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Abstract 

In an era where digital images are extensively disseminated and manipulated, the 

authenticity of the visual content has become progressively vulnerable to 

manipulation. Digital images are now a crucial source of information in social 

media, thanks to advancements in technology and the Internet. Modern futuristic 

image editing software and tools make it simple to tweak a digital image without 

leaving any visible clues. The widespread use of digital images in news and legal 

proceedings has raised worries about their validity, integrity, and reliability. 

Manipulated or tampered photos can mislead the public, harm a person's reputation 

or business, influence political opinions, or impact criminal investigations. 

Conventional image manipulation techniques include copy-move, splicing and 

inpainting, whereas recent developments in image manipulation include 

synthetically generated images such as deepfake. Passive image manipulation 

detection and localization of manipulated regions within an image remains 

challenging. The thesis is structured into comprehensive chapters, beginning with 

foundational aspects, moving through specific and multiple manipulation detection 

methodologies and culminating in a robust solution for recent advancements in 

manipulations such as deepfake detection. 

The thesis laid the groundwork by introducing the fundamentals of image 

manipulation detection, including image manipulation categorization, basic 

terminologies, application of image manipulation, the challenges of image 

manipulation detection and the classification of forgery detection techniques. This 

foundational knowledge provided context for understanding the scope and 

complexity of the problem. Furthermore, motivation and problem statement, 

performance metrics and thesis organization are discussed.  

The thesis comprehensively reviews existing state-of-the-art (SOTA) methods 

employed for image manipulation detection. Various methods are reviewed, 

including traditional handcrafted, machine learning and deep learning-based 

methods for image manipulation detection. This review also examines the 
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limitations of the existing techniques and identifies the research gaps, leading to the 

formulation of research objectives. 

The thesis provides a targeted approach for specific types of manipulation detection, 

such as offline signature forgery detection (OfSFD) and copy-move forgery 

detection (CMFD). The thesis developed a robust and efficient method for writer-

independent offline signature forgery detection (WIOfSFD). The technique 

presents a formulation that uses the pre-trained model to direct the feature learning 

process and uses the Siamese neural network (SNN) to distinguish between genuine 

and forged signatures. Also, a residual-based convolutional neural network has been 

developed for CMFD.  

The thesis introduces two methodologies, namely MDLFormer and LFRViT, for 

detecting multiple forgeries using a single framework. MDLFormer used multi-

modal data to exploit various inconsistencies present in a manipulated image, global 

context-based swin transformer (GCST) encoder to enhance the model's ability to 

aggregate, refine, and focus on critical global discrepancies between various 

patches and feature pyramid network (FPN) based decoder for manipulation 

detection and localization. In contrast, LFRViT uses a Laplacian filter residual 

(LFR) based vision transformer (ViT) for multiple forgery detection. 

The thesis also presented a hybrid learning-based approach consisting of kernel 

principal component analysis (KPCA) for deepfake face manipulation detection. 

The method uses the EfficientNetV2-L model for the feature extraction topped up 

with KPCA for feature dimensionality reduction to have an effective and fast feature 

learning process. The method is robust to various facial manipulation techniques 

such as identity swap, expression swap, attribute-based manipulation, and entirely 

synthesized faces. Experimental results validate the method’s effectiveness and 

demonstrate its potential as a reliable tool for detecting synthetic manipulations, 

which are becoming more common in digital forensics. Finally, this thesis work is 

concluded and the future scope of image manipulation detection is discussed. 
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Chapter 1 

Introduction 

This chapter introduces the background of image manipulation detection, image 

manipulation categorization and image forgery detection techniques. Applications 

of image manipulation and evaluation metrics used are also discussed. 

Furthermore, motivation and contribution of this thesis are elaborated upon and 

thesis organization is outlined. 

 

1.1 Background 

In an era where digital images are extensively disseminated and manipulated, the 

authenticity of the visual content has become progressively vulnerable to 

manipulation. Digital images are now a crucial source of information in social media. 

A large number of images are being produced and with the ease of availability of 

computer software or mobile applications, one can easily manipulate an image. Image 

manipulation has become very convenient nowadays with the help of editing tools, 

such as Adobe Photoshop, image manipulation programs, Affinity Photo, Paintshop 

and many more [1]. Using image manipulation techniques can be both useful and 

harmful as well. Image manipulation techniques can glamorize an image using image 

filters. Image manipulation is also useful for commercial purposes, as it uses realistic 

effects in movies like Harry Potter, Twilight, and many more, allowing them to share 

their creative ideas. On the other hand, these techniques can be utilized to control the 

substance of the picture with a malignant goal. Given the ease and effectiveness of the 

image editing tools, it is extremely hard to distinguish a manipulated image. With the 

advancement of image manipulation techniques and post-processing methods, it is 

very difficult for the forensic detector to detect the type of manipulation and 

manipulated region [1]. A study also shows that humans have a very restricted capacity 

to distinguish between the original and manipulated image [2]. These manipulated 

images are shared and uploaded on social media to provoke people's sentiments. These 
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altered photographs can serve as evidence in criminal investigations and tarnish an 

individual's reputation. For example, as shown in Fig. 1.1, the famous fake photo of 

Senator Tydings talking with Earl Browder (left) is a composite of two distinctive 

photographs [3]. It is believed that this fake photo may have contributed to Senator 

Tydings's electoral defeat in 1950. Therefore, it necessitates robust image manipulation 

detection mechanisms. 

 

 (a) Manipulated image                      (b) Original image 

Fig. 1.1 A well-known image manipulation example, the composite photo of Senator 

Millard Tyding and American Communist Party Leader Earl Browder (left) [3]. 

 

Image manipulation encompasses a variety of techniques used to manipulate 

images, ranging from traditional techniques like splicing, copy-move and 

inpainting/removal etc., to recent advanced methods like face swap and deepfake etc. 

Fig. 1.2 shows examples of image manipulation using different techniques, including 

traditional and deep learning-based methods. Deep learning-based approaches have 

revolutionized image manipulation, to generate highly realistic manipulated images. 

Artificial intelligence (AI) powered fake images look so real that they can easily fool 

humans and these counterfeit images are a bigger threat than fake news as they are 

more convincing than the text [4]. Various famous applications such as deepfake and 

face swap are based on convolutional neural networks, deep learning and adversarial 

networks which are employed to produce deep fake images. For example, Fig. 1.2 (b) 

illustrate an example of Faceswap, where Angela Merkel's face has been replaced with 

that of Donald Trump. and Fig. 1.2 (c) shows the generated fake image of the famous 
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Hollywood actor Nicholas Cage. With the advent of these fake images, the images 

have lost their credibility. This has caused fraud and fear of privacy in people [4].  

 

Fig. 1.2  Examples of image manipulations from DEFACTO [135] dataset. 

 

1.2 Image Manipulation Categorization 

Image manipulation is commonly categorized based on its purpose and the underlying 

approach to steganography, forgery and generating, as illustrated in Fig. 1.3 [5]. Image 

manipulation is the common term that consists of any form of altering, editing or 

modifying an image. Table 1.1 gives the fundamental definitions used in image 

manipulation. These terms are interrelated and differ based on how these terms and 

concepts are defined. Image steganography [6] does not come under the category of 

image forgery. It hides some data by somewhat altering the pixels in the image. Image 

forgery alters an image maliciously, including methods like copy-move, splicing and 

inpainting/removal to deceive the facts that happened in the past, requiring robust 

detection systems to identify tampered regions. However, image tampering falls within 

the realm of image forgery as it alters the image's content or context, such as 

recoloration, image enhancement, blurring and adding noise. Image-generating 

(b) Face swap 

(c) Deepfake (a) Image Manipulations using traditional methods 
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techniques driven by AI models to generate entirely synthetic images can be used for 

forgery or not necessarily be used for forgery. Generated images often have no original 

source and are used for various purposes, including artistic creation, gaming, and 

malicious applications such as realistic deepfakes. Each type poses unique detection 

challenges, demanding specialized forensic approaches. 

Table 1.1: Fundamental terminologies used in image manipulation 

Terminology Definition 

Image 

Manipulation 
It refers to any form of altering, editing or modifying an image. 

Image Forgery 
It refers to intentionally and deliberately modifying or creating 

an image to deceive or mislead. 

Image 

Tampering 

It is a subset of image forgery in which the graphic content of the 

image is modified. It refers to a specific act of altering images. 

Image 

Generating 

These are computer-generated images, or some part of the image 

is computer-generated, which can be used to forge an image. 

Image 

Steganography 

It is used to hide some data in the image. It slightly alters some 

pixels in the image and embeds extra data in the image. 

Copy-move 

In this technique, the content is copied and moved to the other 

position in the original image. The new content copied is from 

the same source as the original image or from the original image 

itself. 

Splicing 

Splicing is generally used as a substitute for cut-paste, in which 

a composite image is made by cutting and joining the multiple 

images. It denotes the region duplication between two images. 

Inpainting 
It is the process of restoring and reconstructing the lost or 

corrupted part of the image. 

Deepfake 

It is a type of synthetic media in which AI, particularly deep 

learning techniques, is used to generate realistic but fake images, 

audio or videos that accurately mimic real people or events. 
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Fig. 1.3: Categorical representation of image manipulation. 

 

1.3 Image Forgery Detection Techniques 

Image forgery detection techniques can be classified, as shown in Fig. 1.4, into two 

categories: active and passive forgery methods [5]. Active methods include embedding 

additional data, such as watermarks or digital signatures, into the image during its 

creation. This embedded data helps detect Active methods consisting of digital 

signature and watermarking [7]. Active methods are utilized to identify the image's 

integrity and whether the image is authentic or tampered with. However, their 

effectiveness relies on the prior existence of such embedded information inside the 

image. On the contrary, passive methods, also known as blind methods, do not require 

any prior knowledge about the image. Passive methods analyze intrinsic irregularities 

and inconsistencies in the image or trace the artifacts left by the tampering operation 

to identify manipulation. Passive methods are categorized into intrinsic regularities & 

inconsistencies, tampering operations and natural & computer graphic images. Further, 

based on dependent or independent techniques, tampering operations are categorized 

into specific forgery detection techniques such as copy-move, splicing, JPEG 

compression, retouching and light inconsistencies. Active methods are highly reliable 

on embedded data or prior information when used, while passive methods are 

ubiquitous and versatile, making them indispensable in modern digital forensic 
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applications [8]. However, passive methods can be more challenging due to the 

increasing sophistication of image manipulation tools. 

 

Fig. 1.4 Classification of image forgery detection techniques 

1.4 Applications of Image Manipulation Detection 

Image manipulation detection plays an essential role across multiple domains where 

the integrity and authenticity of visual content are crucial. As digital tampering 

methods become more sophisticated, detecting such manipulations has become a 

priority in law enforcement, media, finance, and even personal security applications. 

From signature verification to deepfake detection, the applications of image 

manipulation detection are broad and continue to grow with advances in deep learning 

and computer vision techniques. Some prominent areas include offline signature 

verification, copy-move forgery detection (CMFD), splicing, inpainting, and deepfake 

detection, each addressing unique forms of image tampering. 

Offline Signature Forgery Detection is essential in financial, legal, and 

governmental settings, where authentic signatures are required for identity verification 

[9]. Manipulation detection frameworks analyze signature attributes such as stroke 

pattern, pressure, and spatial alignment to differentiate genuine signatures from 

forgeries. Techniques based on deep learning architectures like Siamese Neural 

Networks (SNN) provide high accuracy in detecting forgery in offline signatures, thus 

enhancing fraud prevention and authentication. 
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Copy-Move Forgery Detection: Copy-move forgery involves duplicating a portion 

of an image and moving it to another location within the same image, often to hide or 

replicate specific content [10]. This type of forgery is widely used in digital tampering, 

and detecting it requires robust analysis of duplicated patterns and slight 

inconsistencies in texture and lighting. CNN-based frameworks are particularly 

effective in identifying copy-move forgeries, leveraging residual features and spatial 

correlations to pinpoint duplicated regions accurately. 

Splicing Detection: Splicing is a manipulation technique that combines elements from 

multiple images to create a single composite image, often with the intent to mislead. 

Splicing detection aims to identify inconsistencies in texture, lighting, and boundaries 

between the combined elements [10]. Advanced detection methods use deep learning 

algorithms to analyze subtle differences at the pixel and boundary levels, effectively 

identifying where one image has been fused with another. 

Inpainting Detection: Inpainting refers to the process of filling in missing or 

undesired regions within an image, typically used to remove objects or alter 

backgrounds [11]. In forensics, inpainting detection is crucial for identifying areas that 

have been artificially reconstructed. Detection frameworks leverage models trained to 

recognize unnatural textures and pixel arrangements that indicate inpainting, ensuring 

that image integrity is preserved in contexts where accuracy is critical. 

Deepfake Detection has become increasingly important due to the rise in realistic yet 

synthetic images and videos created using generative adversarial networks (GANs) 

[12]. These forgeries can be used to impersonate individuals, spread misinformation, 

or manipulate opinions. Deepfake detection algorithms focus on recognizing 

inconsistencies in facial expressions, eye movements, and other subtle features that 

indicate tampering. Techniques utilizing Vision Transformers (ViT) [13] are 

particularly effective in detecting these artificial creations by focusing on both spatial 

and temporal artifacts. Deepfake detection focuses on identifying and mitigating the 

risks associated with manipulated media, particularly videos and images where 

individuals' faces or voices are convincingly altered using AI. This is a critical area of 
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research due to the potential misuse of deepfake technology in fraud, misinformation, 

and other malicious activities. 

 

1.5 Multiple Manipulation Detection 

Nowadays, detecting manipulated images is challenging, as the complexity of 

manipulations can vary, ranging from single manipulation to more sophisticated 

multiple manipulations. Image manipulation detection can be broadly classified into 

two categories: single manipulation detection and multiple manipulation detection 

[11]. A forger can manipulate an image by employing a variety of image manipulation 

techniques [14]. There has been a significant interest in developing a 

universal/multiple image forgery detection approach to detect multiple manipulation 

operations [15], [16]. Single manipulation detection focuses on identifying and 

analyzing a particular type of manipulation. These techniques are designed to target a 

particular manipulation such as OfSFD, copy-move, splicing, inpainting or 

enhancement. Single manipulation detection methods often use specialized feature 

extraction techniques or deep learning models to achieve good performance for that 

specific task. Despite their effectiveness, single manipulation detection methods 

struggle to generalize across multiple manipulation types or recognize the combination 

of manipulations in an image. Contrarily, multiple manipulation detection techniques 

seek to detect multiple manipulations even when many manipulations coexist. 

Multiple manipulation detection goal is to apply a unified approach to identify and 

distinguish various types of forgeries present in a manipulated image. Multiple 

manipulation detection systems require more complex models capable of handling 

various manipulation operations and robust feature representations that generalize 

across various manipulations. Multiple manipulation detection methods are more 

challenging to build yet essential for practical forensics applications. Many researchers 

have focused on detecting manipulated images by employing machine and deep 

learning techniques. Some of the prominent forms of manipulations covered in this 

thesis are digital OfSFD, copy-move, splicing, inpainting/removal and deepfake.  
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1.6 Evaluation Metrics 

Evaluation metrics are quantitative measures employed to assess the efficacy and 

performance of the proposed model. This section discusses several assessment criteria 

employed for assessing the performance of the proposed image manipulation detection 

methods in the subsequent chapters. Evaluation parameters indicate how well a system 

operates in the presence of a test dataset. Because of the imbalanced nature of the 

dataset, some of the few parameters likely produce good results while others do not, 

i.e., accuracy. To address the issue of imbalanced datasets, Precision, Recall, and F1 

measures should be used to provide the true performance of the evaluated algorithms 

[17]. The approaches' performance is evaluated using two types of evaluation 

parameters: image-based and pixel-based. Pixel-based evaluating parameters rely on 

ground truth images in the dataset for evaluation and are considered practical and 

accurate. The following metrics are frequently used to assess different manipulation 

detection methods: Accuracy (A), False Acceptance Rate (FAR), False Rejection Rate 

(FRR), Equal Error Rate (EER), Precision (P), Recall (R), F1 score, Receiver 

Operating Characteristics (ROC), Area Under an ROC curve (AUC), Intersection over 

Union (IoU), etc. Depending on the requirement, these metrics can be applied to 

evaluation at the pixel or image level. The definitions of the metrics used in this 

dissertation are provided below. 

1. Accuracy (A): It measures the level of accurately identifying the manipulated and 

authentic images and is calculated using Eqn. 1.1. 

𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (1.1) 

2. False Acceptance Rate (FAR): It measures the likelihood that a method 

incorrectly identifies an authentic image (negative class) as manipulated (positive 

class) and is calculated using Eqn. 1.2. 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
       (1.2) 
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3. False Rejection Rate (FRR): It measures how well a method incorrectly rejects a 

manipulated image (positive class) as an authentic image (negative class) and is 

calculated using Eqn. 1.3. 

𝐹𝑅𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
       (1.3) 

4. Equal Error Rate (EER): An error value where FAR equals the FRR. To calculate 

the EER, one can plot the FAR and FRR on a Receiver Operating Characteristic 

(ROC) curve and identify the point where the two curves intersect. If there is not 

a number where FAR and FRR are equal, choose a number that falls between the 

two as given in Eqn. 1.4 

𝐸𝑅𝑅 =
𝐹𝐴𝑅+𝐹𝑅𝑅

2
, 𝑖𝑓 𝐹𝐴𝑅 ≠ 𝐹𝑅𝑅     (1.4) 

5. Precision (P): It measures how well a method correctly identifies a manipulated 

image (positive class) among all positive predictions. Precision is computed by 

dividing the number of correct positive predictions (true positives) by the total 

number of positive predictions (sum of true positives and false positives) and is 

calculated using Eqn. 1.5. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (1.5) 

6. Recall (R) or True Positive Rate (TPR) or Sensitivity: It measures how well a 

method correctly identifies all manipulated images (positive class). It is computed 

by dividing the number of correct positive predictions (true positives) by the total 

number of real positive cases (sum of true positives and false negatives) and is 

calculated using Eqn. 1.6. 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (1.6) 

7. F1 score: It measures Precision (P) and Recall (R) harmonic mean and is 

calculated using Eqn. 1.7. 

𝐹1 =
2×𝑃×𝑅

𝑃+𝑅
=  

2×𝑇𝑃

2×𝑇𝑃+𝐹𝑁+𝐹𝑃
     (1.7) 
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8. Intersection over Union (IoU): It calculates the amount of overlap between the 

predicted binary mask (B). and the ground truth mask (GT). It is a metric used to 

localize an image's manipulated region. It is calculated by dividing the area of 

overlap between B and  GT region by the combined area of both regions, and it is 

calculated using Eqn. 1.8. 

𝐼𝑜𝑈 =
𝐺𝑇∩𝐵

𝐺𝑇∪𝐵
=

𝑇𝑃

𝑇𝑝+𝐹𝑁+𝐹𝑃
     (1.8) 

Where True Positive (TP) refers to the manipulated class accurately identified as 

manipulated, while False Negative (FN) represents the manipulated class incorrectly 

classified as authentic. False Positive (FP) indicates the authentic class is misclassified 

as manipulated. 

 

1.7 Motivation 

Image manipulation is one of the most preliminary and prevalent modification attacks 

on digital image forensics. Digital images have become increasingly vulnerable to 

manipulation with the advancement of image editing tools and digital media creation. 

Consequently, many image manipulation tools and software have been developed that 

can be further used for malicious activities like mob agitation and fake news spreads. 

Manipulation techniques like copy-move forgery, splicing, inpainting, signature 

forgery, and deepfake generation are now more accessible than ever, allowing the 

manipulation of images with high fidelity and subtlety. While these manipulations 

allow for creative applications, they threaten information integrity and authenticity. 

The widespread use of manipulated content has increased disinformation, identity theft 

and weakening trust in digital media. As a result, the need for reliable and effective 

image manipulation detection methods has become crucial to finding traces of 

manipulation in images and hence, successfully classifying them as authentic or 

manipulated. This thesis explores, evaluates, and develops advanced methods for 

detecting image manipulations, contributing to digital forensics, security and media 

authenticity verification. 
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1.8 Contribution 

The thesis presents novel methodologies and frameworks to improve the detection and 

localization of various image manipulations, addressing existing challenges in digital 

forensics, security applications and content verification. The study contributes to 

various key areas of image manipulation detection, including offline signature 

verification, CMFD, multiple forgery detection and localization, and deepfake face 

manipulation detection. Various machine learning and deep learning methods, 

including diverse features, have been used. The datasets that are made publicly 

available are included and their characteristics and parameter settings are tabled. In 

this thesis, the key contribution includes a writer-independent offline signature 

verification model based on a pre-trained EfficientNet model used for feature 

extraction in the twin network of SNN, a residual-based CNN model for CMFD, a 

Multi-modal Global Context-based Swin Transformer (MDLFormer) model for 

multiple forgery detection and localization. Furthermore, the thesis incorporates a 

Laplacian Filter Residual-based Vision Transformer (LFRViT) framework for 

multiple forgery detection, leveraging ViT architecture and Laplacian filters to capture 

subtle tampering artifacts indicative of tampering. Lastly, an effective framework is 

proposed based on hybrid learning for deepfake face manipulation detection. These 

models collectively enhance image manipulation detection by providing adaptable, 

robust solutions across various manipulation types. Consequently, they support critical 

media integrity, digital forensics, and authentication applications. Various standard 

datasets have been utilized to validate the efficacy of the model. A comprehensive 

description of the proposed approaches has been addressed in the subsequent section. 

