in Amp , V is the voltage 

given to the diode, q is charge 1.602 ∗ 10−19C , Ipht_STC and ℛpht_STC  are photovoltaic 

current  and irradiance value at STC , Kt is temperature coefficient , ℛ  is irradiance, 

VT is thermal voltage in volt , k is  Boltzmann constant 1.381 ∗ 1023 J/K and Υ is 

ideality factor .  The series and parallel resistances of the network are represented by 

𝑅𝑠&𝑅𝑝 in Fig.3.2(b). Now, using KCL in Fig.3.2 (b). Equation (3.5) is used to express 

output current. 
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 𝐼 = 𝐼𝑝ℎ𝑡 − Id − 𝐼𝑝                                                                                                      (3.5) 

𝐼 = 𝐼𝑝ℎ𝑡 − 𝐼0 [𝑒𝑥𝑝 (
𝑉

Υ𝑉𝑇
) − 1] − 𝐼𝑝                                                                           (3.6) 

𝐼 = 𝐼𝑝ℎ𝑡  − 𝐼0 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑆 

Υ𝑉𝑇
) − 1] − (

𝑉+𝐼𝑅𝑆

𝑅𝑝
)                                                            (3.7) 

 Following the series and parallel connection of cells, the output current (𝐼𝑜𝑝)  of the 

photovoltaic array is represented by equation.3.8. 

𝐼𝑜𝑝 = 𝐼𝑝ℎ𝑡𝑁𝑝  − 𝑁𝑝𝐼0 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑆 

𝑁𝑆Υ𝑉𝑇
) − 1] − (

𝑉+𝐼𝑅𝑆

𝑅𝑝
)                                              (3.8) 

where 𝑁𝑆 & 𝑁𝑝 is number of cells tied in series & parallel. 

 

Fig. 3.3 P-V & I-V characteristics graph of proposed solar PV  

PV arrays are created by connecting PV modules in series or parallel to achieve the 

necessary rating. PV array I-V and P-V characteristics vary with solar irradiation 

intensity and temperature. Additional information was obtained through the use of 

power and voltage (P-V) and current and voltage (I-V) curves. This study focuses on 

a 12.78 kW solar PV installation. Fig.3.3 displays the P-V curve and I-V curve for 

various solar irradiation levels. 

 

3.2.2 Modeling of Wind Turbine 

A wind turbine equipped with a Permanent Magnet Synchronous Generator (PMSG) 

efficiently converts the mechanical energy from wind into electrical power. The 

generated AC power from the PMSG is converted into DC power using a rectifier. The 

DC power is further processed using a boost converter and then fed to the grid or 

connected load. A wind turbine generates mechanical power from wind is expressed 

as equation (3.9): 

  Pmec =
1

2
ρArCp(λ, β)vw

3                                                                                            (3.9) 

The turbine power coefficient (Cp) represents overall turbine efficiency and can be 

described using equations (3.10) and (3.11) 

Cp(λ, β) = C1 ((
C2

λi
) − C3β − C4) e

(
−C6
λi
)
+ C5λ                                                   (3.10)         
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1

λi
=

1

λi+0.08β
−
0.035

β3+1
                                                                                               (3.11) 

where, Pmec mechanical power, Cp power coefficient, ρ air density kg/m3, Ararea 

swept by the blades, λ function of blade, β pitch angle, ωr rotational speed, 𝐶1 , 

𝐶2, 𝐶3 , 𝐶4 , 𝐶5 and 𝐶6 (0.5176, 116, 0.4, 5, 21, and 0.0068). 

3.2.3 Modelling of PMSG 

The dynamic mathematical equations for a three-phase PMSG can be expressed in a 

synchronously rotating dq reference frame as equations (3.12) and (3.13). 
dψq

dt
= vsq − Rsisq −weψd                                                                                   (3.12) 

dψd

dt
= vsd − Rsisd −weψq                                                                                   (3.13) 

Flux linkages of the PMSG (ψd,  ψq) are determined by 

ψd = Ldisd + ψm                                                                                                  (3.14)                                                                                                                      

ψq = Lqisq                                                                                                             (3.15) 

 The electromagnetic torque (Te) can be calculated as 

Te =
3

4

p

Ld

|ψs|

Lq
[2|ψm|Lqsinδ + |ψs|(Ld − Lq)sin2δ]                                           (3.16)    

Te =
3

4

p

Ls
|ψs||ψm|sinδ                                                                                         (3.17) 

where, vsq  and  vsd q- and d-axis stator terminal voltages, isqand isd q- and d-axis 

stator currents, Rs stator resistance, we electrical angular velocity, ψd 𝑎𝑛𝑑ψq q- and 

d-axis flux linkage, Lqand Ld are q- and d-axis inductance and  Te electromagnetic 

torque. 

 
Fig. 3.4 Turbine Power characteristics 

The wind turbine system under consideration has a rated mechanical power of 12.3 

kW, and the base wind speed is defined as 12 m/s as can be seen from Fig.3.4. At this 

base wind speed, the maximum mechanical power output of the turbine is 0.85 per unit 
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(pu) of its rated capacity, which equates to an actual mechanical power of 10.455 kW 

(calculated as 0.85 × 12.3 kW). Considering a generator efficiency of 90%, the 

corresponding electrical output power is calculated to be 9.41 kW (0.9 × 10.455 kW). 

These numerical details are consistent with the turbine power characteristic curve 

provided for a pitch angle β = 0°. The graph illustrates how the turbine output power, 

expressed in pu of nominal mechanical power, varies with turbine speed at different 

wind speeds. For a wind speed of 12 m/s, the turbine output reaches its maximum at 

around 1.2 pu turbine speed, and the output power plateaus at 0.85 pu, aligning with 

the values given in the table. This curve highlights the optimal operating point for 

maximum power extraction and supports the calculated output values. 

 

3.2.4 DC-DC Boost converter modelling 

A DC-DC boost converter is needed to obtain a fixed DC voltage and to increase the 

input voltage of the inverter because the output obtained from a solar array is 

susceptible to voltage fluctuation. As depicted in fig.3.5 the boost converter diagram 

includes an IGBT switch, an inductor, a diode, and a shunt capacitor. Value of 

inductance, capacitance and duty cycle can be computed using equations (3.18), (3.19) 

and (3.20). [122]-[123]. 

 

 Fig.3.5 Equivalent circuit of Boost Converter 

𝐿 =
𝑉𝑖𝑛𝑝∗(𝑉𝑜𝑢𝑡 −𝑉𝑖𝑛𝑝)

(△𝐼𝑓𝑠𝑓𝑉𝑜𝑢𝑡)
                                                                                                  (3.18) 

 𝛼 = 1 − (
𝑉𝑖𝑛𝑝

𝑉𝑜𝑢𝑡 
)                                                                                                      (3.19) 

 𝐶 =
𝐼∗(𝑉𝑜𝑢𝑡 −𝑉𝑖𝑛𝑝)

(△𝑉𝑓𝑠𝑓𝑉𝑜𝑢𝑡)
                                                                                                    (3.20) 

Where, input and output voltage of a boost converter are denoted by Vinp & 𝑉𝑜𝑢𝑡  

whereas α represents the duty cycle. 𝑓𝑠𝑓 is the switching frequency, I is the average 

output current, and △I is the output ripple current equal to 10% of input current. The 

converter's reference duty ratio is calculated using the MPPT algorithm. The boost 

converter's IGBT switch generates a gating signal at a switching frequency of 10 kHz.  

 

3.2.5 DC-DC Buck - Boost converter modelling 

The buck-boost converter is crucial in a standalone solar PV system as it regulates the 

DC bus voltage, allowing for efficient power transfer between the solar PV array, 

battery storage, and load. As the output voltage of a solar PV system varies with 

L

C

D

Vinp Vout
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irradiance and temperature, the buck-boost converter adjusts the voltage by either 

stepping it up (boost mode) or stepping it down (buck mode) to maintain a stable and 

dependable DC bus voltage. This regulation is critical for appropriate battery charging, 

preventing overcharging or undercharging, which increases the battery's longevity 

[124]. 

In fig.3.6, the bidirectional buck -boost converter is depicted. The converter has two 

switches 𝑆𝑤1, 𝑆𝑤2, diodes 𝐷1, 𝐷2, inductor (𝐿1) and capacitor (𝐶1)The converter 

works in two modes i.e., buck and boost. 

 

Fig.3.6 Equivalent circuit of Buck-Boost Converter 

 

Boost Mode: In this mode, switch 𝑆𝑤2 and 𝐷1 diode conduct based on the duty cycle, 

whereas switch 𝑆𝑤1 and, 𝐷2 diode remain off continuously. This mode can be 

separated into two intervals based on the conduction of switch 𝑆𝑤2  and diode 𝐷1 .  

Interval 1: (𝑺𝒘𝟏-OFF, 𝑫𝟏 -OFF; 𝑺𝒘𝟐-ON, 𝑫𝟐 -OFF)- In this state, 𝑆𝑤2   is active 

and considered short-circuited. The lower voltage battery charges the inductor, causing 

the current to increase until the gate pulse is withdrawn from 𝑆𝑤2  . In this mode, the 

diode 𝐷1 is reverse biased and the switch 𝑆𝑤1 is turned off, resulting in no current 

flowing through 𝑆𝑤1 .  

Interval 2 :( 𝑺𝒘𝟏-OFF, 𝑫𝟏 -ON; 𝑺𝒘𝟐-OFF, 𝑫𝟐 -OFF)- In this state, both 𝑆𝑤1 and 

𝑆𝑤2 are turned off, indicating an open circuit. The inductor's current cannot change 

instantly, thus the voltage across it reverses and acts in series with the input voltage. 

As the diode 𝐷1  is forward biased, the inductor current charges the output capacitor 

C1, resulting in a greater voltage. Consequently, the output voltage increases.  

Buck Mode: The switch 𝑆𝑤1  and diode 𝐷2 conduct based on the duty cycle, whereas 

the switch 𝑆𝑤2 and diode 𝐷1 remain off at all times. This mode can be separated into 

two intervals based on the conduction of switch 𝑆𝑤2  and diode 𝐷1.  

Interval 1: (𝑺𝒘𝟏-ON, 𝑫𝟏-OFF; 𝑺𝒘𝟐 -OFF, 𝑫𝟐-OFF). In this phase, 𝑆𝑤1   is active 

and can be termed short-circuited. The higher voltage battery will charge the inductor, 

which will then charge the output capacitor. 

Interval 2: (𝑺𝒘𝟏- OFF, D1 OFF; 𝑺𝒘𝟐- OFF, D2- ON). In this setting, 𝑆𝑤2   and 𝑆𝑤1   

are both turned off. The freewheeling diode 𝐷2 discharges the inductor current, which 

cannot alter instantly. The voltage across the load is stepped down compared to the 

input voltage.  

 

 

+

-+

-
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3.2.6 Battery energy storage system modelling 

Battery energy storage system is mainly employed with standalone photovoltaic 

system. The stored energy in the battery is utilized to feed the load in situations where 

the solar PV system is unable to provide power to it.  

 

Fig.3.7 Equivalent circuit diagram of battery 

Fig.3.7 illustrates an equivalent circuit diagram for a battery, where resistance and a 

voltage-controlled source are connected in series. From Fig.3.7 we can write- 

`𝑉𝑏𝑎𝑡𝑡 = 𝐸𝑐𝑜𝑛𝑡 − 𝑅𝑏𝑖                                                                                                (3.21)                                                                                                                                               

Where, 𝑉𝑏𝑎𝑡𝑡 represent actual voltage, 𝐸𝑐𝑜𝑛𝑡 represents controlled voltage, 𝑅𝑏 is the 

internal resistance and 𝑖 is the battery current. Controlled voltage of battery is 

expressed by equation (3.22) and (3.23). 

𝐸𝑐𝑜𝑛𝑡 = 𝐸0 − ρ
𝑄

𝑄−𝑖𝑡
. 𝑖𝑡 − 𝜌

𝑄

𝑄−𝑖𝑡
𝑖 ∗ +𝐸𝑥𝑝(𝑡)[𝐹𝑜𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔]                      (3.22) 

𝐸𝑐𝑜𝑛𝑡 = 𝐸0 − ρ
𝑄

𝑄−𝑖𝑡
. 𝑖𝑡 − 𝜌

𝑄

𝑖𝑡−0.1.𝑄
𝑖 ∗ +𝐸𝑥𝑝(𝑡)[𝐹𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔]                       (3.23) 

Where, 𝐸0 represents constant open circuit voltage, 𝜌 represents polarization constant, 

Q represents the battery capacity and battery’s actual charge is represented by 𝑖𝑡 =

∫ 𝑖𝑑𝑡, and its reference current is denoted by 𝑖 ∗ and 𝐸𝑥𝑝(𝑡) exponential zone voltage. 

In the system under consideration, a MATLAB/Simulink integrated Lithium-ion 

battery has been utilized. The battery's specifications are as follows: 

Battery must offer the required 14kW of load for around an hour, considering 50% 

depth of discharge when solar power is zero. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 =
14𝑘𝑊∗1ℎ

420𝑉∗0.5
= 66.66𝐴                                                                   (3.24) 

To supply 14 kW, 35 batteries of 12V ,67Ah are required. 

3.2.7  LC Filter modelling 

The LC values were used to provide sufficient bandwidth at the reference and 

cutoff frequencies. The capacitor's function is to reduce harmonics by serving as a 

low-impedance path to the ground. It is important to select a capacitor that 

provides a high-power factor at the reference frequency; equation (3.25) is used to 

determine the capacitance [125]. 

 Cf =
Ρ∗𝜑

(2∗𝜋∗𝑓∗(𝑉𝑙−𝑙 )
2)

                                                                                                  (3.25) 

Reactive power factor is represented by 𝜑. The rated power is P and the line frequency 

is f. The L value for the LC filter is determined using equation (3.26). 

 𝐿𝑓 =
1

4𝜋2Cffr
                                                                                                           (3.26)                                                                                                                                            

Where,  fr is resonance frequency. 
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3.3 MPPT CONTROL TECHNIQUES FOR STANDALONE RES BASED 

MICROGRID  

In hybrid standalone RES based microgrid, MPPT, DC bus voltage, and inverter 

management strategies are necessary to guarantee effective energy use, steady power 

delivery, and system dependability. MPPT increases total efficiency by dynamically 

modifying the operating point under changing solar conditions, maximizing energy 

extraction from the PV array. A steady and controlled DC link voltage is maintained 

by DC bus voltage regulation, minimizing instability and guaranteeing smooth power 

delivery. This is essential for the seamless integration of batteries, inverters, and loads. 

In the meantime, inverter management makes sure that DC power is converted into a 

steady AC output with the right voltage, frequency, and phase regulation—all of which 

are necessary for powering delicate AC loads. By combining these strategies, hybrid 

standalone solar PV systems become more efficient for off-grid and backup power 

applications by improving their performance, stability, and dependability. 

Due to unpredictable weather, the maximum power produced by a photovoltaic system 

can fluctuate. To determine the maximum power that can be extracted from a PV 

module, MPPT is utilized. The MPPT algorithm's objective is to control the DC-DC 

converter's duty cycle in order to increase output voltage and control the operating 

point at the point when the solar PV system generates the most power. The maximum 

power point, also known as the peak power voltage, is the voltage at which a 

photovoltaic module may generate its maximum power. Various MPPT controllers are 

examined in thesis work including:  

i. Perturb and Observe (P&O) technique 

ii. Incremental Conductance (INC)technique 

iii. Particle swarm optimization technique 

iv. Cuckoo search optimization technique 

v. Proposed modified MPPT (INC with Double close loop) technique  

 

3.3.1. Perturb and Observe (P&O) Technique 

Perturb and observe involves regularly changing the duty cycle and comparing the 

resulting PV output power to the preceding perturbation. The operating point 

movement is determined by measuring the power (ΔP) and voltage (ΔV) derivatives. 

If a perturbation affects array power, the next perturbation follows in the same (or 

opposite) direction, as shown in the Fig.3.8. [126]. 

 

3.3.2 Incremental Conductance (INC) Technique 

Flowchart of INC technique are as shown in Fig.3.9. The incremental conductance 

(INC) algorithm is used as the primary MPPT technique. It continuously measures the 

power, voltage, and current of the solar panel and calculates the rate of change of 
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power with respect to voltage (dP/dV). By comparing dP/dV) with the rate of change 

of voltage (dV/dt), the algorithm determines if the system is operating at the maximum 

power point (MPP). If they are equal, the system is at the MPP, and no adjustments 

are required [127]. 

 

Fig.3.8. Flow chart of Perturb and Observe algorithm 

 

Fig.3.9 Flow chart of Incremental Conductance algorithm 

 

3.3.3 Particle Swarm Optimization technique 

Particle optimization technique (PSO) is a population-based evolutionary algorithm 

(EA) for search optimization. The principle was inspired by bird flock behavior to 

solve search and optimization problems. The PSO approach examines each particle's 

best position (𝑃𝑏𝑒𝑠𝑡) and group's best position (𝐺𝑏𝑒𝑠𝑡) in a D-dimensional search space. 

Each particle moves at a speed determined by these values. Each particle in a 

population exchanges information during its search process. During the search process, 
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each particle in the swarm interacts with its neighbors and quickly converges to the 

best position in the search space. Each particle's location is influenced by their best 

neighborhood particle (𝑃𝑏𝑒𝑠𝑡) and the global best position (𝐺𝑏𝑒𝑠𝑡)) of the entire 

population [128]. 

The 𝑖𝑡ℎ position (𝑥𝑖) for each particle is updated using equation (3.27): 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝜑𝑖
𝑘+1                                                                                                (3.27) 

Where k indicates the iteration counter. The velocity component, 𝜑𝑖, denotes the step 

size and is adjusted iteratively to allow particles to explore any region of the search 

space. The velocity is modified as equation (3.28): 

𝜑𝑖
𝑘+1 = 𝜔𝜑𝑖

𝑘 + 𝑐1𝑟1{𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘} + 𝑐2𝑟2{𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘}                                       (3.28)  

The inertia weight (w) determines how an antecedent particle's velocity affects its 

present velocity. Consider 𝑐1 and 𝑐2 as acceleration coefficients. The random variables 

𝑟1 and 𝑟2 are evenly distributed within [0, 1]. 𝑃𝑏𝑒𝑠𝑡, 𝑖  represents the personal best 

position of particle 𝑖, whereas 𝐺𝑏𝑒𝑠𝑡 represents the best position of the entire swarm. If 

the particle position represents the real duty cycle and velocity represents the 

perturbation, the equation can be modified as shown below.  

𝑑𝑖
𝑘+1 = 𝑑𝑖

𝑘 + 𝜑𝑖
𝑘+1                                                                                            (3.29) 

According to equation (3.29), the perturbation on the duty cycle depends on 𝐺𝑏𝑒𝑠𝑡 and 

𝐺𝑏𝑒𝑠𝑡.Flow chart of PSO technique are as shown in Fig.3.10. 

 

 

Fig.3.10 Flow chart of Particle swarm optimization algorithm 
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3.3.4 Cuckoo Search Optimization technique 

In this algorithm, cuckoo birds select host birds with the same egg and nest features. 

So that cuckoos’ birds can lay their egg in host bird nest. If host birds discover a cuckoo 

bird's egg, either host birds dump egg or destroy the nest and construct a new nest. 

Cuckoo Search mainly follows three basic rules [129]. 

1. Cuckoo birds lay one egg at a particular time and keep egg in a randomly selected 

nest. 2. Nest with better feature of eggs will carry forward the next generation. 

 3. The total no of available nests is set and egg-lay by cuckoo birds found by host 

birds with the probability of Paϵ [0, 1]. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼 ⊕ 𝐿𝑒"𝑣𝑦                                                                                        (3.30) 

𝑥𝑖
𝑡 refers to sample/egg, 𝑖 denote the number of samples, 𝑡 is the iteration count, 𝛼 is 

the step size, ⊕means entry-wise multiplication, 𝐿𝑒′𝑣𝑦 (𝜆) is 𝐿𝑒′𝑣𝑦 distribution given 

by equation (3.31): 

𝐿𝑒′𝑣𝑦  ≈ 𝑢 = 𝑡−𝜆                                                                                                  (3.31) 

The  𝐿𝑒′𝑣𝑦  flight is used here for cuckoo bird to generate new solution. 𝐿𝑒′𝑣𝑦  flights 

are a kind of random trajectories walk where steps size is determined from 𝐿𝑒′𝑣𝑦  

distribution. In this present work, CSA is implemented to optimize the duty cycle of 

boost converter. Fig. 3.11 depicts the flowchart of the CSO MPPT technique. 

To start, n number of random duty cycles between 0 to 1 is created and given to the 

boost converter for initial objective function for each duty cycle as expressed as 

equation (3.32). 

𝑑𝑖 = 𝑑𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑[0 1](𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)                                                                (3.32)  

The initial duty cycles are given to the converter to generate new solution and to form 

the current nest. The corresponding power for each duty cycle is determined by using 

current and voltage of the solar panel. Maximum power provided by its corresponding 

duty cycle is considered as the current best. 𝐿𝑒′𝑣𝑦  flight is performed to generate new 

optimal duty cycle using expression (3.33). 

𝑑𝑖
(𝑡+1)

= 𝑑𝑏𝑒𝑠𝑡
𝑡 + 𝛼⊕ 𝐿𝑒"𝑣𝑦 (𝜆)                                                                         (3.33) 

This process will repeat until the maximum power is obtained. 

The modified MPPT technique, which combines the incremental conductance (IC) 

method with double closed-loop control, outperforms existing MPPT techniques such 

as Perturb and Observe (P&O), Particle Swarm Optimization (PSO), and Cuckoo 

Search by providing faster and more accurate tracking, better DC bus voltage 

regulation, and fewer power oscillations. Unlike P&O, which experiences steady-state 

oscillations, and IC, which issues with delayed convergence, the updated technique 

ensures stable and exact MPP tracking. It also outperforms PSO and Cuckoo MPPT, 

which can be computationally costly and slow in dynamic circumstances, by delivering 

faster transient reaction and stable performance even with varying irradiance. 
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Fig.3.11 Flow chart of Cuckoo search optimization algorithm 

3.3.5 Proposed Modified MPPT (INC with Double close loop) technique  

The modified MPPT technique combines the advantages of the incremental 

conductance method and the double closed-loop MPPT technique. This modified 

approach aims to improve DC bus voltage regulation, MPPT tracking and accuracy in 

photovoltaic systems [130]. 

In this approach, the incremental conductance (INC) algorithm is used as the primary 

MPPT technique. It continuously measures the power, voltage, and current of the solar 

panel and calculates the rate of change of power with respect to voltage (dP/dV). By 

comparing (dP/dV) with the rate of change of voltage (dV/dt), the algorithm 

determines if the system is operating at the maximum power point (MPP). If they are 

equal, the system is at the MPP, and no adjustments are required. 

However, DC bus voltage fluctuates due to rapid change in generation from the solar 

panels due to which INC method may not be able to accurately track the MPP alone. 

In such cases, the double closed-loop MPPT technique is combine with INC and 

employed as a new modified MPPT method to enhance the tracking performance by 

regulating DC bus voltage. 

From Fig.3.12 It can be observed that 𝑉𝑃𝑉_𝑟𝑒𝑓  is obtained from incremental 

conductance MPPT technique. Obtained 𝑉𝑃𝑉_𝑟𝑒𝑓is compared with input voltage of PV 

(𝑉𝑃𝑉) which generate 𝑉𝑃𝑉_𝑒𝑟𝑟which is given to the PI controller to obtain optimal duty 

cycle as expressed in equations (3.34) and (3.35).  

𝑉𝑃𝑉_𝑒𝑟𝑟(𝑡) = 𝑉𝑃𝑉 − 𝑉𝑃𝑉𝑟𝑒𝑓(𝑡)                                                                                 (3.34) 
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𝑑1 = 𝑘𝑝1(𝑉𝑃𝑉𝑒𝑟𝑟(𝑡)) + 𝑘𝑖1 ∫ (𝑉𝑃𝑉𝑒𝑟𝑟(𝑡)
𝑡

0
)                                                                 (3.35) 

In double closed loop controller, DC bus voltage (𝑉𝐷𝐶) is compared with reference DC 

bus voltage (𝑉𝐷𝐶_𝑟𝑒𝑓) which generates voltage error as expressed in equation (3.26). 

then given to the voltage controller outer loop using PI controller (PI2) to generate 

reference current as expressed in equation (3.37). 

𝑉𝐷𝐶_𝑒𝑟𝑟(𝑡) = 𝑉𝐷𝐶_𝑟𝑒𝑓(𝑡) − 𝑉𝐷𝐶                                                                                  (3.36) 

𝐼𝐿−𝑟𝑒𝑓=
𝑘𝑝2(𝑉𝐷𝐶𝑒𝑟𝑟(𝑡)) + 𝑘𝑖2 ∫ (𝑉𝐷𝐶𝑒𝑟𝑟(𝑡)

𝑡

0
)                                                             (3.37) 

Similarly for inner loop, output reference current (𝐼𝐿_𝑟𝑒𝑓) is compared with output 

boost current and given to the inner loop using PI controller to generate duty cycle as 

expressed in equation (3.38) and (3.39). 

 𝐼_𝑒𝑟𝑟(𝑡) = 𝐼𝐿_𝑟𝑒𝑓 − 𝐼𝐿                                                                                            (3.38) 

𝑑2 = 𝑘𝑝3(𝐼_𝑒𝑟𝑟(𝑡)) + 𝑘𝑖3 ∫ (𝐼_𝑒𝑟𝑟(𝑡)
𝑡

0
)                                                                      (3.39) 

After that, the obtained duty cycle from the INC MPPT technique and the double-

closed-loop MPPT controller are added together to get the optimal duty cycle as 

expressed in equation (3.40) where both the maximum power point and the DC bus 

voltage are maintained, and then the generated pulse is fed to the boost converter. 

   𝑑 = 𝑑1 + 𝑑2                                                                                                         (3.40) 

 

Fig.3.12 Proposed modified MPPT technique for solar PV 

 

3.3.6 Control Technique for Bidirectional Converter 

Fig.3.13 illustrates the bidirectional converter control in terms of managing both the 

sensing battery current and the DC bus voltage in both modes. Since switch S1 works 

in buck mode to charge the battery and switch S2 works in boost mode to discharge 

the battery, the converter has the potential to transfer power in both directions. 
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Fig.3.13 Control technique for bidirectional Buck-Boost converter 

The comparison of DC bus voltage (𝑉𝐷𝐶) with the DC reference voltage (𝑉𝑃𝑉_𝑟𝑒𝑓) 

generates voltage error (𝑉𝑃𝑉_𝑒𝑟𝑟) which is sent to a PI4 controller. 

Mathematically, It can be expressed as equation (3.41) 

𝑉𝐷𝐶𝑒𝑟𝑟(𝑡) = 𝑉𝐷𝐶𝑟𝑒𝑓(𝑡) − 𝑉𝐷𝐶                                                                                           (3.41) 

Output of the PI controller is battery reference current which is expressed by equation 

(3.33) 

𝐼𝐿𝑏−𝑟𝑒𝑓=
𝑘𝑝4(𝑉𝐷𝐶𝑒𝑟𝑟(𝑡)) + 𝑘𝑖4 ∫ (𝑉𝐷𝐶𝑒𝑟𝑟(𝑡)

𝑡

0
)                                                             (3.42) 

The comparison of output battery current (𝐼𝐿𝑏) with reference current (𝐼𝐿𝑏_𝑟𝑒𝑓) 

generates battery current error expressed as equation (3.43) 

𝐼𝑏𝑎𝑡𝑡_𝑒𝑟𝑟(𝑡) = 𝐼𝐿𝑏_𝑟𝑒𝑓 − 𝐼𝐿𝑏                                                                                     (3.43) 

 𝐼𝑏𝑎𝑡𝑡_𝑒𝑟𝑟(𝑡) is provided to PI controller for estimation of 𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑟∗.  

𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑟∗ = 𝑘𝑝5(𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑟(𝑡)) + 𝑘𝑖5∫ (𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑟(𝑡)
𝑡

0
)                                                     (3.44) 

 

3.3.7 Working of battery energy storage system 

By adjusting the voltage of the DC bus, the DC bus voltage control-based power 

management technique seeks to manage the power flow of the hybrid standalone 

microgrid. 

Discharging mode: When the load demand exceeds the PV generation, there is a dip 

in the DC bus voltage. In this case, the converter operates in boost mode, allowing 

power to flow from the battery to the DC bus and meeting the load demands, which 

discharges the battery. 

Charging mode: When the power produced from SPV is greater than the load demand, 

the converter operates in buck mode, allowing power to flow from the DC bus to the 

battery, thus charges the battery. 

To prevent deep discharge of battery energy storage system (BESS) a lower threshold 

of 25% SOC has been consider while the upper threshold is 80% is considered.𝜀 is a 

error threshold which is considered as ±10𝑉. Flow chart of energy management of 

hybrid standalone microgrid ia as depicted in Fig.3.14. 
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Fig.3.14 Flow chart of energy management of hybrid standalone microgrid 

 

3.4 CONTROL TECHNIQUES FOR STANDALONE INVERTER 

i. Droop Control strategy 

ii. Model Predictive Control 

          3.4.1 Droop Control strategy 

Control technique for inverter is presented in this section. Fig.3.15, 3.16 and 3.17. 

depict the entire control structure of the inverter control. A DG inverter's controller is 

comprised of three distinct parts. The first is an external power control loop that uses 

the droop characteristics set for the real and reactive powers to determine the 

magnitude, frequency, and, consequently, phase, of the fundamental component of the 

inverter output voltage. The voltage and current controllers, which make up the second 

and third sections of the control system, are made to reject high frequency disturbances 

and give the output filter sufficient damping [131]. 

Power Controller: 

The first is an external power control loop that uses the droop characteristics 

established for the real and reactive powers to determine the phase, as well as the 

magnitude and frequency, of the fundamental component of the inverter output 

voltage. 

𝜔 = 𝜔𝑛 −𝑚𝑝𝑃                                                                                                        (3.45) 

𝑣𝑜𝑑𝑟𝑒𝑓
∗ = 𝑉𝑛 −𝑚𝑞𝑄                                                                                                (3.46) 

Where 𝑚𝑝, 𝑚𝑞 are real and reactive power droop gain of inverter which can be 

calculated using equations (3.47) and (3.48). 

𝑚𝑝 =
𝜔𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝜔𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚
                                                                                       (3.47) 

𝑚𝑞 =
𝑣𝑜𝑑𝑚𝑎𝑥𝑖𝑚𝑢𝑚− 𝑣𝑜𝑑𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑄𝑚𝑎𝑥𝑖𝑚𝑢𝑚
                                                                                 (3.48) 
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To determine the real and reactive powers P and Q the instantaneous power 

components are processed through low-pass filters to filter out noise present in the 

signals after transformation. As shown in Fig.3.13 The low-pass filter's cut-off 

frequency is represented by 𝜔𝑐. 

