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Abstract

In an era where digital images are extensively disseminated and manipulated, the
authenticity of the visual content has become progressively vulnerable to
manipulation. Digital images are now a crucial source of information in social
media, thanks to advancements in technology and the Internet. Modern futuristic
image editing software and tools make it simple to tweak a digital image without
leaving any visible clues. The widespread use of digital images in news and legal
proceedings has raised worries about their validity, integrity, and reliability.
Manipulated or tampered photos can mislead the public, harm a person's reputation
or business, influence political opinions, or impact criminal investigations.
Conventional image manipulation techniques include copy-move, splicing and
inpainting, whereas recent developments in image manipulation include
synthetically generated images such as deepfake. Passive image manipulation
detection and localization of manipulated regions within an image remains
challenging. The thesis is structured into comprehensive chapters, beginning with
foundational aspects, moving through specific and multiple manipulation detection
methodologies and culminating in a robust solution for recent advancements in

manipulations such as deepfake detection.

The thesis laid the groundwork by introducing the fundamentals of image
manipulation detection, including image manipulation categorization, basic
terminologies, application of image manipulation, the challenges of image
manipulation detection and the classification of forgery detection techniques. This
foundational knowledge provided context for understanding the scope and
complexity of the problem. Furthermore, motivation and problem statement,

performance metrics and thesis organization are discussed.

The thesis comprehensively reviews existing state-of-the-art (SOTA) methods
employed for image manipulation detection. Various methods are reviewed,
including traditional handcrafted, machine learning and deep learning-based

methods for image manipulation detection. This review also examines the

v



limitations of the existing techniques and identifies the research gaps, leading to the

formulation of research objectives.

The thesis provides a targeted approach for specific types of manipulation detection,
such as offline signature forgery detection (OfSFD) and copy-move forgery
detection (CMFD). The thesis developed a robust and efficient method for writer-
independent offline signature forgery detection (WIOfSFD). The technique
presents a formulation that uses the pre-trained model to direct the feature learning
process and uses the Siamese neural network (SNN) to distinguish between genuine
and forged signatures. Also, a residual-based convolutional neural network has been

developed for CMFD.

The thesis introduces two methodologies, namely MDLFormer and LFRViT, for
detecting multiple forgeries using a single framework. MDLFormer used multi-
modal data to exploit various inconsistencies present in a manipulated image, global
context-based swin transformer (GCST) encoder to enhance the model's ability to
aggregate, refine, and focus on critical global discrepancies between various
patches and feature pyramid network (FPN) based decoder for manipulation
detection and localization. In contrast, LFRVIT uses a Laplacian filter residual

(LFR) based vision transformer (ViT) for multiple forgery detection.

The thesis also presented a hybrid learning-based approach consisting of kernel
principal component analysis (KPCA) for deepfake face manipulation detection.
The method uses the EfficientNetV2-L model for the feature extraction topped up
with KPCA for feature dimensionality reduction to have an effective and fast feature
learning process. The method is robust to various facial manipulation techniques
such as identity swap, expression swap, attribute-based manipulation, and entirely
synthesized faces. Experimental results validate the method’s effectiveness and
demonstrate its potential as a reliable tool for detecting synthetic manipulations,
which are becoming more common in digital forensics. Finally, this thesis work is

concluded and the future scope of image manipulation detection is discussed.
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Chapter 1

Introduction

This chapter introduces the background of image manipulation detection, image
manipulation categorization and image forgery detection techniques. Applications
of image manipulation and evaluation metrics used are also discussed.
Furthermore, motivation and contribution of this thesis are elaborated upon and

thesis organization is outlined.

1.1 Background

In an era where digital images are extensively disseminated and manipulated, the
authenticity of the visual content has become progressively vulnerable to
manipulation. Digital images are now a crucial source of information in social media.
A large number of images are being produced and with the ease of availability of
computer software or mobile applications, one can easily manipulate an image. Image
manipulation has become very convenient nowadays with the help of editing tools,
such as Adobe Photoshop, image manipulation programs, Affinity Photo, Paintshop
and many more [1]. Using image manipulation techniques can be both useful and
harmful as well. Image manipulation techniques can glamorize an image using image
filters. Image manipulation is also useful for commercial purposes, as it uses realistic
effects in movies like Harry Potter, Twilight, and many more, allowing them to share
their creative ideas. On the other hand, these techniques can be utilized to control the
substance of the picture with a malignant goal. Given the ease and effectiveness of the
image editing tools, it is extremely hard to distinguish a manipulated image. With the
advancement of image manipulation techniques and post-processing methods, it is
very difficult for the forensic detector to detect the type of manipulation and
manipulated region [1]. A study also shows that humans have a very restricted capacity
to distinguish between the original and manipulated image [2]. These manipulated

images are shared and uploaded on social media to provoke people's sentiments. These



Chapter 1 Introduction 2

altered photographs can serve as evidence in criminal investigations and tarnish an
individual's reputation. For example, as shown in Fig. /., the famous fake photo of
Senator Tydings talking with Earl Browder (left) is a composite of two distinctive
photographs [3]. It is believed that this fake photo may have contributed to Senator
Tydings's electoral defeat in 1950. Therefore, it necessitates robust image manipulation

detection mechanisms.

(a) Manipulated image (b) Original image

Fig. 1.1 A well-known image manipulation example, the composite photo of Senator

Millard Tyding and American Communist Party Leader Earl Browder (left) [3].

Image manipulation encompasses a variety of techniques used to manipulate
images, ranging from traditional techniques like splicing, copy-move and
inpainting/removal etc., to recent advanced methods like face swap and deepfake etc.
Fig. 1.2 shows examples of image manipulation using different techniques, including
traditional and deep learning-based methods. Deep learning-based approaches have
revolutionized image manipulation, to generate highly realistic manipulated images.
Artificial intelligence (Al) powered fake images look so real that they can easily fool
humans and these counterfeit images are a bigger threat than fake news as they are
more convincing than the text [4]. Various famous applications such as deepfake and
face swap are based on convolutional neural networks, deep learning and adversarial
networks which are employed to produce deep fake images. For example, Fig. 1.2 (b)
illustrate an example of Faceswap, where Angela Merkel's face has been replaced with

that of Donald Trump. and Fig. 1.2 (c) shows the generated fake image of the famous
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Hollywood actor Nicholas Cage. With the advent of these fake images, the images
have lost their credibility. This has caused fraud and fear of privacy in people [4].

Authentic Tampered Ground-truth

Splicing

Copy-move

Removal

(a) Image Manipulations using traditional methods (c) Deepfake

Fig. 1.2 Examples of image manipulations from DEFACTO [135] dataset.

1.2 Image Manipulation Categorization

Image manipulation is commonly categorized based on its purpose and the underlying
approach to steganography, forgery and generating, as illustrated in Fig. /.3 [5]. Image
manipulation is the common term that consists of any form of altering, editing or
modifying an image. Table 1.1 gives the fundamental definitions used in image
manipulation. These terms are interrelated and differ based on how these terms and
concepts are defined. Image steganography [6] does not come under the category of
image forgery. It hides some data by somewhat altering the pixels in the image. Image
forgery alters an image maliciously, including methods like copy-move, splicing and
inpainting/removal to deceive the facts that happened in the past, requiring robust
detection systems to identify tampered regions. However, image tampering falls within
the realm of image forgery as it alters the image's content or context, such as

recoloration, image enhancement, blurring and adding noise. Image-generating
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techniques driven by Al models to generate entirely synthetic images can be used for
forgery or not necessarily be used for forgery. Generated images often have no original
source and are used for various purposes, including artistic creation, gaming, and
malicious applications such as realistic deepfakes. Each type poses unique detection

challenges, demanding specialized forensic approaches.

Table 1.1: Fundamental terminologies used in image manipulation

Terminology Definition
Image : . "y :
) ) It refers to any form of altering, editing or modifying an image.
Manipulation
It refers to intentionally and deliberately modifying or creating
Image Forgery ) ) ]
an image to deceive or mislead.
Image It is a subset of image forgery in which the graphic content of the
Tampering image is modified. It refers to a specific act of altering images.
Image These are computer-generated images, or some part of the image
Generating is computer-generated, which can be used to forge an image.
Image It 1s used to hide some data in the image. It slightly alters some
Steganography | pixels in the image and embeds extra data in the image.
In this technique, the content is copied and moved to the other
position in the original image. The new content copied is from
Copy-move T L
the same source as the original image or from the original image
itself.
Splicing is generally used as a substitute for cut-paste, in which
Splicing a composite image is made by cutting and joining the multiple
images. It denotes the region duplication between two images.
o It is the process of restoring and reconstructing the lost or
Inpainting )
corrupted part of the image.
It is a type of synthetic media in which Al particularly deep
Deepfake learning techniques, is used to generate realistic but fake images,
audio or videos that accurately mimic real people or events.
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Image
Tampering

Image
Generating

Fig. 1.3: Categorical representation of image manipulation.

1.3 Image Forgery Detection Techniques

Image forgery detection techniques can be classified, as shown in Fig. 1.4, into two
categories: active and passive forgery methods [5]. Active methods include embedding
additional data, such as watermarks or digital signatures, into the image during its
creation. This embedded data helps detect Active methods consisting of digital
signature and watermarking [7]. Active methods are utilized to identify the image's
integrity and whether the image is authentic or tampered with. However, their
effectiveness relies on the prior existence of such embedded information inside the
image. On the contrary, passive methods, also known as blind methods, do not require
any prior knowledge about the image. Passive methods analyze intrinsic irregularities
and inconsistencies in the image or trace the artifacts left by the tampering operation
to identify manipulation. Passive methods are categorized into intrinsic regularities &
inconsistencies, tampering operations and natural & computer graphic images. Further,
based on dependent or independent techniques, tampering operations are categorized
into specific forgery detection techniques such as copy-move, splicing, JPEG
compression, retouching and light inconsistencies. Active methods are highly reliable
on embedded data or prior information when used, while passive methods are

ubiquitous and versatile, making them indispensable in modern digital forensic
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applications [8]. However, passive methods can be more challenging due to the

increasing sophistication of image manipulation tools.

Image Forgery
Detection

Actlive Passive

|—|—| | ' :

Digital Watermarking Inrinsic Regularities & Tampering Natural & Computer
Signaturc Inconsistencies Operations Graphic Image
[ I I | | |
Optical Region Sensor Region Processing Region | |Statistical Region Independent Dependent

1 | 1 | | | |

Dust Pattern Camera Response Sensor Pattern Rctouching Light IPEG Copy-move Splicing

Function Noise Inconsistencies Compression

Fig. 1.4 Classification of image forgery detection techniques

1.4 Applications of Image Manipulation Detection

Image manipulation detection plays an essential role across multiple domains where
the integrity and authenticity of visual content are crucial. As digital tampering
methods become more sophisticated, detecting such manipulations has become a
priority in law enforcement, media, finance, and even personal security applications.
From signature verification to deepfake detection, the applications of image
manipulation detection are broad and continue to grow with advances in deep learning
and computer vision techniques. Some prominent areas include offline signature
verification, copy-move forgery detection (CMFD), splicing, inpainting, and deepfake

detection, each addressing unique forms of image tampering.

Offline Signature Forgery Detection is essential in financial, legal, and
governmental settings, where authentic signatures are required for identity verification
[9]. Manipulation detection frameworks analyze signature attributes such as stroke
pattern, pressure, and spatial alignment to differentiate genuine signatures from
forgeries. Techniques based on deep learning architectures like Siamese Neural
Networks (SNN) provide high accuracy in detecting forgery in offline signatures, thus

enhancing fraud prevention and authentication.
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Copy-Move Forgery Detection: Copy-move forgery involves duplicating a portion
of an image and moving it to another location within the same image, often to hide or
replicate specific content [10]. This type of forgery is widely used in digital tampering,
and detecting it requires robust analysis of duplicated patterns and slight
inconsistencies in texture and lighting. CNN-based frameworks are particularly
effective in identifying copy-move forgeries, leveraging residual features and spatial

correlations to pinpoint duplicated regions accurately.

Splicing Detection: Splicing is a manipulation technique that combines elements from
multiple images to create a single composite image, often with the intent to mislead.
Splicing detection aims to identify inconsistencies in texture, lighting, and boundaries
between the combined elements [10]. Advanced detection methods use deep learning
algorithms to analyze subtle differences at the pixel and boundary levels, effectively

identifying where one image has been fused with another.

Inpainting Detection: Inpainting refers to the process of filling in missing or
undesired regions within an image, typically used to remove objects or alter
backgrounds [11]. In forensics, inpainting detection is crucial for identifying areas that
have been artificially reconstructed. Detection frameworks leverage models trained to
recognize unnatural textures and pixel arrangements that indicate inpainting, ensuring

that image integrity is preserved in contexts where accuracy is critical.

Deepfake Detection has become increasingly important due to the rise in realistic yet
synthetic images and videos created using generative adversarial networks (GANs)
[12]. These forgeries can be used to impersonate individuals, spread misinformation,
or manipulate opinions. Deepfake detection algorithms focus on recognizing
inconsistencies in facial expressions, eye movements, and other subtle features that
indicate tampering. Techniques utilizing Vision Transformers (ViT) [13] are
particularly effective in detecting these artificial creations by focusing on both spatial
and temporal artifacts. Deepfake detection focuses on identifying and mitigating the
risks associated with manipulated media, particularly videos and images where

individuals' faces or voices are convincingly altered using Al. This is a critical area of
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research due to the potential misuse of deepfake technology in fraud, misinformation,

and other malicious activities.

1.5 Multiple Manipulation Detection

Nowadays, detecting manipulated images is challenging, as the complexity of
manipulations can vary, ranging from single manipulation to more sophisticated
multiple manipulations. Image manipulation detection can be broadly classified into
two categories: single manipulation detection and multiple manipulation detection
[11]. A forger can manipulate an image by employing a variety of image manipulation
techniques [14]. There has been a significant interest in developing a
universal/multiple image forgery detection approach to detect multiple manipulation
operations [15], [16]. Single manipulation detection focuses on identifying and
analyzing a particular type of manipulation. These techniques are designed to target a
particular manipulation such as OfSFD, copy-move, splicing, inpainting or
enhancement. Single manipulation detection methods often use specialized feature
extraction techniques or deep learning models to achieve good performance for that
specific task. Despite their effectiveness, single manipulation detection methods
struggle to generalize across multiple manipulation types or recognize the combination
of manipulations in an image. Contrarily, multiple manipulation detection techniques
seek to detect multiple manipulations even when many manipulations coexist.
Multiple manipulation detection goal is to apply a unified approach to identify and
distinguish various types of forgeries present in a manipulated image. Multiple
manipulation detection systems require more complex models capable of handling
various manipulation operations and robust feature representations that generalize
across various manipulations. Multiple manipulation detection methods are more
challenging to build yet essential for practical forensics applications. Many researchers
have focused on detecting manipulated images by employing machine and deep
learning techniques. Some of the prominent forms of manipulations covered in this

thesis are digital OfSFD, copy-move, splicing, inpainting/removal and deepfake.
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1.6 Evaluation Metrics

Evaluation metrics are quantitative measures employed to assess the efficacy and
performance of the proposed model. This section discusses several assessment criteria
employed for assessing the performance of the proposed image manipulation detection
methods in the subsequent chapters. Evaluation parameters indicate how well a system
operates in the presence of a test dataset. Because of the imbalanced nature of the
dataset, some of the few parameters likely produce good results while others do not,
i.e., accuracy. To address the issue of imbalanced datasets, Precision, Recall, and F1
measures should be used to provide the true performance of the evaluated algorithms
[17]. The approaches' performance is evaluated using two types of evaluation
parameters: image-based and pixel-based. Pixel-based evaluating parameters rely on
ground truth images in the dataset for evaluation and are considered practical and
accurate. The following metrics are frequently used to assess different manipulation
detection methods: Accuracy (A), False Acceptance Rate (FAR), False Rejection Rate
(FRR), Equal Error Rate (EER), Precision (P), Recall (R), F1 score, Receiver
Operating Characteristics (ROC), Area Under an ROC curve (AUC), Intersection over
Union (IoU), etc. Depending on the requirement, these metrics can be applied to
evaluation at the pixel or image level. The definitions of the metrics used in this

dissertation are provided below.

1. Accuracy (A): It measures the level of accurately identifying the manipulated and

authentic images and is calculated using Eqn. 1.1.

_ TP+TN
T TP+TN+FP+FN

(1.1)

2. False Acceptance Rate (FAR): It measures the likelihood that a method
incorrectly identifies an authentic image (negative class) as manipulated (positive

class) and is calculated using Eqn. 1.2.

FP
FP+TN

FAR =

(1.2)
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3. False Rejection Rate (FRR): It measures how well a method incorrectly rejects a
manipulated image (positive class) as an authentic image (negative class) and is

calculated using Eqn. 1.3.

FN
FN+TP

FRR =

(1.3)

4. Egqual Error Rate (EER): An error value where FAR equals the FRR. To calculate
the EER, one can plot the FAR and FRR on a Receiver Operating Characteristic
(ROC) curve and identify the point where the two curves intersect. If there is not
a number where FAR and FRR are equal, choose a number that falls between the

two as given in Eqn. 1.4

FAR+FRR

ERR = ,if FAR # FRR (1.4)

5. Precision (P): It measures how well a method correctly identifies a manipulated
image (positive class) among all positive predictions. Precision is computed by
dividing the number of correct positive predictions (true positives) by the total
number of positive predictions (sum of true positives and false positives) and is

calculated using Eqn. 1.5.

p=-—2 (1.5)

= TP+FP

6. Recall (R) or True Positive Rate (TPR) or Sensitivity: It measures how well a
method correctly identifies all manipulated images (positive class). It is computed
by dividing the number of correct positive predictions (true positives) by the total
number of real positive cases (sum of true positives and false negatives) and is

calculated using Eqn. 1.6.

R=-"1 (1.6)

" TP+FN

7. FI score: It measures Precision (P) and Recall (R) harmonic mean and is

calculated using Eqn. 1.7.

F1 = 2XPXR — 2XTP (17)

P+R 2XTP+FN+FP

10
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8. Intersection over Union (IoU): It calculates the amount of overlap between the
predicted binary mask (B). and the ground truth mask (GT). It is a metric used to
localize an image's manipulated region. It is calculated by dividing the area of
overlap between B and GT region by the combined area of both regions, and it is

calculated using Eqn. 1.8.

__GTnB _ TP
" GTUB  Tp+FN+FP

IoU

(1.8)

Where True Positive (TP) refers to the manipulated class accurately identified as
manipulated, while False Negative (FN) represents the manipulated class incorrectly
classified as authentic. False Positive (FP) indicates the authentic class is misclassified

as manipulated.

1.7 Motivation

Image manipulation is one of the most preliminary and prevalent modification attacks
on digital image forensics. Digital images have become increasingly vulnerable to
manipulation with the advancement of image editing tools and digital media creation.
Consequently, many image manipulation tools and software have been developed that
can be further used for malicious activities like mob agitation and fake news spreads.
Manipulation techniques like copy-move forgery, splicing, inpainting, signature
forgery, and deepfake generation are now more accessible than ever, allowing the
manipulation of images with high fidelity and subtlety. While these manipulations
allow for creative applications, they threaten information integrity and authenticity.
The widespread use of manipulated content has increased disinformation, identity theft
and weakening trust in digital media. As a result, the need for reliable and effective
image manipulation detection methods has become crucial to finding traces of
manipulation in images and hence, successfully classifying them as authentic or
manipulated. This thesis explores, evaluates, and develops advanced methods for
detecting image manipulations, contributing to digital forensics, security and media

authenticity verification.

11
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1.8 Contribution

The thesis presents novel methodologies and frameworks to improve the detection and
localization of various image manipulations, addressing existing challenges in digital
forensics, security applications and content verification. The study contributes to
various key areas of image manipulation detection, including offline signature
verification, CMFD, multiple forgery detection and localization, and deepfake face
manipulation detection. Various machine learning and deep learning methods,
including diverse features, have been used. The datasets that are made publicly
available are included and their characteristics and parameter settings are tabled. In
this thesis, the key contribution includes a writer-independent offline signature
verification model based on a pre-trained EfficientNet model used for feature
extraction in the twin network of SNN, a residual-based CNN model for CMFD, a
Multi-modal Global Context-based Swin Transformer (MDLFormer) model for
multiple forgery detection and localization. Furthermore, the thesis incorporates a
Laplacian Filter Residual-based Vision Transformer (LFRViT) framework for
multiple forgery detection, leveraging ViT architecture and Laplacian filters to capture
subtle tampering artifacts indicative of tampering. Lastly, an effective framework is
proposed based on hybrid learning for deepfake face manipulation detection. These
models collectively enhance image manipulation detection by providing adaptable,
robust solutions across various manipulation types. Consequently, they support critical
media integrity, digital forensics, and authentication applications. Various standard
datasets have been utilized to validate the efficacy of the model. A comprehensive

description of the proposed approaches has been addressed in the subsequent section.

1.9 Thesis Organization

This thesis is organized into six chapters. The brief outlines are given below:
Chapter 1: This chapter provides the fundamentals concerning image manipulation
detection. This involves image manipulation categorization, basic terminologies,

categorization of techniques for image forgery detection and application of image

12
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manipulation detection. This chapter also discussed the evaluation metrics, motivation,
contribution of this thesis and thesis organization.

