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CONTROL TECHNIQUES FOR IMPROVED PERFORMANCE
OF MICROGRID INTEGRATED WITH RES

Abstract

Environmental, economic, and technological concerns have prompted the
development of electrical systems based on the distributed generation (DG) model,
which is associated with small-scale power generation and is primarily comprised of
renewable energy sources (RES). These RES have significantly contributed to the
advancement of microgrids, making them a viable alternative to conventional grids.
Among all RES, solar photovoltaic (PV) is one of the most widely utilized due to its
accessibility, ease of installation, and low maintenance requirements. Solar energy
plays a significant role in environmental conservation and fostering a cleaner society.
Additionally, advancements in technology have made PV modules increasingly cost-
effective and efficient.

However, due to their dependence on meteorological conditions for energy generation,
solar photovoltaic systems (SPS) exhibit uncertainty in power output. Solar cells
display nonlinear I-V and P-V characteristics that are influenced by external variables
such as solar irradiation, humidity, temperature, geographical location, and various
dynamic conditions. Consequently, the development of sophisticated control strategies
is critical to ensure the efficient operation of solar PV systems.

To address these challenges, a novel MPPT algorithm is developed by integrating the
Incremental Conductance (INC) method with a double closed-loop voltage control
strategy. This hybrid approach enables accurate MPP tracking while simultaneously
regulating the DC bus voltage, thus enhancing the reliability of standalone hybrid
microgrids. The proposed strategy is supported by a bidirectional DC-DC converter
that facilitates intelligent charge/discharge control of the BESS, maintaining DC
voltage stability within state-of-charge (SOC) limits.

In the subsequent phase, the research advances to the development of intelligent, data-
driven MPPT algorithms for grid-connected PV systems. An Artificial Neural Network
(ANN)-based MPPT controller is designed and trained using a diverse dataset that
captures the spatiotemporal variations in solar irradiance and temperature. To enhance
the adaptability and generalization capabilities of the ANN model, the Horned Lizard
Optimization (HLO) algorithm—a recent bio-inspired metaheuristic technique—is
employed to optimally tune the ANN’s internal parameters. The resulting ANN-HLO
MPPT controller demonstrates superior tracking accuracy, faster convergence, and
robust performance under rapidly changing irradiance conditions.

Performance robustness is validated using a three-month real-time solar irradiance
dataset obtained from NASA and NREL for two geographically distinct locations:
Shahabad Daulatpur (Delhi) in northern India and Chikkaballapur (Karnataka) in
southern India. These datasets enable realistic and comprehensive testing of the MPPT
controller under dynamic conditions, including irradiance fluctuations, temperature
changes, voltage sag/swell events, and nonlinear load disturbances. Compliance with
the EN50530 MPPT efficiency standard is also established for both fast and slow-
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changing irradiance scenarios. Performance benchmarking confirms higher tracking
accuracy, reduced settling time, and enhanced energy yield in comparison to existing
techniques. Additionally, sensitivity analysis substantiates the algorithm’s robustness
across a wide range of operating conditions.

Recognizing the crucial role of inverter control in grid-tied systems, the thesis proceeds
with an exhaustive study of DC link voltage regulation techniques. While conventional
PI controllers are widely used, they often struggle to maintain voltage stability under
fluctuating irradiance and nonlinear load conditions. To overcome this limitation,
metaheuristic optimization techniques such as Cuckoo Search Optimization (CSO) and
Honey Badger Algorithm (HBA) are introduced to optimally tune the PI controller
gains (Kp and Ki). These techniques minimize integral error criteria and improve
dynamic system response. The proposed control scheme maintains unity power factor
operation and ensures harmonic distortion remains within IEEE-519 limits, even under
complex nonlinear loading scenarios.

The thesis also includes performance evaluation using statistical metrics such as Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Square Error
(MSE), offering quantitative validation of the proposed control strategies.
Comparative analysis of conventional PI, ANN-PI, CSO-PI, and HBA-PI controllers
is carried out through MATLAB/Simulink simulations under varying scenarios,
including sudden load changes and irradiance dips, demonstrating the superiority of
the optimization-enhanced approaches.

In addition to advanced control methodologies, the thesis addresses one of the most
critical protection challenges in grid-connected PV systems: islanding detection. A
voltage ripple-based islanding detection method is studied, which accurately identifies
grid disconnection events by analysing characteristic disturbances in the DC link
voltage waveform. This method ensures minimal non-detection zones (NDZ), rapid
response time, and compliance with IEEE 1547 and IEC 62116 standards.

Overall, this thesis contributes significantly to the domain of solar PV-based power
systems by integrating classical control theories with cutting-edge artificial
intelligence and optimization methods. The proposed control strategies deliver
improved energy efficiency, enhanced system reliability, and resilient performance
under diverse environmental and operational scenarios. The outcomes of this work
have direct applications in the design and deployment of next-generation smart
microgrids, aligning with the global pursuit of clean, sustainable energy solutions.
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CHAPTER- 1

INTRODUCTION
1.1 INTRODUCTION

The global energy crisis has raised concern about energy resources and climate

impact worldwide. Fuel-based electricity generation significantly increases
greenhouse gas (GHG) emissions, exacerbating the situation. As electricity demand
rises, the need for sustainable alternatives increases. The global electrical industry is
undergoing a significant transformation as it transitions from fossil fuels to renewable
energy sources (RESs) to meet the growing demand for electricity. This
transformation, driven by the demand for sustainability, poses a huge challenge to the
sector, which formerly relied on fossil fuels. The development and integration of
renewable energy solutions have become a key priority for ensuring a more reliable
and sustainable power supply. This shift is essential for mitigating climate change and
lowering the carbon footprint of energy production by replacing high-emission fuels
with renewable resources. These sources are naturally decentralized, plentiful, and
locally accessible. In the face of shifting global energy markets, they are essential in
reducing reliance on imported fossil fuels and offering stability [1].
Global renewable electricity generation is expected to exceed 17,000 terawatt-hours
(TWh) by 2030, an increase of about 90% over 2023[2] as can be seen in Fig.1.1. This
would be sufficient to supply China and the United States' combined electricity needs
by 2030.
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Fig.1.1 Global Renewable Energy Growth Trends (2000-2030) — [EA [2]

Renewable energy is expected to surpass coal-fired generation by 2025. In 2026, wind
and solar power generation are both expected to outperform nuclear power generation.
In 2029, solar PV energy generation will overtake hydropower, making it the world's
greatest renewable power source, with wind-based generation predicted to surpass
hydropower in 2030.[2]

Solar PV and wind energy have become more cost-effective than most fossil fuel and
1



non-fossil fuel alternatives in the majority of countries. Supported by favorable
government policies, the deployment of these renewable technologies is expected to
continue increasing over the next five years, with solar PV and wind projected to
account for a record 96% of total new power capacity additions.

India is strategically harnessing the output of electrical energy from renewable energy
resources by utilizing its advantageous geographic location. India offers numerous
opportunities to develop robust renewable energy infrastructure due to its diverse
climate and topography. India is moving quickly to fulfil the higher benchmark for
generating electricity from renewable resources, according to the Ministry of New and
Renewable Energy (MNRE). India's Total Renewable Energy Installed Capacity
(MW) as on 31% March 2025 is 172.36GW(Fig.1.2). Total Capacity Installed (in FY
2024-25) is 28,723.65 MW (or 28.72 GW) (Fig.1.3) [3].
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Fig.1.2 India's Installed Renewable Energy Capacities (MW) as of 31% March 2025 —
MNRE [3]
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Fig.1.3 Installed Renewable Energy Capacity Achieved in FY 2024-25 (April 1, 2024
— March 31, 2025) in MW MNRE [3]



1.2 OVERVIEW OF RES BASED MICROGRID

Conventional fossil fuel-based power plants have a number of drawbacks, including
power losses, higher prices, decreased system efficiency, and environmental
contamination. A number of distributed generators, including photovoltaic cells, wind
turbines, and micro-hydro units, are employed in the distribution network in place of
a single major power source. Although these micro-sources utilize renewable energy
sources such as solar and wind, which are environmentally friendly, they are inherently
intermittent in nature. These micro-sources and loads are grouped together because
they may be controlled to supply electricity to the surrounding area, giving rise to the
idea of a microgrid as shown in Fig.1.4. A microgrid is a group of interconnected loads
and distributed energy resources within clearly defined electrical boundaries that acts
as a single controllable entity with respect to the grid and can operate in both grid-
connected and islanded modes. Typically, a microgrid integrates renewable energy
sources such as solar PV, along with energy storage systems, to enhance local
reliability, sustainability, and resilience. An effective, affordable, and robust local
power system made up of distributed energy resources (DERs), a microgrid provides
power to nearby loads with fewer losses than a conventional system with lengthy
transmission lines. An independent section of the electrical network, a microgrid can
be deployed with local loads without the need for a transmission system, according to
utilities. For the customer, it is a carefully designed system that uses a power optimizer,
local controller, and protective system to deliver effective, dependable, and steady
electricity.

Solar Power

—

Wind Power

Building Factory

Hydro Power Fuel Cell
Battery Bank

Fig.1.4 Renewable energy-based microgrid system

In general, microgrids can operate in two different modes: grid-connected mode and
islanded mode. In grid-connected mode, the microgrid draws power from both the
utility grid and distributed energy resources (DERs), with DERs serving as the main
source of power. The utility grid supplements any additional power requirements and
helps maintain voltage and frequency stability, ensuring the reliable operation of the
microgrid. In islanded mode, DERs become the sole source of power, as the microgrid
operates independently from the main grid. Effective energy management is especially
important in this mode to match power generation with varying load demands [4].



1.3 SOLAR PV BASED MICROGRID

The popularity of solar energy sources has grown exponentially in recent years among
the different kinds of renewable energy sources. This is brought about by factors
including higher solar cell efficiency, significant improvements in power electronic
device interface, modular solar energy systems, lower maintenance requirements,
noiseless operation, and a decline in solar energy costs. By 2050, solar energy is
predicted to rank among the world's main sources of electricity. A solar photovoltaic
(PV)-based microgrid is a decentralized energy system that generates electricity using
solar panels, stores excess energy in battery storage systems, and distributes power to
connected loads. Such microgrids can operate independently in standalone mode or
remain connected to the main grid, thereby enhancing the flexibility, reliability, and
resilience of the power supply. [5]

1.3.1 STANDALONE SOLAR PV BASED MICROGRID

Standalone solar PV based microgrid function autonomously of the central power
utility grid, delivering power to remote areas where utility grid expansion is not viable.
The amount of electricity delivered to the load in a standalone photovoltaic system is
determined by the amount of solar energy that is available. Solar PV is an intermittent
energy source which poses significant technological and financial hurdles for
controlling loads. An energy storage system must be included in addition to a PV
system in order to solve this problem. The most widely utilized storage device is the
battery, which is essential to ensuring that the load constantly has power.

The standalone system is being studied extensively as a standard standalone microgrid
since energy storage has been integrated into the system. In addition to
critical installations, this stand-alone power system can be utilized in remote rural
locations with limited access to the grid and solar energy.[6] A standalone SPV-based
microgrid can be constructed as single or three phase. Fig.1.5 is a block diagram for a
stand-alone PV system with battery energy storage system (BESS). The system
consists of a PV array, a battery energy storage system, a DC-DC converter, an
inverter, and a load.
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1.3.2 GRID CONNECTED SOLAR PV BASED MICROGRID

Grid-connected SPV-based microgrid is a system that allows for bidirectional power
transfer. It consists of solar panels, a dc-dc converter, a power source inverter, interface
inductors, and loads. The power flow through a grid-connected microgrid is
bidirectional. If the load demand is less than the output of the SPV power generation,
the excess power from the SPV is transmitted to the grid; if the load demand exceeds the
SPV power generation, the grid supplies the remaining load power. The inverter is one
of the most critical components in the SPV-based microgrid. A PV inverter is employed
to convert the generated dc voltage to ac voltage. A grid-tied SPV-based microgrid can
be structured as single, two, or three phases. Single-stage and two-stage systems can be
employed as single or three-phase. Three phase grid-tied SPV-based microgrids can be
configured as three phase three wire or three phase four wire systems. Fig.1.6 depicts a
two-stage grid-tied PV-based microgrid with the PV array integrated into a three-phase
grid.[7].

The fundamental unit of a PV array is the PV cell, which is an active transducer that
transforms energy from sunlight (photons) into electricity (current). PV cells are
connected in series or parallel to form PV modules. These modules can then be
connected in series or parallel to build a PV array with specified output voltage and
current. The system comprises of two stages of conversion: first, variable dc from the
solar PV array is converted into fixed dc of the required magnitude by a boost converter,
and then a grid-connected PV inverter is utilized to convert this dc voltage into ac voltage
of the desired magnitude and frequency for supplying an ac load.[8]
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1.4 MPPT TECHNIQUE FOR STANDALONE AND GRID CONNECTED RES
BASED MICROGRIDS

The increased PV installation capacity has also resulted in the advancement of the PV
power conversion stage. PV power converters have become more efficient, compact,
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and reliable, allowing for maximum power from the sun in residential, commercial, and
industrial application. This advancement is due to the PV converter market's stringent
requirements, which include maximum power point tracker (MPPT) [2].

The Maximum Power Point Tracker (MPPT) is a critical component of a photovoltaic
(PV) system, enabling optimal power extraction at the Maximum Power Point (MPP).
Given the nonlinear I-V and P-V characteristics influenced by solar irradiance and cell
temperature, implementing a real-time control strategy is essential for effective MPP
tracking.
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Fig.1.7 I-V and P-V characteristic of SPV

The Maximum Power Point Tracking (MPPT) technique focuses the peak of the solar
panel’s I-V and P-V characteristic curves, as shown in Fig.1.7, to ensure operation at
maximum efficiency. This peak, known as the Maximum Power Point (MPP), is
achieved by a DC-DC power converter that dynamically adjusts the operating voltage
of the photovoltaic (PV) system to extract the maximum available power.[9]-[10]

1.5. INVERTER CONTROL AND DC BUS VOLTAGE REGULATION OF
STANDALONE AND GRID CONNECTED RES BASED MICROGRID

Power converters are integral to modern industrial systems, enabling reliable and
efficient energy transfer between electrical sources, loads, and the utility grid. Typical
power converter topologies include a dc-link as an intermediate step, a grid-connected
converter, and a passive filter. Examples include renewable energy sources, active power
filters, and back-up (such as battery energy storage) systems. Efficient dc-link voltage
control is crucial for reducing voltage variations produced by random changes in the
power drawn by the grid-connected converter [11].

PV arrays with maximum power point tracking are integrated with the primary voltage
source inverter (VSI) and auxiliary VSI dc links. The primary VSI functions in a grid-
interfaced mode with current control. Voltage control, on the other hand, is used in an
autonomous mode as a grid forming inverter during grid interruption, maintaining
frequency and voltage across the point of common coupling (PCC) to provide loads
with continuous power. To ensure steady MG performance under dynamic settings,
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the voltage source inverter (VSI) control algorithm must be proficient.

Inverters are essential components of microgrids, as they can be controlled to maintain
optimal network performance by synchronizing frequency and voltage, as well as by
sharing active and reactive power among multiple inverters. Inverter-based microgrids
are controlled at three levels: primary, secondary, and tertiary. Each level's control
design considers both frequency and voltage control. A droop controller manages
active/reactive power sharing and inverter frequency/voltage synchronization at the
primary level. The secondary level, often an integral-type controller, compensates for
frequency/voltage steady-state error while maintaining active/reactive power
distribution. When the microgrid is connected to the main grid, the tertiary control
level manages power flows among the solar PV, battery, load, and the grid. Recent
research on inverter-based microgrids has focused on developing control models to
address key challenges such as frequency and voltage regulation, synchronization,
active and reactive power sharing, inverter power limitations, and overall system
stability. [12]-[14]

1.6. ISLANDING DETECTION OF SOLAR PV BASED MICROGRID
Three-phase power converters connect distributed energy resources, such as renewable
sources and energy storage systems, to the AC grid or microgrid. The technical
challenges of distributed or local control of these converters include achieving stable
steady-state operations, seamless power transitions between grid-connected and islanded
modes, and ensuring compliance with IEEE standards and grid codes.[15]

Despite the advantages of renewable energy sources (RES), they also present certain
risks, such as unintended islanding, safety issues, and reverse power flow. As a result,
integrating distributed generators (DGs) into the grid requires addressing protection and
safety concerns within the distribution network. Islanding occurs when a portion of the
utility system, which includes both load and distributed resources, continues to operate
while disconnected from the main utility grid. In this situation, distributed generators
(DGs) remain energized and supply power solely to local loads, without being connected
to the larger power grid.[16]

1.7. MOTIVATION AND RESEARCH OBJECTIVES

Developing SPV-based solar microgrids can provide solutions that overcome energy
challenges with their sustainability, accessibility, and resilience. SPV microgrids rely on
clean and renewable energy from the sun and contribute significantly in reducing fossil
fuel utilization, greenhouse gas emissions and slowing down the adverse impacts of
climate change. Furthermore, SPV based microgrids aid in conserving the environment
and building a future with lesser impulses through discontinuation of traditional power
generating systems. These microgrids, in particular, facilitate the electrification of rural,
mountainous and remote areas that lack traditional infrastructure and have a grid
extension that is spreads vertically which is expensive. These microgrids eliminate
energy poverty by improving life for the millions of people that do not have
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uninterrupted SPV electricity through a decentralized and self-sustained energy
provision. There is accessibility to modern healthcare, education and jobs, along with
boosted community empowerment by energy autonomy, which all contribute to socio-
economic progress. The relatively new technologies that consist of solar panels, energy
storage devices and additional infrastructure have witnessed a considerable drop in their
cost. As a result, solar photovoltaic based micros grids become economically viable for
both the developed and developing regions. Combined with the advent of lithium-ion
batteries as energy storage devices, these microgrids provide power even during non-
sunny hours, and therefore, ensure the availability of electricity. This reinforces energy
security by minimizing reliance on centralized networks that are inherently susceptible
to outages or damage during extreme weather conditions. Therefore, solar photovoltaic
based microgrids are instrumental in the development of resilient energy systems
especially in the disaster afflicted regions where the demand for self-sufficient power
systems is inevitable.
The support extended for developing microgrids by governments, international agencies
and private enterprises is on the rise as a result of fiscal and policy changes, research
funding and taxation incentives. Due to their scalability varying from small rural
settlements to sprawling industrial plants, these SPV based micro grids are a cost
effective and efficient answer to the global energy requirements. The research being
undertaken right now will have a long-lasting effect and will also serve the purpose of
offering contemporary clean energy solutions, supporting the cause of sustainable
development in the process. By focusing on solar photovoltaic (SPV)-based microgrids,
some of the most challenging global energy issues can be addressed, paving the way for
universal access to renewable energy. This approach supports the development of robust
and sustainable communities powered by clean energy sources.
As discussed above, the benefits of PV-based microgrids inspired and led to the
following research objectives:
1) Development of novel MPPT technique for grid connected solar photovoltaic
system for enhanced performance.
2) Development of novel control algorithms for grid connected photovoltaic inverter
system.
3) Design and development of hybrid micro-grid and efficient control technique to
improve the performance of the system.
4) Islanding detection and development of control technique of microgrid under
islanding condition.

1.8. PROBLEM IDENTIFICATION

Based on the above objectives, following problems are identified:

1. Solar PV output is inherently intermittent and unpredictable due to climatic variations.
While traditional MPPT methods are widely used, they often suffer from slow
convergence, oscillations, and the risk of locking into local maxima under rapidly
changing irradiance or partial shading. These limitations reduce energy yield and
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compromise system stability in both standalone and grid-connected settings. Although
intelligent methods—such as ANN, fuzzy logic, ANFIS, and various metaheuristics—
have been explored, they tend to be complex, computationally demanding, and costly.
Hybrid approaches offer promise by enhancing tracking speed and accuracy while
reducing oscillations.

2. Existing inverter control strategies perform adequately under steady-state conditions
but often fail to maintain optimal power output during grid disturbances and transients,
such as voltage sags, frequency shifts, and harmonics. As a result, power quality
degrades and grid stability and reliability are undermined. There’s a pressing need for
advanced control algorithms that dynamically adapt to grid fluctuations, ensuring
consistent, high performance under both normal and abnormal conditions.

3. Hybrid solar/battery microgrids face challenges in maintaining grid stability amid
fluctuating supply and demand, especially when powering linear, nonlinear, or
unbalanced loads. Poorly designed control systems can lead to voltage and frequency
deviations, inefficient resource dispatch, and power-quality issues. While several control
strategies exist, comprehensive solutions that integrate effective stability control with
DC-bus voltage regulation remain lacking.

4. Unintentional islanding—when a microgrid continues to power local loads after grid
disconnection—is a major safety and reliability concern. Passive and active detection
methods frequently exhibit large non-detection zones (NDZ), slow detection times, and
negative impacts on power quality. Delays in islanding detection can endanger
maintenance personnel and damage equipment. Faster, more reliable detection methods
with minimal NDZ and enhanced control during islanding are urgently required to
preserve microgrid stability in all operating modes.

1.9 ORGANISATION OF THESIS

Chapter-1 contains the introduction of the research work, its motivation, research
objectives, and the problem statements. This chapter also describes the organization of
the thesis.

Chapter-2 presents a comprehensive review of standalone and grid-connected solar
photovoltaic (SPV) microgrids and their control technologies. It begins with the
operational strategies, design aspects, and efficiency challenges of standalone SPV
systems integrated with battery energy storage. The focus then shifts to grid-connected
systems, emphasizing grid integration, inverter control, synchronization, and
compliance with grid codes. The chapter reviews various MPPT techniques——classical,
intelligent, optimization-based, and hybrid—evaluating their performance under
changing atmospheric conditions. It also examines inverter control methods, including
linear, non-linear, robust, adaptive, predictive, and intelligent controllers. Unintentional
islanding and its detection methods, both classical and modern, are discussed to ensure
grid stability and safety. The chapter concludes by identifying key research gaps for
future investigation.



Chapter-3 This chapter focuses on a hybrid standalone solar PV microgrid system with
integrated battery energy storage, with a particular emphasis on effective DC link
voltage control. This chapter introduces a novel MPPT strategy that combines the
strengths of the Incremental Conductance (INC) method with a double closed-loop
controller. The proposed technique is intended to achieve two key goals: maximising
power extraction from the PV system and ensuring a steady DC bus voltage during
dynamic operation. Furthermore, the control method adds to harmonic mitigation,
which improves overall power quality and system performance. Furthermore, this
chapter describes control for a hybrid standalone inverter that provides quick and
precise dynamic responses to varying load needs. The given control mechanism has
been thoroughly evaluated for efficacy and robustness. The system's performance is
analysed using MATLAB/Simulink, providing insights into its operation under
various operating conditions.

Chapter-4 This chapter describes the design and implementation of a novel Horned
Lizard Optimized Artificial Neural Network (HLO-ANN) MPPT technique for grid-
connected solar PV systems. The proposed HLO-ANN technique combines the fast-
learning capability of ANN with the global optimization strength of the Horned Lizard
Optimization technique, allowing for precise and adaptive tracking of the maximum
power point under dynamic environmental and load conditions. This methodology
outperforms traditional and standard ANN-based MPPT methods, making it ideal for
modern grid-connected PV systems.

Chapter-5 This chapter focuses on the design and implementation of a novel Honey
Badger Algorithm-based PI (HBA-PI) controller for inverter control in grid-integrated
solar PV systems. Inverter control plays a vital role in ensuring efficient DC-AC
conversion, grid synchronization, and stable system performance under fluctuating
environmental and load conditions. The proposed HBA-PI controller is specifically
developed to achieve precise regulation of the DC link voltage, ensuring reliable power
delivery from the PV array to the grid. In addition to the HBA-PI approach, this chapter
also explores other optimization-based control techniques, including Cuckoo Search
Optimized PI (CSO-PI) and Artificial Neural Network-based PI (ANN-PI) controllers.
However, the primary focus remains on the HBA-PI controller due to its superior
convergence speed, robustness, and dynamic response in maintaining voltage stability
and enhancing overall system efficacy.

Chapter-6 This chapter presents a passive islanding detection technique for grid-
integrated solar PV systems based on voltage ripple analysis at the point of common
coupling (PCC). The proposed method uses time-domain spectral analysis to detect
abnormal ripple content in the VSI output voltage. Islanding is confirmed when the
ripple exceeds a defined threshold for a specific duration. Unlike conventional passive
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techniques, this method effectively detects islanding even under minimal power
mismatch without false detections. It demonstrates high accuracy and rapid detection
within 3ms across various operating conditions, with no non-detection zones observed.

Chapter-7 This chapter summarizes the key findings and conclusions of the proposed
work, highlighting the contributions made toward improving solar PV-based
microgrid systems. It also outlines potential directions for future research and
discusses the broader social impact of the work in promoting clean energy access,
especially in remote and underserved areas. The thesis concludes with a comprehensive
list of references and relevant appendices

1.10 CONCLUDING REMARKS

This chapter provides a summary of the research work conducted and included in this
dissertation. This chapter discusses the need for solar PV-based microgrids, including
hybrid stand-alone systems, grid-connected systems, and grid-tied systems with
islanding detection. The motivation and objectives of the research work are laid out, and
the research issues are outlined. The research objectives highlight the need for unique
approaches for tracking maximum power points, controlling DC link voltages
regulation, and detecting islanding. Additionally, the structure and organization of the
thesis have been outlined to support a coherent presentation of the proposed
methodologies and findings.
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CHAPTER-2

LITERATURE REVIEW

2.1 INTRODUCTION

A literature survey in the relevant fields of the research activity has been conducted in
order to obtain the proper perspective of the research challenges. The following topics
are briefly reviewed in this chapter: (i) the maximum power point tracking algorithm
for solar PV systems, both standalone and grid-connected; and (ii) the regulation of
DC link voltage for standalone PV systems with battery energy storage systems.
(111)PV inverter control algorithm for grid-connected solar photovoltaic systems ((iv)
Grid-tied photovoltaic system islanding detection.

2.2 MPPT CONTROL TECHNIQUES FOR HYBRID STANDALONE AND
GRID CONNECTED SOLAR PV SYSTEM

Solar photovoltaic (PV) is a promising power generating alternative for sustainable
energy development among the other RE resources. However, solar power generation
varies greatly because of seasonal weather patterns and the non-linear nature of solar
irradiation, necessitating backup systems or hybrid applications. Solar irradiation is
not highly correlated across close locations on a small-time scale, contributing to
fluctuations in PV power output and losses. The maximum power point tracking
(MPPT) technology is crucial for improving the efficiency of PV systems. To optimize
the output power of a solar power system, it is necessary to develop effective maximum
power point tracking due to the non-linear nature of PV arrays [17]-[18].
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Fig.2.1 Classification of MPPT algorithm

A reliable technique for tracking maximum power points (MPPs) is crucial. This
chapter provides a comprehensive overview of MPPT approaches used in PV systems,
including recent articles on design methodologies. MPP is classified into four
categories: classical, intelligent, optimum, and hybrid, based on the tracking algorithm
used under different circumstances as shown in Fig.2.1 [19].
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2.2.1 Classical MPPT Techniques:

Traditional MPPT methods can be classified as online or offline approaches. It is
essentially the simplest and easiest MPPT algorithm. The maximal conventional
MPPT algorithm proceeds through the fundamental phases to reach the MPP point.
They calculate power and compare it to prior levels at each stage. The algorithm's
direction and movement were determined by the power change value. Many standard
MPPT algorithms have previously been released. The hill climbing technique, perturb
and observe (P&O), and incremental conductance (INC) are most commonly
employed in real-world PV systems because to their ease of implementation. The P&O
MPPT approach compares recent power output samples to previous ones. For example,
Peyrrent — Pprevious = AP . If AP > 0, the algorithm continues to change the voltage
in the same direction as the last adjustment; if AP <0, it reverses the direction. When
AP = 0, it maintains the current voltage. The P&O MPPT algorithm modifies the
perturbation size at predefined intervals [20]-[21]. The Hill climbing (HC) and P&O
approaches differ only in one aspect: the perturbation parameter. To track the MPP,
the P&O senses and perturb voltage or current, while the HC perturb the duty cycle.
Both techniques face the challenge of balancing performance between steady-state and
dynamic response error. The HC technique, which uses voltage control, faces a greater
challenge.[22] The incremental conductance technique compares the PV module's
incremental and instantaneous conductance to calculate its terminal voltage. The
maximum power point is achieved when the incremental conductance matches the
instantaneous conductance. The power curve shows a positive slope, with output
power increasing as the PV module's terminal voltage reaches operational limits. As
the terminal voltage of PV modules exceeds MPP, the output power decreases and the
power curve slopes negatively [23]-[24]. Ripple Correlation Control (RCC) is an
MPPT approach that uses ripple in PV voltage and current. To achieve the
maximum power point and reduce the power gradient, RCC correlates the time
derivative of the PV array's time-varying power with the time derivative of its current
or voltage. RCC can be created using simple and inexpensive analogue circuitry [25].
Adaptive reference voltage. MPPT dynamically adjusts the PV system's reference
voltage in response to real-time factors such as irradiance and temperature, allowing it
to more efficiently monitor the Maximum Power Point but Adaptive reference voltage.
MPPT necessitates complicated algorithms and real-time data processing, which raises
computational demands and implementation costs [26].

2.2.2 Intelligent MPPT Techniques:

Enhancing the MPPT method is crucial in maximizing efficiency, specifically during
dynamic changes in climatic conditions. Controllers have been developed for
conventional PV systems with the aid of mathematical modeling, but this approach is
quite complex and unmanageable for a large class of systems. Nevertheless, other
approaches such as Artificial Neural Networks (ANN), Fuzzy Logic, Model Predictive
Control (MPC), and Sliding Mode Control (SMC) are coming into the spotlight
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because they do not need an accurate mathematical description of the system to find
the MPP. These methods increase the performance of tracking and provide more
degrees of freedom to the system using learning from data, prediction algorithms, or
robust control techniques. This FLC has two benefits over other strategies: 1) it does
not require a perfect mathematical model of the system, and 2) controller design is
solely in the hands of humans. Fuzzy techniques typically involve three stages:
fuzzification, fuzzy rules, and defuzzification. Fuzzification is transforming PV
parameters into language variables using if-then rules. Human knowledge is used to
design for specific application needs. Defuzzification is an inversion of fuzzification
that uses mathematical interactions to extract linguistic or crisp inputs. This procedure
uses the maximum membership function, centroid method, and weighted average
approaches for computation. The defuzzification technique converts the FLC output
from a linguistic variable to a numerical variable, which is then sent as an analogue
signal to the converter. One significant disadvantage is that they rely on expert
knowledge to define membership functions and rule sets, which may not necessarily
translate well across different PV systems.[27]-[28]. The procedure of convergence is
the most crucial feature for any controller. This process may take longer if there are
abrupt changes or unforeseen interruptions. A powerful intelligence-based SMC tracks
the MPP swiftly and efficiently. The sliding mode process can be represented in three
modes: travers ability, reachability, and equivalent control. First, select the appropriate
sliding surface for the application. This technique manages the system's non-
linear characteristics. This technique's key advantage is its independence from PV
arrays and configuration size. This non-linear approach effectively tracks the MPP and
reduces converter ripple when integrated into the grid Although it is fast, the switching
frequency in the converter used is unstable. [29]-[30]. Model Predictive Control
(MPC) for MPPT is an advanced method that use a mathematical model of the solar
PV system to predict network behaviour and optimize power output. In this method,
the controller predicts future power generation utilizing current conditions (such as
irradiance and temperature) and adjusts the operating point to match the MPP. The
MPC approach determines the optimal control actions by solving an optimization
problem at each sample interval, taking into account future states and
restrictions. However, MPC necessitates accurate system simulation and extensive
computational resources, which can be difficult in real-time applications.[31]-[32].
This intelligence-based ANN is the most effective solution for complicated problems.
These ANN applications do not require detailed system or mathematical modelling
knowledge. By properly mapping the system's input-output, they may effectively
manage complicated challenges. ANN is an intelligence-based improved MPPT
technology that relies on the learning process and biological properties of neurons. The
ANN consists of three layers: input, hidden, and output, and is part of a multi-layer
feed-forward system. This technique can use PV module data like V. and I5., ambient
information like irradiance and temperature, or a combination of both. The result will
be either Viypp, Vyer, or GMPP. The hidden layer modifies weights and biases to
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estimate the best-targeted value (GMPP) based on available inputs. The duty signal
directs the converter to follow the MPP based on the calculations performed in that
layer but selection of PV panels is crucial for optimal application of the ANN approach
in predicting real-time difficulties [33]-[34].

