WEAR CHARACTERISATION OF FRICTION STIR PROCESSED AS21A MAGNESIUM ALLOY FOR DIFFERENT TEMPERATURE CONDITIONS

A Dissertation Submitted in Partial fulfilment of the requirements for the award of the Degree of

MASTER OF TECHNOLOGY in PRODUCTION ENGINEERING

Submitted by:

PRASHANT DHIMAN

(2K19/PIE/17)

Under the Supervision of

Dr. R. C. SINGH

(Professor)

Department of Mechanical Engineering, Delhi Technological University

Dr. K. SRINIVAS

(Associate Professor)
Department of Mechanical
Engineering,
Delhi Technological
University

DEPARTMENT OF MECHANICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY NEW DELHI-110042, INDIA

CANDIDATE'S DECLARATION

I, Prashant Dhiman, hereby certify that the work which is being presented in this

dissertation entitled "WEAR CHARACTERISATION OF FRICTION STIR

PROCESSED AS21A MAGNESIUM ALLOY FOR DIFFERENT TEMPERATURE

CONDITIONS" being submitted by me is an authentic record of my own work carried

out under the supervision of Dr. Ramesh Chandra Singh, Professor, and Dr. K. Srinivas,

Associate Professor, Department of Mechanical Engineering, Delhi Technological

University, Delhi.

The matter presented in this dissertation has not been submitted in any other

University/Institute for the award of M.Tech Degree.

Date:

Place:

Prashant Dhiman (2K19/PIE/17)

CERTIFICATE

This is to certify that the dissertation entitled "Wear Characterisation of Friction Stir

Processed AS21A Magnesium Alloy For Different Temperature Conditions" for the

partial fulfilment of requirement for the award of the degree of Masters of Technology

in Production Engineering submitted in the Department of Mechanical Engineering

at Delhi Technological University, Delhi, is carried out by Prashant Dhiman, roll

number- 2K19/PIE/17 during a period from July 2020 to July 2021, under our

supervision.

The declaration made by Mr. Prashant Dhiman, roll number- 2K19/PIE/17 is correct to

the best of our knowledge and belief.

Dr. K. Srinivas

(Associate Professor)

Department of Mechanical Engineering

Delhi Technological University

Dr. R. C. Singh

(Professor)

Department of Mechanical Engineering

Delhi Technological University

ACKNOWLEDGEMENTS

I would like to express my deep gratitude, sincere thanks and appreciation to my guides

Dr. Ramesh Chandra Singh, Professor and Dr. K. Srinivas, Associate Professor,

Mechanical Engineering Department, Delhi Technological University, for their

expert guidance and continuous encouragement during all stages of the dissertation work.

I would like to extend my gratitude to Prof. S.K. Garg, Head, Mechanical Engineering

Department, Delhi Technological University, for providing this opportunity to carry

out the present dissertation work.

My sincere thank to Dr. Sumit Joshi, Assistant Professor, Maharaja Agarsen Istitute of

Technology and to all the faculty and staff members of Department of Mechanical

Engineering (DTU), who supported me during the entire dissertation work. I am grateful

to Mr. Rajesh Bohra, Mr. Manmohan, Mr. Tekchand and Mr. Roshan for their technical

and experimental support. I am thankful to their kindness and generosity shown towards

me, as it helped me morally complete the dissertation before actually starting it.

Finally and most importantly, I would like to thank my family members for their help,

encouragement and prayers through all these months. I dedicate my work to them.

Date:

Place:

Prashant Dhiman (2K19/PIE/17)

ABSTRACT

The industry inclination towards the application of light-weight materials in automobile, aerospace and marine components can be attributed to their inbuilt characteristics like high specific strength and excellent machinability. Magnesium alloys are one of the promising light-weight materials which have shown recent widespread use in structural applications.

The present study utilised Magnesium-Aluminium-Silicon (Mg-Al-Si) category based AS21A magnesium alloy. AS21A alloy is widely recognized for high thermal resistant characteristics since it contains the thermally stable Mg₂Si second phase intermetallic compound. However, the coarse morphology of Mg₂Si precipitates makes the AS21A alloy brittle in nature thus limiting their widespread application. Therefore Microstructural modification was carried out through several surface modification techniques to achieve fine precipitates thus enhancing the strength of magnesium alloy. Friction Stir Processing (FSP) is the fast growing technology which can refine the microstructure of AS21A alloy in solid state only unlike conventional techniques. FSP is gaining its position in fabrication and manufacturing industry as most used technique because it modifies the coarse grain structure of material to fine grain microstructure that leads to better machinability, improved wear resistance and also eliminates the various casting defects present in the materials like porosity by generating homogeneous dispersion of particles.

The current study is confined to the Tribological characterization of Friction Stir Processed (FSPed) AS21A alloy consisting of fine Mg_2Si precipitates. Tribological study was carried out at 10-30 N normal loads with respective temperature conditions ranging from $50^{\circ}C - 200^{\circ}C$. The wear behaviour was evaluated from Linear Reciprocating Tribometer (LRT) test rig and different conclusions were derived on the basis of results

obtained, thus explaining the wear performance of FSPed AS21A alloy in elevated thermal ambient.

Keyword: Magnesium; tribology; FSP; friction stir processing; wear; Mg2Si; Mg-Al-Si

CONTENT

Ca	andidate's Declaration	ii
Ce	ertificate	iii
Ac	cknowledgement	iv
Ab	ostract	v
Co	ontent	vii
Lis	st of Figures	ix
Lis	st of Tables	xi
1.	Introduction	1
	1.1. Material	1
	1.2. AS21A Magnesium Alloy	2
	1.3. Friction-Stir-Processing Technique (FSP)	4
	1.3.1. Applications of FSP	4
	1.3.2. Working Principle	5
	1.3.3. Process Parameters	7
	1.4. Wear	9
2.	Literature Review	13
	2.1. Morphology of Mg ₂ Si	13
	2.2. Research Gap	23
	2.3. Research Objectives	24
3.	Experimentation	25
	3.1. Material Preparation	25
	3.2. Surface Roughness Test	28

	3.3. Wear Test	31
4.	Results and Discussion	36
5.	Conclusions and Future Scope	48
	5.1. Conclusions	48
	5.2. Future scope of the work	50
Re	ferences	51

LIST OF FIGURES

Figure No	Figure Name	Page No.	
Fig: 1.1	Schematic description of FSP	6	
Fig: 1.2	Different zones and terminologies present in Friction Stir	7	
11g. 1.2	Processing		
Fig: 1.3	Categorization of the Tool parameters	8	
Fig: 1.4	Parameters of Machine for Friction Stir Processing	9	
Fig: 1.5	Description of different wear forms	11	
Fig: 3.1	Sample pins and Counter square plates for Wear Test	27	
Fig: 3.2	Micro-Hardness Test	28	
Fig: 3.3	Taylor Hobson Surface Roughness Tester	29	
Fig: 3.4	Surface roughness tester with a sample	31	
Fig: 3.5	Tribometer used for wear test	32	
Fig: 3.6	Description of the environment chamber of tribometer	33	
Fig:4.1	SEM image of AS21A alloy (a) as-cast AS21A alloy (b)	36	
11g. 4 .1	Friction Stir Processed AS21A alloy	30	
Fig: 4.2	Variation of Coefficient of Friction with time for different loads	39	
115. 4.2	at 50°C, 100°C, 150°C and 200°C	3)	
Fig: 4.3	Variation of Coefficient of Friction with time for different	40	
11g. 1.5	temperatures at a load of 10N	10	
Fig: 4.4	Variation of Coefficient of Friction with time for different	40	
115	temperatures at a load of 20N	40 40 41 42	
Fig: 4.5	Variation of Coefficient of Friction with time for different	41	
1 18	temperatures at a load of 30N	. 2	
Fig: 4.6	Graph of wear loss versus load at different temperatures	42	
Fig: 4.7	Graphs showing plots of wear loss versus temperatures for	43	
1 ig. ¬.,	different loads (a) 10N, (b) 20N, (c) 30N	73	
Eig. 4.9	Graphical representation of Wear Loss at different load and	15	
Fig: 4.8	temperature conditions	45	
Fig: 4.9	Graphical representation of Coefficient of Friction at different	45	
5	load and temperature conditions		

Fig: 4.10	Variation of specific wear rate with respect to load and	46
	temperature	

LIST OF TABLES

Table No.	Table Name	Page No.
Table 1.1	Table 1.1 Properties and applications of Magnesium	
Table 1.2	Properties of Mg ₂ Si particles	3
Table 3.1	Specifications of the Friction Stir Welding Setup	25
Table 3.2	The specifications of the tool for the process of Friction Stir Processing	26
Table 3.3	Values of Surface Roughness for pins and plate	30
Table 3.4	Technical Specifications of the Tribometer	33
Table 3.5	Parameters for the wear test	35
Table 4.1	Coefficient of Friction for AS21A alloy of Friction Stir Processed samples for different loads at different temperatures	37
Table 4.2	Change in weight of the samples after the test with different loads and at different temperatures	41
Table 4.3	Comparison of the values of coefficient of friction of the processed and as-cast AS21A alloy at different temperature conditions	44
Table 4.4	Comparison of the values of wear loss of the processed and as-cast AS21A alloy at different temperature conditions	44
Table 4.5	The values of specific wear rate (in 10-8 mm3/Nm) for different temperature values and load values	46

Chapter-1

INTRODUCTION

Lightweight materials are great inventions for improving efficiencies and reducing the load on power transmission from the prime mover. In the modern era of automobile engineering and aerospace engineering, the most significant motives are reduction in fuel consumption and to follow the intrinsic international norms of environment. Most of the automobiles consume fuels based on fossil products. Fossil fuel is depleting day by day and the scientists are working on saving of the energy or using alternative methods of energy. One and foremost way is to use lightweight alloys for the process of fabrication and manufacturing and for that magnesium alloys have proved themselves of greater use [1].

Apart from that, environment-friendly vehicles are of great concern as of today's pollution is concerned; environment protection agencies have suggested that lighter vehicles will consume less fuel and that will result in less carbon emission.

They have also suggested that if we reduce 10% weight of the vehicle, then that can lead to 6% - 8% less fuel consumption, and as a result, a lightweight vehicle will emit less pollution and can be a part of the race of environment protection [2].

Therefore, lightweight alloys are in current demand and a lot of research to make lightweight alloys useful is going on. Aluminium alloys were the most used alloy but after the processing on magnesium it has become a worthy material for fabrication purposes because of its better mechanical properties at elevated temperatures.

1.1. Material:

Magnesium is one of the most available structural materials used that has vast range of applications. But, it is not used in its pure form; rather, it is alloyed with other elements to improve its multiple properties so that it can have further applications [3].