 

1.9 Thesis Organization 

This thesis is organized into six chapters. The brief outlines are given below: 

Chapter 1: This chapter provides the fundamentals concerning image manipulation 

detection. This involves image manipulation categorization, basic terminologies, 

categorization of techniques for image forgery detection and application of image 
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manipulation detection. This chapter also discussed the evaluation metrics, motivation, 

contribution of this thesis and thesis organization. 

Chapter 2: This chapter explains the challenges in the existing SOTA methods 

employed for image manipulation detection. The standard overall design framework 

of the image manipulation detection system based on the traditional handcrafted 

feature extraction-based approach is discussed. A review of several methods used for 

image manipulation detection is done. This helped to discover the research gaps in 

existing solutions in image manipulation detection. Finally, the research objective has 

been formulated based on the research gaps addressed in this thesis. 

Chapter 3: This chapter explains the proposed methodologies used for detecting 

specific manipulations such as offline signature forgery and CMFD. A detailed 

description of the problem statement, dataset, feature extraction process, and the 

methodology adopted has been provided in this chapter. Experiments on standard 

datasets validates the effectiveness of the proposed method and a comparison study of 

the results is also provided. 

Chapter 4: This chapter incorporates two different methods to detect multiple 

manipulations. The first method, MDLFormer, consists of multi-modal input, Global 

Context Swin Transformer (GCST) encoder and Feature Pyramid Network (FPN)-

based decoder to detect and localize the manipulation. The second method, LFRViT, 

is a Laplacian filter residual-based vision transformer for multiple manipulation 

detection. In the thesis, the methodologies concerning each of the given methods have 

been discussed in detail. Additionally, the results of the proposed methods are obtained 

on standard datasets and compared with existing SOTA methods. 

Chapter 5: This chapter presents a novel approach based on hybrid learning and kernel 

principal component analysis (KPCA) for deepfake face manipulation detection. The 

result and discussion section explains the effectiveness of the proposed approach on 

standard datasets and comparative analysis of obtained results is also included. 

Chapter 6: This chapter summarizes proposed works, significant findings, 

contributions and limitations. This chapter also suggests some potential future 

directions in this area and social impact on society beyond academic circles. 
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Chapter 2 

Literature Review 

This chapter comprehensively reviews existing methods employed for image 

manipulation detection. Reviewed various methods, including traditional 

handcrafted, machine learning models and deep learning-based approaches for 

image manipulation detection. This review also examines the limitations of the 

existing methods and identifies the research gaps in image manipulation detection. 

Finally, the research objective has been formulated based on the research gaps 

addressed in this thesis. 

 

This chapter reviews various methods, focusing on techniques for digital OfSFD, 

CMFD, multiple forgery detection and localization, and deepfake face manipulation 

detection. In the past, methods for detecting image manipulation were limited to a 

single kind of manipulation [18]. The image was manipulated using single 

manipulation technique and the type of manipulation was then identified by analyzing 

the distinct trace that was left behind. Simple feature extraction techniques are utilized, 

followed by classification to identify certain kinds of image manipulation.[19].  

 

Input Image 

Pre-Processing 

Feature Extraction 

Classification 

Manipulated Image Authentic Image 

Fig. 2.1: The general structure of the image manipulation detection system 

based on the handcrafted feature extraction method. 
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Fig. 2.1 shows the image manipulation detection system’s general structure based on 

handcrafted feature extraction methods.  

For any research problem, five aspects must be explored: datasets, pre-

processing tasks, feature extraction techniques, methodology/models and performance 

evaluation criteria. Several pre-processing techniques were used, such as binarization, 

normalization, thinning, bounding box, inversion, and noise removal techniques, to 

remove the inconsistencies present in the image and enhance the image's quality for 

further processing [18].  A few of the feature extractors that are used for manipulation 

detection are local binary pattern (LBP) [20], discrete cosine transforms (DCT) [21], 

discrete wavelet transforms (DWT) [22], scale-invariant feature transform (SIFT) [23], 

speeded up robust features (SURF) [24]. These techniques accomplish pre-processing 

following feature extraction. The images are then classified using some thresholding 

criteria on the extracted features or matching technique is used to classify the images. 

But now, images are manipulated using multiple tampering operations to make them 

realistic, so they cannot be viewed as manipulated images. With the advancement in 

editing tools, detecting the manipulation and the manipulated region in the image is 

not easy. Later, some new methods were created to identify multiple-image 

manipulations in images, but these methods were limited to some constraints and could 

not detect multiple-image manipulations in images [25]. In a real-world scenario, an 

image is manipulated using multiple image manipulation techniques. Consequently, 

there is a requirement for multiple image manipulation detection techniques to 

authenticate an image as an authentic or a manipulated image. Nowadays, numerous 

research scholars have created techniques based on deep learning models to detect 

image manipulation in images and have produced better results and outperform the 

hand-crafted feature extraction techniques [26], [27], [28]. 

Deep learning models have been proven to be the best technique for feature 

learning and classification. In the past decade, deep learning methods have been used 

extensively in every field, and the use of these models has increased rapidly. Deep 

learning approaches are also being used in image manipulation detection as well. In 

deep learning-based image manipulation detection methods, many real and 

manipulated images are given to the models for manipulation detection. A good 
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training model is used to capture the underlying features of the images. This chapter 

will study various models used to detect manipulation in the image. Image 

manipulation detection techniques can be broadly represented into two categories: 

handcrafted feature representation and learned feature representation. The following 

taxonomy has been designed for image manipulation detection methods; see Fig. 2.2. 

 

Fig. 2.2: Taxonomy of Image Manipulation Detection Methods. 

 

2.1 Digital Offline Signature Forgery Detection 

Signature forgery detection tasks have been proposed for a variety of hand-crafted 

features. Many consider global features using block codes, wavelets and Fourier series 

[29]. Other approaches consider local features such as location, tangent direction, 

curvature, blob structure and connected components with geometrical and topological 

properties [30]. For OfSFD, projection and contour-based approaches are also widely 

used in signature verification [31]. Additionally, a few structural methods that examine 

the relationships between local attributes are examined. Manual feature extraction 

techniques consist of structural, geometric, texture, statistical and global methods, 

whereas automatic feature extraction techniques consist of deep learning methods such 

as convolutional neural networks (CNN), autoencoders and deep sparse networks, etc., 

[32]. Unlike human feature extraction techniques, techniques for automatically 
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extracting features (such as deep learning) do not require domain knowledge to extract 

discriminative features for classification [33]. CNN and deep sparse approaches are 

two examples of deep learning-based methods widely used for automatic feature 

extraction. These techniques enable the automatic learning of features with minimal 

or no pre-processing [34]. These techniques can find the optimum pattern for 

enhancing verification performance by extracting intricate information from the raw 

signature image utilizing several abstraction layers. CNN has drawn much attention as 

a very effective feature extraction and identification approach since it is an automatic 

feature learning method [34]. It is significant to highlight that CNN is capable of self-

taught, automatically extract characteristics and offer probabilistic predictions for each 

class label. Therefore, integrating automated feature extraction with prediction or 

classification for OfSFD detection provides an effective and reliable solution [35]. 

These deep learning-based methods can automatically extract complicated features 

with few or no pre-processing techniques and require no prior domain knowledge to 

extract discriminative features for classification [36]. This makes automatic feature 

extraction techniques more popular and well-known for automatic feature extraction.  

Various methods or models have been adopted for OfSFD systems, which can 

be divided into models based on template matching, machine learning models, and 

deep learning models. In template matching methods, a template is matched with the 

offline signature image to find the maximum match pixels using several similarity 

measure techniques such as the Euclidean distance, graph edit distance, the cosine 

similarity measure and fuzzy similarity measure [37][38]. Machine learning-based 

models have significantly improved over traditional template-matching models in 

classifying genuine and forged signature images [39]. Researchers have embraced 

several machine learning-based models, including the support vector machine (SVM), 

the k-nearest neighbor (KNN), the decision tree, and the Gentle AdaBoost. The 

verification of signatures has utilized a wide range of machine-learning techniques 

[32]. For instance, Fang et al. [40] examined tracking characteristics and pen stroke 

locations for signature verification, but they also observed a FAR of 16.7%. A 

signature verification method was created by Alaei et al. [41] utilizing a fuzzy 

similarity measure and an interval symbolic representation of offline images of 

signatures. Using the SVM, the hidden Markov model (HMM) and Euclidean 
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classifiers, Ferrer et al. [42] analyzed the geometric aspects of signatures. With 

different degrees of success and often Average Error Rates exceeding 10%, several 

additional papers have investigated variants of features and classifiers [43][44][45]. 

Nowadays, deep learning-based methods are quite popular and are used in every field 

of research due to their ease of use, automatic learning capability, and generalization 

capability. Deep learning methods like CNNs have been used to detect forgeries by 

automatically learning features from offline digital signatures. Literature has also 

shown the use of several deep learning-based models in OfSFD systems. Various deep 

learning-based models like deep neural networks [45], shallow neural networks [33], 

CNNs [46], pre-trained neural networks and SNN are used for offline signature 

verification systems [47]. 

 

2.2 Copy-move Forgery Detection 

CMFD is among the most prevalent problems in multimedia forensics. This type of 

forgery obscures or copies a few elements or portion of the image. The act of copying 

a portion of the image and inserting it within the same image is known as copy-move 

forgery. In contrast, splicing involves copying and pasting a portion of an image onto 

another image that is not same as the source image. Numerous CMFD-related work is 

primarily based on the two techniques: (i) Key- point-based feature matching [23][24] 

and (ii) Block based feature matching [48][49][50][51]. Key point-based methods 

extract and compare key features within the image. Various feature extractors are used, 

including SIFT, SURF and ORB (Oriented FAST and Rotated BRIEF) etc., because of 

their robustness to rotation and scaling. The block-based methods divide the image 

into overlapping regions, which are matched to detect similarities. Commonly utilized 

techniques include the DCT, Principal Component Analysis (PCA), and SIFT. 

Nonetheless, these approaches come with a significant computational cost, along with 

number of others inherent drawbacks. Therefore, several works incorporated adaptive 

over-segmentation [52][53] to divide the image into non-overlapping patches to reduce 

the computational complexity and perform feature matching to detect forgery. 

However, rather than feature-matching parts of images and detecting copy-move 

forgery, focus on detecting the traces of operations performed after copy-move and 
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splicing to blend it with the original image. In the literature, much work has been done 

to detect the traces left by image tampering post-processing operations like median 

filtering [54], re-compression [55] and contrast enhancement [56]. Such operations are 

employed to make the forgery look more convincing, with median filtering being the 

most widely used. Current techniques use deep learning-based methods to 

automatically learn complicated features from training data, resulting in higher 

accuracy and robustness than handcrafted-based methods. Deep learning-based 

approaches are now used in every field of research because of their automatic learning 

features capability and achieving high accuracy in classification. Various deep 

learning-based approaches were also used to detect an image's tempering and prove 

better results. Generally, in a deep learning model, images are directly given as input 

to the network layer, and the network automatically learns the features based on the 

image's content. However, in the case of image tempering detection, instead of learning 

the content-based features, the traces left after the tempering operation performed on 

the image are learned and used to classify the image as authentic or tempered. To learn 

the traces left after the tempering operation, preprocessing such as filtering is done and 

these filtering residuals are fed to the first convolutional layer. Yang et al. [57] used 

Laplacian filter before passing the image through CNN for edge sharpening and hence 

image enhancement thereby reducing the blurring effects. Deep learning-based 

techniques have recently been used for detecting splicing and/or copy-move forgery 

type of manipulation. Deep CNNs are particularly excellent at identifying copy-move 

forgeries because they recognize unique patterns that indicate manipulation. Hybrid 

frameworks combining traditional methods with deep learning techniques have 

produced promising results by employing handcrafted and deep-learned features to 

improve detection accuracy. Rao and Ni present a approach for detecting splicing and 

copy-move forgery [58]. Their approach involves a supervised CNN that learns the 

hierarchical features of the manipulated input RGB color image. Instead of initializing 

the weights randomly, as in conventional CNN, a high pass channel set is used to 

estimate any remaining mappings in the spatial rich model (SRM). To hide the image 

content and detect the subtle artifact caused by the tampering operations, the first layer 

uses kernel weights based on 30 high-pass filters. The 10 layers make up the CNN 

architecture that is used to automatically learn the features. The final discriminative  
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Table 2.1: Copy-move forgery detection methods. 

Author (s) Methodology Details Performance Dataset 

Liu et al., [52] CKN A data-driven local 

descriptor, GPU-based 

adaptive over-

segmentation, robust to 

post-processing, noise, 

brightness change, gaussian 

blurring and 

transformations 

F1 = 0.5997 CoMoFoD 

Salloum et al., 

[59] 

Edge-

enhanced 

SFCN and 

MFCN 

Multi-task learning, based 

on VGG-16, robust to 

noise, gaussian blurring and 

JPEG compression 

F1 = 0.6117 Columbia 

Cozzolino et 

al., [60] 

Constrained 

CNN, 

Residual 

feature 

extraction 

Small training set, robust to 

median filtering, gaussian 

blurring, noise, resizing and 

JPEG compression 

Accuracy =  

over 90% 

Synthetic 

Ouyang et al., 

[61] 

Transfer 

learning using 

ImageNet 

Uses a pre-trained model 

that isn't realistically robust 

to copy-move forgery 

Error = 2.32% Oxford 

Wu et al., [61] CNN feature 

extractor 

using VGG16 

model 

End-to-end Deep CNN 

solution, poor in a pure 

texture image 

F1 = 0.7572 CASIA 

v2.0 

Liu et al., [63] FCN-CRF Pixel-to-pixel forgery 

detection, scale-invariant, 

and optimization error 

exist. 

TPR = 82.6% CASIA 

v2.0 
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features are obtained by combining the results of a pre-trained CNN's dense patch-

based feature extraction from the test image with the feature fusion approach. Lastly, 

the SVM classifier is used to make binary classification (authentic/forged). In another 

method, Liu et al.[52] use the convolutional kernel network (CKN), a data-driven local 

descriptor. This technique uses adaptive GPU-based over-segmentation based on the 

convolutional-oriented boundaries (COB) method to produce multiscale-oriented 

contours and region hierarchies. In addition, the segmented picture is subjected to key 

point identification, CKN feature extraction, patch matching, and transform estimation 

computation. In [59], two approaches were employed for image splicing localization 

problems: a single-task fully convolutional network (SFCN) and a multi-task fully 

convolutional network (MFCN). A lot of other methods are used for copy-move and 

splicing forgery detection, like Cozzolino et al., [60] uses constrained CNN based on 

residual feature extraction, Ouyang et al., [61] uses transfer learning method, Wu et 

al., [62] uses CNN feature extractor using VGG16 model, Liu et al., [63] uses fully 

convolutional network and conditional random field (FCN-CRF) method for pixel to 

pixel-based forgery detection and Wu et al., [64] introduces an end-to-end deep neural 

network called BusterNet for CMFD and localization. Various copy-move and splicing 

manipulation detection techniques are mentioned in Table 2.1. Table 2.1 consists of 

the authors, the methodology used, brief details about the method, performance 

parameters and the dataset on which the evaluation is done. 

 

2.3 Multiple Forgery Detection 

Multiple image manipulation detection methods are employed to detect the various 

tampering operations carried out on the image. Detecting manipulated images is 

challenging, as the complexity of manipulations can vary, ranging from single 

manipulation to more sophisticated multiple manipulations. A forger can manipulate 

an image by employing a variety of image manipulation techniques. A significant 

interest has been observed in developing a universal image forgery detection approach 

to detect multiple tampering operations. Universal image manipulation detection 

techniques are usually focused on identifying the traces that are left over after the post-

processing operations. Many researchers have focused on detecting manipulated 
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images by employing machine and deep learning techniques. A variety of deep 

learning-based techniques are employed to identify multiple image manipulations. 

Table 2.2 briefly details the various multiple image manipulation detection techniques. 

Table 2.2 consists of the authors, the methodology used, brief details about the 

methods, performance parameters and the dataset on which the evaluation is done. 

 Bayar and Stamm [16] gave a deep learning-based universal image manipulation 

detection approach. The technique uses a novel convolutional layer that is distinct from 

the standard layers of a CNN. This technique uses a novel convolutional layer that 

automatically suppresses the image's content and records the traces left by the 

tampering operation, whereas previously pre-processing or preselected features were 

needed to detect image manipulation. While hiding the image's content, the modified 

attributes that were taken from the layer include the relationship between the pixel and 

its immediate vicinity. The constrained layer is the first layer, where the prediction 

error filters are learned using convolutional filters. After giving each filter, a weight at 

random, the constraint is applied to each filter and iteration. This completes the task 

of using the tampered image to learn the altered features. The following four tampering 

procedures were taken into consideration: resampling, AWGN (additive white 

Gaussian noise), median filtering, and Gaussian blurring. Both binary and multi-class 

classification were tested in the experiment. Two neurons make up the output layer of 

the binary classification method, which is used to categorize both original and altered 

images. Five neurons make up the problem output layer in multi-class classification, 

which is used to categorize various forms of image forgeries. The accuracy of the 

approach is high, at about 99.10%. Furthermore, a data-driven strategy was used by, 

Bayar and Stamm [65] in another paper to provide a manipulation parameter estimator. 

This method is independent of the individual study of the estimator for each form of 

manipulation. In [66], two techniques for identifying and locating image alteration are 

employed. The first approach classifies tampered images using a deep neural network 

and manually created features such as Fast Fourier Transform (FFT), Laplacian, and 

Radon. The second approach used a long short-term memory (LSTM) network to learn 

the boundary transformation or correlation between the current block of resampling 

characteristics and the neighbouring blocks. This gives the SoftMax classifier the 

discriminative features it needs to classify the data. The technique successfully classify 
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Table 2.2: Multiple image manipulation detection methods 

Author (s) Methodology Details Performance Dataset 

Zang et al., 

[25] 

Stack 

Autoencoder 

Detect the tampered region 

accurately, applicable to both 

JPEG and TIFF formats, BMP 

image format is not included 

Accuracy = 

87.51% 

CASIA 

Bayar and 

Stamm [65] 

CNN Manipulation detection using 

data-driven parameter 

estimation, four different 

tampering operations are 

detected: JPEG compression, 

median filtering, gaussian 

blurring and resampling 

Accuracy = 

90% to 99% 

Dresden based 

synthesized 

Bunk et al.,  

[66] 

CNN and 

LSTM 

Detect and localize 

manipulation using resampling 

features and deep learning, 

involves JPEG quality, 

rescaling, rotation and shearing 

Accuracy = 

94.86% 

NIST Nimble 

2016 

Bappy et 

al., [67] 

LSTM-EnDec Manipulation localization is 

done using resampling features, 

LSTM cells and encoder-

decoder network, low-resolution 

feature map, fit for restricting 

controls at a pixel level. 

Accuracy = 

Over 71% 

Synthesized 

using NIST’16, 

IEEE FC, 

COVERAGE 

Mazumdar 

et al., [15] 

Deep siamese 

CNN 

Instead of classification, the 

method discriminates based on 

the same or different processing 

operations they have gone 

through 

Accuracy = 

95.24% 

Dresden based 

dataset 

 

the manipulated images with an accuracy of 92.64%. Because the recompression of 

modified images leaves evidence behind, the JPEG image format is typically employed 

for forgery localization. However, in [25], the stack autoencoder was employed to 
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detect tampering actions in various image formats using contextual information and 

feature learning. Numerous other multiple image manipulations detection techniques 

were also employed, including Bappy et al. [67] where they used LSTM-EnDec and 

Mazumdar et al., [15], used Deep Siamese CNN. 

 

2.4 Image Manipulation Localization 

Image manipulation detection is ascertaining whether an image has been manipulated 

from its original state. On the other hand, image manipulation localization (IML) takes 

it a step further by identifying that an image has been manipulated and precisely 

determining the manipulated region within the image. Detection and localization are 

vital in diverse domains, including forensics, journalism, medical imaging and digital 

media authentication. Detection is useful for identifying potentially manipulated 

images, whereas localization provides additional information about the scope and 

characteristics of the manipulation, allowing for informed decisions regarding the 

image's authenticity and integrity. For many years, the field of media forensics has 

been established to identify fraudulent activities. Early research focuses on projecting 

images straight into binary label space (authentic/manipulated) using conventional 

features [8]. Localizing multiple image manipulations at the pixel level is difficult 

because of the tampered region's features, which include various scales, uneven 

shapes, hazy boundaries, and strong intrinsic resemblance to chaotic backdrop objects. 

Conventional IML techniques rely on hand-crafted features, such as self-consistency, 

point matching, and Markov features, which have a weak generalization capacity and 

strictly rely on the domain expertise of human experts [68]. Deep learning-based IML 

techniques may automatically extract discriminative features using deep neural 

networks and have a more significant learning ability for complicated scenarios [69]. 