Chapter 2: This chapter explains the challenges in the existing SOTA methods
employed for image manipulation detection. The standard overall design framework
of the image manipulation detection system based on the traditional handcrafted
feature extraction-based approach is discussed. A review of several methods used for
image manipulation detection is done. This helped to discover the research gaps in
existing solutions in image manipulation detection. Finally, the research objective has
been formulated based on the research gaps addressed in this thesis.

Chapter 3: This chapter explains the proposed methodologies used for detecting
specific manipulations such as offline signature forgery and CMFD. A detailed
description of the problem statement, dataset, feature extraction process, and the
methodology adopted has been provided in this chapter. Experiments on standard
datasets validates the effectiveness of the proposed method and a comparison study of
the results is also provided.

Chapter 4: This chapter incorporates two different methods to detect multiple
manipulations. The first method, MDLFormer, consists of multi-modal input, Global
Context Swin Transformer (GCST) encoder and Feature Pyramid Network (FPN)-
based decoder to detect and localize the manipulation. The second method, LFRViT,
is a Laplacian filter residual-based vision transformer for multiple manipulation
detection. In the thesis, the methodologies concerning each of the given methods have
been discussed in detail. Additionally, the results of the proposed methods are obtained
on standard datasets and compared with existing SOTA methods.

Chapter 5: This chapter presents a novel approach based on hybrid learning and kernel
principal component analysis (KPCA) for deepfake face manipulation detection. The
result and discussion section explains the effectiveness of the proposed approach on
standard datasets and comparative analysis of obtained results is also included.
Chapter 6: This chapter summarizes proposed works, significant findings,
contributions and limitations. This chapter also suggests some potential future

directions in this area and social impact on society beyond academic circles.

13
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Chapter 2

Literature Review

This chapter comprehensively reviews existing methods employed for image
manipulation detection. Reviewed various methods, including traditional
handcrafted, machine learning models and deep learning-based approaches for
image manipulation detection. This review also examines the limitations of the
existing methods and identifies the research gaps in image manipulation detection.
Finally, the research objective has been formulated based on the research gaps

addressed in this thesis.

This chapter reviews various methods, focusing on techniques for digital OfSFD,
CMFD, multiple forgery detection and localization, and deepfake face manipulation
detection. In the past, methods for detecting image manipulation were limited to a
single kind of manipulation [18]. The image was manipulated using single
manipulation technique and the type of manipulation was then identified by analyzing
the distinct trace that was left behind. Simple feature extraction techniques are utilized,

followed by classification to identify certain kinds of image manipulation.[19].

Input Image

Pre-Processing

Feature Extraction

Classification

|

Manipulated Image Authentic Image

Fig. 2.1: The general structure of the image manipulation detection system
based on the handcrafted feature extraction method.
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Fig. 2.1 shows the image manipulation detection system’s general structure based on

handcrafted feature extraction methods.

For any research problem, five aspects must be explored: datasets, pre-
processing tasks, feature extraction techniques, methodology/models and performance
evaluation criteria. Several pre-processing techniques were used, such as binarization,
normalization, thinning, bounding box, inversion, and noise removal techniques, to
remove the inconsistencies present in the image and enhance the image's quality for
further processing [18]. A few of the feature extractors that are used for manipulation
detection are local binary pattern (LBP) [20], discrete cosine transforms (DCT) [21],
discrete wavelet transforms (DWT) [22], scale-invariant feature transform (SIFT) [23],
speeded up robust features (SURF) [24]. These techniques accomplish pre-processing
following feature extraction. The images are then classified using some thresholding
criteria on the extracted features or matching technique is used to classify the images.
But now, images are manipulated using multiple tampering operations to make them
realistic, so they cannot be viewed as manipulated images. With the advancement in
editing tools, detecting the manipulation and the manipulated region in the image is
not easy. Later, some new methods were created to identify multiple-image
manipulations in images, but these methods were limited to some constraints and could
not detect multiple-image manipulations in images [25]. In a real-world scenario, an
image is manipulated using multiple image manipulation techniques. Consequently,
there is a requirement for multiple image manipulation detection techniques to
authenticate an image as an authentic or a manipulated image. Nowadays, numerous
research scholars have created techniques based on deep learning models to detect
image manipulation in images and have produced better results and outperform the

hand-crafted feature extraction techniques [26], [27], [28].

Deep learning models have been proven to be the best technique for feature
learning and classification. In the past decade, deep learning methods have been used
extensively in every field, and the use of these models has increased rapidly. Deep
learning approaches are also being used in image manipulation detection as well. In
deep learning-based image manipulation detection methods, many real and

manipulated images are given to the models for manipulation detection. A good
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training model is used to capture the underlying features of the images. This chapter
will study various models used to detect manipulation in the image. Image
manipulation detection techniques can be broadly represented into two categories:
handcrafted feature representation and learned feature representation. The following

taxonomy has been designed for image manipulation detection methods; see Fig. 2.2.

Image Manipulation Detection

Solutions
Hand Crafted Feature Learned Feature
Representation Representation
|
| | I I
Keypoints Feature Block Based Feature CNN Multiple Generative

Based Solution Solution Networks Network Adversarial Network
—LBP —Moment
L DCT L Dimensionality
— DWT | Intensity
— SIFT — Frequency
L—SURF

Fig. 2.2: Taxonomy of Image Manipulation Detection Methods.

2.1 Digital Offline Signature Forgery Detection

Signature forgery detection tasks have been proposed for a variety of hand-crafted
features. Many consider global features using block codes, wavelets and Fourier series
[29]. Other approaches consider local features such as location, tangent direction,
curvature, blob structure and connected components with geometrical and topological
properties [30]. For OfSFD, projection and contour-based approaches are also widely
used in signature verification [31]. Additionally, a few structural methods that examine
the relationships between local attributes are examined. Manual feature extraction
techniques consist of structural, geometric, texture, statistical and global methods,
whereas automatic feature extraction techniques consist of deep learning methods such
as convolutional neural networks (CNN), autoencoders and deep sparse networks, etc.,

[32]. Unlike human feature extraction techniques, techniques for automatically
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extracting features (such as deep learning) do not require domain knowledge to extract
discriminative features for classification [33]. CNN and deep sparse approaches are
two examples of deep learning-based methods widely used for automatic feature
extraction. These techniques enable the automatic learning of features with minimal
or no pre-processing [34]. These techniques can find the optimum pattern for
enhancing verification performance by extracting intricate information from the raw
signature image utilizing several abstraction layers. CNN has drawn much attention as
a very effective feature extraction and identification approach since it is an automatic
feature learning method [34]. It is significant to highlight that CNN is capable of self-
taught, automatically extract characteristics and offer probabilistic predictions for each
class label. Therefore, integrating automated feature extraction with prediction or
classification for OfSFD detection provides an effective and reliable solution [35].
These deep learning-based methods can automatically extract complicated features
with few or no pre-processing techniques and require no prior domain knowledge to
extract discriminative features for classification [36]. This makes automatic feature
extraction techniques more popular and well-known for automatic feature extraction.

Various methods or models have been adopted for OfSFD systems, which can
be divided into models based on template matching, machine learning models, and
deep learning models. In template matching methods, a template is matched with the
offline signature image to find the maximum match pixels using several similarity
measure techniques such as the Euclidean distance, graph edit distance, the cosine
similarity measure and fuzzy similarity measure [37][38]. Machine learning-based
models have significantly improved over traditional template-matching models in
classifying genuine and forged signature images [39]. Researchers have embraced
several machine learning-based models, including the support vector machine (SVM),
the k-nearest neighbor (KNN), the decision tree, and the Gentle AdaBoost. The
verification of signatures has utilized a wide range of machine-learning techniques
[32]. For instance, Fang et al. [40] examined tracking characteristics and pen stroke
locations for signature verification, but they also observed a FAR of 16.7%. A
signature verification method was created by Alaei et al. [41] utilizing a fuzzy
similarity measure and an interval symbolic representation of offline images of

signatures. Using the SVM, the hidden Markov model (HMM) and Euclidean
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classifiers, Ferrer et al. [42] analyzed the geometric aspects of signatures. With
different degrees of success and often Average Error Rates exceeding 10%, several
additional papers have investigated variants of features and classifiers [43][44][45].
Nowadays, deep learning-based methods are quite popular and are used in every field
of research due to their ease of use, automatic learning capability, and generalization
capability. Deep learning methods like CNNs have been used to detect forgeries by
automatically learning features from offline digital signatures. Literature has also
shown the use of several deep learning-based models in OfSFD systems. Various deep
learning-based models like deep neural networks [45], shallow neural networks [33],
CNNs [46], pre-trained neural networks and SNN are used for offline signature

verification systems [47].

2.2 Copy-move Forgery Detection

CMFD is among the most prevalent problems in multimedia forensics. This type of
forgery obscures or copies a few elements or portion of the image. The act of copying
a portion of the image and inserting it within the same image is known as copy-move
forgery. In contrast, splicing involves copying and pasting a portion of an image onto
another image that is not same as the source image. Numerous CMFD-related work is
primarily based on the two techniques: (i) Key- point-based feature matching [23][24]
and (ii) Block based feature matching [48][49][50][51]. Key point-based methods
extract and compare key features within the image. Various feature extractors are used,
including SIFT, SURF and ORB (Oriented FAST and Rotated BRIEF) etc., because of
their robustness to rotation and scaling. The block-based methods divide the image
into overlapping regions, which are matched to detect similarities. Commonly utilized
techniques include the DCT, Principal Component Analysis (PCA), and SIFT.
Nonetheless, these approaches come with a significant computational cost, along with
number of others inherent drawbacks. Therefore, several works incorporated adaptive
over-segmentation [52][53] to divide the image into non-overlapping patches to reduce
the computational complexity and perform feature matching to detect forgery.
However, rather than feature-matching parts of images and detecting copy-move

forgery, focus on detecting the traces of operations performed after copy-move and
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splicing to blend it with the original image. In the literature, much work has been done
to detect the traces left by image tampering post-processing operations like median
filtering [54], re-compression [55] and contrast enhancement [56]. Such operations are
employed to make the forgery look more convincing, with median filtering being the
most widely used. Current techniques use deep learning-based methods to
automatically learn complicated features from training data, resulting in higher
accuracy and robustness than handcrafted-based methods. Deep learning-based
approaches are now used in every field of research because of their automatic learning
features capability and achieving high accuracy in classification. Various deep
learning-based approaches were also used to detect an image's tempering and prove
better results. Generally, in a deep learning model, images are directly given as input
to the network layer, and the network automatically learns the features based on the
image's content. However, in the case of image tempering detection, instead of learning
the content-based features, the traces left after the tempering operation performed on
the image are learned and used to classify the image as authentic or tempered. To learn
the traces left after the tempering operation, preprocessing such as filtering is done and
these filtering residuals are fed to the first convolutional layer. Yang et al. [57] used
Laplacian filter before passing the image through CNN for edge sharpening and hence
image enhancement thereby reducing the blurring effects. Deep learning-based
techniques have recently been used for detecting splicing and/or copy-move forgery
type of manipulation. Deep CNNs are particularly excellent at identifying copy-move
forgeries because they recognize unique patterns that indicate manipulation. Hybrid
frameworks combining traditional methods with deep learning techniques have
produced promising results by employing handcrafted and deep-learned features to
improve detection accuracy. Rao and Ni present a approach for detecting splicing and
copy-move forgery [58]. Their approach involves a supervised CNN that learns the
hierarchical features of the manipulated input RGB color image. Instead of initializing
the weights randomly, as in conventional CNN, a high pass channel set is used to
estimate any remaining mappings in the spatial rich model (SRM). To hide the image
content and detect the subtle artifact caused by the tampering operations, the first layer
uses kernel weights based on 30 high-pass filters. The 10 layers make up the CNN

architecture that is used to automatically learn the features. The final discriminative
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Table 2.1: Copy-move forgery detection methods.
Author (s) |Methodology Details Performance | Dataset
Liu et al., [52] |CKN A data-driven local F1=0.5997 |CoMoFoD
descriptor, GPU-based
adaptive over-
segmentation, robust to
post-processing, noise,
brightness change, gaussian
blurring and
transformations
Salloum et al., |[Edge- Multi-task learning, based | F1=0.6117 | Columbia
[59] enhanced on VGG-16, robust to
SFCN and  pnoise, gaussian blurring and|
MFCN JPEG compression
Cozzolino et |Constrained [Small training set, robust to| Accuracy = | Synthetic
al., [60] CNN, median filtering, gaussian over 90%
Residual blurring, noise, resizing and
feature JPEG compression
extraction
Ouyang et al., (Transfer Uses a pre-trained model | Error =2.32% | Oxford
[61] learning using that isn't realistically robust
ImageNet to copy-move forgery
Wu et al., [61] |CNN feature [End-to-end Deep CNN F1=0.7572 | CASIA
extractor solution, poor in a pure v2.0
using VGG16 ftexture image
model
Liu et al.,[63] FCN-CRF  |Pixel-to-pixel forgery TPR =82.6% | CASIA
detection, scale-invariant, v2.0

and optimization error

exist.
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features are obtained by combining the results of a pre-trained CNN's dense patch-
based feature extraction from the test image with the feature fusion approach. Lastly,
the SVM classifier is used to make binary classification (authentic/forged). In another
method, Liu et al.[52] use the convolutional kernel network (CKN), a data-driven local
descriptor. This technique uses adaptive GPU-based over-segmentation based on the
convolutional-oriented boundaries (COB) method to produce multiscale-oriented
contours and region hierarchies. In addition, the segmented picture is subjected to key
point identification, CKN feature extraction, patch matching, and transform estimation
computation. In [59], two approaches were employed for image splicing localization
problems: a single-task fully convolutional network (SFCN) and a multi-task fully
convolutional network (MFCN). A lot of other methods are used for copy-move and
splicing forgery detection, like Cozzolino et al., [60] uses constrained CNN based on
residual feature extraction, Ouyang et al., [61] uses transfer learning method, Wu et
al., [62] uses CNN feature extractor using VGG16 model, Liu et al., [63] uses fully
convolutional network and conditional random field (FCN-CRF) method for pixel to
pixel-based forgery detection and Wu et al., [64] introduces an end-to-end deep neural
network called BusterNet for CMFD and localization. Various copy-move and splicing
manipulation detection techniques are mentioned in Table 2.1. Table 2.1 consists of
the authors, the methodology used, brief details about the method, performance

parameters and the dataset on which the evaluation is done.

2.3 Multiple Forgery Detection

Multiple image manipulation detection methods are employed to detect the various
tampering operations carried out on the image. Detecting manipulated images is
challenging, as the complexity of manipulations can vary, ranging from single
manipulation to more sophisticated multiple manipulations. A forger can manipulate
an image by employing a variety of image manipulation techniques. A significant
interest has been observed in developing a universal image forgery detection approach
to detect multiple tampering operations. Universal image manipulation detection
techniques are usually focused on identifying the traces that are left over after the post-

processing operations. Many researchers have focused on detecting manipulated
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images by employing machine and deep learning techniques. A variety of deep
learning-based techniques are employed to identify multiple image manipulations.
Table 2.2 briefly details the various multiple image manipulation detection techniques.
Table 2.2 consists of the authors, the methodology used, brief details about the
methods, performance parameters and the dataset on which the evaluation is done.
Bayar and Stamm [16] gave a deep learning-based universal image manipulation
detection approach. The technique uses a novel convolutional layer that is distinct from
the standard layers of a CNN. This technique uses a novel convolutional layer that
automatically suppresses the image's content and records the traces left by the
tampering operation, whereas previously pre-processing or preselected features were
needed to detect image manipulation. While hiding the image's content, the modified
attributes that were taken from the layer include the relationship between the pixel and
its immediate vicinity. The constrained layer is the first layer, where the prediction
error filters are learned using convolutional filters. After giving each filter, a weight at
random, the constraint is applied to each filter and iteration. This completes the task
of using the tampered image to learn the altered features. The following four tampering
procedures were taken into consideration: resampling, AWGN (additive white
Gaussian noise), median filtering, and Gaussian blurring. Both binary and multi-class
classification were tested in the experiment. Two neurons make up the output layer of
the binary classification method, which is used to categorize both original and altered
images. Five neurons make up the problem output layer in multi-class classification,
which is used to categorize various forms of image forgeries. The accuracy of the
approach is high, at about 99.10%. Furthermore, a data-driven strategy was used by,
Bayar and Stamm [65] in another paper to provide a manipulation parameter estimator.
This method is independent of the individual study of the estimator for each form of
manipulation. In [66], two techniques for identifying and locating image alteration are
employed. The first approach classifies tampered images using a deep neural network
and manually created features such as Fast Fourier Transform (FFT), Laplacian, and
Radon. The second approach used a long short-term memory (LSTM) network to learn
the boundary transformation or correlation between the current block of resampling
characteristics and the neighbouring blocks. This gives the SoftMax classifier the

discriminative features it needs to classify the data. The technique successfully classify
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Table 2.2: Multiple image manipulation detection methods

Author (s)

Methodology

Details

Performance

Dataset

Zang et al.,
[25]

Stack

Autoencoder

Detect the tampered region
accurately, applicable to both
JPEG and TIFF formats, BMP

image format is not included

Accuracy =

87.51%

CASIA

Bayar and
Stamm [65]

CNN

Manipulation detection using
data-driven parameter
estimation, four different
tampering operations are
detected: JPEG compression,
median filtering, gaussian

blurring and resampling

Accuracy =

90% to 99%

Dresden based

synthesized

Bunk et al.,
[66]

CNN and
LSTM

Detect and localize
manipulation using resampling
features and deep learning,
involves JPEG quality,

rescaling, rotation and shearing

Accuracy =

94.86%

NIST Nimble
2016

Bappy et
al., [67]

LSTM-EnDec

Manipulation localization is
done using resampling features,
ILSTM cells and encoder-
decoder network, low-resolution
feature map, fit for restricting

controls at a pixel level.

Accuracy =

Over 71%

Synthesized
using NIST’ 16,
IEEE FC,
COVERAGE

Mazumdar

etal.,[15]

Deep siamese

CNN

Instead of classification, the
method discriminates based on
the same or different processing
operations they have gone

through

Accuracy =

95.24%

Dresden based

dataset

the manipulated images with an accuracy of 92.64%. Because the recompression of
modified images leaves evidence behind, the JPEG image format is typically employed

for forgery localization. However, in [25], the stack autoencoder was employed to
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detect tampering actions in various image formats using contextual information and
feature learning. Numerous other multiple image manipulations detection techniques
were also employed, including Bappy et al. [67] where they used LSTM-EnDec and
Mazumdar et al., [15], used Deep Siamese CNN.

2.4 Image Manipulation Localization

Image manipulation detection is ascertaining whether an image has been manipulated
from its original state. On the other hand, image manipulation localization (IML) takes
it a step further by identifying that an image has been manipulated and precisely
determining the manipulated region within the image. Detection and localization are
vital in diverse domains, including forensics, journalism, medical imaging and digital
media authentication. Detection is useful for identifying potentially manipulated
images, whereas localization provides additional information about the scope and
characteristics of the manipulation, allowing for informed decisions regarding the
image's authenticity and integrity. For many years, the field of media forensics has
been established to identify fraudulent activities. Early research focuses on projecting
images straight into binary label space (authentic/manipulated) using conventional
features [8]. Localizing multiple image manipulations at the pixel level is difficult
because of the tampered region's features, which include various scales, uneven
shapes, hazy boundaries, and strong intrinsic resemblance to chaotic backdrop objects.
Conventional IML techniques rely on hand-crafted features, such as self-consistency,
point matching, and Markov features, which have a weak generalization capacity and
strictly rely on the domain expertise of human experts [68]. Deep learning-based IML
techniques may automatically extract discriminative features using deep neural

networks and have a more significant learning ability for complicated scenarios [69].

The IML task, which aims to uncover and magnify the forgery traces concealed
in the altered image, merely needs segmenting out the fabricated region instead of
semantic segmentation. Progressive deep learning-based IML techniques may
automatically extract discriminative features using deep neural networks and have a

more significant learning ability for complicated scenarios than standard techniques

24



Chapter 2 Literature Review 25

[70]. The boundary supervision techniques [71][72] and the two branches [73][74] are
the major tools used in successful deep learning-based IML models. By combining
RGB spatial data with noise view or frequency domain features, the two-branch-based
models aim to increase the detection accuracy. The noise view perspective detects
tampered sections by utilizing the information that the new parts added through
splicing or removal differ from the pristine part in terms of noise distribution. This
allows it to capture traces of image forgeries. A predetermined high-pass filter or
limited convolution layer is used to construct the noise map given an input image. This
noise map is then supplied to a deep neural network either separately [75] or in
combination [76] with the input image. The image manipulation traces are improved
by the noise inconsistencies derived from these noise streams. This approach is not
very effective for identifying copy-move without introducing new elements. On the
other hand, discrete cosine transform or rapid Fourier transform are primarily used to
extract frequency information to make it easier to capture small indications of forgery
that are no longer evident in the RGB domain [14]. The frequency modality that has
been added on top of RGB information can strengthen the model's resistance to several
image compression techniques. Nevertheless, only the high-frequency information
was investigated in the majority of the models that were already in use; the frequency
information was not extensively utilized. Methods based on border supervision have
been presented consecutively to capture the forged traces around the tampered area.
Empirically, the boundary artifact placement information was also somewhat
beneficial for detecting the tampered regions [59]. For instance, the Sobel filter was
employed by MVSS-Net [77] and its enhanced versions MVSS-Net++ [59] to
construct an edge-supervised branch, which produced more targeted feature responses
close to the forged regions. Additionally, Zhou et al. [78] used a discriminative
generator and uniformly concatenated the backbone characteristics from various layers
as the input of the auxiliary branch to segment and correct the boundary artifacts

produced during the picture tampering process.