Physical properties of the magnesium and its alloys due to which it has vast applications are presented in Table-1.1.

Table- 1.1 Properties and applications of Magnesium

Property	Application
Low density (1.7gm/cm ³)	Structural Materials
High Tensile Strength	Aerospace and Automobile
(Yield: 130MPa)	Applications
Better Castability	High Pressure Die Casting
Better Machinability	Turning and Milling at High
(Lower Value hardness)	Speeds

But these above properties are limited at elevated temperatures [4]. Some of the physical properties of the magnesium are that it has silvery white appearance, divalent metal with atomic mass of 24.305 and in pure-metal conditions at 20°C, its specific gravity is 1.738 and 0.32nm is the atomic diameter of magnesium.

The structure of grain is the main criteria for defining various characteristics of the material, and casted magnesium doesn't show fine grain structure. Therefore, the strength shown by the magnesium alloys is not as high strength as expected from them. Thus, various other elements like aluminium, titanium, zirconium, etc. are alloyed with magnesium so that their grain refinement can take place and results in improvement of different characteristics of the material [5].

Alloying of any material is very important as every material has its significant characteristic value and it adds up new characteristic feature to the parent material as some of the commonly used alloying materials [4,8].

1.2. AS21A Magnesium Alloy

Magnesium series of Silicon alloy has unique characteristics of temperature resistance along with other mechanical and wear properties that magnesium alloys have. The physical properties of the Mg₂Si particles are shown in Table:1.2. The presence of silicon in the magnesium allows to enhance the fluidity of the alloy that further enhances the casting ability of the material and can have less casting defects comparatively.

The presence of Mg₂Si in the Magnesium alloy allows it have high temperature characteristics as the melting point of Mg₂Si intermetallic is about 1100°C. Better creep

resistance, better heat resistant with high potential and lightweight Silicon based magnesium alloys are already used in automobile applications and also increasing their use in aerospace applications day by day [9].

The particles of Mg₂Si have found their importance in the magnesium alloy because of following properties [11]:

Table-1.2 Properties of Mg₂Si Particles

	Property	Value
1.	High value of Melting Point	1358 K
2.	Low value of Density	$2 \times 10^3 \text{ kg/m}^3$
3.	High value of Hardness	460 HV
4.	Low value of Thermal	$7.50 \times 10^{-6} \text{ K}^{-1}$
	Expansion-Coefficient	
5.	High value of Modulus	120 GPa

The compound of Mg₂Si is dark blue in colour and solidifies in Face Centred Cubic structure [12]. The structure of Mg₂Si is found to be coarse and granular due to dendritic solidification [10]. The limitation of Mg₂Si in Magnesium Silicon alloy is that it forms the shape of Chinese script and granular phases of Mg₂Si; and lower rate of solidification is observed due to eutectic-reaction, resulting in poor mechanical characteristics of magnesium alloys. This leads to a limit in applications of these alloys.

Therefore, to remodel the phases, different types of surface modification techniques are employed such as rapid-solidification, hot-extrusion, micro-alloying, etc. [13].

Moreover, these techniques are able to modify the grain structure of the materials alloy and improving the mechanical characteristics, especially ductility. But these techniques are quite conventional in nature which obstructs the grain refinement up-to certain values.

Therefore, for better dispersion of particles and fine grain refinement some other latest methodologies are used such as Severe-Plastic-Deformation methods like Equal-Channel-Angular-Pressing technique [14], High-Pressure-Torsion technique [15], Cyclic-Extrusion-Compression technique [16], Repetitive-Upsetting-Extrusion techniques [17], Cyclic-Closed-Die-Forging technique [18], Friction-Stir-Processing technique [19] etc. These methods of grain refinement are used in various lightweight

alloys and these methods have shown greater results. There are a lot of recent studies going on these methods to take more out of these methods and fulfil the demands of the cutting-edge technologies [14-19].

1.3. Friction-Stir-Processing Technique (FSP)

Friction-Stir-Processing is a new technique that is gaining attention that modifies the characteristics of the material through the process of plastic deformation of localized area and this is not only efficient in saving energy but also friendly with environment as generally no harmful fumes are generated [20].

This processing method is based on the principle of the Friction Stir Welding Process and is being utilised for surface modification by the modification of microstructures of the materials.

In order to produce better mechanical properties in the material sheets, this technique is showing its full potential in doing so. Also, from last decade a lot of research is going on to improve various machining processes and Friction Stir Processing is gaining attention from round the world as a latest and improved technique for modifications in microstructures of the material with high level of efficiency [21].

Friction Stir Processing benefits the material properties in many ways. It is used in mixing two metals (or materials); that is, it is used for making alloys apart from that stirring of individual material leads to modifying the grain structures. This processing technique performs in a solid-state, and no melting of the metals takes place to complete the Friction Stir Processing technique; and in solid-state only, uniform mixing of two materials takes place, and generated material has better mechanical characteristics as compared to unprocessed material of the same type [20].

1.3.1. **Applications of FSP**:

Casting

Casting produces materials that have different casting defects like porosity, and other defects like cold flakes in microstructure; still casting is utilised for vast applications because it is quite an economical process.

Therefore, to improve the surface properties and to remove these defects by developing homogeneity in the materials and modifying the grain structure with the help of Friction Stir Processing [22].

Powder Metallurgy

Friction Stir Processing enhances the microstructural characteristics of materials produced by powder metallurgy, which has improved the mechanical properties like hardness, ductility, toughness, etc. because of the application of Friction Stir Processing for localized treatment of the materials [23, 24].

Metal Matrix Composites Friction Stir Processing techniques are utilised to fabricate or manufacture metal matrix composites which are having improved thermal conductivity, better grain structure and other mechanical properties like toughness, ductility, and also other tribological characteristics. [25,26,27].

1.3.2. Working Principle:

In general, Friction Stir Processing works alike Friction Stir Welding and based on thermomechanical technique in which, at elevated temperatures, plastic deformation in the material takes place, normally temperature is approximately about 0.5 times of melting point of the material [28].

The working principle of Friction Stir Processing is quite simple as a non-consumable, specially developed tool is allowed to rotate at sufficient speeds and also a downward push is applied in order to penetrate the tool into the surface of the material and then a linear motion is also provided that allows tool to travel from one end of the specimen to the other as shown in Fig: 1.1.

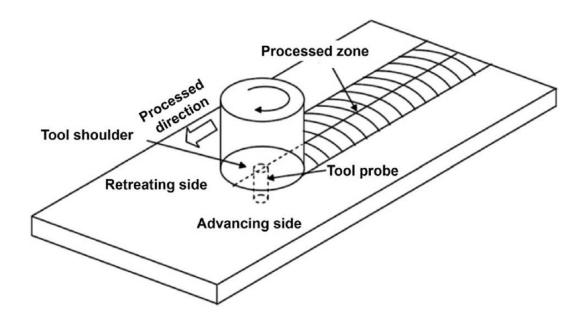


Fig: 1.1 Schematic description of FSP [20]

The rotating tool produces a considerable amount of heat in the material near tool and raises the temperature in the material that is favourable to the plastic deformation and then as the tool covers linear path into the material with a defined speed. The area near the pin is plastically deformed and the tool is moving ahead by producing processed region in the material.

The edge of the tool, leading in the material also produces a forging action in the downward direction because of the fact that the tool is given a tilt angle to support the action and the tilt angle generally ranges from one to three degrees of angle [28,29].

The process also generates different zones or regions in the material after the processing and these zones are categorized as Stir Zone, Thermo-mechanically Affected Zone (TMAZ) and Heat Affected Zone (HAZ) as shown in Fig: 1.2. The size and properties of these zones entirely depend on the different process parameters of the tool like the rotating velocity of the tool, transverse velocity of the tool, profile of the pin of the tool, depth of penetration in the material, thickness of material plate, thermal conductivity, etc. [20,29].

The zone which bears the maximum temperature as well as maximum strain is the region known as Stir Zone. This region also undergoes the maximum value of grain refinement. The various dimension of stir zone like the depth, width and the volume of the zone is defined by the parameters of the tool like the length of the pin measures the depth of the zone and the diameter of the shoulder determines the width of the zone [20,29].

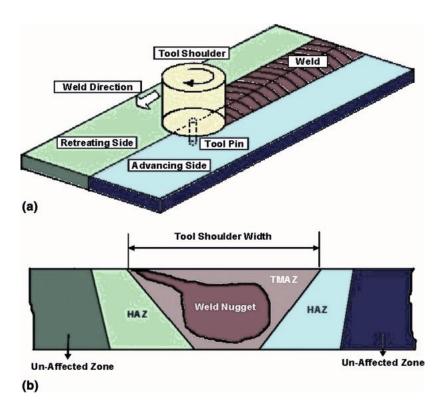


Fig: 1.2 Different zones and terminologies present in Friction Stir Processing [28]

Thermo-Mechanically Affected Zone (TMAZ), this zone ranges from few micrometres to millimetres in size and undergoes lower heat generation than that of stir zone and no recrystallization takes place in this zone as the value of strain rate is quite low for recrystallization. The width of this zone totally depends on the material property if a material is soft like Aluminium, magnesium then the width of the zone is quite large as compared to the width that forms in the case of hard materials like titanium and steels [29].

Heat Affected Zone (HAZ), this zone lies between Thermo-mechanically affected zone and the parent material on which processing is done. There is hardly any strain in this zone and thermal cycles are observed here, that results in grain growth. Therefore, the size of grain in this region is comparatively bigger in size as compared to that of parent material. The mechanical properties in this zone are also relatively poor and while performing tensile test then failure will take place in this zone [29,30].

1.3.3. Process Parameters:

The process parameters have always the great influence on any machining process or it is the only factor that has to be dealt carefully while performing any operation. Here, in

the case of Friction Stir Processing, process parameters are distributed in the following categories as Parameters of Tool, Parameters of Machine and Particle Parameters.

1.3.3.1. Tool Parameters:

The tool in the Friction Stir Processing is comprised of two parts, one is Pin and other is Shoulder. While performing the operation, both of the components are very important in order to generate heating in the material and the flow of the plastically deformed material [33]. Fig: 1.3 shows the parameters of the tool that affect the properties of the processed material.

The tool pin profile plays an important part and it can vary differently as per the applications. The profile of pin can be triangle, square, cylindrical. Apart from that profile can be threaded, fluted and conical, different profile has different advantages, therefore, the profile of the pin is selected as per the need of the processing. [32,33].