 The IML task, which aims to uncover and magnify the forgery traces concealed 

in the altered image, merely needs segmenting out the fabricated region instead of 

semantic segmentation. Progressive deep learning-based IML techniques may 

automatically extract discriminative features using deep neural networks and have a 

more significant learning ability for complicated scenarios than standard techniques 
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[70]. The boundary supervision techniques [71][72] and the two branches [73][74] are 

the major tools used in successful deep learning-based IML models. By combining 

RGB spatial data with noise view or frequency domain features, the two-branch-based 

models aim to increase the detection accuracy. The noise view perspective detects 

tampered sections by utilizing the information that the new parts added through 

splicing or removal differ from the pristine part in terms of noise distribution. This 

allows it to capture traces of image forgeries. A predetermined high-pass filter or 

limited convolution layer is used to construct the noise map given an input image. This 

noise map is then supplied to a deep neural network either separately [75] or in 

combination [76] with the input image. The image manipulation traces are improved 

by the noise inconsistencies derived from these noise streams. This approach is not 

very effective for identifying copy-move without introducing new elements. On the 

other hand, discrete cosine transform or rapid Fourier transform are primarily used to 

extract frequency information to make it easier to capture small indications of forgery 

that are no longer evident in the RGB domain [14]. The frequency modality that has 

been added on top of RGB information can strengthen the model's resistance to several 

image compression techniques. Nevertheless, only the high-frequency information 

was investigated in the majority of the models that were already in use; the frequency 

information was not extensively utilized. Methods based on border supervision have 

been presented consecutively to capture the forged traces around the tampered area. 

Empirically, the boundary artifact placement information was also somewhat 

beneficial for detecting the tampered regions [59]. For instance, the Sobel filter was 

employed by MVSS-Net [77] and its enhanced versions MVSS-Net++ [59] to 

construct an edge-supervised branch, which produced more targeted feature responses 

close to the forged regions. Additionally, Zhou et al. [78] used a discriminative 

generator and uniformly concatenated the backbone characteristics from various layers 

as the input of the auxiliary branch to segment and correct the boundary artifacts 

produced during the picture tampering process.  

For many years, the field of media forensics has been established to identify 

fraudulent activities. Early research focuses on projecting images straight into binary 

label space (real/manipulated) using conventional features. Detecting manipulation at 
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the pixel level (IML) is the subject of a few works [79]. Conventional IML techniques 

rely on hand-crafted features, such as self-consistency [79], point matching [53] and 

Markov features [80], among others, which have a weak generalization capacity and 

strictly rely on the domain expertise of human experts. Nevertheless, several 

techniques—such as splicing [81], copy-move [82] and inpainting[75] —have only 

been studied to identify a single particular kind of alteration and are hence unsuitable 

for the general localization of image forgeries. A new generation of frameworks is 

desperately needed to address the challenges mentioned above to achieve more refined 

outcomes at the pixel level for more semantically complex and perceptually 

compelling images in the real world. 

Many deep learning-based techniques have been presented in the recent few 

years to tackle the IML problem for the three common tampering procedures 

mentioned above, and they have demonstrated considerable potential. Bappy et al. [83] 

used the LSTM-based patch comparison method to identify the border around 

tampered sections. They also suggested general solutions for the hybrid encoder-

decoder structure to enhance the algorithm's performance. Before the end-to-end 

framework with three high-pass filters, Wu et al. [84] used the steganalysis-rich model 

to investigate the noise inconsistencies between the tampered and clean regions. For 

the pixel-level IML challenge, however, the previously mentioned approaches remain 

far from useful in terms of resilience, feature generalization capacity, and segmentation 

accuracy. In order to do this, Hu et al. [85] developed a spatial pyramid attention 

network that builds on local self-attention to describe the link between multi-scale 

visual blocks accurately, hence improving detection accuracy. More recently, Wang et 

al. [68] introduced ObjectFormer, which uses learnable object prototypes based on 

attention and frequency attributes to detect tampering artifacts.  

In the realm of natural language processing, architectures based on self-

attention mechanisms, particularly the Transformer framework [86], have emerged as 

the top option due to their strong capacity to model long-range context information 

[87]. Dosovitskiy et al., [13] presented the ViT model, which eliminated the need for 

CNNs and worked best on the ImageNet classification dataset as a way to apply 

transformers to computer vision problems. The Pyramid ViT [88] and Swin 
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Transformer [89] were created to solve the challenges of porting the Transformer to 

multiple dense prediction applications, in contrast to the ViT, which was exclusively 

designed for image categorization. Robust hybrid Transformer architectures like 

TransFuse [90] and NestedFormer [90] include the Transformer into CNN to improve 

medical picture segmentation in the interim. NestedFormer [90] explicitly investigated 

multi-modal MRIs' intra- and inter-modality relationships to segment brain tumors. 

TransFuse [90] enhanced the effectiveness of modeling global contexts while keeping 

a good grasp of low-level details by combining Transformer and CNN in parallel. 

 

2.5 Deepfake Detection 

Digital picture editing has become more common in recent years.  Therefore, it is 

challenging to confirm the authenticity and integrity of photos because it is so simple 

to manipulate an image. Deepfake detection methods use sophisticated machine 

learning algorithms to spot artificial manipulations, guaranteeing the integrity and 

authenticity of digital content. Deepfake detection focuses on identifying and 

mitigating the risks associated with manipulated media, particularly videos and images 

where individuals' faces or voices are convincingly altered using artificial intelligence. 

Numerous facial manipulation detection techniques have been put forth. The initial 

attempts relied on handcrafted features that were derived from irregularities and 

artifacts in the process of creating fake images. Deep learning has been widely used in 

recent techniques to extract salient and discriminative features to detect facial 

manipulations automatically. Although facial manipulation detection techniques have 

advanced significantly, they still have certain challenges and disadvantages. The 

diversity of training data affects the efficacy of these techniques. A lack of diversity 

in the training data may make it difficult for the model to identify more recent and 

advanced deep fake faces. Academics and industry professionals are actively 

addressing these issues, and continuous developments in data gathering, model 

architectures, and technology are intended to increase the robustness and dependability 

of facial manipulation detection techniques. A few noteworthy facial manipulation 

detection studies have been examined and considered.  
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In related studies focusing on facial manipulation detection, authors provided 

a combined approach that integrated You Only Look Once (YOLO) and Linear Binary 

Pattern Histogram (LBPH) [91]. The approach demonstrated the effective use of the 

YOLO-LBPH face detector for identifying facial regions in video frames, while 

feature extraction was performed using EfficientNet-B5. The precision (P) score of 

88.9% and recall (R) score of 93.76% were achieved on the Diverse Fake Face Dataset 

(DFFD). In the other work [92], the Fisher Face Linear Binary Pattern histogram using 

the Deep Belief Network (FF-LBPH DBN) classifier method achieved an impressive 

accuracy rate of 97.82% on the DFFD dataset. Certain research work [93] explored a 

variety of deep learning and machine learning-based models for detecting GAN-based 

manipulation. It is shown that DenseNet-121 can detect artificially generated 

anomalies in medical imaging with an accuracy of 80.4%. Also, a deep learning-based 

approach [94] was used for detecting deepfakes, aiming to aid cyber security 

professionals in combating deep fake-related cybercrimes by accurately identifying 

manipulated content. The study employed and compared with several neural network 

models. The approach achieved an impressive accuracy of 94%. Different models' 

classification accuracy was examined in a separate study [95]. When applying pre-

processing techniques, the CNN-only model without PCA achieved 63.86% accuracy, 

while the CNN model with PCA classifier achieved 74.26% accuracy. Without any 

pre-processing stages, the CNN-only model achieved 93.16% accuracy and the CNN 

model with PCA achieved 90.76% accuracy. Furthermore, increasing the number of 

samples used for training and testing in the CNN network resulted in the highest 

accuracy of 98.04% for image classification. In another study [96], spatio-temporal 

information was extracted using a convolutional neural network to detect facial 

manipulation. It has been observed that researchers have developed methods to 

identify a particular type of facial manipulation, but they are not robust enough to 

detect multiple facial manipulation techniques. Also, the models that were developed 

are very complex and computationally expensive. 
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2.5 Research Gap  

The following research gaps are identified for future work based on the literature 

survey. 

• Lack of comprehensive, systematic reviews that holistically consolidate recent 

advancements, datasets, and methodologies. This gap presents a strong case for a 

review article, as no unified source sufficiently captures the breadth and depth of 

developments in this rapidly evolving area. 

• Hand-crafted features-based approaches have not proven good enough for 

manipulation detection as they require more human intervention, are not 

automatic, and are not robust, so there is always scope for other deep learning-

based approaches. 

• There is a lack of specialized systems tailored to specific forensic applications, 

such as face or offline signature verification, which require highly accurate and 

context-sensitive approaches. Research focused on application-specific 

manipulation detection frameworks could yield more targeted solutions for fields 

like biometric security, document verification, and media forensics, which have 

unique requirements and constraints. 

• A robust framework is needed to detect multiple forgeries in a single model. Most 

existing methods focus on detecting specific types of forgeries. However, limited 

robustness is observed across multiple forgery detection methods. 

• Methods developed for manipulation detection perform well as they have to do 

the binary classification (detecting whether an image is manipulated) but struggle 

to localize the manipulated region in the image accurately. Localization is a bit 

difficult compared to detection. Existing methods perform well for image-level 

manipulation detection but often lack pixel-level image manipulation localization. 

• Image manipulation methods rapidly evolve with the advancements in generative 

AI, creating a gap between new manipulation techniques and existing detection 

methods. Developing adaptive and robust models capable of handling evolving 

manipulation techniques like deepfake is crucial. 
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2.6 Research Objectives 

Based on the literature review, the main objectives of this thesis work are as follows:  

• To review state-of-the-art handcrafted and deep learning approaches, image 

manipulation datasets, existing solutions and their limitations. 

• To develop an effective approach for image manipulation detection. 

• Design a manipulation detection system for various specific forensics applications 

such as face verification. 

• Multiple forgery detection (universal forgery detection) and localization of 

forgery in a tampered image. 

• To study and formulate the various deep learning-based approaches for image 

manipulation detection systems, including deepfake detection. 
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Chapter 3 

Image Manipulation Detection for specific forgery 

This chapter explained the proposed methodology for detecting specific 

manipulations, such as OfSFD and CMFD. A detailed description of the problem 

statement, dataset, feature extraction process and methods adopted are provided in 

this chapter. The effectiveness of the proposed approach is explained and validated 

through experiments on standard datasets and a SOTA comparison study of the 

results is provided. 

 

3.1 Offline Signature Forgery Detection 

3.1.1 Introduction 

Signature is one of several biometric traits commonly used for user verification, 

including fingerprints, palm geometry, face, retina, iris, and voice. Handwritten 

signatures are regarded as a reliable biometric attribute since they are unique to each 

individual and difficult to reproduce. Signatures are often employed as authentication 

hallmarks because they are simple, socially and legally acceptable to legitimate 

entities. Because the signature is the primary means of validation and approval in 

legitimate transactions, it is crucial to anticipate its authenticity. Signatures have long 

been regarded as the most widely accepted and logical methods of user verification, 

notwithstanding their vulnerability to expert forgers. Several attempts have been made 

to address the vulnerability related to the manual authentication scheme. Manual 

signature verification of various documents is time-consuming and requires human 

carefulness, expertise, and mastery to differentiate and detect forged signatures. A 

robust automated framework for OfSFD is needed. As machine learning techniques 

advance, researchers create various machine learning-based signature forgery 

detection approaches [32], as discussed in Section 2.1.  
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Signature forgery detection is classified into two categories based on their data 

acquisition approach: online signature forgery detection (OnSFD) and the OfSFD 

method  [97]. In online or dynamic methods, a signature is obtained using an electronic 

device such as a tablet, smartphone, or electronic writing pad with a stylus pen. Each 

stage in the signing process provides information about the pen's location, inclination 

angle, stroke order, writing speed, and pressure [98]. In contrast, offline or static 

approaches collect signatures by scanning a handwritten signature on a document and 

converting it to a digital image [99].  

In OfSFD systems, the process begins with digitally obtaining and preserving 

the individual's signatures. In signature forgery detection systems, strong features are 

taken from the training set signature image and compared to those extracted from the 

test image. The OfSFD system is the most well-known individual authentication 

technique for banking or business [100].  Fig. 3.1 depicts a general workflow for an 

OfSFD system. The database contains registered and query signer signature images. 

The images are then preprocessed to extract appropriate features. A model is trained to 

do classification based on a score to determine if a signature image is genuine or 

forged. 

Furthermore, the OfSFD employs two distinct approaches: writer-dependent (WD) 

and writer-independent (WI) [101]. The WD strategy trains the model for each writer, 

requiring a distinct classifier for each writer, whereas the WI approach requires a single 

global classifier for all writers. The WI approach uses a broad model, making it more 

practical and popular than the WD signature forgery detection approaches. As the 

number of users in the WD method grows, each user requires a separate classifier, 

increasing complexity and computing cost. A WI approach is more practical and user-

friendly because it uses a single global classifier for all users [101]. 

Offline signatures are collected after they have been written on a document, 

then scanned and displayed as a digital image. Because of this, dynamic information 

about the signature, such as the location and speed of the pen over time, is lost, making 

OfSFD a difficult task. Offline signatures can be forged in three ways: simply, 

randomly, or skillfully. Simple forgery occurs when the forger is unaware of the real  
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 Fig. 3.1: General process of an offline signature verification system. 

signature. However, they are aware of the signer's name, whereas in the case of random 

forgery, the forger substitutes their signature for a genuine signature, and in the case 

of skillful forgery, the forger is aware of the signer's name and genuine signature and 

attempts to emulate the signer's signature [102]. OnSFD methods outperform offline 
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equivalents due to data availability such as the pen location, inclination angle, stroke 

order, writing speed, and pressure. However, OnSFD techniques require specialized 

equipment, raising the framework cost and limiting real-world application scenarios 

[101]. There are numerous situations where authenticating an offline signature is the 

only choice, such as check transactions and document verification. As a result of its 

more extensive application region, this work centers on developing an automatic 

writer-independent offline signature forgery detection system (WIOfSFD). An 

EfficientNet-based Siamese neural network (eSNN) is proposed to discriminate 

between forged and genuine signatures.  

It is observed that skilfully done forgeries closely resemble genuine signatures. 

Here are a few challenges encountered when developing feature extractors for these 

genuine signatures: (1) Genuine samples of signatures occasionally have completely 

distinct shapes. For such genuine samples, the feature extractor used would have 

produced significantly different feature vectors. (2) In some cases, the character shapes 

can differ greatly. Research focusing on how individual letters appear will produce 

poor results. (3) Directional-based descriptors (such as HOG or D-PDF) may be 

impacted by significant flourish fluctuation. (4) Some users find it difficult to 

distinguish between the traits of two signatures, even after thoroughly studying the 

data. (5) The available signature dataset is insufficient to cover all the signature 

characteristics. Handcrafted feature engineering will not be a suitable solution for this 

signature verification problem. Using deep convolutional neural networks as feature 

extractors could solve the problem, but due to the limited availability of signature 

datasets, it would not be easy to get discriminative features for genuine and forged 

signatures. Therefore, a popular pre-trained EfficientNet-B7 model is used as a feature 

extractor. This gives a dynamic, robust, and efficient feature extractor to solve the 

problem of signature forgery detection. 

3.1.2 Efficient Siamese Neural Network for WIOfSFD 

An eSNN is proposed for WIOfSFD. The main task is to classify whether the 

individual signatures are forged or genuine. eSNN is used to compensate for 

convolutional networks' shortcomings in detecting and differentiating between 
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discovering spatial component variations and alterations in image components while 

still utilizing their strengths in non-manual learnable identification and extraction of 

features. The complete architecture of the proposed network is shown in Fig. 3.2. The 

method is based on the Siamese network and EfficientNet model.  

The Siamese network has two subnetworks, which give the feature vector 

representation of the respective input sample image. A subnetwork consists of an 

EfficientNetB7 pre-trained model on ImageNet followed by a flattening layer and two 

dense layers to finally get the feature vector representation for the input sample images. 

Both subnetworks are combined using a loss function that calculates the Euclidean 

distance between the two feature vectors obtained from the two subnetworks. The 

similarity score between two input sample images in the joint space is computed using 

the Euclidean distance function. However, preprocessing is done on the raw image 

before passing the image to the respective networks. Images in datasets range in size 

from 304×240 to 798×482; therefore, all the images are resized to 224×224 and 

preprocessed to ensure consistency. The outputs of the sub-networks are then 

compared using a loss function, typically through a distance metric that is Euclidean 

distance, to produce a similarity score. The contrastive loss [103] is one such loss 

function that is frequently employed in SNN and is calculated as follows: 

𝐿(𝑒1, 𝑒2, 𝑌) =  
1

2
(1 − 𝑌)𝐷𝑤

2 +  
1

2
𝑌 max (0,1 − 𝐷𝑤)2   (3.1) 

where 𝑒1 and 𝑒2 are two feature vectors, 𝑌 is a binary indicator 0 for the same class and 

1 if the signature samples are from a different class. 𝐷𝑤 =  ‖𝑓(𝑒1) − 𝑓(𝑒2)‖ is the 

Euclidean distance calculated in the embedded feature space, and 𝑓 is an embedding 

function from sub-networks that translates a signature image to real vector space. The 

feature vectors obtained from the sub-networks are compared by the contrastive loss 

function that computes the Euclidean distance between the two feature vectors in the 

embedded space. The Siamese network attempts to push the output feature vectors 

away if the input pairs are dissimilar and to push the feature vectors closer for input 

pairings that are tagged as similar, in contrast to conventional techniques that assign 

binary similarity labels to pairs. The resulting space will have the characteristic that 

images belonging to the same class (a genuine signature for a specific signer) will be 
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closer to each other than images belonging to dissimilar class (signatures of different 

signers) as a result of the loss function given by Eqn. 3.1. The next step is to establish 

a threshold value (𝑡ℎ) for the distance between two images to assess whether they 

belong to the same class (genuine, genuine) or a distinct class (genuine, forged). 

Finally, the query signature is accepted for classification if the similarity score is less 

than the chosen threshold and rejected otherwise. Eqn. 3.2 is used to verify each user. 

𝜎(𝑋|𝑆) = {
𝐺𝑒𝑛𝑢𝑖𝑛𝑒, 𝑖𝑓 𝑆 < 𝑡ℎ

 𝐹𝑜𝑟𝑔𝑒𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (3.2) 

Where 𝑋 is the query user and 𝑡ℎ is the distance threshold value. The user is considered 

genuine if the similarity score (𝑆) between two input sample images is less than 𝑡ℎ. 

 The eSNN takes the offline signature pair from two different users (for 

example, users 1 and 2) and generates an output based on how similar the two pairs 

are, as illustrated in Fig. 3.2. In a Siamese network, the sub-networks share the same 

weights and biases, so they are "identical". This allows the network to learn a common 

representation of the input data and apply it to both inputs. The signature of the genuine 

user 1 is passed to the first subnetwork and the signature of user 2 produced while 

attempting a forgery of user 1’s signature, is passed to the second subnetwork. The 

signature image is passed to the subnetwork to perform the feature extraction using the 

pre-trained model EfficientNetB7. 

3.1.2.1 Siamese Neural Networks 

For autonomous feature extraction and classification problems, deep learning 

architectures utilizing CNN approaches have gained popularity. However, it is well 

acknowledged that these techniques call for a lot of labeled data, which may not be 

feasible (or desired) to verify signatures. As a result, a new strategy is required that 

can be extended to new users without retraining the model and that can be trained on 

smaller data samples. One possible strategy is one-shot learning, which can be carried 

out with a Siamese network of twin sister networks with identical weights. 
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Fig. 3.2: eSNN: the proposed architecture for signature forgery detection 
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 A Siamese network is an artificial neural network, sometimes called a twin 

neural network, which involves pairwise learning. Siamese network architecture 

generally consists of two subnetworks having the same configuration, such as identical 

parameters and shared weights [104]. Here in the SNN, feature vectors of the two input 

images are obtained from the subsequent subnetworks. Then, these feature vectors are 

compared using Euclidean distance, which computes the similarity score or distance 

from each class. The Euclidean distance is small when the two input images belong to 

the same class, such as genuine-genuine (genuine signatures from the same user) and 

is large for the dissimilar class, such as genuine-forged (forged or signatures from the 

other user). 

In contrast to conventional neural networks, SNNs are more robust in an 

imbalanced dataset. The advantage of using Siamese networks is that they can 

effectively learn the similarities and differences between two inputs, even if the inputs 

are from different domains or have different distributions. This makes them useful for 

tasks like signature forgery detection, where defining a clear similarity metric is 

difficult. However, Siamese networks are slower than conventional classifying neural 

networks. Therefore, in the proposed model, the subnetwork gives the feature vector 

as output for the input sample image based on the weights of the pre-trained model 

(EfficientNet) instead of learning from scratch. 

 

3.1.2.2 Feature Learning 

Feature learning is performed on the preprocessed images. In feature learning, several 

features are extracted to distinguish between different signatures. The eSNN takes a 

pair of inputs consisting of a signature sample. Now, the preprocessed images are 

passed to the respective sub-networks. The sub-network consists of EfficientNet-B7, 

where features are extracted using transfer learning from each signature sample. In the 

proposed method, a pre-trained model is used to make the process more robust, 

typically a deep neural network EfficientNet-B7 trained on a large, general-purpose 

dataset, ImageNet, which contains millions of images. This model's pre-trained 

weights and biases are used as initialization for fine-tuning, which helps reduce the 
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training data and computational resources required to solve the problem. The pre-

trained model extracts high-level features from the input sample images in feature 

extraction. Due to limited labeled training data for WIOfSFD, transfer learning from a 

pre-trained model can leverage the knowledge from large amounts of data and improve 

performance. 