2.2.3 Optimization based MPPT Techniques:

Optimization-based MPPT controllers can iteratively reach maximum power points
utilizing mathematical formulae. The literature has numerous metaheuristic
optimization techniques that investigate the successful performance of solar PV
systems. This PSO uses a bio-inspired algorithm modelled after bird flocking.
Obtaining the best answer requires a few or fewer assumptions. This bio-process
considers each PV array or module as a molecule, with MPP as the target objective to
track. The PSO technique focuses on the search method, allowing for easy tracking of
the GMPP [35]. Research suggests that improving the PSO approach can reduce
steady-state oscillations and fluctuations by following the MPP point. The particles
can be effectively instated around the MPP to avoid both unneeded and excessive
seeking, and a situation in which the swarm efficiently looks the zone turns out to be
too small, returning the genuine MPP in less time [36]. CS-based MPP, also known as
cuckoo-oriented brood parasitism, is another optimization strategy. The cuckoo's
nature serves as a metaphor for selecting the optimum option during MPP tracking.
The analogy is shown in [37] will demonstrate a clear tracking mechanism. The
cuckoo's egg is the current best solution, while the eggs already in the nest are the
solutions. Using suitable fitness functions, the inferior solution (old egg) is removed
and replaced with the best solution (cuckoo's egg). Although these techniques are
inexpensive, they require more time to reach MPP. In [38] author has proposed a new
strategy to improve this technique by combining with the golden section search (GSS)
technique. The first CS approach tracks the area closest to the MPP, followed by an
iterative search for the exact GMPP using GSS. This hybrid methodology accelerates
GMPP while maintaining tracking speed. GWO, a nature-inspired algorithm, is an
effective way to monitor MPP when the problem is unformatted or incomplete. S.
Mirjalili et al. [39] suggested a GWO calculation-based MPPT approach to illustrate
the leadership hierarchy and chase mechanism of grey wolves. The GWO-MPPT
technique is comparatively simple to use, operates smoothly, and has less oscillation
compare to conventional and improved conventional MPPT technique making it ideal
for hybrid PV systems with multiple MPP. Additionally, the literature recommends
several optimizations algorithm-based MPPT controllers for improved performance,
including Ant Colony Optimization (ACO) [40], Harmonic Search [41], Teacher
Learning Based Optimization (TLBO) [42], Honey Badger Algorithm (HBA) [43],
and Dwarf Mongoose Optimizer (DMO) [44].
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2.2.4 Hybrid MPPT Techniques:

Hybrid MPPT controllers aim to overcome the limitations of independent algorithms,
representing current advancements in the field. MPPT controllers can combine
traditional and advanced algorithms for optimization, among others. In [45] a hybrid
technique (PSO+INC and PSO+P&O) for a single-stage grid-connected PV system.
This approach optimizes a single objective function with restrictions to maximize PV
system output power while penalizing step size. The hybrid technique enhances system
efficiency by reducing settling time and ripple output power, resulting in faster
tracking and less oscillation in steady state. For the precise distribution of active power
in a system, an improved mixed droop technique (IMDT) with a sliding mode (SM)
controller was used in [46]. The improvement in the quality of power delivered to the
customers in terms of lower settling time, voltage undershoot/overshoot, and THD
demonstrated the potential of the proposed hybrid approach. To achieve the best
efficiency for solar PV systems, a new hybrid Maximum Power Point Tracking
(MPPT) technique utilizing Flying Squirrel Search Optimization (PSO_ML _FSSO)
and machine learning trained on particle swarm optimization (PSO_ML) was
suggested in [47]. This hybrid approach decreased the settling time and increased
efficiency. Several other hybrid MPPT technique such as ANN-PSO [48], adaptive
neuro-fuzzy inference system (ANFIS).[49], HC-ANFIS [50], GWO-P&O [51] etc.
has been studied in the literature.

2.3 INVERTER CONTROL TECHNIQUE AND DC BUS VOLTAGE
REGULATION OF STANDALONE AND GRID INTEGRATED RES SYSTEM
Environmental, economic, and technological concerns have prompted the
development of electrical systems based on the distributed generation (DG) model,
which is associated with small-scale power generation and mostly comprised of
renewable energy sources (RES). These renewable energy sources have significantly
aided in the development of microgrids, enabling them to become a viable substitute
for traditional grids. Due to the rising penetration of RES and its inconsistent
availability, ancillary services like the BESS are required to make sure continuous
power supply especially when utility grid is not available. Among all the RES, solar
photovoltaic is one of the most widely used renewable energy sources due to its
accessibility, ease of installation. Also, as power electronics technology advances,
renewable energy sources are increasingly being used as primary energy sources in
standalone power systems. This lowers generation costs, reduces environmental
pollution, and improves power supply in remote areas. Droop control is a popular grid-
forming control approach that allows inverters to regulate frequency and voltage using
active and reactive power control, respectively.[52].

Stand-alone systems are the most cost-effective option for remote PV installations.
Examples include distant stations, emergency power units, and manufacturing plants
with delicate electronics. Standalone systems have disadvantages such as low capacity,
high battery costs, and limited storage capacity, resulting in wasted energy and
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increased costs. Adoption of Grid Connected or Standalone systems depends on
economic feasibility and load considerations, in addition to accessibility and climate
change benefits. In grid-connected systems, surplus electricity can be utilized back
into the grid. Grid-connected systems are not affected by low load factors, which are
common in rural electricity scenarios. The grid acts as an infinite storage unit, allowing
for continuous operation and eliminating the need for additional storage batteries for
wind and solar PV [53]

Control techniques for inverter and DC bus voltage regulation vary significantly
between standalone and grid integrated system due to their different operational
challenges and requirements. In stand-alone systems, inverters must operate in grid-
forming mode to provide voltage and frequency stability in the absence of a grid
reference, as well as to deal with load variations and fluctuations in renewable energy.
These systems rely largely on control loops and effective voltage regulation
techniques, especially during nonlinear or severe loading conditions.

‘ Proportional-Integral (PI) Control 1

Proportional-Resonant (PR) Control
Synchronous Reference Frame (SRF) Control
Classical Controller

Fuzzy Logic Control
Model Predictive (FLC)
Control (MPC) Artificial Neural
Finite Control Set . Network (ANN)
MPC (FCS-MPC) Linear Control
Deadbeat Controllers Optimization
Control

Intelligent

Predictive Control Predictive
Controllers

Controllers

Robust
Controllers

Adaptive
Controllers

Non-Linear
Controllers

H-Infinity Control
Mu-synthesis
controller

Adaptive PI controller
Self-Tunning Controller

Hysteresis Current Control
Sliding Mode Control (SMC)
Lyapunov-Based Control

Fig.2.2 Classification of Inverter control techniques [54]

In contrast, grid-connected systems run in grid-following mode, which requires
inverters to synchronize with grid parameters and handle power injection, harmonics,
and grid code compliance.

To address these issues, several kinds of advanced control technique have been
developed. These techniques are generally classed as linear, nonlinear, robust,
adaptive, predictive, and intelligent control systems, with each having its own set of
advantages and disadvantages as shown in Fig.2.2[54]. In both standalone and grid-
integrated systems, the control strategy chosen is crucial for assuring system stability,
enhancing power quality, and effective energy management.

2.3.1 Linear Controller:

Linear control techniques, such as proportional-integral (PI), proportional-resonant

(PR), and tilt-integral (TI) controllers, constitute the backbone of inverter control

techniques in both standalone and grid integrated solar PV systems because of their

simplicity and ease of implementation. In standalone systems, TI controllers have
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showed promise in regulating DC bus voltage and maximizing energy extraction under
a variety of environmental conditions. However, the practical application of such
systems faces obstacles such as sensor reliance, tuning complexity, and poor
robustness under major shocks.

In grid-tied systems, however, linear controllers like as PI (in synchronous reference
frame) and PR (in stationary frame) are extensively used for current regulation and
harmonic attenuation using LCL-filtered inverters. While these controllers meet power
quality standards and support dynamic performance, they also require extensive tuning
and may have limitations in disturbance rejection or multi-harmonic correction. The
PR controller's harmonic compensators can only handle a limited number of low-order
harmonics due to system instability when the compensated frequency exceeds the
system bandwidth. [55-59].

2.3.2Non-linear Controller:

Nonlinear controllers provide considerable advantages over classical and linear
controllers for dealing with system uncertainties, external disturbances, and nonlinear
dynamics. Nonlinear control approaches, as opposed to classic controllers such as PID
or PR, which rely on linear assumptions, provide increased robustness, faster transient
response, and more stability under variable operating conditions. As stated in [60] a
feedback linearization control approach takes into account system nonlinearity to
obtain reduced THD under nonlinear loads. However, as this approach lacks memory,
any system performance issues can be observed in subsequent cycles.

The Sliding Mode Control (SMC) approach is used to regulate output voltage in PWM
inverters. This approach has the main advantage of being insensitive to load
disruptions and parameter fluctuations. In an ideal scenario, invariant steady-state
response is possible. However, finding an appropriate sliding surface can be difficult.
SMC performance suffers at low sampling rates. One disadvantage of using SMC for
tracking variables is chattering [61]-[63] A hysteresis controller is a type of nonlinear
controller. To create a hysteresis controller, an adaptive band must be designed to
maintain a fixed switching frequency. Isolated neutral considerations are crucial as the
controller's output determines the status of switches [64-65]. A Lyapunov-based
controller is a nonlinear control method that provides system stability by establishing
a control law based on a Lyapunov function, which is a mathematical function that
reduces with time, guaranteeing convergence to a desired state [66]. In [67] author
proposed control technique which is based on Direct Lyapunov technique to control
the DC link voltage of a standalone system. The Direct Lyapunov technique ensures
control system stability, is robust against un certainties, and is well-suited for nonlinear
systems. However, it can be difficult to construct a suitable Lyapunov function and to
demonstrate its features. The Direct Lyapunov technique can be computationally
challenging for analysis and design, particularly for large-scale systems
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2.3.3 Robust Controller:

Robust control is a control theory that designs controllers to handle uncertainty. These
strategies aim to achieve robust performance and stability with minimum modelling
errors. Robust control requires clearly defined criteria, explanations, and boundaries.
This controller ensures stable and high-performing closed loop systems, even in
multivariable systems [68]. H-infinity approaches involve representing a control
problem as an optimization problem, which is subsequently solved. H-infinity
approaches are suitable for multivariable system challenges. However, it is
computationally difficult and requires a good model of the system being regulated.
Additionally, nonlinear constraints are often not effectively managed [69]-[70]. The
Mu-synthesis approach takes into account both structured and unstructured
uncertainties when analysing system performance. This approach uses structured
singular values to create the controller [71]. In [72] a robust p value control approach
that employs hybrid sensitivity theory is proposed. This technique not only achieves
effective maximum power point tracking (MPPT), but it also improves DC bus voltage
regulation and grid-connected current quality by including parameter perturbations
into the DC/DC converter's average-state model.

2.3.4Adaptive Controller:

Adaptive control methods can automatically alter the control action in response to the
system's operating conditions. Accurate system parameters are not necessary for
optimal performance.

Standard PI controllers with constant gains are commonly employed for dc-link
voltage management in single-phase grid-connected converters (GCCs), however they
face a trade-off between eliminating voltage swings and decreasing grid current
harmonics. An adaptive PI controller overcomes this constraint by dynamically
modifying its parameters, resulting in improved performance, stability, and power
quality under varying operating situations [73]-[74]. The study in [75] proposes a self-
tuning adaptive control method with a robust system identification approach for a
single-phase full-bridge inverter with an LC filter, ensuring stability and improved
performance in dynamic situations. The adaptive self-tuning controller with recursive
least squares identification and pole shifting control outperformed the standard PI
controller in all test conditions. It performed reliably and consistently under various
system conditions, giving it a suitable solution for dynamic micro-grid applications.
One of the primary benefits of this method is its ability to improve transient response
and robustness to shocks, making it ideal for modern grid-connected inverters.
However, the complexity of implementation and increasing computational
requirements are possible downsides. [76]

2.3.5 Predictive Controller:

Predictive controllers utilize a system model to forecast future behaviour of regulated
parameters. The controller optimizes actuation based on stated criteria. This

19



controller's fast dynamic response, ability to accommodate nonlinearities and
limitations, and ease of construction make it suitable for a variety of systems, including
multivariable cases. Predictive controllers demand more calculations compared to
conventional controllers. Model predictive control (MPC) incorporates a flexible
criterion that minimizes a cost function to determine the optimal actions. This
approach uses a system model to anticipate the behaviour of variables till a specified
time. MPC can simply include nonlinearities and system restrictions into controller
design [77]- [79]. In [80] a model predictive current control technique for multilevel
converters and its application to a three-phase cascaded H-bridge inverter. This control
approach uses a discrete-time system model to anticipate future current values for all
voltage vectors and select the vector with the lowest cost function. Finite control set
model predictive control (FCS-MPC) is frequently used in nonlinear power converters,
including multilevel converters, due to its intuitive handling of multivariable
optimization, constraints, and nonlinearities. FCS-MPC provides greater dynamic
performance than standard proportional-integral control techniques [81]. Unlike FCS-
MPC, PWM modulators have a set switching frequency, resulting in harmonic spectra
focused around the carrier frequency and multiples. To improve converter predictive
control, several writers suggest using continuous control set MPC (CCS-MPC) with a
PWM modulator [82]. In [83], an improved Deadbeat Controller (DBC) for a grid-tied
Flying Capacitors Inverter is investigated. DBC balances capacitor voltages and injects
current into the grid with minimal Total Harmonic Distortion (THD) [84]-[85]. This
approach provides the following advantages, using a weighted state space model
improves current tracking quality at zero crossing instants and provides superior
steady-state performance (reduced current THD) compared to other prediction-based
control systems like Finite-Control-Set Model Predictive Control.

2.3.6 Intelligent Controller

Although traditional control techniques are simple and dependable, they are always
unable to deal with the complex coupling and interaction issues in PV inverter systems.
Al-based control system optimization improves PV inverter efficiency by addressing
complex control concerns such nonlinear dynamic interaction and multiple time-scale
coupling.

Fuzzy control is a popular method for controlling PV inverter systems, including fuzzy
PID, repetitive-fuzzy, and fuzzy PCI (proportional complex integral with PR control).
The most significant advantage of fuzzy control is its ability to achieve self-tuning of
parameters, allowing for real-time controller adjustment based on system operation
state [86].

Intelligent control methods, including fuzzy logic control (FLC), expert system control
(ES), artificial neural networks (ANN), and adaptive neuro-fuzzy inference system
(ANFIS), provide considerable benefits for dealing with complex and uncertain
models. These solutions improve the stability and reliability of PV systems. As PV
plants expand and power grids become more complicated, it becomes challenging to
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effectively predict and regulate the nonlinear and multi-coupled PV inverter system
[87]-[89]. Fuzzy logic control (FLC) is one of the more established intelligent control
techniques that works well with objects whose dynamic properties are difficult to
obtain. FLC does not necessitate a mathematical model to accurately explain the
system or insight into its intricate parameters and structure. In terms of response time,
stability time, and robustness, FLC performs better than traditional controllers and is
less sensitive to changes in parameters and load [90]-[91]. In contrast to fuzzy control
ANN control can accurately mimic any non-linear continuous function and is
extremely adaptable to complex settings. It also has self-learning capabilities and can
handle multiple objectives. Furthermore, ANN distributes and stores information in
the neurons of the neural network, making it very robust and fault-tolerant. ANN's
self-learning, self-organizing, and self-adaptive qualities can assist in dealing with
uncertain or unfamiliar systems [92]-[93]. The use of ANNSs in a PV inverter system
can alleviate the challenges of defining controller parameters for complicated coupled
nonlinear systems. However, training an artificial neural network requires a significant
quantity of data and effort. Designing a neural network involves maximizing desired
parameters after selecting the number of layers and neurons in each layer. The gradient
descent optimization (GDO) method can be used to train the MLP controller (MLPC).
ANN can be more efficient and reliable than sliding mode controllers [94]-[96]. The
neuro-fuzzy controller combines fuzzy control concepts with FLC and ANN, offering
benefits such as neural network learning, parallel knowledge/data processing, and
human-like fuzzy logic reasoning. The ANFIS fuzzy inference system uses the Takagi-
Sugeno model. Neural networks implement the essential fuzzy control processes
(fuzzification, fuzzy inference, and defuzzification). Neural networks may extract
rules from input and output data, resulting in an adaptive neuro-fuzzy controller. The
system can self-adapt, organize, and learn by altering fuzzy inference control rules
through offline training and online learning algorithms [97]-[98]

Several strategies have been proposed in the literature to accomplish effective PQ
control while maintaining power quality. All of the experiments listed above aimed to
obtain a quick dynamic response with the least static error. The controllers in the
mentioned studies achieve the desired power sharing ratio with appropriate dynamic
response. However, the lack of automatic parameter tuning leads to significant
overshoot and settling time during abrupt load changes. To improve the system's
performance and stability, an optimization approach is needed to determine optimal
values for controlling parameters [99]-[100]. Some of the optimization approaches
utilized in microgrid application are explained here, as it is difficult to cover them all.
One of the most popular metaheuristic optimization methods for improving power
quality and controlling the voltage-frequency of AC MGs is the PSO. PSO has several
advantages over genetic algorithms (GA), such as being easier to construct with fewer
tuning factors, having a more effective memory capacity, and being more effective at
preserving the swarm's variety. Additionally, in contrast to GA, PSO lacks
sophisticated evolution operators like crossover and mutation and does not place a
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heavy computing load on the microcontroller [101]-[102]. The Firefly optimization
algorithm (FOA) was created and simulated in another investigation [103] in order to
optimize the tuning of PI controllers in a grid-tied hybrid wind/photovoltaic system.
The study's goal was to control the system frequency and voltage at the PCC during
fault and load-changing scenarios. In [104], the PI parameters for controlling active
and reactive power in an AC MG were adjusted using the Artificial Bee Colony (ABC)
method. In both islanded and grid-connected modes of operation, droop control was
used to regulate voltage and frequency variations. Additionally, the ABC optimization
technique was used to improve the power and current controller settings in order to
provide the best dynamic response of the MG system under study. Choosing the right
optimization method for a specific problem is crucial for achieving minimization or
maximizing of a fitness function. This literature review examines popular and recent
algorithms.

2.4 ISLANDING DETECTION TECHNIQUES FOR GRID INTEGRATED
SOLAR PV SYSTEM

Integrating microgrids with distributed energy resources (DERs) offers numerous
benefits to the power grid, including improved power quality, increased energy
efficiency, and lower carbon emissions. Microgrids function in either grid-connected
or island modes, using distinct methodologies. Unintentional islanding is a critical
technical concern in microgrids. Failure to trip the system can have substantial
consequences for protection, security, voltage and frequency stability, and safety. Fast
and efficient islanding detection is crucial for reliable microgrid operations. There are
two types of islanding detection techniques (IDT): classic and modern as depicted in
Fig.2.3. A number of methods are examined, such as remote and local IDTs. Once
more, the local IDTs are categorized into three groups: active, passive, and hybrid.
Additionally, a quick illustration of intelligently based IDTs and signal processing has
been discussed.[105]

[ Passive Islanding Detection ]
Local | Technique
Islanding [ Active Islanding Detection ]
Classical Detection l P
Islanding Techniques Hybrid Islanding Detection
Detection | Technique
Techniques
Remote Islanding
Islandmg Detection Techniques
Detection
Methods
Signal Processing Based Islanding
Modern Detection Techniques
Islanding
Detection
Techniques Intelligent Based Islanding
Detection Techniques

Fig.2.3 Classifications of Islanding detection techniques
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2.4.1 Classical Islanding Detection Techniques:

Classical islanding detection methods are classified as local or remote, as illustrated in
Fig. Local approaches, such as passive, active, and hybrid, measure certain parameters
or variables on the microgrid side. Remote approaches use communication between
microgrids and the main grid to monitor breakers quickly. Passive islanding strategies
are based on parameter thresholds. Their benefits include simple implementation (no
controller needed), no decrease of PV inverter power quality, and low cost. Their main
shortcomings are a huge NDZ and in effectiveness in multi-inverter systems. Passive
islanding detection techniques include over/under voltage and frequency
(OV/UV/UF), phase jump detection (PJD), voltage harmonic monitoring, current
harmonic monitoring, rate of change of power output (ROCOP), and rate of change of
frequency (ROCOF). The OVP/UVP and OFP/UFP techniques include defining a
threshold value for voltage and frequency at the point of common coupling (PCC).
Disconnection occurs when voltage or frequency values exceed specified limitations
in the circuit. Most standards have specific typical voltage/frequency ranges. Phase
jump detection disables an inverter when there is a phase discrepancy between the
output voltage and current, such as during islanding. Its primary benefit is its
efficiency, even with many inverters [106]-[107]. Active approaches detect islanding
by injecting minor disturbances at the PV inverter output. Their key advantage is a
lower NDZ than passive approaches. The main disadvantages include worsening
output power quality, which can cause instability in the PV inverter, and the
requirement for additional controllers, which adds complexity [108]. A few examples
of active islanding detection techniques are impedance measurement (IM), sliding
mode frequency shift (SMFS), active phase shift (APS), Sandia frequency shift (SFS),
or active frequency drift with positive feedback. The Impedance Measurement (IM)
approach detects islanding by monitoring variations in inverter output impedance
caused by a loss of the main power supply. When the grid connection fails, differences
in impedance indicate an islanding condition. In the Sliding Mode Frequency Shift
(SMS) or Active Phase Shift (APS) approach, the current-voltage phase angle is
designed to be proportional to the frequency of the Point of Common Coupling (PCC)
voltage. This technique is commonly done by connecting an input filter to the Phase-
Locked Loop (PLL), which tracks frequency deviations to identify islanding
effectively. Sandia Frequency Shift (SFS) or Active Frequency Drift (AFD) with
Positive Feedback method is an improved version of AFD) that uses positive feedback
to expedite the islanding detection process. SFS effectively prevents islanding by
introducing controlled frequency perturbations that cause the system frequency to
wander away from normal operating circumstances, resulting in disconnection when
an islanding event occurs. [109]-[112].

Hybrid strategies use both active and passive detection methods. Passive techniques
detect islanding before using active procedures. These solutions reduce NDZ and have
no substantial impact on grid power quality. Positive Feedback (PF) and Voltage
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Unbalance (VU) This approach detects islanding by utilizing both active and passive
(VU). Combining the two strategies overcomes their weaknesses. The system
continuously monitors the three phase output voltages of the DG to determine the VU
as specified. Disturbances to DGs cause a surge in VU. An island is detected when the
spike exceeds the set value. [113]-[114]. The Voltage and Reactive Power Shift
approach monitors voltage change over time to calculate covariance. The adaptive
reactive power shift algorithm (ARPS) is then used for identification. When an island
is suspected, the reactive power shift increases the phase shift action, resulting in a
rapid frequency change during islanding [115].

Remote islanding detection methods rely on communication between the utility and
PV inverter units. This approach does not have NDZ and does not affect the power
quality of PV inverters. While effective in multi-inverter systems, it is costly to
implement (particularly in small systems) and requires a complex communication
strategy. The following section outlines common communication tactics [116].

2.4.2 Modern Islanding Detection Techniques:

Modern methods rely on signal processing and classifiers, but traditional IDMs, which
are essentially passive, remain the foundation. These strategies increase the
performance of traditional IDMs. Signal processing approaches first appeared in the
literature in 2005, as they gained traction in power systems. These methods use signal
processing technologies to extract features from signals for identification. Some useful
tools include the Wavelet transform (WT), Stockwell transform (ST), Hilbert Huyang
transform (HHT), time-time transform (TT), and mathematical morphology (MM).
Over the past two decades, WT has been widely used in signal processing. Its key
advantage is its capacity to expand a signal in the frequency domain while maintaining
time information. For applications that require both time and frequency, use WT.
There are various variations of WT available. Depending on the application, several
methods are preferable over others. There are three types of wavelets transforms:
continuous (CWT), discrete (DWT), and wavelet packet transform (WPT).[117]-
[118]. Soft computing and intelligent-based IDMs are similar to signal processing and
communication technologies, but do not need thresholds. We suggest intelligent ways
to limit the NDZ and its impact on power quality, and have created high-precision
classification models. Various intelligent classifiers, data mining techniques, and soft
computing algorithms based on human, bird, fish, or animal intelligence are commonly
employed to detect islanding. These strategies can solve multi-objective problems
(MOPs) that standard approaches cannot [119]-[120].

2.5 IDENTIFIED RESEARCH GAPS

The production of power from renewable sources has become necessary to preserve
the ecological balance due to the ongoing depletion of fossil fuels and their adverse
impacts on the environment. One of the most promising choices among the many
renewable resources is the solar photovoltaic system, and early characterization studies
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are necessary to choose the ideal operating conditions for maximum utilization.

¢ Current control methods concentrate on keeping the DC bus voltage constant, but
more research is needed to develop real-time adaptive control solutions in extremely
dynamic environments. Predictive control powered by Al can improve response time
and voltage stability. While voltage regulation and harmonic abatement are addressed
by existing hybrid standalone inverter control techniques, more work is required to
incorporate sophisticated nonlinear control algorithms for improved performance
under dynamically varying load situations.

e When irradiation changes quickly, traditional MPPT systems have trouble in
tracking. Although ANN-based optimization has been investigated, hybrid Al-
optimization methods (such evolutionary computing and deep reinforcement learning)
may improve accuracy and response time even further.

eThe adaptability of current ANN-optimized MPPT techniques to real-time
environmental variations is limited by their reliance on offline training datasets.
System flexibility may be increased by creating ANN MPPT algorithms based on
online learning. It is still difficult to strike a balance between computational load and
high-precision optimization. For real-world grid applications, more compact and
effective Al models ought to be researched.

e Existing inverter control solutions have difficulties when dealing with an unbalanced
and distorted grid. Advanced control approaches, such as model predictive control
(MPC) and sliding mode control (SMC), need to be improved to provide steady
synchronization.

DC-Link Voltage Stability with High Renewable Penetration: With increased PV
integration into the grid, maintaining DC bus voltage stability in the face of high
temperature and load demand fluctuations remains a concern. Al-powered predictive
controllers may provide more accurate and adaptable voltage management. Traditional
inverter controllers focus on harmonic abatement, while deep learning-based control
strategies could improve real-time harmonic compensation and power quality.

e Existing passive and active islanding detection systems have issues with detection
speed and non-detection zones (NDZ). Al-powered classification methods, such as
machine learning-based pattern recognition, may boost detection accuracy. Modern
grids necessitate islanding detection solutions that are smoothly integrated with smart
grid communication protocols. The role of IoT and cloud-based monitoring in real-
time island detection has yet to be investigated. Conventional islanding detection
methods may produce false positives, resulting in wasteful disconnections. Hybrid Al
techniques that combine deep learning with real-time voltage and frequency analysis
may improve reliability.

2.6 CONCLUDING REMARKS
This chapter presents a comprehensive review of the literature on MPPT control
techniques for both standalone and grid-connected solar PV-based microgrids. It

highlights key research contributions in the design and development of grid integrated
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solar PV systems, focusing on voltage source inverter (VSI) control strategies and DC-
link voltage regulation. Furthermore, various islanding detection techniques for grid-
connected PV systems are examined. The chapter also reviews the work of numerous
researchers in the field of control and optimization of grid-connected solar PV
microgrids. Based on the surveyed literature, the research gaps have been identified,
which form the foundation for the subsequent work presented in this thesis.
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CHAPTER-3
PERFORMANCE ENHANCEMENT OF HYBRID
STANDALONE RES BASED MICROGRID
3.1 INTRODUCTION
Standalone PV based microgrid has emerged as potential solutions to electricity
challenges in the region where grid is not available. The battery energy storage system
(BESS) is integrated into the system to facilitate synchronized load control and power
flow. Variation in solar irradiation, load demand and fluctuation in battery SOC results
in DC voltage fluctuation and maximum power point tracking challenges. Hybrid PV-
Battery systems therefore must require control algorithms that can both flexibly adjust
power flows as well as stabilize bus voltages.
This chapter focuses on the design and development of a hybrid standalone solar PV-
based microgrid. The system is modeled and simulated using the MATLAB/Simulink
environment to evaluate its performance under various operating conditions. Detailed
mathematical modeling and parameter design of the proposed microgrid are presented
in the subsequent sections.
A modified MPPT technique is proposed, which integrates the Incremental
Conductance (INC) algorithm with a double closed-loop controller to effectively track
the maximum power point and regulate the DC bus voltage under various dynamic and
atmospheric conditions. To demonstrate the superiority of the proposed algorithm, its
performance is compared with existing MPPT algorithms.

3.2 MODELLING AND DESIGN OF HYBRID MICROGRID SYSTEM

A hybrid standalone microgrid system consists of multiple renewable energy sources,
such as a solar photovoltaic (SPV) system and a wind energy conversion system,
integrated with a battery energy storage unit. These sources work together to ensure a
continuous and reliable power supply without dependence on the main grid. Maximum
power point tracking (MPPT) techniques and bidirectional battery control are
employed for efficient energy extraction, storage, and management. Inverters with
dedicated control strategies maintain voltage and frequency stability while supplying
both linear and nonlinear loads. The detailed modeling of each subsystem—Solar PV,
wind turbine with permanent magnet synchronous generator (PMSG), power
converters, and battery storage—is presented in the following section.

3.2.1 Solar PV modelling

The term ‘solar photovoltaic (PV) modelling’ refers to the mathematical representation
of a PV system’s performance under various operating conditions and environmental
factors. Hierarchal configuration of PV array is depicted in Fig.3.1. Using variables
like solar irradiation, temperature, and load conditions, it simulates the PV module's
electrical properties, such as current, voltage, power production, and efficiency.
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Solar PV Cell Solar PV module Solar PV Array

Fig.3.1 Hierarchal configuration of solar PV array

PV arrays consist of multiple modules connected in series and parallel to attain the
required voltage and current. Fig. 3.2 (a) and 3.2 (b) show equivalent circuit diagrams
of ideal and practical solar cells. By using Kirchhoff's law (KCL), the mathematical
equations of a photovoltaic cell can be determined from Fig.3.2 (a) and 3.2 (b) equation

(1) can be used to represent the ideal photovoltaic cell output current for Fig. 3.2 (a).
[121]
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Fig. 3.2 (a) Equivalent circuit of a solar PV with ideal single diode model
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Fig. 3.2 (b) Equivalent circuit of a solar PV with practical model with R; and R,

I =L — Iy G.1)
Iy =1, [exp (YLVT> — 1] (3.2)
Iph = m (IphtSTC + K (T - TSTC)) X R 3-3)
vy = (3.4)

where, I, Iq and Iy are photo, diode and leakage currents in Amp , V is the voltage
given to the diode, q is charge 1.602 * 10719C, Iphe stc and Rphe stc are photovoltaic
current and irradiance value at STC , K, is temperature coefficient , R is irradiance,
Vr is thermal voltage in volt , kis Boltzmann constant 1.381 = 1023 J/K and Y is
ideality factor . The series and parallel resistances of the network are represented by
Ry&R,, in Fig.3.2(b). Now, using KCL in Fig.3.2 (b). Equation (3.5) is used to express
output current.
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I =lyp—1g—1, (3.5)

I'= I, — Io |exp (YLVT) ~1]-1, (3.6)
1= tyne 1o e (%572) = 1] - (452%) 3

Following the series and parallel connection of cells, the output current (/,,) of the
photovoltaic array is represented by equation.3.8.

V+IR V+IR
lop = IpneNp — Nplo [exp (NSYVST) N 1] B ( Rp S) (3-8)

where Ng & N,, is number of cells tied in series & parallel.
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Fig. 3.3 P-V & I-V characteristics graph of proposed solar PV
PV arrays are created by connecting PV modules in series or parallel to achieve the
necessary rating. PV array I-V and P-V characteristics vary with solar irradiation
intensity and temperature. Additional information was obtained through the use of
power and voltage (P-V) and current and voltage (I-V) curves. This study focuses on

a 12.78 kW solar PV installation. Fig.3.3 displays the P-V curve and I-V curve for
various solar irradiation levels.

3.2.2 Modeling of Wind Turbine

A wind turbine equipped with a Permanent Magnet Synchronous Generator (PMSG)
efficiently converts the mechanical energy from wind into electrical power. The
generated AC power from the PMSG is converted into DC power using a rectifier. The
DC power is further processed using a boost converter and then fed to the grid or

connected load. A wind turbine generates mechanical power from wind is expressed
as equation (3.9):

Pmee = 5 PACH (A, BIVS, (3.9)

The turbine power coefficient (Cp) represents overall turbine efficiency and can be
described using equations (3.10) and (3.11)

_C6

Cy(LB) = C, ((i—) —CsB — c4> {59 4 CA (3.10)
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1 1 0.035

A A+0.088  B3+1
where, P mechanical power, C, power coefficient, p air density kg/m3, A area

(3.11)

swept by the blades, A function of blade, 8 pitch angle, w, rotational speed, C; ,
C,, C3,C,,Csand Cg (0.5176,116, 0.4, 5, 21, and 0.0068).
3.2.3 Modelling of PMSG

The dynamic mathematical equations for a three-phase PMSG can be expressed in a
synchronously rotating dq reference frame as equations (3.12) and (3.13).

dys :
d_tq = Vsq — Rslsq — Welig (3.12)
d :
% = Vsq — Rgigqg — W'eLIJq (3.13)
Flux linkages of the PMSG (Y14, Pq) are determined by
Yq = Lgisq + Y (3.14)
Yq = Lgisq (3.15)
The electromagnetic torque (T,) can be calculated as
3 p |yl : :
T, = Zﬁ . [21Wm|Lgsind + [Wg|(Lg — Lq)sin28] (3.16)
3 .
Te = iz Vsl lWmlsind (3.17)

where, vgq and vgq q- and d-axis stator terminal voltages, isqand igq q- and d-axis
stator currents, Ry stator resistance, we electrical angular velocity, g and{iq q- and
d-axis flux linkage, Lgand Ly are - and d-axis inductance and T, electromagnetic

torque.

Turbine Power Characteristics (Pitch angle beta = 0 deg)
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Fig. 3.4 Turbine Power characteristics

The wind turbine system under consideration has a rated mechanical power of 12.3

kW, and the base wind speed is defined as 12 m/s as can be seen from Fig.3.4. At this

base wind speed, the maximum mechanical power output of the turbine is 0.85 per unit
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(pu) of its rated capacity, which equates to an actual mechanical power of 10.455 kW
(calculated as 0.85 x 12.3 kW). Considering a generator efficiency of 90%, the
corresponding electrical output power is calculated to be 9.41 kW (0.9 x 10.455 kW).
These numerical details are consistent with the turbine power characteristic curve
provided for a pitch angle = 0°. The graph illustrates how the turbine output power,
expressed in pu of nominal mechanical power, varies with turbine speed at different
wind speeds. For a wind speed of 12 m/s, the turbine output reaches its maximum at
around 1.2 pu turbine speed, and the output power plateaus at 0.85 pu, aligning with
the values given in the table. This curve highlights the optimal operating point for
maximum power extraction and supports the calculated output values.

3.2.4 DC-DC Boost converter modelling

A DC-DC boost converter is needed to obtain a fixed DC voltage and to increase the
input voltage of the inverter because the output obtained from a solar array is
susceptible to voltage fluctuation. As depicted in fig.3.5 the boost converter diagram
includes an IGBT switch, an inductor, a diode, and a shunt capacitor. Value of

inductance, capacitance and duty cycle can be computed using equations (3.18), (3.19)
and (3.20). [122]-[123].

D
@YY Y N

Fig.3.5 Equivalent circuit of Boost Converter

_ Vinp*(Vout —Vinp)
(Alfstout) (3 1 8)
— 1 — (Ve
a=1 (Vout) (3.19)
Ix(Vout _Vinp)
C=—"-—7- .
(AstfVout) (3 20)

Where, input and output voltage of a boost converter are denoted by Vi, & Ve
whereas a represents the duty cycle. ff is the switching frequency, I is the average

output current, and Al is the output ripple current equal to 10% of input current. The
converter's reference duty ratio is calculated using the MPPT algorithm. The boost
converter's IGBT switch generates a gating signal at a switching frequency of 10 kHz.