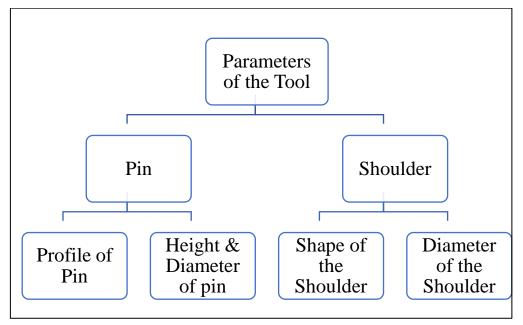


Fig: 1.3 Categorization based on the Tool parameters [34]

1.3.3.2. Parameters of Machine:

There are various machine parameters that leads to the performance of the Friction Stir Processing and these are shown in Fig: 1.4. The number of passes, speed of the rotation and the travel speed of the tool are important parameters. These parameters affect majorly on the outcome of the process, mostly affected are microstructures of the material and amount of heat generated in the material.

If the speed of rotation increases, the stirring of the material in the sample will take place more rigorously. This will result in increase in the temperature of the area and if simultaneously the travel speed of the tool decreases, means tool will spend longer time at a place that will result in more heat generation in the vicinity and accordingly the grain growth will take place [29, 35].

Therefore, the ratio of rotational speed to traverse speed will decide the grain structure. The higher values of the ratio will generate coarse grains as generation of heat is high and lower values of the ratio will generate finer grain structure [35,36].

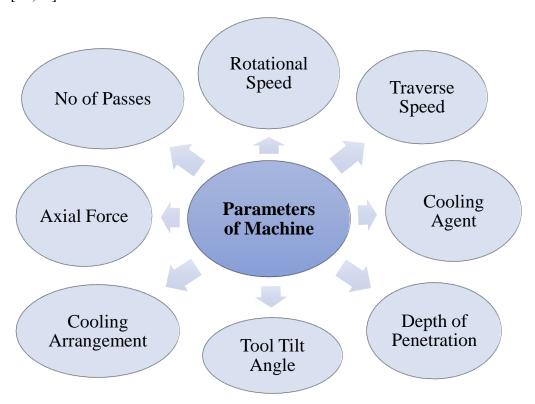


Fig: 1.4 Parameters of Machine for Friction Stir Processing [34]

1.4. Wear:

There are different ways in which material degradation takes place, like corrosion, wear and due to ultraviolet light, specific degradation of polymers. This material degradation leads to a material loss in the sample [37].

Take any case in which the surface of a hard material X is in contact (say sliding) with a soft material surface Y, then the wear for the same will be:

$$\frac{V}{L} = K \frac{F_n}{H} \qquad \dots (1.1)$$

Here,

- V- Volume of the metal removed
- L- distance of sliding by X or Y
- F_n- Normal Load
- K- Wear Coefficient

Some of the ways used to quantify wear are as follows:

- (a) Analysing the weight of the tested samples carefully
- (b) Analysing the metal removal volume with the help of 3-D tools.
- (c) If lubricants are used, then filtration of oils and the measurement of wear debris in the lubricants should be done carefully.

Wear can be classified into various categories, but majorly we study four types of wear, namely Adhesive, Abrasive, Fatigue, Tribochemical and Fretting Wear [37].

1.4.1. Adhesive Wear:

When surfaces are subjected to friction, then small junctions or micro-welds can be observed on the surface, this wear is characterised as adhesive wear and shown in Fig:1.5 (a).

If the junctions observed are weak, then due to shear, these can be removed on their own, but if these are strong, then they got transfer from soft material to hard material causing a material loss in soft materials [37,38].

1.4.2. Abrasive Wear:

Abrasive wear (shown in Fig:1.5 (b)) is observed in surface interaction of hard materials and comparatively softer materials. We can observe wear grooves and scratches on the surfaces that results in material removal; further causing material loss [39].

1.4.3. Fatigue Wear:

Fatigue wear is generally caused by the Cyclic Loads, and these loads induce strain in the layers of surface materials. Fig: 1.5 (c) depicts the nature of Fatigue wear. This results in formation of cracks in the material and simultaneously their development leads to the formation of debris that looks like a flake and new name of the wear is introduced that is delamination wear [40].

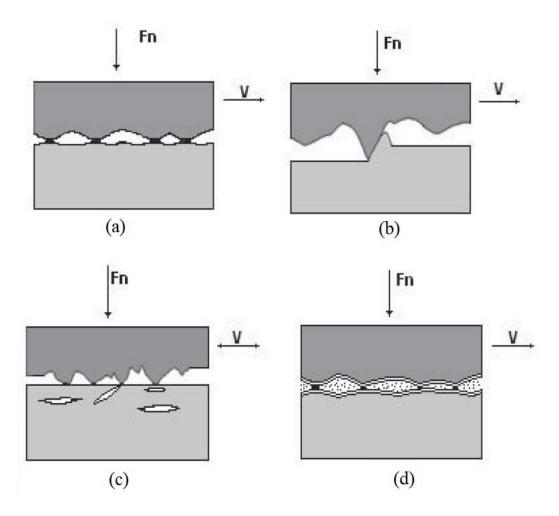


Fig: 1.5 Description of different wear forms [37]

1.4.4. Tribochemical Wear:

Tribochemical Wear shown in Fig: 1.5 (d). It is a phenomena in which the interaction of two mating surfaces (or contacting surfaces or interaction with the surroundings) leads to a chemical reaction on the surface. A film of reaction products develops on the surface, for examples, tribo-oxidation wear.

As friction increases, it increases the temperature of the interface that increases the rate of growth of oxide film on the surface. This film can be separated from the surface if it has attained some thickness [37].

1.4.5. Fretting Wear:

Fretting Wear takes place when the contacting surfaces are either moving in reciprocating motion or in an oscillating motion. The amplitude of the oscillation is relatively small.

Fretting Wear is a multi-step mechanism in which during solid-state contact, initially, adhesive wear is observed due to rubbing between solid surfaces and this leads to debris at the interface. Then oxidation of this debris takes place in the surrounding environment and leads to storage of energy in this debris. Since these particles are highly likely to oxide heavily and rapidly, it leads to a large number of debris present on the surface [41].

Chapter-2

LITERATURE REVIEW

The literature review has been carried out in different sections before conclusion of literature gap and research objective of the study. Firstly, the morphological study of Mg₂Si has been covered and wear behaviour of Magnesium-Silicon alloy. Secondly, the literature review is carried out about new surface modification techniques that enhance the mechanical and wear properties of different light weight alloys.

2.1. Morphology of Mg₂Si

Reference	Processing	Material	Results
	Method		
Kim et al.	Squeeze Casting	Mg-5Al-1Zn-	Modification of Chinese script
[42]		0.7Si	Mg ₂ Si particles into polygon type
		Addition of	Mg ₂ Si particles by the addition of
		0.2% Ca and	Ca and P.
		0.03% P.	That results in removal of
			nucleation sites which leads to
			the improvement in toughness
			and tensile properties.
Guo et al.	Gravity Casting	Mg-Si Alloy	Adding an optimum amount (i.e.
[43]		Addition of	0.5%) of Bi in Mg-5Si alloy
		0.5% Bi and	produces a fine grain structure of
		0.8% Bi.	polyhedral shape from a coarse
			dendritic form of Mg ₂ Si.
			Even the size of Mg ₂ Si was
			reduced to 15µm or less.
Wang et al.	Casting	Mg-Si alloy	5% K ₂ TiF ₆ is added, and no
[44]		with K_2TiF_6 ,	significant changes were
		KBF ₄ and KBF ₄	observed, whereas, when 5%
		$+ K_2 TiF_6$	KBF ₄ is added to Mg-5Si alloy
			melt, the particle size of Mg ₂ Si
			has reduced to 20µm or less.

			Moreover, adding 5% KBF + K ₂ TiF ₆ (in a 4:1 ratio) has
			changed it back to an irregular
			shape and coarser grain structure
			again.
Qin et al.	Casting and	The in-situ	Modified composite has
[45]	aging treatment	composite of Al-	increased Tensile strength by
		25 Mg ₂ Si-3Si-	31.1% and elongation by
		3Cu-0.5P	1.345%, which showed
			improvement in Tensile Strength
			and Plasticity.
			The size of Mg ₂ Si particles is
			modified from dendrite to
			polygon and reduced to an
			approximate size of 20um.
Xiong et al.	Powder	Mg- 150µm and	With increase in Ball-to-Powder
[46]	Metallurgy, Ball	Si- 150 μm	Mass Ratio, there is decrease in
	Milling,	Powders	grain size of Mg and Si.
	Reactive Hot-		Fracture hardness and Vickers
	Pressing		Toughness of Mg ₂ Si is better
			than that of parent material.
Qin et al.	Casting	The in-situ	Fine polygonal shape particles of
[47]		composite Al-	20μm to 50μm in size of Mg ₂ Si
		25Mg ₂ Si-3Si-	were obtained after adding
		3Cu-0.5P	phosphorus to the Al-Si master
			alloy.
			Also, it has shown the change of
			Mg ₂ Si morphology from
			dendritic crystal to
			tetrakaidecahedron, which was
			earlier in long fibriform and later
			changed to short fibriform or dot-
			like in eutectic Mg ₂ Si phases.

Bo et al.	Casting	$20~Mg_2Si/~Al$ -	0, 0.2, 0.4 and 0.6 by percentage
[48]		5Si Composite.	mass fraction of Sb is added.
		The Mg and Al-	The optimum value of 0.4 by
		3Sb were mixed	percentage mass fraction of Sb
		into the Al-Si	shows that the primary structure
		melt.	of Mg2Si was changed to fine
			particles of the approximate size
			of 25um.
			An improvement of ~35% in
			Ultimate Tensile Strength and
			~38% in elongation was
			observed, which has resulted in
			high resistance to cracks.
Ahlatchi	Hot Extrusion at	Al-12 Si – X Mg	Compression Strength and
[49]	300°C	Alloys	Hardness of the alloys are
		(0% to 20%	improved by the addition of Mg.
		weight variation	By the process of Hot-Extrusion
		in the content of	the Chinese script particles of
		Mg)	Mg ₂ Si is modified to needle
			shaped fine particles.
Hadian et al.	Casting	Al- 15% Mg ₂ Si	0.3% of Li addition has shown
[50]		Composite	the refinement of grain structure
			and reduces the size of the
			structure from 30 µm to
			approximately 6μm.
			Also, the increased cooling rate
			and the addition of Li has
			increase the Ultimate Tensile
			Strength and Elongation values.
Qin et al.	Melt	$Mg_2Si / Al - Si$	Size of Mg ₂ Si particles modifies
[51]	Superheating	Cu Composite	to equiaxed from coarse
	and Casting		dendritic and also the size is