 EfficientNet is a family of convolutional neural networks designed by a team 

of researchers at Google AI in 2019 [105]. EfficientNet is known for its efficiency in 

terms of both accuracy and computational resources, making it a popular choice for 

signature forgery detection tasks. EfficientNet has achieved SOTA performance on 

several computer vision benchmarks, including ImageNet, COCO object detection, 

and PASCAL VOC segmentation. Therefore, EfficientNet-B7 is used as a feature 

extractor in the SSN's subnetworks as it performs best over other ConvNets. 

EfficientNet is a pretty large network consisting of many learnable parameters 

(approximately 66 million) obtained after training the network. EfficientNet is trained 

on a large dataset (ImageNet, which contains over 15 million images); thus, a 

considerable computational asset would be required for training. This could be a 

problem because accessing such a high computational machine is difficult whenever 

you train the network. In particular, for huge image datasets, it has been observed that 

the low-level features learned from the initial layers of the network are generally the 

same irrespective of the dataset. Therefore, pre-trained weights trained on ImageNet 

obtained from the EfficientNet-B7 model can be used to initialize the other network. 

This helps reduce training time and makes the model more robust, which results in 

lower generalization errors. 

 

3.1.3 Experiment 

The experiment adheres to the specified design to examine the effectiveness of the 

proposed method for signature forgery detection: (1) Load data and generate pairs of 

similar (genuine, genuine) signatures and dissimilar (genuine, forged) signature 

classes. (2) Preprocessing is done to have greyscaled, binary, noise-free, sharpened, 

and normalized images. (3) Each dataset is split into three separate datasets for 
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training, validation, and testing purposes. After examining the dataset structure, each 

part is allotted 60%, 20%, and 20% of the whole dataset accordingly (except the 

ICDAR 2011 SigComp dataset, where the train and test set is predefined). (4) After 

loading the pre-trained model, add a flattening layer and two dense layers to create the 

final subnetwork. (5) Train the network on different datasets separately to help the 

network learn the weights and reduce the loss function. The loss function gives the 

similarity score based on the Euclidean distance between the two feature vectors. The 

validation dataset determines the ideal threshold value to provide the anticipated class 

labels during training. (6) Calculate the evaluation parameters for each set of test data. 

The final performance of the model is assessed using test data in accordance with the 

assessment criteria. 

 

3.1.3.1 Preprocessing 

Preprocessing aims to prepare all the signatures for further operations and make 

learning more feasible. It is a general understanding that signature images have intra-

class variance. Different examples of the same individual signature will vary due to 

fluctuations in a person's mood, state of mind, etc., and a lack of space on the writing 

surface. These reasons explain why various samples of the same signature frequently 

differ in height, width, skewness, etc. Several preprocessing steps have been carried 

out in the current analysis to eliminate these intra-class variances. Fig. 3.3 illustrates 

the preprocessing procedure for the raw signature images from the datasets. The raw 

images are resized to 224×224, as the default fixed size of the image is taken for 

training. The resized images undergo three essential steps: (1) Gray Scaling: Images 

are converted from the RGB image into the grayscale image. To build a 3-channel 

input image for the pre-trained model, the one-channel image created by the grey scale 

operation is stacked to create three levels of equal pixel values. (2) Binarization: The 

image is transformed to a binary image with only black and white pixel values using 

Otsu thresholding [106] to reduce noise.  
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Fig. 3.3: Preprocessing procedures for the raw signature samples from the datasets 

 

3.1.3.2 Dataset 

Various datasets with unique structures and signature characteristics evaluate the 

eSNN performance. The datasets taken into consideration are GPDS-Synthetic [107], 

MCYT-75 [108][109], CEDAR [29], BHSig260 [110], ICDAR 2011 Signature 

Verification Competition [37] and UTSig [111]. Some examples of real and forged 

signatures from each dataset are presented in Fig. 3.4 to help the viewer comprehend 

the signatures gathered in each dataset. Three real signatures from the same individual 

in the dataset are displayed in each row, along with a forged signature image of the 

same user. Six different datasets are employed in this analysis. Table 3.1 shows the 

details of the datasets. 
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Table 3.1: OfSFD Datasets Description 

Dataset Script 
Signer

s 

Signature 

Samples 

Signature 

Samples 

(Genuine/ 

Forged) 

Signatures 

per Signer 

(Genuine/ 

Forged) 

Description 

GPDS-

Synthetic 

[107] 

English 4000 

 

216000 96000  

/120000 

24/30 600 dpi, JPG 

format 

MCYT-75 

[108][109]  

English 75 2250 1125/1125 15/15 600 dpi, 

greyscale, 

BMP format 

CEDAR 

[29] 

English 55  2624 1320/1320 24/24 300 dpi, 

greyscale, 

PNG format 

BHSig260 

(Hindi) 

[110] 

Hindi 160  8640 3840/4800 24/30 300 dpi, 

greyscale, 

TIF format 

BHSig260 

(Bengali) 

[110] 

Bengali 100  5400 2400/3000 24/30 300 dpi, 

greyscale, 

TIF format 

ICDAR 

2011 

SigComp 

(Chinese) 

[37] 

Chinese 10 + 10 1178 235+236 

/340+367 

(21 to 24) 

/(23 to 36) 

400 dpi, 

PNG 

ICDAR 

2011 

SigComp 

(Dutch) 

[37] 

Dutch 10 + 54 2297 240+1296

/123+638 

(23 to 24) 

/(8 to 16) 

400 dpi, 

PNG 

UTSig 

[111] 

Persian 115  8280 3105/5175 27/42 600 dpi, 

greyscale, 

TIF format 
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Fig. 3.4: Examples of genuine and forged signatures samples from different datasets 

(a) GPDS-Synthetic, (b) CEDAR, (c) BHSig260 (Hindi), (d) BHSig260 (Bengali), (e) 

ICDAR 2011 (Chinese), (f) ICDAR 2011 (Dutch), (g) UTSig. Three real signatures 

from the same individual in the dataset are displayed in each row, along with a forged 

signature image of the same user. 
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3.1.3.3 Experimental Setup 

A pre-trained model, EfficientNet, is used from the Keras Application API in the 

subnetwork. The subnetwork comprises a pre-trained network (EfficientNet) whose 

layers are freezed followed by flattening and adding two dense layers. The first dense 

layer consists of 1024 neurons with a dropout rate of 0.5, whereas the second dense 

layer consists of 128 neurons. At the output of the dense layers, the Rectified Linear 

Units (ReLU) activation function is used. This network receives input pairs, and the 

resulting feature embeddings are provided to a distance function to determine 

similarity. When given the estimated distance, a loss function modifies the parameters 

to reduce the distance between pairs of (genuine, genuine) signatures and raise the 

distance between pairs of (genuine, forged) signatures. A Euclidean distance function 

determines the distance between the two output image encodings from the twin sub-

networks. Adam optimizer is used to train this Siamese network for 15 epochs with 

contrastive loss, momentum rate of 0.9, the initial learning rate is set to 10-4, and batch 

size of 64. The model was trained using a 12GB Nvidia Quadro K4200 and Tesla K40C 

GPU card. The eSNN model has 1.44M trainable parameters and requires around 

393M FLOPs, ensuring efficient performance in resource-constrained environments. 

 

3.1.3.4 Performance Evaluation 

To determine if the signature pair (𝑖; 𝑗) belongs to a similar or dissimilar class, a 

threshold ‘th’ is set for the distance measure 𝐷(𝑥𝑖; 𝑥𝑗) , produced by the model. Refer 

to all signature pairs (𝑖; 𝑗) with different identities as "𝜌𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟", whereas all pairs 

with the same identity are referred to as "𝜌𝑠𝑖𝑚𝑖𝑙𝑎𝑟”. The set of all TP at the threshold 

‘𝑡ℎ’ can, therefore, be defined as 

𝑇𝑃(𝑡ℎ) = {(𝑖, 𝑗)𝜖𝜌𝑠𝑖𝑚𝑖𝑙𝑎𝑟 , 𝑤𝑖𝑡ℎ 𝐷(𝑥𝑖; 𝑥𝑗) ≤ 𝑡ℎ}   (3.3) 

Where 𝜌𝑠𝑖𝑚𝑖𝑙𝑎𝑟 is the number of similar signature pairs. 

Likewise, the set of all TN at ‘𝑡ℎ’ can be defined as  

𝑇𝑁(𝑡ℎ) = {(𝑖, 𝑗)𝜖𝜌𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟 , 𝑤𝑖𝑡ℎ 𝐷(𝑥𝑖; 𝑥𝑗) ≥ 𝑡ℎ}    (3.4) 

Where 𝜌𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟  is the number of dissimilar signature pairs. 
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Now, for a given signature, the TPR (𝑡ℎ) and the TNR (𝑡ℎ) are defined as 

𝑇𝑃𝑅(𝑡ℎ) =
|𝑇𝑃(𝑡ℎ)|

|𝜌𝑠𝑖𝑚𝑖𝑙𝑎𝑟|
, 𝑇𝑁𝑅(𝑡ℎ) =

|𝑇𝑁(𝑡ℎ)|

|𝜌𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟|
,    (3.5) 

Therefore, the maximum accuracy can be calculated by varying 𝑡ℎ 𝜖 D with a 0.01 step 

size from D's lowest value to its highest value. The test accuracy is determined by 

iterating through various threshold levels and counting the number of image pairs that 

were properly identified. The accuracy of each system was calculated using the best 

thresholds discovered for it. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑚𝑎𝑥⏟  
𝑡ℎ𝜖𝐷

1

2
(𝑇𝑃𝑅(𝑡ℎ) + 𝑇𝑁𝑅(𝑡ℎ))   (3.6) 

In classification problems, accuracy is not a sufficient requirement by itself. For this 

reason, FAR, FRR, EER and F1-score values are determined for each class. These 

metrics can demonstrate how effective a verification system is in discriminating 

between genuine and forged identities. 

3.1.4 Result and Discussion 

Table 3.2 compares proposed eSNN and cutting-edge techniques on the various 

datasets. The proposed method performed better on all the datasets, including the 

GPDS Synthetic, MCYT-75, CEDAR, BHSig 260, ICDAR 2011 and UTSig datasets. 

The proposed method outperforms the cutting-edge approaches with respect to 

Accuracy (A), EER, FAR, FRR and F1 Score criteria. The proposed method, eSNN, 

performs flawlessly on the CEDAR dataset and is comparable to the other two top 

approaches, Signet [43] and Compact Correlated Features (Dutta et al. [112]). On the 

BHSig260 database, the performance of the eSNN is not superior to the most effective 

method currently available (CBCapsNet [37]). Suggested eSNN approaches 

significantly outperform the other techniques in all the other datasets. On the ICDAR 

2011 SigComp (Chinese) dataset, shown in Table 3.1, the accuracy of the eSNN 

exceeds 95%, while the accuracy of the other methods does not exceed 88%. On the 

CEDAR dataset, the eSNN accuracy is 100%, and the FAR and FRR are equal to zero. 

Noteworthy is the fact that the performance of the eSNN is also excellent on the UTSig 

dataset, which has the lowest EER value. In conclusion, the proposed model has a 

significant advantage over other SOTA methods in five of the six datasets. 
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Table 3.2: Comparison between the proposed eSNN and cutting-edge techniques. 

Dataset Methods Accuracy EER FAR FRR F1 

Score 

GPDS-

Synthetic 

Dutta et al. [112] 

SigNet [43] 

LS2Net [113] 

Inception-v1 [114] 

CBCapsNet [37] 

Yapici et al. [115] 

eSNN 

73.67 

77.76 

96.91 

77 

90.87 

- 

98.23 

- 

- 

- 

0.22 

- 

12.34 

2.265 

28.34 

22.24 

- 

- 

9.45 

8.66 

3.01 

27.62 

22.24 

- 

- 

8.81 

10.41 

2.52 

- 

- 

- 

0.753 

- 

0.88 

0.86 

MCYT-75 LS2Net [113] 

Ooi [116] 

Soleimani et al. [117]  

Alonso et al. [118] 

Hezil et al. [119] 

Bhunia et al. [120] 

Maergner et al.[121] 

Sima et al.[122] 

Masoudnia et al.[123] 

Yapici et al. [115] 

eSNN 

96.41 

- 

- 

- 

- 

- 

- 

- 

- 

- 

97.82 

- 

9.87 

9.86 

29.62 

7.78 

6.10 

3.91 

5.46 

5.85 

2.58 

2.54 

- 

- 

- 

26.84 

6.23 

6.00 

- 

- 

- 

2.66 

2.54 

- 

- 

- 

32.4 

9.33 

6.20 

- 

- 

- 

1.33 

2.54 

0.97 

- 

- 

- 

- 

- 

- 

- 

- 

0.97 

0.98 

CEDAR Kalera et al. [29] 

Chen and Srihari [124] 

Chen and Srihari [125] 

Kumar et al. [126] 

Dutta et al. [112] 

SigNet [43] 

LS2Net [113] 

CBCapsNet [37] 

Maergner et al.[121] 

Sima et al.[122] 

eSNN 

78.50 

83.60 

92.10 

91.67 

100.0 

100.0 

98.30 

100 

- 

- 

100 

- 

- 

- 

8.33 

0.00 

0.00 

- 

0.00 

5.91 

4.94 

0.00 

19.50 

16.30 

8.20 

8.33 

0.00 

0.00 

- 

0.00 

- 

- 

0.00 

22.45 

16.60 

7.7 

8.33 

0.00 

0.00 

- 

0.00 

- 

- 

0.00 

- 

- 

- 

- 

- 

- 

0.99 

- 

0.97 

- 

0.99 

BHSig260 

(Hindi) 

Pal et al. [110] 

Dutta et al. [112] 

SigNet [43] 

CBCapsNet [37] 

eSNN 

75.53 

85.90 

84.64 

100 

89.28 

24.47 

 

15.36 

0.00 

10.72 

24.47 

13.10 

15.36 

0.00 

10.72 

24.47 

15.09 

15.36 

0.00 

10.72 

- 

- 

- 

- 

0.99 

BHSig260 

(Bengali) 

Pal et al. [110] 

Dutta et al. [112] 

SigNet [43] 

CBCapsNet [37] 

eSNN 

66.18 

84.90 

86.11 

94.3 

88.69 

33.82 

NA 

13.89 

NA 

11.30 

33.82 

15.78 

13.89 

5.11 

11.28 

33.82 

14.43 

13.89 

6.29 

11.32 

- 

- 

- 

- 

0.98 

ICDAR 2011 

SigComp 

(Chinese) 

Liwicki et al.[127] 

Alvarez et al. [128] 

eSNN 

80.04 

88 

96.16 

NA 

NA 

4.01 

19.62 

8.2 

3.84 

21.01 

18.2 

4.17 

- 

- 

0.91 

ICDAR 2011 

SigComp 

(Dutch) 

Liwicki et al.[127] 

Alvarez et al. [128] 

eSNN  

97.67 

94 

97.88 

NA 

NA 

2.09 

2.19 

13.32 

2.02 

2.47 

3.13 

2.1 

- 

- 

0.99 

UTSig Maergner et al.[121] 

Sima et al.[122] 

Masoudnia et al.[123] 

eSNN 

- 

- 

- 

98.39 

14.09 

12.88 

7.02 

2.39 

- 

- 

- 

2.58 

- 

- 

- 

2.53 

- 

- 

- 

0.97 

‘-‘ represents not available. 
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The ROC curve shown in Fig. 3.5 is used to evaluate the performance of the eSNN 

across several threshold values. ROC is a probability curve that indicates the level or 

amount of separability. It indicates how well the method can discriminate between 

classes. The method works better if the AUC is high. It is evident from Fig. 3.5 that 

the CEDAR dataset area under the curve is much higher, indicating that the proposed 

method performed better on the CEDAR dataset than the other datasets. 

 

Fig. 3.5: ROC curve of the proposed method for different datasets 

 

3.2 Copy-Move Forgery Detection 

3.2.1 Introduction 

CMFD is a specialized area within digital image forensics that focuses on detecting a 

particular sort of image manipulation. Copy-Move Forgery encompasses copying a 

part of the image and pasting it within the same image. CMFD is one of the most 

popular techniques because of its subtlety and ease of manipulating images with 

minimal visible inconsistencies. Copy-move forgeries are difficult to detect by 

conventional image manipulation detectors, which generally look for anomalies 

caused by external objects or lighting inconsistencies. However, copy-move forgeries 
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might cause noticeable distortion, such as minor edges, textures, or color 

inconsistencies.  

 CMFD encounters various challenges due to the diversity and complexity of 

forging tactics. Forged regions can undergo modifications such as rotation, scaling, 

and blurring, which alter visual and spatial properties, making detection difficult. 

JPEG compression and noise addition complicate detection by reducing image quality, 

making it difficult for computers to identify duplicate parts reliably. Furthermore, 

recurring patterns in images, such as textures in foliage or building facades, produce 

false positives since actual similarities can seem replicated portions. Furthermore, 

minor or subtle forgeries, particularly well-blended ones, necessitate extremely 

sensitive detection methods to distinguish tampered content from authentic patterns. 

As a result, developing strong, accurate, and efficient CMFD for various manipulation 

scenarios remains a serious research issue. 

3.2.2 Residual-based CNN Method for CMFD 

The proposed method uses the Second Difference Median Filter Residual (SD-MFR) 

and the Laplacian filter residual (LFR) to suppress image content and only explore the 

inconsistencies left behind after the tampering operation. These two residuals act as 

input to a robust CNN architecture to detect the traces in tampered images and classify 

them as so. The complete process flow is given in Fig. 3.6. 

The proposed CMFD technique uses the SD-MFR and LFR residuals as 

combined input to the novel CNN network to classify images as authentic or tampered. 

SD-MFR  is used to capture the median filter residuals, and LFR is used to capture the 

blurring features. Instead of directly feeding the image as input to the CNN, some 

preprocessing is performed on the image. 

 

3.2.2.1 Preprocessing 

Images are resized to 128×128 and converted to grayscale before finding their filtering 

residuals. First, calculate the SD-MFR median of the image given by Eqn. 3.7, then  
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Fig. 3.6: The proposed model flow for CMFD 

the median of the median is given by Eqn. 3.8 and finally, the MFR is calculated using 

Eqn. 3.9 by subtracting Eqn. 3.7 from Eqn. 3.8. 

𝑌𝑖,𝑗 = 𝑚𝑒𝑑𝑤(𝑋𝑖,𝑗)      (3.7) 

𝑍𝑖,𝑗 = 𝑚𝑒𝑑𝑤(𝑌𝑖,𝑗)      (3.8) 

𝑆𝐷 − 𝑀𝐹𝑅𝑖,𝑗 = 𝑧𝑖,𝑗 − 𝑋𝑖,𝑗     (3.9) 

where 𝑋𝑖,𝑗  is the pixel's intensity at the ith and jth pixel and ’w’ represents a 5×5 window 

for median filtering. 

Now, to calculate the LFR, a Laplacian filter mask is used, as shown by Eqn. 

3.10. 

[
0 1 0
1 −4 1
0 1 0

]       (3.10) 
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Further, the Laplacian of the image is obtained by Eqn. 3.11 and then the LFR is 

calculated by subtracting the image from the Laplacian of the image as given by Eqn. 

3.12. The LFR is given as: 

𝐿𝑖,𝑗 = 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝑥𝑖,𝑗)     (3.11) 

𝐿𝐹𝑅𝑖,𝑗 = 𝐿𝑖,𝑗 − 𝑋𝑖,𝑗      (3.12) 

3.2.2.2 CNN Architecture 

The proposed CNN architecture is inspired by VGGNet [22]. The convolution layer is 

the core building block of the CNN. It comprises a set of independent filters 

individually convolved with the input image. They use randomly initialized filters that 

further become parameters to be trained. Convolution layers are extremely effective in 

extracting relevant feature maps from images. Let 𝑍𝑖,𝑗 give the convolution over an 

image at the ith and jth pixel, provided by Eqn. 3.13. 

𝑍𝑖,𝑗 =  𝛷(∑ ∑ 𝑤𝑙,𝑚𝑋𝑖+𝑙,𝑗+𝑚
𝑀
𝑚=0 + 𝑤𝑏

𝐿
𝑙=0 )    (3.13) 

Where 𝑋𝑖,𝑗 is the intensity of the pixel at the location i, j of an input image and 𝑤𝑙,𝑚 

denotes weight, 𝑤𝑏 is the bias, Φ denotes the activation function and the L×M is the 

size of the kernel. 

The proposed network consists of six convolutional layers with ReLU 

activations. The ReLU activation function is used to get nonlinearity in the network. 

The ReLU activation function is based on the thresholding operation and is expressed 

in Eqn. 3.14. 