3.2.5 DC-DC Buck - Boost converter modelling

The buck-boost converter is crucial in a standalone solar PV system as it regulates the
DC bus voltage, allowing for efficient power transfer between the solar PV array,
battery storage, and load. As the output voltage of a solar PV system varies with
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irradiance and temperature, the buck-boost converter adjusts the voltage by either
stepping it up (boost mode) or stepping it down (buck mode) to maintain a stable and
dependable DC bus voltage. This regulation is critical for appropriate battery charging,
preventing overcharging or undercharging, which increases the battery's longevity
[124].

In fig.3.6, the bidirectional buck -boost converter is depicted. The converter has two
switches Sw;, Sw,, diodes D;, D,, inductor (L;) and capacitor (C;)The converter
works in two modes i.e., buck and boost.

Fig.3.6 Equivalent circuit of Buck-Boost Converter

Boost Mode: In this mode, switch Sw, and D; diode conduct based on the duty cycle,
whereas switch Sw; and, D, diode remain off continuously. This mode can be
separated into two intervals based on the conduction of switch Sw, and diode D; .
Interval 1: (Sw,-OFF, D -OFF; Sw,-ON, D, -OFF)- In this state, Sw, is active
and considered short-circuited. The lower voltage battery charges the inductor, causing
the current to increase until the gate pulse is withdrawn from Sw, . In this mode, the
diode D; is reverse biased and the switch Sw; is turned off, resulting in no current
flowing through Sw; .

Interval 2 :( Sw,-OFF, D, -ON; Sw,-OFF, D, -OFF)- In this state, both Sw; and
Sw, are turned off, indicating an open circuit. The inductor's current cannot change
instantly, thus the voltage across it reverses and acts in series with the input voltage.
As the diode D; is forward biased, the inductor current charges the output capacitor
Cl1, resulting in a greater voltage. Consequently, the output voltage increases.

Buck Mode: The switch Sw; and diode D, conduct based on the duty cycle, whereas
the switch Sw, and diode D; remain off at all times. This mode can be separated into
two intervals based on the conduction of switch Sw, and diode D;.

Interval 1: (Sw1-ON, D{-OFF; Sw;, -OFF, D,-OFF). In this phase, Sw; is active
and can be termed short-circuited. The higher voltage battery will charge the inductor,
which will then charge the output capacitor.

Interval 2: (Sw,- OFF, D1 OFF; Sw,- OFF, D2- ON). In this setting, Sw, and Sw,
are both turned off. The freewheeling diode D, discharges the inductor current, which
cannot alter instantly. The voltage across the load is stepped down compared to the
input voltage.
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3.2.6 Battery energy storage system modelling
Battery energy storage system is mainly employed with standalone photovoltaic
system. The stored energy in the battery is utilized to feed the load in situations where

the solar PV system is unable to provide power to it.
AAA,
Rp

ECOI\[

=+

-2
=
-

14— —> 4

Fig.3.7 Equivalent circuit diagram of battery

Fig.3.7 illustrates an equivalent circuit diagram for a battery, where resistance and a
voltage-controlled source are connected in series. From Fig.3.7 we can write-

Vbatt = Econt — Rpl (3.21)
Where, V, 4.+ represent actual voltage, E.,,; represents controlled voltage, R), is the
internal resistance and i is the battery current. Controlled voltage of battery is
expressed by equation (3.22) and (3.23).

Q?it Jdt—p Q?iti * +Exp(t)[For discharging] (3.22)

Q
Q-it
Where, E, represents constant open circuit voltage, p represents polarization constant,
Q represents the battery capacity and battery’s actual charge is represented by it =
[ idt, and its reference current is denoted by i * and Exp(t) exponential zone voltage.
In the system under consideration, a MATLAB/Simulink integrated Lithium-ion
battery has been utilized. The battery's specifications are as follows:

Battery must offer the required 14kW of load for around an hour, considering 50%
depth of discharge when solar power is zero.

LW — 66.664 (3.24)
420V 0.5

To supply 14 kW, 35 batteries of 12V ,67Ah are required.
3.2.7 LC Filter modelling

The LC values were used to provide sufficient bandwidth at the reference and
cutoff frequencies. The capacitor's function is to reduce harmonics by serving as a
low-impedance path to the ground. It is important to select a capacitor that
provides a high-power factor at the reference frequency; equation (3.25) is used to
determine the capacitance [125].
P+

G = G (325)
Reactive power factor is represented by ¢. The rated power is P and the line frequency

is f. The L value for the LC filter is determined using equation (3.26).
1
f = 472 Cefy

Econt = Eo—p

Econt = Eo—p Jdt—p i * +Exp(t)[For charging] (3.23)

it-0.1.Q

Battery rating =

(3.26)

Where, f; is resonance frequency.
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3.3 MPPT CONTROL TECHNIQUES FOR STANDALONE RES BASED
MICROGRID

In hybrid standalone RES based microgrid, MPPT, DC bus voltage, and inverter
management strategies are necessary to guarantee effective energy use, steady power
delivery, and system dependability. MPPT increases total efficiency by dynamically
modifying the operating point under changing solar conditions, maximizing energy
extraction from the PV array. A steady and controlled DC link voltage is maintained
by DC bus voltage regulation, minimizing instability and guaranteeing smooth power
delivery. This is essential for the seamless integration of batteries, inverters, and loads.
In the meantime, inverter management makes sure that DC power is converted into a
steady AC output with the right voltage, frequency, and phase regulation—all of which
are necessary for powering delicate AC loads. By combining these strategies, hybrid
standalone solar PV systems become more efficient for off-grid and backup power
applications by improving their performance, stability, and dependability.

Due to unpredictable weather, the maximum power produced by a photovoltaic system
can fluctuate. To determine the maximum power that can be extracted from a PV
module, MPPT is utilized. The MPPT algorithm's objective is to control the DC-DC
converter's duty cycle in order to increase output voltage and control the operating
point at the point when the solar PV system generates the most power. The maximum
power point, also known as the peak power voltage, is the voltage at which a
photovoltaic module may generate its maximum power. Various MPPT controllers are
examined in thesis work including:

1. Perturb and Observe (P&O) technique
ii. Incremental Conductance (INC)technique
1ii. Particle swarm optimization technique
1v. Cuckoo search optimization technique
v. Proposed modified MPPT (INC with Double close loop) technique

3.3.1. Perturb and Observe (P&QO) Technique

Perturb and observe involves regularly changing the duty cycle and comparing the
resulting PV output power to the preceding perturbation. The operating point
movement is determined by measuring the power (AP) and voltage (AV) derivatives.
If a perturbation affects array power, the next perturbation follows in the same (or
opposite) direction, as shown in the Fig.3.8. [126].

3.3.2 Incremental Conductance (INC) Technique

Flowchart of INC technique are as shown in Fig.3.9. The incremental conductance
(INC) algorithm is used as the primary MPPT technique. It continuously measures the
power, voltage, and current of the solar panel and calculates the rate of change of
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power with respect to voltage (dP/dV). By comparing dP/dV) with the rate of change
of voltage (dV/dt), the algorithm determines if the system is operating at the maximum
power point (MPP). If they are equal, the system is at the MPP, and no adjustments

are required [127].

Measure Power and Voltage of solar
PV array

Yes No

Decrease Increase duty Dec.reas_e Incr eaiieodmy
duty ratio ratio duty ratio ra
{ I ] !

Fig.3.8. Flow chart of Perturb and Observe algorithm

Measure Voltage and Current solar
PV array

!

Increase
Vre!

Increase Vyor Decrease Vo Decrease V¢

I I |

Fig.3.9 Flow chart of Incremental Conductance algorithm

3.3.3 Particle Swarm Optimization technique

Particle optimization technique (PSO) is a population-based evolutionary algorithm
(EA) for search optimization. The principle was inspired by bird flock behavior to
solve search and optimization problems. The PSO approach examines each particle's
best position (Pp,s;) and group's best position (Gpes:) in @ D-dimensional search space.
Each particle moves at a speed determined by these values. Each particle in a
population exchanges information during its search process. During the search process,
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each particle in the swarm interacts with its neighbors and quickly converges to the
best position in the search space. Each particle's location is influenced by their best
neighborhood particle (Pp.s:) and the global best position (Gp.s)) of the entire
population [128].

The i" position (x;) for each particle is updated using equation (3.27):

xfH = xf + ! (3.27)
Where k indicates the iteration counter. The velocity component, ¢;, denotes the step
size and is adjusted iteratively to allow particles to explore any region of the search
space. The velocity is modified as equation (3.28):

Pt = wef + Clrl{Pbest - xlk} + CZrZ{Gbest - xlk} (3.28)

The inertia weight (w) determines how an antecedent particle's velocity affects its
present velocity. Consider ¢; and ¢, as acceleration coefficients. The random variables
r; and 7, are evenly distributed within [0, 1]. Ppeg, i represents the personal best
position of particle i, whereas Gp,.¢; represents the best position of the entire swarm. If
the particle position represents the real duty cycle and velocity represents the
perturbation, the equation can be modified as shown below.

ditl = df + pkt? (3.29)
According to equation (3.29), the perturbation on the duty cycle depends on Gp,.; and
Gpest-Flow chart of PSO technique are as shown in Fig.3.10.

PSO initialization
]

| i=1 | <

'

Calculate fitness of particle i

Better local fitness value?

No ¢

Yes
Better global fitness value? Update Gpegr [

No

All particle evaluated ?

Yes

Update Pp,q -|

Update particle position & velocity

Convergence criteria met?

Yes

Fig.3.10 Flow chart of Particle swarm optimization algorithm
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3.3.4 Cuckoo Search Optimization technique

In this algorithm, cuckoo birds select host birds with the same egg and nest features.
So that cuckoos’ birds can lay their egg in host bird nest. If host birds discover a cuckoo
bird's egg, either host birds dump egg or destroy the nest and construct a new nest.
Cuckoo Search mainly follows three basic rules [129].

1. Cuckoo birds lay one egg at a particular time and keep egg in a randomly selected
nest. 2. Nest with better feature of eggs will carry forward the next generation.

3. The total no of available nests is set and egg-lay by cuckoo birds found by host
birds with the probability of Pae [0, 1].

xftt=xf+a @ Le'vy (3.30)
xl-t refers to sample/egg, i denote the number of samples, t is the iteration count, a is
the step size, @means entry-wise multiplication, Le'vy (1) is Le'vy distribution given
by equation (3.31):

Le'vy ~u=t""* (3.31)
The Le'vy flight is used here for cuckoo bird to generate new solution. Le'vy flights
are a kind of random trajectories walk where steps size is determined from Le'vy

distribution. In this present work, CSA is implemented to optimize the duty cycle of
boost converter. Fig. 3.11 depicts the flowchart of the CSO MPPT technique.

To start, n number of random duty cycles between 0 to 1 is created and given to the
boost converter for initial objective function for each duty cycle as expressed as
equation (3.32).

d; = dmin + rand[0 1](dpmax — dmin) (3.32)
The initial duty cycles are given to the converter to generate new solution and to form
the current nest. The corresponding power for each duty cycle is determined by using
current and voltage of the solar panel. Maximum power provided by its corresponding
duty cycle is considered as the current best. Le'vy flight is performed to generate new
optimal duty cycle using expression (3.33).

dV = db, . + a @ Le"vy (1) (3.33)
This process will repeat until the maximum power is obtained.

The modified MPPT technique, which combines the incremental conductance (IC)
method with double closed-loop control, outperforms existing MPPT techniques such
as Perturb and Observe (P&O), Particle Swarm Optimization (PSO), and Cuckoo
Search by providing faster and more accurate tracking, better DC bus voltage
regulation, and fewer power oscillations. Unlike P&O, which experiences steady-state
oscillations, and IC, which issues with delayed convergence, the updated technique
ensures stable and exact MPP tracking. It also outperforms PSO and Cuckoo MPPT,
which can be computationally costly and slow in dynamic circumstances, by delivering
faster transient reaction and stable performance even with varying irradiance.
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| Initialize the random duty cycle and parameter of CSA |
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[ 1
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| Optimal duty cycle to the converter |

End

Fig.3.11 Flow chart of Cuckoo search optimization algorithm
3.3.5 Proposed Modified MPPT (INC with Double close loop) technique

The modified MPPT technique combines the advantages of the incremental
conductance method and the double closed-loop MPPT technique. This modified
approach aims to improve DC bus voltage regulation, MPPT tracking and accuracy in
photovoltaic systems [130].

In this approach, the incremental conductance (INC) algorithm is used as the primary
MPPT technique. It continuously measures the power, voltage, and current of the solar
panel and calculates the rate of change of power with respect to voltage (dP/dV). By
comparing (dP/dV) with the rate of change of voltage (dV/dt), the algorithm
determines if the system is operating at the maximum power point (MPP). If they are
equal, the system is at the MPP, and no adjustments are required.

However, DC bus voltage fluctuates due to rapid change in generation from the solar
panels due to which INC method may not be able to accurately track the MPP alone.
In such cases, the double closed-loop MPPT technique is combine with INC and
employed as a new modified MPPT method to enhance the tracking performance by
regulating DC bus voltage.

From Fig.3.12 It can be observed that Vpy ,.r is obtained from incremental
conductance MPPT technique. Obtained Vpy ,ris compared with input voltage of PV
(Vpy) which generate Vpy o,-which is given to the PI controller to obtain optimal duty
cycle as expressed in equations (3.34) and (3.35).

Vev_errey = Vev = Vev,or (3.34)
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d1 = kpl(Vpy,,, ) + kil [, (Vev, .. ) (3.35)
In double closed loop controller, DC bus voltage (Vp) is compared with reference DC
bus voltage (Vp¢ ref) Which generates voltage error as expressed in equation (3.26).
then given to the voltage controller outer loop using PI controller (PI2) to generate
reference current as expressed in equation (3.37).

VDC_err(t) = VDC_ref(t) — Vbc (3.36)
. t
IL_T‘ef=kp2(VDCerr(t)) + ki2 fo (VDCerr(t)) (337)

Similarly for inner loop, output reference current (I, ,.5) is compared with output
boost current and given to the inner loop using PI controller to generate duty cycle as
expressed in equation (3.38) and (3.39).

I_err(t) = IL_ref —IL (3.38)

ot
d2 = kp3(l_err(t)) + ki3 fo (I—err(t))

After that, the obtained duty cycle from the INC MPPT technique and the double-

closed-loop MPPT controller are added together to get the optimal duty cycle as
expressed in equation (3.40) where both the maximum power point and the DC bus

(3.39)

voltage are maintained, and then the generated pulse is fed to the boost converter.
d=dl+d2 (3.40)

77 Incremental Vv reg di
PV Conductance PII
Vpy ’

_(_, MPPT
Ipy .
VDc_ref VDC_err 12 IL_f'ef I err PI3 dz /\/\/\
Voc I

Fig.3.12 Proposed modified MPPT technique for solar PV

— PWM
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3.3.6 Control Technique for Bidirectional Converter

Fig.3.13 illustrates the bidirectional converter control in terms of managing both the
sensing battery current and the DC bus voltage in both modes. Since switch S1 works
in buck mode to charge the battery and switch S2 works in boost mode to discharge
the battery, the converter has the potential to transfer power in both directions.
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Fig.3.13 Control technique for bidirectional Buck-Boost converter
The comparison of DC bus voltage (Vp¢) with the DC reference voltage (Vpy ref)

generates voltage error (Vpy ) Which is sent to a P14 controller.

Mathematically, It can be expressed as equation (3.41)

Ve = Vbc Vbe (3.41)

err(t) ref(t) -

Output of the PI controller is battery reference current which is expressed by equation
(3.33)

ILb__ . kp4(Vpe

“ref_

) + kid [ (Ve (3.42)

err(t) err(t) )
The comparison of output battery current (Ir,) with reference current (Ipp ref)

generates battery current error expressed as equation (3.43)

Ibatt_err(t) = ILb_ref - ILb (3.43)
Iyatt ,,(¢) 18 provided to PI controller for estimation of gyt

ot
Lpatt o = kDS Upatt,, () + KI5 fo (Ibatterr(t)) (3.44)

3.3.7 Working of battery energy storage system

By adjusting the voltage of the DC bus, the DC bus voltage control-based power
management technique seeks to manage the power flow of the hybrid standalone
microgrid.

Discharging mode: When the load demand exceeds the PV generation, there is a dip
in the DC bus voltage. In this case, the converter operates in boost mode, allowing
power to flow from the battery to the DC bus and meeting the load demands, which
discharges the battery.

Charging mode: When the power produced from SPV is greater than the load demand,
the converter operates in buck mode, allowing power to flow from the DC bus to the
battery, thus charges the battery.

To prevent deep discharge of battery energy storage system (BESS) a lower threshold
of 25% SOC has been consider while the upper threshold is 80% is considered.< is a
error threshold which is considered as £10V. Flow chart of energy management of
hybrid standalone microgrid ia as depicted in Fig.3.14.
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Fig.3.14 Flow chart of energy management of hybrid standalone microgrid

3.4 CONTROL TECHNIQUES FOR STANDALONE INVERTER

1. Droop Control strategy

ii. Model Predictive Control
3.4.1 Droop Control strategy
Control technique for inverter is presented in this section. Fig.3.15, 3.16 and 3.17.
depict the entire control structure of the inverter control. A DG inverter's controller is
comprised of three distinct parts. The first is an external power control loop that uses
the droop characteristics set for the real and reactive powers to determine the
magnitude, frequency, and, consequently, phase, of the fundamental component of the
inverter output voltage. The voltage and current controllers, which make up the second
and third sections of the control system, are made to reject high frequency disturbances
and give the output filter sufficient damping [131].
Power Controller:
The first is an external power control loop that uses the droop characteristics
established for the real and reactive powers to determine the phase, as well as the
magnitude and frequency, of the fundamental component of the inverter output
voltage.
w = wy, —MmyP (3.45)
Vodrer = Vp — Mg Q (3.46)
Where m,,, m, are real and reactive power droop gain of inverter which can be
calculated using equations (3.47) and (3.48).

Wmaximum—®mini

mp — Pmaximum~ Pminimum (347)
Pmaximum

mq — Vodmaximum — Yodminimum (348)

Qmaximum
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To determine the real and reactive powers P and Q the instantaneous power
components are processed through low-pass filters to filter out noise present in the
signals after transformation. As shown in Fig.3.13 The low-pass filter's cut-off
frequency is represented by w,.

3 . .
P = E(vodlod + quloq) (3.49)
Q =2 (Vygipg — Vgl (3.50)
2 oqtod od‘loq .
ira dq abe trabe
g ~— wt
foa — 4aq = iabc
ipqg — wl
Vog+— dq abe Van
Voge— wlt
Vod = = P wt
c
Voq 2 (Vo * ioa + Voq * inq) H 5 + W, @n —mpP
ioa o
. 3 We _ Vs
Log > (Vo * ioa — Voq * ioq) s + we Vn —mpQ odref
o vr‘)qrct

Fig.3.15 Power control loop
Voltage and Current loop:

Fig 3.15. and Fig.3.16. presents the voltage and current control loop and PWM
sinusoidal switching reference generation for inverter. The voltage and current
controllers are the second and third sections of the control system, and they are
designed to reject high-frequency disturbances while also providing suitable damping
for the output LC filter. Voltage and current loop are demonstrated in Fig 3.16 which
consist of two blocks which are responsible for maintaining PCC voltage. The power
controller block's Q-V droop equation provides the reference for the d-axis element,
while the g-axis element reference is fixed to zero to synchronize the vector with the
d-axis and decouple the d-q axis component of the transformed voltage. The
expression utilized in creating the voltage block and current block is expressed in
equations (3.51) -(3.54).

iiq = Fiog = @CfVoq + Kyp(Voarer = Voa) + Kui [ (Voarer = Voa) (3.51)
iiq = Flog = WCfVoa + Kup(Vogres = Voq) + Kui [ (Vogres — Voq) (3.52)
Vig = —wLfiyg + Kep (g — 1a) + Kei [ (g — i1a) (3.53)
vi, = Lfiyg + Kep(ily — i1g) + Kei [ (i — i1q) (3.54)

Where if4 , [;, are the reference signal produce by the voltage control loop which are

given to the current controller loop. Ky, , K; are the pi controller gain value. v;,, v;,

are the dc signal produced by the current loop for generating pulse , K., K,; are the

Ccp»
gain value.
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Fig.3.16 Voltage and current control loop
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Fig.3.17 PWM sinusoidal switching reference generation for inverter
3.4.2 Model Predictive Control

Model Predictive Control (MPC), also known as receding horizon control, is a
powerful technique commonly used in industrial control systems. It takes into account
major inverter limits, such as the static power converters' limited switching states.
Using the system model, MPC predicts the behaviour of variables for each switching
state and chooses the best state by minimizing a quality function that represents
intended system performance. This technique is ideal for systems with restrictions and
nonlinearities, since it provides flexibility and simplicity by expressing control
objectives as a cost function [132].

Fig.3.27 illustrates how a Voltage Source Inverter (VSI) with an LC filter is used in
this study. A detailed model of the VSI, including its control technique and interface
with the LC filter, is provided to demonstrate its performance under various load
conditions. The gating signals G, , G, and G, define the inverter's switching states, as
indicated below:

_(1,if G; ON and G, Of f

Ga = {0, if Gy Off and G, ON (3.55)
__(1,if G, ON and G5 Off

Gy = {0, if G, Of f and Gs ON (3.56)
_ (1,if G3 ON and G¢ Off

G = {0, if G3 Off and G4 ON (3.57)

To express these switching states in the aff reference frame, convert them as follows:
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G = E(Ga +aGp + a*G.) = G, + jGg ,where a = e ™/ (3.58)

L -1 _t
Ga] _2 2 2fle 3.59
G'B T3 0 ﬁ _ ﬁ b ( . )
2 211G
The inverter's output voltage space vectors are defined as:
v = %(vaN + avpy + a*vey) (3.60)

The inverter's phase-to-neutral voltages are denoted by vy, Vpn, Ven-- The voltage of
the vector v; can be linked to the switching mode vector G using equation (3.58).

v; = VpcG (3.61)
Fig.3.18 depicts the switching modes and voltage vectors generated by the VSI using

(3.58) and (3.61), accounting for all conceivable combinations of switching signals
G4, Gy, and G, Eight voltage vectors (v, through v) are considered output options.

Fig.3.19 Filter model
Vectorial notation is used to represent the filter current (if), output voltage (v,), and

current (i) as space vectors, as shown in equations (3.62), (3.63) and (3.64).

ir = = (iq + aipy + airc) (3.62)
2

A g(vca + avgy, + a?v,.) (3.63)

. 2. . .

g = E(L()a + aiyp + a?ip.) (3.64)
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Fig.3.19 shows a block diagram of an LC filter. The vectorial equation for filter
inductance and capacitance can be stated as equation (3.65) and (3.66):

.
L~L=v v, (3.65)
CZe =i — i, (3.66)

Where, L and C represent the inductance and capacitance of the LC filter, irand v, are
the measured values, and v; is determined using equation (3.60).

A state-space system can be used to represent the following mathematical expression:

% = Ax + Bv; + Byi, (3.67)
i 0 —; 1 0

where,x=[f],A= 1 L,B=lLl,andBd=[—_1]
Ve z 0 0 c

The system's output voltage (v,) is expressed as equation (3.68).
=[0 1]x (3.68)

The filter's discrete-time model is derived from equation.3.52 for a sample time Ts
and expressed as:

x(k+1) = Agx(k) + Byv;(k) + quio(k) (3.69)
T
ir(k+1) o ATs i (k )] j AT J A
Bd k TByd k
[vc(k+1) E=lu )l i)+ adtio(k)
T xkrD) s R Oﬁ—z
q dq

This model predicts the output voltage (v,.) for a given input voltage vector (v;).
Predictive control is used to select the optimal voltage vector. To predict the output
voltage (v,) using expression (3.68), the output current (i,) is required. This may be
calculated by utilizing the equation (3.70).

ig(k —1) = ip(k — 1) —Tﬁs(vc(k) — (k= 1)) (3.70)

Assume iy(k — 1) = iy(k) for short sample intervals Ts, where load does not change
considerably during each sampling interval

As shown in Fig.3.19, the output voltage v,.(k), and the filter current if(k), are used

to estimate the output voltage at the next sampling period, v, (k + 1), for all possible
voltage vectors that the VSI may create.

To pick the ideal voltage vector v; for the VSI, seven forecasts for v.(k + 1) are
compared using a cost function (g). The voltage vector (v;) that reduces the cost
function is chosen and the associated switching mode that reduces the cost function is
used during the next sampling period. The stages below provide a summary of the
control strategy. Outline a cost function. Create a model that contains all possible VSI
switching states. Create a prediction model for the loads.
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3.5 RESULTS AND DISCUSSION

A 12kW standalone hybrid PV-Wind system has been modelled
MATLAB/Simulink. Hybrid standalone system with proposed control algorithm is
tested under transient conditions such as PV array irradiation variation, wind speed
variations and different loading conditions. The behavior of the system is analyzed
based on battery charging/discharging, DC bus voltage (Vpc), PCC voltage (Vpcc),
battery power (Puvat), PV power (Ppv), load active power demand (Pi) and reactive

in

power demand (Q).
The result evaluation of the hybrid system is carried out in two parts:

3.5.1 Performance evaluation of PV-BESS hybrid microgrid using proposed
modified MPPT and inverter droop control.

3.5.2 Performance evaluation of PV-Wind-BESS hybrid microgrid using
proposed modified MPPT and inverter droop Control

3.5.1 Performance evaluation of PV-BESS hybrid microgrid using proposed
modified MPPT and inverter droop control.
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| Bidirectional Converter |

Fig.3.20 PV-BESS hybrid standalone microgrid

Schematic representation of the presented Hybrid Standalone PV-Battery system is
illustrated in Fig.3.20 presented system mainly consists of three major components.
The first is a solar energy conversion unit that consists of two stages: a boost converter
and a voltage source inverter (VSI). The second is a battery storage system that
includes a bidirectional converter. The third main component is different types of load
coupling at PCC and LC filter which improve the overall efficiency of a photovoltaic
system by reducing losses and harmonic induced by voltage fluctuations. Modified
MPPT technique is used for maximum power tracking from SPV array. The uses of
battery storage reduce the fluctuation in output power of the PV array, maintain DC
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bus voltage and assists the network during peak load demand hours. This section
presents a modified MPPT technique for maximizing the solar output power in a
standalone PV battery system by regulating the DC-bus voltage.

a. To improve the dynamic performances of hybrid standalone PV systems, a
modified control technique that combines the incremental conductance (INC)
technique with a double closed loop controller is proposed for tracking the
maximum power from the PV source and maintaining the DC bus voltage.

b. The different parameters of the presented system are investigated under various
irradiation condition, linear/nonlinear load and balance/unbalanced load condition.
c. The EN50530 MPPT efficiency test was carried out considering both fast and slow-
varying irradiance levels to examine the effectiveness of the proposed control strategy.
d. The standalone PV system is integrated with BESS through a bidirectional
converter to maintain the nominal DC voltage conditions by charging/discharging
the battery due to intermittent solar photovoltaic (SPV) generation and also
considering the BESS SOC constraints.

e. Sinusoidal and balanced load current and voltage at point of common coupling
(Vpcce) are maintained under nonlinear and unbalanced loading conditions. In addition,
power balance among the battery, PV, and load is obtained.

The proposed modified control technique's superiority was demonstrated by
comparing its performance to Incremental conductance (INC) MPPT, Perturb &
Observe (P&O) MPPT, Particle Swarm Optimization (PSO), and Cuckoo Search
Optimization (CSO)-based MPPT techniques under various load and irradiation
conditions.

3.5.1.1 System response under different irradiation condition

In this case, the performance of the presented hybrid system under variable irradiation
conditions is analyzed, as shown in the Fig 3.21. A linear load of 10kVA with 0.89 lag
power factor (pf) is considered, simulated result and corresponding various parameters
Viz. Vpee, lioad, Ppv, P1, Q1, Prat, SOC and Vpc of the system are shown in Fig.3.21. It is
observed from the figure voltage at point of common coupling (V) and lioad are found
to be balanced and sinusoidal. Initially power generated from solar is 12kW and active
load demand is 8.8kW which is fulfilled by solar PV and the excess power (3.2kW)
produced from solar PV is utilized to charge the battery. Inverter is supplying reactive
power demand of load and DC bus voltage is maintained at 750V as shown in Fig.3.21.

Solar irradiance is reduced at t = 0.1s from 1000W/m? to 850 W/m? it reduces power
generation of solar PV to 10kW, load demand is still 8.8kW which is supplied by PV
and excess power (1.2kW) produced from solar module is utilized to charge the battery
Further solar irradiance is reduced to 650W/m? at t = 0.2s, thus PV output power is
also reduced to 8kW .In this condition deficit load power(1kW) demand is taken from
the battery hence battery is discharging in this condition also DC bus voltage is
maintained at 750V.Corresponding SOC graph of the battery is presented in Fig.3.21.
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Fig.3.21 Waveform under linear load and irradiation variation

3.5.1.2 System response under load varying condition

In this case, performance of the proposed hybrid system for variable linear load is
analyzed as shown in Fig.3.22. Solar PV generate 12 kW active power at 1000W/m?
irradiation. Initially load demand is10kVA with 0.89 lag pf which means active power
load demand is 8.8 kW and power generated from PV is 12kW.Surplus power load
(3.2kW) produced from solar photovoltaic module is used to charge the battery and
inverter 1s supplying reactive power. Voltage at PCC (Vpec) and load current (I10ad) are
balanced and sinusoidal. DC bus voltage has been maintained at 750V.

At t=0.15s solar irradiation is 1000W/m? so the power generated from the PV is 12kW
while load demand is increased to 14.38 kW. Now the remaining power (2.38kW) is
taken from the battery as depicted in fig.3.22. to provide constant power to the load.
From the Fig.3.22. It can be observed that system is stable and balance during load
variable and also during battery charging and discharging condition. Voltage at PCC
(Vpee) and load current (Ii0ad) are sinusoidal and balanced. The DC bus voltage remains
constant at 750V.
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Fig.3.22 Waveform under load variation

3.5.1.3 System response under variable nonlinear load condition

Fig.3.23. depict the system's performance under nonlinear load (3-phase bridge
rectifier with R=2000, L=0.1H). PV generates 12kW active power at 1000W/m?
irradiation and the power load demand from is 1.6kW which is supplied by PV. The
excess power generated from SPV is utilized to charge the battery as presented in fig.
Voltage at point of common coupling is balanced and sinusoidal.

At t=0.15s an extra load of SkVA with 0.89 lag pf is added. Solar irradiation is
1000W/m? so the power generated from the PV is 12kW while load demand is
increased to 6.03 kW. So, excess power (5.57kW) produced from solar PV is utilized
to charge the battery and inverter is supplying reactive power.

From Fig.3.23, shows the voltage at PCC (V) and load current (Ii0ad) are balanced
and sinusoidal even under non-linear load variation condition. DC bus voltage remains
constant at 750V.

3.5.1.4 System response under unbalanced load condition

In this case performance analysis of a proposed system under nonlinear unbalanced
load conditions has been done. Fig.3.24. shows response the presented system under
unbalanced load condition (one line of the nonlinear load is disconnected for time
interval t= 0.15s-0.25s). In this condition also it can be observed that voltage at point
of common coupling (Vpec) is balanced and sinusoidal. Power load demand is met by
solar photovoltaic module and excess power produced from solar photovoltaic is
utilized to charge the battery as depicted in Fig.3.24. DC bus voltage (Vpc) is
maintained at 750V.
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Fig.3.24 Waveform under nonlinear unbalance load condition

3.5.1.5 Comparison of PV power output at different irradiance using proposed
modified MPPT technique and existing control techniques

Fig.3.25 illustrates a solar PV module's transient response and maximum power
tracking under different irradiation conditions The variation in the irradiation intensity
of the solar PV module for the selected time period. is shown in Table 3.1. Table 3.1
and Fig.3.25. make this evident compared to P&O, INC, PSO, and CSO MPPT
controllers, the proposed enhanced MPPT controllers track more power and exhibit no
oscillation.
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Fig.3.25 Transient response of PV power output for nonlinear load under various

irradiation conditions

Table 3.1. Comparison of proposed modified MPPT technique at different irradiation
using P&O, INC, PSO, and CSO based MPPT techniques

S. Control Techniques Time(second | Irradiation Power
No s) Tracked(kW)
1. 0.0s - 0.1s 1000W/m? 11.48
P&O 0.1s-0.2s 800W/m? 09.47
0.2s -0.3s 600W/m?> 07.13
2. 0.0s-0.1s 1000W/m? 11.52
INC 0.1s -0.2s 800W/m? 09.37
0.2s -0.3s 600W/m? 07.22
3. 0.0s - 0.1s 1000W/m? 11.82
PSO 0.1s -0.2s 800W/m? 09.46
0.2s -0.3s 600W/m? 07.32
4. 0.0s-0.1s 1000W/m? 11.87
CSO 0.1s -0.2s 800W/m? 09.52
0.2s-0.3s 600W/m? 07.49
5. | Proposed modified 0.0s-0.1s 1000W/m? 11.97
Technique 0.1s-02s | 800W/m? 09.69
(INC technique with 0.25-03s | 600W/m> 07.64
double closed loop
controller)
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3.5.1.6 Comparison of transient response of DC bus voltage on different
irradiation using proposed modified MPPT technique and existing control
techniques

The transient response of DC bus voltage for P&O, INC, PSO, CSO and proposed
modified MPPT controller is as shown in Fig.3.26 Table 3.2 describes the graph. Fig.
3.26 exhibits the superior performance of the proposed MPPT technique over the other
compared MPPT techniques. The behavior of the system under irradiation variation
has been studied. DC bus voltage settling time and undershoot is smaller in the case of
the proposed control technique than other compared techniques.