Ī			1 10 470
			decreased from 150µm to
			approx. 50-40 μm.
			Chinese script type of eutectic
			Mg ₂ Si changes to needle like
			structure.
Liao et al.	Casting and	$Mg_2Si/Mg-9$	By the addition of 0.5 Wt.% Sb.
[52]	Ageing	Al-Sb	The particle of Mg ₂ Si is
	Treatment	Composite	modified, refined and reduced in
			size also change from Chinese
			script type to polygonal shape.
			Further improvement in tensile
			strength, elongation and
			damping capacity; also, the
			value of critical strain amplitude
			is decreased and improvement is
			noticed.
Zhang et al.	Reciprocating	$Mg_2Si / Mg - Al$	Before the extrusion; coarse α –
[53]	Extrusion and	Composite	Mg dendrites are present.
	Homogenization		After the twelfth pass of
	Heat Treatment		extrusion, Mg ₂ Si phases are
			uniformly distributed and almost
			are equiaxed and attain the size
			less than 20µm.
			Mechanical properties like
			Tensile and Yield Strength are
			improved the value of elongation
			has also increased at room
			temperature and some
			improvement at elevated
			temperatures.
Gan et al.	Equal Channel	3.2 Wt% of Si.	The refinement of type-II Mg ₂ Si
[54]	Angular	The in-situ	is found efficiently done also
	Pressing by an	composite of	Ĭ
1		r	

	internal angle of 90° with	Mg ₂ Si Composite	homogeneous distribution in the matrix.
	horizontal and		Yield tensile Strength along with
	vertical		elongation to failure value are
	channels		enhance by the ECAP due to the
			grain refinement and
			homogenization of the particles.
			With each processing pass, the
			improvement in strain hardening
			behaviour is observed.
Wei et al.	Repetitive	AZ 31 Mg	With each pass of Repetitive
[55]	Upsetting	Alloy	Upsetting, deformation is getting
	Extrusion	(Mg - 3Al -	uniform.
		1Zn - 0.4Zn)	When five passes are completed,
			Chinese script and large
			dendritic Mg ₂ Si particles are
			changed to fine particles with
			homogeneous redistribution.
			A notable improvement is
			observed in the ductility and
			strength of the composite.
Metayer et	Cyclic Closed	Mg - x Si	Refinement of structure and
al. [56]	Die Forging	Alloys	homogeneous distribution is
	Process		obtained after optimum number
			of passes.
			The improvement in various
			mechanical properties like
			strength, ductility and hardness
			is observed as a product of
			refinement of grain structure.
			Decrement in wear loss is also
			observed and hence better wear
			resistance is there.

Syukron et	Equal Channel	Al-Mg-Si	With addition of TiB ₂ , the
al. [57]	Angular	Alloy	hardness of the alloy is observed
	Pressing with an	Adding Hard	to be doubled as compared to the
	internal angle of	Particle TiB ₂	original value.
	120°		Grain refinement in the
			specimen if found to be modifies
			from 35 μm to 0.79 μm and of
			almost uniform size.
Chegini et	Equal Channel	$Al - xMg_2Si$	Processed sample has high
al. [58]	Angular	Composites	strength as the sample is work-
	Processing.		hardened and also have fine
	For four hours		grain structure because of
	at a temperature		homogeneous distribution of
	of 500°C,		Mg ₂ Si particle which are broken
	Thermal		into small pieces.
	Homogenizing.		Around 35% Ultimate Shear
			Strength and around 80%
			Ultimate Tensile Strength has
			increased in processed samples.
			65% and 150% increment is
			seen in the shear yield and
			tensile of the processed samples.
			Whereas, increasing the content
			of Mg ₂ Si and the number of
			passes has shown that brittle
			name of the specimen is
			increased and catastrophic
			cracks are formed at this
			parameter.
Guo et al.	Cyclic	Mg - SiC	After eight passes of Cyclic
[59]	Extrusion	nanocomposite	Extrusion Compression process,
	Compression		large particles are fragmented

			into smaller ones and are
			uniformly distributed.
			Also, homogeneous and fine
			grain structure is obtained after
			the passes.
			Hardness of the sample is found
			to be increased after the process
			which is a result of fine grain
			particles.
El-Garhy et C	yclic	Al 6061 and Al	When the number of cycles
al. [60] E	xtrusion	6061/SiC	increase then increase in grain
C	ompression	Metal Matrix	refinement and porosity
		Composites	reduction in the alloy takes
			place.
Sha et al. [73]	High	Al-Si-Mg	Grain refinement in the alloy,
	Pressure	Alloy	strengthening from dislocations and
	Torsion	(AA6060	solute nanostructures; altogether
		alloy)	has allowed the parent alloy to
			achieve high strength.
			The temperature range of High-
			Pressure torsion processing is
			between 100°C to 180°C, where
			less than 20 per cent of solute
			atoms at 100°C and 85 per cent of
			solute atoms at 180°C were
			observed in the processed sample.

Initially, the microstructure of Magnesium- Silicon Alloys consisted of Chinese script type of Mg₂Si particles. These particles are of a coarse dendritic shape and were sometimes found to be the equiaxed dendritic structural shape. To improve the morphology of these particles, a lot of different elements like 0.2 wt% Ca, 0.03 wt% P, 0.5 wt% Bi, 0.3 wt% Li, 0.5 wt% Sb, etc. were added to Magnesium alloys or their melts

with other elements or compounds or sometimes to in-situ composites of Al-Si or Mg-Si alloys.

The addition, as mentioned earlier, of elements takes place at different levels like during gravity die casting, squeeze casting, powder metallurgy, reciprocating extrusion, superheating treatment, ageing treatment, and so on. After the addition of the elements mentioned above, there were a few improvements that were observed, such as the grains structure of Mg₂Si particles has reduced in size (approximately 15µm - 30µm), and the shape has changed to a more regular and polyhedral. Sometimes it has changed to short fibriform or dot-like from a long fibriform type of particle shape.

The significant advantage of improved morphology of Mg₂Si particles was better mechanical properties compared to its parent composite. Most improvements were noted in tensile strength, yield strength, plasticity (as elongation percentage has increased), high resistance to crack hardness, and compression strength.

Reference	Material	Results
Charit et al. [61],	Al 2024 Hot rolled	Improvement in mechanical properties has
Kwon et al. [62]	plates	been observed as Charit et al. [61] noticed
and	Al 1050 Cold	the improvement in ductility with the
Sharma et al. [63]	rolled plates	relation to temperature. During the
	A 356 Sand Casted	process as at 430°C maximum value of
	plates	elongation has been obtained whereas
		Kwon et al. [62] has made the observation
		on the basis of rotation speed of the tool
		and notice at 560 rpm maximum value of
		hardness and tension is obtained.
		Kwon et al. [62] has also notified that
		advancing side is having better results as
		compared to retreating side of the parent
		material.
		However, Sharma et al. [63] clarifies that
		there is increase in fatigue properties and
		crack growth can also be reduced using the
		technique. The casting defects like

		porosity has been removed that was the
		significant reason in improving the length
		of crack that leads to reduction in crack
		growth rate.
		All of them specified the reason that
		homogeneity or uniform distribution of
		particles and grain refinement by the
		Friction Stir Processing.
Sharma et al. [63],	Sand Casted ingots	By the friction stir process, various defects
Santella et al. [64]	of A 356 and A	such as porosity and the dendritic
And	319 alloy.	microstructures in casting are improved.
Ma et al. [65]	Sand casted billets	Also, noticed that uniform distribution of
	further converted	particles has been achieved and due to
	into plates of A	which various mechanical properties are
	356 alloy.	improved like ductility, tensile strength
		and fatigue.
		In order to increase the tensile strength, it
		has been observed that ductility plays an
		important role as ductility increases it
		leads to increase various other properties.
		Microstructure refinement was the reason
		for the improvement in ductility as
		porosity due to casting is removed by FSP.
		Grain size of approximately 3µm to 4µm
		has been observed after the process of FSP
		by Ma et al. [65] which plays significant
		role in redistribution and modification in
		size of the particles in the material at
		optimum parameters of the machine.
Cavaliere et al. [66]	Sheets of AM 60	Aftereffect of the stirring action by FSP
and	magnesium alloys.	has shown the eradication of casting
Kang et al. [67]	Sheets of Al 5052	defects and improvement in mechanical
	– H32 alloy	properties.

		Cavaliere et al. [66] has shown that FSP of
		AM 60 magnesium alloy sheets leads to
		enhanced tensile properties in ambient
		conditions whereas Al 5052 - H32 alloy
		sheets after FSP has shown a considerable
		improvement in the formability due to fine
		grain structure development in processed
		zone of the material.
Charit and Mishra	Plates of Al-Zn-	By the elimination of casting defects such
[68],	Mg-Sc alloy,	as porosity and micro-segregation Charit
Chang et al. [69]	Mg-Al-Zn or AZ31	and Mishra [68] has observed the grain
And	Mg alloy	size modified to approximately 0.68 μm
Ni et al. [70]	And	whereas Chang et al. [69] has observed the
	Mg-9Al-1Zn alloy	grain size approximately to 85nm.
	AZ91D alloy	The improvement in microhardness,
		fatigue property and ductility has been
		observed by applying number of passes
		and high strain rates at optimum
		parameters.
		Whereas another strange observation by
		Charit and Mishra [68] was that instability
		of microstructures and abnormal grain
		growth in processed region at temperature
		above 390°C but hardly any change in
		super-plasticity has been observed.
		Also, different parameters of material like
		grain boundary structure, grain size,
		dislocation density, etc. can be controlled
		by the nano-crystallization of the material
		via FSP.
Zahmatkesh et al.	Hot rolled Plates of	Higher Wear Resistance, Low value of
[71]	Al2024.	coefficient of friction and improvement in
		micro-hardness in the nugget region have

		been the observations that Zahmatkesh et
		al. [71] has made due to modifications of
		grains to fine-equiaxed and of
		approximate size of 4µm after FSP.
		With increasing sliding distances increase
		in wear loss or weight loss of material has
		been observed but for FSP material, the
		curve has shown stable rate.
Balamurugan et al.	AZ31B	A comparison of two tool profiles was
[76]	Magnesium Alloy	made in this study. The first tool profile
		was the Concave Shoulder Tool, and the
		second one was Step Shoulder Tool for
		Friction Stir Processing technique.
		A change in Strain Hardening effects, less
		wear rate and less wear loss, were
		observed with the concave shoulder tool;
		whereas in the case of the step shoulder
		tool, a significant role was played by grain
		size; and a higher value of wear loss and
		corrosion rates were observed.