For many years, the field of media forensics has been established to identify
fraudulent activities. Early research focuses on projecting images straight into binary

label space (real/manipulated) using conventional features. Detecting manipulation at
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the pixel level (IML) is the subject of a few works [79]. Conventional IML techniques
rely on hand-crafted features, such as self-consistency [79], point matching [53] and
Markov features [80], among others, which have a weak generalization capacity and
strictly rely on the domain expertise of human experts. Nevertheless, several
techniques—such as splicing [81], copy-move [82] and inpainting[75] —have only
been studied to identify a single particular kind of alteration and are hence unsuitable
for the general localization of image forgeries. A new generation of frameworks is
desperately needed to address the challenges mentioned above to achieve more refined
outcomes at the pixel level for more semantically complex and perceptually
compelling images in the real world.

Many deep learning-based techniques have been presented in the recent few
years to tackle the IML problem for the three common tampering procedures
mentioned above, and they have demonstrated considerable potential. Bappy et al. [83]
used the LSTM-based patch comparison method to identify the border around
tampered sections. They also suggested general solutions for the hybrid encoder-
decoder structure to enhance the algorithm's performance. Before the end-to-end
framework with three high-pass filters, Wu et al. [84] used the steganalysis-rich model
to investigate the noise inconsistencies between the tampered and clean regions. For
the pixel-level IML challenge, however, the previously mentioned approaches remain
far from useful in terms of resilience, feature generalization capacity, and segmentation
accuracy. In order to do this, Hu et al. [85] developed a spatial pyramid attention
network that builds on local self-attention to describe the link between multi-scale
visual blocks accurately, hence improving detection accuracy. More recently, Wang et
al. [68] introduced ObjectFormer, which uses learnable object prototypes based on

attention and frequency attributes to detect tampering artifacts.

In the realm of natural language processing, architectures based on self-
attention mechanisms, particularly the Transformer framework [86], have emerged as
the top option due to their strong capacity to model long-range context information
[87]. Dosovitskiy et al., [13] presented the ViT model, which eliminated the need for
CNNs and worked best on the ImageNet classification dataset as a way to apply

transformers to computer vision problems. The Pyramid ViT [88] and Swin
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Transformer [89] were created to solve the challenges of porting the Transformer to
multiple dense prediction applications, in contrast to the ViT, which was exclusively
designed for image categorization. Robust hybrid Transformer architectures like
TransFuse [90] and NestedFormer [90] include the Transformer into CNN to improve
medical picture segmentation in the interim. NestedFormer [90] explicitly investigated
multi-modal MRIs' intra- and inter-modality relationships to segment brain tumors.
TransFuse [90] enhanced the effectiveness of modeling global contexts while keeping

a good grasp of low-level details by combining Transformer and CNN in parallel.

2.5 Deepfake Detection

Digital picture editing has become more common in recent years. Therefore, it is
challenging to confirm the authenticity and integrity of photos because it is so simple
to manipulate an image. Deepfake detection methods use sophisticated machine
learning algorithms to spot artificial manipulations, guaranteeing the integrity and
authenticity of digital content. Deepfake detection focuses on identifying and
mitigating the risks associated with manipulated media, particularly videos and images
where individuals' faces or voices are convincingly altered using artificial intelligence.
Numerous facial manipulation detection techniques have been put forth. The initial
attempts relied on handcrafted features that were derived from irregularities and
artifacts in the process of creating fake images. Deep learning has been widely used in
recent techniques to extract salient and discriminative features to detect facial
manipulations automatically. Although facial manipulation detection techniques have
advanced significantly, they still have certain challenges and disadvantages. The
diversity of training data affects the efficacy of these techniques. A lack of diversity
in the training data may make it difficult for the model to identify more recent and
advanced deep fake faces. Academics and industry professionals are actively
addressing these issues, and continuous developments in data gathering, model
architectures, and technology are intended to increase the robustness and dependability
of facial manipulation detection techniques. A few noteworthy facial manipulation

detection studies have been examined and considered.
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In related studies focusing on facial manipulation detection, authors provided
a combined approach that integrated You Only Look Once (YOLO) and Linear Binary
Pattern Histogram (LBPH) [91]. The approach demonstrated the effective use of the
YOLO-LBPH face detector for identifying facial regions in video frames, while
feature extraction was performed using EfficientNet-B5. The precision (P) score of
88.9% and recall (R) score of 93.76% were achieved on the Diverse Fake Face Dataset
(DFFD). In the other work [92], the Fisher Face Linear Binary Pattern histogram using
the Deep Belief Network (FF-LBPH DBN) classifier method achieved an impressive
accuracy rate of 97.82% on the DFFD dataset. Certain research work [93] explored a
variety of deep learning and machine learning-based models for detecting GAN-based
manipulation. It is shown that DenseNet-121 can detect artificially generated
anomalies in medical imaging with an accuracy of 80.4%. Also, a deep learning-based
approach [94] was used for detecting deepfakes, aiming to aid cyber security
professionals in combating deep fake-related cybercrimes by accurately identifying
manipulated content. The study employed and compared with several neural network
models. The approach achieved an impressive accuracy of 94%. Different models'
classification accuracy was examined in a separate study [95]. When applying pre-
processing techniques, the CNN-only model without PCA achieved 63.86% accuracy,
while the CNN model with PCA classifier achieved 74.26% accuracy. Without any
pre-processing stages, the CNN-only model achieved 93.16% accuracy and the CNN
model with PCA achieved 90.76% accuracy. Furthermore, increasing the number of
samples used for training and testing in the CNN network resulted in the highest
accuracy of 98.04% for image classification. In another study [96], spatio-temporal
information was extracted using a convolutional neural network to detect facial
manipulation. It has been observed that researchers have developed methods to
identify a particular type of facial manipulation, but they are not robust enough to
detect multiple facial manipulation techniques. Also, the models that were developed

are very complex and computationally expensive.
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2.5 Research Gap

The following research gaps are identified for future work based on the literature

survey.

e Lack of comprehensive, systematic reviews that holistically consolidate recent
advancements, datasets, and methodologies. This gap presents a strong case for a
review article, as no unified source sufficiently captures the breadth and depth of
developments in this rapidly evolving area.

e Hand-crafted features-based approaches have not proven good enough for
manipulation detection as they require more human intervention, are not
automatic, and are not robust, so there is always scope for other deep learning-
based approaches.

e There is a lack of specialized systems tailored to specific forensic applications,
such as face or offline signature verification, which require highly accurate and
context-sensitive approaches. Research focused on application-specific
manipulation detection frameworks could yield more targeted solutions for fields
like biometric security, document verification, and media forensics, which have
unique requirements and constraints.

e A robust framework is needed to detect multiple forgeries in a single model. Most
existing methods focus on detecting specific types of forgeries. However, limited
robustness is observed across multiple forgery detection methods.

e Methods developed for manipulation detection perform well as they have to do
the binary classification (detecting whether an image is manipulated) but struggle
to localize the manipulated region in the image accurately. Localization is a bit
difficult compared to detection. Existing methods perform well for image-level
manipulation detection but often lack pixel-level image manipulation localization.

e Image manipulation methods rapidly evolve with the advancements in generative
Al, creating a gap between new manipulation techniques and existing detection
methods. Developing adaptive and robust models capable of handling evolving

manipulation techniques like deepfake is crucial.
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2.6 Research Objectives

Based on the literature review, the main objectives of this thesis work are as follows:

e To review state-of-the-art handcrafted and deep learning approaches, image
manipulation datasets, existing solutions and their limitations.

e To develop an effective approach for image manipulation detection.

e Design a manipulation detection system for various specific forensics applications
such as face verification.

e Multiple forgery detection (universal forgery detection) and localization of
forgery in a tampered image.

e To study and formulate the various deep learning-based approaches for image

manipulation detection systems, including deepfake detection.
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Chapter 3

Image Manipulation Detection for specific forgery

This chapter explained the proposed methodology for detecting specific
manipulations, such as OfSFD and CMFD. A detailed description of the problem
statement, dataset, feature extraction process and methods adopted are provided in
this chapter. The effectiveness of the proposed approach is explained and validated
through experiments on standard datasets and a SOTA comparison study of the

results is provided.

3.1 Offline Signature Forgery Detection

3.1.1 Introduction

Signature is one of several biometric traits commonly used for user verification,
including fingerprints, palm geometry, face, retina, iris, and voice. Handwritten
signatures are regarded as a reliable biometric attribute since they are unique to each
individual and difficult to reproduce. Signatures are often employed as authentication
hallmarks because they are simple, socially and legally acceptable to legitimate
entities. Because the signature is the primary means of validation and approval in
legitimate transactions, it is crucial to anticipate its authenticity. Signatures have long
been regarded as the most widely accepted and logical methods of user verification,
notwithstanding their vulnerability to expert forgers. Several attempts have been made
to address the vulnerability related to the manual authentication scheme. Manual
signature verification of various documents is time-consuming and requires human
carefulness, expertise, and mastery to differentiate and detect forged signatures. A
robust automated framework for OfSFD is needed. As machine learning techniques
advance, researchers create various machine learning-based signature forgery

detection approaches [32], as discussed in Section 2.1.
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Signature forgery detection is classified into two categories based on their data
acquisition approach: online signature forgery detection (OnSFD) and the OfSFD
method [97]. In online or dynamic methods, a signature is obtained using an electronic
device such as a tablet, smartphone, or electronic writing pad with a stylus pen. Each
stage in the signing process provides information about the pen's location, inclination
angle, stroke order, writing speed, and pressure [98]. In contrast, offline or static
approaches collect signatures by scanning a handwritten signature on a document and

converting it to a digital image [99].

In OfSFD systems, the process begins with digitally obtaining and preserving
the individual's signatures. In signature forgery detection systems, strong features are
taken from the training set signature image and compared to those extracted from the
test image. The OfSFD system is the most well-known individual authentication
technique for banking or business [100]. Fig. 3.1 depicts a general workflow for an
OfSFD system. The database contains registered and query signer signature images.
The images are then preprocessed to extract appropriate features. A model is trained to
do classification based on a score to determine if a signature image is genuine or

forged.

Furthermore, the OfSFD employs two distinct approaches: writer-dependent (WD)
and writer-independent (WI) [101]. The WD strategy trains the model for each writer,
requiring a distinct classifier for each writer, whereas the W1 approach requires a single
global classifier for all writers. The WI approach uses a broad model, making it more
practical and popular than the WD signature forgery detection approaches. As the
number of users in the WD method grows, each user requires a separate classifier,
increasing complexity and computing cost. A WI approach is more practical and user-

friendly because it uses a single global classifier for all users [101].

Offline signatures are collected after they have been written on a document,
then scanned and displayed as a digital image. Because of this, dynamic information
about the signature, such as the location and speed of the pen over time, is lost, making
OfSFD a difficult task. Offline signatures can be forged in three ways: simply,

randomly, or skillfully. Simple forgery occurs when the forger is unaware of the real
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Fig. 3.1: General process of an offline signature verification system.

signature. However, they are aware of the signer's name, whereas in the case of random

forgery, the forger substitutes their signature for a genuine signature, and in the case

of skillful forgery, the forger is aware of the signer's name and genuine signature and

attempts to emulate the signer's signature [102]. OnSFD methods outperform offline
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equivalents due to data availability such as the pen location, inclination angle, stroke
order, writing speed, and pressure. However, OnSFD techniques require specialized
equipment, raising the framework cost and limiting real-world application scenarios
[101]. There are numerous situations where authenticating an offline signature is the
only choice, such as check transactions and document verification. As a result of its
more extensive application region, this work centers on developing an automatic
writer-independent offline signature forgery detection system (WIOfSFD). An
EfficientNet-based Siamese neural network (eSNN) is proposed to discriminate

between forged and genuine signatures.

It is observed that skilfully done forgeries closely resemble genuine signatures.
Here are a few challenges encountered when developing feature extractors for these
genuine signatures: (1) Genuine samples of signatures occasionally have completely
distinct shapes. For such genuine samples, the feature extractor used would have
produced significantly different feature vectors. (2) In some cases, the character shapes
can differ greatly. Research focusing on how individual letters appear will produce
poor results. (3) Directional-based descriptors (such as HOG or D-PDF) may be
impacted by significant flourish fluctuation. (4) Some users find it difficult to
distinguish between the traits of two signatures, even after thoroughly studying the
data. (5) The available signature dataset is insufficient to cover all the signature
characteristics. Handcrafted feature engineering will not be a suitable solution for this
signature verification problem. Using deep convolutional neural networks as feature
extractors could solve the problem, but due to the limited availability of signature
datasets, it would not be easy to get discriminative features for genuine and forged
signatures. Therefore, a popular pre-trained EfficientNet-B7 model is used as a feature
extractor. This gives a dynamic, robust, and efficient feature extractor to solve the

problem of signature forgery detection.

3.1.2 Efficient Siamese Neural Network for WIOfSFD

An eSNN is proposed for WIOfSFD. The main task is to classify whether the
individual signatures are forged or genuine. eSNN is used to compensate for

convolutional networks' shortcomings in detecting and differentiating between
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discovering spatial component variations and alterations in image components while
still utilizing their strengths in non-manual learnable identification and extraction of
features. The complete architecture of the proposed network is shown in Fig. 3.2. The

method is based on the Siamese network and EfficientNet model.

The Siamese network has two subnetworks, which give the feature vector
representation of the respective input sample image. A subnetwork consists of an
EfficientNetB7 pre-trained model on ImageNet followed by a flattening layer and two
dense layers to finally get the feature vector representation for the input sample images.
Both subnetworks are combined using a loss function that calculates the Euclidean
distance between the two feature vectors obtained from the two subnetworks. The
similarity score between two input sample images in the joint space is computed using
the Euclidean distance function. However, preprocessing is done on the raw image
before passing the image to the respective networks. Images in datasets range in size
from 304x240 to 798x482; therefore, all the images are resized to 224x224 and
preprocessed to ensure consistency. The outputs of the sub-networks are then
compared using a loss function, typically through a distance metric that is Euclidean
distance, to produce a similarity score. The contrastive loss [103] is one such loss

function that is frequently employed in SNN and is calculated as follows:
L(ey,e2,Y) = (1 —Y)DZ + =¥ max (0,1 — D,,)? (3.1)

where e, and e, are two feature vectors, Y is a binary indicator 0 for the same class and
1 if the signature samples are from a different class. D, = ||f(e;) — f(ez)|l is the
Euclidean distance calculated in the embedded feature space, and f is an embedding
function from sub-networks that translates a signature image to real vector space. The
feature vectors obtained from the sub-networks are compared by the contrastive loss
function that computes the Euclidean distance between the two feature vectors in the
embedded space. The Siamese network attempts to push the output feature vectors
away if the input pairs are dissimilar and to push the feature vectors closer for input
pairings that are tagged as similar, in contrast to conventional techniques that assign
binary similarity labels to pairs. The resulting space will have the characteristic that

images belonging to the same class (a genuine signature for a specific signer) will be
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closer to each other than images belonging to dissimilar class (signatures of different
signers) as a result of the loss function given by Eqn. 3.1. The next step is to establish
a threshold value (t,) for the distance between two images to assess whether they
belong to the same class (genuine, genuine) or a distinct class (genuine, forged).
Finally, the query signature is accepted for classification if the similarity score is less
than the chosen threshold and rejected otherwise. Eqn. 3.2 is used to verify each user.

Genuine, if S <ty

Forged, otherwise (3-2)

5(X|S) = {

Where X is the query user and t;, is the distance threshold value. The user is considered

genuine if the similarity score (S) between two input sample images is less than tj,.

The eSNN takes the offline signature pair from two different users (for
example, users 1 and 2) and generates an output based on how similar the two pairs
are, as illustrated in Fig. 3.2. In a Siamese network, the sub-networks share the same
weights and biases, so they are "identical". This allows the network to learn a common
representation of the input data and apply it to both inputs. The signature of the genuine
user 1 is passed to the first subnetwork and the signature of user 2 produced while
attempting a forgery of user 1’s signature, is passed to the second subnetwork. The
signature image is passed to the subnetwork to perform the feature extraction using the

pre-trained model EfficientNetB7.
3.1.2.1 Siamese Neural Networks

For autonomous feature extraction and classification problems, deep learning
architectures utilizing CNN approaches have gained popularity. However, it is well
acknowledged that these techniques call for a lot of labeled data, which may not be
feasible (or desired) to verify signatures. As a result, a new strategy is required that
can be extended to new users without retraining the model and that can be trained on
smaller data samples. One possible strategy is one-shot learning, which can be carried

out with a Siamese network of twin sister networks with identical weights.
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A Siamese network is an artificial neural network, sometimes called a twin
neural network, which involves pairwise learning. Siamese network architecture
generally consists of two subnetworks having the same configuration, such as identical
parameters and shared weights [104]. Here in the SNN, feature vectors of the two input
images are obtained from the subsequent subnetworks. Then, these feature vectors are
compared using Euclidean distance, which computes the similarity score or distance
from each class. The Euclidean distance is small when the two input images belong to
the same class, such as genuine-genuine (genuine signatures from the same user) and
is large for the dissimilar class, such as genuine-forged (forged or signatures from the

other user).

In contrast to conventional neural networks, SNNs are more robust in an
imbalanced dataset. The advantage of using Siamese networks is that they can
effectively learn the similarities and differences between two inputs, even if the inputs
are from different domains or have different distributions. This makes them useful for
tasks like signature forgery detection, where defining a clear similarity metric is
difficult. However, Siamese networks are slower than conventional classifying neural
networks. Therefore, in the proposed model, the subnetwork gives the feature vector
as output for the input sample image based on the weights of the pre-trained model

(EfficientNet) instead of learning from scratch.

3.1.2.2 Feature Learning

Feature learning is performed on the preprocessed images. In feature learning, several
features are extracted to distinguish between different signatures. The eSNN takes a
pair of inputs consisting of a signature sample. Now, the preprocessed images are
passed to the respective sub-networks. The sub-network consists of EfficientNet-B7,
where features are extracted using transfer learning from each signature sample. In the
proposed method, a pre-trained model is used to make the process more robust,
typically a deep neural network EfficientNet-B7 trained on a large, general-purpose
dataset, ImageNet, which contains millions of images. This model's pre-trained

weights and biases are used as initialization for fine-tuning, which helps reduce the
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training data and computational resources required to solve the problem. The pre-
trained model extracts high-level features from the input sample images in feature
extraction. Due to limited labeled training data for WIOfSFD, transfer learning from a
pre-trained model can leverage the knowledge from large amounts of data and improve

performance.

EfficientNet is a family of convolutional neural networks designed by a team
of researchers at Google Al in 2019 [105]. EfficientNet is known for its efficiency in
terms of both accuracy and computational resources, making it a popular choice for
signature forgery detection tasks. EfficientNet has achieved SOTA performance on
several computer vision benchmarks, including ImageNet, COCO object detection,
and PASCAL VOC segmentation. Therefore, EfficientNet-B7 is used as a feature

extractor in the SSN's subnetworks as it performs best over other ConvNets.

EfficientNet is a pretty large network consisting of many learnable parameters
(approximately 66 million) obtained after training the network. EfficientNet is trained
on a large dataset (ImageNet, which contains over 15 million images); thus, a
considerable computational asset would be required for training. This could be a
problem because accessing such a high computational machine is difficult whenever
you train the network. In particular, for huge image datasets, it has been observed that
the low-level features learned from the initial layers of the network are generally the
same irrespective of the dataset. Therefore, pre-trained weights trained on ImageNet
obtained from the EfficientNet-B7 model can be used to initialize the other network.
This helps reduce training time and makes the model more robust, which results in

lower generalization errors.

3.1.3 Experiment

The experiment adheres to the specified design to examine the effectiveness of the
proposed method for signature forgery detection: (1) Load data and generate pairs of
similar (genuine, genuine) signatures and dissimilar (genuine, forged) signature
classes. (2) Preprocessing is done to have greyscaled, binary, noise-free, sharpened,

and normalized images. (3) Each dataset is split into three separate datasets for
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training, validation, and testing purposes. After examining the dataset structure, each
part is allotted 60%, 20%, and 20% of the whole dataset accordingly (except the
ICDAR 2011 SigComp dataset, where the train and test set is predefined). (4) After
loading the pre-trained model, add a flattening layer and two dense layers to create the
final subnetwork. (5) Train the network on different datasets separately to help the
network learn the weights and reduce the loss function. The loss function gives the
similarity score based on the Euclidean distance between the two feature vectors. The
validation dataset determines the ideal threshold value to provide the anticipated class
labels during training. (6) Calculate the evaluation parameters for each set of test data.
The final performance of the model is assessed using test data in accordance with the

assessment criteria.