Table.3.2 Transient assessment of DC voltage for nonlinear loads with P&O, INC,
PSO, CSO and proposed modified controller on different irradiation

S.No | Control Time Irradiatio | Settling | DC bus | Remarks

Techniques (seconds) | M Time voltage

1. 0.0s-0.1s | 1000W/m? | 0.08s 750V Overshoot of
P&O 100V and
oscillation
present

0.1s-0.2s | 800W/m*> | 0.07s 750V Undershoot of
25V present

0.2s-0.3s | 600W/m*> | 0.07s 750V Undershoot of
15V present

2. 0.0s-0.1s | 1000W/m? | 0.07s 750V Overshoot of
INC 8V,
Undershoot of
20Vand
oscillation
present

0.1s-0.2s | 800W/m*> | 0.07s 750V Undershoot of
24 V present

0.2s-0.3s | 600W/m*> | 0.06s 750V Undershoot of
15V present

3. 0.0s - 0.1s | 1000W/m? | 0.06s 750V Overshoot of
PSO 110V present

0.1s-0.2s | 800W/m?> | 0.07s 750V Undershoot of
22 V present

0.2s-0.3s | 600W/m*> | 0.06s 750V Undershoot of
15V present
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0.0s-0.1s | 1000W/m? | 0.02s 750V Overshoot of
CSO 38V present
0.1s-0.2s | 800W/m? | 0.06s 750V Undershoot of
15 V present
0.2s-0.3s | 600W/m> | 0.05s 750V Undershoot of
8V present
Proposed 0.0s-0.1s | 1000W/m? | 0.01s 750V Overshoot  of
Modifies 40V present
MPPT 0.1s-0.2s | 800W/m?> | 0.01s 750V Undershoot of
Technique 3V present
(INC (negligible)
technique | 925,035 | 600W/m? | 0.01s 750V | Undershoot of
with double 3V
closed loop present(negligi
controller) ble)
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Fig.3.26 Transient analysis of DC bus voltage for nonlinear load

3.5.1.7 Comparison of MPPT Efficiency test EN50530 using developed and
existing control techniques

One of the standard testing conditions applied to a standalone PV system is the EN50530
MPPT efficiency test, which evaluates the MPPT algorithm's performance under dynamically
varying circumstances
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Fig.3.27 PV power output waveform of different MPPT algorithms for MPPT
EN50530 efficiency test

In this specific case, we conducted an analysis of the MPPT techniques under dynamic
changes in irradiance level, accounting for both fast and slow variations.

We employed the trapezoidal signal to design the slow and fast irradiance levels, as
shown in Fig.3.27. The MATLAB 2023a simulation environment was used to analyse
the power achieved by all MPPT methods based on irradiance level variations.
Fig.3.27 illustrates the maximum power generated by various MPPT algorithms during
the EN50530 efficiency test. Fig.3.27 and Table.3.3 shows that among all MPPT
techniques, the proposed modified MPPT achieves the highest power. The proposed
MPPT technique performs extremely well at lower levels of irradiance, as
demonstrated by the blue colour curve. This is also evident for the proposed MPPT,
which functions most effectively at higher levels of irradiance.

Table 3.3. Maximum power obtained using MPPTs at various time intervals

S.No. Control Poax(KW) at | P,..(kKW) at Pax(KW) at

Techniques (0.0-0.1sec) (0.4-0.5sec) (1.3-1.4sec)

1. P&O 2.01 11.54 11.53

2. INC 2.10 11.55 11.55

3. PSO 2.11 11.62 11.60

4. CSO 2.13 11.81 11.81

5. Proposed 2.20 11.95 11.95
Modified
Technique
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3.5.2 Performance evaluation of PV-Wind-BESS hybrid microgrid using
proposed modified MPPT and inverter droop Control

Fig.3.28 depicts a hybrid microgrid system with wind, photovoltaic (PV), and battery
energy storage components that operate in parallel with an inverter. This
configuration integrates renewable energy sources (RES) and energy storage to
provide linear and nonlinear loads via point of common coupling (PCC). To ensure
optimal power extraction from wind and PV systems, the proposed modified MPPT
technique is utilized. The system employs droop control to ensure synchronized and
steady power sharing between the parallel inverters linked with the wind and PV
modules. Furthermore, a bidirectional DC-DC converter is integrated between the
battery and the DC link to govern the bidirectional flow of energy, allowing for both
charging and discharging operations according to system requirements.

Wind MPPT | | Inverter Control 2
Technique |§,,

Linear/
Nonlinear
Load

<7

E'-L .
R
Y

Tt cn

| Inverter Control 1 |

SPV MPPT Technique

Ly "
ALl . s §q+—— Bidirectional Battery
Sq

b
L —"le G Sbhm Control
‘ Battery |

Fig.3.28 PV—Wind-BESS hybrid standalone microgrid

3.5.2.1 System response under battery charging condition

Fig.3.29 depicts system performance during battery charging conditions. A linear load
of 20 kVA with 0.9 lag pf (18kW and 8.717Kvar) was examined. The SPV and wind
subsystems produce 11.97 and 9.38 kW, respectively, for a total of 21.35 kW. Surplus
power of 3.35 kW is used to charge batteries efficiently. In this scenario, the voltage
at the point of common coupling (Vpcc) is balanced and sinusoidal. Solar photovoltaic
module and wind power generation meet power load need, and excess power from
photovoltaic and wind is utilized to charge the battery, as shown in fig.3.29. The DC
bus voltage (VDC) is kept at 750 V.

55



s 2

0
A
8 20.004
t\? 20.002#
207
0.4

&3
vy @

a -10000
< 10000
—

2 5000

650
00000

Load demand is 18kW

0
< 10000
S~

3 5000

Solar PV Power Generation (11,975

at Irradiation 1000W /m?

| |
the battery (Charging) | I

I I I I
Wind Power Generation(9.38kW) at speed 12m

1
| e

T Battery is charging

00000

00000

00000

]
1.2

T ]
[ Wind Power Generation(9.4kW) at speed 12m/s

Fig.3.30 Waveform under battery discharging condition

AR
Y
:::m‘ | e ‘ |



3.5.2.2 System response under battery discharging condition

Fig.3.30 demonstrates system performance under battery discharge situations. A linear
load of 24 kW is tested. The SPV and wind subsystems generate 11.97 and 9.38 kW,
for a total of 21.35 kW. To meet the power shortfall, the battery discharge 2.57 kW
while maintaining a constant DC bus voltage of 750V. In this case, the voltage at the
point of common connection (Vpcc) is balanced and sinusoidal. The battery
compensates for the deficiency by discharging 2.57 kW to meet the overall load. The
DC bus voltage (VDC) is kept at 750 volts.

3.5.2.3 System response under non-linear variable load condition
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Fig.3.31Waveform under non-linear variable load condition

Fig.3.31. depict the system's performance under nonlinear load (3-phase bridge
rectifier with R=20Q, L=100mH). The solar PV (SPV) and wind energy subsystems
contribute 11.91 kW and 9.38 kW, respectively, resulting in a total generation of
21.35 kW. Initially, the load demand is 15.5 kW, leading to a surplus of 5.8 kW, which
is utilized to charge the battery energy storage system. At t=0.6s an additional 3 kW
load is introduced, increasing the total demand to 18.5kW. Despite the increased
demand, the total generation still exceeds the load, allowing a reduced surplus of
2.85 kW to continue charging the battery. As shown in Figure 3.22, the voltage at the
point of common coupling (V,..) and the load current (/;,44) remain balanced and
sinusoidal, even under nonlinear loading conditions. Furthermore, the DC bus voltage
is effectively regulated at a constant level of 750 V, confirming the robustness of the
control strategy under dynamic and nonlinear load variations.
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3.5.2.4 System response under variable irradiation condition

Fig.3.32 depicts the system response under variable irradiation condition. A 18 kW
load is used to evaluate the hybrid SPV-wind microgrid under dynamic solar
irradiance. At 1000 W/m?, the SPV provides 11.97 kW, while the wind turbine
supplies 9.38 kW, for a total of 21.35 kW. The additional 3.35 kW is utilized for
battery charging. After 0.5 seconds, the solar irradiance drops to 600 W/m?, resulting
in a reduced SPV output of 7.5 kW. With wind power at 9.38 kW, total generation
drops to 16.88 kW. As the load remains at 18 kW and generation decreases, a 1.2 kW
shortfall occurs. The battery quickly switches from charging to discharging mode,
effectively bridging the gap and providing continuous power supply. Despite a
significant decline in solar irradiation, the system maintains a steady DC bus voltage
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Fig.3.32 Waveform under variable irradiation condition
3.5.2.5 System response under variable wind speed condition

Fig.3.33 depicts the system performance under variable wind condition. The system’s
performance is evaluated under a constant load of 16 kW, with a fixed solar irradiance
of 1000 W/m? and variable wind speed. Initially, the solar and wind subsystems
generate 11.97kW and 9.38 kW, respectively, resulting in a total power output of
approximately 21.35 kW. Since the load demand is only 16 kW, the surplus power of
5.3 kW is utilized to charge the battery, placing the system in battery charging mode.
However, at 0.5 seconds, a sudden drop in wind speed to 8.4 m/s reduces the wind
power output to 4.5kW. With solar generation remaining stable, the combined
available power becomes 16.43 kW. As this value still slightly exceeds the load
demand, the battery continues to charge, albeit at a reduced rate.
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Fig.3.33 Waveform under variable wind speed condition

3.5.2.6 Comparative analysis of transient response of DC bus voltage under
variable wind speed using proposed and existing control techniques
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Fig.3.35 Transient response of DC bus voltage under variable wind speed
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The dynamic performance of the DC link voltage is analyzed under different wind
speed conditions—12 m/s, 10.8 m/s, and 9.6 m/s—using three MPPT techniques:
P&O, INC, and the proposed method as shown in fig.3.35. At a wind speed of 12 m/s,
all techniques initially show a sharp rise in Vj, with the proposed technique achieving
a faster settling time and minimal overshoot compared to P&O and INC. As the wind
speed drops to 10.8 m/s, noticeable fluctuations occur in the voltage profiles of P&O
and INC, indicating poorer dynamic response and slower convergence. In contrast, the
proposed technique maintains a more stable voltage with reduced undershoot and
quicker voltage recovery. At the lowest wind speed of 9.6 m/s, the performance gap
becomes more apparent; the proposed method consistently regulates the DC link
voltage closer to the desired level with minimal ripple, while both P&O and INC show
more deviation and slower recovery. Overall, the proposed MPPT technique
outperforms conventional methods by offering improved voltage stability, faster
transient response, and better adaptability under varying wind conditions.

3.5.3 Performance evaluation and result discussion using proposed modified
MPPT technique and Model Predictive Control technique for inverter

Fig.3.36 Schematic diagram of hybrid standalone PV microgrid with MPC controller

MATLAB simulation results for a hybrid standalone PV microgrid are presented to
validate the inverter's Model Predictive Control (MPC) technique and compare its
performance with a droop controller. A 12-kW solar PV system is used, with a three-
phase bridge rectifier (R = 180 Q, L = 200 mH) representing a nonlinear load. The
simulations include three-phase waveforms for load current (/; ), load voltage(V;), PV
power (B,,), battery power (Ppq;), 10ad active power (P), reactive power (Q), DC bus
voltage (Vp), and state of charge (SOC), demonstrating performance under linear and
nonlinear load conditions.

___, MPPT Control M":,Tc'z::mn ve(n)
—  Technique i vem+ D  Predictive —— v,(n) i
Model —— if(n) |
>t B B G i [ """""""""""""""
L L —f o,
|_ l C. 1 - [ Linear/Non
' ""T m “Woe | : linear Load
1 ] F T
[_Boost Converter | ¢, LH 've
Not -

- L, — Voc | Double Closed loop
+ + I T c, Vberer | controller for
— | Cim | T bidirectional converter
Battery | 9

| Bidirectional Converter |

Fig. 3.36 Schematic diagram of hybrid standalone PV microgrid with MPC controller
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3.5.3.1 System response under variable linear load demand

The system's performance under varying linear load conditions is assessed using the
MPC control technique. Initially, the load demand is 10 kVA (8 kW, 4.8 kVAr) with
a 0.8 lagging power factor, which rises to 14 kW after 0.4 second. Initially, the solar
PV fulfils the load demand (8 kW), and the excess power (4 kW) charges the battery.
The battery discharges after 0.4 seconds due to increased load demand, supplying the
2-kW deficit power. Throughout, the voltage and current are sinusoidal and balanced,
the DC bus voltage is constant at 750 V, and the power balance between the solar PV,
load, and battery is maintained, as illustrated in Fig.3.37.
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Fig.3.37 System response under variable linear load demand
3.5.3.2 System response under variable non-linear load demand

The system's performance with MPC is investigated under varying non-linear load
conditions as shown in fig.3.38. To begin, a non-linear load (bridge rectifier with RL
load R = 180 Q, L=200mH) is applied. After 0.4 seconds, an additional load of 7.5
kVA (6 kW, 3.6 kVAr) with a 0.8 lagging power factor is added. Initially, solar PV
satisfies load demand while excess electricity charges the battery. After 0.4 seconds of
increased load demand, the PV continues to supply the load while any excess power
generated is used to charge the battery.
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Fig.3.39 System performance under unbalance non-linear load demand
3.5.3.3 System response under unbalanced non- linear load demand

This section evaluates the network's performance with MPC under imbalanced load
conditions. Disconnecting a single phase of the load current results in load unbalancing
for 0.4 to 0.6 seconds as shown in Fig.3.39. It has been found that even under these
conditions, the voltage and current are balanced and sinusoidal.
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3.5.3.4 Comparative analysis of Droop controller and Model Predictive Control
techniques with the proposed modified MPPT technique

Fig.3.40(a) and 3.40(b) show a performance comparison of total harmonic distortion
(THD) and DC bus voltage using Model Predictive Control (MPC) and a droop
controller. Table.3.4 and Fig.3.40show that MPC has less harmonic distortion than
droop controller. Additionally, Fig.3.40 shows that DC bus voltage is maintained at
750 V with MPC, whereas 739V is used with droop controller.
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Table. 3.4 Comparison of THD of output voltage using droop controller and MPC with
the proposed MPPT technique

THD % of Load Output
voltage
System Droo Model
Parameter P Predictive
Contro
ller Control
(MPC)
Linear load 2.93 1.12
Non-Linear
Load 3.96 1.32
Unbalanced
Load 3.83 1.24

3.6 SCALABILITY AND COST IMPLICATION OF DOUBLE CLOSED
LOOP MPPT WITH INCREMENTAL CONDUCTANCE

The Double Closed Loop MPPT with Incremental Conductance (INC) is a control
strategy that combines the robustness of closed-loop PI regulation with the adaptability
of the INC algorithm for solar PV systems. The outer voltage loop ensures stable DC-
link regulation, while the inner current loop tracks the PV operating point. This hybrid
structure enhances dynamic response and stability, especially under irradiance
fluctuations.

Hardware: Requires only basic voltage and current sensors plus a microcontroller or
DSP with low computational overhead. Unlike ANN, no large training datasets are
needed.

Algorithmic Load: Computationally lightweight — complexity is O (1) per step. This
makes it easily scalable even for multiple PV strings without heavy hardware.

System Size: Double Closed Loop + INC is practical for small-scale rural PV
microgrids (5-20 kW) because of its simplicity. It is also suitable for industrial-scale
PV but may be less effective under partial shading compared to ANN.

The proposed PI-based control with INC+ Double Closed Loop offers very low
CAPEX, as it relies on inexpensive microcontrollers and standard voltage—current
measurements, making the cost negligible in both rural and industrial applications.
OPEX is also minimal since tuning can be handled locally without retraining or
software updates. In rural microgrids, this method provides cost-effective scalability
and modest energy gains, making it attractive for low-income, low-infrastructure
settings. In industrial systems, it enhances bus voltage regulation and system stability
at scale, though its limited capability under complex shading reduces efficiency
compared to ANN-based approaches.
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3.7 CONCLUDING REMARKS

In this chapter a modified MPPT control technique, which includes Incremental
conductance (INC) algorithm with double closed loop controller technique for hybrid
standalone microgrid to regulate the DC bus voltage and to track the maximum power
from solar PV under different atmospheric conditions has been developed. The
effectiveness of the proposed modified MPPT technique in both steady state and
transient conditions is demonstrated by the simulation results. EN50530 MPPT test is
also carried out to test the efficacy of proposed MPPT control strategy. The point of
common coupling voltage (Vpcc) has been found to be sinusoidal and balanced. The
result shown that the proposed modified MPPT control strategy works well under
linear/nonlinear and balanced unbalanced load. The voltage across DC bus has been
maintained constant under different irradiation and variable load condition. Also, the
continuous power to the load has been supplied by solar PV system and by battery
energy storage system as per load requirement. To illustrate the superiority of the
proposed MPPT technique, the proposed technique’s results are compared with P&O,
INC, PSO and CSO based MPPT control techniques. The proposed control techniques
give better control of DC bus voltage in terms of undershoot, overshoot oscillation and
settling time.

Furthermore, this chapter also examines inverter control techniques, with a particular
emphasis on Droop Control and Model Predictive Control (MPC). A comparative
assessment reveals that the MPC approach demonstrates superior dynamic
performance, outperforming conventional control methods under various operating
conditions.
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CHAPTER+4

MPPT CONTROL TECHNIQUES FOR GRID INTEGRATED
SOLAR PV BASED MICROGRID
4.1 INTRODUCTION

In the previous chapter, the focus was on Maximum Power Point Tracking (MPPT)
and inverter control strategies for standalone solar PV systems. These systems work
independently of the grid, making them ideal for remote regions without access to
traditional power networks. The control algorithms mentioned intended to maximize
power output from the PV array while efficiently managing load changes via inverter
regulation.

However, with the increasing energy demand, the growing penetration of renewable
energy sources (RES), and the drive for sustainable energy solutions, grid-integrated
solar PV systems are becoming more prevalent.

MPPT algorithms are essential for extracting maximum PV power under variable
weather conditions, while advanced inverter control ensures efficient grid
synchronization, voltage regulation, and power quality.

PV modules behave nonlinearly in unpredictable weather conditions, and the
effectiveness of many control strategies under such conditions especially conventional
ones—decreases significantly. It is essential to maximize the use of PV power in the
system.

This chapter proposed a novel HLO-ANN (Horned Lizard optimized artificial neural
network) MPPT technique for grid-integrated solar photovoltaic systems. Proposed
algorithm ensure that grid integrated PV systems work best at the maximum power
point regardless of weather conditions. The effectiveness of the proposed HLO-ANN
has been validated through simulation and compared against other ANN-optimized
MPPT techniques. Furthermore, Synchronous Reference Frame Theory (SRFT) has
been employed for inverter control to ensure accurate current extraction and maintain
voltage stability under dynamic conditions.

4.2 MPPT TECHNIQUES FOR GRID INTEGRATED SOLAR PV SYSTEM

This chapter provides a thorough examination of Maximum Power Point Tracking
(MPPT) strategies, with an emphasis on three major approaches: optimization-based
MPPT, artificial neural network (ANN)-based MPPT, and a novel developed MPPT
technique. The novel technology, known as the Horned Lizard ANN-based MPPT,
combines the benefits of both ANN and optimization methodologies. Traditional
MPPT algorithms frequently encounter difficulties such as sluggish convergence,
exposure to local optima, and poor tracking efficiency in rapidly changing
environmental conditions. The suggested method improves tracking accuracy,
dynamic response, and overall performance by combining ANN learning capabilities
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and optimization techniques' search efficiency. This hybrid technique maximizes
electricity extraction from the solar PV system while maintaining grid stability and
reliability. With greater versatility and resilience than traditional approaches, the
Horned Lizard ANN-based MPPT methodology has been developed specifically for
grid-integrated solar PV systems. Several MPPT techniques are taken into
consideration for the investigations:

a)  Artificial Neural Network (ANN) MPPT

b)  Particle Swarm Optimization (PSO)-ANN MPPT

c) Artificial Bee Colony (ABC)-ANN MPPT

d)  Harmony Search (HS) -ANN MPPT

e)  Teacher Learning Based Optimization (TLBO) -ANN MPPT

f) Dwarf Mongoose Optimizer (DMO) -ANN MPPT

g)  Proposed novel Horned Lizard Optimization (HLO) -ANN MPPT

4.2.1 Artificial Neural Network (ANN) based MPPT control technique

The artificial neural network (ANN) is a replication of the biological neural network,
which links various parameters to certain data points. ANN models can incorporate
multiple parameters without the requirement of complex mathematical equations.
ANN requires less theoretical work than conventional methods for relating several
parameters with large amounts of uncertain data points. ANNs are trained using
imported data through supervised learning or training. ANNSs, like the human brain,
are made up of several neurons. These neurons are linked by a fractional number called
weight [133-134].

ANN topologies are categorized into two types: feedforward and feedback networks.
The feedforward is extensively used since it requires less memory during
implementation. It is particularly effective for non-linear systems like solar PV arrays.
Fig.3 illustrates the internal structure of the feed forward artificial neural network
(ANN), which consists of an input layer, hidden layer, output layer, weights, and bias.
Furthermore, each layer's neurons are linked together via bias terms in the antecedent
layers and the weights of the other neurons. Equation (4.1) defines the ANN model
using weights and biases.

where n represents the overall number of inputs, x; represents the input training node,
w;j is the equivalent input layer weights, and b is the bias related to the hidden layer.

To further understand the feed-forward neural network methodology, the complex
gradient method is utilized to update the weights and biases to get the desired
outcomes. To obtain the desired outcome, there should be minimal variation between
actual and output values. The mean square error (MSE) is selected as a cost function,
expressed as equation (4.2):
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MSE = 237, 37, (%) - T;0)° (42)
Where, n represents the input data, m represents the output signals, Y; (i)represents the
true output, and Tj (i) represents the desired output.

The block diagram of internal structure of ANN MPPT implementation is shown in

Fig 4.1. Any Artificial Intelligence (Al) technique, in general, uses a dataset to train
the model, identify patterns in the data, and generate desired results.

Three months' worth of temperature and sun irradiance data, were added to the ANN
MATLAB code, and this ANN feedforward model was trained to produce the voltage
(Vref). In order to create the duty cycle for the DC-DC boost converter, the PI

controller assisted in settling the error difference between the generated voltage (Vy.e5)
and PV voltage prior to applying the signal to the PWM converter.
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Fig.4.1 Block diagram of internal structure of ANN based MPPT algorithm

4.2.2 Optimized ANN based MPPT control techniques

The Optimized ANN MPPT Controller is an intelligent and adaptive control system
that maximizes the power output of solar photovoltaic (PV) systems by precisely
tracking the Maximum Power Point (MPP). This controller combines the predictive
power of an Artificial Neural Network with the efficiency of an optimization
algorithm, resulting in higher tracking accuracy and faster convergence in dynamic
environments. The best reference voltage corresponding to the MPP is predicted by an
ANN model trained on historical or real-time solar statistics, including irradiance and
temperature parameters. The optimization algorithm is implemented into the system
to fine-tune the ANN model's weights and biases. This weight optimization reduces
the discrepancy between projected and actual MPP voltages, improving the controller's
accuracy and dependability [135].

During operation, the controller continually monitors real-time PV parameters and
dynamically adjusts the operating point to keep the system at or close to the MPP, even
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when irradiance, temperature vary rapidly. The optimized ANN MPPT controller
outperforms conventional MPPT techniques (e.g., P&O or Incremental Conductance)
in terms of response time, oscillation reduction, and efficiency.

This controller greatly improves the performance of solar PV systems by combining
the characteristics of both ANN and optimization methods, making it perfect for
applications that require high precision, adaptability, and real-time responsiveness.

Steps involved in optimized ANN Algorithm:

The Optimized ANN Algorithm is a hybrid optimization approach that uses an
Artificial Neural Network (ANN) and an optimization technique to improve network
performance. This procedure has two major steps: Choosing the optimal ANN
topology (number of neurons in the hidden layer) and optimizing the initial weights of
the ANN model.

Step 1: Choose the best ANN topology.

The topology of an artificial neural network relates to the network's structure,
including the number of neurons in the hidden layers. Instead of manually determining
the number of neurons (which may result in unsatisfactory performance), an iterative
optimization approach is utilized to find the best configuration.

Step 2: Optimizing the Initial Weights of the ANN Model.

Optimizing the initial weight values of an artificial neural network (ANN) is crucial
for improving the learning process by enabling faster convergence and higher
accuracy. The process begins with the random initialization of weights to prevent
symmetry issues. The ANN is then trained using these initial weights, and the first
Mean Squared Error (MSE) is measured to evaluate performance. To enhance training
efficiency, optimization techniques such as PSO, ABC, HS, TLBO, DMO and HLO
methods are employed to search for weight combinations that minimize the training
error. The optimized initial weights, which result in a lower MSE, are then used to
configure the ANN model in MATLAB, replacing the default weight initialization in
the "nntool" interface. By using these optimized weights, the ANN achieves faster
convergence, lower MSE, and requires fewer training epochs compared to traditional
training methods, ultimately improving the network’s overall performance.

4.2.2.1 Particle Swarm Optimization (PSO)- ANN MPPT control techniques

Kennedy and Eberhart's 1995 [136] presentation introduced the PSO method, a
multivariable function optimization technique with many local optimal points. The
PSO algorithm was based on observations of natural social behaviour, such as bird
flocking and fish schooling. The PSO stands out from other global optimization
approaches due to its ease of implementation and rapid convergence. Researchers are
increasingly exploring the usage of PSO in PV systems alongside MPPT.
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PSO used the flocking analogy to depict cooperative "birds," or particles, acting
together in a "flock," also known as a swarm. Each particle in the swarm has a fitness
value mapped by an objective function and an individual velocity. This value
determines the direction and distance of travel. Particles communicate information
received from their separate search processes. A particle's position is determined by
two variables: the best solution found by the particle (Ppps:), Which is saved for
individual use, and the best particle in the neighbourhood (gpes¢), Which is stored for
the swarm. The particle swarm adjusts its direction and velocity to achieve optimal
positioning. Each particle eventually moves to an ideal position or near a global
optimum. Equations (4.3) and (4.4) represent the PSO velocity and position update
rules respectively [137]

vi(k +1) = wy;(k) + cy1y. (Pbest - xi(k)) + Co1y. (gbest - xi(k)) (4.3)

In the equation, x;and v;represent particle i's velocity and position, k is the iteration
number, w is the inertia weight, r; and r, are uniformly distributed random variables,
and c¢; and c, are the cognitive and social coefficients, respectively. The individual
best location of particle i is denoted by Pj,es:;while the best position of the entire
swarm is represented by gpest ;-

4.2.2.2 Artificial Bee Colony (ABC)- ANN MPPT control techniques

The artificial bee colony algorithm is a swarm-based meta-heuristic approach for
solving multidimensional and multimodal optimization issues. The ABC method
classifies artificial bees into three groups: employed, onlooker, and scouts’ bees. An
employed bee is one that is actively seeking or exploiting food sources. The term
"onlooker" refers to a bee waiting in the hive to find a food source. Employed bees
who cannot enhance their food sources after a set number of attempts become scouts
and abandon their food sources. The quantity of food sources equals the number of
employed and onlooker bees. In optimization, a food source's position represents a
potential solution, while its nectar amount indicates the quality (fitness) of the solution
[138].

During initialization, the ABC generates a randomly dispersed population of SN
solutions. The equation below produces each solution within its limits:

x! =x) . +rand[0,1](x}en — %) . )i=12,..,j =1,2,..,D (4.5)

l min
In this equation, X j min and X j max indicate the minimum and maximum of the
parameter j, and D is the number of optimization parameters. After initialization, the
population of solutions undergoes C = 1, 2, (maximum cycle number) MCN cycles of
employed, onlooker, and scout bees' search operations.
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In each cycle, each employed bee generates a new solution (v;;) and evaluates its
fitness (fit;) using equation (4.6).

vij = Xij + @i;(xi; — xf) (4.6)
where k € {1, 2..., SN} and j € {1, 2..., D} are randomly selected indexes. Although k
cannot be the same as i, ¢;; is a random number between -1 and 1. Following the

information sharing by the employed bees, The onlooker uses equation (4.7) to
discover a new solution v;; near x;, depending on the probability P;

P = =™ 4.7)

SN fitn

where fit; represents the fitness value of solution x;

If a candidate solution v;; falls beyond the allotted search space, it is adjusted to fit.
The suitability of each new candidate solution v;; is compared to that of itspredecessor.
If the new answer has equal or higher fitness than the previous one, it takes its position
in the memory. Otherwise, the previous one remains in memory. A greedy selection
technique is used to choose between the old and candidate models. After each search
cycle, if a solution's fitness cannot be improved and the "limit" number of trials is
reached, the scout bee abandons the solution and searches for a new one randomly.
Equation (4.6) will give the new answer, X;.

4.2.2.3 Harmony Search (HS) ANN MPPT control techniques

The Harmony Search (HS) algorithm is an evolutionary algorithm inspired by the
music harmony improvisation process. It involves five main steps. First, the algorithm
initializes its parameters, including HMCR (Harmony Memory Considering Rate),
BW (Bandwidth), PAR (Pitch Adjustment Rate), the number of iterations (NI), and
the harmony memory size (HMS). The optimization goal is defined to either maximize
or minimize the objective function f (x;) where x; represents potential solutions [139].
Next, the harmony memory (HM) is populated with candidate solutions within the
upper and lower boundaries using the equation (4.8):

x; = lower bound + R, * (Upperbound — lowerbound) (4.8)
Where R; is a random number between 0 and 1.

In the improvisation step, new harmony vectors are generated by combining HMCR,
PAR, and BW. Two random values a and b (between 0 and 1) are used. If a > HMCR
a new value is generated using the initialization formula. If, a < HMCR,a value from
the HM is selected. If b < PAR, the value is adjusted using equation (4.9):

X{ = Xpew,j T BW X rand 4.9)

The memory is updated by comparing the newly generated vector with the worst vector
in HM. If the new vector is better, it replaces the worst one.

Finally, the algorithm checks the stopping criteria, such as the maximum number of
iterations. Once the criteria are met, the search process ends, and the best solution in
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the harmony memory is selected.

4.2.2.4 Teacher Learning Based Optimization (TLBO) ANN MPPT control
techniques

This algorithm comprises two phases: teacher and student. The TLBO algorithm offers
advantages such as no need for control variable adjustments, rapid speed, and greater
convergence to the global optimum. The TLBO algorithm excels in identifying the
GMPP in all conditions, making it a top choice for the aforementioned aims. The
following sections describe the two phases [140].

1)  Teacher-phase

A teacher is a subject-matter expert who trains students. According to the TLBO
algorithm, the instructor is the optimal answer among the population. During the
teacher-phase, students choose a situation similar to the teachers. If the as i;, student's

new position is shown as xi(kH) and their existing position is shown as xl.(k), equation
(4.10) may be used to connect the two situations:

(k+1) _ (k)
x; =x; " +Ax; (4.10)

Ax; represents the student's progression or regression. In the teacher phase, students
want to align with the teacher's perspective, hence the sentence Ax; should be changed
accordingly. So, we have:

Ax; = 1r;(Ty — F * MA) (4.11)
The term T refers to the teacher's optimal solution to a given situation. The term MA
refers to the student's average position. (2) indicates that students approach their
teacher's stance more closely. Furthermore, 7; is a random parameter ranging from 0
to 1. The expression F, often called the teaching coefficient, is defined as equation
(4.12):

F=round(1+rand) & F =1o0r2 (4.12)

Position (k + 1) is acceptable if its objective function outperforms that of position
(k). The output of this phase is used as input for the student phase.

2)  Student-phase

The student-phase is a reaction amongst students. In other words, the first student
evaluates their situation in comparison to other students. If one student's state is better
than another, the update will be based on the first student's state. Otherwise, the update
is based on another student's status. That means

x D = (0 ri(xi(k) - xj(k))

i i

vFit(x(*) > Fit(x") (4.13)
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X; X, +r
wFit(x") > Fit(x*)

Fit is the fitness function that determines the best and worst scenarios. To be

(k+1) _ (k) (xj(k) _ xi(k))
(4.14)

acceptable, the new position (k + 1) must have a better fit function (objective
function) than the previous position (k).’

4.2.2.5 Dwarf Mongoose Optimizer (DMQO)-ANN MPPT control techniques

The dwarf mongoose optimizer (DMO) was developed by examining the foraging
behaviour of dwarf mongooses. The presented meta-heuristic technique (DMO)
generates the population of DM animal as equation (4.15) [141]:

Xm(0) = Xpmin(1 = R) + R. Xppgx, m=1:Npy (4.15)

where m is an integer as a counter, which is equivalent to 1, 2, 3,4, 5, ......... , Npus
Npy 1s the whole population of dwarf mongooses. In equation (4.15), the sign "."
denotes the dot product, which is a fundamental method of combining two vectors,
denoting the product of each element in the vector and its corresponding one in the
other vector of the same dimension. X,,, provides the position of each DM (m), whereas
Xmin and X4, represent the lowest and highest boundaries. R is a randomized vector
with dimension (D) proportional to the total number of control variables, and Np,, is

the total size of the DM group.

Next, during the initialization of the DM locations, the fitness rating (FS,,) of each
solution (X,,)) is calculated. The alpha female is chosen based on the likely fitness
value (a,,) of each group, as shown below:

FSm
Am = Z—xﬂ’il Fs (4.16)
an, represents the probability value for each animal in the group

In the alpha structure, the number of DMOs is proportional to the population size less
the number of babysitters (Bs). The sign (peep) monitors the alpha's vocalizations,
keeping the DMOs on track. Each DMO naps in the first sleeping space that has been
assigned to them. To create the next position toward the expected food position, the
DMO uses the calculation indicated in equation (4.17).

Xn(T+1) = R X peep + X,,,(T), m=1:Npy — Bs (4.17)
where Bs represents the total number of babysitters in the group and T denotes the
current iteration.

Instead of building a home for the juvenile dwarf mongooses, they are transported
from one sitting mound to another. In addition to seeking for food, the alpha group
looks for a different mound to visit after the childcare exchange need is met. To
reproduce this, the average value of the seated mound is estimated for each iteration,
and it may be represented as equation (4.18):

FSpm (T+1)—FSpy (T)
max(|FSy (T)—FSyu(T+1)|)

SM,, = (4.18)
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Where FS,,(T) represents the fitness score of the current solution (X,,,) at the current
iteration (T), and FS,, (T + 1)represents the fitness score of the updated solution (X,;,)
at the subsequent iteration (T + 1).