𝑃 =
3

2
(𝑣𝑜𝑑𝑖𝑜𝑑 + 𝑣𝑜𝑞𝑖𝑜𝑞)                                                                                         (3.49) 

𝑄 =
3

2
(𝑣𝑜𝑞𝑖𝑜𝑑 − 𝑣𝑜𝑑𝑖𝑜𝑞)                                                                                         (3.50) 

 

Fig.3.15 Power control loop 

Voltage and Current loop: 

Fig 3.15. and Fig.3.16. presents the voltage and current control loop and PWM 

sinusoidal switching reference generation for inverter. The voltage and current 

controllers are the second and third sections of the control system, and they are 

designed to reject high-frequency disturbances while also providing suitable damping 

for the output LC filter. Voltage and current loop are demonstrated in Fig 3.16 which 

consist of two blocks which are responsible for maintaining PCC voltage. The power 

controller block's Q-V droop equation provides the reference for the d-axis element, 

while the q-axis element reference is fixed to zero to synchronize the vector with the 

d-axis and decouple the d-q axis component of the transformed voltage. The 

expression utilized in creating the voltage block and current block is expressed in 

equations (3.51) -(3.54). 

𝑖𝑙𝑑
∗ = 𝐹𝑖𝑜𝑑 − 𝜔𝐶𝑓𝑣𝑜𝑞 + 𝐾𝑣𝑝(𝑣𝑜𝑑𝑟𝑒𝑓

∗ − 𝑣𝑜𝑑) + 𝐾𝑣𝑖 ∫(𝑣𝑜𝑑𝑟𝑒𝑓
∗ − 𝑣𝑜𝑑)                     (3.51) 

𝑖𝑙𝑞
∗ = 𝐹𝑖𝑜𝑞 − 𝜔𝐶𝑓𝑣𝑜𝑑 + 𝐾𝑣𝑝(𝑣𝑜𝑞𝑟𝑒𝑓

∗ − 𝑣𝑜𝑞) + 𝐾𝑣𝑖 ∫(𝑣𝑜𝑞𝑟𝑒𝑓
∗ − 𝑣𝑜𝑞)                     (3.52)                                    

𝑣𝑖𝑑
∗ = −𝜔𝐿𝑓𝑖𝑙𝑞 + 𝐾𝑐𝑝(𝑖𝑙𝑑

∗ − 𝑖𝑙𝑑) + 𝐾𝑐𝑖 ∫(𝑖𝑙𝑑
∗ − 𝑖𝑙𝑑)                                                    (3.53) 

𝑣𝑖𝑞
∗ = 𝜔𝐿𝑓𝑖𝑙𝑑 + 𝐾𝑐𝑝(𝑖𝑙𝑞

∗ − 𝑖𝑙𝑞) + 𝐾𝑐𝑖 ∫(𝑖𝑙𝑞
∗ − 𝑖𝑙𝑞)                                                  (3.54) 

 Where 𝑖𝑙𝑑
∗  , 𝑖𝑙𝑞

∗  are the reference signal produce by the voltage control loop which are 

given to the current controller loop. 𝐾𝑣𝑝 , 𝐾𝑣𝑖 are the pi controller gain value. 𝑣𝑖𝑑
∗ , 𝑣𝑖𝑞

∗  

are the dc signal produced by the current loop for generating pulse , 𝐾𝑐𝑝, 𝐾𝑐𝑖 are the 

gain value. 
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Fig.3.16 Voltage and current control loop 

 

Fig.3.17 PWM sinusoidal switching reference generation for inverter 

   3.4.2 Model Predictive Control  

Model Predictive Control (MPC), also known as receding horizon control, is a 

powerful technique commonly used in industrial control systems. It takes into account 

major inverter limits, such as the static power converters' limited switching states. 

Using the system model, MPC predicts the behaviour of variables for each switching 

state and chooses the best state by minimizing a quality function that represents 

intended system performance. This technique is ideal for systems with restrictions and 

nonlinearities, since it provides flexibility and simplicity by expressing control 

objectives as a cost function [132]. 

Fig.3.27 illustrates how a Voltage Source Inverter (VSI) with an LC filter is used in 

this study. A detailed model of the VSI, including its control technique and interface 

with the LC filter, is provided to demonstrate its performance under various load 

conditions. The gating signals 𝐺𝑎 , 𝐺𝑏 𝑎𝑛𝑑 𝐺𝑐   define the inverter's switching states, as 

indicated below: 

𝐺𝑎 = {
1, 𝑖𝑓 𝐺1  𝑂𝑁 𝑎𝑛𝑑 𝐺4  𝑂𝑓𝑓
0, 𝑖𝑓 𝐺1  𝑂𝑓𝑓 𝑎𝑛𝑑 𝐺4  𝑂𝑁 

                                                                                 (3.55) 

𝐺𝑏 = {
1, 𝑖𝑓 𝐺2  𝑂𝑁 𝑎𝑛𝑑 𝐺5  𝑂𝑓𝑓
0, 𝑖𝑓 𝐺2 𝑂𝑓𝑓 𝑎𝑛𝑑 𝐺5  𝑂𝑁 

                                                                           (3.56) 

𝐺𝑐 = {
1, 𝑖𝑓 𝐺3  𝑂𝑁 𝑎𝑛𝑑 𝐺6  𝑂𝑓𝑓
0, 𝑖𝑓 𝐺3  𝑂𝑓𝑓 𝑎𝑛𝑑 𝐺6  𝑂𝑁 

                                                                             (3.57) 

To express these switching states in the αβ reference frame, convert them as follows: 
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𝐺 =
2

3
(𝐺𝑎 + 𝑎𝐺𝑏 + 𝑎

2𝐺𝑐) = 𝐺𝛼 + 𝑗𝐺𝛽 , 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑒
 j(2π/3).                               (3.58) 

[
𝐺𝛼
𝐺𝛽 
] =

2

3
[
1 −

1

2
−
1

2

0
√3

2
−
√3

2

] [

𝐺𝑎
𝐺𝑏
𝐺𝑐

]                                                                                (3.59) 

The inverter's output voltage space vectors are defined as: 

𝑣𝑖 =
2

3
(𝑣𝑎𝑁 + 𝑎𝑣𝑏𝑁 + 𝑎

2𝑣𝑐𝑁)                                                                                 (3.60) 

The inverter's phase-to-neutral voltages are denoted by 𝑣𝑎𝑁 , 𝑣𝑏𝑁 , 𝑣𝑐𝑁.. The voltage of 

the vector 𝑣𝑖 can be linked to the switching mode vector G using equation (3.58). 

𝑣𝑖 = 𝑉𝐷𝐶𝐺                                                                                                               (3.61) 

Fig.3.18 depicts the switching modes and voltage vectors generated by the VSI using 

(3.58) and (3.61), accounting for all conceivable combinations of switching signals 

𝐺𝑎, 𝐺𝑏 , 𝑎𝑛𝑑 𝐺𝑐 Eight voltage vectors (𝑣0 through 𝑣7) are considered output options. 
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Fig.3.18 Eight possible voltage vector created by the inverter 

 

Fig.3.19 Filter model 

Vectorial notation is used to represent the filter current (𝑖𝑓), output voltage (𝑣𝑐), and 

current (𝑖0) as space vectors, as shown in equations (3.62), (3.63) and (3.64). 

𝑖𝑓 =
2

3
(𝑖𝑓𝑎 + 𝑎𝑖𝑓𝑏 + 𝑎

2𝑖𝑓𝑐)                                                                                     (3.62) 

 𝑉𝑐 =
2

3
(𝑣𝑐𝑎 + 𝑎𝑣𝑐𝑏 + 𝑎

2𝑣𝑐𝑐)                                                                                   (3.63) 

 𝑖0 =
2

3
(𝑖0𝑎 + 𝑎𝑖0𝑏 + 𝑎

2𝑖0𝑐)                                                                                   (3.64) 
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Fig.3.19 shows a block diagram of an LC filter. The vectorial equation for filter 

inductance and capacitance can be stated as equation (3.65) and (3.66): 

𝐿
𝑑𝑖𝑓

𝑑𝑡
= 𝑣𝑖 − 𝑣𝑐                                                                                                        (3.65) 

 𝐶
𝑑𝑣𝑐

𝑑𝑡
= 𝑖𝑓 − 𝑖𝑜                                                                                                         (3.66) 

Where, L and C represent the inductance and capacitance of the LC filter, 𝑖𝑓and 𝑣𝑐 are 

the measured values, and 𝑣𝑖 is determined using equation (3.60).  

A state-space system can be used to represent the following mathematical expression: 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑣𝑖 + 𝐵𝑑𝑖0                                                                                             (3.67) 

where, 𝑥 = [
𝑖𝑓
𝑣𝑐
], 𝐴 = [

0 −
1

𝐿
1

𝐶
0
], 𝐵 = [

1

𝐿

0
], and 𝐵𝑑 = [

0
−1

𝐶

] 

The system's output voltage (𝑣𝑐) is expressed as equation (3.68). 

𝑣𝑐 = [0 1]𝑥                                                                                                           (3.68) 

The filter's discrete-time model is derived from equation.3.52 for a sample time Ts 

and expressed as: 

𝑥(𝑘 + 1) = 𝐴𝑞𝑥(𝑘) + 𝐵𝑞𝑣𝑖(𝑘) + 𝐵𝑑𝑞𝑖0(𝑘)                                                          (3.69) 

[
𝑖𝑓(𝑘 + 1)

𝑣𝑐(𝑘 + 1)
]

⏟      
𝑥(𝑘+1)

= 𝑒𝐴𝑇𝑠⏟
𝐴𝑞

[
𝑖𝑓(𝑘)

𝑣𝑐(𝑘)
]

⏟    
𝑥(𝑘)

+∫ 𝑒𝐴𝜏𝐵𝑑𝜏

𝑇𝑠

0⏟      
𝐵𝑞

𝑣𝑖(𝑘) + ∫ 𝑒
𝐴𝜏𝐵𝑑𝑑𝜏

𝑇𝑠

0⏟      
𝐵𝑑𝑞

𝑖0(𝑘) 

 This model predicts the output voltage (𝑣𝑐) for a given input voltage vector (𝑣𝑖). 

Predictive control is used to select the optimal voltage vector. To predict the output 

voltage (𝑣𝑐) using expression (3.68), the output current (𝑖𝑜) is required. This may be 

calculated by utilizing the equation (3.70). 

𝑖0(𝑘 − 1) = 𝑖𝑓(𝑘 − 1) −
𝐶

𝑇𝑠
(𝑣𝑐(𝑘) − 𝑣𝑐(𝑘 − 1))                                               (3.70)  

Assume 𝑖0(𝑘 − 1) = 𝑖0(𝑘)  for short sample intervals Ts, where load does not change 

considerably during each sampling interval 

As shown in Fig.3.19, the output voltage 𝑣𝑐(𝑘), and the filter current 𝑖𝑓(𝑘), are used 

to estimate the output voltage at the next sampling period, 𝑣𝑐(𝑘 + 1), for all possible 

voltage vectors that the VSI may create. 

To pick the ideal voltage vector 𝑣𝑖 for the VSI, seven forecasts for 𝑣𝑐(𝑘 + 1) are 

compared using a cost function (ꬶ). The voltage vector (𝑣𝑖) that reduces the cost 

function is chosen and the associated switching mode that reduces the cost function is 

used during the next sampling period. The stages below provide a summary of the 

control strategy. Outline a cost function. Create a model that contains all possible VSI 

switching states. Create a prediction model for the loads. 
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 3.5 RESULTS AND DISCUSSION 

A 12kW standalone hybrid PV-Wind system has been modelled in 

MATLAB/Simulink. Hybrid standalone system with proposed control algorithm is 

tested under transient conditions such as PV array irradiation variation, wind speed 

variations and different loading conditions. The behavior of the system is analyzed 

based on battery charging/discharging, DC bus voltage (VDC), PCC voltage (Vpcc), 

battery power (Pbat), PV power (PPV), load active power demand (Pl) and reactive 

power demand (Ql). 

The result evaluation of the hybrid system is carried out in two parts: 

3.5.1 Performance evaluation of PV-BESS hybrid microgrid using proposed 

modified MPPT and inverter droop control. 

3.5.2 Performance evaluation of PV–Wind–BESS hybrid microgrid using 

proposed modified MPPT and inverter droop Control 

 

 3.5.1 Performance evaluation of PV-BESS hybrid microgrid using proposed 

modified MPPT and inverter droop control. 

 

Fig.3.20 PV-BESS hybrid standalone microgrid 

Schematic representation of the presented Hybrid Standalone PV-Battery system is 

illustrated in Fig.3.20 presented system mainly consists of three major components. 

The first is a solar energy conversion unit that consists of two stages: a boost converter 

and a voltage source inverter (VSI). The second is a battery storage system that 

includes a bidirectional converter. The third main component is different types of load 

coupling at PCC and LC filter which improve the overall efficiency of a photovoltaic 

system by reducing losses and harmonic induced by voltage fluctuations. Modified 

MPPT technique is used for maximum power tracking from SPV array. The uses of 

battery storage reduce the fluctuation in output power of the PV array, maintain DC 
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bus voltage and assists the network during peak load demand hours. This section 

presents a modified MPPT technique for maximizing the solar output power in a 

standalone PV battery system by regulating the DC-bus voltage. 

a. To improve the dynamic performances of hybrid standalone PV systems, a 

modified control technique that combines the incremental conductance (INC) 

technique with a double closed loop controller is proposed for tracking the 

maximum power from the PV source and maintaining the DC bus voltage. 

b. The different parameters of the presented system are investigated under various 

irradiation condition, linear/nonlinear load and balance/unbalanced load condition. 

c.  The EN50530 MPPT efficiency test was carried out considering both fast and slow-

varying irradiance levels to examine the effectiveness of the proposed control strategy. 

d. The standalone PV system is integrated with BESS through a bidirectional 

converter to maintain the nominal DC voltage conditions by charging/discharging 

the battery due to intermittent solar photovoltaic (SPV) generation and also 

considering the BESS SOC constraints. 

e. Sinusoidal and balanced load current and voltage at point of common coupling 

(Vpcc) are maintained under nonlinear and unbalanced loading conditions. In addition, 

power balance among the battery, PV, and load is obtained. 

The proposed modified control technique's superiority was demonstrated by 

comparing its performance to Incremental conductance (INC) MPPT, Perturb & 

Observe (P&O) MPPT, Particle Swarm Optimization (PSO), and Cuckoo Search 

Optimization (CSO)-based MPPT techniques under various load and irradiation 

conditions. 

 

3.5.1.1 System response under different irradiation condition  

In this case, the performance of the presented hybrid system under variable irradiation 

conditions is analyzed, as shown in the Fig 3.21. A linear load of 10kVA with 0.89 lag 

power factor (pf) is considered, simulated result and corresponding various parameters 

viz. Vpcc, Iload, PPV, Pl, Ql, Pbat, SOC and VDC of the system are shown in Fig.3.21. It is 

observed from the figure voltage at point of common coupling (Vpcc) and Iload are found 

to be balanced and sinusoidal. Initially power generated from solar is 12kW and active 

load demand is 8.8kW which is fulfilled by solar PV and the excess power (3.2kW) 

produced from solar PV is utilized to charge the battery. Inverter is supplying reactive 

power demand of load and DC bus voltage is maintained at 750V as shown in Fig.3.21. 

Solar irradiance is reduced at t = 0.1s from 1000W/m2 to 850 W/m2 it reduces power 

generation of solar PV to 10kW, load demand is still 8.8kW which is supplied by PV 

and excess power (1.2kW) produced from solar  module is utilized to charge the battery 

.Further solar irradiance is reduced to 650W/m2 at t = 0.2s, thus PV output power is 

also reduced to 8kW .In this condition deficit load power(1kW) demand is taken from 

the battery hence battery is  discharging in this condition also DC bus voltage is 

maintained at 750V.Corresponding SOC graph of the battery is presented in Fig.3.21. 
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Fig.3.21 Waveform under linear load and irradiation variation 

 

3.5.1.2 System response under load varying condition 

In this case, performance of the proposed hybrid system for variable linear load is 

analyzed as shown in Fig.3.22. Solar PV generate 12 kW active power at 1000W/m2 

irradiation. Initially load demand is10kVA with 0.89 lag pf which means active power 

load demand is 8.8 kW and power generated from PV is 12kW.Surplus power load 

(3.2kW) produced from solar photovoltaic module is used to charge the battery and 

inverter is supplying reactive power. Voltage at PCC (Vpcc) and load current (Iload) are 

balanced and sinusoidal. DC bus voltage has been maintained at 750V. 

At t=0.15s solar irradiation is 1000W/m2 so the power generated from the PV is 12kW 

while load demand is increased to 14.38 kW. Now the remaining power (2.38kW) is 

taken from the battery as depicted in fig.3.22. to provide constant power to the load. 

From the Fig.3.22. It can be observed that system is stable and balance during load 

variable and also during battery charging and discharging condition. Voltage at PCC 

(Vpcc) and load current (Iload) are sinusoidal and balanced. The DC bus voltage remains 

constant at 750V. 
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Fig.3.22 Waveform under load variation 

3.5.1.3 System response under variable nonlinear load condition 

  Fig.3.23. depict the system's performance under nonlinear load (3-phase bridge 

rectifier with R=200Ω, L=0.1H). PV generates 12kW active power at 1000W/m2 

irradiation and the power load demand from is 1.6kW which is supplied by PV. The 

excess power generated from SPV is utilized to charge the battery as presented in fig. 

Voltage at point of common coupling is balanced and sinusoidal. 

At t=0.15s an extra load of 5kVA with 0.89 lag pf is added. Solar irradiation is 

1000W/m2 so the power generated from the PV is 12kW while load demand is 

increased to 6.03 kW. So, excess power (5.57kW) produced from solar PV is utilized 

to charge the battery and inverter is supplying reactive power. 

From Fig.3.23, shows the voltage at PCC (Vpcc) and load current (Iload) are balanced 

and sinusoidal even under non-linear load variation condition.  DC bus voltage remains 

constant at 750V. 

 

3.5.1.4 System response under unbalanced load condition 

In this case performance analysis of a proposed system under nonlinear unbalanced 

load conditions has been done. Fig.3.24. shows response the presented system under 

unbalanced load condition (one line of the nonlinear load is disconnected for time 

interval t= 0.15s-0.25s). In this condition also it can be observed that voltage at point 

of common coupling (Vpcc) is balanced and sinusoidal. Power load demand is met by 

solar photovoltaic module and excess power produced from solar photovoltaic is 

utilized to charge the battery as depicted in Fig.3.24. DC bus voltage (VDC) is 

maintained at 750V. 
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Fig.3.23 Waveform under nonlinear load condition 

 

Fig.3.24 Waveform under nonlinear unbalance load condition 

 

3.5.1.5 Comparison of PV power output at different irradiance using proposed 

modified MPPT technique and existing control techniques 

Fig.3.25 illustrates a solar PV module's transient response and maximum power 

tracking under different irradiation conditions The variation in the irradiation intensity 

of the solar PV module for the selected time period. is shown in Table 3.1. Table 3.1 

and Fig.3.25. make this evident compared to P&O, INC, PSO, and CSO MPPT 

controllers, the proposed enhanced MPPT controllers track more power and exhibit no 

oscillation. 
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Fig.3.25 Transient response of PV power output for nonlinear load under various 

irradiation conditions 

 

Table 3.1.  Comparison of proposed modified MPPT technique at different irradiation 

using P&O, INC, PSO, and CSO based MPPT techniques 

S.

No 

Control Techniques Time(second

s) 

Irradiation Power 

Tracked(kW) 

1.  

P&O 

0.0s - 0.1s 1000W/m2 11.48 

0.1s -0.2s 800W/m2 09.47 

0.2s -0.3s 600W/m2 07.13 

2.  

INC 

0.0 s - 0.1s 1000W/m2 11.52 

0.1s -0.2s 800W/m2 09.37 

0.2s -0.3s 600W/m2 07.22 

3.  

PSO 

0.0s - 0.1s 1000W/m2 11.82 

0.1s -0.2s 800W/m2 09.46 

0.2s -0.3s 600W/m2 07.32 

4.  

CSO 

0.0 s - 0.1s 1000W/m2 11.87 

0.1s -0.2s 800W/m2 09.52 

0.2s - 0.3s 600W/m2 07.49 

5. Proposed modified 

Technique 

(INC technique with 

double closed loop 

controller) 

0.0 s - 0.1s 1000W/m2 11.97 

0.1s -0.2s 800W/m2 09.69 

0.2s-0.3s 600W/m2 07.64 
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3.5.1.6  Comparison of transient response of DC bus voltage on different 

irradiation using proposed modified MPPT technique and existing control 

techniques 

The transient response of DC bus voltage for P&O, INC, PSO, CSO and proposed 

modified MPPT controller is as shown in Fig.3.26 Table 3.2 describes the graph. Fig. 

3.26 exhibits the superior performance of the proposed MPPT technique over the other 

compared MPPT techniques. The behavior of the system under irradiation variation 

has been studied. DC bus voltage settling time and undershoot is smaller in the case of 

the proposed control technique than other compared techniques.  

Table.3.2 Transient assessment of DC voltage for nonlinear loads with P&O, INC, 

PSO, CSO and proposed modified controller on different irradiation 

 

S.No Control 

Techniques 

Time 

(seconds) 

Irradiatio

n 

 Settling 

Time 

 

DC bus  

voltage 

Remarks 

1.   

P&O 

0.0s - 0.1s 1000W/m2 0.08s 750V Overshoot of 

100V and 

oscillation 

present 

0.1s -0.2s 800W/m2 0.07s 750V Undershoot of 

25V present 

0.2s -0.3s 600W/m2 0.07s 750V Undershoot of 

15V present 

2.  

INC 

0.0 s - 0.1s 1000W/m2 0.07s 750V Overshoot of 

8V, 

Undershoot of 

20Vand 

oscillation 

present 

0.1s -0.2s 800W/m2 0.07s 750V Undershoot of 

24 V present 

0.2s -0.3s 600W/m2 0.06s 750V Undershoot of 

15V present 

3.  

PSO 

0.0s - 0.1s 1000W/m2 0.06s 750V Overshoot of 

110V present 

0.1s -0.2s 800W/m2 0.07s 750V Undershoot of 

22 V present 

0.2s -0.3s 600W/m2 0.06s 750V Undershoot of 

15V present 
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4.  

CSO 

0.0 s - 0.1s 1000W/m2 0.02s 750V Overshoot of 

38V present 

0.1s -0.2s 800W/m2 0.06s 750V Undershoot of 

15 V present 

0.2s - 0.3s 600W/m2 0.05s 750V Undershoot of 

8V present 

5. Proposed 

Modifies 

MPPT 

Technique 

(INC 

technique 

with double 

closed loop 

controller) 

0.0 s - 0.1s 1000W/m2 0.01s 750V Overshoot of 

40V present 

0.1s -0.2s 800W/m2 0.01s 750V Undershoot of 

3V present 

(negligible) 

0.2s-0.3s 600W/m2 0.01s    750V Undershoot of 

3V 

present(negligi

ble) 

 

Fig.3.26 Transient analysis of DC bus voltage for nonlinear load 

 

3.5.1.7 Comparison of MPPT Efficiency test EN50530 using developed and 

existing control techniques 

One of the standard testing conditions applied to a standalone PV system is the EN50530 

MPPT efficiency test, which evaluates the MPPT algorithm's performance under dynamically 

varying circumstances 
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Fig.3.27 PV power output waveform of different MPPT algorithms for MPPT 

EN50530 efficiency test 

 In this specific case, we conducted an analysis of the MPPT techniques under dynamic 

changes in irradiance level, accounting for both fast and slow variations. 

We employed the trapezoidal signal to design the slow and fast irradiance levels, as 

shown in Fig.3.27. The MATLAB 2023a simulation environment was used to analyse 

the power achieved by all MPPT methods based on irradiance level variations. 

Fig.3.27 illustrates the maximum power generated by various MPPT algorithms during 

the EN50530 efficiency test. Fig.3.27 and Table.3.3 shows that among all MPPT 

techniques, the proposed modified MPPT achieves the highest power. The proposed 

MPPT technique performs extremely well at lower levels of irradiance, as 

demonstrated by the blue colour curve. This is also evident for the proposed MPPT, 

which functions most effectively at higher levels of irradiance. 

Table 3.3.  Maximum power obtained using MPPTs at various time intervals  

S.No. Control 

Techniques 

𝑷𝒎𝒂𝒙(𝒌𝑾) at 

(0.0-0.1sec) 

𝑷𝒎𝒂𝒙(𝒌𝑾) at 

(0.4-0.5sec) 

𝑷𝒎𝒂𝒙(𝒌𝑾) at 

(1.3-1.4sec) 

1. P&O 2.01 11.54 11.53 

2. INC 2.10 11.55 11.55 

3. PSO 2.11 11.62 11.60 

4. CSO 2.13 11.81 11.81 

5. Proposed 

Modified 

Technique 

2.20 11.95 11.95 
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3.5.2 Performance evaluation of PV–Wind–BESS hybrid microgrid using 

proposed modified MPPT and inverter droop Control 

Fig.3.28 depicts a hybrid microgrid system with wind, photovoltaic (PV), and battery 

energy storage components that operate in parallel with an inverter. This 

configuration integrates renewable energy sources (RES) and energy storage to 

provide linear and nonlinear loads via point of common coupling (PCC). To ensure 

optimal power extraction from wind and PV systems, the proposed modified MPPT 

technique is utilized. The system employs droop control to ensure synchronized and 

steady power sharing between the parallel inverters linked with the wind and PV 

modules. Furthermore, a bidirectional DC-DC converter is integrated between the 

battery and the DC link to govern the bidirectional flow of energy, allowing for both 

charging and discharging operations according to system requirements. 

 

Fig.3.28 PV–Wind–BESS hybrid standalone microgrid 

3.5.2.1 System response under battery charging condition  

Fig.3.29 depicts system performance during battery charging conditions. A linear load 

of 20 kVA with 0.9 lag pf (18kW and 8.717Kvar) was examined. The SPV and wind 

subsystems produce 11.97 and 9.38 kW, respectively, for a total of 21.35 kW. Surplus 

power of 3.35 kW is used to charge batteries efficiently. In this scenario, the voltage 

at the point of common coupling (Vpcc) is balanced and sinusoidal. Solar photovoltaic 

module and wind power generation meet power load need, and excess power from 

photovoltaic and wind is utilized to charge the battery, as shown in fig.3.29. The DC 

bus voltage (VDC) is kept at 750 V. 
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Fig.3.29 Waveform under battery charging conditions 

 

Fig.3.30 Waveform under battery discharging condition 
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  3.5.2.2 System response under battery discharging condition  

Fig.3.30 demonstrates system performance under battery discharge situations. A linear 

load of 24 kW is tested. The SPV and wind subsystems generate 11.97 and 9.38 kW, 

for a total of 21.35 kW. To meet the power shortfall, the battery discharge 2.57 kW 

while maintaining a constant DC bus voltage of 750V. In this case, the voltage at the 

point of common connection (Vpcc) is balanced and sinusoidal. The battery 

compensates for the deficiency by discharging 2.57 kW to meet the overall load. The 

DC bus voltage (VDC) is kept at 750 volts. 

 

 3.5.2.3 System response under non-linear variable load condition 

 

   Fig.3.31Waveform under non-linear variable load condition 

 

Fig.3.31. depict the system's performance under nonlinear load (3-phase bridge 

rectifier with R=20Ω, L=100mH). The solar PV (SPV) and wind energy subsystems 

contribute 11.91 kW and 9.38 kW, respectively, resulting in a total generation of 

21.35 kW. Initially, the load demand is 15.5 kW, leading to a surplus of 5.8 kW, which 

is utilized to charge the battery energy storage system.  At t=0.6s an additional 3 kW 

load is introduced, increasing the total demand to 18.5 kW. Despite the increased 

demand, the total generation still exceeds the load, allowing a reduced surplus of 

2.85 kW to continue charging the battery. As shown in Figure 3.22, the voltage at the 

point of common coupling (𝑉𝑝𝑐𝑐) and the load current (𝐼𝑙𝑜𝑎𝑑) remain balanced and 

sinusoidal, even under nonlinear loading conditions. Furthermore, the DC bus voltage 

is effectively regulated at a constant level of 750 V, confirming the robustness of the 

control strategy under dynamic and nonlinear load variations. 
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     3.5.2.4 System response under variable irradiation condition 

Fig.3.32 depicts the system response under variable irradiation condition. A 18 kW 

load is used to evaluate the hybrid SPV-wind microgrid under dynamic solar 

irradiance.  At 1000 W/m², the SPV provides 11.97 kW, while the wind turbine 

supplies 9.38 kW, for a total of 21.35 kW. The additional 3.35 kW is utilized for 

battery charging. After 0.5 seconds, the solar irradiance drops to 600 W/m², resulting 

in a reduced SPV output of 7.5 kW. With wind power at 9.38 kW, total generation 

drops to 16.88 kW. As the load remains at 18 kW and generation decreases, a 1.2 kW 

shortfall occurs. The battery quickly switches from charging to discharging mode, 

effectively bridging the gap and providing continuous power supply. Despite a 

significant decline in solar irradiation, the system maintains a steady DC bus voltage  

 

Fig.3.32 Waveform under variable irradiation condition 

3.5.2.5 System response under variable wind speed condition 

Fig.3.33 depicts the system performance under variable wind condition. The system’s 

performance is evaluated under a constant load of 16 kW, with a fixed solar irradiance 

of 1000 W/m² and variable wind speed. Initially, the solar and wind subsystems 

generate 11.97 kW and 9.38 kW, respectively, resulting in a total power output of 

approximately 21.35 kW. Since the load demand is only 16 kW, the surplus power of 

5.3 kW is utilized to charge the battery, placing the system in battery charging mode. 

However, at 0.5 seconds, a sudden drop in wind speed to 8.4 m/s reduces the wind 

power output to 4.5 kW. With solar generation remaining stable, the combined 

available power becomes 16.43 kW. As this value still slightly exceeds the load 

demand, the battery continues to charge, albeit at a reduced rate. 
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Fig.3.33 Waveform under variable wind speed condition 

3.5.2.6 Comparative analysis of transient response of DC bus voltage under 

variable wind speed using proposed and existing control techniques 

 

 Fig.3.34 Variable wind speed 

 

Fig.3.35 Transient response of DC bus voltage under variable wind speed 
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The dynamic performance of the DC link voltage  is analyzed under different wind 

speed conditions—12 m/s, 10.8 m/s, and 9.6 m/s—using three MPPT techniques: 

P&O, INC, and the proposed method as shown in fig.3.35. At a wind speed of 12 m/s, 

all techniques initially show a sharp rise in 𝑉𝐷𝐶, with the proposed technique achieving 

a faster settling time and minimal overshoot compared to P&O and INC. As the wind 

speed drops to 10.8 m/s, noticeable fluctuations occur in the voltage profiles of P&O 

and INC, indicating poorer dynamic response and slower convergence. In contrast, the 

proposed technique maintains a more stable voltage with reduced undershoot and 

quicker voltage recovery. At the lowest wind speed of 9.6 m/s, the performance gap 

becomes more apparent; the proposed method consistently regulates the DC link 

voltage closer to the desired level with minimal ripple, while both P&O and INC show 

more deviation and slower recovery. Overall, the proposed MPPT technique 

outperforms conventional methods by offering improved voltage stability, faster 

transient response, and better adaptability under varying wind conditions. 