𝛷(𝑥) = {
  𝑥, 𝑥 ≥ 0
  0, 𝑥 < 0

      (3.14) 

The first convolution layer is for dimension reduction and has 64 kernels of size 

1×1×2. The second layer consists of 64 filters of 3×3 kernel size. The third layer 

consists of 128 kernels of size 3x3. The fourth and fifth layers have 256 filters of 3x3 

kernel size, whereas the sixth convolution layer consists of 512 filters having 3×3 

kernel size each. All the convolutional layers are followed by a max-pooling layer 

except the first layer to reduce the feature size. It performs downsampling by dividing 
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the input into rectangular pooling regions and taking the maximum value from each 

pooling region. A pool of 3×3 with a stride of 2 is used. Just like the input is scaled 

before feeding into the input layer of a network, batch normalization scales the output 

from the activation of each convolution layer so that the next layer receives scaled 

input, thereby increasing performance and speed. This layer is used after each 

convolution layer in the model. Flattening allows changing a high-dimensional tensor's 

shape into a single dimension so that the dense layer can interpret it. It removes all of 

the dimensions except one. It is used after the fifth max pooling layer. The dropout 

layer is used before a dense layer to avoid over-fitting the training data, as the network 

is trained on a small dataset. It randomly drops out some nodes during an epoch of 

training so that responsibility for the input is shared equally among the nodes. This 

layer is used before both the fully connected layers in the proposed framework. A dense 

layer is a layer in which each neuron accepts the input from all the neurons that were 

in the previous layer. The proposed method uses two dense layers with 2048 neurons, 

each with ReLU activations initialized with He initializers and regularized with L2 

regularization and an output layer with softmax activation and two neurons. The 

complete architecture of the proposed network is shown in Fig. 3.7. 

 

 

Fig. 3.7: CNN-based framework for CMFD 
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3.2.3 Results 

The proposed network is tested on the CoMoFoD dataset [129], which consists of 4800 

original and 4800 forged images. The training and validation images are divided into 

a ratio of 70:30. Therefore, the network is trained on 6720 images, and the validation 

set contains 2800 images. The network achieves an accuracy of 95.97% on the 

validation set. The plot of training and validation accuracy and training and validation 

loss of the proposed method on the CoMoFoD dataset is in Fig. 3.8. 

Table 3.3: Performance of the proposed method for CMFD 

Dataset 

Training Set Validation Set 

Accuracy 

Authentic Tampered Authentic Tampered 

CoMoFoD 3360 3360 1440 1440 95.97% 

BOSSBase 7000 3000 7000 3000 94.26% 

 

 

Fig. 3.8: Training and validation metrics of the proposed method on the CoMoFoD 

dataset. 

The proposed method is also tested on the BOSSBase dataset [130] containing 

10,000 raw images. Median filtered versions of each image is generated and then train 
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and test the model on these 20,000 images. The training and validation set is divided 

into the 70:30 split. The network achieves an accuracy of 94.26% on the validation set. 

The experimental results show the proposed method's effectiveness and achieve high 

accuracy. 

3.3 Summary 

This chapter delves into the targeted approach for detecting specific types of 

manipulation, particularly emphasizing WIOfSFD and CMFD. An eSNN method is 

specifically designed to address the challenges of authenticating handwritten 

signatures for WIOfSFD. eSNN approach uses transfer learning to describe a 

framework for OfSFD based on Siamese networks and WI feature learning. Unlike the 

previous approaches, this approach does not rely on handcrafted feature engineering; 

instead, it learns its features from data in a writer-independent scenario. The 

performance of the eSNN method was evaluated based on six popular signature 

datasets. The eSNN was designed to learn spatial features from the pre-trained 

EfficientNet in each sub-network of the SNN for WIOfSFD. The contrastive loss 

function generated a similarity score between two pairs based on the Euclidean 

distance. A decision was made based on the similarity score. The comparison between 

the performance of the eSNN and SOTA methods was done using various evaluation 

parameters. The result shows that eSNN had a significant advantage over the SOTA 

methods on five out of six datasets.  

In addition, the chapter proposes a CMFD method using an SDMFR and LFR residual-

based CNN framework. This method targets copy—move forgery created by 

duplicating parts of an image in order to disguise or manipulate content. The method 

is designed to capture the traces left by postprocessing operations like median filtering 

and image blurring to detect the discrepancies between copied and authentic regions. 

The method achieves high detection accuracy for the CoMoFoD and BOSSBase 

datasets. However, the system is not robust enough to detect tampering where no 

postprocessing operation has been applied. Hence, detecting such forgeries still has 

much potential for further research work. The eSNN and residual-based CNN methods 
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demonstrate advanced, domain-specific solutions for detecting specific forgery types, 

thereby contributing to improved integrity and security in digital media. 
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Chapter 4 

Multiple Forgery Detection and Localization 

This chapter incorporates two different methods to detect multiple manipulations. 

The first method, MDLFormer, consists of multi-modal input, GCST encoder and 

FPN-based decoder to detect and localize the manipulation. The second method, 

LFRViT, is a Laplacian filter residual-based vision transformer for multiple 

manipulation detection. In this chapter, the methodologies concerning each of the 

given methods have been discussed in detail. Further, the classification results of 

the proposed approaches are validated on standard datasets and compared with 

existing state-of-the-art methods. 

 

4.1 MDLFormer Method for Multiple Forgery Detection and 

Localization 

4.1.1 Introduction 

Real-world manipulated images often exhibit multiple forgery operations. Multiple 

forgery detection refers to the recognition of various types of manipulation. These 

manipulations may include copy-move, splicing and inpainting forgeries. Detecting 

multiple forgeries is challenging compared to single forgery detection techniques due 

to the diversity of manipulation operations, variation in manipulation patterns and the 

subtlety involved in editing operations. Recent multiple forgery detection methods 

leverage deep learning models such as CNN and ViT, hybrid frameworks, to analyze 

the intricate attributes of the image and detect irregularities that indicate manipulation, 

such as inconsistencies in texture, lighting, color and structure, while maintaining 

robustness across different manipulations. The development of an effective multiple 

forgery detection approach must enhance the detection accuracy and aid applications 

in journalism, law enforcement and digital media authentication, where the 

verification of the integrity of multimedia content is crucial.  
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Image manipulation detection emphasizes the existence of manipulations, 

whereas image manipulation localization seeks to pinpoint and map the precise 

locations of these changes. Image manipulation detection determines whether an 

image has been manipulated from its original form. On the other hand, image 

manipulation localization takes it a step further by identifying that an image has been 

altered and precisely identifying the specific region within the image that has been 

manipulated. The localization process typically employs algorithms that analyze the 

image in detail, detecting areas where manipulation has occurred and marking those 

regions for further investigation. Detection and localization are vital in diverse 

domains, including forensics, journalism, medical imaging, and digital media 

authentication. Detection is useful for identifying potentially manipulated images, 

whereas localization provides information about the scope and characteristics of the 

manipulation, allowing for informed decisions regarding the image's authenticity and 

integrity. Localizing operations makes it possible to make more accurate corrections 

or adjustments. Image manipulation detection alone can determine if an image has 

been manipulated. However, localization provides additional detail and context, which 

is highly important for applications requiring precision, reliability, and accountability. 

Despite the SOTA IML solutions stated in Section 2.4 above, two issues still 

require attention. The primary motivating factors behind this work are these two 

problems. Problem 1: During feature extraction, attention-based encoding-decoding 

networks and their derivatives are prone to losing some global context information. 

Any meddling behavior will somewhat destroy the integrity of the intrinsic features of 

the original image data itself. Problem 2: Because of edge disruption or body outline 

concealment, existing approaches frequently struggle to accurately and 

comprehensively identify the structure and characteristics of fabricated regions, 

leading to inaccurate predictions with imprecise or incomplete object bounds. Taking 

this into account, this study proposes a model, i.e., MDLFormer, which consists of 

multi-modal input that exploits various inconsistencies present in the manipulated 

image, GCST encoder to capture long-range dependencies as well as local artifacts and 

FPN based decoder for IMDL. This GCST encoder combines the strong ViT with the 

classical Global Context block (GCB). GCST encodes richer features using a widely 



 

 

Chapter 4 Multiple Forgery Detection and Localization 57 

57 

used Swin Transformer rather than a conventional CNN. Adding the GCB to the Swin 

Transformer can significantly enhance the model's performance as it simulates the 

global context efficiently and is lightweight. Finally, the FPN decoder is used to get 

the predicted mask with the same size as the input. Leveraging these well-designed 

modules, the proposed MDLFormer performs better image manipulation detection and 

localization (IMDL) tasks by utilizing multi-modal volumetric data and features 

extracted through Swin Transformer and the supplementary global context information 

from the GCB. The proposed IMDL scheme addresses both image-level and pixel-

level manipulations. Comprehensive experiments are conducted on diverse standard 

datasets. The experimental findings confirm that the suggested MDLFormer 

significantly outperforms the current SOTA IMDL techniques in widely used 

evaluation metrics.  

4.1.2 MDLFormer Model  

A manipulation detection and localization model, namely MDLFormer, is proposed to 

help capture detailed information in manipulated images while overcoming receptive 

field limitations. The proposed IMDL scheme addresses both image-level and pixel-

level manipulations. Three sections comprise the overall architecture of MDLFormer, 

as shown in Fig. 4.1 

 The primary goal is to detect the manipulated images and localize the image's 

manipulated regions. As illustrated in Fig. 4.1, an end-to-end architecture, which 

consists of an encoder/decoder known as MDLFormer, is employed to accomplish this 

goal. An encoder-decoder network is a traditional architecture for dense prediction 

tasks, producing output results that are identical in size to the inputs. This article uses 

the proposed GCST as the encoder and FPN as the basis for the decoder. The Swin 

Transformer in GCST is Swin-B, which contains 2, 2, 18, and 2 Swin Transformer 

Blocks in its four levels. The GCB is added in stages three and four. The encoder's 

primary responsibility is extracting high-level feature vectors by obtaining context 

information through convolution, activation, and normalizing algorithms.  

.
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Fig. 4.1: Overview of proposed MDLFormer model architecture for image manipulation detection and localization. A detailed 

discussion of the three regions, i.e., multi-modal input (green region), GCST encoder (blue region) and FPN decoder (pink region). 
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Nonetheless, the decoder concatenates (adds) two inputs (one from the encoder's 

symmetrical layer and the other from its preceding layer) to determine the spatial 

information placement (up sampling). Proposed MDLFormer structure has a three-step 

pipeline, as seen in Fig. 4.1. The feature maps are displayed by their dimensions, such 

as H×W×C       represents matrix multiplication while      represents broadcast element-

wise addition. Conv 1×1 operation is used to change the feature map dimension to the 

desired feature map dimension. Three different types of information are formed as the 

encoder input in the first step, known as multi-modal input. Although noise 

inconsistency is the most used modality, ablation research demonstrates that different 

modalities improve performance. The second phase consists of a GCST encoder, 

which extracts discriminative features to help classify between manipulated and 

authentic images. The final stage, manipulation localization, makes pixel-level 

localization possible with the FPN decoder. The following are MDLFormer's detailed 

processing steps. 

4.1.2.1 Multi-modal Input 

Typical image manipulations, which are usually undetectable to human eyes, may 

result in some changes between a pristine portion and a tampered part by splicing, 

removal, copy-move, and other post-processing operations to hide artifacts. To enable 

the encoder to learn forgery traces instead of image contents for an image 𝐼 ∈ 𝑅𝐻×𝑊×3, 

three different sources of information are used as input. Among these inputs are: 1) 

Noise feature maps 𝐼1 ∈ 𝑅𝐻×𝑊×3, is obtained to identify the noise discrepancy 

between genuine and tampered regions. The noise characteristics were taken from an 

SRM filter layer [131]. The idea behind the use of the SRM filter layer is that noise 

features between the source and target images are unlikely to match when an object is 

removed from one and pasted into the other (the target). The RGB image is converted 

into the noise domain to use the local noise features as input for the encoder. Noise 

features can be extracted from an image using various methods. SRM filter kernels is 

used to create the noise features and use them as the input channel to the GCST encoder 

based on previous work on SRM for manipulation classification [131]. SRM filters are 

employed to extract the local noise features from RGB images as the input to the GCST 
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encoder, inspired by recent advances in SRM features from image forensics [131]. 2) 

High-pass filtering residuals obtained from the DCT of the Y channel of the YCbCr 

color space I2 ∈ RH×W, which considers high-frequency information caused by 

tampering and post-processing operations. Since research [132] has demonstrated that 

the YCbCr color system is known to be more susceptible to manipulation artifacts, first 

transformed the input RGB image into a YCbCr color space. The DCT coefficients of 

the Y -component are then used to learn forgery traces since they represent luminance 

information and comprise most of the image information. However, there isn't much 

difference between genuine and fake images in RGB space. Furthermore, this 

distinction between real and fake can still be seen in the frequency domain, particularly 

in the high-frequency region, even though it is difficult for the human eye to detect. A 

neural network can detect minute variations in the frequency domain even with low-

quality images. Image forensics relies on capturing the evidence of tampering actions 

to detect and locate manipulation in an image. It is not easy to extract discriminative 

characteristics from the pixel domain of an image and directly record the inpainting 

traces because deep inpainting results in visually indistinguishable image contents. 

High-pass filtering of an image to suppress its contents and extract residuals is a 

standard procedure in many forensic techniques for gathering tampering traces 

[133][134]. Motivated by these efforts, apply a High-pass filter on the DCT of the Y 

channel of the YCbCr color space that can improve the quality of tampering traces. 3) 

LFR maps I3 ∈ RH×W, as obtained in [82], Laplacian filter residual highlights the areas 

of rapid intensity change, which helps identify the discontinuity caused by tampering. 

LFR is obtained by first converting the input image to a grayscale image and then 

applying a Laplacian filter mask of size 3×3 to identify inconsistencies that may 

indicate manipulation after [82].  

Further, these three input features are concatenated as Í = [ 𝐼1;  𝐼2;  𝐼3]  ∈  ℛ𝐻×𝑊×3 , as 

shown by the Eqn. below  

Í = 𝐶𝑜𝑛𝑐𝑎𝑡( 𝐼1, 𝐼2, 𝐼3)      (4.1) 
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4.1.2.2 Encoder 

The main aim of the encoder is to learn the manipulation traces left behind by different 

manipulations. The encoder consists of a proposed Global Context Swin Transformer, 

namely GCST, to downsample and encode the pre-processed multi-modal input image 

into multi-scale high-dimensional feature maps, which are required inputs for the 

decoder. 

Global Context Swin Transformer (GCST): Swin Transformer, a shifted 

window transformer is a hierarchical ViT architecture designed to increase the 

performance and efficiency of using transformers in computer vision tasks like object 

identification, image segmentation, and image classification [89]. Compared to ViT 

[13], Swin Transformer [89] is a hierarchical architecture that handles dense prediction 

issues and lowers computational complexity. In particular, it calculates self-attention 

in non-overlapping windows with small-scale sizes. Furthermore, the window 

partitions in succeeding layers differ to encode contextual information. As a result, 

local self-attention modules transform the long-range information throughout the 

network, making it a suitable choice for image segmentation tasks. Swin Transformer 

has four hierarchical stages, each generating tokens at different scales. Given an input 

of size H×W, the image is divided into non-overlapping patches and these are mapped 

into a vector of dimension C via a linear embedding. Tokens for  
𝐻

4
×

𝑊

4
; 

𝐻

8
×

𝑊

8
; 

𝐻

16
×

𝑊

16
; 

and 
𝐻

32
×

𝑊

32
  are produced, correspondingly, by stages 1, 2, 3, and 4. Each stage 

contains Patch Embedding followed by a few Swin Transformer Blocks. A Swin 

Transformer computes local self-attention using the Shifted Window Multi-Head Self-

Attention (SW-MSA) instead of the MSA used in ViT.  

Despite using a shifted-widow approach for the sequential layers of a 

hierarchical architecture and self-attention mechanism, Swin Transformers still have 

poor encoding for large-scale spatial contextual information, local window constraints 

and slow global information integration. Solution to this issue is to increase the 

corresponding field for spatial images using a Global Context Swin Transformer, or 

"GCST" for short. GCST makes it possible to encode long-range contextual 

information on different scales efficiently. More specifically, the Swin Transformer's 
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many stages are designed to accommodate the GCB. Adding GCB to the Swin 

Transformer helps improve its capacity to capture long-range dependencies and 

contextual information.  

Global Context Block (GCB) directly enhances the model’s ability to 

aggregate global information in a single step without relying on hierarchical 

progression. The GCB enhances the model’s ability to detect and localize subtle image 

manipulations by explicitly integrating the global context information early in the 

network. This integration of GCB provides better consistency, coherence and 

sensitivity to the nuances of image manipulation, making it an essential enhancement 

for tasks like IMDL. The GCB is added within the Swin Transformer blocks. The GCB 

uses global average pooling to capture global context and transforms it using 

convolutions. This transformed context is added to the original input to enhance the 

feature representation. The stages of the Swin Transformer are processed as usual. The 

feature map is processed and enhanced with global context by the GCB. The feature 

map is reshaped to its original dimensions for the next stage. 

Fig. 4.2 illustrates the detailed architecture of the GCB and is formulated as 

𝑧𝑖 =  𝑥𝑖 +  𝑊𝑣
2 𝑅𝑒𝐿𝑈(𝐿𝑁(𝑊𝑣

1 ∑
exp (𝑊𝑘 𝑥𝑗)

∑ exp (𝑊𝑘 𝑥𝑚)𝑁
𝑚=1

𝑥𝑗
𝑁
𝑗=1 ))   (4.2) 

Where, 𝑥𝑖 represents the input feature at the spatial location 𝑖 in the feature 

map. 𝑥𝑖 is a vector of length 𝐶, where 𝐶 is the number of channels in the input feature 

map. Denote  𝑥 = {𝑥𝑖}𝑖=1
𝑁  as the input feature map of an image, where 𝑁 = 𝐻 ∙ 𝑊 is 

the number of positions in the feature map and z is the output feature after applying 

the GCB. 𝑧𝑖 has the same dimension as the input feature map at location 𝑖. 𝑊𝑣 and 𝑊𝑘 

denote bottleneck transform learnable weight matrices (e.g., 1×1 convolution). 𝑊𝑣
1 

reduces the dimensionality of the global context vector in the first step of the 

bottleneck transform from 𝐶 to 𝐶′. 𝑊𝑣
1 helps to reduce the computational cost and 

capture important features more efficiently. 𝑊𝑘 represents the attention score weight. 

It is used to project the feature vector 𝑥𝑗  into a scalar value (attention score = 𝑊𝑘 𝑥𝑗), 
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which is later used to compute the SoftMax weights. Subsequently, global attention 

pooling operation 𝛶 = ∑
exp (𝑊𝑘 𝑥𝑗)

∑ exp (𝑊𝑘 𝑥𝑚)𝑁
𝑚=1

𝑥𝑗
𝑁
𝑗=1  is performed to have a global context 

Fig. 4.2: Architecture of the Global Context Block (GCB). 

vector. It computes a weighted sum of all input features 𝑥𝑗, with weights determined 

by the attention scores. A non-linear activation function ReLU is applied to the output 

of 𝑊𝑣
1 and Layer Normalization (LN) is used to normalize the intermediate feature 

vector to improve the network's stability during training.  𝑊𝑣
2 projects the transformed 

global context back to the original feature map's dimension from 𝐶′ to 𝐶. The weights 
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for global attention pooling are given by 𝑎𝑗 =
exp (𝑊𝑘 𝑥𝑗)

∑ exp (𝑊𝑘 𝑥𝑚)𝑁
𝑚=1

  and Ɓ(·) =

𝑊𝑣
2 𝑅𝑒𝐿𝑈(𝐿𝑁(𝑊𝑣

1(·))) represents the bottleneck transform. GCB consists of three 

steps: (1) global attention pooling for context modeling, (2) bottleneck transform to 

encapsulate channel-wise dependencies and (3) broadcast element-wise addition for 

feature fusion. 

4.1.2.3 Decoder 

This study also uses FPN [89] to fuse different-scale features. Two key goals of FPN 

are to acquire multi-scale contextual information and to expand the receptive field. In 

a standard deep convolutional network, a pooling layer is added along with the 

activation function and convolutional layer. Following the pooling layer, the size and 

computation quantity of the feature map will typically decrease. Field extension is 

essential. However, the smaller feature map's lower spatial resolution will significantly 

lose spatial semantic information for the IMDL challenge. Not only does FPN enhance 

the detection and localization of large target regions, but it also expands the receptive 

field without compromising the spatial resolution. FPN is used to take advantage of 

multi-scale context through multi-level feature map fusion to produce a fine-grained 

localization result. More specifically, the four-head FPN is developed for the four 

stages of GCST. The decoder utilizes the coarse feature map as input and conducts 

sampling and convolution operations to generate dense feature maps that can be used 

for pixel-wise classification into manipulated and authentic images. Furthermore, as 

depicted in the pink box in Fig. 4.1, the {F1, F2, F3, F4} is sent to the FPN decoder 

and the classifier to generate the final prediction, P. To be more precise, start by 

applying a 1×1 convolutional layer to every feature map. Subsequently, the smaller 

feature map is sampled twice, and element-wise summation is performed to fuse them. 