The observed sitting mound's mean value () is provided below

Npma gpy
Py = 2= (4.19)
DMA
Based on the overall success of the DMOs, the next step represents a success or failure
assessment while generating a new mound. To simulate the scout mongoose, use the

equation (4.20):

Xm(T) + CF X R.(M = X (T))  if Pms1 > Pm
Xm(T+1) =19 x, (T) = CF X R.(M = Xp(T))  if o1 < @ ™ = 1:Npu

(4.20)

where CF decreases steadily as iterations progress, as seen in equation (4.21), and M
appears to be a vector that influences the DMOs' eventual sleeping area relocation, as
determined in equation (4.22). The CF factor represents the value of the parameter that
governs the DMO organization's collective volitive motion.

r \(roaz)
CF = (1—-—)"me 4.21)
M = yNoma XmXSWn (4.22)

m=1 Xm
Tmaxdenotes the maximum number of iterations.
To improve searching skills, the alpha-directed knowledge-acquisition technique is

used with the formula outlined in equation (4.17) to provide a likely food location:
Xn(T+1) =

{ Xpipha(T) + R (Xin(T) = X (T) = Xpa(T))  if 1y < PSF 4.23)
Xm(T) + R X peep else m = 1:Npy — Bs '
where X,,,(T + 1) represents the modified answer X, at the following iteration
(T + 1). X41pna (T) represents the alpha location with the smallest goal worth; R is a
randomized vector of dimension (D); X,,,(T) provides the current solution X,, at the
current iteration (T); Xpqrefers to the position of a randomly chosen DMA; r; is a
randomly produced value within the range [0, 1]; and PSF indicates the probability of

the selection factor.

4.2.2.6 Novel Horned Lizard Optimization (HLO) ANN MPPT control
techniques

HLOA is a novel metaheuristic optimization algorithm influenced by the protective

behaviour of the horned lizard. The four tactics for defence are crypsis skin

lightening/darkening, bloodstream spitting, and movement-to-escape. They offer an
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appropriate balance of exploration and exploitation throughout the solution search
region. Considering the advantages of the HLO algorithm, it has been combined with
the ANN MPPT approach [142].

After the establishment of the ANN network topology, an HLO-based ANN approach
is developed to determine the optimal initial weights of the ANN model. These are
determined to enhance the model's output prediction as the presumed initial weight
values are corrected. This proposed approach produces optimal beginning weights.
The ideal initial weights are utilized to train the ANN model with MATLAB's "nntool"
program. The optimized initial weights are then substituted with the conventional
training weights in area containing the beginning weights of the "nntool" box.

As a result, the performance of the ANN model based on the improved training
approach utilizing real data outperforms conventional ANN. A significant benefit of
utilizing HLO-trained neural network technology in MPPT-based solar photovoltaic
(PV) systems is that it has the capability to detect the maximum power point of the PV
system in a more fast and accurate manner, while requiring less computing effort than
conventional methods. This makes it a feasible option for improving the performance
of PV systems. The Irradiation (G) and Temperature (T) of the weather are the inputs
of the ANN approach, which yields the maximum power measurement of the solar
array erected at the MPP. Fig.4.2 is a flow diagram illustrating the steps involved in
combining the Horned Lizard optimization algorithm with the ANN feedforward
model in order to obtain HLO-ANN MPPT.

| Step-1 | Step-2 Step-3
Define the Input and
specifications output -
of the PV variables Ll (;)btt::::;lthe Vier is
module initialization V\?ei ht genr;rated
+ for the ANN i
employ the
Load model HLO
Temperature -+ optimbcation
and Specify the sonreach
Irradiation model’s PP
Dataset internal
configuration

Fig.4.2 Block diagram of HLO-ANN MPPT Technique

Horned Lizard Optimization Technique

The scientific name for the horned lizard is Phrynosoma. This reptile is native to
northern Mexico and the south-central regions of the United States. They are suited to
harsh climates that are semi-arid or desert. All reptiles, including horned lizards, rely
on thermoregulation to stay warm because they cannot create body heat in response to
changing temperatures. The horned lizard can brighten or darken its skin to control
solar thermal gain. Thus, at high temperatures, the skin lightens, while at low
temperatures, it darkens. Dark skin absorbs and transforms all wavelengths of light to
heat. Temperature impacts the alpha-melanophore stimulating hormone, causing
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horned lizards' skin to change colour quickly. Grasshoppers, beetles, spiders, ticks,
butterflies are few of the species that horned lizards consume. Their principal passive
mode of defence is crypsis. This strategy involves the ability to assimilate into its
surroundings via colour, pattern, and shape. Horned Lizards change colour to fit the
ground and have spines that cover their body outlines, making them difficult to
identify. Moving to escape is another passive defensive strategy. As a defensive
mechanism, this lizard ejects a burst of blood that extends over a meter when
threatened. In this work, each of the stated lizard defence actions is mathematically
modelled as part of the optimization process.

Approach 1: Crypsis Behaviour

Crypsis allows organisms to blend in with their surroundings by copying colour,
texture, or even becoming translucent, which makes it more challenging for prey or
predators to identify them. (refer Fig 4.4). It is an adaptive behaviour which assists
organisms, hence enhancing their chances of survival in the wild. The crypsis approach
is expressed mathematically using colour theory. The International Commission on
[Mlumination (CIE) categorized sources of light based on their emitted energy across
the visible spectrum (400-700 nm) for various wavelength. The organization
developed a colour assessment system, such as L a* f* for Cartesian and L c* h for
polar coordinates, to determine colours in a colour space. In the L a* f* system, L
represents brightness, whereas a* and B* represent chromatic coordinates, as seen
below.

. _ [ +a, Indicates red

* = {—a, Indicates green (4.24)
. _ [ *+B, Indicates yellow

B = {—,3, Indicates blue (4.25)

The L c* h system specifies brightness, intensity of colour, and hue angle. Hue
describes the color family (red, yellow, green, and blue) and all colors in between by
moving in a circle around the "equator". The hue circle numbers run from 0 to 360°,
beginning with red at 0° and progressing counter clockwise via yellow, green, blue,
and back to red. The L-axis indicates the colour’s luminous intensity. Colours can be
classified as light or dark by comparing their value. Fig.4.3 illustrate examples of both
colour systems.

Rectangular coordinates are converted to polar coordinates using equation.4.26

h =arcTg (i—) (4.27)

The values of c* and h stand for hue and chroma, respectively. Hue angle, or h, has a
value between 0 and 360 degrees and is given in degrees. The following are the inverse
formulas:

a* = c*cos(h) (4.28)
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B* = c*sin(h) (4.29)

0° 45° 90°135°180°225%70°315°

Fig.4.3 Representatlon of colour space for CIE L a B and Lc*h

Fig.4.4 Crypsis behavior of Horned L1zard
Let (ag, Bp) and (@, fs) be any two colours in an ordered pair, with p # q # 1 # s,

without losing generality. So, using the arithmetic procedures listed in equations (4.30)
and (4.31) , any two new colours, such as colourvarl and colourvar2, can be created.

colourvarl = B, — ay — ar + fs (4.30)
colourvar?2 = B, — ag + ar — fs (4.31)

These colours can be expressed with a single equation, as illustrated in equation (4.32).

colourvar = B — ag + [a; — B5 ] (4.32)
The inverse form of equation(4.32) is as follows:
colourvar = ¢, sin(hp) - cos(hq) + [c, cos(h,) — c,sin(hy)] (4.33)

Where angles intersect at h,, # hy # h,. # hg, and chroma c¢,# c¢,. The equation below
represents the arithmetic operation of chromatic coordinates.

% (t+1) = ot (8) + (8 — 5= [ea (sin G, () — cos G (1)) —
(—1)%¢c,(cos (3, (1)) — sin (&, (£))] (4.34)
Where, x, (t + 1) indicate the new search agent location in the solution search region

for iteration t + 1, Xps; (t)is the finest search agent for iteration t, 11, 15, 13 and 1, ,are
integer random numbers created between 1 and the maximum number of search agents,

with 1y, # 1y, £ 13, # 14, x_r;, Xry) Xr, and x_m’ represent the ry, 1y, r3 and r,search agents
selected, and Max_iter represents the maximum number of iteration. § is a binary
value, which is set to 2 [27]. Random integers c¢; and c, are chosen with ¢; #c,.

Algorithm.1 § procedure
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: Start procedure
cif rand () < % then

return 0

return 1
cendif
. End procedure

1
2
3
4: else
5
6
7

Approach 2: Skin lightening or darkening

The skin of the horned lizard can be tinted lighter or darker, depending on whether it
wants to reduce or boost the amount of solar thermal gain it receives. Thermal energy
adheres to the same conservation principles as light energy. Equation (4.35) illustrates
the lightening-skin approach. Equation (4.36) represents the darkening skin approach.

Forst () = Tpest (£) + 5 Lightysin (%, (6) = %()) -

(—1)°2 Light,sin (%, () — %, (1)) (4.35)
Fworst (£) = Tpest (8) + 5 Darkysin (%, (6) — %, (1)) -
(—1)% 2 Dark,sin (% () - x_n;(t)) (4.36)

Xworst (£) and Xpes; (t) represent the worst and best search agents discovered,
respectively. Light, and Light, are random numbers generated between Lightening1
(0 value) and Lightening?2 (0.4046661 value). Similarly, Dark, and Dark, are random
numbers generated between Darkeningl (0.5440510) and Darkening2 (1) using
normalized Table 1 data.

The skin-darkening or skin-lightening technique results in the replacement of the worst
search agent from the previous iteration.

Table.4.1 Colour palette designed for skin lightening or darkening.

Name Color Hexadecimal | Decimal Normalized
Lightening, E8ESESR 15263976 0.0
Lightening, ’—‘ 9398BF 9672895 0.4046661
Lightenings - 763660 7747080 0.5440510
Lightening, - 161617 1447447 1
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Fig.4.5 Horned lizard shooting blood
Algorithm.2 Skin lightening or darkening procedure

1: Generate Light, and Light, randomly from Table 4.1
2: Generate Dark,and Dark, randomly from Table 4.1

3: Generate 11,75, 13 and 1, integer value randomly between [1,
size maximum search agents], where 11, #7175, #13, # 1y

4: if 6 then

5: Apply lightening skin. Evaluate equation (4.35)
6: else

7:  Apply darkening skin. Evaluate equation (4.36)
8: end if

9: End procedure

Approach 3: Blood Squirting

The Horned Lizard attracts enemies by shooting blood from its eyes. Fig.4.5 depicts
the shooting blood defence mechanism as a projectile motion. In order to determine
projectile motion equations, we divide it into two components: horizontal (X-axis) and
vertical (Y-axis). [27]:

The shot of blood travels uniformly in the horizontal direction, so it's equation of
motion is expressed by:

b =7g + [, gdt = vg + Gt (4.37)
In a vertical direction shot of blood defines a uniformly accelerated rectilinear motion,
as shown below.

F=4 [0+ gdt = 75+t +%§t2 where, Tq¢=0 (4.38)

Equations 4.39 and 4.40 represent the vector equations, position and velocity
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respectively.
Vo = vy cos(y) t] + ((vo sin(y))t — %gt2> k (4.39)

B =7 = (vycos(y)] + (vysin(y)) — gk (4.40)
we can express the trajectory as follows:

Max_iter) + 8] Xpest (1) + [UO sin (y - ) —g+

g] X (t) (4.41)

x(t+1)= [vo cos (y

Max_iter

13

Where, vy =1,y =, ¢ = 1le"®and g = 9.8 m/s?[27].

N

Approach 4: Move to escape

The horned lizard uses a random quick movement tactic to avoid predators. A function
that comprises a local and global movement has been presented for the mathematical
modelling of this prevention technique; it is defined in expression (4.42) and

represented in Fig.4.6. In this expression, walk G - e) x, (t) is a local movement

around ¥, (t), whereas adding X, (t) results in a displacement throughout the
solution search space.

%, (t +1) = Tpor () + walk (3 — ) %, () (4.42)
Where, walk generates a random number between -1 and 1.
\\) '::beest + walk (% — s) x;

Xbest

7
I/I
p
%
//I
v
I/I
l,l
6 e ",

wa 2 &) Xx; Xi

e

Fig.4.6 Horned lizard escaping from predators

Approach 5: Alpha-melanophore stimulating hormone rate

Temperature affects alpha-melanophore stimulating hormone (alpha-MSH), causing
rapid colour change on horned lizard skin. The alpha-melanophore rate value of horned
lizards is defined in the equation (4.43).

Fitnessyqx—Fitness(i)

melanophore(i) = (4.43)

Fitnesspmqx—Fitnessmin

Fitness,, and Fitness,,,, are the finest and worst fitness values in the current
iteration, and Fitness(i)is the current fitness value of the i-th search agent. In
equation (4.44)., a low alpha-MSH rate (< 0.3) takes the place of search agents.

80



— —_— 11— —

X (t):xbest () + 3 [xr1 () — (_1)5351*2 (t)] (4.44)
Where, r; and 1, are random integers created from 1 to the maximum number of search
agents.

with, ; #15, x_rl’ and X, are the ry and 7, th search agent selected.

Algorithm.3 Alpha-melanophore procedure

1: Start procedure
2: for i=1 to size population do
3. if melanophore(i)< 0.3 then

4: Approach 5: x, search agent replaced in equation (4.44)
5: endif
6: end for

7: End procedure

Algorithm.4 Pseudo-code of the Horned lizard Optimization procedure

1. Initialization of parameters. Specify the number of search
agents, population size, and maximum number of iterations

2. Generate the initial population randomly.

3. while<maximum number of iterations do

4. if crypsis? then

5. Approach 1: Crypsis. Compute equation (4.34)

6. else

7. if flee? then

8. Approach 4: Move to escape. Compute equation
(4.42)

9. else

10. Approach 3: Blood Squirting. Compute equation
(4.41)

11. endif

12. end if

13. Replace the worst search agents by skin darkening (compute
equation(4.36)) or lightening (compute equation(4.35)). They are
selected randomly

14. If Low alpha-melanophore rate? Then

15. Approach-5 Replace search agents with low alpha-
melanophore rate by applying equation-4.44 Algorithm 3.

16. end if
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17.  Calculate x,,y,, the fitness value of the new search agents
18. If X0, < X, then

19. x, = Xpew

20. endif

21. [teration=iteration+1

22. end while

23. Display x, the best optimal solution

24. end

43 RESULT EVALUATION AND DISCUSSION USING PROPOSED
NOVEL HLO-ANN MPPT CONTROL TECHNIQUE

The schematic diagram of the proposed grid integrated solar PV system is depicted in
Fig. 4.7. The Solar PV has a capacity of 12.79 kW which generates DC output and is
linked to a boost converter in order to generate regulated DC output. The boost
converter serves as an interface between the inverter's DC-link capacitor and the solar
PV array. Inverters convert regulated DC output into AC voltage while offering the
advantages of harmonics reduction, reactive power compensation, etc. The inverter is
coupled to PCC through interfacing inductors (Ls) to compensate the current ripples.
The linear/non-linear/balanced/unbalanced/ variable loads evaluated in the present
research work are connected in series to the power grid of 415 V (line-to-line voltage),
50 Hz via the line impedances. The present research work employs two control
strategies: the proposed HLO-ANN MPPT control technique is implemented to extract
the maximum power from the PV array, and the Synchronous reference frame (SRF)
theory is employed for controlling the inverter. Parameters of the system are provided
in Appendix.

L —— Linear/Non-
Lgh s, " b linear/Balanced/

e v = —~ -
. ! WA laE _ R L Lu?ﬂlnz:ced
i W L R o
b g g
Utility Grid Source Impedance Linva JV Linwb  Linve
i; - Ly Interfacing
< Inductors
AL —pt _lﬁc
L 7 Ne—
I | 1|1 Sl SRE (S
=== | . 52 = Theory Vgb
Vin [ Cin Voe if 1 Control | Vgc
| | | 5 Technigu |_tia
| Se € [
——
I r . M.—/ le
pv 51 — S¢ Gating pulses T T T
for PV inverter FLE .
HLO-ANN MPPT tgalgb lge

Technique

Fig.4.7 Schematic diagram of proposed grid integrated solar PV system.
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In the present research work real time dataset for both temperature and irradiance has
been downloaded from NASA's open-source website and NREL which provides
historical atmospheric data for a certain area. A three-month dataset of northern part
of India (Shahabad Daulatpur village Rohini Delhi), and southern part of India
(Chikkaballapur, Karnataka) including sun temperature and irradiance have been
utilized for this study. The hourly change in irradiance levels demonstrates that solar
irradiance fluctuates from 0 W/m?to over 900 W/m?. Using an irradiance dataset for
constructing the MPPT has the benefit of assisting in training the neural network
(ANN) model in accordance with the real-time practical condition of changing
irradiance levels across a 24-hour cycle.Fig.4.8 shows the scenarios considered for
comparative analysis.

HLO-ANN }— | | Performance Total.Harrflonich
MPPT Pl % Analysis under | Distortion
P Steady state i Maximum
DMO-ANN b ! :
MPPT o Performance ! LRIRACT? L T
i il—| Analysis under i . Tracl.ﬂng
TLBO- I Dynamic state ! Under different
Irraad[:ztmn ANN MPPTJ ! Performance E 1frradmncet and
i - i emperature
Temperature HS-ANN = Analysis ! '
data leadi MPPT = AL —{ EN50530 Test |
| datafoading i Unbalanced
| ABC-ANN | load, i —{ DC bus Voltage |
! ; grid ,Voltage .| Benchmarking
i PSO-ANN ] 5 Sag and Swell
i —’[ MPPT — i Sensitivity J T, J
' Analysis l Parameters

Analyzing different

data from NASA f ‘opos
ata from | Proposed HLO-ANN MPPT Technique

R MPPT

Designing MPPT using real time Performance Analysis of ‘

Fig.4.8 Block diagram of scenarios considered during comparative analysis

This section displays the MATLAB/Simulink results for the grid integrated solar PV
system's performance assessment. Various input and output situations have been tested
to determine the effectiveness of the control method. The performance is also tested in
abnormal grid conditions. The photovoltaic (PV) system produces 12.79 kW power.
A 3¢ bridge rectifier with parameters R = 180 ohm and L = 120 mH is taken as a non-
linear load. The subsequent sections illustrate three phase waveforms representing the
following: voltage at the point of common coupling (V,..), grid voltage (V;), grid
current (Iy), load current (I;), inverter current (/;,,,), DC bus voltage (Vp¢), and the

active and reactive power of the load and inverter grid, denoted as P;, Q;, Piny»> Qinvs
By, Qg.

4.3.1 Performance evaluation of the system under variable load and Standard
Test Conditions (STC)

In a steady state, the inverter contributes to maintaining the balanced and sinusoidal
three phase grid current. Also, the inverter maintains grid current harmonic distortion
within IEEE-519 standards and balances the flow of power. Figure 4.9 illustrates the
current and power waveforms of the grid, load, and inverter under variable load
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conditions and Standard Test Conditions (STC), i.c., solar irradiance of 1000 W/m?
and cell temperature of 25°C.".

In the steady-state condition initially a bridge rectifier with RL load (R = 180 €, 120
mH) has been considered as a nonlinear load, Initially the nonlinear load (1.9kW)
demand is fulfilled by the solar PV and excess power (10.64 kW) is sent to the grid.
Since, the grid receives the excess power from the source, voltage and current are in
phase opposition which can be seen from the waveform.

At t=0.15 s system's load has been increased to 16.32 kVA with 0.85 lagging power
factor (14kW and 8.4 kVAR). At this instance, solar PV provides 12.54kW and deficit
power(3.36kW) is taken from the grid. In this condition since grid supply the deficit
load hence voltage and current are in phase which can be noticed from Fig.4.9 Also
reactive power is supplied by inverter ang grid is maintaining zero reactive power
which means system is working under unity power factor mode (UPF) and the DC bus
voltage remains constant at 750 V.

Table.4.2 Power sharing among inverter, grid, and load for variable loads condition.

t=0.0s -0.15s t=0.15s -0.20s (load is increased)
P= Pn,=12.5 | B;=10.64 P=1.9kW+14k | P, =12. | By=-
1.9kW | 4kW kW W=15.9kW 54kW 3.36kW
Q,=0k Qinv= ngo Q;=8.4kVAR Qinv=8. ngo
VAR 0kVAR 4kVAR

\“\ ‘// \ g / \ : ’/ \\ ’/ 4
_Increased Load current at 1= 0.15s :

1000 Vpc is maintained at 750V

DC(V)II(A) Iinv(‘q) Ig(A)Vpcc(V)
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Fig.4.9 Performance of the system under variable load condition
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4.3.2 Performance evaluation of the System under variable load and irradiation
condition

Fig.4.10 shows the performance of the proposed control strategy under variable load
and irradiation conditions. Initially the nonlinear load (1.9kW) demand is fulfilled by
the solar PV and excess power (10.64 kW) is sent to the grid.

At t=0.15 s, the irradiation level drops from 1000 W/m2 to 650 W /m?, resulting in a
drop in PV power from 12.54 kW to 7.56 kW. This reduces inverter current (/;;,,,) and
grid current (Iy). Load demand (1.9kW) is fulfilled by solar PV power and excess
power (5.66kW) is sent to the grid.

At t=0.2s. load is increased to 3.48kW, under this condition as well solar supply the
load and excess power (4.08kW) is sent to the grid. Since, the grid receives the excess
power from the source, voltage and current are in phase opposition which can be seen
from the waveform. The power balance is still being maintained by the system. It is
noticeable that the grid current is sinusoidal and balanced in spite of the variable
nonlinear load and variable irradiation condition. Also, DC bus voltage remains
constant at 750 V.

Table 4.3 Power sharing among inverter, grid, and load for variable load and
irradiation conditions.

t=0.0s-0.15s t=0.15s-0.20s (Irradiation | t=0.20s-0.30s (load
decreased) increased)
P=1.9 | Pippy=12. | F;=10.6 | P,= Piny=7.5 | P,=5.6 | P,=3.4 | P;y,,=7.5 | F,=4.0
kW 54kW 4kW 1.9kW | 6kW 6kW 8kW 6kW 8kW
Qi=0k | Qiny= Qg:O Qi=0k | Qiny= Qg:O Qi=0k | Qinpy=0k ngo
VAR 0OkVAR VAR 0OkVAR VAR VAR

A Np

Si idl aml bal gnd current

Solar trmdmtmn dzcrzased

NN
Increasea'Load current att=0. 155

IS vvves
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Fig.4.10 Performance of the system under variable load and irradiation condition
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4.3.3 Performance evaluation of the System under abnormal grid conditions
(Sag, Swell and unbalanced grid voltage) and load unbalance

This section analyses the system's performance at abnormal load and grid voltage
conditions. Removing one phase of the load current causes load unbalancing from
t=0.06s to 0.12 s, 45V(p-p) voltage decrease from t=0.12 to 0.18 s is causes voltage
sag which decreases load current. Similarly, voltage increase of 45V (p-p) from t=0.18-
0.24s, causes voltage swell which increases load current, and voltage unbalance occurs
from t=0.24-0.30s in the grid voltage, as illustrated in Fig.4.11. Grid currents remain
balanced and sinusoidal regardless of abnormal grid and load conditions. DC bus
voltage maintained at 750 V.
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Fig.4.11 Performance of the system under abnormal grid and load unbalance
conditions

4.3.4 Sensitivity analysis of HLO-ANN MPPT technique

In this article, a sensitivity analysis of the HLO-ANN assesses how variations in the
parameters of the HLO algorithm impact the performance of the ANN, specifically
concentrating on search agents and convergence has been presented in Fig.4.12 and
Table.4.

The analysis demonstrates that employing 30 search agents for HLO-ANN is ideal
since it provides a suitable trade-off between convergence speed and error
minimization. While 40 search agents provide a somewhat lower error, their
convergence rate is slower, making 30 search agents a more practical choice for
efficient optimization. This balance is critical in real-world applications where model
correctness and computational economy are equally important. Faster convergence
with a decent number of search agents requires fewer computational resources and
time to complete. Having a low error while keeping rapid convergence increases the
ANN's overall performance in making accurate predictions.
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Fig.4.12 Sensitivity analysis for different search agents of proposed HLO-ANN MPPT
technique

Table 4.4 Sensitivity analysis for different search agents of proposed HLO-ANN
MPPT technique

Search agents Error (MSE) I(g;i?::g?:;:; zlel:o:li:lr;e;
10 0.06991 44 153.055
20 0.05952 47 151.321
30 0.03314 24 128.462
40 0.03210 44 134.083

4.4 Comparative analysis of proposed HLO-ANN algorithm

To demonstrate the superiority of the proposed HLO-ANN MPPT technique, various
parameters, including grid current harmonics, maximum power tracking under
dynamic irradiation, EN50530 MPPT efficiency test, DC bus voltage regulation, cost
function and error parameters, are compared to DMO-ANN, TLBO-ANN, HS-ANN,
ABC-ANN, and PSO-ANN MPPT algorithms.

4.4.1 Comparative analysis of proposed HLO-ANN algorithm for grid current
harmonics

Fig.4.13 shows the grid current (I 44q) FFT spectrum for a non-linear load under

various load condition and grid voltage conditions. THD for the proposed control
algorithm and other compared control algorithms that have been considered in this
work are presented in Table 4.5. Table4.5 shows that the proposed HLO-ANN MPPT
contains 1.08% THD in the case of a non-linear load, 1.74% and 1.76% THD under
grid voltage sag and swell conditions, and 2.04% and 2.71% THD under grid voltage
imbalance and load unbalanced conditions. Table 4.5. shows that, in comparison to
previous algorithms, the suggested technique has lower grid current THD. Also,
harmonics distortion is with in IEEE standard.
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Fig.4.13 (a) FFT spectra of [;,44 for non-linear load,

Fundamental (50Hz) = 2.988 , THD= 1.08%
1 ' v h

e o ©°
N B D

Mag (% of Fundamental)
=]
o

e
tn

o 200 AD0 600 800
Frequency (Hz)

Fig.4.13(b) FFT spectra of Iy,;4 for non-linear load,

Fundamental {(50Hz) = 2.631 , THD= 1.74%
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Fig4.13(c) FFT spectra of 14,4 for grid voltage sag,

Fundamental (50Hz) = 3.15, THD= 1.76%

Mag (% of Fundamental)
© o .
® W = = N

g
o o0
nh oo N

200 400 600 800
Frequency {Hz)

=]

Fig.4.13(d) FFT spectra of I,,;4 for grid voltage swell,

Fundamental (50Hz) = 2.947 , THD= 2.04%
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Fig.4.13. (e) FFT spectra of I,,;4 for grid voltage unbalance,
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Fig.4.13. (f) FFT spectra of I,.;4 for unbalance load
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Fig.4.13. FFT spectra of ;544 and 14,4 for proposed HLO-ANN algorithm

Table 4.5 Comparison of FFT spectrum of Proposed HLO-ANN MPPT technique with
PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN MPPT techniques for

THD in grid current

Non- Grid Grid Grid voltage | Non- linear
Algorithms | Linear voltage sag | voltage unbalance load

load swell unbalance
P&O 2.52% 3.55% 2.84% 3.61% 3.81%
INC 2.48% 3.29% 2.45% 3.43% 3.62%
PSO 2.41% 3.22% 2.31% 3.25% 3.53%
PSO-ANN | 2.39% 3.21% 2.95% 3.22% 3.44%
ABC-ANN | 2.25% 2.62% 2.84% 3.19% 3.27%
HS-ANN 2.18% 2.33% 2.51% 2.86% 3.16%
TLBO- 1.75% 2.01% 2.11% 2.71% 2.98%
ANN
DMO- 1.11% 1.85% 1.93% 2.42% 2.83%
ANN
HLO-ANN | 1.08% 1.74% 1.76% 2.04% 2.71%

4.4.2 Comparative analysis of proposed HLO-ANN algorithm for dynamic
irradiation variation.

In the present study, the irradiance dataset of northern part (Shahabad Daulatpur
village, Delhi) and southern part (Chikkaballapur Karnataka) of India has been taken
from the NASA and NREL to test the robustness of the proposed technique in different
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geographical location. Fig.4.15 and Table.4.6 presents the comparative analysis of
different algorithm employing Shahabad Daulatpur village, Delhi data whereas
fig.4.16 and Table 4.6 presents the comparative analysis of different algorithm
employing Chikkaballapur Karnataka data. To evaluate various MPPT algorithms, the
dynamically reducing solar irradiance pattern of 1000, 800, 600, and 400 W/m? has
been used in this particular case. In Fig.4.14, the power versus voltage curve illustrates
the maximum power at various irradiance. The maximum power tracked by the grid
integrated solar photovoltaic system (SPS). through various MPPT algorithm is shown
in Fig.4.15, Fig 4.16 and Table 4.6, Table 4.7. After examining the enlarged regions
more closely and referring to Tables 4.6 and 4.7, it is apparent that the HLO-ANN
algorithm has better tracking performance than the other techniques in various
geographical locations. The maximum power tracked by the proposed technique is
higher, indicating the algorithm's robustness even in diverse geographical locations.
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Fig.4.14 P-V and I-V characteristics for different irradiation of solar array
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Fig.4.15 Maximum power tracked under dynamic irradiation variations (Shahabad
Daulatpur village data)
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Table.4.6 Comparison of Proposed HLO-ANN MPPT technique with PSO-ANN,
ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN, PSO, INC and P&O MPPT

techniques for maximum power tracking under

(Shahabad Daulatpur village data)

different irradiation condition

Algorithm P&O INC | PSO | PSO | ABC | HS- | TLB | DM | HLO
- - ANN | O- 1 O- |-
ANN | ANN ANN | ANN | ANN
Irradiance
Prax 12.29 123 | 123 | 123 | 123 |124 | 125 | 125 |12.6
1000 (kW) 8 7 8 9 3 1 0 1
(W/m?) Settling 0.30 0.20 |10.23 |0.24 |0.22 {021 028 |031 |0.20
Time (s)
Ponax 9.8 986 [9.88 [994 [995 [998 1998 |10.1 |10.1
800 | (kW) 2 9
(W/m? | Settling | 0.17 0.11 [0.16 |0.14 |0.14 |0.13 |0.14 |0.13 |0.11
Time(s)
Poax 7.32 737 740 740 |741 |743 |742 |7.51 |7.62
600 (kW)
(W/m?) Settling 0.15 0.14 10.14 |0.13 |0.15 |0.17 |0.15 |0.12 |O0.11
Time(s)
Prax 4.73 474 | 4.74 4776 |4.775 | 4.83 | 4.87 495 |5.02
400 (kW)
(W/m?) Settling 0.20 0.15 |0.16 |0.16 |0.15 |0.16 |0.14 |0.15 |0.14
Time(s)
14000 - w00 \@ 7 1
12000 L )
Irradiation 800 Wim? 0. :
000 00\ W= 09 095 1
g 8000
f‘ 6000

4000 -

2000 J
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0

Fig.4.16
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Maximum power tracked under dynamic irradiation variations
(Chikkaballapur Karnataka data)
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Table 4.7 Comparison of Proposed HLO-ANN MPPT technique with INC, P&O, PSO,
PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN and DMO-ANN MPPT techniques
for maximum power tracking under different irradiation condition (Chikkaballapur

Karnataka data)
Algorithm P&O | INC | PSO |PSO | ABC |HS- | TLB |DM | HLO
- - ANN [O- | O- |-
ANN | ANN ANN | ANN | ANN
Irradiation
Porax 123 (123 [ 123 | 124 |124 | 124 |125 |125 | 12.6
1000 | (kW) 0 9 9 1 0 7 5 8 9
(W/m? | Settling | 029 |0.20 |023 [023 |022 [021 |0.27 |030 |0.20
Time (s)
Poax 9.81 |19.87 |9.88 [9.95 [9.95 998 [9.99 |10.1 | 10.2
800 | (kW) 9 3
(W/m?) Settling 0.17 10.12 |0.16 |0.14 |0.15 |0.13 |0.14 |0.12 |O0.11
Time(s)
Poax 733 | 739 740 |741 |7.41 |743 |745 |7.53 |7.66
600 | (kW)
(W/m?) | Settling 0.15 |0.14 |0.14 |0.13 |0.15 |0.17 |0.15 |0.12 |O0.11
Time(s)
Poax 473 | 475 |45 4776 |4.776 | 4.83 | 4.88 |4.98 |5.07
400 | (kW)
(W/m? | Settling | 020 |0.15 |0.16 [0.16 |0.15 |0.16 |0.14 |0.15 |0.15
Time(s)

4.4.3 Comparative analysis of proposed HLO-ANN algorithm for dynamic
temperature variation.

The HLO-ANN algorithm produces the highest maximum power production at 25°C
(12.68 kW) as can be seen from Fig.4.17 and Table 4.8. As the temperature rises to
35°C and 45°C, all algorithms see a decline in maximum power production. At 45°C,
HLO-ANN still has the highest Pmax among the algorithms, but it is significantly
reduced to 11.59 kW. Most algorithms' settling times decrease as the temperature rises.
The table clearly shows that HLO-ANN has the highest maximum power tracked at
25°C compared to other methods. The power output, however, declines when the
temperature rises to 35°C and 45°C. This pattern is consistent with the typical

behaviour of solar cells, which reduce efficiency as temperatures rise.
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Fig4.17 Maximum power tracked using HLO-ANN MPPT technique and with other
existing MPPT technique under different temperature condition
Table 4.8 Comparison of Proposed HLO-ANN MPPT technique with INC, P&O, PSO,
PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN MPPT techniques for
maximum power tracking under different temperature (Temp.)

1.2

Temp. | Settling | Temp. | Settling | Temp. | Settling | Temp. | Settling
Algo- | (25°C) | Time (35°C) | Time (45°C) | Time (25°C) | Time
rithm | p_ (| sec Prax | sec Prax(k | sec Prax( | sec
kW) (KW) W) kW)
P&O 12.41 0.22 11.82 0.14 11.21 0.12 12.41 0.12
INC 12.42 0.20 11.94 0.13 11.31 0.14 12.42 0.12
PSO 12.44 0.21 11.94 0.12 11.32 0.19 12.43 0.13
PSO- 12.52 0.22 11.96 0.12 11.35 0.20 12.52 0.12
ANN
ABC- | 12.55 0.23 11.96 0.11 11.38 0.20 12.55 0.12
ANN
HS- 12.58 0.24 11.97 0.12 11.50 0.14 12.58 0.12
ANN
TLBO | 12.60 0.24 12.15 0.09 11.52 0.17 12.60 0.11
-ANN
DMO- | 12.63 0.22 12.17 0.11 11.58 0.19 12.63 0.10
ANN
HLO- | 12.68 0.20 12.18 0.11 11.59 0.10 12.68 0.09
ANN
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4.4.4 MPPT Efficiency test ENS0530

One of the standard testing conditions applied to a grid integrated SPS system is the
EN50530 MPPT efficiency test, which evaluates the MPPT algorithm's performance
under dynamically varying circumstances. An analysis of the MPPT techniques under
dynamic changes in irradiance level has been conducted in this specific case, taking
into account both fast and slow variation in irradiance level.