 

3.5.3 Performance evaluation and result discussion using proposed modified 

MPPT technique and Model Predictive Control technique for inverter 

Fig.3.36 Schematic diagram of hybrid standalone PV microgrid with MPC controller 

MATLAB simulation results for a hybrid standalone PV microgrid are presented to 

validate the inverter's Model Predictive Control (MPC) technique and compare its 

performance with a droop controller. A 12-kW solar PV system is used, with a three-

phase bridge rectifier (R = 180 Ω, L = 200 mH) representing a nonlinear load. The 

simulations include three-phase waveforms for load current (𝐼0 ), load voltage(𝑉0), PV 

power (𝑃𝑝𝑣), battery power (𝑃𝑏𝑎𝑡), load active power (P), reactive power (Q), DC bus 

voltage (𝑉𝐷𝐶), and state of charge (SOC), demonstrating performance under linear and 

nonlinear load conditions. 

 

Fig. 3.36 Schematic diagram of hybrid standalone PV microgrid with MPC controller 
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3.5.3.1 System response under variable linear load demand 

The system's performance under varying linear load conditions is assessed using the 

MPC control technique. Initially, the load demand is 10 kVA (8 kW, 4.8 kVAr) with 

a 0.8 lagging power factor, which rises to 14 kW after 0.4 second. Initially, the solar 

PV fulfils the load demand (8 kW), and the excess power (4 kW) charges the battery. 

The battery discharges after 0.4 seconds due to increased load demand, supplying the 

2-kW deficit power. Throughout, the voltage and current are sinusoidal and balanced, 

the DC bus voltage is constant at 750 V, and the power balance between the solar PV, 

load, and battery is maintained, as illustrated in Fig.3.37. 

 

Fig.3.37 System response under variable linear load demand 

3.5.3.2 System response under variable non-linear load demand 

The system's performance with MPC is investigated under varying non-linear load 

conditions as shown in fig.3.38. To begin, a non-linear load (bridge rectifier with RL 

load R = 180 Ω, L=200mH) is applied. After 0.4 seconds, an additional load of 7.5 

kVA (6 kW, 3.6 kVAr) with a 0.8 lagging power factor is added. Initially, solar PV 

satisfies load demand while excess electricity charges the battery. After 0.4 seconds of 

increased load demand, the PV continues to supply the load while any excess power 

generated is used to charge the battery. 
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Fig.3.38 System performance under variable non-linear load demand 

 

Fig.3.39 System performance under unbalance non-linear load demand 

3.5.3.3 System response under unbalanced non- linear load demand 

This section evaluates the network's performance with MPC under imbalanced load 

conditions. Disconnecting a single phase of the load current results in load unbalancing 

for 0.4 to 0.6 seconds as shown in Fig.3.39. It has been found that even under these 

conditions, the voltage and current are balanced and sinusoidal. 
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3.5.3.4 Comparative analysis of Droop controller and Model Predictive Control 

techniques with the proposed modified MPPT technique 

Fig.3.40(a) and 3.40(b) show a performance comparison of total harmonic distortion 

(THD) and DC bus voltage using Model Predictive Control (MPC) and a droop 

controller. Table.3.4 and Fig.3.40show that MPC has less harmonic distortion than 

droop controller. Additionally, Fig.3.40 shows that DC bus voltage is maintained at 

750 V with MPC, whereas 739V is used with droop controller. 

 

Fig.3.40(a) Harmonic Spectrum of output voltage using droop controller for non-

linear load 

 

Fig.3.40(b) Harmonic Spectrum of output voltage using MPC for non-linear load 

 

Fig.3.41 DC bus voltage response of non-linear load using droop controller and MPC 
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Table.3.4 Comparison of THD of output voltage using droop controller and MPC with 

the proposed MPPT technique 

System 

Parameter 

THD % of Load Output 

voltage 

Droop 

Contro

ller 

Model 

Predictive 

Control 

(MPC) 

Linear load 2.93 1.12 

Non-Linear 

Load 
3.96 1.32 

Unbalanced 

Load 
3.83 1.24 

 

3.6 SCALABILITY AND COST IMPLICATION OF DOUBLE CLOSED 

LOOP MPPT WITH INCREMENTAL CONDUCTANCE  

The Double Closed Loop MPPT with Incremental Conductance (INC) is a control 

strategy that combines the robustness of closed-loop PI regulation with the adaptability 

of the INC algorithm for solar PV systems. The outer voltage loop ensures stable DC-

link regulation, while the inner current loop tracks the PV operating point. This hybrid 

structure enhances dynamic response and stability, especially under irradiance 

fluctuations. 

Hardware: Requires only basic voltage and current sensors plus a microcontroller or 

DSP with low computational overhead. Unlike ANN, no large training datasets are 

needed. 

Algorithmic Load: Computationally lightweight — complexity is O (1) per step. This 

makes it easily scalable even for multiple PV strings without heavy hardware. 

System Size: Double Closed Loop + INC is practical for small-scale rural PV 

microgrids (5–20 kW) because of its simplicity. It is also suitable for industrial-scale 

PV but may be less effective under partial shading compared to ANN. 

The proposed PI-based control with INC+ Double Closed Loop offers very low 

CAPEX, as it relies on inexpensive microcontrollers and standard voltage–current 

measurements, making the cost negligible in both rural and industrial applications. 

OPEX is also minimal since tuning can be handled locally without retraining or 

software updates. In rural microgrids, this method provides cost-effective scalability 

and modest energy gains, making it attractive for low-income, low-infrastructure 

settings. In industrial systems, it enhances bus voltage regulation and system stability 

at scale, though its limited capability under complex shading reduces efficiency 

compared to ANN-based approaches. 



65 

 

 

3.7 CONCLUDING REMARKS 

In this chapter a modified MPPT control technique, which includes Incremental 

conductance (INC) algorithm with double closed loop controller technique for hybrid 

standalone microgrid to regulate the DC bus voltage and to track the maximum power 

from solar PV under different atmospheric conditions has been developed. The 

effectiveness of the proposed modified MPPT technique in both steady state and 

transient conditions is demonstrated by the simulation results. EN50530 MPPT test is 

also carried out to test the efficacy of proposed MPPT control strategy. The point of 

common coupling voltage (Vpcc) has been found to be sinusoidal and balanced. The 

result shown that the proposed modified MPPT control strategy works well under 

linear/nonlinear and balanced unbalanced load. The voltage across DC bus has been 

maintained constant under different irradiation and variable load condition. Also, the 

continuous power to the load has been supplied by solar PV system and by battery 

energy storage system as per load requirement. To illustrate the superiority of the 

proposed MPPT technique, the proposed technique’s results are compared with P&O, 

INC, PSO and CSO based MPPT control techniques. The proposed control techniques 

give better control of DC bus voltage in terms of undershoot, overshoot oscillation and 

settling time. 

Furthermore, this chapter also examines inverter control techniques, with a particular 

emphasis on Droop Control and Model Predictive Control (MPC). A comparative 

assessment reveals that the MPC approach demonstrates superior dynamic 

performance, outperforming conventional control methods under various operating 

conditions. 
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CHAPTER-4 

 MPPT CONTROL TECHNIQUES FOR GRID INTEGRATED 

SOLAR PV BASED MICROGRID 

4. 1 INTRODUCTION 

In the previous chapter, the focus was on Maximum Power Point Tracking (MPPT) 

and inverter control strategies for standalone solar PV systems. These systems work 

independently of the grid, making them ideal for remote regions without access to 

traditional power networks. The control algorithms mentioned intended to maximize 

power output from the PV array while efficiently managing load changes via inverter 

regulation. 

However, with the increasing energy demand, the growing penetration of renewable 

energy sources (RES), and the drive for sustainable energy solutions, grid-integrated 

solar PV systems are becoming more prevalent.  

MPPT algorithms are essential for extracting maximum PV power under variable 

weather conditions, while advanced inverter control ensures efficient grid 

synchronization, voltage regulation, and power quality. 

PV modules behave nonlinearly in unpredictable weather conditions, and the 

effectiveness of many control strategies under such conditions especially conventional 

ones—decreases significantly. It is essential to maximize the use of PV power in the 

system. 

This chapter proposed a novel HLO-ANN (Horned Lizard optimized artificial neural 

network) MPPT technique for grid-integrated solar photovoltaic systems. Proposed 

algorithm ensure that grid integrated PV systems work best at the maximum power 

point regardless of weather conditions. The effectiveness of the proposed HLO-ANN 

has been validated through simulation and compared against other ANN-optimized 

MPPT techniques. Furthermore, Synchronous Reference Frame Theory (SRFT) has 

been employed for inverter control to ensure accurate current extraction and maintain 

voltage stability under dynamic conditions. 

 

4. 2 MPPT TECHNIQUES FOR GRID INTEGRATED SOLAR PV SYSTEM 

This chapter provides a thorough examination of Maximum Power Point Tracking 

(MPPT) strategies, with an emphasis on three major approaches: optimization-based 

MPPT, artificial neural network (ANN)-based MPPT, and a novel developed MPPT 

technique. The novel technology, known as the Horned Lizard ANN-based MPPT, 

combines the benefits of both ANN and optimization methodologies. Traditional 

MPPT algorithms frequently encounter difficulties such as sluggish convergence, 

exposure to local optima, and poor tracking efficiency in rapidly changing 

environmental conditions. The suggested method improves tracking accuracy, 

dynamic response, and overall performance by combining ANN learning capabilities 
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and optimization techniques' search efficiency. This hybrid technique maximizes 

electricity extraction from the solar PV system while maintaining grid stability and 

reliability. With greater versatility and resilience than traditional approaches, the 

Horned Lizard ANN-based MPPT methodology has been developed specifically for 

grid-integrated solar PV systems. Several MPPT techniques are taken into 

consideration for the investigations: 

a) Artificial Neural Network (ANN) MPPT  

b) Particle Swarm Optimization (PSO)-ANN MPPT 

c) Artificial Bee Colony (ABC)-ANN MPPT 

d) Harmony Search (HS) -ANN MPPT 

e) Teacher Learning Based Optimization (TLBO) -ANN MPPT 

f) Dwarf Mongoose Optimizer (DMO) -ANN MPPT 

g) Proposed novel Horned Lizard Optimization (HLO) -ANN MPPT 

 

4.2.1 Artificial Neural Network (ANN) based MPPT control technique 

The artificial neural network (ANN) is a replication of the biological neural network, 

which links various parameters to certain data points. ANN models can incorporate 

multiple parameters without the requirement of complex mathematical equations. 

ANN requires less theoretical work than conventional methods for relating several 

parameters with large amounts of uncertain data points. ANNs are trained using 

imported data through supervised learning or training. ANNs, like the human brain, 

are made up of several neurons. These neurons are linked by a fractional number called 

weight [133-134].  

ANN topologies are categorized into two types: feedforward and feedback networks. 

The feedforward is extensively used since it requires less memory during 

implementation.  It is particularly effective for non-linear systems like solar PV arrays. 

Fig.3 illustrates the internal structure of the feed forward artificial neural network 

(ANN), which consists of an input layer, hidden layer, output layer, weights, and bias. 

Furthermore, each layer's neurons are linked together via bias terms in the antecedent 

layers and the weights of the other neurons. Equation (4.1) defines the ANN model 

using weights and biases. 

𝑦 = ∑ 𝜔𝑖𝑗𝑥𝑗 + 𝑏𝑗
𝑛
𝑖=1                                                                                                   (4.1) 

where n represents the overall number of inputs, 𝑥𝑗 represents the input training node, 

𝜔𝑖𝑗 is the equivalent input layer weights, and 𝑏𝑗 is the bias related to the hidden layer. 

To further understand the feed-forward neural network methodology, the complex 

gradient method is utilized to update the weights and biases to get the desired 

outcomes. To obtain the desired outcome, there should be minimal variation between 

actual and output values. The mean square error (MSE) is selected as a cost function, 

expressed as equation (4.2): 
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𝑀𝑆𝐸 =
1

𝑛
∑ ∑ (𝑌𝑗(𝑖) − 𝑇𝑗(𝑖))

2𝑚
𝑗=1

𝑛
𝑖=1                                                                           (4.2) 

Where, n represents the input data, m represents the output signals, 𝑌𝑗(𝑖)represents the 

true output, and 𝑇𝑗(𝑖) represents the desired output. 

The block diagram of internal structure of ANN MPPT implementation is shown in 

Fig 4.1. Any Artificial Intelligence (AI) technique, in general, uses a dataset to train 

the model, identify patterns in the data, and generate desired results.  

Three months' worth of temperature and sun irradiance data, were added to the ANN 

MATLAB code, and this ANN feedforward model was trained to produce the voltage 

(𝑉𝑟𝑒𝑓). In order to create the duty cycle for the DC-DC boost converter, the PI 

controller assisted in settling the error difference between the generated voltage (𝑉𝑟𝑒𝑓) 

and PV voltage prior to applying the signal to the PWM converter. 

 

Fig.4.1 Block diagram of internal structure of ANN based MPPT algorithm 

 

 4.2.2 Optimized ANN based MPPT control techniques 

The Optimized ANN MPPT Controller is an intelligent and adaptive control system 

that maximizes the power output of solar photovoltaic (PV) systems by precisely 

tracking the Maximum Power Point (MPP). This controller combines the predictive 

power of an Artificial Neural Network with the efficiency of an optimization 

algorithm, resulting in higher tracking accuracy and faster convergence in dynamic 

environments. The best reference voltage corresponding to the MPP is predicted by an 

ANN model trained on historical or real-time solar statistics, including irradiance and 

temperature parameters. The optimization algorithm is implemented into the system 

to fine-tune the ANN model's weights and biases. This weight optimization reduces 

the discrepancy between projected and actual MPP voltages, improving the controller's 

accuracy and dependability [135]. 

During operation, the controller continually monitors real-time PV parameters and 

dynamically adjusts the operating point to keep the system at or close to the MPP, even 
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when irradiance, temperature vary rapidly. The optimized ANN MPPT controller 

outperforms conventional MPPT techniques (e.g., P&O or Incremental Conductance) 

in terms of response time, oscillation reduction, and efficiency. 

This controller greatly improves the performance of solar PV systems by combining 

the characteristics of both ANN and optimization methods, making it perfect for 

applications that require high precision, adaptability, and real-time responsiveness. 

 

Steps involved in optimized ANN Algorithm: 

The Optimized ANN Algorithm is a hybrid optimization approach that uses an 

Artificial Neural Network (ANN) and an optimization technique to improve network 

performance. This procedure has two major steps: Choosing the optimal ANN 

topology (number of neurons in the hidden layer) and optimizing the initial weights of 

the ANN model. 

Step 1: Choose the best ANN topology. 

The topology of an artificial neural network relates to the network's structure, 

including the number of neurons in the hidden layers. Instead of manually determining 

the number of neurons (which may result in unsatisfactory performance), an iterative 

optimization approach is utilized to find the best configuration. 

Step 2: Optimizing the Initial Weights of the ANN Model. 

Optimizing the initial weight values of an artificial neural network (ANN) is crucial 

for improving the learning process by enabling faster convergence and higher 

accuracy. The process begins with the random initialization of weights to prevent 

symmetry issues. The ANN is then trained using these initial weights, and the first 

Mean Squared Error (MSE) is measured to evaluate performance. To enhance training 

efficiency, optimization techniques such as PSO, ABC, HS, TLBO, DMO and HLO 

methods are employed to search for weight combinations that minimize the training 

error. The optimized initial weights, which result in a lower MSE, are then used to 

configure the ANN model in MATLAB, replacing the default weight initialization in 

the "nntool" interface. By using these optimized weights, the ANN achieves faster 

convergence, lower MSE, and requires fewer training epochs compared to traditional 

training methods, ultimately improving the network’s overall performance. 

 

4.2.2.1 Particle Swarm Optimization (PSO)- ANN MPPT control techniques 

Kennedy and Eberhart's 1995 [136] presentation introduced the PSO method, a 

multivariable function optimization technique with many local optimal points. The 

PSO algorithm was based on observations of natural social behaviour, such as bird 

flocking and fish schooling. The PSO stands out from other global optimization 

approaches due to its ease of implementation and rapid convergence. Researchers are 

increasingly exploring the usage of PSO in PV systems alongside MPPT. 
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PSO used the flocking analogy to depict cooperative "birds," or particles, acting 

together in a "flock," also known as a swarm. Each particle in the swarm has a fitness 

value mapped by an objective function and an individual velocity. This value 

determines the direction and distance of travel. Particles communicate information 

received from their separate search processes. A particle's position is determined by 

two variables: the best solution found by the particle (𝑃𝑏𝑒𝑠𝑡), which is saved for 

individual use, and the best particle in the neighbourhood (𝑔𝑏𝑒𝑠𝑡), which is stored for 

the swarm. The particle swarm adjusts its direction and velocity to achieve optimal 

positioning. Each particle eventually moves to an ideal position or near a global 

optimum. Equations (4.3) and (4.4) represent the PSO velocity and position update 

rules respectively [137] 

𝑣𝑖(𝑘 + 1) = 𝑤𝑣𝑖(𝑘) + 𝑐1𝑟1. (𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)) + 𝑐2𝑟2. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘))              (4.3) 

 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)                                                                         (4.4) 

𝑖 = 1,2, ……𝑁 

In the equation, 𝑥𝑖and 𝑣𝑖represent particle i's velocity and position, k is the iteration 

number, w is the inertia weight, 𝑟1 and 𝑟2 are uniformly distributed random variables, 

and 𝑐1 and 𝑐2 are the cognitive and social coefficients, respectively. The individual 

best location of particle i is denoted by 𝑃𝑏𝑒𝑠𝑡,𝑖while the best position of the entire 

swarm is represented by 𝑔𝑏𝑒𝑠𝑡,𝑖. 

 

4.2.2.2 Artificial Bee Colony (ABC)- ANN MPPT control techniques 

The artificial bee colony algorithm is a swarm-based meta-heuristic approach for 

solving multidimensional and multimodal optimization issues. The ABC method 

classifies artificial bees into three groups: employed, onlooker, and scouts’ bees. An 

employed bee is one that is actively seeking or exploiting food sources. The term 

"onlooker" refers to a bee waiting in the hive to find a food source. Employed bees 

who cannot enhance their food sources after a set number of attempts become scouts 

and abandon their food sources. The quantity of food sources equals the number of 

employed and onlooker bees. In optimization, a food source's position represents a 

potential solution, while its nectar amount indicates the quality (fitness) of the solution 

[138]. 

During initialization, the ABC generates a randomly dispersed population of SN 

solutions. The equation below produces each solution within its limits: 

𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑[0,1](𝑥𝑚𝑎𝑛

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
) 𝑖 = 1,2, … , 𝑗 = 1,2, … , 𝐷                        (4.5)  

In this equation, x j min and x j max indicate the minimum and maximum of the 

parameter j, and D is the number of optimization parameters. After initialization, the 

population of solutions undergoes C = 1, 2, (maximum cycle number) MCN cycles of 

employed, onlooker, and scout bees' search operations. 
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In each cycle, each employed bee generates a new solution (𝑣𝑖𝑗) and evaluates its 

fitness (𝑓𝑖𝑡𝑖) using equation (4.6). 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)                                                                                     (4.6) 

where k ∈ {1, 2..., SN} and j ∈ {1, 2..., D} are randomly selected indexes. Although k 

cannot be the same as 𝑖, 𝜑𝑖𝑗  is a random number between -1 and 1. Following the 

information sharing by the employed bees, The onlooker uses equation (4.7) to 

discover a new solution 𝑣𝑖𝑗 near 𝑥𝑖, depending on the probability 𝑃𝑖 

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

                                                                                                             (4.7) 

where 𝑓𝑖𝑡𝑖 represents the fitness value of solution 𝑥𝑖 

If a candidate solution 𝑣𝑖𝑗  falls beyond the allotted search space, it is adjusted to fit.  

The suitability of each new candidate solution 𝑣𝑖𝑗 is compared to that of itspredecessor. 

If the new answer has equal or higher fitness than the previous one, it takes its position 

in the memory. Otherwise, the previous one remains in memory. A greedy selection 

technique is used to choose between the old and candidate models. After each search 

cycle, if a solution's fitness cannot be improved and the "limit" number of trials is 

reached, the scout bee abandons the solution and searches for a new one randomly. 

Equation (4.6) will give the new answer, 𝑥𝑖. 

 

4.2.2.3 Harmony Search (HS) ANN MPPT control techniques 

The Harmony Search (HS) algorithm is an evolutionary algorithm inspired by the 

music harmony improvisation process. It involves five main steps. First, the algorithm 

initializes its parameters, including HMCR (Harmony Memory Considering Rate), 

BW (Bandwidth), PAR (Pitch Adjustment Rate), the number of iterations (NI), and 

the harmony memory size (HMS). The optimization goal is defined to either maximize 

or minimize the objective function 𝑓(𝑥𝑖) where 𝑥𝑖 represents potential solutions [139]. 

Next, the harmony memory (HM) is populated with candidate solutions within the 

upper and lower boundaries using the equation (4.8): 

𝑥𝑖 = 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 + 𝑅1 ∗ (𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 − 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑)                                     (4.8) 

 Where  𝑅1 is a random number between 0 and 1. 

In the improvisation step, new harmony vectors are generated by combining HMCR, 

PAR, and BW. Two random values 𝑎 and 𝑏 (between 0 and 1) are used. If 𝑎 > 𝐻𝑀𝐶𝑅 

a new value is generated using the initialization formula. If, 𝑎 < 𝐻𝑀𝐶𝑅,a value from 

the HM is selected. If 𝑏 < 𝑃𝐴𝑅, the value is adjusted using equation (4.9): 

𝑥𝑗
′ = 𝑥𝑛𝑒𝑤,𝑗 ± 𝐵𝑊 × 𝑟𝑎𝑛𝑑                                                                                      (4.9) 

The memory is updated by comparing the newly generated vector with the worst vector 

in HM. If the new vector is better, it replaces the worst one. 

Finally, the algorithm checks the stopping criteria, such as the maximum number of 

iterations. Once the criteria are met, the search process ends, and the best solution in 
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the harmony memory is selected. 

 

4.2.2.4 Teacher Learning Based Optimization (TLBO) ANN MPPT control 

techniques 

This algorithm comprises two phases: teacher and student. The TLBO algorithm offers 

advantages such as no need for control variable adjustments, rapid speed, and greater 

convergence to the global optimum. The TLBO algorithm excels in identifying the 

GMPP in all conditions, making it a top choice for the aforementioned aims. The 

following sections describe the two phases [140]. 

1) Teacher-phase 

A teacher is a subject-matter expert who trains students. According to the TLBO 

algorithm, the instructor is the optimal answer among the population. During the 

teacher-phase, students choose a situation similar to the teachers. If the as 𝑖𝑡ℎ student's 

new position is shown as 𝑥𝑖
(𝑘+1)

 and their existing position is shown as 𝑥𝑖
(𝑘)

, equation 

(4.10) may be used to connect the two situations:  

𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)
+ ∆𝑥𝑖                                                                                                (4.10) 

∆𝑥𝑖 represents the student's progression or regression. In the teacher phase, students 

want to align with the teacher's perspective, hence the sentence ∆𝑥𝑖  should be changed 

accordingly. So, we have:  

∆𝑥𝑖 = 𝑟𝑖(𝑇𝐴 − 𝐹 ∗ 𝑀𝐴)                                                                                   (4.11) 

The term 𝑇𝐴 refers to the teacher's optimal solution to a given situation. The term MA 

refers to the student's average position. (2) indicates that students approach their 

teacher's stance more closely. Furthermore, 𝑟𝑖 is a random parameter ranging from 0 

to 1. The expression F, often called the teaching coefficient, is defined as equation 

(4.12): 

𝐹 = 𝑟𝑜𝑢𝑛𝑑(1 + 𝑟𝑎𝑛𝑑) ↔ 𝐹 = 1 𝑜𝑟 2                                                                 (4.12) 

Position (𝑘 + 1) is acceptable if its objective function outperforms that of position 

(𝑘). The output of this phase is used as input for the student phase. 

2) Student-phase 

The student-phase is a reaction amongst students. In other words, the first student 

evaluates their situation in comparison to other students. If one student's state is better 

than another, the update will be based on the first student's state. Otherwise, the update 

is based on another student's status. That means  

   

𝑥𝑖
(𝑘+1) = 𝑥𝑖

(𝑘) + 𝑟𝑖(𝑥𝑖
(𝑘) − 𝑥𝑗

(𝑘))

∀𝐹𝑖𝑡(𝑥𝑖
(𝑘)) > 𝐹𝑖𝑡(𝑥𝑗

(𝑘))  
 

}                                                                        (4.13) 
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𝑥𝑖
(𝑘+1) = 𝑥𝑖

(𝑘) + 𝑟𝑖(𝑥𝑗
(𝑘) − 𝑥𝑖

(𝑘))    

∀𝐹𝑖𝑡(𝑥𝑗
(𝑘)) > 𝐹𝑖𝑡(𝑥𝑖

(𝑘))  
}                                                                      (4.14) 

         Fit is the fitness function that determines the best and worst scenarios. To be 

acceptable, the new position (𝑘 + 1) must have a better fit function (objective 

function) than the previous position (𝑘).` 

4.2.2.5 Dwarf Mongoose Optimizer (DMO)-ANN MPPT control techniques  

The dwarf mongoose optimizer (DMO) was developed by examining the foraging 

behaviour of dwarf mongooses. The presented meta-heuristic technique (DMO) 

generates the population of DM animal as equation (4.15) [141]: 

𝑋𝑚(0) =  𝑋𝑚𝑖𝑛.(1 − 𝑅) + 𝑅. 𝑋𝑚𝑎𝑥,   𝑚 = 1:𝑁𝐷𝑀                                               (4.15) 

where m is an integer as a counter, which is equivalent to 1, 2, 3, 4, 5, ………, 𝑁𝐷𝑀; 

𝑁𝐷𝑀 is the whole population of dwarf mongooses. In equation (4.15), the sign "." 

denotes the dot product, which is a fundamental method of combining two vectors, 

denoting the product of each element in the vector and its corresponding one in the 

other vector of the same dimension. 𝑋𝑚 provides the position of each DM (m), whereas 

𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 represent the lowest and highest boundaries. R is a randomized vector 

with dimension (D) proportional to the total number of control variables, and 𝑁𝐷𝑀 is 

the total size of the DM group. 

Next, during the initialization of the DM locations, the fitness rating (𝑭𝑺𝒎) of each 

solution (𝑿𝒎)) is calculated. The alpha female is chosen based on the likely fitness 

value (𝜶𝒎) of each group, as shown below: 

𝛼𝑚 =
𝐹𝑆𝑚

∑ 𝐹𝑆𝑚
𝑁𝐷𝑀
𝑚=1

                                                                                                       (4.16) 

𝛼𝑚 represents the probability value for each animal in the group 

In the alpha structure, the number of DMOs is proportional to the population size less 

the number of babysitters (Bs). The sign (peep) monitors the alpha's vocalizations, 

keeping the DMOs on track. Each DMO naps in the first sleeping space that has been 

assigned to them. To create the next position toward the expected food position, the 

DMO uses the calculation indicated in equation (4.17). 

𝑋𝑚(𝑇 + 1) =  𝑅 × 𝑝𝑒𝑒𝑝 + 𝑋𝑚(𝑇),   𝑚 = 1:𝑁𝐷𝑀 − 𝐵𝑠                                      (4.17) 

where Bs represents the total number of babysitters in the group and T denotes the 

current iteration.  

Instead of building a home for the juvenile dwarf mongooses, they are transported 

from one sitting mound to another. In addition to seeking for food, the alpha group 

looks for a different mound to visit after the childcare exchange need is met. To 

reproduce this, the average value of the seated mound is estimated for each iteration, 

and it may be represented as equation (4.18): 

𝑆𝑀𝑚 =
𝐹𝑆𝑚(𝑇+1)−𝐹𝑆𝑚(𝑇)

𝑚𝑎𝑥(|𝐹𝑆𝑚(𝑇)−𝐹𝑆𝑚(𝑇+1)|)
                                                                                (4.18) 
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Where 𝐹𝑆𝑚(𝑇)  represents the fitness score of the current solution (𝑋𝑚) at the current 

iteration (T), and 𝐹𝑆𝑚(𝑇 + 1)represents the fitness score of the updated solution (𝑋𝑚) 

at the subsequent iteration (T + 1).  

The observed sitting mound's mean value (ψ) is provided below 

𝜑𝑚 =
∑ 𝑆𝑀𝑚
𝑁𝐷𝑀𝐴
𝑚=1

𝑁𝐷𝑀𝐴
                                                                                                  (4.19) 

Based on the overall success of the DMOs, the next step represents a success or failure 

assessment while generating a new mound. To simulate the scout mongoose, use the 

equation (4.20): 

𝑋𝑚(𝑇 + 1) = {
𝑋𝑚(𝑇) + 𝐶𝐹 × 𝑅. (𝑀 − 𝑋𝑚(𝑇))     𝑖𝑓 𝜑𝑚+1 > 𝜑𝑚

 𝑋𝑚(𝑇) − 𝐶𝐹 × 𝑅. (𝑀 − 𝑋𝑚(𝑇))      𝑖𝑓 𝜑𝑚+1 < 𝜑𝑚
         

  
 𝑚 = 1:𝑁𝐷𝑀 

                                                                                                                           (4.20) 

where CF decreases steadily as iterations progress, as seen in equation (4.21), and M 

appears to be a vector that influences the DMOs' eventual sleeping area relocation, as 

determined in equation (4.22). The CF factor represents the value of the parameter that 

governs the DMO organization's collective volitive motion. 

𝐶𝐹 = (1 −
𝑇

𝑇𝑚𝑎𝑥
)
(
2×𝑇

𝑇𝑚𝑎𝑥
)

                                                                                              (4.21) 

 

𝑀 = ∑
𝑋𝑚×𝑆𝑀𝑛

𝑋𝑚

𝑁𝐷𝑀𝐴
𝑚=1                                                                                                   (4.22) 

𝑇𝑚𝑎𝑥denotes the maximum number of iterations.  