3.1.3.1 Preprocessing

Preprocessing aims to prepare all the signatures for further operations and make
learning more feasible. It is a general understanding that signature images have intra-
class variance. Different examples of the same individual signature will vary due to
fluctuations in a person's mood, state of mind, etc., and a lack of space on the writing
surface. These reasons explain why various samples of the same signature frequently
differ in height, width, skewness, etc. Several preprocessing steps have been carried
out in the current analysis to eliminate these intra-class variances. Fig. 3.3 illustrates
the preprocessing procedure for the raw signature images from the datasets. The raw
images are resized to 224x224, as the default fixed size of the image is taken for
training. The resized images undergo three essential steps: (1) Gray Scaling: Images
are converted from the RGB image into the grayscale image. To build a 3-channel
input image for the pre-trained model, the one-channel image created by the grey scale
operation is stacked to create three levels of equal pixel values. (2) Binarization: The
image is transformed to a binary image with only black and white pixel values using

Otsu thresholding [106] to reduce noise.
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Fig. 3.3: Preprocessing procedures for the raw signature samples from the datasets

3.1.3.2 Dataset

Various datasets with unique structures and signature characteristics evaluate the
eSNN performance. The datasets taken into consideration are GPDS-Synthetic [107],
MCYT-75 [108][109], CEDAR [29], BHSig260 [110], ICDAR 2011 Signature
Verification Competition [37] and UTSig [111]. Some examples of real and forged
signatures from each dataset are presented in Fig. 3.4 to help the viewer comprehend
the signatures gathered in each dataset. Three real signatures from the same individual
in the dataset are displayed in each row, along with a forged signature image of the
same user. Six different datasets are employed in this analysis. 7able 3.1 shows the

details of the datasets.
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Table 3.1: OfSFD Datasets Description
Signature | Signatures | Description
Dataset Seript Signer | Signature | Samples | per Signer
S Samples | (Genuine/ | (Genuine/
Forged) Forged)
GPDS- English | 4000 216000 96000 24/30 600 dpi, JPG
Synthetic /120000 format
[107]
MCYT-75 English | 75 2250 1125/1125 | 15/15 600 dpi,
[108][109] greyscale,
BMP format
CEDAR English | 55 2624 1320/1320 | 24/24 300 dpi,
[29] greyscale,
PNG format
BHSig260 Hindi | 160 8640 3840/4800 | 24/30 300 dpi,
(Hindi) greyscale,
[110] TIF format
BHSig260 Bengali | 100 5400 2400/3000 | 24/30 300 dpi,
(Bengali) greyscale,
[110] TIF format
ICDAR Chinese | 10+ 10 | 1178 2354236 | (21 to 24) 400 dpi,
2011 /340+367 | /(23t036) | PNG
SigComp
(Chinese)
[37]
ICDAR Dutch | 10 +54 | 2297 240+1296 | (23 to 24) 400 dpi,
2011 /123+638 | /(8 to 16) PNG
SigComp
(Dutch)
[37]
UTSig Persian | 115 8280 3105/5175 | 27/42 600 dpi,
[111] greyscale,
TIF format
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Fig. 3.4: Examples of genuine and forged signatures samples from different datasets
(a) GPDS-Synthetic, (b) CEDAR, (c¢) BHSig260 (Hindi), (d) BHSig260 (Bengali), (e)
ICDAR 2011 (Chinese), (f) ICDAR 2011 (Dutch), (g) UTSig. Three real signatures
from the same individual in the dataset are displayed in each row, along with a forged

signature image of the same user.
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3.1.3.3 Experimental Setup

A pre-trained model, EfficientNet, is used from the Keras Application API in the
subnetwork. The subnetwork comprises a pre-trained network (EfficientNet) whose
layers are freezed followed by flattening and adding two dense layers. The first dense
layer consists of 1024 neurons with a dropout rate of 0.5, whereas the second dense
layer consists of 128 neurons. At the output of the dense layers, the Rectified Linear
Units (ReLU) activation function is used. This network receives input pairs, and the
resulting feature embeddings are provided to a distance function to determine
similarity. When given the estimated distance, a loss function modifies the parameters
to reduce the distance between pairs of (genuine, genuine) signatures and raise the
distance between pairs of (genuine, forged) signatures. A Euclidean distance function
determines the distance between the two output image encodings from the twin sub-
networks. Adam optimizer is used to train this Siamese network for 15 epochs with
contrastive loss, momentum rate of 0.9, the initial learning rate is set to 10, and batch
size of 64. The model was trained using a 12GB Nvidia Quadro K4200 and Tesla K40C
GPU card. The eSNN model has 1.44M trainable parameters and requires around

393M FLOPs, ensuring efficient performance in resource-constrained environments.

3.1.3.4 Performance Evaluation

To determine if the signature pair (i;j) belongs to a similar or dissimilar class, a
threshold ‘#,’ is set for the distance measure D(xl-; xj) , produced by the model. Refer
to all signature pairs (i; j) with different identities as "pgissimiiar » Whereas all pairs
with the same identity are referred to as "pgimiiar - The set of all TP at the threshold

‘ty’ can, therefore, be defined as

TP(th) = {(i'j)epsimilar: with D(xi; xj) < th} (3-3)
Where pgimiiar 18 the number of similar signature pairs.

Likewise, the set of all TN at ‘t;,’ can be defined as

TN(th) = {(i'j)epdissimilar’ with D(xi; xj) = th} (3-4)

Where pgissimitar 1S the number of dissimilar signature pairs.
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Now, for a given signature, the TPR (t,) and the TNR (t,) are defined as

ITN (tp)

TPR(ty) = l'“’“’”' ,TNR(ty,) =

Psimilar|

(3.5)

|pdissimitar!
Therefore, the maximum accuracy can be calculated by varying t;, € D with a 0.01 step
size from D's lowest value to its highest value. The test accuracy is determined by
iterating through various threshold levels and counting the number of image pairs that
were properly identified. The accuracy of each system was calculated using the best

thresholds discovered for it.

Accuracy = max %(TPR(th) + TNR(ty)) (3.6)

theD
In classification problems, accuracy is not a sufficient requirement by itself. For this
reason, FAR, FRR, EER and F1-score values are determined for each class. These
metrics can demonstrate how effective a verification system is in discriminating

between genuine and forged identities.
3.1.4 Result and Discussion

Table 3.2 compares proposed eSNN and cutting-edge techniques on the various
datasets. The proposed method performed better on all the datasets, including the
GPDS Synthetic, MCYT-75, CEDAR, BHSig 260, ICDAR 2011 and UTSig datasets.
The proposed method outperforms the cutting-edge approaches with respect to
Accuracy (A), EER, FAR, FRR and F1 Score criteria. The proposed method, eSNN,
performs flawlessly on the CEDAR dataset and is comparable to the other two top
approaches, Signet [43] and Compact Correlated Features (Dutta et al. [112]). On the
BHSig260 database, the performance of the eSNN is not superior to the most effective
method currently available (CBCapsNet [37]). Suggested eSNN approaches
significantly outperform the other techniques in all the other datasets. On the ICDAR
2011 SigComp (Chinese) dataset, shown in Table 3.1, the accuracy of the eSNN
exceeds 95%, while the accuracy of the other methods does not exceed 88%. On the
CEDAR dataset, the eSNN accuracy is 100%, and the FAR and FRR are equal to zero.
Noteworthy is the fact that the performance of the eSNN is also excellent on the UTSig
dataset, which has the lowest EER value. In conclusion, the proposed model has a

significant advantage over other SOTA methods in five of the six datasets.
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Table 3.2: Comparison between the proposed eSNN and cutting-edge techniques.

Dataset Methods Accuracy EER FAR FRR F1
Score
GPDS- Dutta et al. [112] 73.67 - 28.34 27.62 -
Synthetic SigNet [43] 77.76 - 22.24 22.24 -
LS2Net [113] 96.91 - - - -
Inception-v1 [114] 77 0.22 - - 0.753
CBCapsNet [37] 90.87 - 9.45 8.81 -
Yapici et al. [115] - 12.34 8.66 10.41 0.88
eSNN 98.23 2.265 3.01 2.52 0.86
MCYT-75 LS2Net [113] 96.41 - - - 0.97
Ooi [116] - 9.87 - - -
Soleimani et al. [117] - 9.86 - - -
Alonso et al. [118] - 29.62 26.84 32.4 -
Hezil et al. [119] - 7.78 6.23 9.33 -
Bhunia et al. [120] - 6.10 6.00 6.20 -
Maergner et al.[121] - 391 - - -
Sima et al.[122] - 5.46 - - -
Masoudnia et al.[123] - 5.85 - - -
Yapici et al. [115] - 2.58 2.66 1.33 0.97
eSNN 97.82 2.54 2.54 2.54 0.98
CEDAR Kalera et al. [29] 78.50 - 19.50 22.45 -
Chen and Srihari [124] 83.60 - 16.30 16.60 -
Chen and Srihari [125] 92.10 - 8.20 7.7 -
Kumar et al. [126] 91.67 8.33 8.33 8.33 -
Dutta et al. [112] 100.0 0.00 0.00 0.00 -
SigNet [43] 100.0 0.00 0.00 0.00 -
LS2Net [113] 98.30 - - - 0.99
CBCapsNet [37] 100 0.00 0.00 0.00 -
Maergner et al.[121] - 5.91 - - 0.97
Sima et al.[122] - 4.94 - - -
eSNN 100 0.00 0.00 0.00 0.99
BHSig260 Pal etal. [110] 75.53 24.47 24.47 24.47 -
(Hindi) Dutta et al. [112] 85.90 13.10 15.09 -
SigNet [43] 84.64 15.36 15.36 15.36 -
CBCapsNet [37] 100 0.00 0.00 0.00 -
eSNN 89.28 10.72 10.72 10.72 0.99
BHSig260 Paletal. [110] 66.18 33.82 33.82 33.82 -
(Bengali) Dutta et al. [112] 84.90 NA 15.78 14.43 -
SigNet [43] 86.11 13.89 13.89 13.89 -
CBCapsNet [37] 943 NA 5.11 6.29 -
eSNN 88.69 11.30 11.28 11.32 0.98
ICDAR 2011 Liwicki et al.[127] 80.04 NA 19.62 21.01 -
SigComp Alvarez et al. [128] 88 NA 8.2 18.2 -
(Chinese) eSNN 96.16 4.01 3.84 4.17 0.91
ICDAR 2011 Liwicki et al.[127] 97.67 NA 2.19 2.47 -
SigComp Alvarez et al. [128] 94 NA 13.32 3.13 -
(Dutch) eSNN 97.88 2.09 2.02 2.1 0.99
UTSig Maergner et al.[121] - 14.09 - - -
Sima et al.[122] - 12.88 - - -
Masoudnia et al.[123] - 7.02 - - -
eSNN 98.39 2.39 2.58 2.53 0.97

‘-‘ represents not available.
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The ROC curve shown in Fig. 3.5 is used to evaluate the performance of the eSNN
across several threshold values. ROC is a probability curve that indicates the level or
amount of separability. It indicates how well the method can discriminate between
classes. The method works better if the AUC is high. It is evident from Fig. 3.5 that
the CEDAR dataset area under the curve is much higher, indicating that the proposed
method performed better on the CEDAR dataset than the other datasets.

ROC Curve

1.0

— CEDAR

uUTSig

— GPDS-Synthetic
0.8 MCYT-75

e JCDAR 2011(Dutch)

= ICDAR 2011(Chinese)
06 — BHSIg-HIindi
BHSig-Bengali

True Positive Rate

).004 0.006 0.008 0.01¢

False Positive Rate

Fig. 3.5: ROC curve of the proposed method for different datasets

3.2 Copy-Move Forgery Detection

3.2.1 Introduction

CMEFD is a specialized area within digital image forensics that focuses on detecting a
particular sort of image manipulation. Copy-Move Forgery encompasses copying a
part of the image and pasting it within the same image. CMFD is one of the most
popular techniques because of its subtlety and ease of manipulating images with
minimal visible inconsistencies. Copy-move forgeries are difficult to detect by
conventional image manipulation detectors, which generally look for anomalies

caused by external objects or lighting inconsistencies. However, copy-move forgeries
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might cause noticeable distortion, such as minor edges, textures, or color

inconsistencies.

CMEFD encounters various challenges due to the diversity and complexity of
forging tactics. Forged regions can undergo modifications such as rotation, scaling,
and blurring, which alter visual and spatial properties, making detection difficult.
JPEG compression and noise addition complicate detection by reducing image quality,
making it difficult for computers to identify duplicate parts reliably. Furthermore,
recurring patterns in images, such as textures in foliage or building facades, produce
false positives since actual similarities can seem replicated portions. Furthermore,
minor or subtle forgeries, particularly well-blended ones, necessitate extremely
sensitive detection methods to distinguish tampered content from authentic patterns.
As a result, developing strong, accurate, and efficient CMFD for various manipulation

scenarios remains a serious research issue.

3.2.2 Residual-based CNN Method for CMFD

The proposed method uses the Second Difference Median Filter Residual (SD-MFR)
and the Laplacian filter residual (LFR) to suppress image content and only explore the
inconsistencies left behind after the tampering operation. These two residuals act as
input to a robust CNN architecture to detect the traces in tampered images and classify

them as so. The complete process flow is given in Fig. 3.6.

The proposed CMFD technique uses the SD-MFR and LFR residuals as
combined input to the novel CNN network to classify images as authentic or tampered.
SD-MFR is used to capture the median filter residuals, and LFR is used to capture the
blurring features. Instead of directly feeding the image as input to the CNN, some

preprocessing is performed on the image.

3.2.2.1 Preprocessing

Images are resized to 128x128 and converted to grayscale before finding their filtering

residuals. First, calculate the SD-MFR median of the image given by Eqn. 3.7, then
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Fig. 3.6: The proposed model flow for CMFD

the median of the median is given by Eqn. 3.8 and finally, the MFR is calculated using
Eqgn. 3.9 by subtracting Eqn. 3.7 from Eqn. 3.8.

Yi,j = medW(Xi_j) (37)
Z;j = med,,(Y;;) (3-8)
SD—MFRLJ :Zi,j_Xi,j (39)

where X; ; is the pixel's intensity at the i™ and j” pixel and *w’ represents a 5x5 window

for median filtering.

Now, to calculate the LFR, a Laplacian filter mask is used, as shown by Eqn.

3.10.

0 1 0
[1 —4 1] (3.10)

0 1 0
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Further, the Laplacian of the image is obtained by Eqn. 3.11 and then the LFR is
calculated by subtracting the image from the Laplacian of the image as given by Eqn.

3.12. The LFR is given as:
L;; = Laplacian(x; ;) (3.11)
LFR;j =L;j—X;; (3.12)
3.2.2.2 CNN Architecture

The proposed CNN architecture is inspired by VGGNet [22]. The convolution layer is
the core building block of the CNN. It comprises a set of independent filters
individually convolved with the input image. They use randomly initialized filters that
further become parameters to be trained. Convolution layers are extremely effective in
extracting relevant feature maps from images. Let Z; ; give the convolution over an

image at the i™ and j™ pixel, provided by Eqn. 3.13.
Zij = ®(Zlzo Lm=0 WimXi+1,j4m T Wp) (3.13)

Where X; ; is the intensity of the pixel at the location i, j of an input image and wy ,

denotes weight, wy, is the bias, ® denotes the activation function and the LxM is the

size of the kernel.

The proposed network consists of six convolutional layers with ReLU
activations. The ReLU activation function is used to get nonlinearity in the network.
The ReLU activation function is based on the thresholding operation and is expressed
in Eqn. 3.14.

x, x =0

0, x <0 (3.14)

®(x) ={

The first convolution layer is for dimension reduction and has 64 kernels of size
1x1x2. The second layer consists of 64 filters of 3x3 kernel size. The third layer
consists of 128 kernels of size 3x3. The fourth and fifth layers have 256 filters of 3x3
kernel size, whereas the sixth convolution layer consists of 512 filters having 3x3
kernel size each. All the convolutional layers are followed by a max-pooling layer

except the first layer to reduce the feature size. It performs downsampling by dividing
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the input into rectangular pooling regions and taking the maximum value from each
pooling region. A pool of 3x3 with a stride of 2 is used. Just like the input is scaled
before feeding into the input layer of a network, batch normalization scales the output
from the activation of each convolution layer so that the next layer receives scaled
input, thereby increasing performance and speed. This layer is used after each
convolution layer in the model. Flattening allows changing a high-dimensional tensor's
shape into a single dimension so that the dense layer can interpret it. It removes all of
the dimensions except one. It is used after the fifth max pooling layer. The dropout
layer is used before a dense layer to avoid over-fitting the training data, as the network
is trained on a small dataset. It randomly drops out some nodes during an epoch of
training so that responsibility for the input is shared equally among the nodes. This
layer is used before both the fully connected layers in the proposed framework. A dense
layer is a layer in which each neuron accepts the input from all the neurons that were
in the previous layer. The proposed method uses two dense layers with 2048 neurons,
each with ReLU activations initialized with He initializers and regularized with L2
regularization and an output layer with softmax activation and two neurons. The

complete architecture of the proposed network is shown in Fig. 3.7.
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Fig. 3.7: CNN-based framework for CMFD
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3.2.3 Results

The proposed network is tested on the CoMoFoD dataset [ 129], which consists of 4800
original and 4800 forged images. The training and validation images are divided into
a ratio of 70:30. Therefore, the network is trained on 6720 images, and the validation
set contains 2800 images. The network achieves an accuracy of 95.97% on the
validation set. The plot of training and validation accuracy and training and validation

loss of the proposed method on the CoMoFoD dataset is in Fig. 3.8.

Table 3.3: Performance of the proposed method for CMFD

Training Set Validation Set
Dataset Accuracy
Authentic Tampered | Authentic Tampered
CoMoFoD 3360 3360 1440 1440 95.97%
BOSSBase 7000 3000 7000 3000 94.26%
Training and Validation Accuracy Training and Validation Loss
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Fig. 3.8: Training and validation metrics of the proposed method on the CoMoFoD

dataset.

The proposed method is also tested on the BOSSBase dataset [130] containing

10,000 raw images. Median filtered versions of each image is generated and then train
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and test the model on these 20,000 images. The training and validation set is divided
into the 70:30 split. The network achieves an accuracy of 94.26% on the validation set.
The experimental results show the proposed method's effectiveness and achieve high

accuracy.

3.3 Summary

This chapter delves into the targeted approach for detecting specific types of
manipulation, particularly emphasizing WIOfSFD and CMFD. An eSNN method is
specifically designed to address the challenges of authenticating handwritten
signatures for WIOfSFD. eSNN approach uses transfer learning to describe a
framework for OfSFD based on Siamese networks and WI feature learning. Unlike the
previous approaches, this approach does not rely on handcrafted feature engineering;
instead, it learns its features from data in a writer-independent scenario. The
performance of the eSNN method was evaluated based on six popular signature
datasets. The eSNN was designed to learn spatial features from the pre-trained
EfficientNet in each sub-network of the SNN for WIOfSFD. The contrastive loss
function generated a similarity score between two pairs based on the Euclidean
distance. A decision was made based on the similarity score. The comparison between
the performance of the eSNN and SOTA methods was done using various evaluation
parameters. The result shows that eSNN had a significant advantage over the SOTA

methods on five out of six datasets.

In addition, the chapter proposes a CMFD method using an SDMFR and LFR residual-
based CNN framework. This method targets copy—move forgery created by
duplicating parts of an image in order to disguise or manipulate content. The method
is designed to capture the traces left by postprocessing operations like median filtering
and image blurring to detect the discrepancies between copied and authentic regions.
The method achieves high detection accuracy for the CoMoFoD and BOSSBase
datasets. However, the system is not robust enough to detect tampering where no
postprocessing operation has been applied. Hence, detecting such forgeries still has

much potential for further research work. The eSNN and residual-based CNN methods
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demonstrate advanced, domain-specific solutions for detecting specific forgery types,

thereby contributing to improved integrity and security in digital media.
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Chapter 4

Multiple Forgery Detection and Localization

This chapter incorporates two different methods to detect multiple manipulations.
The first method, MDLFormer, consists of multi-modal input, GCST encoder and
FPN-based decoder to detect and localize the manipulation. The second method,
LFRViT, is a Laplacian filter residual-based vision transformer for multiple
manipulation detection. In this chapter, the methodologies concerning each of the
given methods have been discussed in detail. Further, the classification results of
the proposed approaches are validated on standard datasets and compared with

existing state-of-the-art methods.