The design of the slow and fast irradiance levels was accomplished by employing the
trapezoidal signal, as illustrated in Fig.4.18. MATLAB 2023a simulation environment
was used to analyse the power achieved by all MPPTs based on irradiance level
variations. Fig.4.19 depicts the maximum power achieved by several MPPT
algorithms in the EN50530 efficiency test. According to Fig.4.19 and Table.4.9 the
HLO-ANN MPPT method that has been proposed achieves the highest power (Pmax).
The HLO-ANN MPP performs extremely well at lower levels of irradiance, as
demonstrated by the maroon colour curve. This is also evident for the ANN-HHO
MPPT, which functions most effectively at higher levels of irradiance.
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Fig.4.18 Dynamic variation in irradiation level for the standard MPPT efficiency test
of EN 50530

3000

12000 .

0 0.2 0.4 0.6 0.8 1 12 14 16 18

Time (seconds)
Fig4.19 Power versus time graphs for different MPPT algorithms
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Table 4.9 Comparison of Proposed HLO-ANN MPPT technique with INC, P&O, PSO,
PSO-ANN, ABC-ANN, HS-ANN, TLBO-ANN, DMO-ANN, PSO, INC and P&O
MPPT techniques for ENE530 Test.

Irradiance Irradiance Irradiance Irradiance
Algorithms | 200W/m? 1000W/m? | 200W/m? 1000W/m?
(0.0s-0.2s) (0.4s-0.7s) (1.0s-1.2s) (1.3s-1.4s)
Pinax(KW) | Pigy Pinax Pinax
P&O 2.44 12.22 2.44 12.22
INC 2.45 12.22 2.45 12.22
PSO 2.47 12.23 2.47 12.23
PSO-ANN 2.48 12.44 2.48 12.44
ABC-ANN 2.48 12.47 2.48 12.47
HS-ANN 2.49 12.47 2.49 12.47
TLBO-ANN | 2.56 12.54 2.56 12.54
DMO-ANN | 2.61 12.60 2.61 12.60
HLO-ANN 2.68 12.68 2.68 12.68

4.4.5 Transient analysis of DC bus voltage at different irradiation

Fig.4.20 depicts the transient response of DC bus voltage for the proposed HLO-ANN
and other MPPT algorithms, namely DMO-ANN, TLBO-ANN, HS-ANN, ABC-
ANN, PSO-ANN, PSO, INC and P&O. The response of all algorithms to non-linear
load has been examined under various irradiation situations. The suggested HLO -
ANN algorithm has a better response in terms of settling time, undershoot, overshoot
and maintaining the DC bus voltage at 750 regardless of irradiation level fluctuation.
Table.4.10 shows that the proposed HLO-ANN MPPT has a shorter settling time than
other MPPT algorithms at each case of irradiance level.

Table.4.10 Transient analysis of DC bus voltage using proposed HLO-ANN and
DMO-ANN, TLBO-ANN, HS-ANN, ABC-ANN, and PSO-ANN for non-linear load

S.No | Control Time Irradiation | Settling | DC bus | Remarks
techniques | (seconds) | (W/m?) | time Voltage
(seconds) | (V)

1. P&O 0.0s-0.1s | 1000 0.062 750 Initial overshoot
0.1s-0.2s | 800 0.060 750 of 15V is present
0.2s-0.3s | 600 0.061 750 Undershoot of
0.3s-04s | 400 0.061 750 12V present

2. INC 0.0s-0.1s | 1000 0.610 750 Initial overshoot
0.1s-0.2s | 800 0.060 750 of 20V is present
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0.2s-0.3s | 600 0.060 750 Undershoot  of
0.3s-0.4s | 400 0.061 750 11V present
PSO 0.0s-0.1s | 1000 0.053 750 Initial overshoot
0.1s-0.2s | 800 0.069 750 of 40V is present
0.2s-0.3s | 600 0.069 750 Undershoot of
0.3s-0.4s | 400 0.069 750 10V present
PSO-ANN | 0.0s-0.1s | 1000 0.063 750 Initial overshoot
0.1s-0.2s | 800 0.065 750 of 51V is present
0.2s-0.3s | 600 0.065 750 Undershoot of
0.35-0.4s | 400 0.065 750 9V present
ABC- 0.0s-0.1s | 1000 0.063 750 Initial overshoot
ANN 0.1s-0.2s | 800 0.061 750 of 40V is present
0.2s-0.3s | 600 0.068 750 Undershoot  of
0.3s-0.4s | 400 0.068 750 8V present
HS-ANN [ 0.0s-0.1s | 1000 0.019 750 Initial overshoot
0.1s-0.2s | 800 0.062 750 of 15V is present
0.2s-0.3s | 600 0.062 750 Undershoot  of
0.3s-0.4s | 400 0.061 750 8V present
TLBO- 0.0s - 0.1s | 1000 0.050 750 Initial overshoot
ANN 0.1s-0.2s | 800 0.051 750 of 20V is present
0.2s-0.3s | 600 0.069 750 Undershoot of
0.3s-0.4s | 400 0.069 750 7V present
DMO- 0.0s-0.1s | 1000 0.051 750 Initial overshoot
ANN 0.1s-0.2s | 800 0.050 750 of 15V is present
0.2s-0.3s | 600 0.040 750 Undershoot  of
0.3s-0.4s | 400 0.040 750 SV present
HLO- 0.0s - 0.1s | 1000 0.050 750 Initial overshoot
ANN 0.1s-0.2s | 800 0.020 750 of 15V is present
0.2s-0.3s | 600 0.020 750 Undershoot s
0.3s-0.4s | 400 0.020 750 negligible
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Fig.4.20 Transient analysis of DC bus voltage proposed HLO-ANN and DMO-ANN,
TLBO-ANN, HS-ANN, ABC-ANN, and PSO-ANN for non-linear load.

4.4.6 Comparison of convergence rate and error parameters of different
algorithms

One important parameter for evaluating the performance of any optimization approach
is its convergence rate. As a result, all algorithms were subjected to a minimum cost
function with the same number of iterations, boundary conditions, and search agents.
Fig.4.21 depicts the convergence curves for all six algorithms. The chart shows that
HLO-ANN outperforms the other five methods in terms of convergence speed and
optimal solution capture. To minimize the mean square error, the curve with the lowest
MSE optimization value was chosen. Fig.4.21 and Table 4.11 show that the HLO-
ANN produced a higher-quality solution with a faster convergence time, whereas the
other methods produced lower-quality solutions with premature convergence. Two
additional error parameters, root mean square error (RMSE) and mean absolute error
(MAE), have been investigated to strengthen algorithm analysis. The proposed HLO-
ANN algorithm requires fewer iterations to converge with lower error parameters,
whereas other algorithms require more iterations and have higher error values when
compared to the HLO-ANN MPP technique, as shown in Fig.4.21 and Table 4.11.

4.4.7 Validation of the proposed algorithm considering test data set

Fig 4.22. presents the graph of absolute error between the ground truth and the
estimates of the trained neural network along with the plot of ground truth verses the
estimates of the neural network of the test data set for the unseen data. It is observed
that absolute error is considerably low which confirms that the trained network
performs significantly well on the unseen data and therefore can manage to track MPP
during real time operations.
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Table 4.11 Error parameters analysis for different MPPT algorithms

Mean Square | Root Mean Square Error | Mean Absolute
Algorithms | Error (MSE) (RMSE) Error (MAE)
MSE RMSE MAE
zlii(y.(i) 1w zlii(y.(i)
ngat | = Hz Z(Yf(i) Loy | rga
-T®)’ o ~T;®)
PSO 0.12997 0.36051 0.28778
PSO-ANN 0.07597 0.27562 0.21997
ABC-ANN 0.05997 0.24488 0.19546
HS-ANN 0.04697 0.21672 0.17300.
TLBO-ANN 0.03987 0.19967 0.15938.
DMO-ANN 0.03418 0.18487 0.14756
HLO-ANN 0.03306 0.18182 0.14512
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4.4.8 Benchmark analysis

An essential step in assessing the efficacy and performance of the Horned Lizard
Optimization-ANN (HLO-ANN) technique is benchmarking. It gives users a
comprehensive and nuanced understanding of the benefits that HLO-ANN offers,
empowering them to decide on its possible acceptance and future development. The
HLO-ANN technique offers substantial improvements when compared to widely
accepted traditional MPPT methods.

Table.12 Benchmarking performance of proposed HLO-ANN MPPT techniques with
other MPPT techniques

Metric P&O |INC | PSO | PSO- | ABC- | HS- TLB | DMO | HLO-
ANN | ANN | ANN | O- -ANN | ANN
ANN
Tracking Slow | Mid | High | High | High | High | High | Very | Very
Efficiency High | High
Tracking Low |Mid |Mid | High |High |High |High | Very | Very
Accuracy High | High
Convergen | Slow |Mid | Mid | Mid Mid Fast Fast Very | Very
ce Speed Fast Fast
Dynamic Slow | Slow | Mid | Mid Mid Fast Fast Fast Very
response Fast
Prior No No | Yes | Yes Yes Yes Yes Yes Yes
tuning
Tuning High |High | Mid |Low |Low |Low |Low |Low |Low
Complexity
Varying Slow | Slow | Mid | Mid Mid Fast Fast Very | Very
atmospheri Fast Fast
¢ condition
Simulation | Low |Low | Mid | Mid High | High | High | High | Very
time High

4.4.9 COMPUTATIONAL COMPLEXITY ANALYSIS

Computational complexity

Computational complexity evaluates the resources—time and memory—required by
an algorithm as the input size increases. In optimization algorithms, particularly those
involving a population of agents or candidate solutions, this complexity can be broken
down as follows:

Time Complexity is a measure of how the running time of an algorithm grows with
respect to key input parameters (such as number of agents, problem dimensions, and
number of iterations). It expresses this growth asymptotically (e.g. using Big-O
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notation), ignoring constant factors and lower-order terms.
In optimization, common parameters involved include:

n = number of agents / candidate solutions / population size
d = number of decision variables / dimension of the search space

T = number of iterations.

Space complexity quantifies the amount of memory an algorithm uses relative to the
input size. In optimization algorithms, space complexity is influenced by factors such
as:

Memory required for storing agent positions and velocities: Typically, O(nd)
Memory for storing fitness values: 0(d)
Memory for auxiliary data structures: Varies depending on the algorithm

The total space complexity is the sum of these components. For instance, if an
algorithm requires O(nd) memory for storing agent positions and velocities and
0 (n)for storing fitness values, the overall space complexity would be O(nd)

Computational Complexity Analysis

Let n denote the number of agents, d the dimensionality of each agent’s solution
vector, and T the total number of iterations. We assume that basic operations
(arithmetic, comparisons, random sampling, trigonometric functions, boundary
checks, etc.) take constant time O(1), and that vector updates and fitness evaluation
require time proportional to d.

In each iteration, the algorithm performs several procedures: Crypsis Behavior, Skin
Lightening/Darkening, Blood Squirting, Move to Escape, Alpha-Melanophore,
and Fitness Evaluation.

In the worst case, many of these update all n agents, each across d dimensions,
resulting in O(nd) cost per procedure. Since all such procedures contribute on the
same order, the aggregate cost per iteration remains:0 (nd)

Thus, over T iterations, the total time complexity is:0(T.n.d)

The space complexity is O(nd), for storing the population and their associated data
(fitness, best/worst etc.), plus lower-order overheads.

In practice, the algorithm’s runtime is often less than the worst-case bound, because
some procedures act only on subsets of agents (e.g. only the worst-performing agents,
or those with low melanophore rate), and because convergence may occur well before
T reaches its maximum. Empirical measurements in the MATLAB implementation
confirm linear scaling with n and with d, validating the theoretical bound.
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Table.13 Computational Complexity Analysis of HLO Algorithmic Procedures

Procedure

Agents Involved

Work per agents

Total per iteration

Initialization

All n agents once
(at start)

Set up positions in
d dims, maybe
initial fitness
evaluations —

0(nd) (but this is
a one-time cost,
not per iteration)

0(d) per agent
Crypsis Behaviour All n agents Vector updates 0(nd)
(Approach 1) over d dims +

constant number

of trigonometric +

random ops —

0(d) each
Skin Lightening / Worst k agents, For each affected
Darkening where k < agent: vector
(Approach 2) nWorst case k = | update plus Worst case O (nd)

n constant overhead

—

0(d) each
Blood Squirting / All n agents Vector updates 0(nd)
Projectile Motion over d dims +
(Approach 3) constant

operations (sin,

cos, etc.) —

0(d) each
Move to Escape All n agents Random 0(nd)
(Approach 4) walk/perturb +

vector update

over d dims —

0(d) each
Alpha-Melanophore | All n agents for Fitness Worst case O(nd)
Rate (Approach 5) fitness normalization

normalization; a
subset (say k) for
vector updates
depending on
rate; worst case

(k ~n)

across n agents —
0(n); those
changed — vector
updates —

0(d) per agent

Fitness Evaluation

All n agents each
iteration

Evaluating fitness
over d dims —
0(d) per agent

0(nd)
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6-Procedure / Constant time per | Total overhead of
Random Sampling /
Utility Functions

) use these is
Used in many

procedures; either
per agent or per
update; but each
usage is 0(1)

O (n)or lower,
dominated by the
0 (nd)terms

Per-Iteration Cost

Putting all together, almost all major procedures have worst-case cost
0(nd).Adding them up still gives per iteration cost:

Per — iteration cost = 0(nd) + 0(nd) + 0(nd) + ---..0(nd) = 0(nd) (4.45)

(The extra O(n) or O(1) terms are lower order, hence subsumed by 0(nd) )

Total Time Complexity

Since the algorithm runs for T iterations, the overall time complexity is: O(T.n.d)

“Since the dominant cost in nearly all procedures is O (nd) per iteration, the combined
per-iteration complexity is O(nd), and over T iterations the total worst-case time
complexity is O(T.n.d)”.

4.4.10 SCALABILITY AND COST IMPLICATION OF HLO-ANN MPPT
CONTROLLERS
The Horned Lizard Optimization—Artificial Neural Network (HLO-ANN) MPPT
technique improves MPP tracking accuracy by using optimized ANN weights and bias
values. Its deployment in real-world PV microgrids has unique scalability and cost
considerations.

Scalability

Hardware: ANN-based MPPT algorithms demand higher computational
resources than conventional methods. Real-time implementation is feasible on
Digital Signal Processors (DSPs), Field-Programmable Gate Arrays (FPGAs),
or high-end microcontrollers, which have become increasingly affordable. Re-
training the model is necessary only when the system encounters scenarios not
previously represented in the training data. For small-scale photovoltaic (PV)
arrays (e.g., 1050 kW), standalone DSPs are sufficient. However, for
megawatt-scale plants, distributed or cloud-assisted controllers may be required
to handle the increased complexity and data processing demands.

Data Dependence: ANN requires historical data (irradiance and
temperature) for effective training. In rural setups, such datasets may be scarce
or unreliable, limiting scalability. In industrial systems, SCADA ensures
abundant, high-quality data.

Algorithmic Load: HLO has a computational complexity of approximately
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O(nxm) (population % iterations). This is acceptable for offline optimization of
ANN weights, but frequent online retraining in resource-constrained rural
systems could hinder scalability.

Cost and Practical Implications

e The deployment of intelligent controllers entails additional CAPEX (Capital
Expenditure) for hardware and sensors, which can be significant in rural
microgrids but marginal in industrial systems. OPEX (Operating Expenditure)
primarily relates to maintenance and algorithm retraining, posing challenges in
areas with limited technical expertise, while being easily manageable in
industrial setups.

e In terms of energy yield, small rural systems experience modest gains with
longer payback periods, whereas even minor efficiency improvements in large
industrial microgrids translate into substantial additional generation and faster
cost recovery. Thus, scalability remains constrained in rural contexts unless
supported by subsidies or pre-trained models, while industrial environments
with advanced infrastructure offer clear cost—benefit advantages.

4.5 CONCLUDING REMARKS

This chapter presents a novel control technique for Maximum Power Point Tracking
(MPPT) in grid-integrated solar PV systems, utilizing a Horned Lizard Optimization-
based Artificial Neural Network (HLO-ANN). The proposed control algorithm has
undergone rigorous testing and validation under a variety of operating conditions.
These conditions include variable load scenarios, changes in solar irradiance,
temperature fluctuations, grid voltage sag and swell events, unbalanced load situations,
and other abnormal grid conditions. To thoroughly evaluate the performance of the
proposed HLO-ANN control algorithm, a comparative analysis was conducted against
other existing control techniques. The criteria for comparison included grid current
harmonic distortion, the efficiency of maximum power point tracking at different
levels of irradiance and temperature, performance on the EN50530 MPPT test, DC bus
voltage regulation, convergence rate, sensitivity analysis and benchmarking functions.
The results from these tests showed that the HLO-ANN algorithm exhibited significant
improvements across all evaluated metrics. Specifically, it demonstrated superior
capabilities in tracking the maximum power point, regulating voltage, mitigating grid
current harmonics, improving convergence rates, and minimizing errors when
compared to the other algorithms considered in the study. Furthermore, the HLO-ANN
algorithm ensured the maintenance of a unity power factor mode of operation, and the
total harmonic distortion of grid current was well below the acceptable threshold of
5%. This indicates that the proposed control technique not only enhances the efficiency
of solar PV systems but also adheres to industry standards for power quality.
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CHAPTER-5

INVERTER CONTROL TECHNIQUES FOR GRID-
INTEGRATED PV BASED MICROGRID
5.1 INTRODUCTION

The previous chapters examined MPPT strategies for standalone and grid-connected
PV systems. While MPPT ensures optimal power extraction and grid synchronization,
effective grid integration also requires precise inverter control for maintaining power
quality and stability. Integration of SPV with grid is achieved by voltage source
inverter (VSI), which is responsible for DC—AC conversion and plays a very important
role in grid synchronization. Proportional integral (PI) controller plays a crucial role
in integration of SPV with grid including voltage regulation and frequency control.

Conventional proportional-integral (PI) controllers are commonly used to regulate VSI
operation. However, these controllers typically rely on fixed gain parameters that are
optimized for specific operating scenarios. As a result, their performance can
significantly deteriorate when faced with unpredictable changes in solar irradiance,
ambient temperature, loading patterns, and nonlinear grid conditions. One of the most
critical tasks in this context is the regulation of the DC link voltage, which is sensitive
to both renewable generation variability and load disturbances. Fixed-gain PI
controllers often struggle to maintain stability and exhibit delayed responses, leading
to issues such as voltage overshoots, undershoots, and persistent oscillations.

To address these limitations, this chapter proposes adaptive control schemes that
dynamically adjust the proportional—integral (PI) controller gains in real-time. Two
nature-inspired optimization techniques—Honey Badger Algorithm (HBA) and
Cuckoo Search Optimization (CSO)—have been proposed and implemented in
MATLAB to enhance the performance of microgrid. These algorithms continuously
optimize the controller parameters based on system feedback, aiming to minimize
deviations in the DC link voltage and enhance the overall dynamic response of the
system. In addition to these, an Artificial Neural Network (ANN)-based PI control
approach is also studied, leveraging data-driven learning to further improve
adaptability under rapidly changing conditions.

Throughout this chapter, the Incremental Conductance (INC) algorithm is consistently
used for Maximum Power Point Tracking (MPPT) in conjunction with the proposed
and explored inverter control strategies. However, in Section 5.6, a dedicated
comparative analysis is presented, wherein the HLO-ANN-based MPPT technique—
developed in Chapter 4—is compared with the proposed inverter control approaches
from this chapter. This comparison is aimed at evaluating the overall effectiveness and
synergy of both independently developed techniques under diverse operating
scenarios.
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5.2 INVERTER CONTROL TECHNIQUES FOR GRID INTEGRATED
SOLAR PV SYSTEM

Section 2.4 of Chapter 2 discusses several inverter control algorithms for grid-
integrated solar PV systems, including linear, predictive, adaptive, intelligent, and
robust controllers. These control approaches are critical in guaranteeing effective
power injection into the system while preserving stability and power quality. This
chapter will expand on that idea by focusing on specific inverter control strategies,
such as the Synchronous Reference Frame Theory (SRFT) control technique, which is
frequently utilized for grid synchronization and power quality improvement.
Furthermore, the chapter will look at the traditional Proportional-Integral (PI)
controller, which is widely used in PV inverters because to its simplicity and efficacy
in regulating voltage and current.

Advanced PI controllers, including the ANN-based PI controller, which use machine
learning for adaptive control, will be discussed in order to enhance system
performance. The Cuckoo Search Optimization (CSO)-PI controller, which uses
metaheuristic optimization to optimize control parameters for improved dynamic
response, will also be demonstrated. Finally, to increase the robustness and efficacy of
the inverter control, the Honey Badger Algorithm (HBA)-PI controller will be studied
using bio-inspired optimization techniques. This chapter aims to provide a
comprehensive understanding of these techniques and how they enhance the efficiency
and dependability of grid-integrated solar PV systems.
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Fig.5.1 Schematic diagram of grid integrated PV system
5.2.1 Synchronous Reference Frame Theory

A PV system is connected to the utility grid via a DC/DC converter and a voltage
source inverter. An inverter is responsible for DC-AC inversion and play a significant
role in grid synchronization.
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Fig.5.2 Schematic diagram of synchronous reference frame theory

The inverter controls the grid injected current in a grid connected PV system to adjust
the real and reactive power supplied and to set the DC link voltage to its reference
value. Voltage source inverter (VSI) consists of six IGBT switches as shown in Fig
5.1. Fig.5.2 depicts a block diagram of reference current estimation utilizing the SRF
control algorithm in the UPF mode of operation. The SRF controller structure is made
up of d-q-0 and (d-q-0)! park transformations. The SRFT is an indirect control method
for evaluating reference AC currents, which are utilized to generate gate pulses for
controlling SPV inverters. Load current, PCC voltage, and DC bus voltage are sensed
and considered as feedback signals in this method. Clark transformation method is
used to convert three phase ‘a-b-¢’ to'a — 8° co-ordinate, as expressed in equation
(5.1). Phase-locked loop (PLL) is utilized to synchronize the VSI with the utility grid
[143]-[144].

ia 2 1 _§ _§ l:La
[iﬁ]:\g o B _wl|w -1
2 2]l

These currents can be converted from the’a — B’ to the d-q' frame using Park's
transformation expressed by equation (5.2).

ig 2[ cos(wt) sin(wt) 1[i«
=z . : (5.2)
lq 3] —sin(wt) cos(wt) 1lig
where, w is angular frequency of the synchronous rotating frame
A low pass filter is used to extract the fundamental active and reactive components of
load currents. To operate the SRF algorithm in unity power factor mode, VSI must
supply the reactive power demand of the load. Reactive reference component must be

zero (iq*=0), in order to compensate the reactive power demand of the load. While
fundamental load current (id) is added with output of PI controller (i;,ss) in order to
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regulate the dc link voltage.

Active ac reference grid current is the sum of i;,, and fundamental load current (id)
which is expressed equation (5.3).

id* =id + ijpss (5.3)
PV inverter's loss component is denoted by i;,s5, Which is the output of the
PI controller in the voltage control loop, expressed by equation (5.4).

i10ss = Kpe(t) + K; [ e(t)dt (5.4)
Where, Kp & K; are the proportional gain & integral gain and e(t) is voltage error
signal.

The reverse Clark’s and Park's transformations are then utilized to get three-phase
reference source current as given in equations (5.5) and (5.6).

iq]  [2[ cos(wt) sin(wt) 1ri
[l/?] _\/;[ —sin(wt)  cos(wt) “S] (5.5)
iga ZI[ 11 ﬁO]l .
gol=J3| "z 7z || 5.6
A I o
2 2

Hysteresis current controllers (HCC) produce switching pulses by comparing
reference currents to real currents within a hysteresis range. This technique is the
simplest in terms of implementation, requiring only the error traced value, which is the
difference between the grid current (igq,igp,igc) and the current references
(igarigp,igc). This method involves switching actual source currents in an
asynchronous procedure of ramping the actual current up and down so that it follows
the reference current. Hysteresis controllers are relatively simple to develop when
compared to other control systems. They do not require complex mathematical
calculations. The quick response of hysteresis controllers to changes in the controlled
variable is widely recognized. The controller takes immediate corrective action when
the error exceeds the hysteresis band. Hysteresis controllers are more robust and
resilient to parameter variations.

5.3 SYNCHRONOUS REFERENCE FRAME THEORY WITH ADVANCED PI
-CONTROLLERS

For grid-integrated PV systems, synchronous reference frame theory (SRFT) is a
widely used control approach that provides reactive power compensation, harmonic
mitigation, and efficient power quality enhancement. Accurate control of active and
reactive power components is made possible by SRFT, which converts grid currents
from the a-f reference frame to the revolving d-q reference frame. However, when
employed with SRFT, traditional PI controllers frequently have drawbacks such
steady-state errors, difficulty tuning parameters, and poor adaptation under dynamic
grid settings. Advanced optimization-based and intelligent PI controllers, such as
Cuckoo Search Optimization (CSO)-PI, Honey Badger Algorithm (HBA)-PI, and
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Artificial Neural Network (ANN)-PI controllers, have been coupled with SRFT in
order to address these shortcomings

5.3.1 SRFT with ANN-PI Controller for Inverter

Artificial neural networks (ANNSs) use parallel and distributed computing to describe
nonlinear (static and dynamic) relationships between inputs and outputs. Artificial
neural networks (ANNs) can learn general relations using weights and biases
distributed over numerous layers and nodes. Fig.5.3 depicts the ANN structure
employed in this study, consisting of two input layers, a hidden layer of ten neurons,
and a single output layer. ANN’s input layer connects to system inputs and projects
weighted signals to subsequent hidden layers. The output layer receives weighted
signals from the preceding layer and generates ANN output. The ANN was trained
using the Levenberg-Marquardt (LM) back propagation learning methodology, which
employs a chain rule mechanism. The output of the i** node in the n'"* layer is
determined as equation (5.7) [147]-[148]:

(n) f(”)(net(n)) f<n>( nlwixi(n_l)) (5.7)

The output and activation functions of neurons at the i*"* and nt" nodes are represented
by xi(n) and fi(n) , respectively. xi(n_l)and w; represent the input and connection weight
of neurons at the nth node. The goal of training is to reduce the cost function E, which
is the sum of the squared errors in the output layer expressed as equation (5.8).

(Zn 1e?) wheree;, =d; —x; (5.8)

Where d; is the desired output of the i*" neuron and m is the number of output
neurons. Weights are wupdated utilizing the Levenberg-Marquardt (LM)
backpropagation learning technique, as equation (5.9):

(n 1)
w; —f.(n)(net(n)) mO iy WijWy; —yf(n)(net(n)) P (5.9)

Where, y > 0 represents adoption coefficient and P represents the next layer
neuron. Levenberg-Marquardt activation function (LMAF) of the neuron is expressed
as equation (5.10):

—net(™

xl.(”) = fl.(”)(neti(n)) =—2 1= (5.10)

1+e-net(™ 1+e-net™
Fig.5.9(a) shows that LM algorithm trained the ANN controller with 70%
information for training, 15% for testing, and 15% for validation. Fig.5.9(b) depicts
the best validation performance, followed by testing of the verification set in the result
section. The DC bus voltage error e, = Vp¢,, -~ Vnc and the change in error Ae,, =

en — e, (k — 1) defines the input of the following ANN.
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xP (k) = £ (neti(‘)) = net”
(k) = fj(”)(netj(”)) - fi(“)(ziwixi(“)(k)) (5.11)
xgut) (k) _ o(lLl) (ne tj(Lu)) _ fi(Lu) (Z} w, xj(u) (k))

To get the actual Vj £ multiply the measured V- and output control signal of
ANN. The weight of the ANN is given as equation (5.12):

* 1 [1—(x](.“)2] (twy
w; (k) = ETxi
j (5.12)

wy ) = =L 1 = (e

w; — Updated weight between neurons in the hidden layer and w, — Updated weight
between hidden layer and output layer.
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Fig.5.3 Block diagram of ANN based PI controller

5.3.2 SRFT with Optimization based -PI Controller for Inverter

To regulate the DC bus voltage, gain value of PI controller is tune and optimized by
cuckoo search optimization technique and honey badger algorithm, PI controller
mainly consists of two main components proportional and integral can be seen from
equation (5.13) which are varied to get best possible results. Absolute error e(t) is
taken into account which is the difference between the reference voltage and measured
voltage.

e(t) = Vpc (t) — Vpc(t) (5.13)
Objective function (MSE):
Mean square error is chosen as objective function to be reduced for DC bus voltage in

order to get optimal PI controller gain Kp and K; in the DC bus voltage regulator.

Objective function of the SPV system can be represented as:
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min (0.F) = "% (2 (e)) (5.14)

Where, N is the sample number, e(t) is the error. The main goal of this work is to create
a optimization PI controller that is suitable for the suggested topology. Mean square
error is employed as an objective function for the process of design and performance
evaluation (MSE). This work employs and tests cuckoo search optimization methods
to reduce error value.

For better analysis of the technique MAE and RMSE are also calculated as per
equation (5.15) and (5.16).

Mean absolute error (MAE):
1
MAE = Z3 le()] (5.15)

Root means square error (RMSE)

RMSEz\/(% ’t"=1(e(t))2) (5.16)

5.3.2.1 Cuckoo Search optimization

The Cuckoo Search optimization technique is a meta-heuristic optimization technique
used for optimization problem-solving. It is nature-inspired meta-heuristic technique
which is based on several cuckoo species' brood parasitism and Levy flights random
walks. Brood parasitism can be classified into three categories: intra-specific,
cooperative, and nest takeover. Some cuckoo species have the intelligence to mimic
the host bird's color and shape in order to maximize its chances of reproduction.
Cuckoos lay their eggs at a particular period of time in order to allow their eggs to
hatch before the host birds. Cuckoos destroy a few of the host bird's eggs after they
hatch in order to increase the possibility that their young would eat more food. Another
frequent occurrence is the host birds finding and destroying the cuckoo's eggs.
Sometimes they entirely depart their nest and migrate elsewhere and create a new one
[145].

Lévy flight:

One crucial aspect of the cuckoo’s reproduction strategy is looking for a nest that will
serve as a convenient host bird. The hunt for the nest usually resembles the hunt for
food, which is conducted in a quasi-random manner. Animals typically adopt paths or
directions while in pursuit of food that can be represented mathematically by specific
functions. The Lévy flight is one of the most popular models. According to a study,
fruit flies, or Drosophila melanogaster, fly in a Lévy pattern as they explore their
surroundings by taking a sequence of straight flight paths punctuated by sharp 90°
turns. The meta-heuristic search algorithm for optimization problems adopts this
behavior. Lévy flying is another characteristic of cuckoo nest-searching behaviors in
CS. A Lévy flight is a arbitrarily walk that uses a power law to obtain the step sizes
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from the Lévy distribution which is expressed by equation (5.17).

y=+47 (5.17)
where ) is the variance and ¢ is known as Lévy flight length. y has an infinite variance
because £ < 3 < 3.

Fig 5.4 shows a two-dimensional plane with Lévy flight. Because of the Lévy
distribution, the steps are made up of number of small steps and, on occasion, big-step
and long-distance jumps. In some cases, particularly for multimodal, nonlinear
problems, these large hops may significantly increase the search efficiency of cuckoo
search as compared to other meta-heuristic techniques.

Searching an area with
small steps

....

Shifted to another
area by long jump

Fig.5.4 Lévy flight distribution

Cuckoo algorithms mostly adhere to three idealized CS criteria based on cuckoo brood
parasite behavior:

a) Each cuckoo lays one egg at a time, and it is deposited in a nest that is chosen at
random.

b) Next generation will inherit the best nest with the best eggs.

c) The number of nests that are available is fixed, and the host bird has recognized a
number of cuckoo eggs with a probability Pa, where 0< Pa <I.

If the cuckoos' eggs are found, host bird has the option of leaving its nest or destroying
them. In either case, given a fixed number of nests, a fresh nest will be created with a
probability of Pa.

When producing a new cuckoo solution xt*1 a Lévy flight is carried out as required
by the equation (5.18):

xt* = xf + a®Lévy(d) (5.18)
Where i is the number of samples, x} is samples per egg, @ > 0 is known as step
size, @ represents entry wise multiplication and number of iterations is denoted by
t. ais given by equation (5.19).

@ = o (xj(t) _ xi(t)) (5.19)
The Lévy distribution expressed in equation (5.20) gives the value of Lévy (3)
Lévy() ~u=+47%, (£<3<3) (5.20)

The following equation can be used to update the equation:
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RS i el [CT Y (5.21)

3
v2

X

where z is a levy coefficient. The values u & v are derived from normal distribution
functions as represented below.

u, v =~ N(0,p?) (5.22)
using the following equation, ¢ is determined.
2 F(1+B)sin”2—B

- r(5)pzesten

(5.23)

Where f = 1.5 and T is the integral gamma function.
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population of n host nests and CSO parameters

v

Initialize count =1 to max_iteration [
- Y

Generate a new solution using Le’vy flight eq-15.
Evaluate its objective function (O.F)new

Choose a random solution from n nests
and obtain its function value (O.F);

Replace random solution (j) by new

solutio
L.)I Keep j as a new solution I

Abandon a fraction *a of the worst nests.

Establish new nests Increase count
byl

A

Keep the quality soln & Find the current best
solution vector

ount>max_ite
ration?