To improve searching skills, the alpha-directed knowledge-acquisition technique is 

used with the formula outlined in equation (4.17) to provide a likely food location: 

𝑋𝑚(𝑇 + 1) = 

{
𝑋𝐴𝑙𝑝ℎ𝑎(𝑇) + 𝑅. (𝑋𝑚(𝑇) − 𝑋𝑚(𝑇) − 𝑋𝑅𝑑(𝑇))      𝑖𝑓 𝑟1 < 𝑃𝑆𝐹

𝑋𝑚(𝑇) + 𝑅 × 𝑝𝑒𝑒𝑝                              𝑒𝑙𝑠𝑒   𝑚 = 1:𝑁𝐷𝑀 − 𝐵𝑠           
                    (4.23) 

where 𝑋𝑚(𝑇 + 1) represents the modified answer 𝑋𝑚 at the following iteration 

(𝑇 + 1). 𝑋𝐴𝑙𝑝ℎ𝑎(𝑇) represents the alpha location with the smallest goal worth; R is a 

randomized vector of dimension (D); 𝑋𝑚(𝑇) provides the current solution 𝑋𝑚 at the 

current iteration (𝑇); 𝑋𝑅𝑑refers to the position of a randomly chosen DMA; 𝑟1 is a 

randomly produced value within the range [0, 1]; and PSF indicates the probability of 

the selection factor. 

 

4.2.2.6 Novel Horned Lizard Optimization (HLO) ANN MPPT control 

techniques 

HLOA is a novel metaheuristic optimization algorithm influenced by the protective 

behaviour of the horned lizard. The four tactics for defence are crypsis skin 

lightening/darkening, bloodstream spitting, and movement-to-escape. They offer an 
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appropriate balance of exploration and exploitation throughout the solution search 

region. Considering the advantages of the HLO algorithm, it has been combined with 

the ANN MPPT approach [142]. 

After the establishment of the ANN network topology, an HLO-based ANN approach 

is developed to determine the optimal initial weights of the ANN model. These are 

determined to enhance the model's output prediction as the presumed initial weight 

values are corrected. This proposed approach produces optimal beginning weights. 

The ideal initial weights are utilized to train the ANN model with MATLAB's ''nntool'' 

program. The optimized initial weights are then substituted with the conventional 

training weights in area containing the beginning weights of the ''nntool'' box.  

As a result, the performance of the ANN model based on the improved training 

approach utilizing real data outperforms conventional ANN. A significant benefit of 

utilizing HLO-trained neural network technology in MPPT-based solar photovoltaic 

(PV) systems is that it has the capability to detect the maximum power point of the PV 

system in a more fast and accurate manner, while requiring less computing effort than 

conventional methods. This makes it a feasible option for improving the performance 

of PV systems. The Irradiation (G) and Temperature (T) of the weather are the inputs 

of the ANN approach, which yields the maximum power measurement of the solar 

array erected at the MPP. Fig.4.2 is a flow diagram illustrating the steps involved in 

combining the Horned Lizard optimization algorithm with the ANN feedforward 

model in order to obtain HLO-ANN MPPT. 

 

          Fig.4.2 Block diagram of HLO-ANN MPPT Technique 

 

Horned Lizard Optimization Technique 

The scientific name for the horned lizard is Phrynosoma. This reptile is native to 

northern Mexico and the south-central regions of the United States. They are suited to 

harsh climates that are semi-arid or desert. All reptiles, including horned lizards, rely 

on thermoregulation to stay warm because they cannot create body heat in response to 

changing temperatures. The horned lizard can brighten or darken its skin to control 

solar thermal gain. Thus, at high temperatures, the skin lightens, while at low 

temperatures, it darkens. Dark skin absorbs and transforms all wavelengths of light to 

heat. Temperature impacts the alpha-melanophore stimulating hormone, causing 
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horned lizards' skin to change colour quickly. Grasshoppers, beetles, spiders, ticks, 

butterflies are few of the species that horned lizards consume. Their principal passive 

mode of defence is crypsis. This strategy involves the ability to assimilate into its 

surroundings via colour, pattern, and shape. Horned Lizards change colour to fit the 

ground and have spines that cover their body outlines, making them difficult to 

identify. Moving to escape is another passive defensive strategy. As a defensive 

mechanism, this lizard ejects a burst of blood that extends over a meter when 

threatened. In this work, each of the stated lizard defence actions is mathematically 

modelled as part of the optimization process. 

Approach 1: Crypsis Behaviour 

Crypsis allows organisms to blend in with their surroundings by copying colour, 

texture, or even becoming translucent, which makes it more challenging for prey or 

predators to identify them. (refer Fig 4.4). It is an adaptive behaviour which assists 

organisms, hence enhancing their chances of survival in the wild. The crypsis approach 

is expressed mathematically using colour theory. The International Commission on 

Illumination (CIE) categorized sources of light based on their emitted energy across 

the visible spectrum (400-700 nm) for various wavelength. The organization 

developed a colour assessment system, such as  𝐿  𝛼∗ 𝛽∗ for Cartesian and   𝐿 𝑐∗ ℎ for 

polar coordinates, to determine colours in a colour space. In the 𝐿 𝛼∗ 𝛽∗ system, L 

represents brightness, whereas 𝛼∗ and 𝛽∗ represent chromatic coordinates, as seen 

below. 

𝛼∗ = {
+𝛼, 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑟𝑒𝑑 

−𝛼,     𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑔𝑟𝑒𝑒𝑛
                                                                               (4.24) 

𝛽∗ = {
+𝛽, 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑦𝑒𝑙𝑙𝑜𝑤
−𝛽,           𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑏𝑙𝑢𝑒

                                                                           (4.25) 

The 𝐿 𝑐∗ ℎ system specifies brightness, intensity of colour, and hue angle. Hue 

describes the color family (red, yellow, green, and blue) and all colors in between by 

moving in a circle around the "equator". The hue circle numbers run from 0 to 3600, 

beginning with red at 00 and progressing counter clockwise via yellow, green, blue, 

and back to red. The L-axis indicates the colour’s luminous intensity. Colours can be 

classified as light or dark by comparing their value. Fig.4.3 illustrate examples of both 

colour systems. 

 Rectangular coordinates are converted to polar coordinates using equation.4.26  

𝑐∗ = √(𝛼∗2 + 𝛽∗2)                                                                                                   (4.26) 

ℎ = 𝑎𝑟𝑐𝑇𝑔 (
𝛽∗

𝛼∗
)                                                                                                        (4.27)  

The values of c* and h stand for hue and chroma, respectively. Hue angle, or h, has a 

value between 0 and 360 degrees and is given in degrees. The following are the inverse 

formulas: 

𝛼∗ = 𝑐∗ cos(ℎ)                                                                                                         (4.28) 
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𝛽∗ = 𝑐∗ sin(ℎ)                                                                                                         (4.29) 

 

Fig.4.3 Representation of colour space for CIE, 𝐿 𝛼∗ 𝛽∗  and   𝐿 𝑐∗ ℎ 

 

Fig.4.4 Crypsis behavior of Horned Lizard. 

Let (𝛼𝑞
∗ , 𝛽𝑝

∗) and (𝛼𝑟
∗, 𝛽𝑠

∗) be any two colours in an ordered pair, with p ≠ q ≠ r ≠ s, 

without losing generality. So, using the arithmetic procedures listed in equations (4.30) 

and (4.31) , any two new colours, such as colourvar1 and colourvar2, can be created.  

𝑐𝑜𝑙𝑜𝑢𝑟𝑣𝑎𝑟1 = 𝛽𝑝
∗ − 𝛼𝑞

∗ − 𝛼𝑟
∗ + 𝛽𝑠

∗                                                                       (4.30) 

𝑐𝑜𝑙𝑜𝑢𝑟𝑣𝑎𝑟2 = 𝛽𝑝
∗ − 𝛼𝑞

∗ + 𝛼𝑟
∗ − 𝛽𝑠

∗                                                                         (4.31) 

These colours can be expressed with a single equation, as illustrated in equation (4.32). 

𝑐𝑜𝑙𝑜𝑢𝑟𝑣𝑎𝑟 = 𝛽𝑝
∗ − 𝛼𝑞

∗ ± [𝛼𝑟
∗ − 𝛽𝑠

∗ ]                                                                       (4.32) 

 The inverse form of equation(4.32) is as follows: 

𝑐𝑜𝑙𝑜𝑢𝑟𝑣𝑎𝑟 = 𝑐1 sin(ℎ𝑝) − 𝑐1 cos(ℎ𝑞) ± [𝑐2 cos(ℎ𝑟) − 𝑐2𝑠𝑖𝑛(ℎ𝑠)]                   (4.33) 

Where angles intersect at ℎ𝑝 ≠ ℎ𝑞 ≠ ℎ𝑟 ≠ ℎ𝑠, and chroma  𝑐1≠ 𝑐2. The equation below 

represents the arithmetic operation of chromatic coordinates. 

𝑥𝑖⃗⃗  ⃗ (𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) + (𝛿 −
𝛿.𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
) [𝑐1(sin (𝑥𝑟1⃗⃗ ⃗⃗  ⃗(𝑡)) − cos (𝑥𝑟2⃗⃗ ⃗⃗  ⃗(𝑡))) −

(−1)𝛿𝑐2(cos (𝑥𝑟3⃗⃗ ⃗⃗  ⃗(𝑡)) − sin (𝑥𝑟4⃗⃗ ⃗⃗  ⃗(𝑡))]                                                                 (4.34) 

Where, 𝑥𝑖⃗⃗  ⃗ (𝑡 + 1)  indicate the new search agent location in the solution search region 

for iteration t + 1, 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡)is the finest search agent for iteration t, 𝑟1, 𝑟2, 𝑟3 𝑎𝑛𝑑 𝑟4 ,are 

integer random numbers created between 1 and the maximum number of search agents, 

with 𝑟1, ≠ 𝑟2, ≠ 𝑟3, ≠ 𝑟4, 𝑥𝑟1⃗⃗ ⃗⃗  ⃗, 𝑥𝑟2⃗⃗ ⃗⃗  ⃗, 𝑥𝑟3⃗⃗ ⃗⃗  ⃗ and 𝑥𝑟4⃗⃗ ⃗⃗  ⃗ represent the 𝑟1, 𝑟2, 𝑟3 𝑎𝑛𝑑 𝑟4search agents 

selected, and Max_iter represents the  maximum number of iteration. 𝛿 is a binary 

value, which is set to 2 [27]. Random integers 𝑐1 and 𝑐2 are chosen with 𝑐1 ≠𝑐2. 

Algorithm.1 𝛿 procedure 
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1: Start procedure 

2: if  𝑟𝑎𝑛𝑑 () ≤
1

2
  then 

3:      return 0 

4: else  

5:      return 1 

6: end if 

7: End procedure 

  

Approach 2: Skin lightening or darkening 

The skin of the horned lizard can be tinted lighter or darker, depending on whether it 

wants to reduce or boost the amount of solar thermal gain it receives. Thermal energy 

adheres to the same conservation principles as light energy. Equation (4.35) illustrates 

the lightening-skin approach. Equation (4.36) represents the darkening skin approach. 

𝑥𝑤𝑜𝑟𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (𝑡) = 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) +
1

2
𝐿𝑖𝑔ℎ𝑡1𝑠𝑖𝑛 (𝑥𝑟1⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑥𝑟2⃗⃗ ⃗⃗  ⃗(𝑡)) −

(−1)𝛿
1

2
𝐿𝑖𝑔ℎ𝑡2𝑠𝑖𝑛 (𝑥𝑟3⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑥𝑟4⃗⃗ ⃗⃗  ⃗(𝑡))                                                                   (4.35) 

𝑥𝑤𝑜𝑟𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (𝑡) = 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) +
1

2
𝐷𝑎𝑟𝑘1𝑠𝑖𝑛 (𝑥𝑟1⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑥𝑟2⃗⃗ ⃗⃗  ⃗(𝑡)) −

(−1)𝛿
1

2
𝐷𝑎𝑟𝑘2𝑠𝑖𝑛 (𝑥𝑟3⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑥𝑟4⃗⃗ ⃗⃗  ⃗(𝑡))                                                                    (4.36) 

𝑥𝑤𝑜𝑟𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (𝑡) 𝑎𝑛𝑑 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) represent the worst and best search agents discovered, 

respectively. 𝐿𝑖𝑔ℎ𝑡1 and 𝐿𝑖𝑔ℎ𝑡2 are random numbers generated between Lightening1 

(0 value) and Lightening2 (0.4046661 value). Similarly, 𝐷𝑎𝑟𝑘1 and 𝐷𝑎𝑟𝑘2 are random 

numbers generated between Darkening1 (0.5440510) and Darkening2 (1) using 

normalized Table 1 data. 

The skin-darkening or skin-lightening technique results in the replacement of the worst 

search agent from the previous iteration. 

Table.4.1 Colour palette designed for skin lightening or darkening. 
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Fig.4.5 Horned lizard shooting blood 

Algorithm.2 Skin lightening or darkening procedure 

1: Generate 𝐿𝑖𝑔ℎ𝑡1 and 𝐿𝑖𝑔ℎ𝑡2 randomly from Table 4.1 

2: Generate 𝐷𝑎𝑟𝑘1and 𝐷𝑎𝑟𝑘2 randomly from Table 4.1 

3: Generate  𝑟1, 𝑟2, 𝑟3 𝑎𝑛𝑑 𝑟4 integer value randomly between [1, 

size maximum search agents], where  𝑟1, ≠ 𝑟2, ≠ 𝑟3, ≠ 𝑟4 

4:   if  𝛿 then  

5:        Apply lightening skin. Evaluate equation (4.35) 

6: else  

7:       Apply darkening skin. Evaluate equation (4.36) 

8: end if  

9: End procedure 

 

 

Approach 3: Blood Squirting 

The Horned Lizard attracts enemies by shooting blood from its eyes. Fig.4.5 depicts 

the shooting blood defence mechanism as a projectile motion. In order to determine 

projectile motion equations, we divide it into two components: horizontal (X-axis) and 

vertical (Y-axis). [27]: 

The shot of blood travels uniformly in the horizontal direction, so it's equation of 

motion is expressed by: 

𝑣 = 𝑣0⃗⃗⃗⃗ + ∫ 𝑔 𝑑𝑡 = 𝑣0⃗⃗⃗⃗ +
𝑡

0
𝑔 𝑡                                                                                    (4.37) 

In a vertical direction shot of blood defines a uniformly accelerated rectilinear motion, 

as shown below. 

𝑟 = 𝑟0⃗⃗  ⃗ + ∫ (𝑣0⃗⃗⃗⃗ + 𝑔 𝑡)𝑑𝑡    =    𝑟0⃗⃗  ⃗ + 𝑣0⃗⃗⃗⃗ 𝑡 +
𝑡

0

1

2
𝑔 𝑡2                       𝑤ℎ𝑒𝑟𝑒,    𝑟0⃗⃗  ⃗ = 0⃗     (4.38) 

Equations 4.39 and 4.40 represent the vector equations, position and velocity 
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respectively. 

𝑣0⃗⃗⃗⃗ = 𝑣0 cos(𝛾) 𝑡𝑗 + ((𝑣0 sin(𝛾))𝑡 −
1

2
𝑔𝑡2) 𝑘⃗                                                         (4.39) 

𝑣 = 𝑟 = (𝑣0 cos(𝛾) 𝑗 + (𝑣0 sin(𝛾)) − 𝑔)𝑘⃗                                                             (4.40) 

we can express the trajectory as follows: 

  𝑥𝑖⃗⃗  ⃗ (𝑡 + 1) = [𝑣0 cos (𝛾
𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
) + 𝜀] 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) + [𝑣0 sin (𝛾 −

𝛾𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
) − 𝑔 +

𝜀] 𝑥𝑖⃗⃗  ⃗ (𝑡)                                                                                                                   (4.41) 

Where, 𝑣0 = 1, 𝛾 =
𝜋

2
, 𝜀 = 1𝑒−6 and 𝑔 = 9.8 𝑚/𝑠2[27]. 

 

Approach 4: Move to escape 

The horned lizard uses a random quick movement tactic to avoid predators. A function 

that comprises a local and global movement has been presented for the mathematical 

modelling of this prevention technique; it is defined in expression (4.42) and 

represented in Fig.4.6. In this expression, walk (
1

2
− 𝜀) 𝑥𝑖⃗⃗  ⃗ (𝑡)  is a local movement 

around 𝑥𝑖⃗⃗  ⃗ (𝑡), whereas adding 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) results in a displacement throughout the 

solution search space. 

𝑥𝑖⃗⃗  ⃗ (𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) + 𝑤𝑎𝑙𝑘 (
1

2
− 𝜀)𝑥𝑖⃗⃗  ⃗ (𝑡)                                                           (4.42)                                                                                                     

Where, walk generates a random number between -1 and 1. 

 

Fig.4.6 Horned lizard escaping from predators 

Approach 5: Alpha-melanophore stimulating hormone rate 

Temperature affects alpha-melanophore stimulating hormone (alpha-MSH), causing 

rapid colour change on horned lizard skin. The alpha-melanophore rate value of horned 

lizards is defined in the equation (4.43). 

𝑚𝑒𝑙𝑎𝑛𝑜𝑝ℎ𝑜𝑟𝑒(𝑖) =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥−𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥−𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛
                                                                   (4.43) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛 and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥 are the finest and worst fitness values in the current 

iteration, and  𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)is the current fitness value of the i-th search agent. In 

equation (4.44)., a low alpha-MSH rate (< 0.3) takes the place of search agents. 
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𝑥𝑖⃗⃗  ⃗ (𝑡)=𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑡) +
1

2
[𝑥𝑟1⃗⃗ ⃗⃗  ⃗ (𝑡) − (−1)

𝛿𝑥𝑟2⃗⃗ ⃗⃗  ⃗ (𝑡)]                                                       (4.44) 

Where, 𝑟1 and 𝑟2 are random integers created from 1 to the maximum number of search 

agents. 

with, 𝑟1 ≠ 𝑟2 , 𝑥𝑟1⃗⃗ ⃗⃗  ⃗ and 𝑥𝑟2⃗⃗ ⃗⃗  ⃗ are the 𝑟1 and 𝑟2 𝑡ℎ search agent selected. 

Algorithm.3 Alpha-melanophore procedure 

1: Start procedure 

2: for i=1 to size population do 

3:    if melanophore(i)≤ 0.3 then 

4:           Approach 5: 𝑥𝑖⃗⃗  ⃗ search agent replaced in equation (4.44) 

5:   end if  

6: end for 

7: End procedure 

 

Algorithm.4 Pseudo-code of the Horned lizard Optimization procedure 

1. Initialization of parameters. Specify the number of search 

agents, population size, and maximum number of iterations 

2. Generate the initial population randomly. 

3.           while<maximum number of iterations do 

4.           if crypsis? then 

5.                  Approach 1: Crypsis. Compute equation (4.34) 

 6.    else 

7.         if flee? then 

8.                  Approach 4: Move to escape. Compute equation 

(4.42)  

9.      else 

10.                 Approach 3: Blood Squirting.  Compute equation 

(4.41) 

11.      end if 

12.  end if 

13.   Replace the worst search agents by skin darkening (compute 

equation(4.36)) or lightening (compute equation(4.35)). They are 

selected randomly 

14.  If Low alpha-melanophore rate? Then 

15.               Approach-5 Replace search agents with low alpha-

melanophore rate by applying equation-4.44 Algorithm 3. 

16.   end if 
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17.    Calculate 𝑥𝑛𝑒𝑤, the fitness value of the new search agents 

18.  If 𝑥𝑛𝑒𝑤 < 𝑥∗ then  

𝟏𝟗.     𝑥∗ = 𝑥𝑛𝑒𝑤 

20.    end if 

21.  Iteration=iteration+1 

22.   end while 

23.  Display 𝑥∗ the best optimal solution 

24. end 

 

4.3 RESULT EVALUATION AND DISCUSSION USING PROPOSED 

NOVEL HLO-ANN MPPT CONTROL TECHNIQUE 

The schematic diagram of the proposed grid integrated solar PV system is depicted in 

Fig. 4.7. The Solar PV has a capacity of 12.79 kW which generates DC output and is 

linked to a boost converter in order to generate regulated DC output. The boost 

converter serves as an interface between the inverter's DC-link capacitor and the solar 

PV array. Inverters convert regulated DC output into AC voltage while offering the 

advantages of harmonics reduction, reactive power compensation, etc. The inverter is 

coupled to PCC through interfacing inductors (𝐿𝑓) to compensate the current ripples. 

The linear/non-linear/balanced/unbalanced/ variable loads evaluated in the present 

research work are connected in series to the power grid of 415 V (line-to-line voltage), 

50 Hz via the line impedances. The present research work employs two control 

strategies: the proposed HLO-ANN MPPT control technique is implemented to extract 

the maximum power from the PV array, and the Synchronous reference frame (SRF) 

theory is employed for controlling the inverter. Parameters of the system are provided 

in Appendix. 

 

Fig.4.7 Schematic diagram of proposed grid integrated solar PV system. 
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In the present research work real time dataset for both temperature and irradiance has 

been downloaded from NASA's open-source website and NREL which provides 

historical atmospheric data for a certain area. A three-month dataset of northern part 

of India (Shahabad Daulatpur village Rohini Delhi), and southern part of India 

(Chikkaballapur, Karnataka) including sun temperature and irradiance have been 

utilized for this study. The hourly change in irradiance levels demonstrates that solar 

irradiance fluctuates from 0 W/m2to over 900 W/m2. Using an irradiance dataset for 

constructing the MPPT has the benefit of assisting in training the neural network 

(ANN) model in accordance with the real-time practical condition of changing 

irradiance levels across a 24-hour cycle.Fig.4.8 shows the scenarios considered for 

comparative analysis. 

 

Fig.4.8 Block diagram of scenarios considered during comparative analysis 

This section displays the MATLAB/Simulink results for the grid integrated solar PV 

system's performance assessment. Various input and output situations have been tested 

to determine the effectiveness of the control method. The performance is also tested in 

abnormal grid conditions. The photovoltaic (PV) system produces 12.79 kW power. 

A 3ϕ bridge rectifier with parameters R = 180 ohm and L = 120 mH is taken as a non-

linear load. The subsequent sections illustrate three phase waveforms representing the 

following: voltage at the point of common coupling (𝑉𝑝𝑐𝑐), grid voltage (𝑉𝑔), grid 

current (𝐼𝑔), load current (𝐼𝑙), inverter current (𝐼𝑖𝑛𝑣), DC bus voltage (𝑉𝐷𝐶), and the 

active and reactive power of the load and inverter grid, denoted as 𝑃𝑙, 𝑄𝑙, 𝑃𝑖𝑛𝑣, 𝑄𝑖𝑛𝑣, 

𝑃𝑔, 𝑄𝑔. 

 

4.3.1 Performance evaluation of the system under variable load and Standard 

Test Conditions (STC) 

In a steady state, the inverter contributes to maintaining the balanced and sinusoidal 

three phase grid current. Also, the inverter maintains grid current harmonic distortion 

within IEEE-519 standards and balances the flow of power. Figure 4.9 illustrates the 

current and power waveforms of the grid, load, and inverter under variable load 
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conditions and Standard Test Conditions (STC), i.e., solar irradiance of 1000 W/m² 

and cell temperature of 25°C.". 

In the steady-state condition initially a bridge rectifier with RL load (R = 180 Ω, 120 

mH) has been considered as a nonlinear load, Initially the nonlinear load (1.9kW) 

demand is fulfilled by the solar PV and excess power (10.64 kW) is sent to the grid. 

Since, the grid receives the excess power from the source, voltage and current are in 

phase opposition which can be seen from the waveform. 

At t= 0.15 s system's load has been increased to 16.32 kVA with 0.85 lagging power 

factor (14kW and 8.4 kVAR). At this instance, solar PV provides 12.54kW and deficit 

power(3.36kW) is taken from the grid. In this condition since grid supply the deficit 

load hence voltage and current are in phase which can be noticed from Fig.4.9 Also 

reactive power is supplied by inverter ang grid is maintaining zero reactive power 

which means system is working under unity power factor mode (UPF) and the DC bus 

voltage remains constant at 750 V. 

Table.4.2 Power sharing among inverter, grid, and load for variable loads condition. 

t=0.0s -0.15s t=0.15s -0.20s (load is increased) 

𝑃𝑙= 

1.9kW 

𝑃𝑖𝑛𝑣=12.5

4kW 

𝑃𝑔=10.64 

kW  

𝑃𝑙=1.9kW+14k

W=15.9kW 

𝑃𝑖𝑛𝑣=12.

54kW 

𝑃𝑔=-

3.36kW 

𝑄𝑙=0k

VAR 

𝑄𝑖𝑛𝑣= 

0kVAR 

 

𝑄𝑔=0 𝑄𝑙=8.4kVAR 𝑄𝑖𝑛𝑣=8.

4kVAR 

𝑄𝑔=0 

 

Fig.4.9 Performance of the system under variable load condition 
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4.3.2 Performance evaluation of the System under variable load and irradiation 

condition 

Fig.4.10 shows the performance of the proposed control strategy under variable load 

and irradiation conditions. Initially the nonlinear load (1.9kW) demand is fulfilled by 

the solar PV and excess power (10.64 kW) is sent to the grid.  

At t=0.15 s, the irradiation level drops from 1000 W/m2 to 650 𝑊/𝑚2, resulting in a 

drop in PV power from 12.54 kW to 7.56 kW. This reduces inverter current (𝐼𝑖𝑛𝑣) and 

grid current (𝐼𝑔). Load demand (1.9kW) is fulfilled by solar PV power and excess 

power (5.66kW) is sent to the grid. 

At t=0.2s. load is increased to 3.48kW, under this condition as well solar supply the 

load and excess power (4.08kW) is sent to the grid. Since, the grid receives the excess 

power from the source, voltage and current are in phase opposition which can be seen 

from the waveform. The power balance is still being maintained by the system. It is 

noticeable that the grid current is sinusoidal and balanced in spite of the variable 

nonlinear load and variable irradiation condition. Also, DC bus voltage remains 

constant at 750 V. 

 

Table 4.3 Power sharing among inverter, grid, and load for variable load and 

irradiation conditions. 

t=0.0s-0.15s t=0.15s-0.20s (Irradiation 

decreased) 

t=0.20s-0.30s (load 

increased) 

𝑃𝑙=1.9

kW 

𝑃𝑖𝑛𝑣=12.

54kW 

𝑃𝑔=10.6

4kW  

𝑃𝑙= 

1.9kW 

𝑃𝑖𝑛𝑣=7.5

6kW 

𝑃𝑔=5.6

6kW  

𝑃𝑙=3.4

8kW 

𝑃𝑖𝑛𝑣=7.5

6kW 

𝑃𝑔=4.0

8kW 

𝑄𝑙=0k

VAR 

𝑄𝑖𝑛𝑣= 

0kVAR 

𝑄𝑔=0 𝑄𝑙=0k

VAR 

𝑄𝑖𝑛𝑣= 

0kVAR 

𝑄𝑔=0 𝑄𝑙=0k

VAR 

𝑄𝑖𝑛𝑣=0k

VAR 

𝑄𝑔=0 

 

Fig.4.10 Performance of the system under variable load and irradiation condition 
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4.3.3 Performance evaluation of the System under abnormal grid conditions 

(Sag, Swell and unbalanced grid voltage) and load unbalance 

This section analyses the system's performance at abnormal load and grid voltage 

conditions. Removing one phase of the load current causes load unbalancing from 

t=0.06s to 0.12 s, 45V(p-p) voltage decrease from t=0.12 to 0.18 s is causes voltage 

sag which decreases load current. Similarly, voltage increase of 45V(p-p) from t=0.18-

0.24s, causes voltage swell which increases load current, and voltage unbalance occurs 

from t=0.24-0.30s in the grid voltage, as illustrated in Fig.4.11. Grid currents remain 

balanced and sinusoidal regardless of abnormal grid and load conditions. DC bus 

voltage maintained at 750 V. 

 

Fig.4.11 Performance of the system under abnormal grid and load unbalance 

conditions 

4.3.4 Sensitivity analysis of HLO-ANN MPPT technique 

In this article, a sensitivity analysis of the HLO-ANN assesses how variations in the 

parameters of the HLO algorithm impact the performance of the ANN, specifically 

concentrating on search agents and convergence has been presented in Fig.4.12 and 

Table.4. 

The analysis demonstrates that employing 30 search agents for HLO-ANN is ideal 

since it provides a suitable trade-off between convergence speed and error 

minimization. While 40 search agents provide a somewhat lower error, their 

convergence rate is slower, making 30 search agents a more practical choice for 

efficient optimization. This balance is critical in real-world applications where model 

correctness and computational economy are equally important. Faster convergence 

with a decent number of search agents requires fewer computational resources and 

time to complete. Having a low error while keeping rapid convergence increases the 

ANN's overall performance in making accurate predictions. 
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Fig.4.12 Sensitivity analysis for different search agents of proposed HLO-ANN MPPT 

technique 

Table 4.4 Sensitivity analysis for different search agents of proposed HLO-ANN 

MPPT technique 

Search agents Error (MSE) 
Iteration count 

(Convergence) 

Run time 

(seconds) 

10 0.06991 44 153.055 

20 0.05952 47 151.321 

30 0.03314 24 128.462 

40 0.03210 44 134.083 

 

4.4 Comparative analysis of proposed HLO-ANN algorithm  

To demonstrate the superiority of the proposed HLO-ANN MPPT technique, various 

parameters, including grid current harmonics, maximum power tracking under 

dynamic irradiation, EN50530 MPPT efficiency test, DC bus voltage regulation, cost 

function and error parameters, are compared to DMO-ANN, TLBO-ANN, HS-ANN, 

ABC-ANN, and PSO-ANN MPPT algorithms. 

 

4.4.1 Comparative analysis of proposed HLO-ANN algorithm for grid current 

harmonics 

Fig.4.13 shows the grid current (𝑰𝒈𝒓𝒊𝒅) FFT spectrum for a non-linear load under 

various load condition and grid voltage conditions. THD for the proposed control 

algorithm and other compared control algorithms that have been considered in this 

work are presented in Table 4.5. Table4.5 shows that the proposed HLO-ANN MPPT 

contains 1.08% THD in the case of a non-linear load, 1.74% and 1.76% THD under 

grid voltage sag and swell conditions, and 2.04% and 2.71% THD under grid voltage 

imbalance and load unbalanced conditions. Table 4.5. shows that, in comparison to 

previous algorithms, the suggested technique has lower grid current THD.  Also, 

harmonics distortion is with in IEEE standard. 
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Fig.4.13 (a) FFT spectra of 𝐼𝑙𝑜𝑎𝑑 for non-linear load, 

 

Fig.4.13(b) FFT spectra of 𝐼𝑔𝑟𝑖𝑑 for non-linear load, 

 

Fig4.13(c) FFT spectra of 𝐼𝑔𝑟𝑖𝑑 for grid voltage sag,  

 

Fig.4.13(d) FFT spectra of 𝐼𝑔𝑟𝑖𝑑 for grid voltage swell, 

 

Fig.4.13. (e) FFT spectra of 𝐼𝑔𝑟𝑖𝑑 for grid voltage unbalance, 
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Fig.4.13. (f) FFT spectra of 𝐼𝑔𝑟𝑖𝑑 for unbalance load 

Fig.4.13.  FFT spectra of 𝐼𝑙𝑜𝑎𝑑 and  𝐼𝑔𝑟𝑖𝑑 for proposed HLO-ANN algorithm 

 

Table 4.5 Comparison of FFT spectrum of Proposed HLO-ANN MPPT technique with 

PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN MPPT techniques for 

THD in grid current 

 

Algorithms 

Non-

Linear 

load 

Grid 

voltage sag 

Grid 

voltage 

swell 

Grid voltage 

unbalance 

Non- linear 

load 

unbalance 

P&O 2.52% 3.55% 2.84% 3.61% 3.81% 

INC 2.48% 3.29% 2.45% 3.43% 3.62% 

PSO 2.41% 3.22% 2.31% 3.25% 3.53% 

PSO-ANN 2.39% 3.21% 2.95% 3.22% 3.44% 

ABC-ANN 2.25% 2.62% 2.84% 3.19% 3.27% 

HS-ANN 2.18% 2.33% 2.51% 2.86% 3.16% 

TLBO-

ANN 

1.75% 2.01% 2.11% 2.71% 2.98% 

DMO-

ANN 

1.11% 1.85% 1.93% 2.42% 2.83% 

HLO-ANN 1.08% 1.74% 1.76% 2.04% 2.71% 

 

4.4.2 Comparative analysis of proposed HLO-ANN algorithm for dynamic 

irradiation variation. 