Again, using a 1×1 convolutional layer, these features are fused by the element-wise 

summation and given to the classifier, where the classifier is made up of a 

convolutional layer with 3×3 kernel, batch normalization, SoftMax activation function 

and up-sampling to transform the feature map to match the GT, to produce prediction 

binary mask B.  
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4.1.2.4 Loss Function 

The MDLFormer network parameters are learned during training by minimizing a loss 

function computed between the ground truth (𝐺𝑇𝑖,𝑗) and the predicted binary masks 

(𝐵𝑖,𝑗). Consider two types of loss, each with its own target, i.e., a pixel-level loss to 

improve the model's sensitivity for pixel-level manipulation localization task and an 

image-level loss to improve the model's specificity for image-level manipulation 

detection task. To train the MDLFormer network, employed a linear combination of 

two loss functions: the conventional binary cross-entropy loss (𝐿𝐵𝐶𝐸) and the Dice 

Loss (𝐿𝐷𝐼𝐶𝐸), given by the following equation, 

𝐿 =  𝜆 ⋅  𝐿𝐵𝐶𝐸 + (1 − 𝜆) ⋅ 𝐿𝐷𝐼𝐶𝐸     (4.3) 

Where λ is a hyperparameter that balances the two losses, it is set to 0.5 by default. 

Pixel-Level Loss: A manipulated image typically contains more authentic pixels than 

manipulated ones. The traditional cross-entropy loss, calculated as the average of all 

pixels, will be more biased toward the authentic classes. This results in low 

performance in classifying manipulated pixels while doing well in classifying 

authentic pixels. As manipulated pixels are often in the minority in a given image, 

employ the Dice loss, which was found to be effective for learning stability from 

unbalanced data: 

𝐿𝐷𝐼𝐶𝐸 =  1 −
2 ⋅ ∑𝑖=1

𝐻 ∑𝑖=1
𝑊 𝐺𝑇𝑖,𝑗⋅𝐵𝑖,𝑗

∑𝑖=1
𝐻 ∑𝑖=1

𝑊 (𝐺𝑇𝑖,𝑗)2+∑𝑖=1
𝐻 ∑𝑖=1

𝑊 (𝐵𝑖,𝑗)2
    (4.4) 

Where 𝐺𝑇𝑖,𝑗 ϵ {0,1} represents the pixel label value at position (i, j), and 𝐵𝑖,𝑗 indicates 

the probability that the pixel at position (i, j) is manipulated.  

Image-Level Loss: As the two classes at the image-level are more balanced than their 

counterpart at the pixel-level, utilize the BCE loss, extensively used for image 

classification, to compute the image-level loss: 

𝐿𝐵𝐶𝐸 =  −∑[𝐺𝑇 · log(𝐵) + (1 − 𝐺𝑇) log(1 − 𝐵)]   (4.5) 

Where 𝐺𝑇 = max ({𝐺𝑇𝑖,𝑗}) and 𝐵 = 𝐺𝑀𝑃(𝐵𝑖,𝑗). Global Max Pooling (GMP) takes 

the maximum of 𝐵𝑖,𝑗 as 𝐵, i.e., 𝐵 =  𝐵𝑖∗,𝑗∗ , with (𝑖∗, 𝑗∗) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖,𝑗  (𝐵𝑖,𝑗). 
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4.1.3. Experiments  

This section consists of a set up of a few experiments in this study to evaluate the 

proposed MDLFormer framework. This section consists of the dataset and 

implementation details.  

4.1.3.1 Dataset 

Pre-trained Dataset: Current standard manipulation datasets do not have enough 

manipulated images to support deep neural network training. As a result, first, pre-

train the MDLFormer network using a synthetic dataset, i.e., DEFACTO [135]. A 

synthetic dataset is employed to pre-train the model, enabling it to acquire fundamental 

features and patterns. Following this, the model's performance is assessed using 

standard benchmark datasets, ensuring a robust assessment of its effectiveness and 

generalization capabilities. DEFACTO [135] is a recent large-scale dataset with 149k 

forged images automatically manipulated by copy-move, splicing, and removal. The 

forged images were created from MSCOCO [136]. Several manipulation techniques, 

such as copy-move, splicing, and removal, were used to manipulate the images. In 

accordance with [137], pre-train the model on the DEFACTO [135] in order to enable 

a head-to-head comparison with SOTA methods. In this work randomly selected 60k 

manipulated images are used from the DEFACTO dataset. The manipulated images in 

this dataset resemble genuine forgeries, which helps the model learn various traces 

corresponding to manipulation. It is important to note that compared to some other 

research, including PSCC-Net [137] (100k samples) and ObjectFormer [68] (62k 

samples), the base dataset used in this work had fewer images. Using this synthetic 

dataset, the proposed network is trained with 90% of the data used for training and 

10% for validation. Save the model when the network converges on this dataset to be 

tested and fine-tuned further on several standard manipulation datasets. Table 4.1 lists 

all datasets and their key characteristics. 

Standard Datasets To demonstrate the effectiveness of the proposed approach in 

localizing different types of manipulations, experiments are carried out on the 

following standard forgery datasets: Columbia [138], COVERAGE [139], CASIA 
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[140] and NIST16 [141], and IMD20 [142]. To fine-tune MDLFormer, the same 

training/testing split for Coverage, CASIA, and NIST16 as in [137] for fair 

comparisons is used. Table 4.1 summarizes the manipulation types for each standard 

dataset and the number of images used to train and test the pre-trained and fine-tuned 

models. 

Table 4.1: Dataset training-testing split for the Pre-trained and Fine-tuned models  

Dataset Pre-trained Fine-Tuned Manipulation 

Type 
Train Test Train Test 

DEFACTO [135] 54000 6000 - - S, C, Re 

Columbia [138] - 180 - 180 S 

Coverage [139] - 100 75 25 C 

CASIA [140] - 6044 5123 921 S, C 

NIST16 [141] - 564 404 160 S, C, Re 

IMD20 [142] - 2010 - 2010 S, C, Re 

“S”: Splicing; “C”: Copy-move; “Re”: Removal; “-”: Not applicable 

The datasets are described as follows:  

• Columbia [138] dataset consists of 180 spliced uncompressed images and ground-

truth masks are also provided. It is used to evaluate the pre-trained model. 

• Coverage [139] dataset includes 100 images based on the copy-move technique 

and ground-truth masks. To fine-tune the model, the dataset is split into 75/25 for 

training and testing. 

• CASIA [140] dataset comprises both splicing and copy-move manipulated images 

of different objects. The tampered locations are carefully picked, and some post-

processing techniques, such as filtering and blurring, are used. Ground-truth masks 

are created by thresholding the difference between modified and original images. 
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For fine-tuning, utilize 5123 images from CASIA v2.0 for training and 921 images 

from CASIA v1.0 for testing. 

• NIST16 [141] dataset has 564 manipulated images, including three types of 

manipulation: copy-move, splicing and content-removal. It is a challenging dataset 

as manipulated images are post-processed to remove visible traces and the ground-

truth masks are provided for evaluation. To fine-tune the model, it is split into 

404/160 for training and testing. 

• IMD20 [142] comprises 2010 real-life manipulated mages taken from the internet 

and includes three types of manipulation: copy-move, splicing and content-

removal. It is used to evaluate the pre-trained model. It is used to test the 

MDLFormer. 

4.1.3.2 Implementation Details 

PyTorch framework is used to build the proposed approach and all experiments were 

conducted on Nvidia Quadro K4200 and Nvidia Tesla K40C GPUs. During the training 

phase, the model is optimized utilizing the Adam optimizer with a batch size of 8. The 

initial learning rate was set at 10−4. Validations were performed after each epoch, and 

the model with the highest validation F1-score across all 100 epochs was chosen as 

the final model and used in the testing step. MDLFormer has 58M parameters and 23G 

FLOPs, strikes a balance between computational efficiency and detection accuracy. 

 

4.1.4. Results and Discussion 

This section presents the results of the proposed method, MDLFormer, which performs 

both detection and localization for manipulation detection on an image. For fair 

comparisons, SOTA methods whose source codes are either publicly available or 

whose pre-trained models are released by the authors are considered and if the codes 

are not available, then the results are obtained from their papers. Various evaluation 

metrics assess the model's performance in detecting and localizing tampered regions 

in manipulated images. A comparison of the proposed method with current SOTA 

methods on standard datasets like Columbia [138], Coverage [139], CASIA [140], 
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NIST16 [141] and IMD20 [142] is made. The localization performance of the 

proposed method under two different settings is shown in Section 4.1.4.1. 

Subsequently, manipulation detection performance analysis is done in Section 4.1.4.2. 

Furthermore, the ablation study is done to evaluate the antiablation capability of the 

proposed method in Section 4.1.4.3. Lastly, robust analysis is done in Section 4.1.4.4. 

4.1.4.1 Manipulation Localization Results 

Compared with binary image-level manipulation detection tasks, pixel-level 

manipulation localization is a bit more difficult as it requires the model to capture more 

refined manipulated artifacts. Following PSCCNet [137], evaluated the model under 

two settings: 1) Pre-training the model using the synthetic DEFACTO dataset and 2) 

Fine-tuning the pre-trained model based on the train/test split on the standard datasets. 

The pre-trained model demonstrates each method's generalization capability, while the 

fine-tuned model improves localization and reduces domain discrepancies. The stated 

results for all comparison approaches are based on their original papers or public 

codes. 

4.1.4.1.1 Pre-Trained Model 

A comparison of MDLFormer with several SOTA manipulation localization methods, 

including ManTra-Net [84], SPAN [85], PSCCNet [137], ObjectFormer [68] and 

TANet [143] is made. Table 4.2 reports the pixel-level AUC score of various pre-

trained models on five distinct standard datasets for image manipulation localization 

tasks. Table 4.2 demonstrates the superiority of the MDLFormer in capturing the 

manipulated features and generalization capability of a variety of standard manipulated 

datasets. The pre-trained MDLFormer has the best pixel-level AUC performance on 

Coverage, CASIA v1, NIST16 and IMD20 dataset and second best on the Columbia 

dataset. On the Coverage, CASIA v1, NIST16 and IMD20 dataset, MDLFormer 

obtains a performance improvement of about 0.2%, 7.2%, 1.4% and 3.1%, 

respectively, when compared with TANet [143]. MDLFormer on the Columbia dataset 

outperforms the ManTraNet [84], SPAN [85], PSCCNet [137] and ObjectFormer [68] 

but trails TANet [143] by 2.8%. One of the possible reasons might be the significant 

difference in the data distribution between the DEFACTO and Columbia datasets. The 
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manipulated regions in the Columbia dataset are quite large compared to those in the 

synthetic DEFACTO dataset. 

Table 4.2: Pixel-level AUC localization performance comparison of pre-trained 

MDLFormer. 

Methods Data Columbia Coverage CASIA 

v1 

NIST16 IMD2

0 

ManTraNet [84] 64,000 0.824 0.819 0.817 0.79.5 0.748 

SPAN [85] 96,000 0.936 0.922 0.797 0.840 0.750 

PSCCNet [137] 100,000 0.982 0.847 0.829 0.855 0.806 

ObjectFormer 

[68] 

62,000 0.955 0.928 0.843 0.872 0.821 

TANet [143] 60,000 0.987 0.914 0.853 0.898 0.849 

MDLFormer 60,000 0.959 0.916 0.925 0.912 0.88 

The bold values indicate the best results. 

4.1.4.1.2 Fine-Tuned Model: 

To account for the difference in visual quality between the synthetic and standard 

datasets, further fine-tune the pre-trained model on the specific datasets and compare 

it with other approaches in Table 4.3. The pre-trained model's network weights are 

utilized to initiate the fine-tuned models, which will be trained on the training splits of 

the Coverage, CASIA, and NIST16 datasets, respectively, using the same strategy as 

[137]. The best result values are reported from the literature to ensure a fair comparison 

with other methods. Table 4.3 shows that MDLFormer performs best on average on all 

datasets, whether measured by pixel-level AUC or F1 score. MDLFormer achieves a 

performance gain of 0.3%, 0.6% in AUC and 3.8%, 2.1% in F1 score with respect to 

the second-best method TANet on Coverage and CASIA v1 dataset, respectively. 

However, on the NIST16 dataset, MDLFormer trails by 1.2% and 1.5% in AUC and 

F1 score, respectively, to the second-best method TANet. One of the possible reasons 

for this might be the wide range of image resolution varying from 500×500 to 

5616×3744 in the NIST16 dataset. The significant performance gains can be seen, 

demonstrating that MDLFormer can capture subtle manipulating artifacts using multi-



 

 

Chapter 4 Multiple Forgery Detection and Localization 71 

71 

modal input, local and global context hierarchical feature representation by the GCST 

encoder, and the FPN decoder to distinguish between authentic and manipulated pixels 

and produce a binary predicted mask. The fine-tuned MDLFormer has average pixel-

level AUC performance and is either the best or second-best on all datasets, exhibiting 

outstanding generalization across manipulations. 

Table 4.3: Performance comparison of the fine-tuned MDLFormer in pixel-level 

AUC and F1 score for image manipulation localization task. 

Method Coverage CASIA v1 NIST16 

AUC F1 AUC F1 AUC F1 

SPAN [85] 0.937 0.558 0.838 0.382 0.961 0.582 

MVSS-Net [77] - 0.824 - 0.753 - 0.737 

PSCC-Net [137] 0.941 0.723 0.875 0.554 0.996 0.819 

ImageForensicsOSN 

[144] 

- - 0.873 0.509 0.783 0.332 

ObjectFormer [68] 0.957 0.758 0.882 0.579 0.996 0.824 

TruFor [72] - 0.735 - 0.822 - 0.470 

TANet [143] 0.978 0.782 0.893 0.614 0.997 0.865 

UnionFormer [69] 0.945 0.720 0.972 0.863 0.881 0.489 

MDLFormer 0.981 0.820 0.978 0.884 0.985 0.850 

The bold values indicate the best results, underlined values indicate the second-best 

values and “-” indicates that they are unavailable. 

 

Table 4.4: IoU-based localization performance comparison 

Methods Coverage CASIA v1 NIST16 

DFCN [145] - - 0.23 

ImageForensicsOSN [144] - 0.358 0.214 

Fals-Unet [146] 0.886 0.927 0.625 

ViT-VAE [71] 0.108 0.106 0.171 

MSCL-Net [147] 0.625 0.774 0.718 

MDLFormer 0.707 0.821 0.790 

The bold values indicate the best results, underlined values indicate the second-best 

values and “-” indicates that they are unavailable. 
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4.1.4.1.3 Qualitative Results: 

Qualitative results of the MDLFormer method on image manipulation localization 

using the COVER, CASIA v1, Columbia and NIST16 are demonstrated in Fig. 4.3. 

The proposed MDLFormer outputs a probability map, which is subsequently 

thresholded to produce a binary map to localize the forged regions. An experiment 

with different thresholds within the range of 0.2 − 0.8 was done and found no 

discernible difference in the results obtained. This is due to the fact that the probability 

values associated with forged regions are very close to 1, while the probability values 

associated with authentic pixels are very close to 0, or typically below 0.01. Therefore, 

the mid-value, 0.5, has been employed as the threshold for all the experiments in this 

paper. In Fig. 4.3, column 1 corresponds to the pristine image for each image, column 

2 corresponds to the manipulated image, column 3 corresponds to the ground truth 

mask, and column 4 shows the predicted mask. As illustrated in Fig. 4.3, the method 

localizes the manipulated regions accurately. Furthermore, the MDLFormer exhibits 

less sensitivity to variation in scale. Effective localization is possible for both large 

(e.g., the fourth row in Fig. 4.3) and small (e.g., the fifth row in Fig. 4.3) 

manipulations. 

4.1.4.2 Manipulation Detection Results 

To analyze the image-level detection performance, a comparison is made between 

MDLFormer and the SOTA methods: MVSS-Net [77], GP-Net [74], UnionFormer 

[69] and MSCL-Net [147],  using two commonly used metrics (image-level AUC and 

F1 score). Table 4.5 shows the AUC and F1 scores for quantitative manipulation 

detection results. The results illustrate that MDLFormer performs best on the image-

level AUC and F1 scores on most datasets, except for Columbia datasets.  
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Fig. 4.3: Qualitative localization performance of the proposed MDLFormer model 

against different manipulation techniques such as copy-move (first and fourth row), 

splicing (second and third row) and removal (fifth and sixth row) on CASIA v1, 

Columbia, Coverage, IMD20 and NIST16 standard dataset. From left to right, the first 

column is the authentic image, the second is the manipulated image, the third is the 

ground truth, and the fourth is the predicted binary mask. 
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MDLFormer's AUC score on the Columbia dataset is 1.2 % lower than UnionFormer's. 

It may be because the Columbia dataset is only used for testing, not for training. It is 

worth noting that the F1 score of MDLFormer is superior to all other models except 

for the Columbia dataset. These results demonstrate that MDLFormer performs well 

in image-level image manipulation detection. 

Table 4.5: Image manipulation detection performance using image-level AUC and 

F1score 

Method Columbia Coverage CASIA v1 NIST16 

AUC F1 AUC F1 AUC F1 AUC F1 

MVSS-Net [77] 0.980 0.802 0.731 0.244 0.937 0.758 - - 

GP-Net [74] - - - - 0.887 0.781 0.922 0.848 

UnionFormer 

[69] 

0.998 - 0.783 - 0.951 - 0.793 - 

MSCL-Net 

[147] 

- 0.818 - 0.724 - 0.901 - 0.875 

MDLFormer 0.986 0.827 0.989 0.853 0.983 0.910 0.988 0.937 

The bold values indicate the best results, underlined values indicate the second-best 

values, and “-” indicates that they are unavailable. 

 

4.1.4.3 Ablation Studies 

In this subsection, experiments are performed to investigate each component's effect 

in MDLFormer. For instance, MDLFormer with and without GCB and multi-modal 

input can be replaced by single-modality input or various input combinations. Table 

4.6 shows the results for the NIST16 dataset. Firstly, by comparing Variant 1 to 

Variant 6, which consists of different input combinations with the MDLFormer, the 

results demonstrate that the MDLFormer is better than all the first six variants. 

Secondly, comparing Variant 7 to MDLFormer, respectively, the results show that the 

MDLFormer with GCB-based Swin Transformer encoder remarkably enhances the 

performance in terms of AUC, F1 and IoU compared to MDLFormer without GCB-

based Swin Transformer encoder (Variant 7). It has been discovered that even if Swin 
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Transformer (ST) uses a shifted window to increase the corresponding fields at various 

levels, ST + FPN still performs poorly. This operation has minimal impact on context 

information encoding. Thus GCB is included in the multiple stages of Swin 

Transformer. The features in the Transformer are rearranged like CNN's feature map 

after a certain level. Ultimately, the feature map is loaded into the Transformer's 

subsequent stage while maintaining its original size. GCST can learn contextual 

information more efficiently and has a bigger receptive field than the only Swin 

Transformer as an encoder. Lastly, by comparing Variant 1, 2, 3 and MDLFormer, the 

results demonstrate that while input as in the noise inconsistency (Variant 1) plays a 

major role, input as in the high-pass filter of DCT residual inconsistency (Variant 2) 

and input as in the Laplacian edge discontinuity (Variant 3), can assist the network to 

explore complementary tampering traces but combination of all these inputs 

significantly improves the performance of the network in all the three metrics AUC, 

F1 and IoU. The method's GCB module is designed to extract global information-

based forgery features for manipulation localization and detection.  

Table 4.6: Ablation study results on DEFACTO datasets. Pixel-level AUC and Image-

level AUC values are reported. 

Variants Pixel-level Image -level 

AUC F1 AUC F1 

MDLFormer with input I1 0.836 0.642 0.880 0.728 

MDLFormer with input I2 0.735 0.539 0.836 0.751 

MDLFormer with input I3 0.825 0.628 0.857 0.766 

MDLFormer with input I1 + I2 0.881 0.782 0.905 0.873 

MDLFormer with input I1 + I3  0.928 0.814 0.944 0.836 

MDLFormer with input I2 + I3 0.863 0.761 0.927 0.850 

MDLFormer with I’ and w/o 

GCB 

0.934 0.880 0.956 0.874 

MDLFormer 0.989 0.930 0.993 0.915 

The bold values indicate the best results. 
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Moreover, to illustrate the effectiveness of GCB, it is removed from the 

MDLFormer and evaluate the tampering localization performance on the NIST16 

dataset. The quantitative results are listed in Table 4.6. It can be observed that without 

GCB, the AUC scores decrease by 11.4%, the F1 score decreases by 7.3% and IoU 

decreases by 15.8% on the NIST16 dataset. The performance degradation validates 

that the use of GCB effectively improves the performance of the MDLFormer.  

 

4.1.4.4 Robustness Analysis 

In real-world scenarios, manipulated images often suffer from non-malicious 

manipulations or post-processing distortion operations such as noise, resizing, blurring 

and JPEG compression, which impacts the manipulation detection and localization. 

Consequently, in this subsection, the robustness of the proposed method against 

various commonly used distortion settings is evaluated. To further demonstrate the 

robustness of the MDLFormer, it is subjected to the images from the NIST16 dataset 

to various post-processing distortion methods. These methods include image resizing 

with different resizing factors 𝑠 = {0.78, 0.50, 0.25}, Gaussian noise with a standard 

deviation 𝜎 = {3, 5, 11}, JPEG compression with a quality factor 𝑞 = {100, 50, 25} 

and Gaussian blur with a kernel size 𝑘 = {3, 7, 15}. Table 4.7 shows the robust 

performance of the MDLFormer measured by the F1-score and AUC against the 

various distortion parameters used. The model performs well under a variety of 

distortions.  