Process & outcomes

Fig.5.5 Flow chart of CSO-PI controller for presented grid tied SPV system
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5.3.2.2 An overview of HBA optimization algorithm

Honey badgers are white and black fluffy-furred mammals found in semi-
deserts, African rainforests, Southwest Asia and the Indian subcontinent. Honey
Badger bodyweight are approximately 7-13 kilogram and body lengths are
approximately 60-77 centimeter. They are a fearless forager that preys on 60 different
species, including dangerous snakes. They are intelligent mammals that can use tools
and enjoy honey. They prefer to live alone in self-dug tunnels and meet other badgers
to mate only. They don’t have a particular breeding season as cubs are born throughout
the year. The following section discusses the HBA's mathematical model which is
similar to honey badger behavior.

Because of the exploration and exploitation phases, HBA is theoretically considered a
global optimization method. In general, meta-heuristic algorithms have sets of
plausible solutions to the optimization problem. Each solution is iteratively updated
automatically based on the nature of the technique. Exploration and exploitation are
the two main components of every search technique. Exploration is ensured by
expanding the search to far-reaching sections of the search space. Conversely, by
exploitation, search agents converge on a previously selected attractive region,
employing a local search approach [146].

Inspiration:

The honey badger technique copies the foraging manners of honey badgers. The
honey badgers either sniff and dig for food or follow the honey guide bird. The 1% case
is known as digging phase and 2" is known as honey phase. Initially, it uses its sniffing
abilities to determine the location of the prey; once it reached there, it moves near the
prey to choose the finest spot for digging and catching the prey. In honey phase, it
follows the honey guide birds to find a beehive directly.

Mathematical model:

HBA mainly consist of two phases “digging phase (Exploration)” and “honey phase
(Exploitation)”

HBA algorithm Steps:

These subsections explain the HBA algorithm's mathematical formulation. Honey
badger algorithm is a global optimization technique as it includes exploration &
exploitation phase. Mathematically, populations of candidate’s solution (Z) are
expressed as equation (5.24):
Zi1 Zip Zi3 e Zip
Zyy Zyy Zyz e Zyp

7= (5.24)

Zot Zyy Zog oo Zop
it" Badger position Zi = [le 2%, ...,Z?]

Step 1: Initialization Phase The following expression can be used to initialize the
positions of honey badgers with n populations:
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Zi =Lb; +r1(Ub; — Lb;) rl1le€e|0,1] (5.25)
Where, Ziis i Honey Badger location refers to a candidate solution in a population
of size n and Lb; & Ub; is search space lower & upper bounds.

Step 2: Intensity definition Intensity is proportional to the prey's source strength and
the distance between prey and the i honey badger. Si is the scent intensity of the prey,
movement will be quick if the scent is strong, and conversely. It is represented by
inverse square law (ISL) as depicted in Fig.5.6 and determined by equation (5.26)

Si=72(— (sz) r2 € [0,1] (5.26)
Where C= (Zl - Zi+1)2
D; = Zprey —Z;
C — source strength
D; — distance between ith honey badger & prey
S/9
S/4
S
r
2r
3r
Sphere
C oney
(prey) badger

Fig.5.6 ISL. Si is the scent intensity; C is position of prey and r € [0,1]
Step 3: Update density factor (y) The density factor (y) governs time-varying
randomness to allow a seamless conversion from exploration to exploitation. Update
density factor (y) , which lowers over time to reduce randomness
yszexp(_t ) K>1 (5.27)

max

Where, K is constant (default value is 2) and t,,x 1S maximum iterations count.
Step 4: Escaping from the local solution

The present steps, as well as the following two ones, are used in the honey badger
algorithm to escape the local solution area. In this condition, algorithm uses a flag F
to change the search direction and allowing agents to rigorously examine the search
space.

Step 5: Updating the positions of the searching agents

As explained, the honey badger algorithm position update process (x new) is
categorized into 2 phases: "digging phase" and "honey phase". A more detailed
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explanation is provided below:
Step 5.1: Digging phase.

A honey badger digs similar to the Cardioids shape manner as depicted in Fig.5.7.
Cardioids motion can be represented using equation (5.28).

Znew = Zprey t+ FBlzprey + FPYD;T3 X |cos(2nr4) X [1 — cos(2nr5)]| (5.28)
r3,74 &r5 € [0,1]

Where, Zp,, is global best position and £ is honey badger’s ability to find food, by

default value is 6.

F work as a flag that changes the search location; which can be obtained using equation
5.28.

A honey badger's digging phase is heavily affected by three factors: Scent intensity
(Si) of the prey Zp,.y , honey badger-prey distance (Di), and the decreasing operator
(v). Furthermore, while digging, a badger may encounter any disturbance F, allowing
it to locate even better prey as displayed in Fig.5.7.

Honey
Badger

Fig.5.7 Digging phase: Black circular line displays the prey position & blue line is
smell intensity

Step 5.2: Honey phase.

A honey badger following a honey guide bird to a beehive can be represented as
equation (5.29)

Znew = Zprey + Fr7¥D; r; € [0,1] (5.29)
This study attempts to design an HBA-based PI controller that is appropriate for the
proposed topology. Thus, mean square error (MSE) as explained in section (2.7) is
considered as the objective function for the design process and performance

evaluation. Honey badger optimization techniques are used and tested in this work to
minimize error value. Fig.5.8 depicts the flowchart of the proposed algorithm.
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lower limits of state variable
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Fig.5.8 Flow chart of HBA optimization for obtaining the PI values
5.4 Performance evaluation and result discussion

This section presents a detailed performance analysis of the proposed inverter control
techniques—ANN-PI, Cuckoo Search optimized PI (Cuckoo-PI), and Honey Badger
Algorithm optimized PI (HBA-PI)—under various grid and load conditions. The
effectiveness of each technique is evaluated based on system performance during
variable linear load, variable insolation, unbalanced non-linear load, and grid voltage
disturbance scenarios, including sag and swell conditions.
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5.4.1 Performance evaluation and result discussion using ANN-PI Controller

The proposed ANN controller is tested for robustness and efficacy under dynamic grid
settings, including variable load and irradiation. The proposed algorithm has been
developed in MATLAB and validated for power factor correction.

The accomplishment ANN controllers are evaluated using MSE, training performance,
fit function, error histogram, and regression analysis. MSE is the square of the average
variance between actual and target outputs. Lower MSE values suggest a close
connection between target and actual data, whereas zero MSE implies no errors.
Regression (R) values indicate how closely goal and actual outputs align. An R-value
of 1 indicates perfect proximity, whereas 0 indicates a random connection between the
target and actual data as shown in Fig.5.9(a),5.9(b) and 5.9(c).
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Fig.5.9(a) Training, validation, set and all performance of the ANN controller.
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Fig.5.9(b) Best validation performance of ANN controller
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5.4.1.1 System performance under variable linear load and variable insolation
condition

Fig.5.10. depicts the system's performance under varying linear load and insolation
conditions. A linear load of 11.66kVA with 0.85 lag pf (active power of 10kW and
reactive power of 6 kVAr) is evaluated. As the solar inverter generates 12.78kW of
power until 0.15 seconds, the solar inverter meets the active load requirement of 10kW
and feeds the remaining 2.78kW to the power grid. At 0.15 seconds, the load demand
is increased by 8.16kVA with a power factor of 0.85 lag pf. In this situation, the total
active load demand is 17kW, and the reactive load need is 10.2kV Ar. The solar inverter
supplies 12.78kW power to the load, while the remaining 4.22 power is drawn from
the grid, and the inverter meets the reactive power demand. At t=0.25sec, insolation
reduces from 1000 W/m”2 to 700 W/m”2, resulting in a reduction in solar power
generation to 8.5kW. The remaining 8.5kW is obtained from the grid and supplied via
an inverter, as shown in Fig.5.10. The grid supplies zero reactive power, implying that
the system operates in a unity power factor mode and DC bus voltage is constant.

5.4.1.2 System performance under variable and unbalanced non-linear load
condition

Fig.5.11 shows system’s performance under variable nonlinear and unbalanced load
conditions. A non-linear load (a three-phase rectifier with R=100o0hm and L=120mH)
is studied for analysis. At t=0.15s to t=0.2 sec, unbalancing of non-linear load is
created by removing one phase, as shown in Fig.5.11. Under this circumstance, the
suggested controller performs well by maintaining sinusoidal and balanced grid
current and voltage at pcc (point of common coupling). At t=0.25 sec, load demand
increases by 3.5kVA with a power factor of 0.85, resulting in a total load demand of
6.2kW active power and 3.3kVar reactive power. Under this circumstance, the solar
inverter supplies the load requirement while feeding surplus power to the grid. The
inverter also supplies reactive power by maintaining the UPF mode of operation.
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Fig.5.10 System performance under variable linear load and insolation condition
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Fig.5.11 System performance analysis under variable non-linear and unbalanced load

condition

5.4.1.3 System performance under grid voltage disturbance, sag and swell
condition

Fig.5.12 depicts the system's performance under grid voltage sag, swell, and voltage

disturbance conditions. Fig.5.12 shows that voltage sag occurs from t=0.1sec to

t=0.2sec, voltage swells at t=0.2sec to t=0.3sec, and voltage is unbalanced at t=0.3sec

to 0. 35sec.It is evident that our system performs effectively under all three conditions

by keeping voltage and current balanced and sinusoidal, as well as keeping the dc bus

voltage constant.
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Fig.5.12 System performance under grid voltage disturbance, voltage sag and swell
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5.4.1.4 Comparative Analysis of ANN -PI controller with PI controller

Irradiation 700 W/m?>

—— PI Controller
ANN Controller

4000

Irradiation 300 W/m?

Time (seconds)

Fig.5.13 Comparison of PV power output with ANN-PI controller and PI controller
Table.5.1 Comparison of PV power Output of ANN-PI with PI controller

Irradiation Time PI Controller ANN-PI
interval P(kW) Controller P(kW)
12.39 12.58
1000 W/m? (0.0s-0.6s)
8.65 8.89
700 W/m? (0.6s-1.2s)
3.50 3.73
300 W/m? (1.2s-1.8s)
800 —_— PI Controller
N Irradiation 1000 W/m? _— ANN Controller

et . Irradiation 700 W/m?

700 |

650

Vpc(V)

600

550 - 730

Trradiation 300 W/m?2

05 06 07 08 09

500

Time (seconds)

Fig.5.14 Comparison of DC bus voltage with ANN-PI controller PSO-PI and PI

controller
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Fig.5.15(b)Total harmonic distortion of grid current for non-linear load
Table.5.2 Comparison of grid current harmonics with ANN-PI and PI controller

Parameters PI Controller ANN-PI controller
(THD%) (THD %)
Non linear load 2.56 1.84
Non-linear
2. 2.
unbalanced load > 37
Grid voltage 544 7139
unbalance
Voltage Sag 2.85 2.66
Voltage swell 2.58 2.13

Table.5.3 Comparison of ANN-PI with PI controller in term of performance dynamic

Parameter PI Controller ANN -PI controller
Control Adaptability Fixed gains ‘require Self-learning dynamically adjusts
manual tunning control parameters
Dynamic ariation
y ' vanat Slow reponse Fast response
response
Total h i
.0 a . armonic High Low
distortion
) Simple
Computational . . .y .
] implementation Complex initial computation
Requirement . .
butrequires tunning

The comparative analysis between the ANN-based PI controller and the conventional
PI controller reveals notable performance improvements, particularly in terms of
dynamic response and harmonic distortion reduction. As illustrated in Fig. 5.13, Fig.
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5.14, and Table 5.1, the ANN-based controller demonstrates superior performance in
both maximum power extraction from the solar PV system and DC bus voltage
regulation, compared to the conventional PI controller.

Furthermore, Fig. 5.15(a) and Fig. 5.15(b) highlight the ANN controller's effectiveness
in significantly reducing the Total Harmonic Distortion (THD) in both the nonlinear
load current and the grid current. The quantitative results presented in Table 5.1 and
Table 5.2 further confirm that the ANN-PI controller consistently outperforms the
conventional PI controller under varying solar irradiance conditions.

At an irradiance level of 1000 W/m?, the ANN-PI controller achieved a maximum
power output of 12.58 kW, surpassing the PI controller's 12.39 kW. As irradiance
decreased to 700 W/m?, the ANN-PI still maintained a higher output of 8.89 kW
compared to 8.65 kW from the PI controller. Under low irradiance conditions (300
W/m?), the ANN-PI controller continued to exhibit better tracking performance,
delivering 3.73 kW in contrast to 3.50 kW from the conventional PI controller. These
findings demonstrate that ANN-PI enables faster and more accurate tracking of the
maximum power point, particularly under dynamic situations, while moderate
improvement over the standard PI controller.

Table 5.2 presents the Total Harmonic Distortion (THD) values for two control
strategies—conventional PI and ANN-PI controllers—under a range of operating
conditions. The results clearly indicate that the ANN-PI controller consistently
achieves lower THD levels, highlighting its enhanced capability in managing
harmonic distortion. Under nonlinear load conditions, the ANN-PI controller achieves
a THD of 1.84%, compared to 2.56% for the conventional PI controller.

Furthermore, even under more challenging conditions such as nonlinear unbalanced
loads and grid voltage unbalance, the ANN-PI controller maintains competitive THD
performance, underscoring its robustness and adaptability. In scenarios involving
voltage sag and swell, the ANN-PI controller again outperforms the conventional PI
controller, achieving THD values of 2.66% and 2.13%, respectively, as opposed to
2.85% and 2.58% observed with the PI controller.

These results collectively demonstrate that the ANN-PI control strategy offers
improved harmonic suppression and dynamic performance, making it a more effective
and reliable alternative for grid-connected solar PV systems operating under a wide
range of normal and abnormal grid conditions.

Table 5.2 further illustrates the advantages of the ANN controller over the
conventional PI controller. While the PI controller relies on fixed gains that require
manual tuning, ANN controller exhibits self-learning capabilities, dynamically
adjusting its control parameters for enhanced adaptability. Additionally, the ANN
controller responds faster to dynamic variations, whereas the PI controller exhibits a
slower response due to its fixed control structure. The ANN controller also ensures
lower total harmonic distortion compared to the PI controller, enhancing overall power
quality. However, despite these benefits, the ANN controller involves higher
computational complexity during initial implementation, whereas the PI controller is
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simpler to implement but demands periodic tuning for optimal performance.

Overall, the ANN-based controller demonstrates superior performance in terms of
adaptability, harmonic reduction, and response time, making it a more effective
solution for enhancing microgrid stability and power quality.

5.4.2 Performance evaluation and result discussion using CSO-PI Controller

To examine the proficiencies of the presented CSO technique, different loads and grid
conditions are taken into consideration. The presented control technique is tested in
power factor correction mode. System simulation parameters are listed in Appendix.
Output response of all the quantities such as voltage at PCC(V ), load current (Iy),
DC bus voltage (Vpc) grid current (Ig), inverter current (Iiny) and real and reactive
power sharing among power grid, Inverter and load are studied.

5.4.2.1 System performance under variable Linear load demand at different
insolation condition
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Solar insolation reduced at t=0.3s
|

VDC is maintained at 750 V
T

000 ] ] ] [ I [
gsﬂn _’/\ J
o \ \ \ : \ \ \

0 0.05 041 0.15 Time(s) 02 0.25 03 0.35 04
«10* At 0.15s extra load of 11.22kVA with 0.80 lag pf is added
I I
3
i -
=
3
1 e PL{KW)
of QL(KVAR)
: /
205 {
g
| | | | | | |
0 0.05 0.1 015 0.2 025 03 035 0.4
«10* At 0.3s solar insolation reduced from 1000W/m*2 to 400W/m*2
Z2 | | I I [ f
z
H 0 e PinV(KW)
(=} Qinv{kVAR)
o2
H
4 —
£
T \ | | | | |
015 0.2 0.25 03 0.35 0.4
% ‘“4Excess power genera(lon(J 78kW) is given to ma grid At t=0.15 deficit load demand (5.22kW) is provided by grid & At 0.3s as isolation is reduced deficit load demand (13.1kW) is supplied by grid
6

-.

~

=

Pg(kvﬂ & Qg(KVAR)

T T T T [ T
Pg(kw) |
Qg(kVAR)

| | | | | |

0.1 0.15 0.2 0.25 03 0.35 0.4
Time(s)

Fig.5.16. Waveforms of variable linear load with insolation variation

In this case, performance of the system for variable linear load and variable insolation
are analyzed as shown in Fig 5.16. PV generate 12.78kW active power at 1000W/m?
insolation. From t=0.0s -0.15s load demand is 11.22kVA with 0.80 lagging pf
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(P=9kW, Q=6.7kVAR). From Fig.5.16 it can be seen that grid current and voltage at
PCC are sinusoidal and balanced. Active load demand is supplied by PV and excess
power (3.78kW) is given to the grid. Reactive power requirement of the load is fulfilled
by VSI and hence grid operates in UPF mode. It can also be noticed that grid current
and voltage at PCC are out of phase which means power is supplied to the grid. DC
voltage is maintained at 750V. At t=0.15s an extra load of 11.22kV A with 0.80 lagging
pfis added, total load demand becomes P=18kW & Q=13.4kVAR Under this situation
also grid current is balanced and sinusoidal. In this case PV supply 12.78kW active
powers, grid supply 5.22kW deficit power of the load, inverter fulfill the reactive
power demand of the load and grid operates in UPF mode.

At t=0.3s insolation is reduced from 1000W/m? to 400W/m? it reduces power
generation of SPV from 12.78kW to 4. 9kW.Under this condition deficit load demand
(13.1kW) is supplied by the grid. Also, it can be noticed from the figure.8 under
varying load and insolation condition, grid current remain sinusoidal and balanced.
DC bus voltage is regulated at 750V and system operates at UPF mode by CSO- PI
controller under all the conditions.

5.4.2.2 System performance under variable nonlinear load demand at different
insolation

In this case, CSO control technique is examined for variable nonlinear load (3phase
rectifier with R=200Q & L=100mH) and variable insolation condition whose
waveform is as shown in Fig 5.17. PV generates 12.78kW active power at 1000W/m?
insolation and the power load demand from t=0.0s-0.15s is 1.6kW which is supplied
by PV. Grid current is balanced and sinusoidal in this situation. DC voltage is
maintained at 750V. The excess power generated (11.181 kW) is given to the utility.
Voltage at PCC and grid current are out of phase showing power is given to the utility.
At t=0.15s an extra load of 11.22kV A, 0.80 lagging pf (9kW, 6.7kVAR) is added to
the load. Grid current is balanced and sinusoidal under this condition as well. The
active load demand is 10.6 kW which is accomplished by PV and extra power is given
to the power grid (2.18kW) as shown in Fig.5.17 Reactive load demand is
accomplished.

At t=0.3 s, insolation is reduced from 1000W/m? to 400W/m?. As the insolation is
reduced, the real power generated by the PV drop from 12.78 kW to 4.9kW. But grid
current is maintained sinusoidal and balanced. Deficit load demand (5.7 kW) is
taken from the power grid. Under dynamic condition, the reactive power load demand
is fulfilled by inverter. Also, DC voltage is regulated at 750V by CSO based PI
controller.
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Fig 5.17 Waveforms of variable nonlinear load with insolation variation
5.4.2.3 System performance under non-linear unbalanced load condition

In this particular case performance analysis of a non-linear load at unbalanced load
conditions are examined as shown in Fig 5.18 shows the system's response under
unbalanced load condition when one line/phase of the non-linear load is disconnected
for time interval t= 0.1s-0.3s. In this case it can be noted voltage at PCC and grid
current are out of phase indicating that excess power produced by PV is given to the
power grid. Under these cases, the presented CSO technique performs competently.
Also, under unbalancing load condition grid currents is balanced and sinusoidal and
DC voltage is regulated at 750V by CSO - PI controller. Further for unbalanced load
condition FFT (fast Fourier transform) analysis is done for validating the harmonic
reduction of the system using presented CSO technique. From the waveforms it can be
seen that for nonlinear unbalanced load THD is 15.86% whereas grid current has
2.55% THD as shown in Fig 5.19(a) and 5.19(b), signify that the presented CSO
technique works well for harmonic diminution under unbalanced non-linear load
condition.
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5.4.2.4 System performance uner non-linear load with unbalanced grid voltage
condition

In case of unbalanced grid voltage condition for nonlinear load system performance
has been examined as shown in fig 5.20 Grid voltage unbalancing is done at t= 0.2s by
decreasing the phase 'b' voltage to 364V and increasing the phase 'c’ to 450V.from the
figure we can observed that even for grid unbalancing condition grid current and
voltage at PCC are balanced and sinusoidal. Also, DC voltage is regulated at 750V by
CSO based PI controller. Further for unbalanced grid condition FFT analysis has been
done for validating the harmonic reduction of the system using presented CSO
technique. From the graph it can be seen that for nonlinear unbalanced grid condition,
load is THD is 31.47% whereas grid current has 2.27% THD as shown in Fig 5.21(a)
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& 5.21(b), signify that the presented CSO technique works well for harmonic
diminution for unbalanced non-linear load condition.
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Fig 5.20. Waveforms of non-linear load under unbalanced grid voltage condition
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Fig. 5.21(b). THD of grid current for non —linear load under unbalanced grid voltage

5.4.2.5 System performance of nonlinear load for grid voltage sag and swell
condition

System performance of nonlinear load for grid voltage sag and swell condition using
CSO technique are examined as depicted in Fig.5.22. Voltage sag is initiated for time
period t=0.1s-0.25s and voltage swell is initiated for time period t=0.25-0.4sec from
the figure it can be noticed that voltage sag reduces load current and voltage swell
increases load current even in this dynamic situation grid current is found to be
sinusoidal and balanced. Also, DC bus voltage is regulated at 750Vusing presented
CSO-PI controller.
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Fig.5.22. Waveforms of non-linear load under grid voltage sag and swell condition
5.4.2.6 Comparison analysis of proposed CSO-PI technique with PSO-PI and PI
controller in term of total harmonics distortions

System performance of presented CSO control technique has been compared with PI
controller and PSO- PI controller under aforementioned cases considered viz non-
linear load, unbalanced load and different grid voltage condition and the result are as
shown in Table 5.4. It has been observed that, CSO-PI controller is able to achieve less
THD in grid current as compared to PSO -PI, and PI controller.

Table 5.4 Comparison of CSO- PI controller with PSO- PI controller and PI controller
for grid current harmonics

Control Non-linear | Non-linear | Grid voltage | Grid voltage | Grid
Technique balanced unbalance | unbalance sag voltage
load load swell
PI controller 2.37% 3.38% 3.66% 2.93% 2.74%
PSO - PI|218% 2.67% 2.58% 1.22% 2.41%
Controller
CSO - PI|2.09% 2.55% 2.27% 1.02% 2.05%
Controller

5.4.2.7 Comparison analysis of proposed CSO-PI technique with PSO-PI and PI
controller in term of performances indices

Further, performance indices of CSO-PI, PSO-PI and conventional PI under different
load condition has been calculated and the results for the nonlinear load are mentioned
in Table 5.5. From Table 5.5 it can be seen that value of performance indices for CSO-
PI is less as compared to PSO- PI controller and PI controller respectively. So, from
Table 5.5 it is clear that presented CSO technique gives better performance indices as
compared to the other technique. Thus, justification for adopting CSO - PI controller
is established.
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Table 5.5 Comparison of different technique based on performance indices

Control Technique MSE MAE RMSE
PI controller 5.11 3.86 2.26
PSO - PI Controller | 4.44 2.11 2.107
CSO - PI Controller | 2.88 1.69 1.697

5.4.2.8 Comparison analysis of proposed CSO-PI technique with PSO-PI and PI
controller in term of maximum power point tracking and DC bus voltage
regulation

Fig 5.23. shows the maximum power tracking of a SPV module under different
irradiation circumstances. Table 5.6 displays the variation in the SPV module's
irradiation level during the specified period. Table 5.6 and Fig.5.23 make this obvious.
In addition to other control strategies that have been presented, CSO-PI controllers
with CSO MPPT track maximum power. Furthermore, Fig .5.24 and Table 5.7 display
the DC bus voltage response for the CSO-PI, PI-PSO, and PI Controller for nonlinear
load. Fig.5.23 illustrates that there is an initial overshoot in every situation, whereas
the CSO-PI controller has the least amount of undershoot. The CSO-PI controller
outperforms the PI controller and PI-PSO in every irradiation scenario.

14000
Irradiation 1000 W/m?

CSO MPPT with CSO-PI controller

P I CSO MPPT with PSO-PI controller
CSO MPPT with PI controller
10000
Irradiation 700 W/m?
o [
8000
e
= 1.26°
-4
E 6000
A, 1.24: 9000 Irradiation 400 Wim?
0.4 0.6 0.8 Sl -
4000 8800 5200 / g
8600 5000
2000 - —_— 4800
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460 ——————
J 24 26 28
0 4
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Fig 5.23. Comparison of maximum power obtained using different control algorithm
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Table 5.6 Comparison analysis of maximum power obtained using different control

algorithm
S.No | Irradiation | Time PI PSO-PI CSO-PI
Controller controller Controller
P(kW) P(kW) P(kW)
1. 1000W/m? | 0.0s-1.s | 12.53 12.55 12.68
2. 700W/m? 1.0s-2.0s | 8.72 8.86 8.90
3. 400W/m? 2.0s-0.3s | 4.93 4.94 5.18
800 Irradiation 1000 W/m?® Irradiation 700 W/m?* Irradiation 400 W/m?
700 S ==
600 - 750 /
500 760
= 740 750
\b‘g 400 o i V
= 1 1.2 1.4 1.6
300 - 730

200 ¢

100}
0

0

2 22 24 26

CSO MPPT with CSO-PI controller

CSO MPPT with PSO-PI controller
CSO MPPT with PI controller

0.5 1 1.5 2 25
Time (seconds)

Fig 5.24. Comparison of DC bus voltage regulation using different control algorithm

Table 5.7 Comparison analysis of DC bus voltage obtained using different control

algorithm
Overshoot Undershoot DC Voltage(V)
Control
Algorithm
PI controller Initially 20V 750
Present
PSO-PI controller | Initially 10V 750
Present
CSO-PI Initially 4V 750
controller present
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5.4.3 Performance evaluation and result discussion using proposed HBA-PI
Controller

In this section, HBA algorithm’s performance is evaluated for controlling DC link
voltage of a grid connected solar photovoltaic system under linear/nonlinear
(balance/unbalanced) load and grid voltage sag & swell conditions in steady and
dynamic states. To ensure the efficacy of proposed algorithm, IEEE global standard is

taken into the consideration for total harmonics distortion of grid current at the point
of common coupling

5.4.3.1 System response under linear load and irradiation variation

Steady state behavior of grid connected SPV system using HBA control algorithm has
been shown in Fig.5.25 Waveform of all the parameter such as voltage at PCC(Vcc),
grid current (Igriq), inverter current (liny), load current (Iioad), DC bus voltage (Vpc) and
real and reactive power sharing among utility grid, VSI and load are examined under
varying atmospheric & load condition.
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Fig.5.25 Waveform under linear load and irradiation variation

A linear load of 14.14 kVA, 0.71 lag pf is connected at point of common coupling
(PCC). Solar photovoltaic system generates 12.78kW power and the active power
demand of load is 10kW. The excess power (2.78 kW) is given to the utility grid.
Reactive power demand of the load is 10kVA which is fulfilled by inverter which
means grid operates in Unity power factor (UPF) mode. From Fig.5.25 it can be
observed that grid current and voltage at PCC are sinusoidal and balanced. At
t=0.15sec, an extra load of 6.7kVA 0.89pf (6kW, 3kVAR) is attached to the existing
load. Now, the real power demand of load is 16kW which is provided by both inverter
(12.78kW) and grid (3.22kW) and reactive power is fulfilled by inverter hence grid
operate in UPF mode as depicted in fig.5.25. At t=0.3 sec, irradiation is dropped from
1000W/m? to 300W/m?. As the irradiation level drop, the real power produced by the
PV falls from 12.78 kW to 3.65 kW. Deficit power (12.35 kW) is therefore taken from
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the grid. Even with changes in irradiation, the reactive power supplied by utility grid
is zero demonstrating grid is working in UPF mode. Despite changes in load and
irradiation, the grid current is balanced and sinusoidal. Also, DC link voltage is
maintained at 750V.

5.4.3.2 System response under non-linear load and irradiation variation

In this section, HBA control algorithm is tested for nonlinear load (3-¢ rectifier with
R=200Q and L=100mH) is attached at the PCC as shown in Fig.5.26. Solar
photovoltaic system generates 12.78kW power and the real power demand of load is
1.6kW. The excess power (11.18 kW) is supplied to the grid. Vpec and Igria are out of
phase shows that power is supplied to the utility grid. From fig.5.26 it can be notice
that grid current and voltage at PCC are sinusoidal and balanced. DC voltage is
maintained at 750V. At t=0.15sec, an extra load of 6.7kVA, 0.89 lagging pf (6kW,
3kVAR) is attached to the load. Now, the real power requirement of load is 7.6kW
which is provided by VSI (7.6kW) and excess power is fed to the grid (5.18kW) as
depicted in Fig.5.26. Reactive power demand of load is satisfied by voltage source
inverter hence grid operates in UPF mode. At t=0.3 sec, irradiation is dropped from
1000W/m? to 300W/m?. As the irradiation level drop, the real power produced by the
PV falls from 12.78 kW to 3.65 kW. Deficit power (3.95 kW) is therefore taken from
the grid. Even with changes in irradiation, the reactive power taken from the utility
grid is zero demonstrating that system is working under UPF mode. Despite changes
in load and irradiation, the grid currents remain balanced and sinusoidal. Fig 5.27(a)
& 5.277(b) depicts the THD of Igiq and lioad,. The load current has 30.44% THD,
whereas the grid current has only 1.07% THD, demonstrating that the proposed honey
badger control algorithm works well for mitigating the harmonics along with
maintaining Vpc at 750V.
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Fig.5.26 Waveform under nonlinear load variation and irradiation variation
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5.4.3.3 System response under non-linear unbalanced load condition

Fig.5.28 depict the system's behavior under unbalanced load when one line/phase of
the nonlinear load (3-¢ bridge rectifier with R=200€), L=100mH is out for time period
t=0.1-0.3 sec. It can be seen that in nonlinear V. and Igi¢ are out of phase showing
that extra power generated by SPV is supplied to the grid. Under these conditions, the
proposed honey badger algorithm performs satisfactorily. Also, It can be observed
from Fig.5.28 grid current and voltage at PCC is sinusoidal and balanced. DC bus
voltage is maintained at 750V. The load current of nonlinear load has 32.52% THD,
whereas the grid current has only 2.41% THD as depicted in Fig. 5.29(a) and 5.29(b),
demonstrating that the presented honey badger algorithm works well for harmonic

mitigation if one line / phase is out of non-linear load.
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Fig.5.28 Waveform under nonlinear unbalance load variation
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5.4.3.4 System response under unbalanced grid condition

Unbalance grid condition basically occurs when three phase voltages differ in
amplitude which adversely affect the performance of the system. Simulation result of
honey badger algorithm for grid unbalance condition with non- linear load (3-¢ bridge
rectifier with R=200 ) , L=100mH) is as shown in Fig.5.30 Grid unbalancing is
produced at t= 0.15sec by lowering the phase 'b' voltage to 364V and raising the phase
'c’ value to 450V. From the figure it can be observed that even for grid unbalancing
condition Ig,;q and V. found to be sinusoidal. DC bus voltage is maintained at 750V.
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Fig.5.30 Waveform under unbalance grid condition
134



5.4.3.5 System response under grid voltage sag and voltage swell condition

Simulation results for voltage sag and swell condition of grid connected SPV system
using honey badger algorithm is as shown in Fig.5.31. Voltage sag is created for time
interval t=0.2-0.3sec and voltage swell is created for time interval t=0.3-0.4sec from
the figure it can be noted that voltage sag reduces load current and voltage swell raises
load current. Even in this dynamic situation Ig.;4 1 found to be sinusoidal and

balanced. Also, DC bus voltage is maintained at 750V.
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Fig.5.31 Waveform under grid voltage sag and swell condition

5.4.3.6 Comparison of proposed HBA-PI with PSO-PI and PI controller for grid
current harmonics

Fig.5.32 (a), 5.32 (b), 5.32(c) and 5.32(d) depicts the THD spectra of load current
(Iipaq) and grid current (I4.;4) using different algorithm respectively for non linear
load. These results represent 30.44% THD in load current, whereas grid current
contains 1.66% THD using the PI controller 1.29% using PSO based PI controller
and only 1.07% using HBA based PI controller for grid connected SPV systems.
Similarly for other grid and load condition analysis has been done and the results are
as shown in Table. 5.8. Hence, based on the above assessment it can be observed that
the grid tied SPV system using HBA based PI controller is able to achieve less THD
in grid current as compared to PSO based PI, and PI controller.
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Table 5.8. Comparison of HBA - PI controller with PSO - PI controller & PI controller
for THD in current

S.No | Control Non- | Non-linear Grid Grid Grid

Algorithm | linear | yppalanced | Voltage voltage voltage
load | load unbalance | sag swell

1. PI controller | 1.66% | 3.38% 3.67% 2.95% 2.73%

2. PSO-PI 1.29% | 2.50% 2.02% 1.21% 1.52%
controller

3. HBA-PI 1.07% | 2.41% 1.14% 1.00% 1.11%
controller

5.4.3.7 Transient analysis of PV output at different irradiation for nonlinear load
with HBA- PI, PSO- PI and PI controller

The transient response and maximum power tracking of a solar PV module under
various irradiation conditions are shown in Fig.5.33. Table.5.9 displays the variation
in the solar PV module's irradiation level over the specified time period. It is evident
from Fig.5.33 and Table .5.9. HBA-PI controllers track more power and have shorter
settling times than PSO-PI controllers and PI controllers.
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Fig.5.33 Transient response of INC MPPT technique at different irradiation using PI
controller, PSO- PI controller and HBA- PI controller
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Table 5.9. Comparison of INC MPPT technique at different irradiation using PI
controller, PSO-PI controller and HBA-PI controller

PI Controller PSO-PI HBA-PI
controller Controller
S.No | Irradiation | Time
Settling Settling Settling
P(kW) time(s) P(kW) time(s) P(kW) time(s)
1. 1000W/m? OI'OOSS_ 12.49 0.30 12.5 0.27 12.72 0.27
1.0s-
2. 700W/m? 7 08 8.67 0.26 8.71 0.13 8.94 0.13
2.0s-
3. 300W/m? 308 3.67 0.22 3.73 0.12 3.80 0.12

5.4.3.8 Transient analysis of DC link voltage for nonlinear load with HBA -PI,
PSO - PI and PI controller

The DC link voltage response for the PI-HBA, PI-PSO, and PI Controller for nonlinear
load is shown in Fig.5.34 and Table.5.10 Overshoots and settling time are maximum
in the case of the PI controller, as shown in graph. Even though the PI-PSO algorithm
reduces overshoots, the settling time is still larger in this case. In comparison to the PI
controller and PI-PSO, the honey badger algorithm produces fewer overshoots and has
a shorter settling time.
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Fig.5.34 Response of DC bus voltage for non-linear load with HBA based PI, PSO
based PI & PI controller
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Table.5.10 Transient analysis of DC link voltage for nonlinear load with PI, PSO -PI

and HBA-PI controller on different irradiation

Control Settling Overshoot Undershoot DC
Algorithm time Voltage(V)
PI controller 28ms 27.46% Absent 748
PSO-PI 25ms 11.76% Absent 747
controller

HBA-PI 23ms 11.52% Absent 750
controller

5.4.3.9 Comparison of PI controller with PSO- PI and HBA-PI controller based
on performance indices and time complexity

Table.5.11 shows the performance indices and Table.5.12 shows the gain value and
time complexity of Pl-controller, PSO-PI controller and HBA-PI controller.
Convergence curve of presented HBA algorithm is as shown in Fig.5.35. From
Table.5.11 it is clear that presented HBA technique provide less error than other two
technique which means HBA gives better performance indices as compared to the PSO
and PI technique. Thus, justification for adopting HBA for PI controller is established.