In the present study, the irradiance dataset of northern part (Shahabad Daulatpur 

village, Delhi) and southern part (Chikkaballapur Karnataka) of India has been taken 

from the NASA and NREL to test the robustness of the proposed technique in different 
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geographical location. Fig.4.15 and Table.4.6 presents the comparative analysis of 

different algorithm employing Shahabad Daulatpur village, Delhi data whereas 

fig.4.16 and Table 4.6 presents the comparative analysis of different algorithm 

employing Chikkaballapur Karnataka data. To evaluate various MPPT algorithms, the 

dynamically reducing solar irradiance pattern of 1000, 800, 600, and 400 W/m2 has 

been used in this particular case. In Fig.4.14, the power versus voltage curve illustrates 

the maximum power at various irradiance. The maximum power tracked by the grid 

integrated solar photovoltaic system (SPS).  through various MPPT algorithm is shown 

in Fig.4.15, Fig 4.16 and Table 4.6, Table 4.7. After examining the enlarged regions 

more closely and referring to Tables 4.6 and 4.7, it is apparent that the HLO-ANN 

algorithm has better tracking performance than the other techniques in various 

geographical locations. The maximum power tracked by the proposed technique is 

higher, indicating the algorithm's robustness even in diverse geographical locations.  

 

Fig.4.14 P–V and I–V characteristics for different irradiation of solar array 

 

Fig.4.15 Maximum power tracked under dynamic irradiation variations (Shahabad 

Daulatpur village data) 
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Table.4.6 Comparison of Proposed HLO-ANN MPPT technique with PSO-ANN, 

ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN, PSO, INC and P&O MPPT 

techniques for maximum power tracking under different irradiation condition 

(Shahabad Daulatpur village data) 

Algorithm 

 

                            

Irradiance  

 

P&O INC PSO PSO

- 

ANN 

ABC

- 

ANN 

HS- 

ANN 

TLB

O- 

ANN 

DM

O- 

ANN 

HLO

- 

ANN 

 

1000 

(W/m2) 

𝑷𝒎𝒂𝒙 

(kW)   

12.29 12.3

8 

12.3

7 

12.3

8 

12.3

9 

12.4

3 

12.5

1 

12.5

0 

12.6

1 

Settling 

Time (s) 

0.30 0.20 0.23 0.24 0.22 0.21 0.28 0.31 0.20 

 

800 

(W/m2) 

 

𝑷𝒎𝒂𝒙 

(kW)   

9.8 9.86 9.88 9.94 9.95 9.98 9.98 10.1

2 

10.1

9 

Settling 

Time(s) 

0.17 0.11 0.16 0.14 0.14 0.13 0.14 0.13 0.11 

 

600 

(W/m2) 

 

𝑷𝒎𝒂𝒙 

(kW)   

7.32 7.37 7.40 7.40 7.41 7.43 7.42 7.51 7.62 

Settling 

Time(s) 

0.15 0.14 0.14 0.13 0.15 0.17 0.15 0.12 0.11 

 

400 

(W/m2) 

 

𝑷𝒎𝒂𝒙 

(kW)   

4.73 4.74 4.74 4.76 4.75 4.83 4.87 4.95 5.02 

Settling 

Time(s) 

0.20 0.15 0.16 0.16 0.15 0.16 0.14 0.15 0.14 

 

Fig.4.16 Maximum power tracked under dynamic irradiation variations 

(Chikkaballapur Karnataka data) 
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Table 4.7 Comparison of Proposed HLO-ANN MPPT technique with INC, P&O, PSO, 

PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN and DMO-ANN MPPT techniques 

for maximum power tracking under different irradiation condition (Chikkaballapur 

Karnataka data) 

Algorithm 

 

                              

Irradiation 

P&O INC PSO PSO

- 

ANN 

ABC

- 

ANN 

HS- 

ANN 

TLB

O- 

ANN 

DM

O- 

ANN 

HLO

- 

ANN 

 

1000 

(W/m2) 

𝑷𝒎𝒂𝒙 

(kW)   

12.3

0 

12.3

9 

12.3

9 

12.4

1 

12.4

0 

12.4

7 

12.5

5 

12.5

8 

12.6

9 

Settling 

Time (s) 

0.29 0.20 0.23 0.23 0.22 0.21 0.27 0.30 0.20 

 

800 

(W/m2) 

 

𝑷𝒎𝒂𝒙 

(kW)   

9.81 9.87 9.88 9.95 9.95 9.98 9.99 10.1

9 

10.2

3 

Settling 

Time(s) 

0.17 0.12 0.16 0.14 0.15 0.13 0.14 0.12 0.11 

 

600 

(W/m2) 

 

𝑷𝒎𝒂𝒙 

(kW)   

7.33 7.39 7.40 7.41 7.41 7.43 7.45 7.53 7.66 

Settling 

Time(s) 

0.15 0.14 0.14 0.13 0.15 0.17 0.15 0.12 0.11 

 

400 

(W/m2) 

 

𝑷𝒎𝒂𝒙 

(kW)   

4.73 4.75 4.75 4.76 4.76 4.83 4.88 4.98 5.07 

Settling 

Time(s) 

0.20 0.15 0.16 0.16 0.15 0.16 0.14 0.15 0.15 

4.4.3 Comparative analysis of proposed HLO-ANN algorithm for dynamic 

temperature variation.  

The HLO-ANN algorithm produces the highest maximum power production at 25°C 

(12.68 kW) as can be seen from Fig.4.17 and Table 4.8. As the temperature rises to 

35°C and 45°C, all algorithms see a decline in maximum power production. At 45°C, 

HLO-ANN still has the highest Pmax among the algorithms, but it is significantly 

reduced to 11.59 kW. Most algorithms' settling times decrease as the temperature rises. 

The table clearly shows that HLO-ANN has the highest maximum power tracked at 

25°C compared to other methods. The power output, however, declines when the 

temperature rises to 35°C and 45°C. This pattern is consistent with the typical 

behaviour of solar cells, which reduce efficiency as temperatures rise. 
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Fig4.17 Maximum power tracked using HLO-ANN MPPT technique and with other 

existing MPPT technique under different temperature condition 

Table 4.8 Comparison of Proposed HLO-ANN MPPT technique with INC, P&O, PSO, 

PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN MPPT techniques for 

maximum power tracking under different temperature (Temp.) 

 

Algo- 

rithm 

 

Temp. 

(𝟐𝟓𝟎𝐂) 

Settling 

Time 

Temp. 

(𝟑𝟓𝟎𝐂) 

Settling 

Time 

Temp. 

(𝟒𝟓𝟎𝐂) 

Settling 

Time 

Temp. 

(𝟐𝟓𝟎𝐂) 

Settling 

Time 

𝑷𝒎𝒂𝒙(

kW)   

sec 𝑷𝒎𝒂𝒙 

(kW)   

sec 𝑷𝒎𝒂𝒙(k

W)   

sec 𝑷𝒎𝒂𝒙(

kW)   

sec 

P&O 12.41 0.22 11.82 0.14 11.21 0.12 12.41 0.12 

INC 12.42 0.20 11.94 0.13 11.31 0.14 12.42 0.12 

PSO 12.44 0.21 11.94 0.12 11.32 0.19 12.43 0.13 

PSO-

ANN 

12.52 0.22 11.96 0.12 11.35 0.20 12.52 0.12 

ABC-

ANN 

12.55 0.23 11.96 0.11 11.38 0.20 12.55 0.12 

HS-

ANN 

12.58 0.24 11.97 0.12 11.50 0.14 12.58 0.12 

TLBO

-ANN 

12.60 0.24 12.15 0.09 11.52 0.17 12.60 0.11 

DMO-

ANN 

12.63 0.22 12.17 0.11 11.58 0.19 12.63 0.10 

HLO-

ANN 

12.68 0.20 12.18 0.11 11.59 0.10 12.68 0.09 
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4.4.4 MPPT Efficiency test EN50530 

One of the standard testing conditions applied to a grid integrated SPS system is the 

EN50530 MPPT efficiency test, which evaluates the MPPT algorithm's performance 

under dynamically varying circumstances. An analysis of the MPPT techniques under 

dynamic changes in irradiance level has been conducted in this specific case, taking 

into account both fast and slow variation in irradiance level.  

The design of the slow and fast irradiance levels was accomplished by employing the 

trapezoidal signal, as illustrated in Fig.4.18. MATLAB 2023a simulation environment 

was used to analyse the power achieved by all MPPTs based on irradiance level 

variations. Fig.4.19 depicts the maximum power achieved by several MPPT 

algorithms in the EN50530 efficiency test. According to Fig.4.19 and Table.4.9 the 

HLO-ANN MPPT method that has been proposed achieves the highest power (Pmax). 

The HLO-ANN MPP performs extremely well at lower levels of irradiance, as 

demonstrated by the maroon colour curve. This is also evident for the ANN-HHO 

MPPT, which functions most effectively at higher levels of irradiance.  

 

Fig.4.18 Dynamic variation in irradiation level for the standard MPPT efficiency test 

of EN 50530 

 

Fig4.19 Power versus time graphs for different MPPT algorithms 
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Table 4.9 Comparison of Proposed HLO-ANN MPPT technique with INC, P&O, PSO, 

PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN, PSO, INC and P&O 

MPPT techniques for ENE530 Test. 

 

Algorithms 

 

Irradiance 

200𝐖/𝐦𝟐 

(0.0s-0.2s) 

Irradiance 

𝟏𝟎𝟎𝟎𝐖/𝐦𝟐 

(0.4s-0.7s) 

Irradiance 

200𝐖/𝐦𝟐 

(1.0s-1.2s) 

Irradiance 

1000𝐖/𝐦𝟐 

(1.3s-1.4s) 

𝑷𝒎𝒂𝒙(kW)   𝑷𝒎𝒂𝒙   𝑷𝒎𝒂𝒙  𝑷𝒎𝒂𝒙  

P&O 2.44 12.22 2.44 12.22 

INC 2.45 12.22 2.45 12.22 

PSO 2.47 12.23 2.47 12.23 

PSO-ANN 2.48 12.44 2.48 12.44 

ABC-ANN 2.48 12.47 2.48 12.47 

HS-ANN 2.49 12.47 2.49 12.47 

TLBO-ANN 2.56 12.54 2.56 12.54 

DMO-ANN 2.61 12.60 2.61 12.60 

HLO-ANN 2.68 12.68 2.68 12.68 

 

4.4.5 Transient analysis of DC bus voltage at different irradiation  

Fig.4.20 depicts the transient response of DC bus voltage for the proposed HLO-ANN 

and other MPPT algorithms, namely DMO-ANN, TLBO-ANN, HS-ANN, ABC-

ANN, PSO-ANN, PSO, INC and P&O. The response of all algorithms to non-linear 

load has been examined under various irradiation situations. The suggested HLO -

ANN algorithm has a better response in terms of settling time, undershoot, overshoot 

and maintaining the DC bus voltage at 750 regardless of irradiation level fluctuation. 

Table.4.10 shows that the proposed HLO-ANN MPPT has a shorter settling time than 

other MPPT algorithms at each case of irradiance level. 

Table.4.10 Transient analysis of DC bus voltage using proposed HLO-ANN and 

DMO-ANN, TLBO-ANN, HS-ANN, ABC-ANN, and PSO-ANN for non-linear load  

S.No Control 

techniques 

Time 

(seconds) 

Irradiation 

(W/m2) 

 Settling  

time 

(seconds) 

DC bus  

Voltage 

(V) 

Remarks 

1. P&O 0.0 s - 0.1s 1000 0.062 750 Initial overshoot 

of 15V is present 

Undershoot of 

12V present 

0.1s -0.2s 800 0.060 750 

0.2s-0.3s 600 0.061 750 

0.3s-0.4s 400 0.061 750 

2. INC 0.0 s - 0.1s 1000 0.610 750 Initial overshoot 

of 20V is present 0.1s -0.2s 800 0.060 750 
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0.2s-0.3s 600 0.060 750 Undershoot of 

11V present 0.3s-0.4s 400 0.061 750 

3. PSO 0.0 s - 0.1s 1000 0.053 750 Initial overshoot 

of 40V is present 

Undershoot of 

10V present 

0.1s -0.2s 800 0.069 750 

0.2s-0.3s 600 0.069 750 

0.3s-0.4s 400 0.069 750 

4. PSO-ANN 0.0 s - 0.1s 1000 0.063 750 Initial overshoot 

of 51V is present 

Undershoot of 

9V present 

0.1s -0.2s 800 0.065 750 

0.2s-0.3s 600 0.065 750 

0.3s-0.4s 400 0.065 750 

5. ABC-

ANN 

0.0 s - 0.1s 1000 0.063 750 Initial overshoot 

of 40V is present 

Undershoot of 

8V present 

0.1s -0.2s 800 0.061 750 

0.2s-0.3s 600 0.068 750 

0.3s-0.4s 400 0.068 750 

6. HS-ANN 0.0 s - 0.1s 1000 0.019 750 Initial overshoot 

of 15V is present 

Undershoot of 

8V present 

0.1s -0.2s 800 0.062 750 

0.2s - 0.3s 600 0.062 750 

0.3s-0.4s 400 0.061 750 

7. TLBO-

ANN 

0.0s - 0.1s 1000 0.050 750 Initial overshoot 

of 20V is present 

Undershoot of 

7V present 

0.1s -0.2s 800 0.051 750 

0.2s -0.3s 600 0.069 750 

0.3s-0.4s 400 0.069 750 

8. DMO-

ANN 

0.0 s - 0.1s 1000 0.051 750 Initial overshoot 

of 15V is present 

Undershoot of 

5V present 

0.1s -0.2s 800 0.050 750 

0.2s -0.3s 600 0.040 750 

0.3s-0.4s 400 0.040 750 

9. HLO-

ANN 

0.0s - 0.1s 1000 0.050 750 Initial overshoot 

of 15V is present 

Undershoot is 

negligible 

0.1s -0.2s 800 0.020 750 

0.2s -0.3s 600 0.020 750 

0.3s-0.4s 400 0.020 750 
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Fig.4.20 Transient analysis of DC bus voltage proposed HLO-ANN and DMO-ANN, 

TLBO-ANN, HS-ANN, ABC-ANN, and PSO-ANN for non-linear load. 

 

4.4.6 Comparison of convergence rate and error parameters of different 

algorithms 

One important parameter for evaluating the performance of any optimization approach 

is its convergence rate. As a result, all algorithms were subjected to a minimum cost 

function with the same number of iterations, boundary conditions, and search agents. 

Fig.4.21 depicts the convergence curves for all six algorithms. The chart shows that 

HLO-ANN outperforms the other five methods in terms of convergence speed and 

optimal solution capture.  To minimize the mean square error, the curve with the lowest 

MSE optimization value was chosen. Fig.4.21 and Table 4.11 show that the HLO-

ANN produced a higher-quality solution with a faster convergence time, whereas the 

other methods produced lower-quality solutions with premature convergence. Two 

additional error parameters, root mean square error (RMSE) and mean absolute error 

(MAE), have been investigated to strengthen algorithm analysis. The proposed HLO-

ANN algorithm requires fewer iterations to converge with lower error parameters, 

whereas other algorithms require more iterations and have higher error values when 

compared to the HLO-ANN MPP technique, as shown in Fig.4.21 and Table 4.11. 

4.4.7 Validation of the proposed algorithm considering test data set 

Fig 4.22.  presents the graph of absolute error between the ground truth and the 

estimates of the trained neural network along with the plot of ground truth verses the 

estimates of the neural network of the test data set for the unseen data. It is observed 

that absolute error is considerably low which confirms that the trained network 

performs significantly well on the unseen data and therefore can manage to track MPP 

during real time operations. 
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Fig.4.21 Convergence curve of all the algorithms 

 

Fig.4.22 Validation of trained neural network 

Table 4.11 Error parameters analysis for different MPPT algorithms 

 

Algorithms 

 

Mean Square 

Error (MSE) 

𝑴𝑺𝑬

=
𝟏

𝒏
∑∑(𝒀𝒋(𝒊)

𝒎

𝒋=𝟏

𝒏

𝒊=𝟏

− 𝑻𝒋(𝒊))
𝟐
  

Root Mean Square Error 

(RMSE) 

𝑹𝑴𝑺𝑬

= √
𝟏

𝒏
∑∑(𝒀𝒋(𝒊) − 𝑻𝒋(𝒊))

𝟐
 

𝒎

𝒋=𝟏

𝒏

𝒊=𝟏

 

Mean Absolute 

Error (MAE) 

𝑴𝑨𝑬

=
𝟏

𝒏
∑∑(𝒀𝒋(𝒊)

𝒎

𝒋=𝟏

𝒏

𝒊=𝟏

− 𝑻𝒋(𝒊)) 

 

PSO      0.12997 0.36051 0.28778 

PSO-ANN      0.07597 0.27562 0.21997 

ABC-ANN       0.05997 0.24488 0.19546 

HS-ANN       0.04697 0.21672 0.17300. 

TLBO-ANN       0.03987 0.19967 0.15938. 

DMO-ANN      0.03418 0.18487 0.14756 

HLO-ANN      0.03306 0.18182 0.14512 
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4.4.8 Benchmark analysis 

An essential step in assessing the efficacy and performance of the Horned Lizard 

Optimization-ANN (HLO-ANN) technique is benchmarking. It gives users a 

comprehensive and nuanced understanding of the benefits that HLO-ANN offers, 

empowering them to decide on its possible acceptance and future development. The 

HLO-ANN technique offers substantial improvements when compared to widely 

accepted traditional MPPT methods. 

Table.12 Benchmarking performance of proposed HLO-ANN MPPT techniques with 

other MPPT techniques 

Metric P&O INC PSO PSO-

ANN 

ABC-

ANN 

HS-

ANN 

TLB

O-

ANN 

DMO

-ANN 

HLO-

ANN 

Tracking 

Efficiency 

Slow Mid High High High High High Very 

High 

Very 

High 

Tracking 

Accuracy 

Low Mid Mid High High High High Very 

High 

Very 

High 

Convergen

ce Speed 

Slow Mid Mid Mid Mid Fast Fast Very 

Fast 

Very 

Fast 

Dynamic 

response 

Slow Slow Mid Mid Mid Fast Fast Fast Very 

Fast 

Prior 

tuning 

No No Yes Yes Yes Yes Yes Yes Yes 

Tuning 

Complexity 

High High Mid Low Low Low Low Low Low 

Varying 

atmospheri

c condition 

Slow Slow Mid Mid Mid Fast Fast Very 

Fast 

Very 

Fast 

Simulation 

time 

Low Low Mid Mid High High High High Very 

High 

 

4.4.9 COMPUTATIONAL COMPLEXITY ANALYSIS 

Computational complexity 

Computational complexity evaluates the resources—time and memory—required by 

an algorithm as the input size increases. In optimization algorithms, particularly those 

involving a population of agents or candidate solutions, this complexity can be broken 

down as follows: 

Time Complexity is a measure of how the running time of an algorithm grows with 

respect to key input parameters (such as number of agents, problem dimensions, and 

number of iterations). It expresses this growth asymptotically (e.g. using Big-O 
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notation), ignoring constant factors and lower-order terms. 

In optimization, common parameters involved include: 

𝑛 = number of agents / candidate solutions / population size 

𝑑 = number of decision variables / dimension of the search space 

𝑇 = number of iterations. 

Space complexity quantifies the amount of memory an algorithm uses relative to the 

input size. In optimization algorithms, space complexity is influenced by factors such 

as: 

Memory required for storing agent positions and velocities: Typically, 𝑂(𝑛𝑑) 

Memory for storing fitness values: 𝑂(𝑑) 

Memory for auxiliary data structures: Varies depending on the algorithm 

The total space complexity is the sum of these components. For instance, if an 

algorithm requires 𝑂(𝑛𝑑) memory for storing agent positions and velocities and 

𝑂(𝑛)for storing fitness values, the overall space complexity would be 𝑂(𝑛𝑑) 

 

Computational Complexity Analysis 

Let n denote the number of agents, 𝑑 the dimensionality of each agent’s solution 

vector, and T the total number of iterations. We assume that basic operations 

(arithmetic, comparisons, random sampling, trigonometric functions, boundary 

checks, etc.) take constant time 𝑂(1), and that vector updates and fitness evaluation 

require time proportional to 𝑑. 

In each iteration, the algorithm performs several procedures: Crypsis Behavior, Skin 

Lightening/Darkening, Blood Squirting, Move to Escape, Alpha-Melanophore, 

and Fitness Evaluation. 

 In the worst case, many of these update all n agents, each across d dimensions, 

resulting in 𝑂(𝑛𝑑) cost per procedure. Since all such procedures contribute on the 

same order, the aggregate cost per iteration remains:𝑂(𝑛𝑑) 

Thus, over T iterations, the total time complexity is:𝑂(𝑇. 𝑛. 𝑑) 

The space complexity is 𝑂(𝑛𝑑), for storing the population and their associated data 

(fitness, best/worst etc.), plus lower-order overheads. 

In practice, the algorithm’s runtime is often less than the worst‐case bound, because 

some procedures act only on subsets of agents (e.g. only the worst-performing agents, 

or those with low melanophore rate), and because convergence may occur well before 

𝑇 reaches its maximum. Empirical measurements in the MATLAB implementation 

confirm linear scaling with 𝑛 and with 𝑑, validating the theoretical bound. 
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Table.13 Computational Complexity Analysis of HLO Algorithmic Procedures  

Procedure Agents Involved Work per agents Total per iteration 

Initialization All n agents once 

(at start) 

Set up positions in 

d dims, maybe 

initial fitness 

evaluations →  

𝑂(𝑑) per agent 

𝑂(𝑛𝑑) (but this is 

a one‐time cost, 

not per iteration) 

Crypsis Behaviour 

(Approach 1) 

All n agents Vector updates 

over d dims + 

constant number 

of trigonometric + 

random ops →  

𝑂(𝑑) each 

𝑂(𝑛𝑑) 

Skin Lightening / 

Darkening 

(Approach 2) 

Worst k agents, 

where  𝑘 ≤

𝑛Worst case 𝑘 =

𝑛 

For each affected 

agent: vector 

update plus 

constant overhead 

→  

𝑂(𝑑) each 

 

Worst case 𝑂(𝑛𝑑) 

Blood Squirting / 

Projectile Motion 

(Approach 3) 

All n agents Vector updates 

over d dims + 

constant 

operations (sin, 

cos, etc.) →  

𝑂(𝑑) each 

𝑂(𝑛𝑑) 

Move to Escape 

(Approach 4) 

All n agents 
Random 

walk/perturb + 

vector update 

over d dims →  

𝑂(𝑑) each 
 

𝑂(𝑛𝑑) 

Alpha‐Melanophore 

Rate (Approach 5) 

All n agents for 

fitness 

normalization; a 

subset (say k’) for 

vector updates 

depending on 

rate; worst case 

(𝑘 ≈ 𝑛) 

Fitness 

normalization 

across n agents →  

𝑂(𝑛); those 

changed → vector 

updates →  

𝑂(𝑑) per agent 

Worst case 𝑂(𝑛𝑑) 

Fitness Evaluation All n agents each 

iteration 

Evaluating fitness 

over d dims →  

𝑂(𝑑) per agent 

𝑂(𝑛𝑑) 
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𝛿‐Procedure / 

Random Sampling / 

Utility Functions 
Used in many 

procedures; either 

per agent or per 

update; but each 

usage is  𝑂(1) 

Constant time per 

use 

Total overhead of 

these is  

𝑂(𝑛)or lower, 

dominated by the   

𝑂(𝑛𝑑)terms 

 

Per‐Iteration Cost 

Putting all together, almost all major procedures have worst‐case cost  

𝑂(𝑛𝑑).Adding them up still gives per iteration cost: 

𝑃𝑒𝑟 − 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = 𝑂(𝑛𝑑) + 𝑂(𝑛𝑑) + 𝑂(𝑛𝑑) +⋯ . . 𝑂(𝑛𝑑) = 𝑂(𝑛𝑑)  (4.45) 

(The extra 𝑂(𝑛) or 𝑂(1) terms are lower order, hence subsumed by 𝑂(𝑛𝑑) ) 
 

Total Time Complexity 

Since the algorithm runs for T iterations, the overall time complexity is: 𝑂(𝑇. 𝑛. 𝑑) 

“Since the dominant cost in nearly all procedures is 𝑂(𝑛𝑑)  per iteration, the combined 

per-iteration complexity is 𝑂(𝑛𝑑), and over T iterations the total worst-case time 

complexity is 𝑂(𝑇. 𝑛. 𝑑)”. 

4.4.10 SCALABILITY AND COST IMPLICATION OF HLO-ANN MPPT 

CONTROLLERS 

The Horned Lizard Optimization–Artificial Neural Network (HLO–ANN) MPPT 

technique improves MPP tracking accuracy by using optimized ANN weights and bias 

values. Its deployment in real-world PV microgrids has unique scalability and cost 

considerations. 

  Scalability 

• Hardware: ANN-based MPPT algorithms demand higher computational 

resources than conventional methods. Real-time implementation is feasible on 

Digital Signal Processors (DSPs), Field-Programmable Gate Arrays (FPGAs), 

or high-end microcontrollers, which have become increasingly affordable. Re-

training the model is necessary only when the system encounters scenarios not 

previously represented in the training data. For small-scale photovoltaic (PV) 

arrays (e.g., 10–50 kW), standalone DSPs are sufficient. However, for 

megawatt-scale plants, distributed or cloud-assisted controllers may be required 

to handle the increased complexity and data processing demands. 

• Data Dependence: ANN requires historical data (irradiance and 

temperature) for effective training. In rural setups, such datasets may be scarce 

or unreliable, limiting scalability. In industrial systems, SCADA ensures 

abundant, high-quality data. 

• Algorithmic Load: HLO has a computational complexity of approximately 
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O(n×m) (population × iterations). This is acceptable for offline optimization of 

ANN weights, but frequent online retraining in resource-constrained rural 

systems could hinder scalability. 

Cost and Practical Implications 

• The deployment of intelligent controllers entails additional CAPEX (Capital 

Expenditure) for hardware and sensors, which can be significant in rural 

microgrids but marginal in industrial systems. OPEX (Operating Expenditure) 

primarily relates to maintenance and algorithm retraining, posing challenges in 

areas with limited technical expertise, while being easily manageable in 

industrial setups. 

• In terms of energy yield, small rural systems experience modest gains with 

longer payback periods, whereas even minor efficiency improvements in large 

industrial microgrids translate into substantial additional generation and faster 

cost recovery. Thus, scalability remains constrained in rural contexts unless 

supported by subsidies or pre-trained models, while industrial environments 

with advanced infrastructure offer clear cost–benefit advantages. 

 

4.5 CONCLUDING REMARKS 

This chapter presents a novel control technique for Maximum Power Point Tracking 

(MPPT) in grid-integrated solar PV systems, utilizing a Horned Lizard Optimization-

based Artificial Neural Network (HLO-ANN). The proposed control algorithm has 

undergone rigorous testing and validation under a variety of operating conditions. 

These conditions include variable load scenarios, changes in solar irradiance, 

temperature fluctuations, grid voltage sag and swell events, unbalanced load situations, 

and other abnormal grid conditions. To thoroughly evaluate the performance of the 

proposed HLO-ANN control algorithm, a comparative analysis was conducted against 

other existing control techniques. The criteria for comparison included grid current 

harmonic distortion, the efficiency of maximum power point tracking at different 

levels of irradiance and temperature, performance on the EN50530 MPPT test, DC bus 

voltage regulation, convergence rate, sensitivity analysis and benchmarking functions. 

The results from these tests showed that the HLO-ANN algorithm exhibited significant 

improvements across all evaluated metrics. Specifically, it demonstrated superior 

capabilities in tracking the maximum power point, regulating voltage, mitigating grid 

current harmonics, improving convergence rates, and minimizing errors when 

compared to the other algorithms considered in the study. Furthermore, the HLO-ANN 

algorithm ensured the maintenance of a unity power factor mode of operation, and the 

total harmonic distortion of grid current was well below the acceptable threshold of 

5%. This indicates that the proposed control technique not only enhances the efficiency 

of solar PV systems but also adheres to industry standards for power quality. 
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CHAPTER-5 

 INVERTER CONTROL TECHNIQUES FOR GRID-

INTEGRATED PV BASED MICROGRID 

5.1 INTRODUCTION 

The previous chapters examined MPPT strategies for standalone and grid-connected 

PV systems. While MPPT ensures optimal power extraction and grid synchronization, 

effective grid integration also requires precise inverter control for maintaining power 

quality and stability. Integration of SPV with grid is achieved by voltage source 

inverter (VSI), which is responsible for DC–AC conversion and plays a very important 

role in grid synchronization. Proportional integral (PI) controller plays a crucial role 

in integration of SPV with grid including voltage regulation and frequency control.  

Conventional proportional-integral (PI) controllers are commonly used to regulate VSI 

operation. However, these controllers typically rely on fixed gain parameters that are 

optimized for specific operating scenarios. As a result, their performance can 

significantly deteriorate when faced with unpredictable changes in solar irradiance, 

ambient temperature, loading patterns, and nonlinear grid conditions. One of the most 

critical tasks in this context is the regulation of the DC link voltage, which is sensitive 

to both renewable generation variability and load disturbances. Fixed-gain PI 

controllers often struggle to maintain stability and exhibit delayed responses, leading 

to issues such as voltage overshoots, undershoots, and persistent oscillations. 