4.1 MDLFormer Method for Multiple Forgery Detection and
Localization

4.1.1 Introduction

Real-world manipulated images often exhibit multiple forgery operations. Multiple
forgery detection refers to the recognition of various types of manipulation. These
manipulations may include copy-move, splicing and inpainting forgeries. Detecting
multiple forgeries is challenging compared to single forgery detection techniques due
to the diversity of manipulation operations, variation in manipulation patterns and the
subtlety involved in editing operations. Recent multiple forgery detection methods
leverage deep learning models such as CNN and ViT, hybrid frameworks, to analyze
the intricate attributes of the image and detect irregularities that indicate manipulation,
such as inconsistencies in texture, lighting, color and structure, while maintaining
robustness across different manipulations. The development of an effective multiple
forgery detection approach must enhance the detection accuracy and aid applications
in journalism, law enforcement and digital media authentication, where the

verification of the integrity of multimedia content is crucial.
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Image manipulation detection emphasizes the existence of manipulations,
whereas image manipulation localization seeks to pinpoint and map the precise
locations of these changes. Image manipulation detection determines whether an
image has been manipulated from its original form. On the other hand, image
manipulation localization takes it a step further by identifying that an image has been
altered and precisely identifying the specific region within the image that has been
manipulated. The localization process typically employs algorithms that analyze the
image in detail, detecting areas where manipulation has occurred and marking those
regions for further investigation. Detection and localization are vital in diverse
domains, including forensics, journalism, medical imaging, and digital media
authentication. Detection is useful for identifying potentially manipulated images,
whereas localization provides information about the scope and characteristics of the
manipulation, allowing for informed decisions regarding the image's authenticity and
integrity. Localizing operations makes it possible to make more accurate corrections
or adjustments. Image manipulation detection alone can determine if an image has
been manipulated. However, localization provides additional detail and context, which

is highly important for applications requiring precision, reliability, and accountability.

Despite the SOTA IML solutions stated in Section 2.4 above, two issues still
require attention. The primary motivating factors behind this work are these two
problems. Problem 1: During feature extraction, attention-based encoding-decoding
networks and their derivatives are prone to losing some global context information.
Any meddling behavior will somewhat destroy the integrity of the intrinsic features of
the original image data itself. Problem 2: Because of edge disruption or body outline
concealment, existing approaches frequently struggle to accurately and
comprehensively identify the structure and characteristics of fabricated regions,
leading to inaccurate predictions with imprecise or incomplete object bounds. Taking
this into account, this study proposes a model, i.e., MDLFormer, which consists of
multi-modal input that exploits various inconsistencies present in the manipulated
image, GCST encoder to capture long-range dependencies as well as local artifacts and
FPN based decoder for IMDL. This GCST encoder combines the strong ViT with the
classical Global Context block (GCB). GCST encodes richer features using a widely
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used Swin Transformer rather than a conventional CNN. Adding the GCB to the Swin
Transformer can significantly enhance the model's performance as it simulates the
global context efficiently and is lightweight. Finally, the FPN decoder is used to get
the predicted mask with the same size as the input. Leveraging these well-designed
modules, the proposed MDLFormer performs better image manipulation detection and
localization (IMDL) tasks by utilizing multi-modal volumetric data and features
extracted through Swin Transformer and the supplementary global context information
from the GCB. The proposed IMDL scheme addresses both image-level and pixel-
level manipulations. Comprehensive experiments are conducted on diverse standard
datasets. The experimental findings confirm that the suggested MDLFormer
significantly outperforms the current SOTA IMDL techniques in widely used

evaluation metrics.

4.1.2 MDLFormer Model

A manipulation detection and localization model, namely MDLFormer, is proposed to
help capture detailed information in manipulated images while overcoming receptive
field limitations. The proposed IMDL scheme addresses both image-level and pixel-
level manipulations. Three sections comprise the overall architecture of MDLFormer,

as shown in Fig. 4.1

The primary goal is to detect the manipulated images and localize the image's
manipulated regions. As illustrated in Fig. 4./, an end-to-end architecture, which
consists of an encoder/decoder known as MDLFormer, is employed to accomplish this
goal. An encoder-decoder network is a traditional architecture for dense prediction
tasks, producing output results that are identical in size to the inputs. This article uses
the proposed GCST as the encoder and FPN as the basis for the decoder. The Swin
Transformer in GCST is Swin-B, which contains 2, 2, 18, and 2 Swin Transformer
Blocks in its four levels. The GCB is added in stages three and four. The encoder's
primary responsibility is extracting high-level feature vectors by obtaining context

information through convolution, activation, and normalizing algorithms.
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Fig. 4.1: Overview of proposed MDLFormer model architecture for image manipulation detection and localization. A detailed
discussion of the three regions, i.e., multi-modal input (green region), GCST encoder (blue region) and FPN decoder (pink region).
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Nonetheless, the decoder concatenates (adds) two inputs (one from the encoder's
symmetrical layer and the other from its preceding layer) to determine the spatial
information placement (up sampling). Proposed MDLFormer structure has a three-step
pipeline, as seen in Fig. 4.1. The feature maps are displayed by their dimensions, such
as HxWxC Q) represents matrix multiplication while €D represents broadcast element-
wise addition. Conv 1x1 operation is used to change the feature map dimension to the
desired feature map dimension. Three different types of information are formed as the
encoder input in the first step, known as multi-modal input. Although noise
inconsistency is the most used modality, ablation research demonstrates that different
modalities improve performance. The second phase consists of a GCST encoder,
which extracts discriminative features to help classify between manipulated and
authentic images. The final stage, manipulation localization, makes pixel-level
localization possible with the FPN decoder. The following are MDLFormer's detailed

processing steps.
4.1.2.1 Multi-modal Input

Typical image manipulations, which are usually undetectable to human eyes, may
result in some changes between a pristine portion and a tampered part by splicing,
removal, copy-move, and other post-processing operations to hide artifacts. To enable
the encoder to learn forgery traces instead of image contents for an image I € R#>*W>3,
three different sources of information are used as input. Among these inputs are: 1)

€ RI*Wx3 " is obtained to identify the noise discrepancy

Noise feature maps Iy
between genuine and tampered regions. The noise characteristics were taken from an
SRM filter layer [131]. The idea behind the use of the SRM filter layer is that noise
features between the source and target images are unlikely to match when an object is
removed from one and pasted into the other (the target). The RGB image is converted
into the noise domain to use the local noise features as input for the encoder. Noise
features can be extracted from an image using various methods. SRM filter kernels is
used to create the noise features and use them as the input channel to the GCST encoder

based on previous work on SRM for manipulation classification [131]. SRM filters are

employed to extract the local noise features from RGB images as the input to the GCST
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encoder, inspired by recent advances in SRM features from image forensics [131]. 2)
High-pass filtering residuals obtained from the DCT of the Y channel of the YCbCr
color space I, € R™VY, which considers high-frequency information caused by
tampering and post-processing operations. Since research [132] has demonstrated that
the YCDbCr color system is known to be more susceptible to manipulation artifacts, first
transformed the input RGB image into a YCbCr color space. The DCT coefficients of
the Y -component are then used to learn forgery traces since they represent luminance
information and comprise most of the image information. However, there isn't much
difference between genuine and fake images in RGB space. Furthermore, this
distinction between real and fake can still be seen in the frequency domain, particularly
in the high-frequency region, even though it is difficult for the human eye to detect. A
neural network can detect minute variations in the frequency domain even with low-
quality images. Image forensics relies on capturing the evidence of tampering actions
to detect and locate manipulation in an image. It is not easy to extract discriminative
characteristics from the pixel domain of an image and directly record the inpainting
traces because deep inpainting results in visually indistinguishable image contents.
High-pass filtering of an image to suppress its contents and extract residuals is a
standard procedure in many forensic techniques for gathering tampering traces
[133][134]. Motivated by these efforts, apply a High-pass filter on the DCT of the Y
channel of the YCbCr color space that can improve the quality of tampering traces. 3)
LFR maps I3 € R"*V  as obtained in [82], Laplacian filter residual highlights the areas
of rapid intensity change, which helps identify the discontinuity caused by tampering.
LFR is obtained by first converting the input image to a grayscale image and then
applying a Laplacian filter mask of size 3x3 to identify inconsistencies that may
indicate manipulation after [82].

Further, these three input features are concatenated as { = [I; I,; I3] € RP>XW*3

as
shown by the Eqn. below

[ = Concat(1,,1,,15) 4.1
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4.1.2.2 Encoder

The main aim of the encoder is to learn the manipulation traces left behind by different
manipulations. The encoder consists of a proposed Global Context Swin Transformer,
namely GCST, to downsample and encode the pre-processed multi-modal input image
into multi-scale high-dimensional feature maps, which are required inputs for the

decoder.

Global Context Swin Transformer (GCST): Swin Transformer, a shifted
window transformer is a hierarchical ViT architecture designed to increase the
performance and efficiency of using transformers in computer vision tasks like object
identification, image segmentation, and image classification [89]. Compared to ViT
[13], Swin Transformer [89] is a hierarchical architecture that handles dense prediction
issues and lowers computational complexity. In particular, it calculates self-attention
in non-overlapping windows with small-scale sizes. Furthermore, the window
partitions in succeeding layers differ to encode contextual information. As a result,
local self-attention modules transform the long-range information throughout the
network, making it a suitable choice for image segmentation tasks. Swin Transformer
has four hierarchical stages, each generating tokens at different scales. Given an input

of size HxXW, the image is divided into non-overlapping patches and these are mapped

) ) . . . H_WH_W H_W
into a vector of dimension C via a linear embedding. Tokens for PR Ry Ppa st

and :—2 X 3% are produced, correspondingly, by stages 1, 2, 3, and 4. Each stage

contains Patch Embedding followed by a few Swin Transformer Blocks. A Swin
Transformer computes local self-attention using the Shifted Window Multi-Head Self-

Attention (SW-MSA) instead of the MSA used in ViT.

Despite using a shifted-widow approach for the sequential layers of a
hierarchical architecture and self-attention mechanism, Swin Transformers still have
poor encoding for large-scale spatial contextual information, local window constraints
and slow global information integration. Solution to this issue is to increase the
corresponding field for spatial images using a Global Context Swin Transformer, or
"GCST" for short. GCST makes it possible to encode long-range contextual

information on different scales efficiently. More specifically, the Swin Transformer's
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many stages are designed to accommodate the GCB. Adding GCB to the Swin
Transformer helps improve its capacity to capture long-range dependencies and

contextual information.

Global Context Block (GCB) directly enhances the model’s ability to
aggregate global information in a single step without relying on hierarchical
progression. The GCB enhances the model’s ability to detect and localize subtle image
manipulations by explicitly integrating the global context information early in the
network. This integration of GCB provides better consistency, coherence and
sensitivity to the nuances of image manipulation, making it an essential enhancement
for tasks like IMDL. The GCB is added within the Swin Transformer blocks. The GCB
uses global average pooling to capture global context and transforms it using
convolutions. This transformed context is added to the original input to enhance the
feature representation. The stages of the Swin Transformer are processed as usual. The
feature map is processed and enhanced with global context by the GCB. The feature

map is reshaped to its original dimensions for the next stage.

Fig. 4.2 illustrates the detailed architecture of the GCB and is formulated as

exp (Wg x;)
Zi = X + WUZ ReLU(LN(WUl ﬁy=1 2%:1 exp (kWIZ Xm)

X)) (4.2)

Where, x; represents the input feature at the spatial location i in the feature
map. x; is a vector of length C, where C is the number of channels in the input feature
map. Denote x = {x;}), as the input feature map of an image, where N = H - W is
the number of positions in the feature map and z is the output feature after applying
the GCB. z; has the same dimension as the input feature map at location i. W, and W,
denote bottleneck transform learnable weight matrices (e.g., 1x1 convolution). W}
reduces the dimensionality of the global context vector in the first step of the
bottleneck transform from C to C'. W,! helps to reduce the computational cost and
capture important features more efficiently. W, represents the attention score weight.

It is used to project the feature vector x; into a scalar value (attention score = Wy x;),
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which is later used to compute the SoftMax weights. Subsequently, global attention

N exp (W xj)
J=ELYN 1 exp Wk xm)

pooling operation ¥ = ), x; is performed to have a global context
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Fig. 4.2: Architecture of the Global Context Block (GCB).

vector. It computes a weighted sum of all input features x;, with weights determined
by the attention scores. A non-linear activation function ReL U is applied to the output
of W} and Layer Normalization (LN) is used to normalize the intermediate feature
vector to improve the network's stability during training. W,? projects the transformed

global context back to the original feature map's dimension from C' to C. The weights
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exp (W x]-)
Z%=1 exp (Wg xm)

W2 ReLU (LN (W,1(-))) represents the bottleneck transform. GCB consists of three

for global attention pooling are given by a; = and B(-) =

steps: (1) global attention pooling for context modeling, (2) bottleneck transform to
encapsulate channel-wise dependencies and (3) broadcast element-wise addition for

feature fusion.

4.1.2.3 Decoder

This study also uses FPN [89] to fuse different-scale features. Two key goals of FPN
are to acquire multi-scale contextual information and to expand the receptive field. In
a standard deep convolutional network, a pooling layer is added along with the
activation function and convolutional layer. Following the pooling layer, the size and
computation quantity of the feature map will typically decrease. Field extension is
essential. However, the smaller feature map's lower spatial resolution will significantly
lose spatial semantic information for the IMDL challenge. Not only does FPN enhance
the detection and localization of large target regions, but it also expands the receptive
field without compromising the spatial resolution. FPN is used to take advantage of
multi-scale context through multi-level feature map fusion to produce a fine-grained
localization result. More specifically, the four-head FPN is developed for the four
stages of GCST. The decoder utilizes the coarse feature map as input and conducts
sampling and convolution operations to generate dense feature maps that can be used
for pixel-wise classification into manipulated and authentic images. Furthermore, as
depicted in the pink box in Fig. 4.1, the {F1, F2, F3, F4} is sent to the FPN decoder
and the classifier to generate the final prediction, P. To be more precise, start by
applying a 1x1 convolutional layer to every feature map. Subsequently, the smaller
feature map is sampled twice, and element-wise summation is performed to fuse them.
Again, using a 1x1 convolutional layer, these features are fused by the element-wise
summation and given to the classifier, where the classifier is made up of a
convolutional layer with 3x3 kernel, batch normalization, SoftMax activation function
and up-sampling to transform the feature map to match the GT7, to produce prediction

binary mask B.
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4.1.2.4 Loss Function

The MDLFormer network parameters are learned during training by minimizing a loss
function computed between the ground truth (GT; ;) and the predicted binary masks
(B;,j). Consider two types of loss, each with its own target, i.e., a pixel-level loss to
improve the model's sensitivity for pixel-level manipulation localization task and an
image-level loss to improve the model's specificity for image-level manipulation
detection task. To train the MDLFormer network, employed a linear combination of
two loss functions: the conventional binary cross-entropy loss (Lgcgr) and the Dice

Loss (Lpicg), given by the following equation,

L= 2-Lgcg+ (1 —2)-Lpce (4.3)
Where A is a hyperparameter that balances the two losses, it is set to 0.5 by default.

Pixel-Level Loss: A manipulated image typically contains more authentic pixels than
manipulated ones. The traditional cross-entropy loss, calculated as the average of all
pixels, will be more biased toward the authentic classes. This results in low
performance in classifying manipulated pixels while doing well in classifying
authentic pixels. As manipulated pixels are often in the minority in a given image,
employ the Dice loss, which was found to be effective for learning stability from
unbalanced data:

H W
_ 2 Yi=1Xi=1GTij Bij

H W H W
Ei:lzizl(GTi,j)z+Zi=12i:1(8ivj)2

Lpice =1 (4.4)

Where GT; ; € {0,1} represents the pixel label value at position (i, j), and B; ; indicates
the probability that the pixel at position (7, j) is manipulated.

Image-Level Loss: As the two classes at the image-level are more balanced than their
counterpart at the pixel-level, utilize the BCE loss, extensively used for image

classification, to compute the image-level loss:
Lgcg = —X[GT -log(B) + (1 — GT) log(1 — B)] (4.5)

Where GT = max ({GT;;}) and B = GMP(B,; ). Global Max Pooling (GMP) takes

the maximum of B; j as B, i.e., B = By j+ , with (i*, j*) = argmax;; (B;;).
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4.1.3. Experiments

This section consists of a set up of a few experiments in this study to evaluate the
proposed MDLFormer framework. This section consists of the dataset and

implementation details.
4.1.3.1 Dataset

Pre-trained Dataset: Current standard manipulation datasets do not have enough
manipulated images to support deep neural network training. As a result, first, pre-
train the MDLFormer network using a synthetic dataset, i.e., DEFACTO [135]. A
synthetic dataset is employed to pre-train the model, enabling it to acquire fundamental
features and patterns. Following this, the model's performance is assessed using
standard benchmark datasets, ensuring a robust assessment of its effectiveness and
generalization capabilities. DEFACTO [135] is a recent large-scale dataset with 149k
forged images automatically manipulated by copy-move, splicing, and removal. The
forged images were created from MSCOCO [136]. Several manipulation techniques,
such as copy-move, splicing, and removal, were used to manipulate the images. In
accordance with [137], pre-train the model on the DEFACTO [135] in order to enable
a head-to-head comparison with SOTA methods. In this work randomly selected 60k
manipulated images are used from the DEFACTO dataset. The manipulated images in
this dataset resemble genuine forgeries, which helps the model learn various traces
corresponding to manipulation. It is important to note that compared to some other
research, including PSCC-Net [137] (100k samples) and ObjectFormer [68] (62k
samples), the base dataset used in this work had fewer images. Using this synthetic
dataset, the proposed network is trained with 90% of the data used for training and
10% for validation. Save the model when the network converges on this dataset to be
tested and fine-tuned further on several standard manipulation datasets. Table 4.1 lists

all datasets and their key characteristics.

Standard Datasets To demonstrate the effectiveness of the proposed approach in
localizing different types of manipulations, experiments are carried out on the

following standard forgery datasets: Columbia [138], COVERAGE [139], CASIA
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[140] and NIST16 [141], and IMD20 [142]. To fine-tune MDLFormer, the same
training/testing split for Coverage, CASIA, and NIST16 as in [137] for fair
comparisons is used. 7able 4.1 summarizes the manipulation types for each standard
dataset and the number of images used to train and test the pre-trained and fine-tuned

models.

Table 4.1: Dataset training-testing split for the Pre-trained and Fine-tuned models

Dataset Pre-trained Fine-Tuned Manipulation
Type
Train Test Train Test

DEFACTO [135] 54000 6000 - - S, C, Re

Columbia [138] - 180 - 180 S

Coverage [139] - 100 75 25 C

CASIA [140] - 6044 5123 921 S, C

NIST16 [141] - 564 404 160 S, C, Re

IMD20 [142] - 2010 - 2010 S, C, Re

“S”: Splicing; “C”: Copy-move; “Re”: Removal; “-”: Not applicable

The datasets are described as follows:

e Columbia [138] dataset consists of 180 spliced uncompressed images and ground-
truth masks are also provided. It is used to evaluate the pre-trained model.

e Coverage [139] dataset includes 100 images based on the copy-move technique
and ground-truth masks. To fine-tune the model, the dataset is split into 75/25 for
training and testing.

e CASIA [140] dataset comprises both splicing and copy-move manipulated images
of different objects. The tampered locations are carefully picked, and some post-
processing techniques, such as filtering and blurring, are used. Ground-truth masks

are created by thresholding the difference between modified and original images.
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For fine-tuning, utilize 5123 images from CASIA v2.0 for training and 921 images
from CASIA v1.0 for testing.

e NIST16 [141] dataset has 564 manipulated images, including three types of
manipulation: copy-move, splicing and content-removal. It is a challenging dataset
as manipulated images are post-processed to remove visible traces and the ground-
truth masks are provided for evaluation. To fine-tune the model, it is split into
404/160 for training and testing.

o IMD20 [142] comprises 2010 real-life manipulated mages taken from the internet
and includes three types of manipulation: copy-move, splicing and content-
removal. It is used to evaluate the pre-trained model. It is used to test the

MDLFormer.
4.1.3.2 Implementation Details

PyTorch framework is used to build the proposed approach and all experiments were
conducted on Nvidia Quadro K4200 and Nvidia Tesla K40C GPUs. During the training
phase, the model is optimized utilizing the Adam optimizer with a batch size of 8. The
initial learning rate was set at 10, Validations were performed after each epoch, and
the model with the highest validation F1-score across all 100 epochs was chosen as
the final model and used in the testing step. MDLFormer has 58M parameters and 23G

FLOPs, strikes a balance between computational efficiency and detection accuracy.