2.2. Research Gap

The literature study depicts a few following gaps in the studies about magnesium alloys:

- There are a limited number of studies about the wear characteristics of friction stir
 processed magnesium-silicon based alloys. Earlier, more emphasis was given to
 the research of aluminium-based alloys and their mechanical and wear
 characteristics.
- The literature study suggests that most work has been done on studying the morphology and fine grain structures obtained after applying the friction stir processing technique. However, limited research is done showing the

improvement in mechanical and wear characteristics under high-temperature conditions.

2.3. Research Objectives

The following are the research objectives of the presented work:

- ➤ A comparative study of analysing the wear characteristics like the coefficient of friction and wear loss of Magnesium-Silicon alloy at high temperatures and under various loading conditions.
- ➤ The study of wear properties of as-cast AS21A alloy and Friction stir processed sample material at elevated temperatures.
- ➤ The study of specific wear rate for friction stir processed sample at hightemperature conditions and under various loadings.

Chapter-3

EXPERIMENTATION

This chapter has been organised in three sections. First section covers the preparation of the material for various tests. Second section covers the tests that were required to perform before the final wear test such as surfaces roughness test. Third section covers the objective of the thesis which was to perform the tribological test for the study of wear behaviour of the sample material.

3.1 Material Preparation:

Magnesium-Aluminium-Silicon based alloy (AS21A alloy) was prepared by the process of Gravity Die casting method and obtained from Venuka Engineering, Hyderabad, India. The dimensions of the casted material plate were $200\times80\times10$ mm. The composition of the material was found to be Aluminium - 2.12%, Silicon -1.04%, Mn - 0.221%, Zn - 0.058%, Cu - 0.002%, Fe - 0.003%, Ni - <0.001%, Rest is Magnesium [72].

The material plate then made suitable for the process of Friction Stir Processing by machining the surface of the material plate. Friction Stir processing has been done on the material. The sample with 800rpm rotational speed was selected as optimum that has maximum value of surface micro-hardness that is 66 HV [72].

Friction Stir Welding Setup:

R V Machine Tools, FSW- 4T - HYD, is the setup for Friction Stir Process. This setup (as shown in Fig:3.1) is mainly use to perform the friction stir welding process and as we have already established that Friction Stir Processing is based on Friction Stir Welding therefore the setup of the same will be required to perform the experiment.

Table: 3.1 Specifications of the Friction Stir Welding setup:

Power	11KW
RPM of Spindle	Up to 3000rpm
Load Capacity	25kN
Clamps	Hydraulically actuated

There are two main purposes of the machine setup, first and foremost one is to generate heat due to friction and secondly to process this heat within the material sample. Therefore, it is tool that plays an important part in performing the action of heat generation, well designed and right tool profile has to be selected for the same. The tool has to penetrate in to the material and then has to perform the stirring operation in the material and also has to move along its length in order to perform stirring in the whole material. Table: 3.2 shows the specifications of the tool utilised for the process of Friction Stir Processing.

Table: 3.2 The specifications of the tool for the process of Friction Stir Processing.

Diameter of the shoulder	16mm, 20mm and 24mm
Tool material and its Hardness	H-13 Tool Steel and Hardness- 55HRC
Profile of Pin	Threaded Cylindrical with pitch of 1mm
Length of Probe	5mm
Diameter of Probe	6mm

Rotational Speed, Travel Speed and Shoulder Diameter are the most important parameters of the Friction Stir Processing. Therefore, optimised values of these parameters are calculated and then only the process can be successful in order to obtain desired characteristics in the material.

Three rotational speeds were 400rpm, 800rpm and 1200rpm selected for the process. The travel speeds of the tool were 20, 50 and 80mm/min selected while performing the process. The diameters of the shoulder were 16, 20 and 24mm. These were the input parameters for the process and were employed during the friction stir processing and allows the material to have desired properties in the stir zone of the material.

Thereafter, pins of cylindrical shapes of diameter 8 mm were cut from the processed area of the metal plate of AS21A alloy with the help of CNC wire cut machine. Similarly, samples of the pin were cut from as casted As21A plate for different characterisation tests.

The square plate of material SAE 304 SS was used for the bottom specimen of the wear machine. Fig: 3.1. shows the square plates and pins that are ready for wear test.

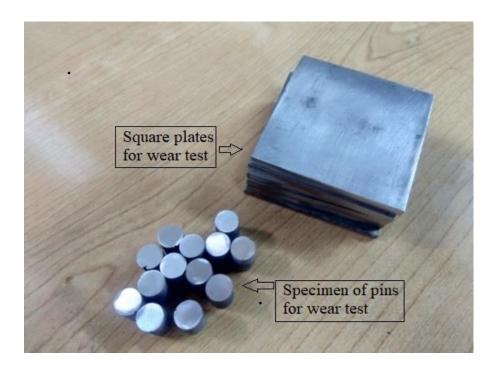


Fig: 3.1 Sample pins and Counter square plates for the Wear test

Hardness Test is utilised for the analysis of the micro-hardness of the sample materials. Fig: 3.2 shows an image of microhardness tester. Working principle of Microhardness tester involves an indenter of square pyramid shape with a 136° angle between opposite faces and with an applied load of range 1kg to 120kg.

In this test a definite load is applied to the sample surface using the above briefed indenter for a duration of time. The area covered by the indenter was measured after the removal of load in terms of diagonal sides of the indenter.

The value of the hardness was obtained by the relation between area marked by the indenter and the load applied for that indentation. The following expression was used for the calculation of Vickers Hardness and indicated in terms of HV:

$$HV = \frac{1.8854 \, P}{D^2} \qquad \dots (3.1)$$

Here, P denotes the load applied during the test in kilograms

And D denotes diagonal length of the marked indentation on the sample surface in millimetres.

Fig: 3.2 Micro-hardness Tester

Samples were cleaned and polished before performing microhardness test, in order to remove any oxide layers or any other scales if present. The value of the hardness obtained was 55HV for the casted AS21A alloy material sample and it was 66HV for the Friction Stir Processed AS21A alloy material.

3.2 Surface Roughness Test

Surface roughness test was performed by using Taylor Hobson Surtronic 3+ as shown in Fig: 3.3. It is a portable type device that is used to measure the surface texture for calculating the surface roughness of the material sample and this device can be used in both laboratory as well as in the workshop.

Fig: 3.3 Taylor Hobson Surface Roughness Tester

The device follows simple steps to perform surface roughness test.

Step one is to clean the surface with a clean cloth, preferably a microfiber cloth, so that if any dust particles present can be removed.

In step two, make sure the surface on which the sample material is placed is flat. We have used surface plate to place the samples as surface plate ensures the degree of flatness of the sample.

Then gently place the pickup of the tester on the surface that is to be measured. Keep sure that the pointer in the pickup is touching the surface.

Step three, press the measurement start key (The on/off key was already pressed before step one) and let the tester perform the test. The tester shows the reading in display as the value of Ra in micrometres (μ m). Fig: 3.4 shows an example of machine testing a surface roughness.

The calibration of the machine can be done with help of ideal samples of specified surface roughness values, if the machine shows the same values, then we can be assured that the machine is working properly, otherwise a calibration process will be performed with the help of different function keys specified on the machine.

The roughness test performed for both of the material were performed and the values were taken two times and then the average of the two values were considered to be the final value for the surface roughness. The values for the sample pins and plates are given in Table 3.3.

Table:3.3 Values of Surface Roughness for pins and plate

Sr. No.		Surface		Sr. No.	Surface
		Roughness			Roughness
	1	0.35		1	0.32
	2	0.38		2	0.39
	3	0.39		3	0.34
Specimen	4	0.36	Square	4	0.35
Pins	5	0.30	Plates	5	0.42
	6	0.28		6	0.30
	7	0.32		7	0.40
	8	0.36		8	0.28
	9	0.43		9	0.32
	10	0.31		10	0.38
	11	0.44		11	0.40
	12	0.30		12	0.38

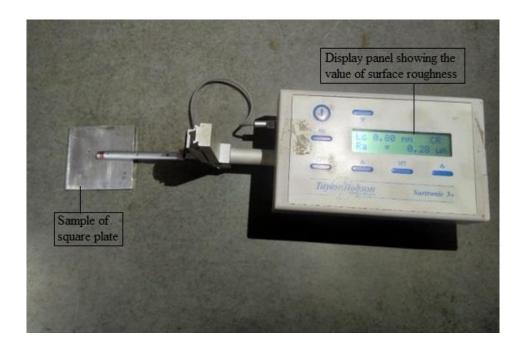


Fig: 3.4 Surface roughness tester with a sample

3.3 Wear Test:

Wear test or tribological test was performed to understand the wear behaviour of the material (Magnesium-Silicon alloy). The wear test was performed under dry conditions, meaning no lubricant was applied while performing the wear test and dry sliding of the sample material with the counter plate was performed.

Wear test was performed on the Linear Reciprocating Tribometer manufactured by Ducom Instruments. The test rig was shown in Fig: 3.5 and 3.6; and was capable of performing experiments in a wide range of temperature values from ambient to 550°C.

The test rig consists of mainly two parts for testing, one that will be in rest position, no motion will be there in this section of the test rig. Other will have linear reciprocating motion, like in the case of present research, rest position was applied to the counter square plate and the linear reciprocating motion to the sample material pins.

Thereby, pins had made an impact on the square plate. The plates being hard material were not affected but pins being soft had some material loss or wear.

Fig: 3.5 Tribometer used for wear test

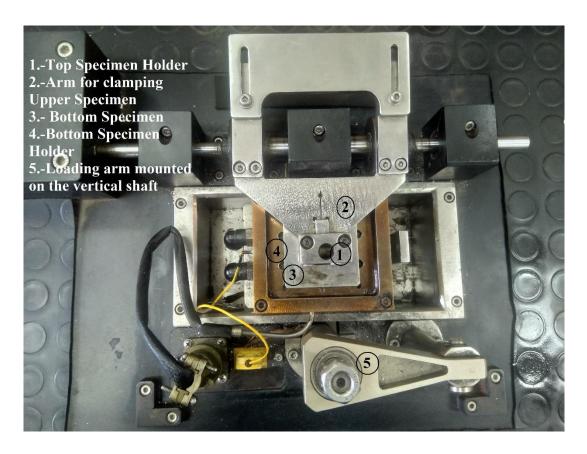


Fig: 3.6 Description of the environment chamber of tribometer

Table-3.4 Technical Specifications of the Tribometer:

Top Specimen	Spherical Ball of diameter range from 4mm to 12mm			
	Cylindrical Pin of diameter range from 4mm to 12mm			
	with a height maxim	um of 15mm		
Bottom Specimen	Flat Plate of 50×50×	5 mm		
Normal Load	Dead weights in step	ps of 5N with a range from 5N to		
	50N			
Frequency	Maximum value of 50Hz			
Stroke Length	Ranges from 1mm to	20mm in the following manner		
	Frequency (in Hz) Stroke Length (in mm)			
	1 - 8	20		
	8 – 10	16		
	10 - 20 15			
	20 – 30 5			
	30 – 40 2			
	40 – 50 1			

Frictional Force	Ranges from 0 to 50N
Temperature	Ranges from ambient to 550°C

The wear test was conducted in different temperature ranges and before performing the test, samples were rubbed against 800-1200 grit emery paper so that proper observations can be obtained. The different parameters like load, temperature, frequency, stroke length, etc. of the Linear reciprocating tribometer were shown in Table-3.4.