Table 4.7 shows that MDLFormer is less affected by noise, resize and JPEG 

compression, while it is more sensitive to Gaussian blurring distortion operations. 

Especially on compressed images, the F1-score is only 0.35% lower than without the 

distortion when the quality factor is 100 and 0.82% lower than without the distortion 

when the quality factor is 50. The MDLFormer demonstrates robustness against 

multiple distortion operations. 
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Table 4.7: Robustness analysis of MDLFormer for image manipulation localization 

using AUC and F1 as the evaluation metric under various distortion scenarios on the 

NIST16 dataset 

Distortion AUC F1 

w/o distortion 0.985 0.850 

Resize (𝑠 =0.78) 0.967 0.843 

Resize (𝑠 =0.50) 0.944 0.822 

Resize (𝑠 =0.25) 0.938 0.846 

Gaussian noise (𝜎 = 3) 0.968 0.838 

Gaussian noise (𝜎 = 5) 0.921 0.788 

Gaussian noise (𝜎 = 11) 0.870 0.756 

Gaussian Blur (𝑘 = 3) 0.977 0.849 

Gaussian Blur (𝑘 = 7) 0.963 0.832 

Gaussian Blur (𝑘 = 15) 0.864 0.801 

JPEG Compression (𝑞 = 100) 0.981 0.844 

JPEG Compression (𝑞 = 50) 0.967 0.832 

JPEG Compression (𝑞 = 25) 0.948 0.801 

 

 

4.2 LFRViT Method for Multiple Image Forgery Detection 

4.2.1 Introduction 

The field of research and technology known as "multiple image forgery detection" is 

devoted to detecting situations in which multiple images are combined or altered to 

produce an inaccurate or misleading representation. Multiple-image forgery detection 

exposes instances of manipulation or tampering by examining relationships and 

inconsistencies between multiple images, in contrast to traditional single-image 
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forgery detection, which focuses on finding a single tampering operation within an 

image [1]. 

Effective techniques to identify manipulated or tampered images are more important 

than ever due to the spread of social media sites, online news sources, and digital 

archives. These kinds of images can be used to disseminate false information, sway 

public opinion, or trick people or institutions. Thus, creating efficient methods and 

algorithms for multiple image forgery detection has become essential research in the 

larger digital forensics and image analysis field. By applying advances in machine 

learning, computer vision, and signal processing, scholars and practitioners aim to 

improve the veracity and authenticity of visual content on digital platforms [148]. 

This study considers four different types of image tampering operations. These 

tampering operations are applied to each original image to have a manipulated image. 

The four different types of tampering operations are: AWGN, resampling, median 

filtering, and gaussian blurring. Fig. 4.4, shows the different tampering operations 

performed over the original image, taken from the RAISE dataset. 

 

 

    (a)   (b)     (c)           (d)  (e) 

Fig. 4.4: From RAISE database, (a) original image and different operations are 

performed on this original image, (b) resampled image with a scaling factor of 1.5, (c) 

AWGN noisy image with standard deviation of 2, (d) median filtered image with a 5 × 

5 kernel size and (e) Gaussian blurred image with 5 × 5 kernel and σ = 1.1. 

 

This study introduces a novel universal method for detecting image editing, 

which has the ability to autonomously acquire knowledge about the traces left by the 

editing operation. In order to achieve this, ViT [13] is used. ViTs have recently led to 
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significant progress in image recognition by enabling dynamic learning of 

classification features instead of relying on hand-crafted features. A deep-learning 

approach is presented that turns local image regions into masked features using patch-

level learnable masking. The ViT model receives these masked features to identify any 

global discrepancies between the local masked features produced. These generated 

features are highly valuable in the manipulation detection area because they can 

efficiently learn the residual artifacts in manipulated images, whether local or global. 

From now on, refer to this model as LFRViT. Fig. 4.6 shows the entire architecture of 

the proposed model LFRViT. 

4.2.2 LFRViT Model 

This study proposes an LFRViT, a deep learning-based classification model that 

distinguishes between real and altered images produced by various tampering 

operations. In the proposed approach, the tampering activities are investigated to 

discern between real and altered images, suppressing the image content using the LFR 

[82]. The residual serves as an input for the ViT architecture, which detects and 

classifies altered images based on their traces. Fig. 4.5, shows the LFR image 

corresponding to the input image. The image undergoes some pre-processing before 

being fed directly as input to the ViT. In pre-processing, first, resize the images to 

224×224. A Laplacian filter mask of 3×3 is utilized, as indicated by (1). 

 

                     (a)    (b)       (c) 

Fig. 4.5: Illustration of the Laplacian filter-based CNN layer output, (a) input image, 

(b) Laplacian filtered image obtained via (2) and (c) LFR image obtained via (3). 
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  𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟 𝑚𝑎𝑠𝑘 =  [
0 1 0
1 −4 1
0 1 0

]    

 (4.6) 

The Laplacian of the image is further obtained via (4.7). 

  𝐿𝑖,𝑗 = 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝑋𝑖,𝑗)     (4.7) 

Where 𝑋𝑖,𝑗 represents the intensity of the pixel at the ith and jth pixels. Finally, 

subtracting the image from the Laplacian of the image as provided by (4.7), yields 

the LFR. As stated, the LFR is given by: 

𝐿𝐹𝑅𝑖,𝑗 =  𝐿𝑖,𝑗 −  𝑋𝑖,𝑗      (4.8) 

The solution to this problem is addressed by leveraging the inconsistent 

occurrence of nearly undetectable residual artifacts in altered images. A model is 

developed that can detect the presence of these artifacts by identifying the 

inconsistencies within the manipulated image. To do this, initially apply the Laplacian 

filter to the input image, resulting in the LFR image. Subsequently, this LFR image 

will be utilized as input for the ViT model. The ViT model initially divides the image 

into patches of a predetermined size. A patch size of 16×16 is taken. Every patch is 

considered as "token," similar to how words are processed in tasks involving natural 

language processing. Each patch is encoded into a vector representation using an 

embedding layer known as token embeddings. The embeddings preserve spatial 

information of the patches. Positional encodings are incorporated into the token 

embeddings of the Vision Transformer to compensate for its lack of innate 

understanding of spatial relationships between patches, an ability that CNNs possess 

through convolutions. These encodings convey information about the position of each 

patch inside the image. The token embeddings, in addition to positional encodings, are 

subsequently fed into a Transformer encoder. This encoder comprises several layers of 

self-attention mechanisms, which are then followed by feedforward neural networks. 

The self-attention mechanism enables the model to capture interdependencies among 

various patches in the image. Ultimately, the result of the Transformer encoder is sent 
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into a classification head, which usually comprises one or more fully connected layers. 

This classification head generates the final output probabilities for various classes [13]. 

Fig. 4.6, provides a visual representation of the operational concept of the proposed 

model LFRViT. 

 

Fig. 4.6: Architecture of the proposed LFRViT model. 

A comprehensive set of experiments is conducted to evaluate the effectiveness 

of the proposed method in identifying different image-manipulating activities. 

Standard image datasets, such as Uncompressed Color Image Datasets (UCID) [149], 

Break Our Stenographic System (BOSSBase) [130], raw images dataset for digital 

image forensics (RAISE) [150], and the Dresden image dataset (DID) [151], were 

utilized to create different training and testing sets for different experiments. A total 

of 33593 images were assembled using 1388 images from UCID with dimensions of 

512×386, 9074 images from BOSSBase with dimensions of 512 ×512, 15025 images 

from DID with varying dimensions, and 8156 images from the RAISE dataset. Several 

training and testing datasets were then created using the original image set as a 

foundation. Four distinct types of manipulation operations are applied to each image: 



 

 

Chapter 4 Multiple Forgery Detection and Localization 82 

82 

AWGN, resampling, median filtering, and gaussian blurring. Then produced a set of 

altered images. To achieve this, a collection of unaltered images is subjected to the 

individual manipulation operations such as AWGN with standard deviation of 2, 

resampling using a scaling factor of 1.5, median filtering with a 5×5 kernel and 

gaussian blurring with a 5×5 kernel and a standard deviation of   = 1.1. 

4.2.3 Result 

In this section, manipulation detection results of the proposed method is presented for 

binary and multi-class classification. Different evaluation metrics assess the model's 

accuracy in identifying manipulated images. The study utilizes commonly used criteria, 

including accuracy, precision, recall, and F1 Score, to quantify the effectiveness of 

classifying manipulated images. 

4.2.3.1 Binary Classification 

In the initial set of experiments, the proposed model is trained separately for each of 

the four manipulations to detect them individually. With the identical architecture 

described in Section 3, each model corresponds to a binary classifier that can identify 

a single kind of potential image processing. The original and manipulated images 

correspond to the two neurons that comprise the output layer. Decisions are made by 

selecting the class corresponding to the highest activated neuron. Training set for each 

type of forgery is constructed using 26875 unaltered photos and the corresponding 

manipulated images. Similarly, to create the testing data for each type of forgery, 6718 

original images were selected, along with the corresponding manipulated ones. In total 

53750 training images and 13436 testing images are used for each binary 

classification.  

The performance of the proposed model for binary classification to identify the 

underlying manipulating operations is compiled in Table 4.8. This table shows that the 

proposed approach can differentiate between original and manipulated images with a 

minimum of 99.32% accuracy, a minimum value of 0.96 for precision and recall and 

a minimum value of 0.95 for F1-Score. 
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4.2.3.2 Multi-class Classification 

In the second set of the experiment, the model was trained for multiclass classification 

to identify several forms of image manipulation, such as median filtering, Gaussian 

blurring, AWGN, and resampling, compared to real images. As in the first set of 

experiments, a choice is made by selecting the class corresponding to the neuron with 

the highest activation level. A 26875 unaltered images and their four corresponding 

tampered images are selected to create the training set. Similarly, 6718 original images 

and the four corresponding tampered images are used for the testing data. For testing 

33590 images and for training, 134375 images have been used. A summary of the 

simulation results is shown in Table 4.9. The proposed model detects the four main 

types of forgeries with a minimum accuracy of 99.28%. This confusion matrix shows 

us how well the model can identify each alteration. 

There are multiple reasons why these results are significant. First, they demonstrate 

how the model, which can be trained to identify multiple manipulations without 

changing its architecture, represents a universal approach to manipulation detection. 

Perhaps most surprisingly, the model can be taught to learn detection features for every 

manipulation without human assistance automatically. This implies that the model 

may learn to detect new manipulations as they are considered or created, eliminating 

the requirement for a human expert to define detection features.  

Table 4.8: LFRViT performance as a binary classifier 

Evaluation 

Parameters 

Tampering operations 

Resampling AWGN Median Filtering 
Gaussian 

Blurring 

Accuracy 

(A) 
99.78% 99.62% 99.32% 99.47% 

Precision 0.99 0.98 0.96 0.97 

Recall 0.98 0.99 0.94 0.96 

F1-Score 0.98 0.98 0.95 0.95 
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Table 4.9: Confusion Matrix of LFRViT as a Multi-Class Classifier 

 Original 
Resampling AWGN 

Median  

Filtering 

Gaussian 

Blurring 

Original 99.61 1.37 0.51 1.70 1.52 

Resampling 1.20 99.78 0.18 0.57 0.68 

AWGN 0.07 0.09 99.62 1.29 1.01 

Median 

Filtering 
0.26 0.31 0.51 99.28 1.59 

Gaussian 

Blurring 
0.72 0.83 0.16 1.30 99.47 

 

4.3 Summary 

This chapter explores methods for detecting and localizing multiple forgeries. This 

chapter presents MDLFormer, a Multi-modal Global Context-based Swin Transformer 

tailored for image manipulation detection and localization tasks. MDLFormer consists 

of three regions: multi-modal input, GCST encoder and FPN decoder. The multi-modal 

input from the SRM filter layer, the high-pass filter of DCT coefficients of the Y 

channel of the YCbCr color space and the Laplacian residual enables the model to 

capture noise inconsistencies-based features between manipulated and authentic 

regions. The GCST encoder is a global context-based Swin Transformer that aims to 

provide features of spatial characteristics of manipulated regions. Finally, the FPN 

decoder learns spatial mapping to produce the binary predicted mask. Extensive 

experiments are performed to test the performance of the MDLFormer on various 

standard datasets such as CASIA, Columbia, Coverage, IMD20 and NIST16. The 

results have demonstrated the superiority of the MDLFormer model against SOTA 

methods regions in terms of F1 score, AUC and IoU for detecting manipulated images 

and localizing the manipulated. Despite exhibiting outstanding performance, the 

proposed approach still has certain drawbacks. For instance, certain images are still 
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not well localized, particularly on the NIST'16 dataset. Moreover, MDLFormer should 

be strengthened to fight against online social networks based shared manipulations.  

Additionally, the chapter introduces LFRViT, a Laplacian Filter Residual-based 

ViT specifically developed for Multiple Image Forgery Detection. The method 

introduces a novel convolutional layer that utilizes a Laplace filter mask to recognize 

multiple image manipulations. This mask generates Laplacian filter residuals 

specifically designed to suppress the image's content and enables the ViT to better 

capture subtle forgery patterns and irregularities. Results conclusively demonstrated 

that the LFRViT model can autonomously acquire the ability to identify a variety of 

image manipulations. 

MDLFormer and LFRViT are highly effective for detecting multiple traditional 

image manipulation types, including copy-move, splicing, and inpainting, but they are 

not suitable for deepfake-based manipulation detection. In the future, methods for 

deepfake detection will be investigated. 
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Chapter 5 

Deepfake Face Manipulation Detection 

This chapter presents a framework based on hybrid learning and kernel principal 

component analysis for deepfake face manipulation detection. The effectiveness of 

the proposed approach is explained and validated through experiments on standard 

datasets and state-of-the-art comparisons of obtained results. 

 

5.1 Introduction 

Face manipulation is altering a face’s features in images or videos to produce artistic, 

cosmetic, or misleading effects. It can entail a variety of adjustments, ranging from 

minor improvements to significant changes. Face manipulation can be divided into 

four primary categories: exchanging identities, swapping expressions, manipulating 

attributes, and generating synthetic faces. Facial identity manipulation is the process 

of replacing one person's face with another. The most widely used methods for 

manipulating facial identities are FaceSwap1 and DeepFakes2. Facial expression 

manipulation replaces one person's facial expressions with another while preserving 

the facial identity. Face2Face [152] and NeuralTextures [153] are the two most popular 

methods for manipulating facial expressions. While the DeepFakes and 

NeuralTextures approaches are based on deep learning techniques, the FaceSwap and 

Face2Face approaches are based on computer graphics techniques. Face attribute-

manipulated images identify alterations to specific facial features or characteristics 

such as gender, age, hair, beard, and glasses. The two most popular methods used to 

generate attribute-manipulated images are FaceAPP3 and StarGAN [154]. Computer 

graphics, deep learning, or other digital methods artificially produce synthetic facial 

images. These are not photographs of actual people; rather, they are the result of 

 
1 Faceswap:https://github.com/MarekKowalski/FaceSwap. 
2 Deepfakes:https://github.com/deepfakes/faceswap. 
3 FaceApp:https://faceapp.com/app. 
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models or algorithms. The popular methods used to generate all synthesized faces are 

PGGAN [155] and Style-GAN [156]. Face manipulation techniques can be used for 

more controversial applications, like producing misleading content known as 

"DeepFakes," or for legitimate purposes, such as retouching photographs for aesthetic 

reasons. "DeepFakes" encompasses digitally fabricated content created using deep 

learning techniques. It gained notable prominence in late 2017 when a Reddit user 

known as "DeepFake" unveiled the development of a machine-learning algorithm 

capable of replacing celebrities' faces in explicit videos [157]. The harmful 

consequences of deepfake are rooted in its potential for malicious applications, 

including generating deceptive pornography, spreading false information, perpetuating 

hoaxes, and facilitating financial fraud [158]. Nevertheless, like any technological 

advancement, deepfake can also be exploited, compromising personal integrity and 

media production to disrupt elections and fuel political instability. As a result, digital 

media, including news broadcasts, online video clips, and live streams, are 

experiencing trust issues [12]. Therefore, ensuring the authenticity of these videos or 

images is critical.  

Face manipulation detection involves various methods, ranging from 

conventional image analysis to advanced deep learning methods. The increasing 

advances in deep learning have made it difficult to detect face manipulation. Certain 

artifacts are used by some facial manipulation detection methods as an indication of 

manipulation [159], whereas some have employed deep neural networks that use 

general artifacts to indicate manipulation for facial manipulation detection [92]. Most 

of the work is not robust enough to withstand simple attacks like resizing, 

compression, or additive noise [160]. On the other hand, real-world situations 

frequently involve these kinds of manipulations. Also, the existing methods based on 

deep neural networks used for face manipulation detection are very complex and 

require large computational resources, and most of the features among them are 

redundant and do not significantly contribute to classification. As a result, the 

important feature test instances are wrongly interpreted more often than the majority 

ones.  
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Consequently, the model exhibits low specificity (when Indigenous images are 

in the minority) and high sensitivity (if the image belongs to the majority class) when 

handling binary classification cases (such as deepfake data). The general method used 

to remove the issue of high computational power is to use feature ranking. Using a 

deep neural network to extract the features and take into account only the most 

significant features, the features of each class in the training data are ranked. A hybrid 

learning model is used for classification to have a high accuracy rate. The most 

significant advantage of hybrid learning is that it enhances average prediction 

performance. To address these issues, this study introduces a novel and robust method 

for identifying fake facial images by employing hybrid learning and KPCA to 

differentiate between authentic and manipulated facial images. Fig. 5.1 illustrates the 

steps involved in the proposed system.  

 

Fig. 5.1: Steps in the proposed facial manipulation detection method. 

Hybrid learning combines both traditional machine learning methods and deep 

learning techniques. Hybrid machine learning models offer the advantages of both 

traditional and deep learning approaches, enabling more accurate predictions, 

improved feature representation and enhanced scalability. The proposed approach 

involves utilizing the EfficientNetV2-L model to extract image features, followed by 

feature ranking using KPCA and SVM classifier for classification. The resulting 
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features are then used to classify the real and fake faces. KPCA uses a kernel function 

to implicitly map the data into a high-dimensional feature space where linear 

operations can be carried out, whereas PCA operates on the covariance matrix of the 

input data [161]. This study presents a new method that combines hybrid learning with 

KPCA to learn features for facial manipulation detection. Through a series of 

experiments, the effectiveness of the proposed method is evaluated as a face 

manipulation detection technique. 

 

5.2 Framework based on hybrid learning and KPCA  

This section thoroughly explains the proposed framework used for facial manipulation 

detection based on hybrid learning and KPCA. The main advantage of this proposed 

method is that using the hybrid learning concept with KPCA works efficiently and 

fast. The proposed framework consists of a deep learning network, EfficientNetV2-L, 

for feature extraction, followed by feature ranking using KPCA, and classification is 

done using a machine learning technique. EfficientNetV2 is the best feature extractor 

deep learning model [162]. The KPCA with feature dimensionality reduction would 

help the SVM classifier to make the classification between real and fake facial images 

efficient and fast. In this section, the proposed method is explained. A detailed 

framework of the proposed method is shown in Fig. 5.2. 

 

 

Fig. 5.2: The methodological architectural analysis of the proposed framework for 

DeepFake detection. 
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Hand-crafted feature engineering will not be a suitable solution for this problem. Using 

deep CNN as feature extractors could solve the problem. However, due to the limited 

availability of high computational resources and the time-consuming process, it would 

be not easy to get discriminative features from large deep neural networks. Therefore, 

a popular EfficientNetV2-L model is used as a feature extractor for an efficient facial 

manipulation detection method. This gives a dynamic, robust, and efficient feature 

extractor to solve the problem of facial manipulation detection.  

Feature learning is performed on the preprocessed images. In feature learning, 

several features are extracted to distinguish between real and fake facial images. 

EfficientNetV2 is known for its efficiency in terms of accuracy, parameter, and faster 

training speed, making it a popular choice as a feature extractor for facial manipulation 

detection tasks. EfficientNetV2 networks are not just small but also less 

computational. EfficientNetV2 architecture is up to 6.8 times smaller and significantly 

faster than previous and more recent SOTA models. Additionally, the V2 version's 

parameter count is almost half that of the original EfficientNet. EfficientNetV2 

achieves better accuracy than previous SOTA models using fewer parameters and less 

computation. Therefore, EfficientNetV2-L has been utilized as a feature extractor as it 

has significantly outperformed other ConvNets [162].  

PCA is a commonly employed statistical technique for dimensionality 

reduction. It finds extensive application in tasks such as image compression, text 

classification, and face recognition [163]. PCA cannot deal only with linear data 𝑥𝑖 i =

 1, … . , N, 𝑥𝑖𝜖 𝑅,  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 = 0. PCA is inefficient for working with deep networks and 

generating features for deepfake images. The KPCA technique is used to deal with 

nonlinearity in the data. The kernel version enables coping with more complex data 

patterns, which are not visible under linear transformations alone. KPCA was 

developed to assist with classifying data whose decision boundaries are described by 

a nonlinear function [164]. The idea is to go to a higher-dimensional space where the 

decision boundary becomes linear. Consider a nonlinear transformation φ(𝑥𝑖) that 

maps the original D-dimensional feature space to a higher-dimensional feature space 

with M dimensions, where M is typically much larger than D. After the transformation, 
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each data point xi is mapped to a point φ(𝑥𝑖) in the new feature space F. Although 

standard PCA can be applied in this transformed space, it can be computationally 

expensive and inefficient. However, kernel technique can be utilized to simplify 

computation. 