4.1.4. Results and Discussion

This section presents the results of the proposed method, MDLFormer, which performs
both detection and localization for manipulation detection on an image. For fair
comparisons, SOTA methods whose source codes are either publicly available or
whose pre-trained models are released by the authors are considered and if the codes
are not available, then the results are obtained from their papers. Various evaluation
metrics assess the model's performance in detecting and localizing tampered regions
in manipulated images. A comparison of the proposed method with current SOTA

methods on standard datasets like Columbia [138], Coverage [139], CASIA [140],
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NIST16 [141] and IMD20 [142] is made. The localization performance of the
proposed method under two different settings is shown in Section 4.1.4.1.
Subsequently, manipulation detection performance analysis is done in Section 4.1.4.2.
Furthermore, the ablation study is done to evaluate the antiablation capability of the

proposed method in Section 4.1.4.3. Lastly, robust analysis is done in Section 4.1.4.4.
4.1.4.1 Manipulation Localization Results

Compared with binary image-level manipulation detection tasks, pixel-level
manipulation localization is a bit more difficult as it requires the model to capture more
refined manipulated artifacts. Following PSCCNet [137], evaluated the model under
two settings: 1) Pre-training the model using the synthetic DEFACTO dataset and 2)
Fine-tuning the pre-trained model based on the train/test split on the standard datasets.
The pre-trained model demonstrates each method's generalization capability, while the
fine-tuned model improves localization and reduces domain discrepancies. The stated
results for all comparison approaches are based on their original papers or public

codes.
4.1.4.1.1 Pre-Trained Model

A comparison of MDLFormer with several SOTA manipulation localization methods,
including ManTra-Net [84], SPAN [85], PSCCNet [137], ObjectFormer [68] and
TANet [143] is made. Table 4.2 reports the pixel-level AUC score of various pre-
trained models on five distinct standard datasets for image manipulation localization
tasks. Table 4.2 demonstrates the superiority of the MDLFormer in capturing the
manipulated features and generalization capability of a variety of standard manipulated
datasets. The pre-trained MDLFormer has the best pixel-level AUC performance on
Coverage, CASIA v1, NIST16 and IMD20 dataset and second best on the Columbia
dataset. On the Coverage, CASIA vl1, NIST16 and IMD20 dataset, MDLFormer
obtains a performance improvement of about 0.2%, 7.2%, 1.4% and 3.1%,
respectively, when compared with TANet [143]. MDLFormer on the Columbia dataset
outperforms the ManTraNet [84], SPAN [85], PSCCNet [137] and ObjectFormer [68]
but trails TANet [143] by 2.8%. One of the possible reasons might be the significant
difference in the data distribution between the DEFACTO and Columbia datasets. The
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manipulated regions in the Columbia dataset are quite large compared to those in the

synthetic DEFACTO dataset.

Table 4.2: Pixel-level AUC localization performance comparison of pre-trained

MDLFormer.
Methods Data Columbia | Coverage | CASIA | NIST16 | IMD2
vl 0

ManTraNet [84] 64,000 0.824 0.819 0.817 0.79.5 0.748
SPAN [85] 96,000 0.936 0.922 0.797 0.840 0.750
PSCCNet [137] 100,000 0.982 0.847 0.829 0.855 0.806
ObjectFormer 62,000 0.955 0.928 0.843 0.872 0.821
[68]
TANet [143] 60,000 0.987 0.914 0.853 0.898 0.849
MDLFormer 60,000 0.959 0.916 0.925 0.912 0.88

The bold values indicate the best results.
4.1.4.1.2 Fine-Tuned Model:

To account for the difference in visual quality between the synthetic and standard
datasets, further fine-tune the pre-trained model on the specific datasets and compare
it with other approaches in 7able 4.3. The pre-trained model's network weights are
utilized to initiate the fine-tuned models, which will be trained on the training splits of
the Coverage, CASIA, and NIST16 datasets, respectively, using the same strategy as
[137]. The best result values are reported from the literature to ensure a fair comparison
with other methods. Table 4.3 shows that MDLFormer performs best on average on all
datasets, whether measured by pixel-level AUC or F1 score. MDLFormer achieves a
performance gain of 0.3%, 0.6% in AUC and 3.8%, 2.1% in F1 score with respect to
the second-best method TANet on Coverage and CASIA vl dataset, respectively.
However, on the NIST16 dataset, MDLFormer trails by 1.2% and 1.5% in AUC and
F1 score, respectively, to the second-best method TANet. One of the possible reasons
for this might be the wide range of image resolution varying from 500x500 to
5616%3744 in the NIST16 dataset. The significant performance gains can be seen,

demonstrating that MDLFormer can capture subtle manipulating artifacts using multi-
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modal input, local and global context hierarchical feature representation by the GCST
encoder, and the FPN decoder to distinguish between authentic and manipulated pixels
and produce a binary predicted mask. The fine-tuned MDLFormer has average pixel-
level AUC performance and is either the best or second-best on all datasets, exhibiting
outstanding generalization across manipulations.

Table 4.3: Performance comparison of the fine-tuned MDLFormer in pixel-level
AUC and FI score for image manipulation localization task.

Method Coverage CASIA v1 NIST16
AUC F1 AUC F1 AUC F1

SPAN [85] 0.937 | 0.558 | 0.838 | 0.382 | 0.961 | 0.582
MVSS-Net [77] - 0.824 - 0.753 - 0.737
PSCC-Net [137] 0.941 | 0.723 | 0.875 | 0.554 | 0.996 | 0.819
ImageForensicsOSN - - 0.873 | 0.509 | 0.783 | 0.332
[144]

ObjectFormer [68] 0.957 | 0.758 | 0.882 | 0.579 | 0.996 | 0.824
TruFor [72] - 0.735 - 0.822 - 0.470
TANet [143] 0978 | 0.782 | 0.893 | 0.614 | 0.997 | 0.865
UnionFormer [69] 0.945 | 0.720 | 0.972 | 0.863 | 0.881 | 0.489
MDLFormer 0981 | 0.820 | 0.978 | 0.884 | 0.985 | 0.850

The bold values indicate the best results, underlined values indicate the second-best
values and “-” indicates that they are unavailable.

Table 4.4: loU-based localization performance comparison

Methods Coverage CASIA vl NIST16
DFCN [145] - - 0.23
ImageForensicsOSN [144] - 0.358 0.214
Fals-Unet [146] 0.886 0.927 0.625
ViT-VAE [71] 0.108 0.106 0.171
MSCL-Net [147] 0.625 0.774 0.718
MDLFormer 0.707 0.821 0.790

The bold values indicate the best results, underlined values indicate the second-best
values and “-” indicates that they are unavailable.
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4.1.4.1.3 Qualitative Results:

Qualitative results of the MDLFormer method on image manipulation localization
using the COVER, CASIA v1, Columbia and NIST16 are demonstrated in Fig. 4.3.
The proposed MDLFormer outputs a probability map, which is subsequently
thresholded to produce a binary map to localize the forged regions. An experiment
with different thresholds within the range of 0.2 — 0.8 was done and found no
discernible difference in the results obtained. This is due to the fact that the probability
values associated with forged regions are very close to 1, while the probability values
associated with authentic pixels are very close to 0, or typically below 0.01. Therefore,
the mid-value, 0.5, has been employed as the threshold for all the experiments in this
paper. In Fig. 4.3, column 1 corresponds to the pristine image for each image, column
2 corresponds to the manipulated image, column 3 corresponds to the ground truth
mask, and column 4 shows the predicted mask. As illustrated in Fig. 4.3, the method
localizes the manipulated regions accurately. Furthermore, the MDLFormer exhibits
less sensitivity to variation in scale. Effective localization is possible for both large
(e.g., the fourth row in Fig. 4.3) and small (e.g., the fifth row in Fig. 4.3)

manipulations.
4.1.4.2 Manipulation Detection Results

To analyze the image-level detection performance, a comparison is made between
MDLFormer and the SOTA methods: MVSS-Net [77], GP-Net [74], UnionFormer
[69] and MSCL-Net [147], using two commonly used metrics (image-level AUC and
F1 score). Table 4.5 shows the AUC and F1 scores for quantitative manipulation
detection results. The results illustrate that MDLFormer performs best on the image-

level AUC and F1 scores on most datasets, except for Columbia datasets.
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Fig. 4.3: Qualitative localization performance of the proposed MDLFormer model
against different manipulation techniques such as copy-move (first and fourth row),
splicing (second and third row) and removal (fifth and sixth row) on CASIA vi,
Columbia, Coverage, IMD20 and NIST16 standard dataset. From left to right, the first
column is the authentic image, the second is the manipulated image, the third is the
ground truth, and the fourth is the predicted binary mask.
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MDLFormer's AUC score on the Columbia dataset is 1.2 % lower than UnionFormer's.
It may be because the Columbia dataset is only used for testing, not for training. It is
worth noting that the F1 score of MDLFormer is superior to all other models except
for the Columbia dataset. These results demonstrate that MDLFormer performs well

in image-level image manipulation detection.

Table 4.5: Image manipulation detection performance using image-level AUC and
Flscore

Method Columbia Coverage CASIA vl NIST16
AUC | F1 AUC | F1 AUC | Fl1 AUC | F1
MVSS-Net [77] | 0.980 | 0.802 | 0.731 | 0.244 | 0.937 | 0.758 - -

GP-Net [74] - - - - 0.887 | 0.781 | 0.922 | 0.848
UnionFormer 0.998 - 0.783 - 0.951 - 0.793 -
[69]

MSCL-Net - 0.818 - 0.724 - 0.901 - 0.875
[147]

MDLFormer 0.986 | 0.827 | 0.989 | 0.853 | 0.983 | 0.910 | 0.988 | 0.937

The bold values indicate the best results, underlined values indicate the second-best
values, and “-” indicates that they are unavailable.

4.1.4.3 Ablation Studies

In this subsection, experiments are performed to investigate each component's effect
in MDLFormer. For instance, MDLFormer with and without GCB and multi-modal
input can be replaced by single-modality input or various input combinations. Table
4.6 shows the results for the NIST16 dataset. Firstly, by comparing Variant 1 to
Variant 6, which consists of different input combinations with the MDLFormer, the
results demonstrate that the MDLFormer is better than all the first six variants.
Secondly, comparing Variant 7 to MDLFormer, respectively, the results show that the
MDLFormer with GCB-based Swin Transformer encoder remarkably enhances the
performance in terms of AUC, F1 and IoU compared to MDLFormer without GCB-

based Swin Transformer encoder (Variant 7). It has been discovered that even if Swin
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Transformer (ST) uses a shifted window to increase the corresponding fields at various
levels, ST + FPN still performs poorly. This operation has minimal impact on context
information encoding. Thus GCB is included in the multiple stages of Swin
Transformer. The features in the Transformer are rearranged like CNN's feature map
after a certain level. Ultimately, the feature map is loaded into the Transformer's
subsequent stage while maintaining its original size. GCST can learn contextual
information more efficiently and has a bigger receptive field than the only Swin
Transformer as an encoder. Lastly, by comparing Variant 1, 2, 3 and MDLFormer, the
results demonstrate that while input as in the noise inconsistency (Variant 1) plays a
major role, input as in the high-pass filter of DCT residual inconsistency (Variant 2)
and input as in the Laplacian edge discontinuity (Variant 3), can assist the network to
explore complementary tampering traces but combination of all these inputs
significantly improves the performance of the network in all the three metrics AUC,
F1 and IoU. The method's GCB module is designed to extract global information-
based forgery features for manipulation localization and detection.

Table 4.6: Ablation study results on DEFACTO datasets. Pixel-level AUC and Image-
level AUC values are reported.

Variants Pixel-level Image -level
AUC Fl1 AUC Fl1

MDLFormer with input /; 0.836 0.642 0.880 0.728
MDLFormer with input /> 0.735 0.539 0.836 0.751
MDLFormer with input /3 0.825 0.628 0.857 0.766
MDLFormer with input /; + I 0.881 0.782 0.905 0.873
MDLFormer with input /; + I3 0.928 0.814 0.944 0.836
MDLFormer with input 1> + /3 0.863 0.761 0.927 0.850
MDLFormer with I’ and w/o 0.934 0.880 0.956 0.874
GCB

MDLFormer 0.989 0.930 0.993 0.915

The bold values indicate the best results.
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Moreover, to illustrate the effectiveness of GCB, it is removed from the
MDLFormer and evaluate the tampering localization performance on the NIST16
dataset. The quantitative results are listed in 7able 4.6. It can be observed that without
GCB, the AUC scores decrease by 11.4%, the F1 score decreases by 7.3% and IoU
decreases by 15.8% on the NIST16 dataset. The performance degradation validates
that the use of GCB effectively improves the performance of the MDLFormer.

4.1.4.4 Robustness Analysis

In real-world scenarios, manipulated images often suffer from non-malicious
manipulations or post-processing distortion operations such as noise, resizing, blurring
and JPEG compression, which impacts the manipulation detection and localization.
Consequently, in this subsection, the robustness of the proposed method against
various commonly used distortion settings is evaluated. To further demonstrate the
robustness of the MDLFormer, it is subjected to the images from the NIST16 dataset
to various post-processing distortion methods. These methods include image resizing
with different resizing factors s = {0.78, 0.50, 0.25}, Gaussian noise with a standard
deviation ¢ = {3, 5,11}, JPEG compression with a quality factor g = {100, 50, 25}
and Gaussian blur with a kernel size k = {3,7,15}. Table 4.7 shows the robust
performance of the MDLFormer measured by the Fl-score and AUC against the
various distortion parameters used. The model performs well under a variety of
distortions.

Table 4.7 shows that MDLFormer is less affected by noise, resize and JPEG
compression, while it is more sensitive to Gaussian blurring distortion operations.
Especially on compressed images, the F1-score is only 0.35% lower than without the
distortion when the quality factor is 100 and 0.82% lower than without the distortion
when the quality factor is 50. The MDLFormer demonstrates robustness against

multiple distortion operations.
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Table 4.7: Robustness analysis of MDLFormer for image manipulation localization
using AUC and F1 as the evaluation metric under various distortion scenarios on the

NIST16 dataset
Distortion AUC F1
w/o distortion 0.985 0.850
Resize (s =0.78) 0.967 0.843
Resize (s =0.50) 0.944 0.822
Resize (s =0.25) 0.938 0.846
Gaussian noise (o = 3) 0.968 0.838
Gaussian noise (o = 5) 0.921 0.788
Gaussian noise (o = 11) 0.870 0.756
Gaussian Blur (k = 3) 0.977 0.849
Gaussian Blur (k = 7) 0.963 0.832
Gaussian Blur (k = 15) 0.864 0.801
JPEG Compression (g = 100) 0.981 0.844
JPEG Compression (g = 50) 0.967 0.832
JPEG Compression (g = 25) 0.948 0.801

4.2 LFRVIiT Method for Multiple Image Forgery Detection

4.2.1 Introduction

The field of research and technology known as "multiple image forgery detection" is

devoted to detecting situations in which multiple images are combined or altered to

produce an inaccurate or misleading representation. Multiple-image forgery detection

exposes instances of manipulation or tampering by examining relationships and

inconsistencies between multiple images, in contrast to traditional single-image
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forgery detection, which focuses on finding a single tampering operation within an
image [1].
Effective techniques to identify manipulated or tampered images are more important
than ever due to the spread of social media sites, online news sources, and digital
archives. These kinds of images can be used to disseminate false information, sway
public opinion, or trick people or institutions. Thus, creating efficient methods and
algorithms for multiple image forgery detection has become essential research in the
larger digital forensics and image analysis field. By applying advances in machine
learning, computer vision, and signal processing, scholars and practitioners aim to
improve the veracity and authenticity of visual content on digital platforms [148].
This study considers four different types of image tampering operations. These
tampering operations are applied to each original image to have a manipulated image.
The four different types of tampering operations are: AWGN, resampling, median
filtering, and gaussian blurring. Fig. 4.4, shows the different tampering operations

performed over the original image, taken from the RAISE dataset.

Original Image 5 Resampled Image 5 AWGN Noisy Image 5 Median Filtered Image 0Gaussian Blurred Image

(a) (b) (c) (d) (e)

Fig. 4.4: From RAISE database, (a) original image and different operations are
performed on this original image, (b) resampled image with a scaling factor of 1.5, (c)
AWGN noisy image with standard deviation of 2, (d) median filtered image with a 5
5 kernel size and (e) Gaussian blurred image with 5 x 5 kernel and o = 1.1.

This study introduces a novel universal method for detecting image editing,
which has the ability to autonomously acquire knowledge about the traces left by the

editing operation. In order to achieve this, ViT [13] is used. ViTs have recently led to
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significant progress in image recognition by enabling dynamic learning of
classification features instead of relying on hand-crafted features. A deep-learning
approach is presented that turns local image regions into masked features using patch-
level learnable masking. The ViT model receives these masked features to identify any
global discrepancies between the local masked features produced. These generated
features are highly valuable in the manipulation detection area because they can
efficiently learn the residual artifacts in manipulated images, whether local or global.
From now on, refer to this model as LFRVIT. Fig. 4.6 shows the entire architecture of

the proposed model LFRViT.

4.2.2 LFRVIT Model

This study proposes an LFRVIT, a deep learning-based classification model that
distinguishes between real and altered images produced by various tampering
operations. In the proposed approach, the tampering activities are investigated to
discern between real and altered images, suppressing the image content using the LFR
[82]. The residual serves as an input for the ViT architecture, which detects and
classifies altered images based on their traces. Fig. 4.5, shows the LFR image
corresponding to the input image. The image undergoes some pre-processing before
being fed directly as input to the ViT. In pre-processing, first, resize the images to

224x224. A Laplacian filter mask of 3x3 is utilized, as indicated by (1).

Input Image

Laplacian Filtered Image LFR Image

100

125

150

175

200

(@ (b) (¢

Fig. 4.5: lllustration of the Laplacian filter-based CNN layer output, (a) input image,
(b) Laplacian filtered image obtained via (2) and (c) LFR image obtained via (3).

79



Chapter 4 Multiple Forgery Detection and Localization 80

0 1 0
Laplacian filter mask = |1 -4 1
0 1 0
(4.6)
The Laplacian of the image is further obtained via (4.7).
L;j = Laplacian(X; ;) 4.7)

Where X; ; represents the intensity of the pixel at the i and j* pixels. Finally,
subtracting the image from the Laplacian of the image as provided by (4.7), yields
the LFR. As stated, the LFR is given by:

LFR;; = Lij — X;; (4.8)

The solution to this problem is addressed by leveraging the inconsistent
occurrence of nearly undetectable residual artifacts in altered images. A model is
developed that can detect the presence of these artifacts by identifying the
inconsistencies within the manipulated image. To do this, initially apply the Laplacian
filter to the input image, resulting in the LFR image. Subsequently, this LFR image
will be utilized as input for the ViT model. The ViT model initially divides the image
into patches of a predetermined size. A patch size of 16x16 is taken. Every patch is
considered as "token," similar to how words are processed in tasks involving natural
language processing. Each patch is encoded into a vector representation using an
embedding layer known as token embeddings. The embeddings preserve spatial
information of the patches. Positional encodings are incorporated into the token
embeddings of the Vision Transformer to compensate for its lack of innate
understanding of spatial relationships between patches, an ability that CNNs possess
through convolutions. These encodings convey information about the position of each
patch inside the image. The token embeddings, in addition to positional encodings, are
subsequently fed into a Transformer encoder. This encoder comprises several layers of
self-attention mechanisms, which are then followed by feedforward neural networks.
The self-attention mechanism enables the model to capture interdependencies among

various patches in the image. Ultimately, the result of the Transformer encoder is sent
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into a classification head, which usually comprises one or more fully connected layers.

This classification head generates the final output probabilities for various classes [13].

Fig. 4.6, provides a visual representation of the operational concept of the proposed

model LFRVIT.

Class

« Original
< Manipulated

[ Transformer Encoder

1 11

P embeading (Ol + @TP @TP ----- f ?

Linear Projection of Flattened Patches

Transformer Encoder
A

Embedded
Patches

T

Input Image LFR Image

Fig. 4.6: Architecture of the proposed LFRVIT model.

A comprehensive set of experiments is conducted to evaluate the effectiveness

of the proposed method in identifying different image-manipulating activities.

Standard image datasets, such as Uncompressed Color Image Datasets (UCID) [149],

Break Our Stenographic System (BOSSBase) [130], raw images dataset for digital
image forensics (RAISE) [150], and the Dresden image dataset (DID) [151], were

utilized to create different training and testing sets for different experiments. A total

of 33593 images were assembled using 1388 images from UCID with dimensions of

512%386, 9074 images from BOSSBase with dimensions of 512 x512, 15025 images

from DID with varying dimensions, and 8156 images from the RAISE dataset. Several

training and testing datasets were then created using the original image set as a

foundation. Four distinct types of manipulation operations are applied to each image:

81




Chapter 4 Multiple Forgery Detection and Localization 82

AWGN, resampling, median filtering, and gaussian blurring. Then produced a set of
altered images. To achieve this, a collection of unaltered images is subjected to the
individual manipulation operations such as AWGN with standard deviation of 2,
resampling using a scaling factor of 1.5, median filtering with a 5x5 kernel and

gaussian blurring with a 5%5 kernel and a standard deviation of 6 = 1.1.

4.2.3 Result

In this section, manipulation detection results of the proposed method is presented for
binary and multi-class classification. Different evaluation metrics assess the model's
accuracy in identifying manipulated images. The study utilizes commonly used criteria,
including accuracy, precision, recall, and F1 Score, to quantify the effectiveness of

classifying manipulated images.
4.2.3.1 Binary Classification

In the initial set of experiments, the proposed model is trained separately for each of
the four manipulations to detect them individually. With the identical architecture
described in Section 3, each model corresponds to a binary classifier that can identify
a single kind of potential image processing. The original and manipulated images
correspond to the two neurons that comprise the output layer. Decisions are made by
selecting the class corresponding to the highest activated neuron. Training set for each
type of forgery is constructed using 26875 unaltered photos and the corresponding
manipulated images. Similarly, to create the testing data for each type of forgery, 6718
original images were selected, along with the corresponding manipulated ones. In total
53750 training images and 13436 testing images are used for each binary
classification.