The rate of specific wear is calculated by the following relation:

$$Specific Wear Rate = \frac{Volume loss in cubic millimeter}{Normal Load (in N) \times Sliding distance (in mm)} ...(3.2)$$

The volume loss can be calculated by the ratio of weight loss (in grams) to the density (in g/cm³) of the samples. The weight loss can also be calculated by weighing the samples after and before the test.

These samples were rinsed in acetone solution every time, to measure the weight. Electronic apparatus was used for measuring the weight and the apparatus was having an accuracy of 0.001mg.

Coefficient of friction can be measured with the help of sensors connected to the linear reciprocating tribometer test rig. The value of Coefficient of Friction between the sample and the plate is the ratio between frictional force and the normal load. The value of frictional force can be obtained from the tribometer and the value of normal load is the known value of dead weights applied manually.

The expression for the Coefficient of Friction is:

Cofficient of Friction =
$$\frac{Friction Force (in N)}{Normal Load (in N)}$$
...(3.3)

Table 3.5 describes the parameters that will be performed on the tribometer. The specifications of the pins (Friction stir processed sample material) and the specifications of the plate against which the pins will be rubbed are given in Table:3.5.

Table:3.5 Parameters for the wear test

Parameters	Value
Normal Load	10N, 20N and 30N
Stroke Length	10mm
Frequency	10Hz
Temperature	50°C, 100°C, 150°C and 200°C
Operating Time	600 seconds
Diameter of Pin	8mm
Ra value of Pin	0.28μm to 0.44μm
Bottom Plate	SAE 304 SS (42 HRC)
Bottom Plate Size	$50 \times 50 \times 5 \text{ mm}$
Ra Value of Bottom Plate	0.28μm to 0.40μm

Chapter-4

RESULTS AND DISCUSSION

Friction Sir Processing has eliminated the different casting defects which were present in the casted AS21A material and the resulted material has better mechanical characteristics after the operation.

- The Ultimate Tensile Strength in MPa has improved to 88.6 MPa from 83.2 MPa.
- The change in Percentage Elongation was observed from 3.87 to 10.6.
- The value of Microhardness of processed material was noticed as 66 HV as earlier it was 55 HV in casted material.

The observations have shown that defects present in the base material of AS21A were removed. The coarse grain structure of material particles was altered and modified to a fine grain structure that leads to improved mechanical properties; mainly, ductility has shown more remarkable improvement.

The microstructural changes in the material were represented by SEM images of the sample. Fig:4.1 shows the different samples before and after the friction stir processing of the sample. Fig:4.1(a) depicted that the as-cast sample of AS21A alloy consisted of intermetallic coarse grain structure, and the representation of Chinese script was observed. The coarse grain structure of the sample was modified after the friction stir processing technique as it has improved its structure to refined grains [72], as shown in Fig:4.1(b).

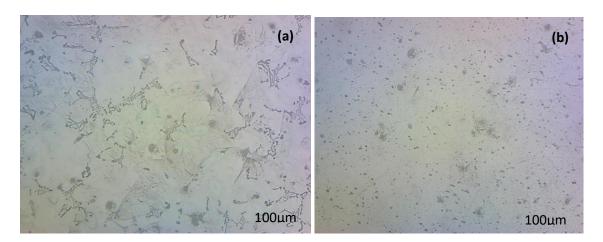


Fig: 4.1 SEM image of AS21A alloy (a) as-cast AS21A alloy (b) Friction Stir Processed AS21A alloy

The percentage elongation obtained after the operation was about 11% and achieved at 800 rpm of rotational tool speed. In contrast, the profile of the tool pin was cylindrically threaded during friction stir processing.

The wear characteristics of Friction Stir Processed AS21A alloy were characterised on Linear Reciprocating Tribometer. The obtained value of frictional forces and coefficient of friction at different temperatures were formulated in a table (Table 4.1) as shown below:

Table 4.1 Coefficient of Friction for AS21A alloy of Friction Stir Processed samples for different loads at different temperatures

Load (in N)	Temperature (in °C)	Friction Force (in N)	Coefficient of Friction
10	50	3.75	0.37
	100	3.97	0.39
	150	4.13	0.41
	200	4.45	0.44
20	50	5.23	0.26
	100	5.53	0.28
	150	6.13	0.31
	200	6.54	0.33
30	50	6.89	0.23
	100	7.53	0.25
	150	8.59	0.29
	200	9.28	0.31

The data from Table 4.1 has shown an increment in the value of the coefficient of friction as the temperature rises for a specified value of the load. However, if we look closely at the values, two significant things can be observed. First, there was a gradual change in the values, and second, there was some considerable change as we increased the temperature.

For 10N load, an increment of about 5% to 7% in the values was observed as we increased the temperature from 50°C to 200°C. Likewise, moving to 20N load and 30N load, the changes were increased from about 6% to 10%, and about 6% to 16%, respectively.

Moreover, if we look at this data from another perspective, we can see that with the increase in load by keeping the temperature constant, a drop in the value was noted, and it was about 24% to 29% while moving from 10N to 20N and about 6% to 11% while moving from 20N to 30N.

It was noted because of the inverse relation of applied load with the coefficient of friction as detailed in equation 3.3 of the previous chapter. Therefore, there was a reduction in the coefficient of friction. However, the other thing to note is that there was a drastic change when the load was first increased from 10N to 20N compared to when it increased from 20N to 30N.

The primary reason for this behaviour was the formation of metal oxides that usually form during metal-metal sliding, leading to a decrease in friction [73]. Further, it was noted in Fig: 4.2 that as temperature increased, the smoothness of the curve was also affected significantly. Fig:4.2 (a) and (b) have shown variations for 50°C and 100°C, respectively, for 10N, 20N, and 30N of coefficient of friction with time. There were no considerable variations in the graph, and values moved within a limit and were not change drastically. From Fig 4.2 (c) and (d), significant variations in the values were observed with respect to time and have shown some sudden increments as the temperature was increased from 100°C to 150°C and 200°C. The primary reason for the same was of increase in temperature.

The reason for the same was an increase in temperature. As temperature increases, it leads to an increase in wear and adhesion [74]. That increases the roughness of the material surface, and an increase in the value of the coefficient of friction was noticed and wear debris was also present in between, which can lead to sudden changes in the values as shown in the graph.

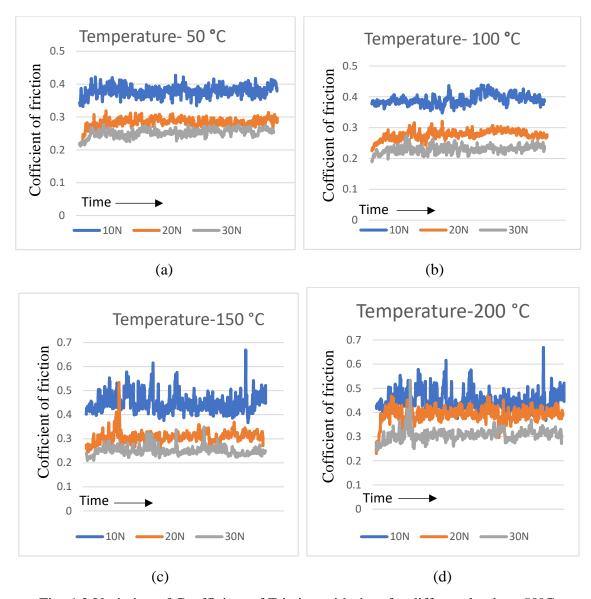


Fig: 4.2 Variation of Coefficient of Friction with time for different loads at 50°C, 100°C, 150°C and 200°C

Fig: 4.3, 4.4 and 4.5 represented the variation in the coefficient of friction with time, keeping the load constant, and we can see from the figures that for any particular load, more variations were observed in the case of high temperature.

Apart from that, a gradual increase in the average values and variation in values of the coefficient of friction was also observed. As the temperature of the surfaces increases, the asperities present on the interface also increases. These high asperities present on the surface now led to the hindrances during sliding, and sudden drop and increase in the

value of frictional force were observed [74]. That led to the increased waviness in the graph of the coefficient of friction with time for elevated temperatures.

Fig: 4.3 Variation of Coefficient of Friction with time for different temperatures at a load of 10N

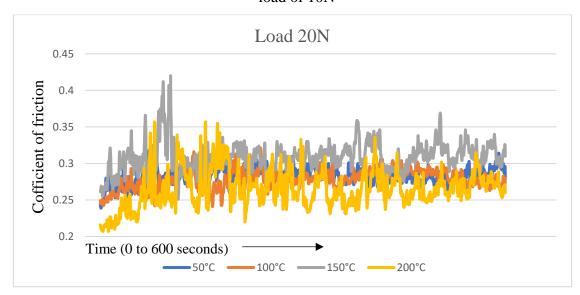


Fig: 4.4 Variation of Coefficient of Friction with time for different temperatures at a load of 20N

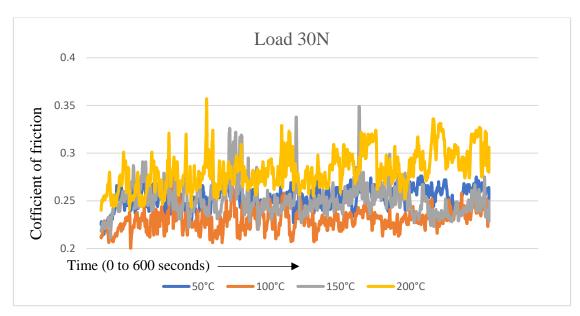


Fig: 4.5 Variation of Coefficient of Friction with time for different temperatures at a load of 30N

The following table 4.2 shows the variation in the wear loss of the sample with changes in temperature and changes in loading conditions. The wear loss of the samples was calculated by carefully weighing them before and after every test process in the electronic weighing balance.