To address these limitations, this chapter proposes adaptive control schemes that 

dynamically adjust the proportional–integral (PI) controller gains in real-time. Two 

nature-inspired optimization techniques—Honey Badger Algorithm (HBA) and 

Cuckoo Search Optimization (CSO)—have been proposed and implemented in 

MATLAB to enhance the performance of microgrid. These algorithms continuously 

optimize the controller parameters based on system feedback, aiming to minimize 

deviations in the DC link voltage and enhance the overall dynamic response of the 

system. In addition to these, an Artificial Neural Network (ANN)-based PI control 

approach is also studied, leveraging data-driven learning to further improve 

adaptability under rapidly changing conditions. 

Throughout this chapter, the Incremental Conductance (INC) algorithm is consistently 

used for Maximum Power Point Tracking (MPPT) in conjunction with the proposed 

and explored inverter control strategies. However, in Section 5.6, a dedicated 

comparative analysis is presented, wherein the HLO-ANN-based MPPT technique—

developed in Chapter 4—is compared with the proposed inverter control approaches 

from this chapter. This comparison is aimed at evaluating the overall effectiveness and 

synergy of both independently developed techniques under diverse operating 

scenarios. 
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5.2 INVERTER CONTROL TECHNIQUES FOR GRID INTEGRATED 

SOLAR PV SYSTEM 

Section 2.4 of Chapter 2 discusses several inverter control algorithms for grid-

integrated solar PV systems, including linear, predictive, adaptive, intelligent, and 

robust controllers. These control approaches are critical in guaranteeing effective 

power injection into the system while preserving stability and power quality. This 

chapter will expand on that idea by focusing on specific inverter control strategies, 

such as the Synchronous Reference Frame Theory (SRFT) control technique, which is 

frequently utilized for grid synchronization and power quality improvement. 

Furthermore, the chapter will look at the traditional Proportional-Integral (PI) 

controller, which is widely used in PV inverters because to its simplicity and efficacy 

in regulating voltage and current. 

Advanced PI controllers, including the ANN-based PI controller, which use machine 

learning for adaptive control, will be discussed in order to enhance system 

performance. The Cuckoo Search Optimization (CSO)-PI controller, which uses 

metaheuristic optimization to optimize control parameters for improved dynamic 

response, will also be demonstrated. Finally, to increase the robustness and efficacy of 

the inverter control, the Honey Badger Algorithm (HBA)-PI controller will be studied 

using bio-inspired optimization techniques. This chapter aims to provide a 

comprehensive understanding of these techniques and how they enhance the efficiency 

and dependability of grid-integrated solar PV systems. 

 

Fig.5.1 Schematic diagram of grid integrated PV system 

5.2.1 Synchronous Reference Frame Theory 

A PV system is connected to the utility grid via a DC/DC converter and a voltage 

source inverter. An inverter is responsible for DC-AC inversion and play a significant 

role in grid synchronization.  
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Fig.5.2 Schematic diagram of synchronous reference frame theory 

 

The inverter controls the grid injected current in a grid connected PV system to adjust 

the real and reactive power supplied and to set the DC link voltage to its reference 

value. Voltage source inverter (VSI) consists of six IGBT switches as shown in Fig 

5.1.  Fig.5.2 depicts a block diagram of reference current estimation utilizing the SRF 

control algorithm in the UPF mode of operation. The SRF controller structure is made 

up of d-q-0 and (d-q-0)-1 park transformations. The SRFT is an indirect control method 

for evaluating reference AC currents, which are utilized to generate gate pulses for 

controlling SPV inverters. Load current, PCC voltage, and DC bus voltage are sensed 

and considered as feedback signals in this method. Clark transformation method is 

used to convert three phase ‘a-b-c’ to′𝛼 − 𝛽’ co-ordinate, as expressed in equation 

(5.1). Phase-locked loop (PLL) is utilized to synchronize the VSI with the utility grid 

[143]-[144]. 
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]                                                                        (5.1) 

These currents can be converted from the′𝛼 − 𝛽’ to the d-q' frame using Park's 

transformation expressed by equation (5.2). 

[
𝑖𝑑
𝑖𝑞
] = √

2

3
[  
cos(𝑤𝑡)          sin(𝑤𝑡)   
 −sin(𝑤𝑡)     cos(𝑤𝑡)   

] [
𝑖𝛼
𝑖𝛽
]                                                            (5.2) 

where, ω 𝑖𝑠 angular frequency of the synchronous rotating frame 

A low pass filter is used to extract the fundamental active and reactive components of 

load currents. To operate the SRF algorithm in unity power factor mode, VSI must 

supply the reactive power demand of the load. Reactive reference component must be 

zero (𝑖𝑞∗=0), in order to compensate the reactive power demand of the load. While 

fundamental load current (𝑖𝑑) is added with output of PI controller (𝑖𝑙𝑜𝑠𝑠) in order to 
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regulate the dc link voltage. 

Active ac reference grid current is the sum of  𝑖𝑙𝑜𝑠𝑠, and fundamental load current (𝑖𝑑) 

which is expressed equation (5.3). 

𝑖𝑑∗ = 𝑖𝑑 + 𝑖𝑙𝑜𝑠𝑠                                                                                                         (5.3) 

 PV inverter's loss component is denoted by 𝑖𝑙𝑜𝑠𝑠, which is the output of the 

PI controller in the voltage control loop, expressed by equation (5.4). 

𝑖𝑙𝑜𝑠𝑠 = 𝐾𝑃𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡                                                                                    (5.4) 

 Where, 𝐾𝑃 & 𝐾𝑖 are the proportional gain & integral gain and  𝑒(𝑡) is voltage error 

signal. 

The reverse Clark’s and Park's transformations are then utilized to get three-phase 

reference source current as given in equations (5.5) and (5.6). 
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Hysteresis current controllers (HCC) produce switching pulses by comparing 

reference currents to real currents within a hysteresis range. This technique is the 

simplest in terms of implementation, requiring only the error traced value, which is the 

difference between the grid current (𝑖𝑔𝑎, 𝑖𝑔𝑏, 𝑖𝑔𝑐 ) and the current references 

(𝑖𝑔𝑎
∗ , 𝑖𝑔𝑏

∗ , 𝑖𝑔𝑐
∗ ). This method involves switching actual source currents in an 

asynchronous procedure of ramping the actual current up and down so that it follows 

the reference current.  Hysteresis controllers are relatively simple to develop when 

compared to other control systems. They do not require complex mathematical 

calculations. The quick response of hysteresis controllers to changes in the controlled 

variable is widely recognized. The controller takes immediate corrective action when 

the error exceeds the hysteresis band. Hysteresis controllers are more robust and 

resilient to parameter variations. 

5.3 SYNCHRONOUS REFERENCE FRAME THEORY WITH ADVANCED PI 

-CONTROLLERS 

For grid-integrated PV systems, synchronous reference frame theory (SRFT) is a 

widely used control approach that provides reactive power compensation, harmonic 

mitigation, and efficient power quality enhancement. Accurate control of active and 

reactive power components is made possible by SRFT, which converts grid currents 

from the α-β reference frame to the revolving d-q reference frame. However, when 

employed with SRFT, traditional PI controllers frequently have drawbacks such 

steady-state errors, difficulty tuning parameters, and poor adaptation under dynamic 

grid settings. Advanced optimization-based and intelligent PI controllers, such as 

Cuckoo Search Optimization (CSO)-PI, Honey Badger Algorithm (HBA)-PI, and 
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Artificial Neural Network (ANN)-PI controllers, have been coupled with SRFT in 

order to address these shortcomings 

 

5.3.1 SRFT with ANN-PI Controller for Inverter 

Artificial neural networks (ANNs) use parallel and distributed computing to describe 

nonlinear (static and dynamic) relationships between inputs and outputs. Artificial 

neural networks (ANNs) can learn general relations using weights and biases 

distributed over numerous layers and nodes. Fig.5.3 depicts the ANN structure 

employed in this study, consisting of two input layers, a hidden layer of ten neurons, 

and a single output layer. ANN’s input layer connects to system inputs and projects 

weighted signals to subsequent hidden layers. The output layer receives weighted 

signals from the preceding layer and generates ANN output. The ANN was trained 

using the Levenberg-Marquardt (LM) back propagation learning methodology, which 

employs a chain rule mechanism. The output of the 𝑖𝑡ℎ node in the 𝑛𝑡ℎ layer is 

determined as equation (5.7) [147]-[148]: 

𝑥𝑖
(𝑛)
= 𝑓𝑖

(𝑛)(𝑛𝑒𝑡𝑖
(𝑛)) = 𝑓𝑖

(𝑛)
(∑ 𝑤𝑖𝑥𝑖

(𝑛−1)𝑁
𝑛=1 )                                                   (5.7) 

The output and activation functions of neurons at the 𝑖𝑡ℎ and 𝑛𝑡ℎ nodes are represented 

by 𝑥𝑖
(𝑛)

 and 𝑓𝑖
(𝑛)

, respectively. 𝑥𝑖
(𝑛−1)

and 𝑤𝑖 represent the input and connection weight 

of neurons at the nth node. The goal of training is to reduce the cost function E, which 

is the sum of the squared errors in the output layer expressed as equation (5.8). 

𝐸 =
1

2
(∑ 𝑒𝑖

2𝑚
𝑛=1 )       𝑤ℎ𝑒𝑟𝑒 𝑒𝑖 = 𝑑𝑖 − 𝑥𝑖                                                            (5.8) 

Where 𝑑𝑖 is the desired output of the 𝑖𝑡ℎ neuron and m is the number of output 

neurons. Weights are updated utilizing the Levenberg-Marquardt (LM) 

backpropagation learning technique, as equation (5.9): 

𝑤𝑖
∗ = 𝑓𝑖

(𝑛)
(𝑛𝑒𝑡𝑖

(𝑛)
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𝑥𝑖
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𝑥
𝑖
(𝑛) ∑ 𝑤𝑘𝑗𝑤𝑘𝑗

∗ − 𝛾𝑓𝑖
(𝑛)
(𝑛𝑒𝑡𝑖

(𝑛))𝑃
𝑖=1 𝑥𝑖

(𝑛−1)𝑒𝑖                    (5.9) 

Where, 𝛾 > 0 represents adoption coefficient and P represents the next layer 

neuron. Levenberg-Marquardt activation function (LMAF) of the neuron is expressed 

as equation (5.10): 

𝑥𝑖
(𝑛) = 𝑓𝑖

(𝑛)(𝑛𝑒𝑡𝑖
(𝑛)) =

2

1+𝑒−𝑛𝑒𝑡
(𝑛) − 1 =

1−𝑒−𝑛𝑒𝑡
(𝑛)

1+𝑒−𝑛𝑒𝑡
(𝑛)                                            (5.10) 

Fig.5.9(a) shows that LM algorithm trained the ANN controller with 70% 

information for training, 15% for testing, and 15% for validation. Fig.5.9(b) depicts 

the best validation performance, followed by testing of the verification set in the result 

section. The DC bus voltage error 𝑒𝑛 = 𝑉𝐷𝐶𝑟𝑒𝑓 − 𝑉𝐷𝐶 and the change in error ∆𝑒𝑛 =

𝑒𝑛 − 𝑒𝑛(𝑘 − 1) defines the input of the following ANN. 
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                                          (5.11) 

 To get the actual 𝑉𝐷𝐶𝑟𝑒𝑓, multiply the measured 𝑉𝐷𝐶 and output control signal of 

ANN. The weight of the ANN is given as equation (5.12): 
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                                                                           (5.12) 

  𝑤𝑖
∗→ Updated weight between neurons in the hidden layer and 𝑤𝑜

∗ → Updated weight 

between hidden layer and output layer. 

 

Fig.5.3 Block diagram of ANN based PI controller 

 

5.3.2 SRFT with Optimization based -PI Controller for Inverter 

To regulate the DC bus voltage, gain value of PI controller is tune and optimized by 

cuckoo search optimization technique and honey badger algorithm, PI controller 

mainly consists of two main components proportional and integral can be seen from 

equation (5.13) which are varied to get best possible results. Absolute error 𝑒(𝑡) is 

taken into account which is the difference between the reference voltage and measured 

voltage. 

  𝑒(𝑡) = 𝑉𝐷𝐶 
∗ (𝑡) − 𝑉𝐷𝐶(𝑡)                                                                                     (5.13) 

Objective function (MSE): 

Mean square error is chosen as objective function to be reduced for DC bus voltage in 

order to get optimal PI controller gain 𝐾𝑃 𝑎𝑛𝑑 𝐾𝑖 in the DC bus voltage regulator. 

Objective function of the SPV system can be represented as: 
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min (𝑂. 𝐹) =  𝑚𝑖𝑛
𝐾𝑃, 𝐾𝑖 

(
1

𝑁
∑ (𝑒(𝑡))

2𝑁
𝑡=1 )                                                                    (5.14) 

Where, N is the sample number, e(t) is the error. The main goal of this work is to create 

a optimization PI controller that is suitable for the suggested topology. Mean square 

error is employed as an objective function for the process of design and performance 

evaluation (MSE). This work employs and tests cuckoo search optimization methods 

to reduce error value.  

For better analysis of the technique MAE and RMSE are also calculated as per 

equation (5.15) and (5.16). 

Mean absolute error (MAE): 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑒(𝑡)|𝑁
𝑡=1                                                                                                 (5.15) 

 

Root means square error (RMSE) 

𝑅𝑀𝑆𝐸 = √(
1

𝑁
∑ (𝑒(𝑡))

2𝑁
𝑡=1 )                                                                                   (5.16) 

 

5.3.2.1 Cuckoo Search optimization  

The Cuckoo Search optimization technique is a meta-heuristic optimization technique 

used for optimization problem-solving. It is nature-inspired meta-heuristic technique 

which is based on several cuckoo species' brood parasitism and Levy flights random 

walks. Brood parasitism can be classified into three categories: intra-specific, 

cooperative, and nest takeover. Some cuckoo species have the intelligence to mimic 

the host bird's color and shape in order to maximize its chances of reproduction. 

Cuckoos lay their eggs at a particular period of time in order to allow their eggs to 

hatch before the host birds. Cuckoos destroy a few of the host bird's eggs after they 

hatch in order to increase the possibility that their young would eat more food. Another 

frequent occurrence is the host birds finding and destroying the cuckoo's eggs. 

Sometimes they entirely depart their nest and migrate elsewhere and create a new one 

[145].  

 Lévy flight: 

One crucial aspect of the cuckoo’s reproduction strategy is looking for a nest that will 

serve as a convenient host bird. The hunt for the nest usually resembles the hunt for 

food, which is conducted in a quasi-random manner. Animals typically adopt paths or 

directions while in pursuit of food that can be represented mathematically by specific 

functions. The Lévy flight is one of the most popular models. According to a study, 

fruit flies, or Drosophila melanogaster, fly in a Lévy pattern as they explore their 

surroundings by taking a sequence of straight flight paths punctuated by sharp 90° 

turns. The meta-heuristic search algorithm for optimization problems adopts this 

behavior. Lévy flying is another characteristic of cuckoo nest-searching behaviors in 

CS. A Lévy flight is a arbitrarily walk that uses a power law to obtain the step sizes 
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from the Lévy distribution which is expressed by equation (5.17). 

𝛾 = ℓ−ℷ                                                                                                                  (5.17) 

where ℷ is the variance and ℓ is known as Lévy flight length. 𝛾 has an infinite variance 

because ℓ < ℷ < 3. 

Fig 5.4 shows a two-dimensional plane with Lévy flight. Because of the Lévy 

distribution, the steps are made up of number of small steps and, on occasion, big-step 

and long-distance jumps. In some cases, particularly for multimodal, nonlinear 

problems, these large hops may significantly increase the search efficiency of cuckoo 

search as compared to other meta-heuristic techniques. 

Searching an area with 

small steps

Shifted to another 

area by long jump

 

Fig.5.4 Lévy flight distribution 

Cuckoo algorithms mostly adhere to three idealized CS criteria based on cuckoo brood 

parasite behavior: 

a) Each cuckoo lays one egg at a time, and it is deposited in a nest that is chosen at 

random. 

b) Next generation will inherit the best nest with the best eggs. 

c) The number of nests that are available is fixed, and the host bird has recognized a 

number of cuckoo eggs with a probability Pa, where 0< Pa <1. 

If the cuckoos' eggs are found, host bird has the option of leaving its nest or destroying 

them. In either case, given a fixed number of nests, a fresh nest will be created with a 

probability of Pa. 

When producing a new cuckoo solution 𝑥𝑡+1 a Lévy flight is carried out as required 

by the equation (5.18): 

𝑥𝑡+1 = 𝑥𝑖
𝑡 + 𝛼⨁Lévy(ℷ )                                                                                      (5.18) 

Where i is the number of samples, 𝑥𝑖
𝑡 is samples per egg, 𝛼 > 0 is known as step 

size, ⨁ represents entry wise multiplication and number of iterations is denoted by 

t. α is given by equation (5.19). 

α = α0(xj
(t) − xi

(t))                                                                                                  (5.19) 

The Lévy distribution expressed in equation (5.20) gives the value of Lévy (ℷ) 

Lévy(ℷ ) ≈ 𝑢 = ℓ−ℷ , (ℓ < ℷ < 3)                                                                         (5.20) 

The following equation can be used to update the equation: 
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𝑥𝑖
𝑘+1 ≈ 𝑥𝑖

𝑘 + 𝑧(
𝑢
1

𝑣
3
2

) (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖)                                                                           (5.21) 

where z is a levy coefficient. The values u & v are derived from normal distribution 

functions as represented below. 

𝑢, 𝑣 ≈ 𝑁(0, 𝜑2)                                                                                                    (5.22) 

using the following equation, 𝜑 is determined. 

𝜑2 =
Γ(1+𝛽)sin

𝜋𝛽

2

Γ(
1+𝛽

2
)β20.5(β−1)

                                                                                            (5.23) 

Where 𝛽 = 1.5 and Γ is the integral gamma function. 
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Fig.5.5 Flow chart of CSO-PI controller for presented grid tied SPV system 
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   5.3.2.2 An overview of HBA optimization algorithm  

  Honey badgers are white and black fluffy-furred mammals found in semi-

deserts, African rainforests, Southwest Asia and the Indian subcontinent. Honey 

Badger bodyweight are approximately 7-13 kilogram and body lengths are 

approximately 60-77 centimeter. They are a fearless forager that preys on 60 different 

species, including dangerous snakes. They are intelligent mammals that can use tools 

and enjoy honey. They prefer to live alone in self-dug tunnels and meet other badgers 

to mate only. They don’t have a particular breeding season as cubs are born throughout 

the year. The following section discusses the HBA's mathematical model which is 

similar to honey badger behavior. 

Because of the exploration and exploitation phases, HBA is theoretically considered a 

global optimization method. In general, meta-heuristic algorithms have sets of 

plausible solutions to the optimization problem. Each solution is iteratively updated 

automatically based on the nature of the technique. Exploration and exploitation are 

the two main components of every search technique. Exploration is ensured by 

expanding the search to far-reaching sections of the search space. Conversely, by 

exploitation, search agents converge on a previously selected attractive region, 

employing a local search approach [146]. 

 Inspiration: 

  The honey badger technique copies the foraging manners of honey badgers. The 

honey badgers either sniff and dig for food or follow the honey guide bird. The 1st case 

is known as digging phase and 2nd is known as honey phase. Initially, it uses its sniffing 

abilities to determine the location of the prey; once it reached there, it moves near the 

prey to choose the finest spot for digging and catching the prey. In honey phase, it 

follows the honey guide birds to find a beehive directly. 

Mathematical model: 

HBA mainly consist of two phases “digging phase (Exploration)” and “honey phase 

(Exploitation)” 

HBA algorithm Steps: 

 These subsections explain the HBA algorithm's mathematical formulation. Honey 

badger algorithm is a global optimization technique as it includes exploration & 

exploitation phase. Mathematically, populations of candidate’s solution (Z) are 

expressed as equation (5.24): 

𝑍 =

[
 
 
 
 
𝑍11    𝑍12    𝑍13…… . 𝑍1𝐷
𝑍21   𝑍22   𝑍23…… . 𝑍2𝐷
………… ..  …………… .
………… ..  …………… .
𝑍𝑛1   𝑍𝑛2   𝑍𝑛3   …… .  𝑍𝑛𝐷]

 
 
 
 

                                                                             (5.24) 

𝒊𝒕𝒉  Badger position 𝒁𝒊 = [𝒁𝒊
𝟏 , 𝒁𝒊

𝟐 , … , 𝒁𝒊
𝑫] 

Step 1: Initialization Phase The following expression can be used to initialize the 

positions of honey badgers with n populations: 
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𝑍𝑖 = 𝐿𝑏𝑖 + 𝑟1(𝑈𝑏𝑖 − 𝐿𝑏𝑖)     𝑟1 ∈ [0,1]                                                                (5.25) 

Where, Zi is ith   Honey Badger location refers to a candidate solution in a population 

of size n and Lbi &   Ubi is search space lower & upper bounds. 

Step 2: Intensity definition Intensity is proportional to the prey's source strength and 

the distance between prey and the ith honey badger. Si is the scent intensity of the prey, 

movement will be quick if the scent is strong, and conversely. It is represented by 

inverse square law (ISL) as depicted in Fig.5.6 and determined by equation (5.26) 

𝑆𝑖 = 𝑟2 (
𝐶

4𝜋(𝐷𝑖 )^
2)                 𝑟2 ∈ [0,1]                                                                (5.26) 

Where                                                  𝐶 = (𝑍𝑖 − 𝑍𝑖+1)
2 

𝐷𝑖 = 𝑍𝑝𝑟𝑒𝑦 − 𝑍𝑖 

𝐶 →  source strength 

𝐷𝑖 → distance between ith honey badger & prey     

Sphere

(prey)
C Honey 

badger

C

S

r

S/4

2r

S/9

3r

 

Fig.5.6 ISL. Si is the scent intensity; C is position of prey and  𝑟 ∈ [0,1] 

Step 3: Update density factor (𝛄) The density factor (γ) governs time-varying 

randomness to allow a seamless conversion from exploration to exploitation. Update 

density factor (𝛾) , which lowers over time to reduce randomness 

𝛾 = 𝐾 × 𝑒𝑥𝑝 (
−𝑡

𝑡𝑚𝑎𝑥
  )                           𝐾 ≥ 1                                                        (5.27) 

Where, K is constant (default value is 2) and tmax is maximum iterations count. 

Step 4: Escaping from the local solution 

The present steps, as well as the following two ones, are used in the honey badger 

algorithm to escape the local solution area. In this condition, algorithm uses a flag F 

to change the search direction and allowing agents to rigorously examine the search 

space. 

Step 5: Updating the positions of the searching agents 

As explained, the honey badger algorithm position update process (x new) is 

categorized into 2 phases: "digging phase" and "honey phase". A more detailed 
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explanation is provided below: 

Step 5.1: Digging phase. 

A honey badger digs similar to the Cardioids shape manner as depicted in Fig.5.7. 

Cardioids motion can be represented using equation (5.28). 

 

𝑍𝑛𝑒𝑤 = 𝑍𝑃𝑟𝑒𝑦 + 𝐹𝛽𝐼𝑧𝑝𝑟𝑒𝑦 + 𝐹𝛽𝛾𝐷𝑖𝑟3 × |cos(2𝜋𝑟4) × [1 − cos(2𝜋𝑟5)]|       (5.28) 

𝑟3, 𝑟4 & 𝑟5 ∈ [0,1] 

Where, 𝑍𝑃𝑟𝑒𝑦 is global best position and 𝛽 is honey badger’s ability to find food, by 

default value is 6. 

F work as a flag that changes the search location; which can be obtained using equation 

5.28. 

A honey badger's digging phase is heavily affected by three factors: Scent intensity 

(Si) of the prey 𝑍𝑃𝑟𝑒𝑦 , honey badger-prey distance (𝐷𝑖), and the decreasing operator 

(γ). Furthermore, while digging, a badger may encounter any disturbance F, allowing 

it to locate even better prey as displayed in Fig.5.7. 

prey
Honey 

Badger

 

Fig.5.7 Digging phase: Black circular line displays the prey position & blue line is 

smell intensity 

Step 5.2: Honey phase. 

A honey badger following a honey guide bird to a beehive can be represented as 

equation (5.29) 

𝑍𝑛𝑒𝑤 = 𝑍𝑃𝑟𝑒𝑦 + 𝐹𝑟7𝛾𝐷𝑖                     𝑟7 ∈ [0,1]                                                                    (5.29) 

 This study attempts to design an HBA-based PI controller that is appropriate for the 

proposed topology. Thus, mean square error (MSE) as explained in section (2.7) is 

considered as the objective function for the design process and performance 

evaluation. Honey badger optimization techniques are used and tested in this work to 

minimize error value. Fig.5.8 depicts the flowchart of the proposed algorithm. 
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Start

Set parameter N, tmax, D , β, K , upper limits and 

lower limits of state variable 

Initialize the population using 

Zi=Lbi+r1(Ubi-Lbi) ,rϵ[0,1]

Evaluate the Fobj at each position Zi and  

solve Zprey and its Fprey

Set Z(i)=Znew and fi =fnew

Evaluatenew position Znew and assign  to fnew

 for t=1:tmax

Update density factor ( γ)

 γ=Kexp(-t/tmax) 

if 

rand<1/2

Update Znew using 

Znew=Zprey+γDiFr7

(Honey phase)

If fnew ≤ fprey

No

 for i=1:N

Determine the smell intensity ( Si)

 Si=r2(C/4π(Di)^2) 

Update Znew using 

Znew=Zprey+FβIzprey+FβγDi

r3× |cos(2πr4)×[1-cos(2πr5)]|

(Digging phase)

if fnew ≤ fi

Set Zprey=Znew and 

fprey= fnew 

Yes

if

 i=N

if

 t = tmax

Generate the optimal

Kp &Ki values

No

No

Yes

Yes

No Yes

 

Fig.5.8 Flow chart of HBA optimization for obtaining the PI values 

5.4 Performance evaluation and result discussion 

This section presents a detailed performance analysis of the proposed inverter control 

techniques—ANN-PI, Cuckoo Search optimized PI (Cuckoo-PI), and Honey Badger 

Algorithm optimized PI (HBA-PI)—under various grid and load conditions. The 

effectiveness of each technique is evaluated based on system performance during 

variable linear load, variable insolation, unbalanced non-linear load, and grid voltage 

disturbance scenarios, including sag and swell conditions. 
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5.4.1 Performance evaluation and result discussion using ANN-PI Controller 

The proposed ANN controller is tested for robustness and efficacy under dynamic grid 

settings, including variable load and irradiation. The proposed algorithm has been 

developed in MATLAB and validated for power factor correction. 

The accomplishment ANN controllers are evaluated using MSE, training performance, 

fit function, error histogram, and regression analysis. MSE is the square of the average 

variance between actual and target outputs. Lower MSE values suggest a close 

connection between target and actual data, whereas zero MSE implies no errors. 

Regression (R) values indicate how closely goal and actual outputs align. An R-value 

of 1 indicates perfect proximity, whereas 0 indicates a random connection between the 

target and actual data as shown in Fig.5.9(a),5.9(b) and 5.9(c). 

 

Fig.5.9(a) Training, validation, set and all performance of the ANN controller. 

 

Fig.5.9(b) Best validation performance of ANN controller 

 

Fig5.9(c) Neural network error histogram 
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5.4.1.1 System performance under variable linear load and variable insolation 

condition 

Fig.5.10. depicts the system's performance under varying linear load and insolation 

conditions. A linear load of 11.66kVA with 0.85 lag pf (active power of 10kW and 

reactive power of 6 kVAr) is evaluated. As the solar inverter generates 12.78kW of 

power until 0.15 seconds, the solar inverter meets the active load requirement of 10kW 

and feeds the remaining 2.78kW to the power grid. At 0.15 seconds, the load demand 

is increased by 8.16kVA with a power factor of 0.85 lag pf. In this situation, the total 

active load demand is 17kW, and the reactive load need is 10.2kVAr. The solar inverter 

supplies 12.78kW power to the load, while the remaining 4.22 power is drawn from 

the grid, and the inverter meets the reactive power demand. At t=0.25sec, insolation 

reduces from 1000 W/m^2 to 700 W/m^2, resulting in a reduction in solar power 

generation to 8.5kW. The remaining 8.5kW is obtained from the grid and supplied via 

an inverter, as shown in Fig.5.10. The grid supplies zero reactive power, implying that 

the system operates in a unity power factor mode and DC bus voltage is constant.  

5.4.1.2 System performance under variable and unbalanced non-linear load 

condition 

Fig.5.11 shows system’s performance under variable nonlinear and unbalanced load 

conditions. A non-linear load (a three-phase rectifier with R=100ohm and L=120mH) 

is studied for analysis. At t=0.15s to t=0.2 sec, unbalancing of non-linear load is 

created by removing one phase, as shown in Fig.5.11. Under this circumstance, the 

suggested controller performs well by maintaining sinusoidal and balanced grid 

current and voltage at pcc (point of common coupling). At t=0.25 sec, load demand 

increases by 3.5kVA with a power factor of 0.85, resulting in a total load demand of 

6.2kW active power and 3.3kVar reactive power. Under this circumstance, the solar 

inverter supplies the load requirement while feeding surplus power to the grid. The 

inverter also supplies reactive power by maintaining the UPF mode of operation. 

 

Fig.5.10 System performance under variable linear load and insolation condition 
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Fig.5.11 System performance analysis under variable non-linear and unbalanced load 

condition 

5.4.1.3 System performance under grid voltage disturbance, sag and swell 

condition 

Fig.5.12 depicts the system's performance under grid voltage sag, swell, and voltage 

disturbance conditions. Fig.5.12 shows that voltage sag occurs from t=0.1sec to 

t=0.2sec, voltage swells at t=0.2sec to t=0.3sec, and voltage is unbalanced at t=0.3sec 

to 0. 35sec.It is evident that our system performs effectively under all three conditions 

by keeping voltage and current balanced and sinusoidal, as well as keeping the dc bus 

voltage constant.  