The performance of the proposed model for binary classification to identify the
underlying manipulating operations is compiled in Table 4.8. This table shows that the
proposed approach can differentiate between original and manipulated images with a
minimum of 99.32% accuracy, a minimum value of 0.96 for precision and recall and

a minimum value of 0.95 for F1-Score.
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4.2.3.2 Multi-class Classification

In the second set of the experiment, the model was trained for multiclass classification
to identify several forms of image manipulation, such as median filtering, Gaussian
blurring, AWGN, and resampling, compared to real images. As in the first set of
experiments, a choice is made by selecting the class corresponding to the neuron with
the highest activation level. A 26875 unaltered images and their four corresponding
tampered images are selected to create the training set. Similarly, 6718 original images
and the four corresponding tampered images are used for the testing data. For testing
33590 images and for training, 134375 images have been used. A summary of the
simulation results is shown in Table 4.9. The proposed model detects the four main
types of forgeries with a minimum accuracy of 99.28%. This confusion matrix shows
us how well the model can identify each alteration.

There are multiple reasons why these results are significant. First, they demonstrate
how the model, which can be trained to identify multiple manipulations without
changing its architecture, represents a universal approach to manipulation detection.
Perhaps most surprisingly, the model can be taught to learn detection features for every
manipulation without human assistance automatically. This implies that the model
may learn to detect new manipulations as they are considered or created, eliminating

the requirement for a human expert to define detection features.

Table 4.8: LFRViT performance as a binary classifier

Tampering operations

Evaluation

Gaussian
Parameters | Resampling AWGN | Median Filtering

Blurring
Accuracy 99 47%

99.78% 99.62% 99.32% e

(A)
Precision 0.99 0.98 0.96 0.97
Recall 0.98 0.99 0.94 0.96
F1-Score 0.98 0.98 0.95 0.95
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Table 4.9: Confusion Matrix of LFRVIiT as a Multi-Class Classifier

Original Median Gaussian
Resampling | AWGN
Filtering Blurring

Original 99.61 1.37 0.51 1.70 1.52
Resampling | | 5 99.78 0.18 0.57 0.68
AWGN 0.07 0.09 99.62 1.29 1.01
Median

0.26 0.31 0.51 99.28 1.59
Filtering
Gaussian 99.47

0.72 0.83 0.16 1.30 .
Blurring

4.3 Summary

This chapter explores methods for detecting and localizing multiple forgeries. This
chapter presents MDLFormer, a Multi-modal Global Context-based Swin Transformer
tailored for image manipulation detection and localization tasks. MDLFormer consists
of three regions: multi-modal input, GCST encoder and FPN decoder. The multi-modal
input from the SRM filter layer, the high-pass filter of DCT coefficients of the Y
channel of the YCbCr color space and the Laplacian residual enables the model to
capture noise inconsistencies-based features between manipulated and authentic
regions. The GCST encoder is a global context-based Swin Transformer that aims to
provide features of spatial characteristics of manipulated regions. Finally, the FPN
decoder learns spatial mapping to produce the binary predicted mask. Extensive
experiments are performed to test the performance of the MDLFormer on various
standard datasets such as CASIA, Columbia, Coverage, IMD20 and NIST16. The
results have demonstrated the superiority of the MDLFormer model against SOTA
methods regions in terms of F1 score, AUC and IoU for detecting manipulated images
and localizing the manipulated. Despite exhibiting outstanding performance, the

proposed approach still has certain drawbacks. For instance, certain images are still
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not well localized, particularly on the NIST'16 dataset. Moreover, MDLFormer should

be strengthened to fight against online social networks based shared manipulations.

Additionally, the chapter introduces LFRViT, a Laplacian Filter Residual-based
ViT specifically developed for Multiple Image Forgery Detection. The method
introduces a novel convolutional layer that utilizes a Laplace filter mask to recognize
multiple image manipulations. This mask generates Laplacian filter residuals
specifically designed to suppress the image's content and enables the ViT to better
capture subtle forgery patterns and irregularities. Results conclusively demonstrated
that the LFRViT model can autonomously acquire the ability to identify a variety of

image manipulations.

MDLFormer and LFRVIT are highly effective for detecting multiple traditional
image manipulation types, including copy-move, splicing, and inpainting, but they are
not suitable for deepfake-based manipulation detection. In the future, methods for

deepfake detection will be investigated.
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Chapter 5

Deepfake Face Manipulation Detection

This chapter presents a framework based on hybrid learning and kernel principal
component analysis for deepfake face manipulation detection. The effectiveness of
the proposed approach is explained and validated through experiments on standard

datasets and state-of-the-art comparisons of obtained results.

5.1 Introduction

Face manipulation is altering a face’s features in images or videos to produce artistic,
cosmetic, or misleading effects. It can entail a variety of adjustments, ranging from
minor improvements to significant changes. Face manipulation can be divided into
four primary categories: exchanging identities, swapping expressions, manipulating
attributes, and generating synthetic faces. Facial identity manipulation is the process
of replacing one person's face with another. The most widely used methods for
manipulating facial identities are FaceSwap' and DeepFakes®. Facial expression
manipulation replaces one person's facial expressions with another while preserving
the facial identity. Face2Face [152] and NeuralTextures [153] are the two most popular
methods for manipulating facial expressions. While the DeepFakes and
NeuralTextures approaches are based on deep learning techniques, the FaceSwap and
Face2Face approaches are based on computer graphics techniques. Face attribute-
manipulated images identify alterations to specific facial features or characteristics
such as gender, age, hair, beard, and glasses. The two most popular methods used to
generate attribute-manipulated images are FaceAPP* and StarGAN [154]. Computer
graphics, deep learning, or other digital methods artificially produce synthetic facial

images. These are not photographs of actual people; rather, they are the result of

1 Faceswap:https://github.com/MarekK owalski/FaceSwap.
2 Deepfakes:https://github.com/deepfakes/faceswap.
3 FaceApp:https://faceapp.com/app.
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models or algorithms. The popular methods used to generate all synthesized faces are
PGGAN [155] and Style-GAN [156]. Face manipulation techniques can be used for
more controversial applications, like producing misleading content known as
"DeepFakes," or for legitimate purposes, such as retouching photographs for aesthetic
reasons. "DeepFakes" encompasses digitally fabricated content created using deep
learning techniques. It gained notable prominence in late 2017 when a Reddit user
known as "DeepFake" unveiled the development of a machine-learning algorithm
capable of replacing celebrities' faces in explicit videos [157]. The harmful
consequences of deepfake are rooted in its potential for malicious applications,
including generating deceptive pornography, spreading false information, perpetuating
hoaxes, and facilitating financial fraud [158]. Nevertheless, like any technological
advancement, deepfake can also be exploited, compromising personal integrity and
media production to disrupt elections and fuel political instability. As a result, digital
media, including news broadcasts, online video clips, and live streams, are
experiencing trust issues [12]. Therefore, ensuring the authenticity of these videos or

images is critical.

Face manipulation detection involves various methods, ranging from
conventional image analysis to advanced deep learning methods. The increasing
advances in deep learning have made it difficult to detect face manipulation. Certain
artifacts are used by some facial manipulation detection methods as an indication of
manipulation [159], whereas some have employed deep neural networks that use
general artifacts to indicate manipulation for facial manipulation detection [92]. Most
of the work is not robust enough to withstand simple attacks like resizing,
compression, or additive noise [160]. On the other hand, real-world situations
frequently involve these kinds of manipulations. Also, the existing methods based on
deep neural networks used for face manipulation detection are very complex and
require large computational resources, and most of the features among them are
redundant and do not significantly contribute to classification. As a result, the
important feature test instances are wrongly interpreted more often than the majority

ones.
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Consequently, the model exhibits low specificity (when Indigenous images are
in the minority) and high sensitivity (if the image belongs to the majority class) when
handling binary classification cases (such as deepfake data). The general method used
to remove the issue of high computational power is to use feature ranking. Using a
deep neural network to extract the features and take into account only the most
significant features, the features of each class in the training data are ranked. A hybrid
learning model is used for classification to have a high accuracy rate. The most
significant advantage of hybrid learning is that it enhances average prediction
performance. To address these issues, this study introduces a novel and robust method
for identifying fake facial images by employing hybrid learning and KPCA to
differentiate between authentic and manipulated facial images. Fig. 5.1 illustrates the

steps involved in the proposed system.
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Hybrid Learning

Fig. 5.1: Steps in the proposed facial manipulation detection method.

Hybrid learning combines both traditional machine learning methods and deep
learning techniques. Hybrid machine learning models offer the advantages of both
traditional and deep learning approaches, enabling more accurate predictions,
improved feature representation and enhanced scalability. The proposed approach
involves utilizing the EfficientNetV2-L model to extract image features, followed by

feature ranking using KPCA and SVM classifier for classification. The resulting
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features are then used to classify the real and fake faces. KPCA uses a kernel function
to implicitly map the data into a high-dimensional feature space where linear
operations can be carried out, whereas PCA operates on the covariance matrix of the
input data [161]. This study presents a new method that combines hybrid learning with
KPCA to learn features for facial manipulation detection. Through a series of
experiments, the effectiveness of the proposed method is evaluated as a face

manipulation detection technique.

5.2 Framework based on hybrid learning and KPCA

This section thoroughly explains the proposed framework used for facial manipulation
detection based on hybrid learning and KPCA. The main advantage of this proposed
method is that using the hybrid learning concept with KPCA works efficiently and
fast. The proposed framework consists of a deep learning network, EfficientNetV2-L,
for feature extraction, followed by feature ranking using KPCA, and classification is
done using a machine learning technique. EfficientNetV2 is the best feature extractor
deep learning model [162]. The KPCA with feature dimensionality reduction would
help the SVM classifier to make the classification between real and fake facial images
efficient and fast. In this section, the proposed method is explained. A detailed

framework of the proposed method is shown in Fig. 5.2.

|
Input Image

MBConv6, k3x3, 160 Channels
MBConv6, k3x3, 256 Channels

Convl, k3x3, 24 Channels
Fused-MBConv4, k3x3, 48 Channel

Fused MBConv4, k3x3, 64 Channel

Fused MBConv1, k3x3, 24 Channg

EfficientNetV2 KPCA SVM Classifiers

M
B

\ )
Y

Hybrid Learning

Fig. 5.2: The methodological architectural analysis of the proposed framework for
DeepFake detection.
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Hand-crafted feature engineering will not be a suitable solution for this problem. Using
deep CNN as feature extractors could solve the problem. However, due to the limited
availability of high computational resources and the time-consuming process, it would
be not easy to get discriminative features from large deep neural networks. Therefore,
a popular EfficientNetV2-L model is used as a feature extractor for an efficient facial
manipulation detection method. This gives a dynamic, robust, and efficient feature

extractor to solve the problem of facial manipulation detection.

Feature learning is performed on the preprocessed images. In feature learning,
several features are extracted to distinguish between real and fake facial images.
EfficientNetV2 is known for its efficiency in terms of accuracy, parameter, and faster
training speed, making it a popular choice as a feature extractor for facial manipulation
detection tasks. EfficientNetV2 networks are not just small but also less
computational. EfficientNetV2 architecture is up to 6.8 times smaller and significantly
faster than previous and more recent SOTA models. Additionally, the V2 version's
parameter count is almost half that of the original EfficientNet. EfficientNetV2
achieves better accuracy than previous SOTA models using fewer parameters and less
computation. Therefore, EfficientNetV2-L has been utilized as a feature extractor as it

has significantly outperformed other ConvNets [162].

PCA is a commonly employed statistical technique for dimensionality
reduction. It finds extensive application in tasks such as image compression, text

classification, and face recognition [163]. PCA cannot deal only with linear data x; i =
1,....,N, x;e R, %Z’i"zl x; = 0. PCA is inefficient for working with deep networks and

generating features for deepfake images. The KPCA technique is used to deal with
nonlinearity in the data. The kernel version enables coping with more complex data
patterns, which are not visible under linear transformations alone. KPCA was
developed to assist with classifying data whose decision boundaries are described by
a nonlinear function [164]. The idea is to go to a higher-dimensional space where the
decision boundary becomes linear. Consider a nonlinear transformation @(x;) that
maps the original D-dimensional feature space to a higher-dimensional feature space

with M dimensions, where M is typically much larger than D. After the transformation,
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each data point xi is mapped to a point ¢@(x;) in the new feature space F. Although
standard PCA can be applied in this transformed space, it can be computationally
expensive and inefficient. However, kernel technique can be utilized to simplify
computation.

First, assume that the projected new features, @(x;), ....., @(xy), have zero
.1 . : :
mean, i.e., ;Zliv=1 @(x;) = 0. The covariance matrix M x M of the projected features

is calculated by

1
C=_Zk oCx)e(x)" (5.1)
Its eigenvalues 0 and eigenvectors V € F are satisfying
Cor = OkVk (5.2)

where k = 1, 2,...,M. Substituting Eq. (1) and multiplying both sides by ¢(x;), will

give
N EIL{OODPO) Vi ()} = Biip(x:) (53)
and there exist coefficients a;, ..., ay such that
Vi = ZiL1 @ 0(x) (5.4)

Define the kernel function, i.e.,
K %) = @(x)@(x)" (5.5)
Substituting Eq. (4) into Eq. (3), will have
~ I k(o) By @k (o ) = 6 By ik (%) (5.6)
The matrix notation used is
K?a, = &, NKay (5.7)
The kernel principal components are extracted by computing the projections of the
image of a test point ¢ (x) onto the eigenvectors, V* in F and calculated using
Ye(®) = 0(0) ™V = T, af (e(x), (%)) (5.8)
The power of kernel method is that you don’t have to compute @(x;) explicitly; they
are needed in dot products only. The kernel matrix is directly constructed from the
training dataset x; without actually performing the map . The proposed method is
effective and robust to various facial manipulation techniques such as identity swap,
expression swap, attribute-based manipulation, and entirely synthesized faces. The

proposed method has the advantages of being robust, less complicated, having a fast
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feature learning process, and taking less execution time. The main advantage of this
proposed system is that using the hybrid learning concept with KPCA works efficiently
and fast.

5.3 Experiment

In this section, the experiment is carried out on the proposed method. First, the dataset
used in the experiment is introduced. Next, the experimental setup is described. Then,
the preprocessing and augmentation steps are described in detail. Further, various
evaluation parameters used to analyze the performance of the proposed method are

described.

5.3.1 Dataset

The DFFD [165] is a large collection that combines several prior datasets. It uses eight
algorithms and three genuine image sources to create fake faces. The DFFD presents
four primary categories of facial manipulation: exchanging identities, swapping
expressions, manipulating attributes, and generating completely synthetic faces. DFFD
gathers data from these four groups utilizing cutting-edge techniques to produce
synthetic images. Almost half of the images and video frames (47.7%) feature male
subjects, while 52.3% depict females. Most samples fall within the age range of 21 to
50 years. To ensure less bias in the distribution of gender, age, and face size, both real
and fake samples encompass a range of image qualities, including both low and high-
quality images. DFFD uses the FFHQ* and CelebA [166] datasets as authentic face
samples. These datasets encompass a wide range of variations in terms of gender, race,
expression, pose, age, camera quality, illumination, and resolution. In addition to these
datasets, DFFD incorporates the source frames from FaceForensics++ [160] as
supplementary real faces. The process involves swapping identities and expressions.
To achieve facial identity and expression swapping, DFFD utilizes all the video clips
available in FaceForensics++. This dataset consists of 1,000 genuine videos sourced

from YouTube, along with 3,000 manipulated versions. These manipulated versions

* FFHQ:https://github.com/NVlabs/ffhq-dataset.
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are divided into two categories: identity swap using FaceSwap and deepfake and
expression swap using Face2Face [160]. Two methods were utilized to generate
attribute-manipulated images: FaceAPP and StarGAN [154]. FaceAPP, a smartphone
app designed for consumers, offers 28 filters that can be used to modify specific facial
attributes such as gender, age, hair, beard, and glasses. PGGAN [154] and StyleGAN
[156] are the methods used to generate all synthesized faces. In this process, 4,000
faces from the FFHQ dataset and 2,000 from the CelebA dataset are used as the input
real images. For each face in the FFHQ dataset, three fake images were generated: two
with a randomly chosen manipulation filter and one with multiple manipulation filters
applied. On the other hand, for each face in the CelebA dataset, 40 fake images were
created using StarGAN, a GAN-based method for translating images to different
domains. A collection of 92,000 attribute-manipulated images was obtained through
these processes. The DFFD dataset comprises 240336 fake images and 58703 genuine
images [165].

5.3.2 Experimental setup

A dataset of real and fake human face images is utilized to develop and apply the
proposed facial manipulation detection technique. These images and their
corresponding target labels are organized into a dataset. The dataset is then divided
into two parts: training and testing data. The method is trained using 80%of the dataset,
resulting in a highly optimized and parametrized approach. The performance of the
proposed method is evaluated on unseen test data, which accounts for 20% of the
dataset. The proposed approach demonstrates exceptional accuracy in predicting
outcomes for unseen data. The experiment was done on the DFFD dataset. The Keras
library is used across the framework, with Tensor-Flow as the backend. Adam
optimizer trains the EfficientNetV2-S network for ten epochs with a momentum rate
of 0.9; the initial learning rate is set to 10—4 and a batch size of 64. Early stopping with
a patience setting of 100 is utilized to reduce overfitting. In KPCA, the Radial Basis
Function kernel is used. The number of components is determined by setting up the
explained level to 0.95. The proposed method is trained using a single 12GB NVIDIA
Tesla K80 GPU and runs in the Linux operating system.
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5.3.3 Preprocessing and Augmentation

In this work, preprocessing is essentially used to ensure that images are in a suitable
form for analysis. As the default fixed size of the image taken for training by the
EfficientNetV2 is 224x224, all the images from the DFFD dataset have been resized
to 224x224.

Augmentation is done to balance classes to improve the quality of the dataset.
The DFFD dataset consists of 240336 fake images and 58703 genuine images, which
is imbalanced. Therefore, data augmentation is performed on the real images in the
dataset to avoid class imbalance. Data augmentation techniques used in this work are
as follows:
* Hue represents the color's tone or position on the color wheel. Hue jitter introduces
a change in the perceived shade of colors within an image. A tiny positive offset chosen
randomly from the range [0.05, 0.15] was used to change the hue of the input image.
* Scale: To create a scale transformation that resized the input image, a scale factor
was randomly selected from the specified range of [1.2, 1.5]. The input image was
resized using the obtained scale factor. The scale transformation uniformly resized the
image in horizontal and vertical directions, applying the same factor to each
dimension.
* Shear: Applied a horizontal shear transformation with a randomly chosen shear angle
within the range of [-30, 30].
* Rotation: When a specific amount changes an image's orientation, it is said to be
rotated. It can align tilted photographs or attain a particular viewing angle. A rotation

angle was chosen randomly from [—45, 45] degrees.

5.4 Results and Discussion

This section shows the performance of the proposed method on the publicly available
DeepFake face dataset. Further, an ablation study investigates the KPCA component's
contribution to the overall system's performance. In the end, a comparative analysis of
the proposed method is done with the existing SOTA DeepFake face detection

methods.
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5.4.1 Performance Analysis

The performance of the proposed method is demonstrated on the Diverse Fake Face

Dataset (DFFD). Performance analysis is based on accuracy, F1 Score, and execution

time. The execution time is computed as the total preprocessing, training, and

classification time. Various version of the EfficientNetV2 model, i.e., EfficientNetV2-

S, EfficientNetV2-M, and EfficientNetV2-L, is used as feature extractor along with

different classifiers, i.e., KNN, Naive Bayes, Decision Tree, Random Forest, and SVM

to classify the problem of DeepFake face detection.

Table 5.1: The performance results of the proposed method are compared with those
of different EfficientNetV2 models used as feature extractors along with other

classifiers
Execution
Method Classifier Ac(c;z’ a;cy Fl( So/io; ¢ ( nTillllllllieS
)
KNN 78.2 75.9 512
Naive Bayes 79.6 76.2 498
) Decision Tree 82.7 81.5 397
Efficient Net V2 — S
Random Forest 86.5 85 438
SVM 89.4 87.63 447
KNN 79.5 78 628
Naive Bayes 89.8 86.2 609
Decision Tree 92.2 89.4 562
Efficient Net V2 - M Random Forest 96.5 95.4 595
SVM 97.25 96.1 578
KNN 92.8 90.4 908
Naive Bayes 93.4 93 897
Decision Tree 95.6 93.8 842
Efficient Net V2 - L Random Forest 96.7 95.2 859
SVM 97.8 96.92 872
KNN 94.5 93.7 784
Naive Bayes 95.1 94.8 758
) Decision Tree 97.5 96.8 703
Efficient Net V2 - L + KPCA
Random Forest 98.2 97.5 714
SVM 99.3 98.09 736
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Table 5.1 illustrates that the proposed method consisting of EfficientNetV2-L
as a feature extractor followed by the KPCA for dimensionality reduction of the feature
vector and then classified using SVM classifier achieves the highest classification
accuracy of 99.3% and F1 Score of 98.09%. Also, it can be observed that the SVM
classifier performed exceptionally well in every case and outperformed all the other
classifiers, as shown in Table 5.1. The EfficientNetV2- S model achieves the lowest
classification accuracy of 78.2% and F1 Score of 75.9% when KNN is used as the
classifier. EfficientNetV2-L model used as a feature extractor achieves a classification
accuracy of 97.8% and an F1 Score of 96.92%, which is significantly less than the
proposed method consisting of a combination of both EfficientNetV2-L and KPCA,
with SVM as a classifier. This signifies that using EfficientNetV2-L as a feature
extractor along with KPCA is better than using EfficientNetV2-L only. Also, it can be
observed from 7able 5.1 that if the EfficientNetV2-S model is used as a feature
extractor and the decision tree is used as a classifier, then the execution time is less
(approximately 397 min), but the accuracy is 82.7% and F1 Score is 81.5% which is

relatively less than the proposed method.