Table 4.2 Change in weight of the samples after the test with different loads and at different temperatures

Load (in N)	Temperature (in °C)	Change in Weight (in mg)
10	50	44
	100	32
	150	26
	200	24
20	50	44
	100	40
	150	39
	200	36
30	50	47
	100	38
	150	35
	200	35

Graphs from Fig: 4.6 shows that with the increase in load for a specific temperature, there was an increase in the value of wear loss. From Fig: 4.6 (a), for 50°C, while increasing load to 20N, wear loss was observed to be identical, but when the load was increased to 30N, an increase in the wear loss was noted. Likewise, observations from Fig: 4.6 (b), for 100°C, an increase in the value of wear loss was present as we increased the load but here, it decreased again for the load of 30N. A similar increase and decrease were observed in Fig: 4.6 (c) and (d) for temperatures 150°C and 200°C, respectively.

The increase in wear loss due to an increase in load was noted because as the load increases, the removal of material from the surface of the pins was increased due to surface erosion phenomena of plastic deformation and delamination of the layers of material surface [75].

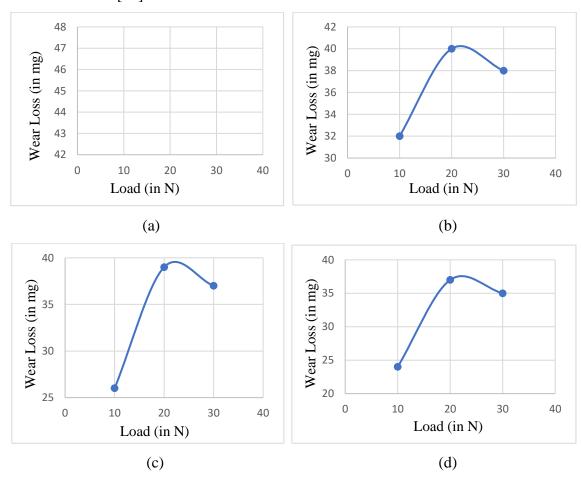


Fig: 4.6 Graph wear loss versus load at different temperatures

Fig:4.7 shows the variation of wear loss with the temperature at constant load value as Fig:4.7(a) shows the variation for 10N load, Fig:4.7(b) for 20N load, and Fig:4.7(c) for 30N load; and all the values for wear loss are for different temperatures like 50°C, 100°C, 150°C and 200°C. The variations in Fig:4.7 suggested that with the increase in

temperature value, there was a decrease in the volume of material removal from the surface of the specimen by keeping the load constant.

On the other hand, at low temperatures like ambient or 50°C, the surface showed properties like the low value of hardness and high ductility value that allowed the sliding motion to have a significant value of wear or material removal. However, if the temperature increases, it leads to the formation of some hard phases of Mg₂Si on the surface of the AS21A alloy. These hard phases allowed the material to have greater hardness, which slowed the material removal from the surface [75].

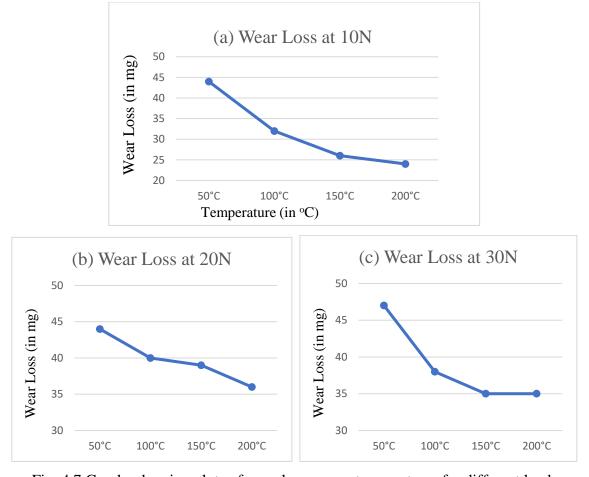


Fig: 4.7 Graphs showing plots of wear loss versus temperatures for different loads (a) 10N, (b) 20N, (c) 30N

Also, the comparison of samples of as-cast AS21A alloy and Friction Stir Processed AS21A alloy was made and shown in Table 4.3 and Table 4.4. Table 4.3 compares the values of the coefficient of friction with different loads and for different values of temperatures. Table 4.4 compares the value of wear loss with load and for different temperatures.

Table 4.3 Comparison of the values of coefficient of friction of the processed and ascast AS21A alloy at different temperature conditions

Load	As-Cast	FSPed	FSPed	FSPed	FSPed	FSPed
	AS21A	AS21A	AS21A	AS21A	AS21A	AS21A
	alloy	alloy in	alloy at	alloy at	alloy at	alloy at
		ambient	50°C	100°C	150°C	200°C
		conditions				
10	0.32	0.31	0.37	0.39	0.41	0.44
20	0.29	0.26	0.26	0.28	0.31	0.33
30	0.24	0.23	0.23	0.25	0.29	0.31

Table 4.4 Comparison of the values of wear loss of the processed and as-cast AS21A alloy at different temperature conditions

Load	As-Cast	FSPed	FSPed	FSPed	FSPed	FSPed
	AS21A	AS21A	AS21A	AS21A	AS21A	AS21A
	alloy	alloy in	alloy at	alloy at	alloy at	alloy at
		ambient	50°C	100°C	150°C	200°C
		conditions				
10	34.2	26.2	44	32	26	24
20	49.2	40.9	44	40	39	36
30	60	57.2	47	38	35	35

Comparing the samples as-cast and Friction Stir Processed based on the coefficient of friction in Fig:4.9. It can be observed that the minimum value was in ambient conditions, and there was a slight increment in the as-cast sample as compared to ambient conditions. Then, with the increase in temperature, there was a continuous increment due to the material's surface properties.

Another comparison was made based on the wear loss of the samples of as-cast AS21A alloy and Friction Stir Processed AS21A alloy with loading conditions and at different temperatures in Fig:4.8. The graph, shown in Fig:4.10, clearly depicted that Friction Stir Processed sample has better wear characteristics as there was a decrease in volume loss during the sliding motion.

Moreover, graphs explained that even at ambient conditions, AS21A alloys show better wear properties than the as-cast sample and improved as temperature increased for the testing.

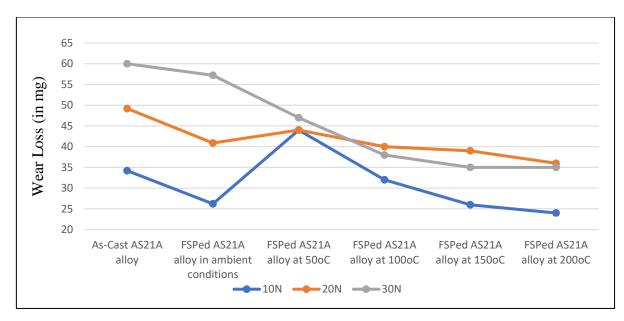


Fig 4.8 Graphical representation of Wear Loss at different load and temperature conditions

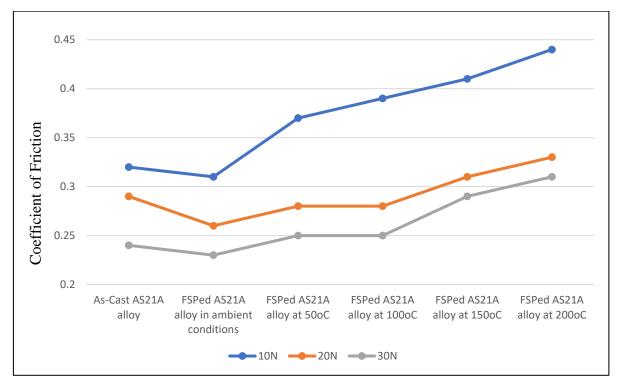


Fig 4.9 Graphical representation of Coefficient of Friction at different load and temperature conditions

The value of the specific wear rate was calculated using equation 3.2, and the values were presented in Table:4.5. From the table, it could be noted that as the value of temperature increases, there was a decrease in the value of specific wear rate. Similarly, there was a decrease in the value of specific wear rate for increased load for a particular temperature. Likewise, the observations shown in Fig:4.10 explained a decrease in the value of specific wear rates either there was an increase in temperature or load, which indicated improvement in wear properties at higher values of loads [77].

Table: 4.5 The values of specific wear rate (in 10⁻⁸ mm³/Nm) for different temperature values and load values

Temperature (°C)	50°C	100°C	150°C	200°C
Load (in N)				
10	2.16	1.27	1.27	1.17
20	2.16	0.98	0.96	0.88
30	0.77	0.62	0.57	0.57

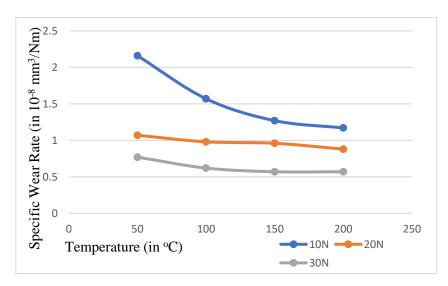


Fig:4.10 Variation of specific wear rate with respect to load and temperature

The values of specific wear rates range from 10⁻⁴ to 10⁻⁸ (mm³/Nm) fall under the category of mild wear and defined as a small value of wear that occurred due to oxidative wear [78]. The present case was of the same order. Therefore, wear for magnesium silicon

AS21A alloy for the current linear reciprocating tribometer test was categorised as mild wear. Most studies on specific wear rates were for different sliding velocities rather than different temperatures. The different values of sliding velocities have changed the type of wear mechanism for the material tested [79]. Moreover, with the increase in temperature, oxidation of the surface layer starts, which affects the surface characteristics. If a further rise in temperature was noted, it caused microstructural changes in the material. [80] That changes the whole wear mechanisms for the sample material.

Chapter-5

CONCLUSIONS AND FUTURE SCOPE

5.1. Conclusions

The parent material selected for the current study was Magnesium-Silicon based alloy. Magnesium-Silicon based aluminium alloy is a kind of heat-resistant material. A Friction Stir Processed AS21A alloy was tested for wear characteristics in work presented here. The effects of temperatures and normal loads were analysed while sliding AS21A alloy pins were rubbed against a hard steel plate. Different changes were observed that are better than as-cast AS21A alloy. The primary reason for the changes or improvements in the samples was the homogeneous mixture of particles after the friction stir processing of the samples. Friction stir processing allowed the parent material to have better mechanical and wear characteristics [72].

The following conclusions were made based on testing the friction stir processed samples on the Linear Reciprocating Tribometer. Overall, an improvement in the samples was observed and proved that Magnesium-silicon-based alloys are a worthy material for heat-resistant applications.