 

Fig.5.12 System performance under grid voltage disturbance, voltage sag and swell  
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5.4.1.4 Comparative Analysis of ANN -PI controller with PI controller 

 
Fig.5.13 Comparison of PV power output with ANN-PI controller and PI controller  

Table.5.1 Comparison of PV power Output of ANN-PI with PI controller 

Irradiation 
Time 

interval 

PI Controller 

P(kW) 

ANN-PI 

Controller P(kW) 

 

1000 W/m2 

 

(0.0s-0.6s) 
12.39 12.58 

 

700 W/m2 

 

(0.6s-1.2s) 
8.65 8.89 

 

300 W/m2 

 

(1.2s-1.8s) 
3.50 3.73 

 
Fig.5.14 Comparison of DC bus voltage with ANN-PI controller PSO-PI and PI 

controller  
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Fig.5.15(a)Total harmonic distortion of non-linear load current 

 
Fig.5.15(b)Total harmonic distortion of grid current for non-linear load  

Table.5.2 Comparison of grid current harmonics with ANN-PI and PI controller 

Parameters 
PI Controller 

(THD%) 

ANN-PI controller 

(THD %) 

Non linear load 2.56 1.84 

Non-linear 

unbalanced  load 
2.59 2.57 

Grid voltage 

unbalance 
2.44 2.39 

Voltage Sag 2.85 2.66 

Voltage swell 2.58 2.13 

 

Table.5.3 Comparison of ANN-PI with PI controller in term of performance dynamic 

 Parameter PI Controller ANN -PI controller 

Control Adaptability 
Fixed gains require 

manual tunning 

Self-learning dynamically adjusts 

control parameters 

Dynamic variation 

response 
Slow reponse Fast response 

Total harmonic 

distortion 
High  Low 

Computational 

Requirement 

Simple 

implementation 

butrequires tunning 

Complex initial computation 

 

The comparative analysis between the ANN-based PI controller and the conventional 

PI controller reveals notable performance improvements, particularly in terms of 

dynamic response and harmonic distortion reduction. As illustrated in Fig. 5.13, Fig. 
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5.14, and Table 5.1, the ANN-based controller demonstrates superior performance in 

both maximum power extraction from the solar PV system and DC bus voltage 

regulation, compared to the conventional PI controller. 

Furthermore, Fig. 5.15(a) and Fig. 5.15(b) highlight the ANN controller's effectiveness 

in significantly reducing the Total Harmonic Distortion (THD) in both the nonlinear 

load current and the grid current. The quantitative results presented in Table 5.1 and 

Table 5.2 further confirm that the ANN-PI controller consistently outperforms the 

conventional PI controller under varying solar irradiance conditions. 

At an irradiance level of 1000 W/m², the ANN-PI controller achieved a maximum 

power output of 12.58 kW, surpassing the PI controller's 12.39 kW. As irradiance 

decreased to 700 W/m², the ANN-PI still maintained a higher output of 8.89 kW 

compared to 8.65 kW from the PI controller. Under low irradiance conditions (300 

W/m²), the ANN-PI controller continued to exhibit better tracking performance, 

delivering 3.73 kW in contrast to 3.50 kW from the conventional PI controller. These 

findings demonstrate that ANN-PI enables faster and more accurate tracking of the 

maximum power point, particularly under dynamic situations, while moderate 

improvement over the standard PI controller. 

Table 5.2 presents the Total Harmonic Distortion (THD) values for two control 

strategies—conventional PI and ANN-PI controllers—under a range of operating 

conditions. The results clearly indicate that the ANN-PI controller consistently 

achieves lower THD levels, highlighting its enhanced capability in managing 

harmonic distortion. Under nonlinear load conditions, the ANN-PI controller achieves 

a THD of 1.84%, compared to 2.56% for the conventional PI controller. 

Furthermore, even under more challenging conditions such as nonlinear unbalanced 

loads and grid voltage unbalance, the ANN-PI controller maintains competitive THD 

performance, underscoring its robustness and adaptability. In scenarios involving 

voltage sag and swell, the ANN-PI controller again outperforms the conventional PI 

controller, achieving THD values of 2.66% and 2.13%, respectively, as opposed to 

2.85% and 2.58% observed with the PI controller. 

These results collectively demonstrate that the ANN-PI control strategy offers 

improved harmonic suppression and dynamic performance, making it a more effective 

and reliable alternative for grid-connected solar PV systems operating under a wide 

range of normal and abnormal grid conditions. 

Table 5.2 further illustrates the advantages of the ANN controller over the 

conventional PI controller. While the PI controller relies on fixed gains that require 

manual tuning, ANN controller exhibits self-learning capabilities, dynamically 

adjusting its control parameters for enhanced adaptability. Additionally, the ANN 

controller responds faster to dynamic variations, whereas the PI controller exhibits a 

slower response due to its fixed control structure. The ANN controller also ensures 

lower total harmonic distortion compared to the PI controller, enhancing overall power 

quality. However, despite these benefits, the ANN controller involves higher 

computational complexity during initial implementation, whereas the PI controller is 
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simpler to implement but demands periodic tuning for optimal performance. 

Overall, the ANN-based controller demonstrates superior performance in terms of 

adaptability, harmonic reduction, and response time, making it a more effective 

solution for enhancing microgrid stability and power quality. 

5.4.2 Performance evaluation and result discussion using CSO-PI Controller 

To examine the proficiencies of the presented CSO technique, different loads and grid 

conditions are taken into consideration. The presented control technique is tested in 

power factor correction mode. System simulation parameters are listed in Appendix. 

Output response of all the quantities such as voltage at PCC(Vpcc), load current (Il), 

DC bus voltage (VDC) grid current (Ig), inverter current (Iinv) and real and reactive 

power sharing among power grid, Inverter and load are studied. 

5.4.2.1  System performance under variable Linear load demand at different 

insolation condition 

 

 

Fig.5.16. Waveforms of variable linear load with insolation variation 

In this case, performance of the system for variable linear load and variable insolation 

are analyzed as shown in Fig 5.16. PV generate 12.78kW active power at 1000W/m2 

insolation. From t=0.0s -0.15s load demand is 11.22kVA with 0.80 lagging pf 
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(P=9kW, Q=6.7kVAR). From Fig.5.16 it can be seen that grid current and voltage at 

PCC are sinusoidal and balanced. Active load demand is supplied by PV and excess 

power (3.78kW) is given to the grid. Reactive power requirement of the load is fulfilled 

by VSI and hence grid operates in UPF mode.  It can also be noticed that grid current 

and voltage at PCC are out of phase which means power is supplied to the grid. DC 

voltage is maintained at 750V. At t=0.15s an extra load of 11.22kVA with 0.80 lagging 

pf is added, total load demand becomes P=18kW & Q=13.4kVAR Under this situation 

also grid current is balanced and sinusoidal. In this case PV supply 12.78kW active 

powers, grid supply 5.22kW deficit power of the load, inverter fulfill the reactive 

power demand of the load and grid operates in UPF mode.  

At t=0.3s insolation is reduced from 1000W/m2 to 400W/m2 it reduces power 

generation of SPV from 12.78kW to 4. 9kW.Under this condition deficit load demand 

(13.1kW) is supplied by the grid. Also, it can be noticed from the figure.8 under 

varying load and insolation condition, grid current remain sinusoidal and balanced. 

DC bus voltage is regulated at 750V and system operates at UPF mode by CSO- PI 

controller under all the conditions. 

5.4.2.2 System performance under variable nonlinear load demand at different 

insolation  

In this case, CSO control technique is examined for variable nonlinear load (3phase 

rectifier with R=200Ω & L=100mH) and variable insolation condition whose 

waveform is as shown in Fig 5.17.  PV generates 12.78kW active power at 1000W/m2 

insolation and the power load demand from t=0.0s-0.15s is 1.6kW which is supplied 

by PV. Grid current is balanced and sinusoidal in this situation. DC voltage is 

maintained at 750V. The excess power generated (11.181 kW) is given to the utility. 

Voltage at PCC and grid current   are out of phase showing power is given to the utility. 

At t=0.15s an extra load of 11.22kVA, 0.80 lagging pf (9kW, 6.7kVAR) is added to 

the load. Grid current is balanced and sinusoidal under this condition as well. The 

active load demand is 10.6 kW which is accomplished by PV and extra power is given 

to the power grid (2.18kW) as shown in Fig.5.17 Reactive load demand is 

accomplished. 

At t=0.3 s, insolation is reduced from 1000W/m2 to 400W/m2. As the insolation is 

reduced, the real power generated by the PV drop from 12.78 kW to 4.9kW. But grid 

current is maintained sinusoidal and balanced. Deficit load demand (5.7 kW) is 

taken from the power grid. Under dynamic condition, the reactive power load demand 

is fulfilled by inverter. Also, DC voltage is regulated at 750V by CSO based PI 

controller. 
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Fig 5.17 Waveforms of variable nonlinear load with insolation variation  

5.4.2.3 System performance under non-linear unbalanced load condition 

In this particular case performance analysis of a non-linear load at unbalanced load 

conditions are examined as shown in Fig 5.18 shows the system's response under 

unbalanced load condition when one line/phase of the non-linear load is disconnected 

for time interval t= 0.1s-0.3s. In this case it can be noted voltage at PCC and grid 

current are out of phase indicating that excess power produced by PV is given to the 

power grid. Under these cases, the presented CSO technique performs competently. 

Also, under unbalancing load condition grid currents is balanced and sinusoidal and 

DC voltage is regulated at 750V by CSO - PI controller. Further for unbalanced load 

condition FFT (fast Fourier transform) analysis is done for validating the harmonic 

reduction of the system using presented CSO technique. From the waveforms it can be 

seen that for nonlinear unbalanced load THD is 15.86% whereas grid current has 

2.55% THD as shown in Fig 5.19(a) and 5.19(b), signify that the presented CSO 

technique works well for harmonic diminution under unbalanced non-linear load 

condition. 
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Fig. 5.18. Waveforms of non-linear load under unbalanced load condition 

 

Fig. 5.19(a). THD of load current for non –linear unbalanced load    

 
Fig 5.19(b). THD of grid current for non-linear unbalanced load 

5.4.2.4 System performance uner non-linear load with unbalanced grid voltage 

condition 

In case of unbalanced grid voltage condition for nonlinear load system performance 

has been examined as shown in fig 5.20 Grid voltage unbalancing is done at t= 0.2s by 

decreasing the phase 'b' voltage to 364V and increasing the phase 'c’ to 450V.from the 

figure we can observed that even for grid unbalancing condition grid current and 

voltage at PCC are balanced and sinusoidal. Also, DC voltage is regulated at 750V by 

CSO based PI controller. Further for unbalanced grid condition FFT analysis has been 

done for validating the harmonic reduction of the system using presented CSO 

technique. From the graph it can be seen that for nonlinear unbalanced grid condition, 

load is THD is 31.47% whereas grid current has 2.27% THD as shown in Fig 5.21(a) 
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& 5.21(b), signify that the presented CSO technique works well for harmonic 

diminution for unbalanced non-linear load condition. 

Fig 5.20. Waveforms of non-linear load under unbalanced grid voltage condition 

 

Fig. 5.21(a). THD of load current for non –linear load under unbalanced grid voltage 

 

Fig. 5.21(b). THD of grid current for non –linear load under unbalanced grid voltage         

5.4.2.5 System performance of nonlinear load for grid voltage sag and swell 

condition 

System performance of nonlinear load for grid voltage sag and swell condition using 

CSO technique are examined as depicted in Fig.5.22. Voltage sag is initiated for time 

period t=0.1s-0.25s and voltage swell is initiated for time period t=0.25-0.4sec from 

the figure it can be noticed that voltage sag reduces load current and voltage swell 

increases load current even in this dynamic situation grid current is found to be 

sinusoidal and balanced. Also, DC bus voltage is regulated at 750Vusing presented 

CSO-PI controller. 
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Fig.5.22. Waveforms of non-linear load under grid voltage sag and swell condition 

5.4.2.6 Comparison analysis of proposed CSO-PI technique with PSO-PI and PI 

controller in term of total harmonics distortions 

System performance of presented CSO control technique has been compared with PI 

controller and PSO- PI controller under aforementioned cases considered viz non-

linear load, unbalanced load and different grid voltage condition and the result are as 

shown in Table 5.4. It has been observed that, CSO-PI controller is able to achieve less 

THD in grid current as compared to PSO -PI, and PI controller. 

Table 5.4 Comparison of CSO- PI controller with PSO- PI controller and PI controller 

for grid current harmonics 

Control 

Technique 

Non-linear 

balanced 

load 

Non-linear 

unbalance 

load 

Grid voltage 

unbalance 

Grid voltage 

sag 

Grid 

voltage 

swell 

PI controller 2.37% 3.38% 3.66% 2.93% 2.74% 

PSO - PI 

Controller 

2.18% 2.67% 2.58% 1.22% 2.41% 

CSO - PI 

Controller 

2.09% 2.55% 2.27% 1.02% 2.05% 

 

5.4.2.7 Comparison analysis of proposed CSO-PI technique with PSO-PI and PI 

controller in term of performances indices 

Further, performance indices of CSO-PI, PSO-PI and conventional PI under different 

load condition has been calculated and the results for the nonlinear load are mentioned 

in Table 5.5. From Table 5.5 it can be seen that value of performance indices for CSO-

PI is less as compared to PSO- PI controller and PI controller respectively. So, from 

Table 5.5 it is clear that presented CSO technique gives better performance indices as 

compared to the other technique. Thus, justification for adopting CSO - PI controller 

is established. 
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Table 5.5 Comparison of different technique based on performance indices 

Control Technique MSE MAE RMSE 

PI controller 5.11 3.86 2.26 

PSO - PI Controller 4.44 2.11 2.107 

CSO - PI Controller 2.88 1.69 1.697 

 

5.4.2.8 Comparison analysis of proposed CSO-PI technique with PSO-PI and PI 

controller in term of maximum power point tracking and DC bus voltage 

regulation 

Fig 5.23. shows the maximum power tracking of a SPV module under different 

irradiation circumstances. Table 5.6 displays the variation in the SPV module's 

irradiation level during the specified period. Table 5.6 and Fig.5.23 make this obvious. 

In addition to other control strategies that have been presented, CSO-PI controllers 

with CSO MPPT track maximum power. Furthermore, Fig .5.24 and Table 5.7 display 

the DC bus voltage response for the CSO-PI, PI-PSO, and PI Controller for nonlinear 

load. Fig.5.23 illustrates that there is an initial overshoot in every situation, whereas 

the CSO-PI controller has the least amount of undershoot. The CSO-PI controller 

outperforms the PI controller and PI-PSO in every irradiation scenario. 

 

Fig 5.23. Comparison of maximum power obtained using different control algorithm 

 

 

 



130 

 

 

Table 5.6 Comparison analysis of maximum power obtained using different control 

algorithm 

S.No Irradiation Time PI 

Controller 

 PSO-PI 

controller 

CSO-PI 

Controller 

P(kW) P(kW) P(kW) 

1. 1000W/m2 0.0s-1. s 12.53 12.55 12.68 

2. 700W/m2 1.0s-2.0s 8.72 8.86 8.90 

3. 400W/m2 2.0s-0.3s 4.93 4.94 5.18 

 

 

Fig 5.24. Comparison of DC bus voltage regulation using different control algorithm  

Table 5.7 Comparison analysis of DC bus voltage obtained using different control 

algorithm  

 

Control 

Algorithm 

Overshoot Undershoot DC Voltage(V) 

PI controller Initially 

Present 

  20V 750 

PSO-PI controller Initially 

Present 

  10V 750 

CSO-PI 

controller 

Initially 

present 

   4V 750 
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5.4.3 Performance evaluation and result discussion using proposed HBA-PI 

Controller 

In this section, HBA algorithm’s performance is evaluated for controlling DC link 

voltage of a grid connected solar photovoltaic system under linear/nonlinear 

(balance/unbalanced) load and grid voltage sag & swell conditions in steady and 

dynamic states. To ensure the efficacy of proposed algorithm, IEEE global standard is 

taken into the consideration for total harmonics distortion of grid current at the point 

of common coupling 

5.4.3.1 System response under linear load and irradiation variation  

Steady state behavior of grid connected SPV system using HBA control algorithm has 

been shown in Fig.5.25 Waveform of all the parameter such as voltage at PCC(Vpcc), 

grid current (Igrid), inverter current (Iinv), load current (Iload), DC bus voltage (VDC) and 

real and reactive power sharing among utility grid, VSI and load are examined under 

varying atmospheric & load condition. 

 

Fig.5.25 Waveform under linear load and irradiation variation 

A linear load of 14.14 kVA, 0.71 lag pf is connected at point of common coupling 

(PCC). Solar photovoltaic system generates 12.78kW power and the active power 

demand of load is 10kW. The excess power (2.78 kW) is given to the utility grid.  

Reactive power demand of the load is 10kVA which is fulfilled by inverter which 

means grid operates in Unity power factor (UPF) mode. From Fig.5.25 it can be 

observed that grid current and voltage at PCC are sinusoidal and balanced. At 

t=0.15sec, an extra load of 6.7kVA 0.89pf (6kW, 3kVAR) is attached to the existing 

load. Now, the real power demand of load is 16kW which is provided by both inverter 

(12.78kW) and grid (3.22kW) and reactive power is fulfilled by inverter hence grid 

operate in UPF mode as depicted in fig.5.25.  At t=0.3 sec, irradiation is dropped from 

1000W/m2 to 300W/m2. As the irradiation level drop, the real power produced by the 

PV falls from 12.78 kW to 3.65 kW.  Deficit power (12.35 kW) is therefore taken from 
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the grid. Even with changes in irradiation, the reactive power supplied by utility grid 

is zero demonstrating grid is working in UPF mode. Despite changes in load and 

irradiation, the grid current is balanced and sinusoidal. Also, DC link voltage is 

maintained at 750V. 

5.4.3.2 System response under non-linear load and irradiation variation  

In this section, HBA control algorithm is tested for nonlinear load (3-ɸ rectifier with 

R=200Ω and L=100mH) is attached at the PCC as shown in Fig.5.26. Solar 

photovoltaic system generates 12.78kW power and the real power demand of load is 

1.6kW. The excess power (11.18 kW) is supplied to the grid. Vpcc and Igrid   are out of 

phase shows that power is supplied to the utility grid. From fig.5.26 it can be notice 

that grid current and voltage at PCC are sinusoidal and balanced. DC voltage is 

maintained at 750V. At t=0.15sec, an extra load of 6.7kVA, 0.89 lagging pf (6kW, 

3kVAR) is attached to the load. Now, the real power requirement of load is 7.6kW 

which is provided by VSI (7.6kW) and excess power is fed to the grid (5.18kW) as 

depicted in Fig.5.26. Reactive power demand of load is satisfied by voltage source 

inverter hence grid operates in UPF mode. At t=0.3 sec, irradiation is dropped from 

1000W/m2 to 300W/m2. As the irradiation level drop, the real power produced by the 

PV falls from 12.78 kW to 3.65 kW. Deficit power (3.95 kW) is therefore taken from 

the grid. Even with changes in irradiation, the reactive power taken from the utility 

grid is zero demonstrating that system is working under UPF mode. Despite changes 

in load and irradiation, the grid currents remain balanced and sinusoidal. Fig 5.27(a) 

& 5.27(b) depicts the THD of Igrid and Iload,. The load current has 30.44% THD, 

whereas the grid current has only 1.07% THD, demonstrating that the proposed honey 

badger control algorithm works well for mitigating the harmonics along with 

maintaining VDC at 750V. 

 

Fig.5.26 Waveform under nonlinear load variation and irradiation variation 
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Fig.5.27 (a) THD of 𝐼𝑙𝑜𝑎𝑑 for non -linear load                     

 
 Fig.5.27 (b) THD of for 𝐼𝑔𝑟𝑖𝑑 non-linear load 

 

5.4.3.3 System response under non-linear unbalanced load condition 

  Fig.5.28 depict the system's behavior under unbalanced load when one line/phase of 

the nonlinear load (3-ɸ bridge rectifier with R=200Ω, L=100mH is out for time period 

t= 0.1-0.3 sec. It can be seen that in nonlinear Vpcc  and Igrid   are out of phase showing 

that extra power generated by SPV is supplied to the grid. Under these conditions, the 

proposed honey badger algorithm performs satisfactorily. Also, It can be observed 

from Fig.5.28 grid current and voltage at PCC is sinusoidal and balanced. DC bus 

voltage is maintained at 750V. The load current of nonlinear load has 32.52% THD, 

whereas the grid current has only 2.41% THD as depicted in Fig. 5.29(a) and 5.29(b), 

demonstrating that the presented honey badger algorithm works well for harmonic 

mitigation if one line / phase is out of non-linear load. 

 

Fig.5.28 Waveform under nonlinear unbalance load variation  
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Fig.5.29 (a) THD of 𝐼𝑙𝑜𝑎𝑑 under non - linear unbalanced load condition 

 
Fig.5.29(b) THD of𝐼𝑔𝑟𝑖𝑑 for nonlinear unbalance load condition 

 

5.4.3.4 System response under unbalanced grid condition 

Unbalance grid condition basically occurs when three phase voltages differ in 

amplitude which adversely affect the performance of the system. Simulation result of 

honey badger algorithm for grid unbalance condition with non- linear load (3-ɸ bridge 

rectifier with R=200 Ω , L=100mH) is as shown in Fig.5.30 Grid unbalancing is 

produced at t= 0.15sec by lowering the phase 'b' voltage to 364V and raising the phase 

'c' value to 450V. From the figure it can be observed that even for grid unbalancing 

condition 𝐼𝑔𝑟𝑖𝑑 and 𝑉𝑝𝑐𝑐 found to be sinusoidal. DC bus voltage is maintained at 750V. 

 

Fig.5.30 Waveform under unbalance grid condition 
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5.4.3.5 System response under grid voltage sag and voltage swell condition 

Simulation results for voltage sag and swell condition of grid connected SPV system 

using honey badger algorithm is as shown in Fig.5.31. Voltage sag is created for time 

interval t=0.2-0.3sec and voltage swell is created for time interval t=0.3-0.4sec from 

the figure it can be noted that voltage sag reduces load current and voltage swell raises 

load current. Even in this dynamic situation 𝐼𝑔𝑟𝑖𝑑 is found to be sinusoidal and 

balanced. Also, DC bus voltage is maintained at 750V. 

 
Fig.5.31 Waveform under grid voltage sag and swell condition 

 

5.4.3.6 Comparison of proposed HBA-PI with PSO-PI and PI controller for grid 

current harmonics  

Fig.5.32 (a), 5.32 (b), 5.32(c) and 5.32(d) depicts the THD spectra of load current 

(𝐼𝑙𝑜𝑎𝑑) and grid current (𝐼𝑔𝑟𝑖𝑑) using different algorithm respectively for non linear 

load. These results represent 30.44% THD in load current, whereas grid current 

contains 1.66% THD using the PI controller 1.29%   using PSO based PI controller 

and only 1.07% using HBA based PI controller for grid connected SPV systems. 

Similarly for other grid and load condition analysis has been done and the results are 

as shown in Table. 5.8. Hence, based on the above assessment it can be observed that 

the grid tied SPV system using HBA based PI controller is able to achieve less THD 

in grid current as compared to PSO based PI, and PI controller.  
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  Fig. 5.32(a) THD of 𝐼𝑙𝑜𝑎𝑑for non linear load                    

 
Fig. 5.32(b) THD of 𝐼𝑔𝑟𝑖𝑑 for non- linear load   using PI controller 

 
Fig.5.32(c) THD of 𝐼𝑔𝑟𝑖𝑑 for non-linear load using PSO-PI    

 
Fig.5.32(d) THD of 𝐼𝑔𝑟𝑖𝑑 for non linear load using HBA-PI  
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Table 5.8. Comparison of HBA - PI controller with PSO - PI controller & PI controller 

for THD in current 

S.No Control  

Algorithm 

Non-

linear  

load 

Non-linear  

Unbalanced 

load 

Grid 

voltage 

unbalance 

Grid 

voltage  

sag 

Grid 

voltage 

swell 

1. PI controller 1.66% 3.38% 3.67% 2.95% 2.73% 

2. PSO-PI 

controller  

1.29% 2.50% 2.02% 1.21% 1.52% 

3. HBA-PI 

controller  

1.07% 2.41% 1.14% 1.00% 1.11% 

 

5.4.3.7 Transient analysis of PV output at different irradiation for nonlinear load 

with HBA- PI, PSO- PI and PI controller 

The transient response and maximum power tracking of a solar PV module under 

various irradiation conditions are shown in Fig.5.33. Table.5.9 displays the variation 

in the solar PV module's irradiation level over the specified time period. It is evident 

from Fig.5.33 and Table .5.9. HBA-PI controllers track more power and have shorter 

settling times than PSO-PI controllers and PI controllers. 

 

Fig.5.33 Transient response of INC MPPT technique at different irradiation using PI 

controller, PSO- PI controller and HBA- PI controller  
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Table 5.9.  Comparison of INC MPPT technique at different irradiation using PI 

controller, PSO-PI controller and HBA-PI controller 

S.No Irradiation Time 

PI Controller 

 

PSO-PI 

controller 

HBA-PI 

Controller 

P(kW) 
Settling 

time(s) 
P(kW) 

Settling 

time(s) 
P(kW) 

Settling 

time(s) 

1. 1000W/m2 
0.0s-

1.0s 
12.49 0.30 12.5 0.27 12.72 0.27 

2. 700W/m2 
1.0s-

2.0s 
8.67 0.26 8.71 0.13 8.94 0.13 

3. 300W/m2 
2.0s-

3.0s 
3.67 0.22 3.73 0.12 3.80 0.12 

 

5.4.3.8 Transient analysis of DC link voltage for nonlinear load with HBA -PI, 

PSO - PI and PI controller 

The DC link voltage response for the PI-HBA, PI-PSO, and PI Controller for nonlinear 

load is shown in Fig.5.34 and Table.5.10 Overshoots and settling time are maximum 

in the case of the PI controller, as shown in graph. Even though the PI-PSO algorithm 

reduces overshoots, the settling time is still larger in this case. In comparison to the PI 

controller and PI-PSO, the honey badger algorithm produces fewer overshoots and has 

a shorter settling time. 

 

Fig.5.34 Response of DC bus voltage for non-linear load with HBA based PI, PSO 

based PI & PI controller 
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Table.5.10 Transient analysis of DC link voltage for nonlinear load with PI, PSO -PI 

and HBA-PI controller on different irradiation 

Control 

Algorithm 

Settling 

time 

Overshoot Undershoot DC 

Voltage(V) 

PI controller 28ms 27.46% Absent 748 

PSO-PI 

controller 

25ms 11.76% Absent 747 

HBA-PI 

controller 

23ms 11.52% Absent 750 

 

5.4.3.9 Comparison of PI controller with PSO- PI and HBA-PI controller based 

on performance indices and time complexity 

Table.5.11 shows the performance indices and Table.5.12 shows the gain value and 

time complexity of PI-controller, PSO-PI controller and HBA-PI controller. 

Convergence curve of presented HBA algorithm is as shown in Fig.5.35. From 

Table.5.11 it is clear that presented HBA technique provide less error than other two 

technique which means HBA gives better performance indices as compared to the PSO 

and PI technique. Thus, justification for adopting HBA for PI controller is established. 

Table 5.11 Comparison of PI controller with PSO- PI and HBA-PI controller based on 

performance indices 

Control Algorithm MSE MAE RMSE 

PI controller 4.53 2.13 2.13 

PSO-PI controller 3.34 1.83 1.82 

HBA-PI controller 2.11 1.45 1.45 

Iterations

Co
st

 fu
nc

tio
n

 

Fig5.35 Convergence curve of proposed HBA algorithm 
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  Table.5.12 Gain value and Time complexity of PI , PSO-PI and HBA –PI controller 

Controller Gain value of of PI 

controller 

Time 

complexity 

(sec) Kp Ki 

PI controller 0.5 3.0 - 

PSO-PI controller 0.7948 0.9484 2.583 

HBA-PI controller 0.005 0.03 1.850 

 

5.4.3.10 Stability Analysis 

The voltage and current loop of the controller is initially linearized to develop the 

transfer function represented in the equations below in order to analyze the controller 

stability of the system. The voltage control loop comprises a PI controller with gain 

values Kp and Ki, while Cf represents the filter's capacitance. The current loop 

contains a hysteresis block, Ts is the inverter's half-switching time period, Lf 

represents filter inductance, and Rf is the filter's series resistance value.  Fig.5.36 

shows a full cascaded current and voltage loop, and Fig.5.37 shows a Bode plot with 

comments on the stability of the proposed controller. Table.5.13 illustrates the 

controller parameters and performance characteristics of proposed HBA controller 

Fig.5.37 shows that the closed loop system is stable because both the phase margin 

and the gain margin are positive and phase margin is greater than gain margin. The 

value of phase margin is equal to 600 at gain crossover frequency 302.84Hz and the 

gain margin is equal to 39.4dB at phase crossover frequency 5.1 kHz.    

 

Fig.5.36 Block diagram of Linearized proposed controller 

Considering Ig=0, Transfer function of the system is expressed as follows, by 

equationn-(5.30)-(5.354) 

𝐺(𝑠) =
1

𝐿𝑓𝑇𝑠(𝑠)
2+(𝐿𝑓+𝑇𝑠𝑅𝑓)𝑠+𝑅𝑓

                                                                                   (5.30) 

 

𝐻(𝑠) = (
𝐺(𝑠)

1+𝐺(𝑠)
) ∗

1

𝐶𝑓(𝑠)
                                                                                         (5.31) 

𝐻(𝑠) =
1

𝐿𝑓𝐶𝑓𝑇𝑠𝑠
3+(𝐿𝑓𝐶𝑓+𝑇𝑠𝑅𝑓𝐶𝑓)𝑠

2+(𝑅𝑓𝐶𝑓+𝐶𝑓)𝑠
                                                           (5.32) 

𝑋4 = (𝐾𝑝 +
𝐾𝑖

𝑠
) (𝑉𝑑 − 𝑋2 )                                                                                     (5.33)  
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𝑇. 𝐹 =  
𝑋2(𝑠)

𝑉𝑑(𝑠)
=

𝐾𝑝𝑠+𝐾𝑖

𝐿𝑓𝐶𝑓𝑇𝑠𝑠
4+(𝐿𝑓𝐶𝑓+𝑇𝑠𝑅𝑓𝐶𝑓)𝑠

3+(𝑅𝑓𝐶𝑓+𝐶𝑓)𝑠
2+𝐾𝑝𝑠+𝐾𝑖

                                 (5.34)

 

 

Fig.5.37 Stability analysis of controller through Bode plot 

 Table.5.13 Controller Parameters and performance characteristics of proposed HBA 

controller 

S.No Parameters Tuned Block 

1. Kp 0.004983 0.005 

2. Ki 0.048038 0.03 

3. Gain margin 39.4dB@817rad/s 39.6dB@828rad/s 

4. Phase margin 60deg@48.2rad/s 64.3deg@47.9rad/s 

5. Closed loop 

stability 

Stable Stable 

 

5.5 COMPARISON OF ANN-PI, CSO-PI and HBA-PI CONTROLLER 

Under different operating situations, the relative performance of ANN-PI, CSO-PI, 

and HBA-PI controllers has been examined in terms of photovoltaic (PV) power output 

and grid current harmonics. The HBA-PI controller continuously produces the 

maximum PV power output at all irradiance levels, as seen in Table 5.14. The HBA-

PI controller reaches 12.72 kW at full irradiance (1000 W/m2), which is marginally 

more than the CSO-PI (12.68 kW) and ANN-PI (12.58 kW) controllers. Similarly, the 

HBA-PI controller performs better with 8.94 kW and 3.80 kW output under medium 

(700 W/m2) and low (300 W/m2) irradiation circumstances. This shows how well the 

HBA-PI controller maximizes the PV system's power extraction under various 

conditions. 