Table 5.11 Comparison of PI controller with PSO- PI and HBA-PI controller based on
performance indices

Control Algorithm | MSE MAE RMSE

PI controller 4.53 2.13 2.13

PSO-PI controller 3.34 1.83 1.82

HBA-PI controller | 2.11 1.45 1.45
” o

Iterations

Fig5.35 Convergence curve of proposed HBA algorithm
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Table.5.12 Gain value and Time complexity of PI , PSO-PI and HBA —PI controller

Controller Gain value of of PI| Time
controller complexity
Kp Ki (sec)

PI controller 0.5 3.0 -

PSO-PI controller 0.7948 0.9484 2.583

HBA-PI controller 0.005 0.03 1.850

5.4.3.10 Stability Analysis

The voltage and current loop of the controller is initially linearized to develop the
transfer function represented in the equations below in order to analyze the controller
stability of the system. The voltage control loop comprises a PI controller with gain
values Kp and Ki, while Cf represents the filter's capacitance. The current loop
contains a hysteresis block, Ts is the inverter's half-switching time period, Lf
represents filter inductance, and Rf is the filter's series resistance value. Fig.5.36
shows a full cascaded current and voltage loop, and Fig.5.37 shows a Bode plot with
comments on the stability of the proposed controller. Table.5.13 illustrates the
controller parameters and performance characteristics of proposed HBA controller
Fig.5.37 shows that the closed loop system is stable because both the phase margin
and the gain margin are positive and phase margin is greater than gain margin. The
value of phase margin is equal to 60° at gain crossover frequency 302.84Hz and the
gain margin is equal to 39.4dB at phase crossover frequency 5.1 kHz.

Fig.5.36 Block diagram of Linearized proposed controller

Considering Ig=0, Transfer function of the system is expressed as follows, by
equationn-(5.30)-(5.354)
1

() = et vmm Jerr, (530)
_ G(s) 1
H(s) = (1+G(5)) * Cr(s) (5.31)
1
H(S) B LfoTss3+(Lfo+TstCf)Sz+(Rfo+Cf)s (532)
K;
x4=(Kp+7) Va=X;) (5.33)
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T F = Xo(s) _ Kps+K;
" Vals)  LpCpTss*+(LpCr+TsRpCr)s3+(RpCr+Cr)s2+Kps+K;

(5.34)
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Fig.5.37 Stability analysis of controller through Bode plot

Table.5.13 Controller Parameters and performance characteristics of proposed HBA
controller

S.No Parameters Tuned Block
1. Kp 0.004983 0.005
2. Ki 0.048038 0.03
3. Gain margin 39.4dB@3817rad/s 39.6dB@828rad/s
4. Phase margin 60deg@48.2rad/s 64.3deg@47.9rad/s
5. Closed loop | Stable Stable

stability

5.5 COMPARISON OF ANN-PI, CSO-PI and HBA-PI CONTROLLER
Under different operating situations, the relative performance of ANN-PI, CSO-PI,
and HBA-PI controllers has been examined in terms of photovoltaic (PV) power output
and grid current harmonics. The HBA-PI controller continuously produces the
maximum PV power output at all irradiance levels, as seen in Table 5.14. The HBA-
PI controller reaches 12.72 kW at full irradiance (1000 W/m2), which is marginally
more than the CSO-PI (12.68 kW) and ANN-PI (12.58 kW) controllers. Similarly, the
HBA-PI controller performs better with 8.94 kW and 3.80 kW output under medium
(700 W/m2) and low (300 W/m?2) irradiation circumstances. This shows how well the
HBA-PI controller maximizes the PV system's power extraction under various
conditions.

In terms of power quality, Table 5.15 compares the grid current harmonics of each
controller during various grid disturbances. The HBA-PI controller has the lowest total
harmonic distortion in practically all circumstances, achieving 1.07% under non-linear
load, 2.41% under non-linear unbalanced load, and much lower values under grid
disturbances such as voltage unbalance (1.14%), sag (1.0%), and swell (1.11%). In
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contrast, the ANN-PI and CSO-PI controllers produce greater harmonic levels, with
the ANN-PI reaching up to 2.66% under voltage sag and the CSO-PI peaking at 2.55%
under non-linear unbalanced load. These results demonstrate the HBA-PI controller's
superior dynamic response and harmonic suppression capacity, making it a more
robust and efficient solution for improving power extraction and quality in grid-
integrated PV systems.

Table.5.14 Comparison of ANN-PI, CSO-PI and HBA-PI controller in term of PV
power output

S.No | Irradiation ANN-PI CSO-PI HBA-PI
Controller controller Controller
P(kW) P(kW) P(kW)

1. 1000W/m? 12.58 12.68 12.72

2. 700W/m? 8.89 8.90 8.94

3. 300W/m? 3.73 3.76 3.80

Table.5.15 Comparison of ANN-PI, CSO-PI and HBA-PI controller in term of grid

current harmonics

S.N | Control Non- Non-linear Grid Grid Grid

0 Algorith linear | Unbalanced | Voltage voltage | voltage
m load load unbalance sag swell

1. ANN-PI 1.84% | 2.57% 2.39% 2.66% 2.13%
controller

2. CSO-PI 2.09% | 2.55% 2.27% 1.02% 2.05%
controller

3. HBA-PI 1.07% | 2.41% 1.14% 1.00% 1.11%
controller

5.6 COMPARISION OF HLO-ANN MPPT WITH HBA-PI, CSO-PI AND ANN-
PI
In this section, the proposed HLO-ANN MPPT technique and the HBA-PI inverter
controller are thoroughly compared to other PI-based control strategies, particularly
the CSO-PI and ANN-PI controllers. Since both HLO-ANN MPPT and HBA-PI are
novel approaches in this research, the goal of this comparison is to assess their overall
efficacy and show how the proposed control approach performs better under different
operating circumstances. To confirm the superiority of the developed approaches, key
performance metrics such transient responsiveness, grid current harmonics and MPPT
efficiency are analysed.
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Table.5.16 Comparison of HLO-ANN MPPT with ANN-PI, CSO-PI and HBA-PI

controller in term of grid current harmonics

S.No | Control Non- | Non-linear Grid Grid Grid

Algorithm | linear | yppalanced | voltage voltage | voltage
load | load unbalance | sag swell

1. ANN-PI 1.80% | 2.53% 2.33% 2.64% 2.11%
controller

2. CSO-PI 2.01% | 2.49% 2.22% 1.00% 2.01%
controller

3. HBA-PI 1.03% | 2.37% 1.11% 1.00% 1.10%
controller

Table.5.17 Comparison of HLO-ANN MPPT with ANN-PI, CSO-PI and HBA-PI

controller in term of maximum power point tracking

S.No | Irradiation ANN-PI CSO-PI HBA-PI
Controller controller Controller
P(kW) P(kW) P(kW)

1. 1000W/m? 12.60 12.69 12.73

2. 700W/m? 8.88 8.91 8.94

3. 300W/m? 3.73 3.78 3.81

5.7 CONCLUDING REMARKS

This chapter thoroughly investigate the inverter control strategies for grid-integrated
solar PV-based microgrids, emphasizing performance enhancement through advanced
PI controller configurations. The results demonstrate that the proposed HBA-based PI
controller significantly outperforms both the CSO-PI and ANN-PI controllers in
improving the overall performance of grid-connected solar photovoltaic systems.
Specifically, the HBA-PI controller achieves superior voltage regulation, effective
reduction of total harmonic distortion (THD) well below the IEEE standard limit of
5%, and enhanced dynamic response across varying input, load, and grid conditions.
Even though CSO-PI improves upon conventional and ANN-PI adds adaptability via
self-learning and quicker response, HBA-based control ultimately delivers the highest
efficiency and robustness. Moreover, the system consistently maintains unity power
factor (UPF) operation, ensuring optimal power quality and grid stability. These
findings establish the HBA-PI controller as the most effective solution for power
quality enhancement, system stability, and maximum power point tracking in grid-
integrated solar PV systems.
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CHAPTER-6

ISLANDING DETECTION TECHNIQUE FOR GRID-INTEGRATED
PV BASED MICROGRID

6.1 INTRODUCTION

As renewable energy sources, especially solar photovoltaic (PV) systems, become
more prevalent in modern power networks, the idea of microgrids has become
increasingly popular. While facilitating the shift to low-carbon energy systems,
microgrids provide increased energy efficiency, better power quality, and greater
flexibility. There are two main modes of operation for these systems: islanded and
grid-connected. The issue of unintentional islanding, which occurs when a distributed
generation (DG) unit keeps supplying electricity to a portion of the grid after
disconnecting from the utility, is one of the most significant technical challenges in
grid-connected operation. The safety of people, equipment protection, voltage and
frequency stability, and the dependability of the entire power system are all seriously
threatened by unintentional islanding. Thus, quick, precise, and trustworthy islanding
detection technologies are necessary to ensure the safe and robust operation of grid-
connected photovoltaic systems.

An extensive review of existing islanding detection techniques, encompassing both
classical and modern approaches, is presented in Section 2.5 of Chapter 2.

This chapter presents a passive islanding detection technique (IDT) which is based on
voltage ripple content at the point of common coupling (PCC) for grid integrated solar
photovoltaic (SPV) system. While conventional passive detection techniques are
commonly employed, they are not particularly effective at identifying islanding,
especially when a minimal power mismatch exists. Furthermore, they may produce
false detection in certain instances that are not islands. If islanding is not detected
quickly, it may result in extremely hazardous and adverse situations. Passive detection
techniques rely on power system parameters and might fail to detect islanding in
certain scenarios. This chapter presents an efficient passive islanding detection
approach for grid-integrated solar PV system. This technique employs time-domain
spectral analysis to monitor the ripple component of the voltage source inverter (VSI)
voltage at the PCC and identify discrepancies.

6.2 SYSTEM DISCRIPTION

In this study a grid connected solar PV based microgrid based on the UL1741 test
system is used for the study as depicted in Fig 6.1.[149] As per UL 1741, the RLC load
at PCC has a quality factor of 2 and is set to the resonance frequency of 50 +£0.1 Hz.
The load is expressed as a pure resistance(R), with a frequency of 50 Hz. This
resistance has been adjusted so that it can absorb the rated power of the distributed
generator module at the PCC voltage. Quality factor (Qf) and impedance are
represented in the following manner:
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(6.1)

1Z| = (6.2)

Jror(@-)

Q = R\E (6.3)

In this study, distributed generation operates in unity power factor (UPF). Relationship
between the PCC voltage ( V.. ) and power are represented by equation 6.4 & 6.5.

2
P = Py + AP = EEC (6.4)

Q1 = Quny +8Q = Vpec® (o-— wC) (6.5)

When the switch is closed, load (P, Q;) is fulfilled by the solar PV (P, Qiny) and
the grid (AP, AQ). Conversely, when the switch is open, the grid is isolated, creating a
potential islanded zone that could result in hazardous operating conditions and serious
power quality issues for the PV inverter and the RLC load.
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Fig.6.1 Schematic diagram of proposed model

6.3 VOLTAGE RIPPLE BASED ISLANDING DETECTION

Based on voltage ripples, the islanding detection technique is a computationally
powerful passive technique that may be easily implemented in the inverter circuitry by
observing the time domain spectrum content of voltage ripples [18]-[19]. Dead time
effect, ripples in the DC link voltage, and high frequency switching in DG inverters
leads to harmonic production. (V). Since grid voltage (V;) and load power (P;) are
regarded as constants, any power fluctuation in Py, is instantly reflected in V... The
DG unit have potential to meeting the load requirement in the case of zero power
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mismatch (P;,,=P;). As a result, this is regarded as the worst scenario in this research
since traditional passive techniques cannot identify islanding in this situation. In this
study voltage ripple-based islanding is used which monitors the ripple content in
the V.. waveform to successfully detect islanding. Fig 6.2 presents a block diagram

of this methodology.
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Fig.6.2 Proposed Islanding technique

Fig.6.2 illustrates how the RMS voltage (Vgzys)waveform's ripples are initially
amplified by computing its derivative. After that, the RMS block processes the
derivative signal to eliminate the DC component and determine how much ripple is
there in the amplified waveform [150]-[151].

Each output stage is followed by three mean blocks: the first removes any noise at high
frequencies in the source (Vgys) over 50 Hz., the second removes any discontinuities
in the derivative block's output, and the third mean block smooths out the RMS block's
output.

Step1 displays the input waveform, representing the single-phase voltage (V) at the
point of common coupling. Step 2 displays the Vgpys. The root mean square is
determined over a one-cycle moving average window, using a nominal system
frequency of 50 Hz.

’1 t
Vrms = ;ft_TVZ (6.6)

where T = 1/50 second. All frequency elements in the Vs above 50 Hz are considered
noise and are removed employing mean block 1. This works similarly to a lowpass
filter, which, as shown in fig.6.2(Step 3), suppresses any frequency elements over 50
Hz.

The filter output Vi is modelled as:
— 1t
Vems = 7 S Vams-dt (6.7)

This approach requires amplifying minor fluctuations in Vg, to function properly. To
obtain the x waveform, take the derivative of Vg5, as shown in Fig.6.2 (Step 4. The
derivative is assessed after every 10 us sampling interval. To increase the technique's
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efficacy, frequency components over 50 Hz in the x waveform are removed using a
filter to produce y waveform illustrated in Fig. 6.2 (Step 5) waveforms x and y are
represented as

d(Vrms)

1t
Y=zl X (6.9)

The z waveform was calculated by evaluating the root mean square value of y over a
frus frequency cycle. Fig. 6.2 (Step 6) illustrates how this is employed to calculate
the amount of ripple content and remove any DC components in y. To get the islanding
detection waveform §, any frequency component over fygpanyis removed from
waveform z, as shown in fig.6.2 (Step 7). The waveforms z and § are described as

1 t
z= JTRMS . (6.10)
1 t
e A (6.11)

Where, TMEAN == 1/fMEAN and TRMS = 1/fRMS

The detection waveform § is checked against a preset threshold. Islanding is identified
when & surpasses a predetermined threshold over a set time period. Let 7 is detection
threshold, ts is the predetermined decision time delay, and At is the time period when
6 surpasses 7. Islanding detection decision signal. Ogetection 18 modelled as

1,if 6§ = 1,°At > tg

0,if otherwise (6.12)

Ogetection = {

When O getection=1, 1slanding is detected, while O getection = 0 implies no islanding.
At this frequency, the ideal threshold and time delay were 12 V/s and 3ms, respectively

6.4 Performance analysis of islanding detection technique

A grid-connected solar PV-based microgrid, as depicted in Fig. 6.1, was simulated to
evaluate the feasibility of the presented method. Table 1 shows the major parameters
utilized during the simulation [15]-[16]. At 0.3 seconds, the switch opens, isolating the
DG unit and load from the grid and initiating the islanding process. IEC Std. 62116
states that detecting islanding gets more difficult when the load's power consumption
matches the distributed generation. The cases examined are as follows:

1.Islanding of grid integrated SPV system with 0 % of active power mismatch
condition.
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ii.Islanding of grid integrated SPV system with 30 % of active power mismatch
condition.

iii.Sudden load variation at point of common coupling

1v.Grid side distortion

6.4.1 Islanding of grid integrated SPV system with 0 % of active power mismatch
condition.

Fig. 6.3, Fig. 6.4, Fig. 6.5 and Fig. 6.6 depict the simulation results for the various
conditions considered in the study. Figures illustrate the waveforms of PCC voltage
(Vpee), load current (I;), grid current (1), VSI current (/i) and DG de-energizing
signal.

In first condition, zero active power mismatch condition has been considered which is
one of the most difficult scenarios to detect islanding. Fig 6.3 shows that before
islanding; the grid current is nearly zero due to the inverter's active power matching
the load's consumption. Islanding leads to zero grid current and fluctuation in PCC
voltage. It can be seen from the Fig 6.3 when islanding occurs at 0.3seconds PCC RMS
voltage ripple content increases. This is because when DG disconnects from the grid,
it loses the grid's stabilizing effect, which causes the voltage fluctuation level to
increase. The increased voltage fluctuation during islanding causes the amplitude of
the produced waveform to exceed the threshold level. The technique detects islanding
when the amplitude of the voltage waveform exceeds the threshold level. The DG de-
energizing signal, initially fix to 'l' for normal condition, is changed to '0' after 3ms of
islanding detection due to the method's latency.

Zero Active Power Mismatch condition / Islanding initiated

0
0_—. e
0

1(A)
S (=]

linv(A)

DG de-energizing signal : i — TIslanding Detected
05 ;

01 0.15 0.2 ) 0.25 0.3 0.35
Time (seconds)

Fig.6.3 Islanding detection of grid integrated SPV system with zero active power
mismatch
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6.4.2 Islanding of grid integrated SPV system with 30 % of active power
mismatch condition.

The second scenario examines the case where there is a 30% active power mismatch
between the power generated by the DG and the load demand. This condition is
relatively easier to detect compared to the zero-mismatch case, due to the existence of
a noticeable power imbalance that results in observable changes in system parameters
following islanding. Upon the occurrence of islanding at 0.3 seconds, the difference
between the generated and consumed power manifests as a deviation in the PCC
voltage and frequency. Unlike the zero-mismatch case, the power imbalance in this
scenario leads to a more rapid and pronounced variation in voltage amplitude. This
deviation pushes the waveform amplitude beyond the set threshold more quickly,
thereby triggering the islanding detection mechanism. The proposed technique
identifies the islanding condition within the designated detection time window. Similar
to the previous case, the DG de-energizing signal is switched from ‘1’ to ‘0’ shortly
after detection, ensuring a timely and safe disconnection of the inverter from the load.
This action helps to prevent potential safety hazards and equipment damage that could
arise from continued operation in an islanded mode.

30% Active Power Mismatch condition Islanding initiated

1H(A)

linv(A)
ra o
BB

DG de-energizing signal Islanding Detected

"
05
0: ]
0.1 0.15 0.2

0.25 0.3 0.35
Time (seconds)

Fig.6.4 Islanding detection of grid integrated SPV system with 30 % active power
mismatch
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6.4.3 Sudden load variation at point of common coupling

In this scenario, the system experiences an abrupt change in the connected load while
still being grid-connected. Such sudden variations in load demand can cause temporary
fluctuations in PCC voltage and current that might resemble islanding-like behaviour’s
shown in Fig. 6.5 the detailed response when the load change occurs, there is a short-
lived disturbance in the system parameters. However, the proposed detection technique
correctly identifies this event as a non-islanding condition. The PCC voltage amplitude
does not cross the islanding detection threshold, and the DG de-energizing signal
remains fixed at ‘1°, indicating normal operation. The system successfully continues
to supply power to the load without any unnecessary inverter shutdown.
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Fig.6.5 Sudden load change at point of common coupling

6.4.4 Grid side distortion

Another critical scenario evaluated is the presence of voltage distortions on the grid
side. Such distortions may arise due to faults, non-linear loads, or switching operations
within the utility network. These distortions can affect the voltage waveform at the
PCC, potentially causing false indications of islanding. The response illustrated in Fig.
6.6 confirms that the proposed method effectively filters out these disturbances.
Although the PCC voltage shows visible waveform distortion, the amplitude remains
within the acceptable threshold limits defined for islanding detection. As a result, the
detection algorithm maintains the DG de-energizing signal at ‘1°, avoiding a false
islanding response. This case highlights the method's robustness to harmonic
disturbances and waveform anomalies, reinforcing its suitability for operation in
practical grid environments where such conditions frequently occur.
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6.5 Comparative Analysis of Proposed Islanding detection

Table 6.1 displays the comparisons between the proposed strategy and conventional
techniques based on various parameters. Compared to the conventional strategy, the
technique examined in this work provides a number of advantages. It eliminates the
NDZ, is relatively easy to compute, detects islanding quickly, and has no false

detection and has no effect on power quality

Table.6.1 Comparison of proposed islanding detection technique with existing

techniques
Conventional Passive IDT
P t P d Passive IDT
arameter (OU/UV and ROCOF) roposed Passive
Non Detection
L
Zone(NDZ) arge NDZ Zero
Detection time Upto2s 3ms
False Detection High None
Detection Parameter Absolute value Ripple Content
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6.6 CONCLUDING REMARKS

In this chapter a passive islanding detection technique which is based on voltage ripple
content at the point of common coupling for grid integrated solar photovoltaic system
is presented. In order to detect islanding, the approach uses the voltage ripple content
at PCC, along with a specified threshold value and delay duration. To detect the
islanding and non-islanding conditions, the presented scheme is tested under different
islanding and non-islanding conditions. From the simulation results it has been found
that presented islanding detection technique detect islanding even under the most
extreme condition, where the inverter output power is almost equivalent to the load
consumption. As a result, the presented islanding detection technique offers the zero
non detection zone. Verification of non-islanding conditions takes place in typical
scenarios such as load switching and grid side distortion. Additionally, in the
aforementioned non-islanding circumstances, no island signal is generated, confirming
that there is no of false detection. Comparative investigation revealed that the
suggested method outperforms standard passive techniques such as Over/Under
Voltage and Rate of Change of Frequency, notably in terms of reducing detection time,
eliminating the Non-Detection Zone, and preventing false trips.
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CHAPTER-7

CONCLUSION, SOCIAL IMPACT OF RESEARCH AND FUTURE
SCOPE OF WORK

7.1 INTRODUCTION

The global transition toward sustainable and resilient energy systems has underscored
the importance of Renewable Energy Source (RES)-based microgrids, particularly
those utilizing solar photovoltaic (SPV) technology. SPV systems offer effective
solutions to pressing global challenges, including reducing carbon emissions,
enhancing energy security, and enabling electrification in remote and underserved
regions. Their modular design, environmental benefits, and rapidly declining costs
have made them increasingly viable for both standalone and grid-connected
applications. However, the intermittent nature of solar energy, along with challenges
in grid integration and system stability, necessitates the development of advanced
control strategies to ensure efficient and reliable operation. This thesis addresses these
critical issues through comprehensive modeling, the design of novel control
algorithms, and rigorous performance evaluation of SPV-based microgrids under
various operating scenarios. By advancing the deployment and reliability of solar-
based energy systems, this work directly contributes to the United Nations Sustainable
Development Goals, particularly SDG 7 (Affordable and Clean Energy) and SDG 13
(Climate Action).

7.2 CONCLUSION OF THE STUDY

This thesis presents a comprehensive investigation into the performance enhancement
and control strategies of solar photovoltaic (SPV)-based microgrids through the
development and implementation of novel algorithms and advanced methodologies.

The initial chapters introduced the concept of solar photovoltaic (SPV)-based
microgrids and emphasized the critical importance of efficient maximum power
extraction, advanced inverter control, and reliable islanding detection in modern SPV
systems. They also outlined the motivation for the study, identified key research gaps,
and clearly defined the research objectives. Furthermore, an extensive review of
existing literature was conducted, covering MPPT methodologies, inverter control
strategies, and islanding detection techniques. The review highlighted notable
limitations of conventional approaches, including slow convergence rates, sensitivity
to environmental fluctuations, and inadequate performance under abnormal operating
conditions. These limitations established the foundation for the novel contributions
presented in this research. The key concluding remarks of the chapter are summarized
below:

Chapter 3 presents a hybrid standalone solar PV microgrid integrated with battery
energy storage and introduces a modified novel MPPT technique that combines the
Incremental Conductance (INC) algorithm with a double closed-loop controller. This
approach ensures maximum power extraction, stable DC link voltage, and enhanced
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power quality through harmonic mitigation. The inner current loop provides fast
dynamic response, while the outer voltage loop maintains voltage stability,
contributing to overall system robustness, reliability, and adaptability under varying
load conditions. The proposed method is validated through simulations demonstrating
its effectiveness in dynamic operational scenarios.

Chapter 4 describes the design and implementation of a novel Horned Lizard
Optimized Artificial Neural Network (HLO-ANN) MPPT technique for grid-
connected solar PV systems. The proposed HLO-ANN technique combines the fast-
learning capability of ANN with the global optimization strength of the Horned Lizard
Optimization technique, allowing for precise and adaptive tracking of the maximum
power point under dynamic environmental and load conditions. This methodology
outperforms traditional and standard ANN-based MPPT methods, making it ideal for
modern grid-connected PV systems.

Chapter 5 focuses on the design and implementation of a novel Honey Badger
Algorithm-based PI (HBA-PI) controller for inverter control in grid-integrated solar
PV systems. Inverter control plays a vital role in ensuring efficient DC-AC conversion,
grid synchronization, and stable system performance under fluctuating environmental
and load conditions. The proposed HBA-PI controller is specifically developed to
achieve precise regulation of the DC link voltage, ensuring reliable power delivery
from the PV array to the grid. In addition to the HBA-PI approach, this chapter also
explores other optimization-based control techniques, including Cuckoo Search
Optimized PI (CSO-PI) and Artificial Neural Network-based PI (ANN-PI) controllers.
However, the primary focus remains on the HBA-PI controller due to its superior
convergence speed, robustness, and dynamic response in maintaining voltage stability
and enhancing overall system efficacy.

Chapter 6 This chapter presents a passive islanding detection technique for grid-
integrated solar PV systems based on voltage ripple analysis at the point of common
coupling (PCC). The presented method uses time-domain spectral analysis to detect
abnormal ripple content in the VSI output voltage. Islanding is confirmed when the
ripple exceeds a defined threshold for a specific duration. Unlike conventional passive
techniques, this method effectively detects islanding even under minimal power
mismatch without false detections. It demonstrates high accuracy and rapid detection
within 3ms across various operating conditions, with no non-detection zones observed.

7.3 SOCIAL IMPACT OF RESEARCH

This research contributes significantly to the technical advancement of solar
photovoltaic (SPV)-based microgrids, aligning with India’s national mission to
promote renewable energy through initiatives such as the PM-KUSUM Yojana, Solar
Rooftop Scheme, and broader goals under the National Solar Mission. By developing
robust MPPT algorithms, intelligent inverter control strategies, and efficient islanding
detection methods, the thesis addresses critical challenges related to energy reliability,
grid stability, and power quality
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These improvements promote wider adoption of clean and affordable energy,
especially in rural and under-electrified areas, fostering energy access, economic
growth, and social development. The outcomes of this research directly align with
multiple United Nations Sustainable Development Goals, notably SDG 3 (Good
Health and well-being), SDG 7 (Affordable and Clean Energy), SDG 9 (Industry,
Innovation, and Infrastructure), SDG 11 (Sustainable Cities and Communities), and
SDG 13 (Climate Action). Additionally, by supporting sustainable infrastructure and
cleaner energy solutions, this work indirectly contributes to several other SDGs,
reflecting its comprehensive role in advancing sustainable development and energy

equity.

| SUSTAINABLE DEVELOMENT GOALS(SDG) ‘

‘ SDGs TARGATED BY THE RESEARCH WORK ‘

SOCIAL
SDG1-No Poverty
SDG2- Zero Hunger
SDG3-Good Health and Well-being
SDG4-Quality Education
SDG5-Gender Equality
SDG6-Clean Water and Sanitation

ECONOMIC
SDG7-Affordable and Clean Energy
SDG8-Decent Work and Economic Growth
SDGY9-Industry, Innovation, and
Infrastructure
SDG10-Reduced Inequality
SDG11-Sustainable Cities and Communities

ENVIRONMENTAL
SDG12-Responsible Consumption and
Production
SDG13-Climate Action
SDG14-Life Below Water
SDG15-Life on Land

FOSTERING PEACE AND
PARTERNERSHIP
SDG16-Peace, Justice, and Strong Institutions
SDG17-Partuerships for the Goals

SDG 3:Good Health and Well-being

RES-based microgrid research enhances solar PV system efficiency and reliability, supporting
critical medical equipment operation for better health outcomes while reducing reliance on
unstable grids and fossil fuels, thus promoting Good Health and Well-being.

SDG 7: Affordable and Clean Energy

The research enhances solar PV microgrid efficiency and reliability through advanced MPPT,
inverter control, and islanding detection techniques. It supports wider adoption of clean energy
in rural and under-electrified regions, aligning with national initiatives like PM-KUSUM and
the Solar Rooftop Yojana.

SDG 9: Industry, Innovation, and Infrastructure

This research has advanced technological innovation in renewable energy by developing Al-
optimized MPPT and inverter control strategies. Intelligent controllers such as HBA-PI, CSO-
PI, and ANN-PI have been implemented to improve system reliability, minimize hannonic
distortion, and strengthen grid integration, contributing to resilient and modern energy
infrastructure.

SDG 11: Sustainable Cities and Communities

The research supports smart, resilient communities by enabling stable, decentralized solar PV
microgrids. Enhanced control strategies promote energy independence, reduce reliance on
fossil fuels, and aid sustainable urban and rural development.

SDG 13: Climate Action

The research supports climate change mitigation by enabling efficient operation of SPV-based
microgrids, promoting higher solar energy adoption. Through advanced control strategies, it
reduces reliance on fossil fuels, lowers greenhouse gas emissions, and ensures stable, high-
quality power—facilitating broader integration of clean energy solutions.

Fig.7.1 SDGs targeted by the research work

7.4 FUTURE SCOPE
The proposed intelligent control algorithms can be validated through real-time
hardware implementation on platforms such as DSPs, FPGAs, or microcontrollers.
This validation will assess their practical feasibility, dynamic performance, and
robustness in real-world operating conditions, bridging the gap between simulation

and actual deployment.

The developed control strategies can also be extended to hybrid energy systems
integrating renewable sources like wind turbines and biomass, thereby enhancing
system reliability and ensuring continuous power supply.

With increasing digitalization, it becomes essential to consider techno-economic
analysis and system reliability. Future research can explore secure communication
protocols, intrusion detection systems, and fault-tolerant control mechanisms to
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enhance the security and dependability of microgrids.

As PV microgrids become increasingly digitized and vulnerable to cyber threats
like data spoofing, DoS, and false signal injection, future work may integrate
cybersecurity frameworks—such as blockchain-based data validation, secure
authentication protocols, and intrusion detection algorithms—into MPPT control
systems to detect and mitigate malicious intrusions and ensure secure, resilient
energy management.

Resilience measures, paired with advanced adaptive control strategies and real-
time monitoring of PV output and DC bus conditions, could enable PV microgrids
to maintain stable operation and self-recover under faults, islanding events, or
extreme weather disturbances.

Creating a digital twin of the PV microgrid enables real-time simulation of
environmental changes, shading patterns, and load variations to adjust ANN
weights or PI controller parameters before deployment, allowing predictive
maintenance and proactive decision-making that reduces downtime and improves
operational efficiency for both rural and industrial systems.
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APPENDIX

I. Photovoltaic specifications

Parameters Value
Maximum Power(W) 213.15
Voltage at MPP Vi (V) 28
Current at MPP Iip(A) 7.35
Open circuit voltage Vo (V) 36.3
Short circuit current Isc(A) 7.84
Vo temperature coefficient (% deg.C) -0.361
Isc temperature coefficient (% deg.C) 0.102
Photovoltaic temperature (deg.C) 25
Number of cell (Neei) 60
Series cells (Ng) 3
Parallel cells (N,) 20

I1. SPV System specifications

Parameters Attributes
PV Array Power Ppv 12.79kW
PV short circuit current (Isc) 23.52A
PV open circuit voltage (Voc) 726V
PV current at MPP (Linpp) 22.05A
PV voltage at MPP (Vinpp) 580V
DC-DC Converter| Duty ratio (o) 0.5-0.6
Converter Inductor (L) 6mH
Capacitor (C) 3uF
Switching frequency 10 kHz
DC link voltage (Vpc) 750V
Interfacing inductor (L) 7mH
Blc(:,l:;izt;fel;al Inductor (L1) 0.00019H
Capacitor (C1) 350 uF
DC link voltage (Vpc) 750V
Interfacing inductor (L) 6mH
Filter Capacitance (Cf) 101.14uF
Series Resistance (Rf) 0.001H
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VL (Line - line voltage) 415V
Grid Grid frequency 50Hz

Grid Resistance (Rs) 0.11ohm

Grid Inductance (Ls) 0.35mH

I11. Wind turbine and PMSG generator specifications

Parameters Value
Rated Mechanical Power 12.3kW
Base wind speed 12m/s
Max mechanical power at 12 m/s 0.85 pu

Actual mechanical power at 12 m/s

0.85 x 12.3 kW =10.455 kW

Generator efficiency

90%

Electrical output power at 12 m/s

0.9 x10.455 kW =9.41 kW

Stator phase resistance (Rs) 0.0485
Inductance g- and d-axis (L, and L) 0.395e-3,0.395¢-3
Flux linkage (y) 0.1194

pitch angle in degree (f3) 0

Power Coefficient (Cp) 0.4097

Air density kg /m3(p) 1.225

Radius in m (R) 1.30

C1,C2,C3,C4,C5 and C6

0.5176, 116, 0.4, 5, 21, and 0.0068.

Area swept by the blades in m? (4,)

5.31

Tip speed ration (TSR)

8.1
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