The performance of the proposed approach is evaluated across a range of
threshold values using the AUC-ROC curve shown in Fig. 5.3. A probability curve
called the ROC curve demonstrates how well the classes are separated. It shows the
extent to which the method can distinguish between different classes. A higher AUC
value indicates better method performance. Fig. 5.3 shows that the proposed approach

has the highest AUC value of 0.980.
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£
o 0.6
= 0.6
=
3
£
GEJ 0.4
=
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. —— EfficientNetv2-L + SVM (0.973)
— EfficientNetV2-M + SVM (0.969)
—— EfficientNetv2-5 + SV¥M (0.917)
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0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 5.3: AUC-ROC curve of the proposed method.
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5.4.2 Comparitive Analysis

This section details the comparative analysis of the performance of the proposed
method compared to the existing SOTA methods. As shown in Table 5.2, the
experimental results indicate that the proposed method outperforms all the other SOTA
methods. The models are trained and tested on the DFFD dataset. The proposed
method has the highest accuracy of 99.3%, precision of 0.99, Recall of 0.972, and the
highest F1 Score of 0.980. It has been observed that the existing models are very
complex and computationally expensive. The proposed method takes less execution
time and is less complicated and robust to various facial manipulation techniques such
as identity swap, expression swap, attribute-based manipulation, and entirely

synthesized faces.

Table 5.2: Comparative analysis of the proposed method.

Method Accuracy Precision Recall F1 Score
YOLO+LBPH [91] - 0.889 0.937 -
FF-LBPH DBN [92] 97.82% - - -
DenseNet-121 [93] 80.40% - - -
CNN+PCA [95] 90.76% 0914 0.901 0.908
FaceMD [96] 90.80% - - -
Proposed 99.60% 0.99 0.972 0.98

5.5 Summary

This chapter focuses on advanced techniques for identifying deepfake manipulations,
particularly those involving face manipulation. It introduces an effective framework
based on hybrid learning and KPCA for deepfake face manipulation detection. The
proposed methodology includes EfficientNetV2-L and a KPCA-based hybrid learning
approach for facial manipulation detection. EfficientNetV2-L was used to extract the
complex discriminative features between real and fake face images from the DFFD

dataset. Further, KPCA is used to reduce the dimension of the features extracted from
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the EfficientNetV2-L so that the classification between real and fake images can be
done in less execution time and there should be less dependency on the computational
resources. The experimental results demonstrate the superiority of this method over
other facial manipulation detection techniques. The proposed model's accuracy is
99.3%, precision is 0.99, recall is 0.972, and F1 Score is 0.98. Future work proposes
an extension of the proposed systems to integrate the KPCA component of the
framework into the feature extractor model itself while also investigating and
innovating it further. In the future, the goal is to optimize resource utilization, reduce
execution time, and enhance overall detection efficiency. Additionally, will prioritize
improving the detection model's generalization ability as much as possible as part of

the future work.
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Chapter 6

Conclusion, Future Scope and Social Impact

This chapter concludes the research conducted in the thesis and summarizes the
previous chapters, key findings, contributions and limitations. This chapter also
discuss potential future directions for future research in this rapidly evolving field

and social impact of this work beyond academic circles.

6.1 Conclusion

This work started with background knowledge about image manipulation detection.
The basic terminologies and existing methods concerning manipulation detection with
different tampering operations have been discussed in detail. Based on the findings
from theoretical and experimental work in this study, it has been observed that deep
learning-based models are some of the prominently used methods and perform very
well in image manipulation detection. From the analysis, it has been found that
initially, a single tampering operation was performed and later on, multiple tampering
operations were adopted. The findings reveal that localization of image manipulation
is a bit more difficult than image manipulation detection. The deep learning model
learns the image’s content; however, for manipulation detection, residuals left behind
after the tampering operation are used to discriminate between the authentic and
manipulated image. It has also been found that using the residuals as the input to the
deep learning-based model is much more effective. The experiment result reveals that
having multi-modal input is much more effective. The proposed work provides
practical implications for OfSFD, multiple manipulation detection, and deepfake face

detection, which could be useful in protecting the world from misleading information.

The thesis presented a systematic approach to image manipulation detection
spanning foundational aspects and a review of existing detection techniques to develop
methods for specific, multiple and synthetic manipulations. A robust and efficient

method, namely eSNN, has been introduced for WIOfSV. The technique uses the pre-
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trained model (EfficientNet) to direct the feature learning process in the twin network
of the SNN to distinguish between genuine and forged signatures. The method has the
advantages of being less complicated and taking less time to train and infer. Also, a
residual-based CNN model has been developed for CMFD. Architectures such as
MDLFormer and LFRVIT illustrate the efficacy of integrating the residuals-based
inputs and ViT to detect multiple forgery detection. These models enhance detection
accuracy, robustness, and generalizability, addressing the limitations identified in
existing methods. A hybrid learning-based approach, including KPCA, has been
introduced for deepfake face manipulation detection. The technique uses the
EfficientNetV2-L model for feature extraction, which is topped up with KPCA for
feature dimensionality reduction to have an effective and fast feature learning process.
The method is robust to various facial manipulation techniques such as identity swap,
expression swap, attribute-based manipulation, and entirely synthesized faces. The
proposed methods demonstrate significant improvements over existing SOTA

methods, validated through extensive experimentation on standard datasets.

6.2 Future Scope

The researchers have adopted many different approaches to understand better and
characterize image manipulation detection; this diversification helps to focus on the
future enhancement of image manipulation detection techniques. Despite
substantial advancement in the research field, open research issues still require
further study. Our findings suggest a need for additional research, which consists of

the following aspects:

e The goal in the future is to optimize resource utilization, have efficient
architecture and improve overall detection accuracy. Additionally, will
prioritize enhancing the detection model’s generalization ability as part of
future work.

e Deepfake content detection is one of the emerging topics. Future work should
focus on developing unified deepfake detection systems that can identify

image- and video-based manipulations.
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e Given the increasing prevalence of manipulated media on online social
networks (OSNs), future work should focus on developing models resilient to
manipulations caused by shared and spread across OSNs. Moreover, the
manipulation detection frameworks should be robust enough to withstand the
manipulations applied by OSNs.

e As manipulation techniques continue to evolve and also given the possibility
that forgers would adapt to detection approaches over time, robust models that
may evolve in response to new manipulations are required. Future work may
include implementing continuous learning or domain adaptation approaches,
enabling models to remain effective even when new manipulating styles and
techniques emerge.

e Generative adversarial methods generate synthetic fake images and add noise
to the image, making it difficult for the detector to detect the manipulation.
Image manipulation detection methods are subject to adversarial attacks, where
minimal alterations lead to incorrect classifications. Future work should focus

on developing detection frameworks immune to adversarial perturbations.

6.3 Social Impact

The development of a robust framework for image manipulation detection has
profound social implications in today’s digital age, where visual content plays a
pivotal role in communication, decision-making and the dissemination of
information. The proliferation of advanced image editing tools and generative
technologies, such as GANSs, has significantly increased the potential for creating
manipulated or falsified images. This trend seriously challenges societal trust,
media credibility, and individual rights. Techniques like digital OfSFD, CMFD,
splicing detection, inpainting detection and deepfake detection are essential for

safeguarding societal trust and ensuring the authenticity of digital content.

One of the key social impacts of this research is its ability to combat misinformation
and disinformation campaigns. Manipulated images often spread false narratives,
incite violence, or mislead public opinion on social and political issues. By

providing reliable tools for detecting such manipulations, the proposed framework
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can help maintain the integrity of digital media, ensuring that the public receives

accurate and authentic information.

Digital signatures are pivotal in financial transactions, legal documents, and
authentication processes. Forged signatures can lead to identity theft, financial
fraud, and legal disputes. A reliable OfSFD framework can help organizations and
individuals identify forged signatures, preventing financial losses and protecting
reputations. By ensuring the authenticity of such signatures, the proposed
framework contributes to building trust in digital documentation systems and

reducing vulnerabilities in critical infrastructures.

Copy-move forgery, where parts of an image are duplicated and pasted within the
same image, is often used to conceal or manipulate visual evidence. This type of
forgery is commonly found in fake news, manipulated evidence in legal cases, and
fraudulent claims in insurance or real estate. CMFD can help uncover hidden
manipulations, ensuring the integrity of visual evidence and mitigating the spread

of false information, which can have far-reaching societal consequences.

The ability to detect multiple forgeries, such as combinations of copy-move,
splicing, inpainting and many more, enhances the framework’s utility in complex
scenarios. This capability is particularly valuable in forensic investigations and
digital media verification, where multiple manipulations can obscure the truth. By
localizing and identifying all manipulated regions, the framework supports law
enforcement agencies, judicial systems, and media outlets in maintaining the
integrity of evidence and reporting. This contributes to societal accountability and

preventing malicious intent in critical domains.

Furthermore, deepfake technology, powered by advanced Al algorithms, poses a
significant threat to social trust by generating hyper-realistic yet fabricated videos
or images. Deepfakes have been weaponized for political propaganda, defamation,
and even financial fraud. Detecting deepfakes is essential to prevent the erosion of
public trust in visual media and ensure that the dissemination of falsified content

does not destabilize societies or harm individuals. The proposed framework
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contributes to developing a safer digital ecosystem by addressing this emerging

threat.

On a broader level, this work supports the ethical use of technology and encourages
accountability in digital media creation and distribution. By fostering a culture of
authenticity, it addresses the societal need for trust in digital interactions and
mitigates the negative impacts of technological misuse. This work for image
manipulation detection can potentially address critical challenges in
misinformation, legal justice, personal security, and media ethics. Its societal
impact extends beyond technical advancements, contributing to a safer, more

trustworthy, and equitable digital environment.
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Abstract—With the sudden advancement in digital image pro-
cessing, there has been a huge upsurge in the creation of doctored
or tampered images with the successful aid of softwares like
GNU Gimp and Adobe Photoshop. These manipulated images
have become a serious cause of concern, especially in the news,
politics and the entertainment sector. Therefore, there is an
alarming requirement for a robust image tampering detection
system which can distinguish between authentic and tampered
images. Common image tampering techniques include copy-move
forgery, seam carving, splicing and re-compress. Amongst these
techniques, copy-move forgery detection (CMFD) and splicing are
dominating the research field due to their complexity stratum and
difficulty in detection. In this work, we focus on proposing an
efficient splicing detection and CMFD pipeline architecture that
focuses on detecting the traces left by various post-processing
operations of Splicing and copy-move forgery that are JPEG
Compression, noise adding, blurring, contrast adjustment, etc.
We use second difference of median filter (SDMFR) on the image
as one of the residual and the Laplacian filter residual (LFR)
together to suppress image content and focus only on the traces of
the tampering operations. The proposed method achieves higher
accuracy of 95.97% on the CoMoFoD dataset and 94.26% on
the BOSSBase dataset.

Index Terms—copy-move forgery detection, image tampering,
median filtering detection, laplacian filter, deep learning, convo-
lutional neural network (CNN)

1. INTRODUCTION

There has been a significant rise in the number of images
being manipulated since the advent of the image editing
softwares. Consequently, a large variety of image manipulation
tools and softwares have been developed which can be further
used for malicious activities like mob agitation and fake
news spreads through platforms of social media. Recently,
even US president Donald Trump was fooled by a DeepFake
video of house speaker Nancy Pelosi stammering in a news
conference. Such manipulation of images and videos is done
with the aim of making the tampering undetectable, or to
leave the least amount of traces. Thus, there arises a need
to develop even more novel detection methods to find traces
of forgery in images and hence successfully classify them as
authentic or tampered. Such methods could help in establishing
the authenticity of an image and hence ensure their proper
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relevance. For this, a number of blind forensic techniques
had been developed [14-16]. These techniques seek to develop
robust systems to detect the traces or fingerprints of tampering
in an image.

The most challenging forgery technique is copy-move
forgery that encompasses copying a part of the image and
pasting it within the same image. Many CMFD related works
have been proposed which are primarily based on the two
approaches: 1) Key- point based feature matching [9.10]
for detecting duplicate regions and 2) Block based feature
matching [11-13] which divides the image into overlapping
regions. However, these methods have high computational
complexity and other drawbacks. Therefore, several works
incorporated the use of adaptive oversegmentation [17-19] to
divide the image into non-overlapping patches to reduce the
computational complexity and then perform feature matching
to detect forgery.

However, rather than feature matching parts of images
and detecting copy move forgery, we focus on detecting the
traces of operations performed after copy-move and splicing
to blend it with the original image. In the literature, a lot
of work had been done to detect the traces left by image
tampering post-processing operations like median filtering [1-
6], re-compression [7], and contrast enhancement [8]. Such
operations are employed to make the forgery look more con-
vincing, median filtering being the most widely used among
them.

Deep learning based approaches are now used in every
field of research because of its automatically learning fea-
tures capability and achieving high accuracy in classification.
Various deep learning based approaches were also used for
detecting tempering in a image and used to prove better
results. Generally, in a deep learning model images are directly
given as the input to the network layer and the network
automatically learns the features based on the content of the
image. But in case of image tempering detection, instead of
learning the content based features, the traces left after the
tempering operation performed on the image are learned and
use to classify the image as authentic or tempered one. To

Authorized licensed use limited to: DELHI TECHNICAL UNIV. Downloaded on December 06,2024 at 04:24:34 UTC from |IEEE Xplore. Restrictions apply.
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1. Introduction

Image manipulation has become very convenient nowadays

with the help of image editing tools, for example, Adobe Photoshop

[1], GNU image manipulation programs (GIMP) [2], Affinity Photo,

* Corresponding author. Paintshop and many more. A large number of images are being
E-mail address: rajesh@dce.ac.in (R. Rohilla). produced and with the ease of availability of computer software or
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Abstract

Face manipulation is the process of modifying facial features in videos or images to produce a variety of artistic or deceptive
effects. Face manipulation detection looks for altered or falsified visual media in order to differentiate between real and fake
facial photographs or videos. The intricacy of the techniques used makes it difficult to detect face manipulation, particularly in
the context of technologies like DeepFake. This paper presents an efficient framework based on Hybrid Learning and Kernel
Principal Component Analysis (KPCA) to extract more extensive and refined face-manipulating attributes. The proposed
method utilizes the EfficientNetV2-L model for feature extraction, topped up with KPCA for feature dimensionality reduction,
to distinguish between real and fake facial images. The proposed method is robust to various facial manipulations techniques
such as identity swap, expression swap, attribute-based manipulation, and entirely synthesized faces. In this work, data
augmentation is used to solve the problem of class imbalance present in the dataset. The proposed method has less execution

time while achieving an accuracy of 99.3% and an F1 Score of 0.98 on the Diverse Fake Face Dataset (DFFD).

Keywords DeepFake - Face manipulation detection - Deep learning - Hybrid learning - EfficientNetV2

1 Introduction

Face manipulation is the technique of altering a face’s
features in images or videos in order to produce artistic,
cosmetic, or misleading effects. This can entail a variety
of adjustments, ranging from minor improvements to sig-
nificant changes. Face manipulation can be divided in to
four primary categories: exchanging identities, swapping
expressions, manipulating attributes, and generating com-
pletely synthetic faces. Facial identity manipulation is the
process of replacing one person’s face with another. The most
widely used methods for manipulating facial identities are
FaceSwap' and DeepFakes.? Facial expression manipulation
is the process of replacing one person’s facial expressions
with another while preserving the facial identity. The two

! Faceswap:https://github.com/MarekKowalski/FaceSwap.
2 Deeptakes:https://github.com/deepfakes/faceswap.
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most popular methods for manipulating facial expressions
are Face2Face [21] and NeuralTextures [22]. While the
DeepFakes and NeuralTextures approaches are based on
deep learning techniques, the FaceSwap and Face2Face
approaches are based on computer graphics techniques. Face
attribute-manipulated images involve identifying alterations
made to specific facial features or characteristics such as
gender, age, hair, beard, and glasses. To generate attribute-
manipulated images, the two most popular methods used are
FaceAPP? and StarGAN [3]. Synthetic face images refer
to artificially produced facial images created via computer
graphics, deep learning, or other digital methods. These
are not photographs of actual people; rather, they are the
result of models or algorithms. To generate entire synthesized
faces, the popular methods used are PGGAN [9] and Style-
GAN [10]. Face manipulation techniques can be used for
more controversial applications, like producing misleading
content known as “DeepFakes,” or for legitimate purposes,
such as retouching photographs for aesthetic reasons. The
term “DeepFakes” encompasses digitally fabricated content
created using deep learning techniques. It gained notable
prominence in late 2017 when a Reddit user known as

3 FaceApp:https:/faceapp.com/app.
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Abstract— When producing a manipulative image, a forger
can alter an image through a variety of image tampering
techniques. Due to the need to test for various image editing
operations and alterations, there has been a significant interest
in developing a universal image forgery detection approach that
can detect multiple tampering operations performed over an
image. This paper presents a comprehensive forensic method
for detecting manipulation using Vision Transformer. We
present a novel network architecture called Laplacian Filter
Residual-based Vision Transformer (LFRVIT) that can
automatically learn features for detecting manipulation from
training data. Vision Transformers, as they are now designed,
primarily to learn features that represent the content of an
image rather than features that detect manipulation. To address
this problem, we have created a novel type of model specifically
designed to suppress the image's content and dynamically
acquire features for detecting manipulations. By conducting a
sequence of studies, we provide evidence that our
proposed method can automatically learn the features
to identify various image alterations. The experimental findings
demonstrate that our proposed model, LFRVIiT, is capable of
autonomously identifying various types of manipulations with
an accuracy of over 99%.

Keywords—Vision Transformer, Laplace, Image Forgery
Detection, Deep Learning, Image Forensics

I.  INTRODUCTION

In the digital age, as images are used extensively in
documentation, entertainment, and communication, it is
critical to assure their authenticity. However, image
manipulation and forgery have become more sophisticated
and accessible with the development of image editing
software [1]. This has sparked questions about how

2nd Rajesh Rohilla
Electronics and Communication Engineering
Department
Delhi Technological University
Delhi, India
rajesh@dce.ac.in

dependable and credible the visual content that is being shared
online and in other media is.

The field of research and technology known as "multiple
image forgery detection" is devoted to detecting situations in
which multiple images are combined or altered to produce an
inaccurate or misleading representation. Multiple-image
forgery detection exposes instances of manipulation or
tampering by examining relationships and inconsistencies
between multiple images, in contrast to traditional single-
image forgery detection, which focuses on finding a single
tampering operation within an image [1].

Effective techniques to identify manipulated or tampered
images are more important than ever due to the spread of
social media sites, online news sources, and digital archives.
These kinds of images can be used to disseminate false
information, sway public opinion, or trick people or
institutions. Thus, in the larger field of digital forensics and
image analysis, the creation of efficient methods and
algorithms for multiple image forgery detection has become
essential research. Through the application of advances in
machine learning, computer vision, and signal processing,
scholars and practitioners aim to improve the veracity and
authenticity of visual content on digital platforms [2].

In this study, we have considered four different types of
image tampering operations. These tampering operations are
applied to each original image to have a manipulated image.
The four different types of tampering operations are: Additive
White Gaussian Noise (AWGN), resampling, median
filtering, and gaussian blurring. Fig. 1, shows the different
tampering operations performed over the original image,
taken from the RAISE dataset.

Original Image Resampled Image

AWGN Noisy Image

; Median Filtered Image ; Gaussian Blurred Image

100
(a) (b) (@) (e
Fig.1. From RAISE database, (a) original image and different operations are performed on this original image, (b) resampled image with a scaling

factor of 1.5, (¢) AWGN noisy image with standard deviation of 2, (d) median filtered image with a S x 5 kernel size and (e) Gaussian blurred image
with 5 x 5 kernel and 6 = 1.1.
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B.Tech.: Guru Gobind Singh Indraprastha University, Delhi.

12", CBSE Board, Delhi.

10", CBSE Board, Delhi.

Honors/Awards:

Research excellence award, at Delhi Technological University (DTU), Delhi.
Qualified for JRF & Assistant Professor, UGC NET (Electronic Science).

Qualified, GATE (Electronics and Communication).

Research Profile:

h- index: 03; i-10 index: 02; Citations: 147

Orcid ID: 0000-0002-2672-6067; Scopus ID: 57216845790

Web of Science Researcher ID: KRP-8282-2024

Google Scholar:
https://scholar.google.com/citations?user=e51fOVvMAAAAJ&hI=en&oi=sra

Webpage: https://sites.google.com/view/rahulthakur/home

Research Interest:

Multimedia Forensics
Digital Image Processing
Computer Vision

Machine Learning and Deep Learning
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