In terms of power quality, Table 5.15 compares the grid current harmonics of each 

controller during various grid disturbances. The HBA-PI controller has the lowest total 

harmonic distortion in practically all circumstances, achieving 1.07% under non-linear 

load, 2.41% under non-linear unbalanced load, and much lower values under grid 

disturbances such as voltage unbalance (1.14%), sag (1.0%), and swell (1.11%). In 
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contrast, the ANN-PI and CSO-PI controllers produce greater harmonic levels, with 

the ANN-PI reaching up to 2.66% under voltage sag and the CSO-PI peaking at 2.55% 

under non-linear unbalanced load. These results demonstrate the HBA-PI controller's 

superior dynamic response and harmonic suppression capacity, making it a more 

robust and efficient solution for improving power extraction and quality in grid-

integrated PV systems. 

 

Table.5.14 Comparison of ANN-PI, CSO-PI and HBA-PI controller in term of PV 

power output 

S.No Irradiation ANN-PI 

Controller 

 CSO-PI 

controller 

HBA-PI 

Controller 

P(kW) P(kW) P(kW) 

1. 1000W/m2 12.58 12.68 12.72 

2. 700W/m2 8.89 8.90 8.94 

3. 300W/m2 3.73 3.76 3.80 

 

Table.5.15 Comparison of ANN-PI, CSO-PI and HBA-PI controller in term of grid 

current harmonics  

S.N

o 

Control  

Algorith

m 

Non-

linear  

load 

Non-linear  

Unbalanced 

load 

Grid 

voltage 

unbalance 

Grid 

voltage  

sag 

Grid 

voltage 

swell 

1. ANN-PI 

controller 

1.84% 2.57% 2.39% 2.66% 2.13% 

2. CSO-PI 

controller  

2.09% 2.55% 2.27% 1.02% 2.05% 

3. HBA-PI 

controller  

1.07% 2.41% 1.14% 1.00% 1.11% 

 

5.6 COMPARISION OF HLO-ANN MPPT WITH HBA-PI, CSO-PI AND ANN-

PI   

In this section, the proposed HLO-ANN MPPT technique and the HBA-PI inverter 

controller are thoroughly compared to other PI-based control strategies, particularly 

the CSO-PI and ANN-PI controllers. Since both HLO-ANN MPPT and HBA-PI are 

novel approaches in this research, the goal of this comparison is to assess their overall 

efficacy and show how the proposed control approach performs better under different 

operating circumstances. To confirm the superiority of the developed approaches, key 

performance metrics such transient responsiveness, grid current harmonics and MPPT 

efficiency are analysed. 
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Table.5.16 Comparison of HLO-ANN MPPT with ANN-PI, CSO-PI and HBA-PI 

controller in term of grid current harmonics  

S.No Control  

Algorithm 

Non-

linear  

load 

Non-linear  

Unbalanced 

load 

Grid 

voltage 

unbalance 

Grid 

voltage  

sag 

Grid 

voltage 

swell 

1. ANN-PI 

controller 

1.80% 2.53% 2.33% 2.64% 2.11% 

2. CSO-PI 

controller  

2.01% 2.49% 2.22% 1.00% 2.01% 

3. HBA-PI 

controller  

1.03% 2.37% 1.11% 1.00% 1.10% 

 

Table.5.17 Comparison of HLO-ANN MPPT with ANN-PI, CSO-PI and HBA-PI 

controller in term of maximum power point tracking 

S.No Irradiation ANN-PI 

Controller 

 CSO-PI 

controller 

HBA-PI 

Controller 

P(kW) P(kW) P(kW) 

1. 1000W/m2 12.60 12.69 12.73 

2. 700W/m2 8.88 8.91 8.94 

3. 300W/m2 3.73 3.78 3.81 

 

5.7 CONCLUDING REMARKS 

This chapter thoroughly investigate the inverter control strategies for grid-integrated 

solar PV-based microgrids, emphasizing performance enhancement through advanced 

PI controller configurations. The results demonstrate that the proposed HBA-based PI 

controller significantly outperforms both the CSO-PI and ANN-PI controllers in 

improving the overall performance of grid-connected solar photovoltaic systems. 

Specifically, the HBA-PI controller achieves superior voltage regulation, effective 

reduction of total harmonic distortion (THD) well below the IEEE standard limit of 

5%, and enhanced dynamic response across varying input, load, and grid conditions. 

Even though CSO-PI improves upon conventional and ANN-PI adds adaptability via 

self-learning and quicker response, HBA-based control ultimately delivers the highest 

efficiency and robustness. Moreover, the system consistently maintains unity power 

factor (UPF) operation, ensuring optimal power quality and grid stability. These 

findings establish the HBA-PI controller as the most effective solution for power 

quality enhancement, system stability, and maximum power point tracking in grid-

integrated solar PV systems. 
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CHAPTER-6 

 ISLANDING DETECTION TECHNIQUE FOR GRID-INTEGRATED 

PV BASED MICROGRID 

6.1 INTRODUCTION 

As renewable energy sources, especially solar photovoltaic (PV) systems, become 

more prevalent in modern power networks, the idea of microgrids has become 

increasingly popular. While facilitating the shift to low-carbon energy systems, 

microgrids provide increased energy efficiency, better power quality, and greater 

flexibility. There are two main modes of operation for these systems: islanded and 

grid-connected. The issue of unintentional islanding, which occurs when a distributed 

generation (DG) unit keeps supplying electricity to a portion of the grid after 

disconnecting from the utility, is one of the most significant technical challenges in 

grid-connected operation. The safety of people, equipment protection, voltage and 

frequency stability, and the dependability of the entire power system are all seriously 

threatened by unintentional islanding. Thus, quick, precise, and trustworthy islanding 

detection technologies are necessary to ensure the safe and robust operation of grid-

connected photovoltaic systems. 

An extensive review of existing islanding detection techniques, encompassing both 

classical and modern approaches, is presented in Section 2.5 of Chapter 2. 

This chapter presents a passive islanding detection technique (IDT) which is based on 

voltage ripple content at the point of common coupling (PCC) for grid integrated solar 

photovoltaic (SPV) system. While conventional passive detection techniques are 

commonly employed, they are not particularly effective at identifying islanding, 

especially when a minimal power mismatch exists. Furthermore, they may produce 

false detection in certain instances that are not islands. If islanding is not detected 

quickly, it may result in extremely hazardous and adverse situations. Passive detection 

techniques rely on power system parameters and might fail to detect islanding in 

certain scenarios. This chapter presents an efficient passive islanding detection 

approach for grid-integrated solar PV system. This technique employs time-domain 

spectral analysis to monitor the ripple component of the voltage source inverter (VSI) 

voltage at the PCC and identify discrepancies. 

 

6.2 SYSTEM DISCRIPTION 

In this study a grid connected solar PV based microgrid based on the UL1741 test 

system is used for the study as depicted in Fig 6.1.[149] As per UL 1741, the RLC load 

at PCC has a quality factor of 2 and is set to the resonance frequency of 50 ± 0.1 Hz. 

The load is expressed as a pure resistance(R), with a frequency of 50 Hz. This 

resistance has been adjusted so that it can absorb the rated power of the distributed 

generator module at the PCC voltage. Quality factor (𝑄𝑓) and impedance are 

represented in the following manner: 
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|𝑍| =
1

√(
1

𝑅2
)+((

1

𝑤𝐿
)−𝑤𝐶)

2
                                                                                                (6.1) 

|𝑍| =
𝑅

√1+𝑄𝑓
2((

𝑓0
𝑓
)−(

𝑓

𝑓0
))

2
                                                                                          (6.2) 

𝑄𝑓 = 𝑅√
𝐶

𝐿
                                                                                                                (6.3) 

In this study, distributed generation operates in unity power factor (UPF). Relationship 

between the PCC voltage ( 𝑉𝑝𝑐𝑐 ) and power are represented by equation 6.4 & 6.5. 

𝑃𝑙 = 𝑃𝑖𝑛𝑣 + ∆𝑃  =
𝑉𝑃𝐶𝐶

2

𝑅
                                                                                         (6.4) 

𝑄𝑙 = 𝑄𝑖𝑛𝑣 + ∆𝑄  = 𝑉𝑃𝐶𝐶
2 (

1

𝑤𝐿
− 𝑤𝐶)                                                                  (6.5) 

When the switch is closed, load (𝑃𝑙 , 𝑄𝑙) is fulfilled by the solar PV (𝑃𝑖𝑛𝑣, 𝑄𝑖𝑛𝑣) and 

the grid (∆𝑃, ∆𝑄). Conversely, when the switch is open, the grid is isolated, creating a 

potential islanded zone that could result in hazardous operating conditions and serious 

power quality issues for the PV inverter and the RLC load. 

 

Fig.6.1 Schematic diagram of proposed model 

 

6.3 VOLTAGE RIPPLE BASED ISLANDING DETECTION 

Based on voltage ripples, the islanding detection technique is a computationally 

powerful passive technique that may be easily implemented in the inverter circuitry by 

observing the time domain spectrum content of voltage ripples [18]-[19]. Dead time 

effect, ripples in the DC link voltage, and high frequency switching in DG inverters 

leads to harmonic production. (𝑉𝑝𝑐𝑐). Since grid voltage (𝑉𝑔)  and load power (𝑃𝑙) are 

regarded as constants, any power fluctuation in 𝑃𝑖𝑛𝑣 is instantly reflected in 𝑉𝑝𝑐𝑐. The 

DG unit have potential to meeting the load requirement in the case of zero power 
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mismatch (𝑃𝑖𝑛𝑣=𝑃𝑙). As a result, this is regarded as the worst scenario in this research 

since traditional passive techniques cannot identify islanding in this situation. In this 

study voltage ripple-based islanding is used which monitors the ripple content in 

the 𝑉𝑝𝑐𝑐 waveform to successfully detect islanding. Fig 6.2 presents a block diagram 

of this methodology. 

 

Fig.6.2 Proposed Islanding technique 

Fig.6.2 illustrates how the RMS voltage (𝑉𝑅𝑀𝑆)waveform's ripples are initially 

amplified by computing its derivative. After that, the RMS block processes the 

derivative signal to eliminate the DC component and determine how much ripple is 

there in the amplified waveform [150]-[151]. 

Each output stage is followed by three mean blocks: the first removes any noise at high 

frequencies in the source (𝑉𝑅𝑀𝑆) over 50 Hz., the second removes any discontinuities 

in the derivative block's output, and the third mean block smooths out the RMS block's 

output. 

Step1 displays the input waveform, representing the single-phase voltage (V) at the 

point of common coupling. Step 2 displays the 𝑉𝑅𝑀𝑆. The root mean square is 

determined over a one-cycle moving average window, using a nominal system 

frequency of 50 Hz.  

𝑉𝑅𝑀𝑆 = √
1

𝑇
∫ 𝑉2 
𝑡

𝑡−𝑇
                                                                                                 (6.6) 

where T = 1/50 second. All frequency elements in the 𝑉𝑅𝑀𝑆 above 50 Hz are considered 

noise and are removed employing mean block 1. This works similarly to a lowpass 

filter, which, as shown in fig.6.2(Step 3), suppresses any frequency elements over 50 

Hz.  

The filter output 𝑉𝑅𝑀𝑆̅̅ ̅̅ ̅̅   is modelled as: 

𝑉𝑅𝑀𝑆̅̅ ̅̅ ̅̅ =
1

𝑇
∫ 𝑉𝑅𝑀𝑆. 𝑑𝑡 
𝑡

𝑡−𝑇
                                                                                         (6.7) 

This approach requires amplifying minor fluctuations in 𝑉𝑅𝑀𝑆̅̅ ̅̅ ̅̅  to function properly. To 

obtain the x waveform, take the derivative of 𝑉𝑅𝑀𝑆̅̅ ̅̅ ̅̅ , as shown in Fig.6.2 (Step 4. The 

derivative is assessed after every 10 µs sampling interval. To increase the technique's 
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efficacy, frequency components over 50 Hz in the 𝑥 waveform are removed using a 

filter to produce 𝑦 waveform illustrated in Fig. 6.2 (Step 5) waveforms  𝑥 and 𝑦 are 

represented as 

 

𝑥 =
𝑑(𝑉𝑅𝑀𝑆̅̅ ̅̅ ̅̅ ̅̅ )

𝑑𝑡
                                                                                                              (6.8) 

𝑦 =
1

𝑇
∫ 𝑥
𝑡

𝑡−𝑇
                                                                                                             (6.9) 

 

The z waveform was calculated by evaluating the root mean square value of 𝑦 over a 

𝑓𝑅𝑀𝑆 frequency cycle. Fig. 6.2 (Step 6) illustrates how this is employed to calculate 

the amount of ripple content and remove any DC components in y. To get the islanding 

detection waveform 𝛿, any frequency component over 𝑓𝑀𝐸𝐴𝑁is removed from 

waveform z, as shown in fig.6.2 (Step 7). The waveforms z and 𝛿 are described as 

𝑧 = √
1

𝑇𝑅𝑀𝑆
∫ 𝑦
𝑡

𝑡−𝑇𝑅𝑀𝑆
                                                                                              (6.10) 

𝛿 =
1

𝑇𝑀𝐸𝐴𝑁
∫ 𝑧
𝑡

𝑡−𝑇𝑀𝐸𝐴𝑁
                                                                                             (6.11) 

Where, 𝑇𝑀𝐸𝐴𝑁 =
1
𝑓𝑀𝐸𝐴𝑁
⁄  and 𝑇𝑅𝑀𝑆 =

1
𝑓𝑅𝑀𝑆
⁄  

The detection waveform 𝛿 is checked against a preset threshold. Islanding is identified 

when 𝛿 surpasses a predetermined threshold over a set time period. Let 𝜏 is detection 

threshold, 𝑡𝛿 is the predetermined decision time delay, and ∆𝑡 is the time period when 

𝛿 surpasses 𝜏. Islanding detection decision signal. 𝑂detection is modelled as 

 

𝑂detection = {
1, 𝑖𝑓 𝛿 ≥ 𝜏 , °∆𝑡 ≥ 𝑡𝛿 
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                    (6.12) 

 

When 𝑶𝐝𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧=1, islanding is detected, while 𝑶𝐝𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 = 𝟎 implies no islanding. 

At this frequency, the ideal threshold and time delay were 12 V/s and 3ms, respectively 

 

6.4 Performance analysis of islanding detection technique 

A grid-connected solar PV-based microgrid, as depicted in Fig. 6.1, was simulated to 

evaluate the feasibility of the presented method. Table 1 shows the major parameters 

utilized during the simulation [15]-[16]. At 0.3 seconds, the switch opens, isolating the 

DG unit and load from the grid and initiating the islanding process. IEC Std. 62116 

states that detecting islanding gets more difficult when the load's power consumption 

matches the distributed generation. The cases examined are as follows:  

i.Islanding of grid integrated SPV system with 0 % of active power mismatch 

condition. 
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ii.Islanding of grid integrated SPV system with 30 % of active power mismatch 

condition. 

iii.Sudden load variation at point of common coupling 

iv.Grid side distortion 

 

6.4.1 Islanding of grid integrated SPV system with 0 % of active power mismatch 

condition.  

Fig. 6.3, Fig. 6.4, Fig. 6.5 and Fig. 6.6 depict the simulation results for the various 

conditions considered in the study. Figures illustrate the waveforms of PCC voltage 

(𝑉𝑝𝑐𝑐), load current (𝐼𝑙), grid current (𝐼𝑔), VSI current (𝐼𝑖𝑛𝑣), and DG de-energizing 

signal.  

In first condition, zero active power mismatch condition has been considered which is 

one of the most difficult scenarios to detect islanding. Fig 6.3 shows that before 

islanding; the grid current is nearly zero due to the inverter's active power matching 

the load's consumption. Islanding leads to zero grid current and fluctuation in PCC 

voltage. It can be seen from the Fig 6.3 when islanding occurs at 0.3seconds PCC RMS 

voltage ripple content increases. This is because when DG disconnects from the grid, 

it loses the grid's stabilizing effect, which causes the voltage fluctuation level to 

increase. The increased voltage fluctuation during islanding causes the amplitude of 

the produced waveform to exceed the threshold level. The technique detects islanding 

when the amplitude of the voltage waveform exceeds the threshold level. The DG de-

energizing signal, initially fix to '1' for normal condition, is changed to '0' after 3ms of 

islanding detection due to the method's latency.  

 

Fig.6.3 Islanding detection of grid integrated SPV system with zero active power 

mismatch 
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6.4.2 Islanding of grid integrated SPV system with 30 % of active power 

mismatch condition. 

The second scenario examines the case where there is a 30% active power mismatch 

between the power generated by the DG and the load demand. This condition is 

relatively easier to detect compared to the zero-mismatch case, due to the existence of 

a noticeable power imbalance that results in observable changes in system parameters 

following islanding. Upon the occurrence of islanding at 0.3 seconds, the difference 

between the generated and consumed power manifests as a deviation in the PCC 

voltage and frequency. Unlike the zero-mismatch case, the power imbalance in this 

scenario leads to a more rapid and pronounced variation in voltage amplitude. This 

deviation pushes the waveform amplitude beyond the set threshold more quickly, 

thereby triggering the islanding detection mechanism. The proposed technique 

identifies the islanding condition within the designated detection time window. Similar 

to the previous case, the DG de-energizing signal is switched from ‘1’ to ‘0’ shortly 

after detection, ensuring a timely and safe disconnection of the inverter from the load. 

This action helps to prevent potential safety hazards and equipment damage that could 

arise from continued operation in an islanded mode. 

 

 

Fig.6.4 Islanding detection of grid integrated SPV system with 30 % active power 

mismatch 
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6.4.3 Sudden load variation at point of common coupling 

In this scenario, the system experiences an abrupt change in the connected load while 

still being grid-connected. Such sudden variations in load demand can cause temporary 

fluctuations in PCC voltage and current that might resemble islanding-like behaviour’s 

shown in Fig. 6.5 the detailed response when the load change occurs, there is a short-

lived disturbance in the system parameters. However, the proposed detection technique 

correctly identifies this event as a non-islanding condition. The PCC voltage amplitude 

does not cross the islanding detection threshold, and the DG de-energizing signal 

remains fixed at ‘1’, indicating normal operation. The system successfully continues 

to supply power to the load without any unnecessary inverter shutdown. 

 

Fig.6.5 Sudden load change at point of common coupling 

 

6.4.4 Grid side distortion 

Another critical scenario evaluated is the presence of voltage distortions on the grid 

side. Such distortions may arise due to faults, non-linear loads, or switching operations 

within the utility network. These distortions can affect the voltage waveform at the 

PCC, potentially causing false indications of islanding. The response illustrated in Fig. 

6.6 confirms that the proposed method effectively filters out these disturbances. 

Although the PCC voltage shows visible waveform distortion, the amplitude remains 

within the acceptable threshold limits defined for islanding detection. As a result, the 

detection algorithm maintains the DG de-energizing signal at ‘1’, avoiding a false 

islanding response. This case highlights the method's robustness to harmonic 

disturbances and waveform anomalies, reinforcing its suitability for operation in 

practical grid environments where such conditions frequently occur. 
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Fig.6.6 Waveform of grid side distortion 

 

6.5 Comparative Analysis of Proposed Islanding detection   

Table 6.1 displays the comparisons between the proposed strategy and conventional 

techniques based on various parameters. Compared to the conventional strategy, the 

technique examined in this work provides a number of advantages. It eliminates the 

NDZ, is relatively easy to compute, detects islanding quickly, and has no false 

detection and has no effect on power quality 

Table.6.1 Comparison of proposed islanding detection technique with existing 

techniques 

 Parameter 
Conventional Passive IDT 

(OU/UV and ROCOF) 
Proposed Passive IDT 

Non Detection 

Zone(NDZ) 
Large NDZ Zero 

Detection time Up to 2 s 3ms 

False Detection High  None 

Detection Parameter Absolute value Ripple Content 
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6.6 CONCLUDING REMARKS 

In this chapter a passive islanding detection technique which is based on voltage ripple 

content at the point of common coupling for grid integrated solar photovoltaic system 

is presented. In order to detect islanding, the approach uses the voltage ripple content 

at PCC, along with a specified threshold value and delay duration. To detect the 

islanding and non-islanding conditions, the presented scheme is tested under different 

islanding and non-islanding conditions. From the simulation results it has been found 

that presented islanding detection technique detect islanding even under the most 

extreme condition, where the inverter output power is almost equivalent to the load 

consumption. As a result, the presented islanding detection technique offers the zero 

non detection zone. Verification of non-islanding conditions takes place in typical 

scenarios such as load switching and grid side distortion. Additionally, in the 

aforementioned non-islanding circumstances, no island signal is generated, confirming 

that there is no of false detection. Comparative investigation revealed that the 

suggested method outperforms standard passive techniques such as Over/Under 

Voltage and Rate of Change of Frequency, notably in terms of reducing detection time, 

eliminating the Non-Detection Zone, and preventing false trips. 
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CHAPTER-7  

CONCLUSION, SOCIAL IMPACT OF RESEARCH AND FUTURE 

SCOPE OF WORK 

7.1 INTRODUCTION 

The global transition toward sustainable and resilient energy systems has underscored 

the importance of Renewable Energy Source (RES)-based microgrids, particularly 

those utilizing solar photovoltaic (SPV) technology. SPV systems offer effective 

solutions to pressing global challenges, including reducing carbon emissions, 

enhancing energy security, and enabling electrification in remote and underserved 

regions. Their modular design, environmental benefits, and rapidly declining costs 

have made them increasingly viable for both standalone and grid-connected 

applications. However, the intermittent nature of solar energy, along with challenges 

in grid integration and system stability, necessitates the development of advanced 

control strategies to ensure efficient and reliable operation. This thesis addresses these 

critical issues through comprehensive modeling, the design of novel control 

algorithms, and rigorous performance evaluation of SPV-based microgrids under 

various operating scenarios. By advancing the deployment and reliability of solar-

based energy systems, this work directly contributes to the United Nations Sustainable 

Development Goals, particularly SDG 7 (Affordable and Clean Energy) and SDG 13 

(Climate Action). 

7.2 CONCLUSION OF THE STUDY 

This thesis presents a comprehensive investigation into the performance enhancement 

and control strategies of solar photovoltaic (SPV)-based microgrids through the 

development and implementation of novel algorithms and advanced methodologies. 

The initial chapters introduced the concept of solar photovoltaic (SPV)-based 

microgrids and emphasized the critical importance of efficient maximum power 

extraction, advanced inverter control, and reliable islanding detection in modern SPV 

systems. They also outlined the motivation for the study, identified key research gaps, 

and clearly defined the research objectives. Furthermore, an extensive review of 

existing literature was conducted, covering MPPT methodologies, inverter control 

strategies, and islanding detection techniques. The review highlighted notable 

limitations of conventional approaches, including slow convergence rates, sensitivity 

to environmental fluctuations, and inadequate performance under abnormal operating 

conditions. These limitations established the foundation for the novel contributions 

presented in this research. The key concluding remarks of the chapter are summarized 

below: 

Chapter 3 presents a hybrid standalone solar PV microgrid integrated with battery 

energy storage and introduces a modified novel MPPT technique that combines the 

Incremental Conductance (INC) algorithm with a double closed-loop controller. This 

approach ensures maximum power extraction, stable DC link voltage, and enhanced 
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power quality through harmonic mitigation. The inner current loop provides fast 

dynamic response, while the outer voltage loop maintains voltage stability, 

contributing to overall system robustness, reliability, and adaptability under varying 

load conditions. The proposed method is validated through simulations demonstrating 

its effectiveness in dynamic operational scenarios. 

Chapter 4 describes the design and implementation of a novel Horned Lizard 

Optimized Artificial Neural Network (HLO-ANN) MPPT technique for grid-

connected solar PV systems. The proposed HLO-ANN technique combines the fast-

learning capability of ANN with the global optimization strength of the Horned Lizard 

Optimization technique, allowing for precise and adaptive tracking of the maximum 

power point under dynamic environmental and load conditions. This methodology 

outperforms traditional and standard ANN-based MPPT methods, making it ideal for 

modern grid-connected PV systems. 

Chapter 5 focuses on the design and implementation of a novel Honey Badger 

Algorithm-based PI (HBA-PI) controller for inverter control in grid-integrated solar 

PV systems. Inverter control plays a vital role in ensuring efficient DC-AC conversion, 

grid synchronization, and stable system performance under fluctuating environmental 

and load conditions. The proposed HBA-PI controller is specifically developed to 

achieve precise regulation of the DC link voltage, ensuring reliable power delivery 

from the PV array to the grid. In addition to the HBA-PI approach, this chapter also 

explores other optimization-based control techniques, including Cuckoo Search 

Optimized PI (CSO-PI) and Artificial Neural Network-based PI (ANN-PI) controllers. 

However, the primary focus remains on the HBA-PI controller due to its superior 

convergence speed, robustness, and dynamic response in maintaining voltage stability 

and enhancing overall system efficacy. 

Chapter 6 This chapter presents a passive islanding detection technique for grid-

integrated solar PV systems based on voltage ripple analysis at the point of common 

coupling (PCC). The presented method uses time-domain spectral analysis to detect 

abnormal ripple content in the VSI output voltage. Islanding is confirmed when the 

ripple exceeds a defined threshold for a specific duration. Unlike conventional passive 

techniques, this method effectively detects islanding even under minimal power 

mismatch without false detections. It demonstrates high accuracy and rapid detection 

within 3ms across various operating conditions, with no non-detection zones observed. 

7.3 SOCIAL IMPACT OF RESEARCH 

This research contributes significantly to the technical advancement of solar 

photovoltaic (SPV)-based microgrids, aligning with India’s national mission to 

promote renewable energy through initiatives such as the PM-KUSUM Yojana, Solar 

Rooftop Scheme, and broader goals under the National Solar Mission. By developing 

robust MPPT algorithms, intelligent inverter control strategies, and efficient islanding 

detection methods, the thesis addresses critical challenges related to energy reliability, 

grid stability, and power quality 
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These improvements promote wider adoption of clean and affordable energy, 

especially in rural and under-electrified areas, fostering energy access, economic 

growth, and social development. The outcomes of this research directly align with 

multiple United Nations Sustainable Development Goals, notably SDG 3 (Good 

Health and well-being), SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, 

Innovation, and Infrastructure), SDG 11 (Sustainable Cities and Communities), and 

SDG 13 (Climate Action). Additionally, by supporting sustainable infrastructure and 

cleaner energy solutions, this work indirectly contributes to several other SDGs, 

reflecting its comprehensive role in advancing sustainable development and energy 

equity. 

 

Fig.7.1 SDGs targeted by the research work 

7.4 FUTURE SCOPE 

• The proposed intelligent control algorithms can be validated through real-time 

hardware implementation on platforms such as DSPs, FPGAs, or microcontrollers. 

This validation will assess their practical feasibility, dynamic performance, and 

robustness in real-world operating conditions, bridging the gap between simulation 

and actual deployment. 

 

• The developed control strategies can also be extended to hybrid energy systems 

integrating renewable sources like wind turbines and biomass, thereby enhancing 

system reliability and ensuring continuous power supply. 

 

• With increasing digitalization, it becomes essential to consider techno-economic 

analysis and system reliability. Future research can explore secure communication 

protocols, intrusion detection systems, and fault-tolerant control mechanisms to 
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enhance the security and dependability of microgrids. 

 

•  As PV microgrids become increasingly digitized and vulnerable to cyber threats 

like data spoofing, DoS, and false signal injection, future work may integrate 

cybersecurity frameworks—such as blockchain-based data validation, secure 

authentication protocols, and intrusion detection algorithms—into MPPT control 

systems to detect and mitigate malicious intrusions and ensure secure, resilient 

energy management. 

 

•  Resilience measures, paired with advanced adaptive control strategies and real-

time monitoring of PV output and DC bus conditions, could enable PV microgrids 

to maintain stable operation and self-recover under faults, islanding events, or 

extreme weather disturbances. 

 

•  Creating a digital twin of the PV microgrid enables real-time simulation of 

environmental changes, shading patterns, and load variations to adjust ANN 

weights or PI controller parameters before deployment, allowing predictive 

maintenance and proactive decision-making that reduces downtime and improves 

operational efficiency for both rural and industrial systems. 
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APPENDIX 

I. Photovoltaic specifications 

Parameters Value 

Maximum Power(W) 213.15 

Voltage at MPP Vmp (V) 28 

Current at MPP Imp(A) 7.35 

Open circuit voltage Voc (V) 36.3 

Short circuit current Isc(A) 7.84 

Voc temperature coefficient (% deg.C) -0.361 

Isc temperature coefficient (% deg.C)                                     0.102 

 Photovoltaic temperature (deg.C)                                                       25 

Number of cell (Ncell)                                                      60 

 Series cells (𝑁𝑆 )                                                3 

Parallel cells (𝑁𝑝)                                            20 

 

II. SPV System specifications 

 
Parameters Attributes 

PV Array Power Ppv 12.79kW 
 PV short circuit current (Isc) 23.52A 
 PV open circuit voltage (Voc) 726V 
 PV current at MPP (Impp) 22.05A 
 PV voltage at MPP (Vmpp) 580V 

DC-DC Converter Duty ratio (⍺) 0.5-0.6 
 Converter Inductor (L) 6mH 
 Capacitor (C) 3μF 
 Switching frequency 10 kHz 
 DC link voltage (VDC) 750V 
 Interfacing inductor (Lf) 7mH 

  Bidirectional 

converter 

Inductor (L1)  0.00019H 

 Capacitor (C1) 350 μF 
 DC link voltage (VDC) 750V 
 Interfacing inductor (Lf) 6mH 
 Filter Capacitance (Cf) 101.14uF 
 Series Resistance (Rf) 0.001H 
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 VLL (Line - line voltage) 415V 

Grid Grid frequency 50Hz 
 Grid Resistance (Rs) 0.11ohm 
 Grid Inductance (Ls) 0.35mH 

 

III. Wind turbine and PMSG generator specifications 

Parameters Value 

Rated Mechanical Power 12.3kW 

Base wind speed  12m/s 

Max mechanical power at 12 m/s 0.85 pu 

Actual mechanical power at 12 m/s  0.85 × 12.3 kW = 10.455 kW 

Generator efficiency 90% 

Electrical output power at 12 m/s 0.9 × 10.455 kW = 9.41 kW  

Stator phase resistance (Rs) 0.0485 

Inductance q- and d-axis (𝐿𝑞 and 𝐿𝑑) 0.395e-3,0.395e-3 

Flux linkage (𝜓) 0.1194 

pitch angle in degree (𝛽) 0 

Power Coefficient (Cp) 0.4097 

Air density 𝑘𝑔/𝑚3(𝜌) 1.225 

Radius in m (R) 1.30 

C1, C2, C3, C4, C5 and C6  0.5176, 116, 0.4, 5, 21, and 0.0068. 

Area swept by the blades in 𝑚2 (𝐴𝑟) 5.31 

Tip speed ration (TSR) 8.1 
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