 First, assume that the projected new features, φ(𝑥𝑖), … . . , φ(𝑥𝑁), have zero 

mean, i.e., 
1

𝑁
∑ φ(𝑥𝑖)

𝑁
𝑖=1 = 0. The covariance matrix M × M of the projected features 

is calculated by  

C =
1

N
∑ φ(𝑥𝑖)φ(𝑥𝑖)

TN
i=1      (5.1) 

Its eigenvalues δ and eigenvectors V ϵ F are satisfying 

𝐶𝑣𝑘 =  δk𝑉k       (5.2) 

where k = 1, 2,…,M. Substituting Eq. (1) and multiplying both sides by φ(𝑥𝑖), will 

give 

1

N
∑ {φ(𝑥𝑖)φ(𝑥𝑖)

TN
i=1 𝑉kφ(𝑥𝑖)}  =   δk𝑉kφ(𝑥𝑖)   (5.3) 

and there exist coefficients 𝑎1, … , 𝑎𝑀 such that 

𝑉𝑘 =  ∑ 𝑎𝑘𝑖
𝑁
𝑖=1 φ(𝑥𝑖)      (5.4) 

Define the kernel function, i.e., 

K(xi, xj)  =  φ(𝑥𝑗)φ(𝑥𝑖)
T      (5.5) 

Substituting Eq. (4) into Eq. (3), will have 

1

𝑁
∑ 𝑘(𝑥𝑙𝑥𝑖)

𝑁
𝑖=1 ∑ 𝑎𝑘𝑗𝑘(𝑥𝑖, 𝑥𝑗) = 𝛿𝑘 ∑ 𝑎𝑘𝑖𝑘(𝑥𝑗𝑥𝑖) 𝑁

𝑖=1
𝑁
𝑗=1  (5.6) 

The matrix notation used is 

K2ak =  𝛿𝑘NKak       (5.7) 

The kernel principal components are extracted by computing the projections of the 

image of a test point φ(𝑥) onto the eigenvectors, Vk in F and calculated using 

𝑌𝑘(𝑥)  = φ(𝑥)TVk =  ∑ 𝑎𝑖
𝑘(φ(𝑥𝑖), φ(𝑥) )N

i=1    (5.8) 

The power of kernel method is that you don’t have to compute φ(𝑥𝑖) explicitly; they 

are needed in dot products only. The kernel matrix is directly constructed from the 

training dataset 𝑥𝑖 without actually performing the map φ. The proposed method is 

effective and robust to various facial manipulation techniques such as identity swap, 

expression swap, attribute-based manipulation, and entirely synthesized faces. The 

proposed method has the advantages of being robust, less complicated, having a fast 
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feature learning process, and taking less execution time. The main advantage of this 

proposed system is that using the hybrid learning concept with KPCA works efficiently 

and fast. 

 

5.3 Experiment 

In this section, the experiment is carried out on the proposed method. First, the dataset 

used in the experiment is introduced. Next, the experimental setup is described. Then, 

the preprocessing and augmentation steps are described in detail. Further, various 

evaluation parameters used to analyze the performance of the proposed method are 

described. 

5.3.1 Dataset 

The DFFD [165] is a large collection that combines several prior datasets. It uses eight 

algorithms and three genuine image sources to create fake faces. The DFFD presents 

four primary categories of facial manipulation: exchanging identities, swapping 

expressions, manipulating attributes, and generating completely synthetic faces. DFFD 

gathers data from these four groups utilizing cutting-edge techniques to produce 

synthetic images. Almost half of the images and video frames (47.7%) feature male 

subjects, while 52.3% depict females. Most samples fall within the age range of 21 to 

50 years. To ensure less bias in the distribution of gender, age, and face size, both real 

and fake samples encompass a range of image qualities, including both low and high-

quality images. DFFD uses the FFHQ4 and CelebA [166] datasets as authentic face 

samples. These datasets encompass a wide range of variations in terms of gender, race, 

expression, pose, age, camera quality, illumination, and resolution. In addition to these 

datasets, DFFD incorporates the source frames from FaceForensics++ [160] as 

supplementary real faces. The process involves swapping identities and expressions. 

To achieve facial identity and expression swapping, DFFD utilizes all the video clips 

available in FaceForensics++. This dataset consists of 1,000 genuine videos sourced 

from YouTube, along with 3,000 manipulated versions. These manipulated versions 

 
4 FFHQ:https://github.com/NVlabs/ffhq-dataset. 
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are divided into two categories: identity swap using FaceSwap and deepfake and 

expression swap using Face2Face [160]. Two methods were utilized to generate 

attribute-manipulated images: FaceAPP and StarGAN [154]. FaceAPP, a smartphone 

app designed for consumers, offers 28 filters that can be used to modify specific facial 

attributes such as gender, age, hair, beard, and glasses. PGGAN [154] and StyleGAN 

[156] are the methods used to generate all synthesized faces. In this process, 4,000 

faces from the FFHQ dataset and 2,000 from the CelebA dataset are used as the input 

real images. For each face in the FFHQ dataset, three fake images were generated: two 

with a randomly chosen manipulation filter and one with multiple manipulation filters 

applied. On the other hand, for each face in the CelebA dataset, 40 fake images were 

created using StarGAN, a GAN-based method for translating images to different 

domains. A collection of 92,000 attribute-manipulated images was obtained through 

these processes. The DFFD dataset comprises 240336 fake images and 58703 genuine 

images [165]. 

5.3.2 Experimental setup 

A dataset of real and fake human face images is utilized to develop and apply the 

proposed facial manipulation detection technique. These images and their 

corresponding target labels are organized into a dataset. The dataset is then divided 

into two parts: training and testing data. The method is trained using 80%of the dataset, 

resulting in a highly optimized and parametrized approach. The performance of the 

proposed method is evaluated on unseen test data, which accounts for 20% of the 

dataset. The proposed approach demonstrates exceptional accuracy in predicting 

outcomes for unseen data. The experiment was done on the DFFD dataset. The Keras 

library is used across the framework, with Tensor-Flow as the backend. Adam 

optimizer trains the EfficientNetV2-S network for ten epochs with a momentum rate 

of 0.9; the initial learning rate is set to 10−4 and a batch size of 64. Early stopping with 

a patience setting of 100 is utilized to reduce overfitting. In KPCA, the Radial Basis 

Function kernel is used. The number of components is determined by setting up the 

explained level to 0.95. The proposed method is trained using a single 12GB NVIDIA 

Tesla K80 GPU and runs in the Linux operating system. 
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5.3.3 Preprocessing and Augmentation 

In this work, preprocessing is essentially used to ensure that images are in a suitable 

form for analysis. As the default fixed size of the image taken for training by the 

EfficientNetV2 is 224×224, all the images from the DFFD dataset have been resized 

to 224×224. 

Augmentation is done to balance classes to improve the quality of the dataset. 

The DFFD dataset consists of 240336 fake images and 58703 genuine images, which 

is imbalanced. Therefore, data augmentation is performed on the real images in the 

dataset to avoid class imbalance. Data augmentation techniques used in this work are 

as follows: 

• Hue represents the color's tone or position on the color wheel. Hue jitter introduces 

a change in the perceived shade of colors within an image. A tiny positive offset chosen 

randomly from the range [0.05, 0.15] was used to change the hue of the input image. 

• Scale: To create a scale transformation that resized the input image, a scale factor 

was randomly selected from the specified range of [1.2, 1.5]. The input image was 

resized using the obtained scale factor. The scale transformation uniformly resized the 

image in horizontal and vertical directions, applying the same factor to each 

dimension. 

• Shear: Applied a horizontal shear transformation with a randomly chosen shear angle 

within the range of [−30, 30]. 

• Rotation: When a specific amount changes an image's orientation, it is said to be 

rotated. It can align tilted photographs or attain a particular viewing angle. A rotation 

angle was chosen randomly from [−45, 45] degrees. 

 

5.4 Results and Discussion 

This section shows the performance of the proposed method on the publicly available 

DeepFake face dataset. Further, an ablation study investigates the KPCA component's 

contribution to the overall system's performance. In the end, a comparative analysis of 

the proposed method is done with the existing SOTA DeepFake face detection 

methods. 
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5.4.1 Performance Analysis 

The performance of the proposed method is demonstrated on the Diverse Fake Face 

Dataset (DFFD). Performance analysis is based on accuracy, F1 Score, and execution 

time. The execution time is computed as the total preprocessing, training, and 

classification time. Various version of the EfficientNetV2 model, i.e., EfficientNetV2-

S, EfficientNetV2-M, and EfficientNetV2-L, is used as feature extractor along with 

different classifiers, i.e., KNN, Naive Bayes, Decision Tree, Random Forest, and SVM 

to classify the problem of DeepFake face detection.  

Table 5.1: The performance results of the proposed method are compared with those 

of different EfficientNetV2 models used as feature extractors along with other 

classifiers 

Method Classifier 
Accuracy  

( % ) 
F1 Score 

 ( % ) 

Execution 

Time 

( minutes 

) 

Efficient Net V2 – S 

KNN 78.2 75.9 512 
Naive Bayes 79.6 76.2 498 
Decision Tree 82.7 81.5 397 
Random Forest 86.5 85 438 
SVM 89.4 87.63 447 
KNN 79.5 78 628 

Efficient Net V2 - M 

Naive Bayes 89.8 86.2 609 
Decision Tree 92.2 89.4 562 
Random Forest 96.5 95.4 595 
SVM 97.25 96.1 578 
KNN 92.8 90.4 908 

Efficient Net V2 - L 

Naive Bayes 93.4 93 897 
Decision Tree 95.6 93.8 842 
Random Forest 96.7 95.2 859 
SVM 97.8 96.92 872 
KNN 94.5 93.7 784 

Efficient Net V2 - L + KPCA 

Naive Bayes 95.1 94.8 758 
Decision Tree 97.5 96.8 703 
Random Forest 98.2 97.5 714 
SVM 99.3 98. 9 736 
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Table 5.1 illustrates that the proposed method consisting of EfficientNetV2-L 

as a feature extractor followed by the KPCA for dimensionality reduction of the feature 

vector and then classified using SVM classifier achieves the highest classification 

accuracy of 99.3% and F1 Score of 98.09%. Also, it can be observed that the SVM 

classifier performed exceptionally well in every case and outperformed all the other 

classifiers, as shown in Table 5.1. The EfficientNetV2- S model achieves the lowest 

classification accuracy of 78.2% and F1 Score of 75.9% when KNN is used as the 

classifier. EfficientNetV2-L model used as a feature extractor achieves a classification 

accuracy of 97.8% and an F1 Score of 96.92%, which is significantly less than the 

proposed method consisting of a combination of both EfficientNetV2-L and KPCA, 

with SVM as a classifier. This signifies that using EfficientNetV2-L as a feature 

extractor along with KPCA is better than using EfficientNetV2-L only. Also, it can be 

observed from Table 5.1 that if the EfficientNetV2-S model is used as a feature 

extractor and the decision tree is used as a classifier, then the execution time is less 

(approximately 397 min), but the accuracy is 82.7% and F1 Score is 81.5% which is 

relatively less than the proposed method.  

The performance of the proposed approach is evaluated across a range of 

threshold values using the AUC-ROC curve shown in Fig. 5.3. A probability curve 

called the ROC curve demonstrates how well the classes are separated. It shows the 

extent to which the method can distinguish between different classes. A higher AUC 

value indicates better method performance. Fig. 5.3 shows that the proposed approach 

has the highest AUC value of 0.980. 

 

Fig. 5.3: AUC-ROC curve of the proposed method. 
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5.4.2 Comparitive Analysis 

This section details the comparative analysis of the performance of the proposed 

method compared to the existing SOTA methods. As shown in Table 5.2, the 

experimental results indicate that the proposed method outperforms all the other SOTA 

methods. The models are trained and tested on the DFFD dataset. The proposed 

method has the highest accuracy of 99.3%, precision of 0.99, Recall of 0.972, and the 

highest F1 Score of 0.980. It has been observed that the existing models are very 

complex and computationally expensive. The proposed method takes less execution 

time and is less complicated and robust to various facial manipulation techniques such 

as identity swap, expression swap, attribute-based manipulation, and entirely 

synthesized faces. 

 

Table 5.2: Comparative analysis of the proposed method. 

Method Accuracy Precision Recall F1 Score 

YOLO+LBPH [91] - 0.889 0.937 - 

FF-LBPH DBN [92] 97.82% - - - 

DenseNet-121 [93] 80.40% - - - 

CNN+PCA [95] 90.76% 0.914 0.901 0.908 

FaceMD [96] 90.80% - - - 

Proposed 99.6 %  .99  .972  .98 

 

5.5 Summary 

This chapter focuses on advanced techniques for identifying deepfake manipulations, 

particularly those involving face manipulation. It introduces an effective framework 

based on hybrid learning and KPCA for deepfake face manipulation detection. The 

proposed methodology includes EfficientNetV2-L and a KPCA-based hybrid learning 

approach for facial manipulation detection. EfficientNetV2-L was used to extract the 

complex discriminative features between real and fake face images from the DFFD 

dataset. Further, KPCA is used to reduce the dimension of the features extracted from 
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the EfficientNetV2-L so that the classification between real and fake images can be 

done in less execution time and there should be less dependency on the computational 

resources. The experimental results demonstrate the superiority of this method over 

other facial manipulation detection techniques. The proposed model's accuracy is 

99.3%, precision is 0.99, recall is 0.972, and F1 Score is 0.98. Future work proposes 

an extension of the proposed systems to integrate the KPCA component of the 

framework into the feature extractor model itself while also investigating and 

innovating it further. In the future, the goal is to optimize resource utilization, reduce 

execution time, and enhance overall detection efficiency. Additionally, will prioritize 

improving the detection model's generalization ability as much as possible as part of 

the future work. 
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Chapter 6 

Conclusion, Future Scope and Social Impact 

This chapter concludes the research conducted in the thesis and summarizes the 

previous chapters, key findings, contributions and limitations. This chapter also 

discuss potential future directions for future research in this rapidly evolving field 

and social impact of this work beyond academic circles. 

 

6.1 Conclusion 

This work started with background knowledge about image manipulation detection. 

The basic terminologies and existing methods concerning manipulation detection with 

different tampering operations have been discussed in detail. Based on the findings 

from theoretical and experimental work in this study, it has been observed that deep 

learning-based models are some of the prominently used methods and perform very 

well in image manipulation detection. From the analysis, it has been found that 

initially, a single tampering operation was performed and later on, multiple tampering 

operations were adopted. The findings reveal that localization of image manipulation 

is a bit more difficult than image manipulation detection. The deep learning model 

learns the image’s content; however, for manipulation detection, residuals left behind 

after the tampering operation are used to discriminate between the authentic and 

manipulated image. It has also been found that using the residuals as the input to the 

deep learning-based model is much more effective. The experiment result reveals that 

having multi-modal input is much more effective. The proposed work provides 

practical implications for OfSFD, multiple manipulation detection, and deepfake face 

detection, which could be useful in protecting the world from misleading information.  

The thesis presented a systematic approach to image manipulation detection 

spanning foundational aspects and a review of existing detection techniques to develop 

methods for specific, multiple and synthetic manipulations. A robust and efficient 

method, namely eSNN, has been introduced for WIOfSV. The technique uses the pre-
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trained model (EfficientNet) to direct the feature learning process in the twin network 

of the SNN to distinguish between genuine and forged signatures. The method has the 

advantages of being less complicated and taking less time to train and infer. Also, a 

residual-based CNN model has been developed for CMFD. Architectures such as 

MDLFormer and LFRViT illustrate the efficacy of integrating the residuals-based 

inputs and ViT to detect multiple forgery detection. These models enhance detection 

accuracy, robustness, and generalizability, addressing the limitations identified in 

existing methods. A hybrid learning-based approach, including KPCA, has been 

introduced for deepfake face manipulation detection. The technique uses the 

EfficientNetV2-L model for feature extraction, which is topped up with KPCA for 

feature dimensionality reduction to have an effective and fast feature learning process. 

The method is robust to various facial manipulation techniques such as identity swap, 

expression swap, attribute-based manipulation, and entirely synthesized faces. The 

proposed methods demonstrate significant improvements over existing SOTA 

methods, validated through extensive experimentation on standard datasets. 

6.2 Future Scope 

The researchers have adopted many different approaches to understand better and 

characterize image manipulation detection; this diversification helps to focus on the 

future enhancement of image manipulation detection techniques. Despite 

substantial advancement in the research field, open research issues still require 

further study. Our findings suggest a need for additional research, which consists of 

the following aspects: 

• The goal in the future is to optimize resource utilization, have efficient 

architecture and improve overall detection accuracy. Additionally, will 

prioritize enhancing the detection model’s generalization ability as part of 

future work. 

• Deepfake content detection is one of the emerging topics. Future work should 

focus on developing unified deepfake detection systems that can identify 

image- and video-based manipulations. 
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• Given the increasing prevalence of manipulated media on online social 

networks (OSNs), future work should focus on developing models resilient to 

manipulations caused by shared and spread across OSNs. Moreover, the 

manipulation detection frameworks should be robust enough to withstand the 

manipulations applied by OSNs. 

• As manipulation techniques continue to evolve and also given the possibility 

that forgers would adapt to detection approaches over time, robust models that 

may evolve in response to new manipulations are required. Future work may 

include implementing continuous learning or domain adaptation approaches, 

enabling models to remain effective even when new manipulating styles and 

techniques emerge. 

• Generative adversarial methods generate synthetic fake images and add noise 

to the image, making it difficult for the detector to detect the manipulation. 

Image manipulation detection methods are subject to adversarial attacks, where 

minimal alterations lead to incorrect classifications. Future work should focus 

on developing detection frameworks immune to adversarial perturbations. 

6.3 Social Impact 

The development of a robust framework for image manipulation detection has 

profound social implications in today’s digital age, where visual content plays a 

pivotal role in communication, decision-making and the dissemination of 

information. The proliferation of advanced image editing tools and generative 

technologies, such as GANs, has significantly increased the potential for creating 

manipulated or falsified images. This trend seriously challenges societal trust, 

media credibility, and individual rights. Techniques like digital OfSFD, CMFD, 

splicing detection, inpainting detection and deepfake detection are essential for 

safeguarding societal trust and ensuring the authenticity of digital content. 

One of the key social impacts of this research is its ability to combat misinformation 

and disinformation campaigns. Manipulated images often spread false narratives, 

incite violence, or mislead public opinion on social and political issues. By 

providing reliable tools for detecting such manipulations, the proposed framework 
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can help maintain the integrity of digital media, ensuring that the public receives 

accurate and authentic information. 

Digital signatures are pivotal in financial transactions, legal documents, and 

authentication processes. Forged signatures can lead to identity theft, financial 

fraud, and legal disputes. A reliable OfSFD framework can help organizations and 

individuals identify forged signatures, preventing financial losses and protecting 

reputations. By ensuring the authenticity of such signatures, the proposed 

framework contributes to building trust in digital documentation systems and 

reducing vulnerabilities in critical infrastructures.  

Copy-move forgery, where parts of an image are duplicated and pasted within the 

same image, is often used to conceal or manipulate visual evidence. This type of 

forgery is commonly found in fake news, manipulated evidence in legal cases, and 

fraudulent claims in insurance or real estate. CMFD can help uncover hidden 

manipulations, ensuring the integrity of visual evidence and mitigating the spread 

of false information, which can have far-reaching societal consequences. 

The ability to detect multiple forgeries, such as combinations of copy-move, 

splicing, inpainting and many more, enhances the framework’s utility in complex 

scenarios. This capability is particularly valuable in forensic investigations and 

digital media verification, where multiple manipulations can obscure the truth. By 

localizing and identifying all manipulated regions, the framework supports law 

enforcement agencies, judicial systems, and media outlets in maintaining the 

integrity of evidence and reporting. This contributes to societal accountability and 

preventing malicious intent in critical domains. 

Furthermore, deepfake technology, powered by advanced AI algorithms, poses a 

significant threat to social trust by generating hyper-realistic yet fabricated videos 

or images. Deepfakes have been weaponized for political propaganda, defamation, 

and even financial fraud. Detecting deepfakes is essential to prevent the erosion of 

public trust in visual media and ensure that the dissemination of falsified content 

does not destabilize societies or harm individuals. The proposed framework 
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contributes to developing a safer digital ecosystem by addressing this emerging 

threat. 

On a broader level, this work supports the ethical use of technology and encourages 

accountability in digital media creation and distribution. By fostering a culture of 

authenticity, it addresses the societal need for trust in digital interactions and 

mitigates the negative impacts of technological misuse. This work for image 

manipulation detection can potentially address critical challenges in 

misinformation, legal justice, personal security, and media ethics. Its societal 

impact extends beyond technical advancements, contributing to a safer, more 

trustworthy, and equitable digital environment. 
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