- (1) For a specific temperature value, the value of the coefficient of friction decreases about 6% to 29% with the increase in loading conditions. Whereas, for one particular value of the load, the value of the coefficient of friction increases about 5% to 16% with the temperature rise.
- (2) On the other hand, wear loss has shown different behaviour. By keeping the value of temperature constant and by increasing the value of the load, there was first an increase in the value of wear loss then some reduction was also observed. Unlike

- this, with the increase in temperature for a particular load, the value of wear loss decreases gradually, showing better wear properties at elevated temperatures.
- (3) The value of the specific wear rate (in terms of 10⁻⁴ mm³/Nm) changes from 2.16 to 0.77, 1.57 to 0.62, 1.27 to 0.57 and 1.17 to 0.57 for different temperatures of 50°C, 100°C, 150°C and 200°C respectively. That shows that Magnesium alloys show good wear characteristics in high-temperature values.
- (4) On comparing the friction stir processed sample with the as-cast sample, there was only a slight change noticed in the value of the coefficient of friction as we increased the value of the load. But there was a decrease in the values. However, as the temperature increased, there was a significant change in the processed sample.
- (5) Wear loss of as-cast AS21A alloy when compared with processed AS21A alloy samples, a considerable improvement was observed. There was an increase in wear loss in both the samples as we increased load, but in the processed sample, the value decreased compared to the as-cast sample. That was the primary reason for performing the friction stir processing so that wear loss could be reduced.
- (6) The wear properties of the AS21A alloy have been improved with the help of the friction stir processing technique as wear loss reduces with the increase in temperature conditions, compared to the wear loss of the ambient conditions. A drastic increase in wear loss was observed in ambient conditions, whereas there was only a slight increase in the wear loss for elevated temperatures.
- (7) AS21A alloy has shown better characteristics in high-temperature conditions because of the friction stir processing. This technique allowed the particles of the alloys to be mixed homogeneously and made a fine grain particle structure in the alloy that helped the samples to perform better. Even at high temperatures, the

surface forms a hard layer of the Mg2Si phase, preventing the wear loss in the material, making it a heat-resistant property of the material.

5.2. Future Scope of the work

- The current work presents the wear behaviour of AS21A alloy for elevated temperature conditions as it was a heat-resistant material. Since there are more parameters to predict the wear behaviour, some of those parameters can be considered in future to assess the wear behaviour of the material.
- The wet sliding test can be conducted to explore more aspects of the wear characteristics of the sample material under ambient conditions and for hightemperature conditions as well.

REFERNCES

- 1. Musfirah, A. H., & Jaharah, A. G. (2012). Magnesium and aluminum alloys in automotive industry. J. Appl. Sci. Res, 8(9), 4865-4875.
- 2. Pervaiz, M., Panthapulakkal, S., Sain, M., & Tjong, J. (2016). Emerging trends in automotive lightweighting through novel composite materials. Materials Sciences and Applications, 7(01), 26.
- Čížek, L., Greger, M., Pawlica, L., Dobrzański, L. A., & Tański, T. (2004). Study of selected properties of magnesium alloy AZ91 after heat treatment and forming. Journal of Materials Processing Technology, 157, 466-471.
- 4. Mordike, B. L., & Ebert, T. (2001). Magnesium: properties—applications—potential.

 Materials Science and Engineering: A, 302(1), 37-45.
- 5. Radha, R., & Sreekanth, D. (2017). Insight of magnesium alloys and composites for orthopedic implant applications—a review. Journal of magnesium and alloys, 5(3), 286-312.
- 6. Polmear, I., StJohn, D., Nie, J. F., & Qian, M. (2017). Light alloys: metallurgy of the light metals. Butterworth-Heinemann.
- Ghali, E. (2010). Properties, Use, and Performance of Magnesium and Its Alloys.
 Winston Revie R., Corrosion Resistance of Aluminum and Magnesium Alloys:
 Understanding, Performance, and Testing.
- 8. Luo, A. A. (2004). Recent magnesium alloy development for elevated temperature applications. International materials reviews, 49(1), 13-30.
- 9. Candan, S., & Candan, E. (2017). A comparative study on corrosion of Mg–Al–Si alloys. Transactions of Nonferrous Metals Society of China, 27(8), 1725-1734.
- 10. Yang, W. G., & Koo, C. H. (2003). Tensile properties of Mg-8Al-xRE alloys from 300 K to 673 K. Materials Transactions, 44(5), 1029-1035.

- 11. Mabuchi, M., Kubota, K., & Higashi, K. (1996). Elevated temperature mechanical properties of magnesium alloys containing Mg2Si. Materials science and technology, 12(1), 35-39.
- 12. Stathokostopoulos, D., Chaliampalias, D., Stefanaki, E. C., Polymeris, G., Pavlidou, E., Chrissafis, K., Hatzikraniotis E., Paraskevopoulos K. M. & Vourlias, G. (2013). Structure, morphology and electrical properties of Mg2Si layers deposited by pack cementation. Applied surface science, 285, 417-424..
- 13. Ma, G. R., Li, X. L., Li, L., Wang, X., & Li, Q. F. (2011). Modification of Mg2Si morphology in Mg–9% Al–0.7% Si alloy by the SIMA process. Materials Characterization, 62(3), 360-366.
- 14. Gan, W. M., Wu, K., Zheng, M. Y., Wang, X. J., Chang, H., & Brokmeier, H. G. (2009). Microstructure and mechanical property of the ECAPed Mg2Si/Mg composite. Materials Science and Engineering: A, 516(1-2), 283-289.
- 15. Aly, M., Hashmi, M. S. J., Olabi, A. G., Messeiry, M., & Hussain, A. I. (2011). Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars. Materials Science and Engineering: A, 528(27), 7991-7998.
- 16. Wang, Q., Chen, Y., Liu, M., Lin, J., & Roven, H. J. (2010). Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression. Materials Science and Engineering: A, 527(9), 2265-2273.
- 17. Yan, X. U., Hu, L. X., Yu, S. U. N., Jia, J. B., & Jiang, J. F. (2015). Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion. Transactions of Nonferrous Metals Society of China, 25(2), 381-388.
- 18. Guo, W., Wang, Q., Ye, B., & Zhou, H. (2013). Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging. Journal of Alloys and Compounds, 558, 164-171.

- 19. Darras, B. M., Khraisheh, M. K., Abu-Farha, F. K., & Omar, M. A. (2007). Friction stir processing of commercial AZ31 magnesium alloy. Journal of materials processing technology, 191(1-3), 77-81.
- 20. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials science and engineering: R: reports, 50(1-2), 1-78.
- Mironov, S., Sato, Y. S., & Kokawa, H. (2019). Friction-stir processing. In Nanocrystalline Titanium (pp. 55-69). Elsevier.
- 22. Nakata, K., Kim, Y. G., Fujii, H., Tsumura, T., & Komazaki, T. (2006). Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Materials Science and Engineering: A, 437(2), 274-280.
- 23. Abbasi-Baharanchi, M., Karimzadeh, F., & Enayati, M. H. (2016). Effects of friction stir process parameters on microstructure and mechanical properties of aluminum powder metallurgy parts. Journal of Advanced Materials and Processing, 4(1), 38-55.
- 24. Izadi, H., Nolting, A., Munro, C., Bishop, D. P., Plucknett, K. P., & Gerlich, A. P. (2013). Friction stir processing of Al/SiC composites fabricated by powder metallurgy. Journal of Materials Processing Technology, 213(11), 1900-1907.
- 25. Jeon, C. H., Jeong, Y. H., Seo, J. J., Tien, H. N., Hong, S. T., Yum, Y. J., Hur, S. H., & Lee, K. J. (2014). Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. International Journal of Precision Engineering and Manufacturing, 15(6), 1235-1239.
- 26. Sunil, B. R., Reddy, G. P. K., Patle, H., & Dumpala, R. (2016). Magnesium based surface metal matrix composites by friction stir processing. Journal of Magnesium and alloys, 4(1), 52-61.

- 27. Sharma, D. K., Badheka, V., Patel, V., & Upadhyay, G. (2021). Recent developments in hybrid surface metal matrix composites produced by friction stir processing: A review. Journal of Tribology, 143(5).
- 28. Grujicic, M., Arakere, G., Yalavarthy, H. V., He, T., Yen, C. F., & Cheeseman, B. A. (2010). Modeling of AA5083 material-microstructure evolution during butt friction-stir welding. Journal of Materials Engineering and Performance, 19(5), 672-684.
- 29. Ma, Z. Y. (2008). Friction stir processing technology: a review. Metallurgical and materials Transactions A, 39(3), 642-658.
- 30. Mahoney, M. W., Rhodes, C. G., Flintoff, J. G., Bingel, W. H., & Spurling, R. A. (1998). Properties of friction-stir-welded 7075 T651 aluminum. Metallurgical and materials transactions A, 29(7), 1955-1964.
- 31. Chang, C., Du, X. H., & Huang, J. C. (2008). Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing. Scripta materialia, 59(3), 356-359.
- 32. Azizieh, M., Kokabi, A. H., & Abachi, P. (2011). Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Materials & Design, 32(4), 2034-2041.
- 33. Elangovan, K., & Balasubramanian, V. (2008). Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of materials processing technology, 200(1-3), 163-175.
- 34. SUMIT, J. (2021). TRIBOLOGICAL BEHAVIOURS OF MAGNESIUM ALLOY SECTOR SHAPE PAD WITH SURFACE MODIFICATION (Doctoral dissertation).
- 35. Yadav, D., & Bauri, R. (2012). Effect of friction stir processing on microstructure and mechanical properties of aluminium. Materials Science and Engineering: A, 539, 85-92.

- 36. Nandan, R., Roy, G. G., & Debroy, T. (2006). Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metallurgical and materials transactions A, 37(4), 1247-1259.
- 37. Buckley, D. H. (1981). Surface effects in adhesion, friction, wear, and lubrication (Vol. 5). Elsevier.
- 38. Dwivedi, D. K. (2010). Adhesive wear behaviour of cast aluminium–silicon alloys: Overview. Materials & Design (1980-2015), 31(5), 2517-2531.
- 39. Deuis, R. L., Subramanian, C., & Yellup, J. M. (1996). Abrasive wear of aluminium composites—a review. wear, 201(1-2), 132-144.
- 40. Olugbade, T. O., Omiyale, B. O., & Ojo, O. T. (2021). Corrosion, corrosion fatigue, and protection of magnesium alloys: Mechanisms, measurements, and mitigation.

 Journal of Materials Engineering and Performance, 1-21.
- 41. Huang, W., Hou, B., Pang, Y., & Zhou, Z. (2006). Fretting wear behavior of AZ91D and AM60B magnesium alloys. Wear, 260(11-12), 1173-1178.
- 42. Kim, J. J., Kim, D. H., Shin, K. S., & Kim, N. J. (1999). Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition. Scripta Materialia, 41(3), 333-340.
- 43. Guo, E. J., Ma, B. X., & Wang, L. P. (2008). Modification of Mg2Si morphology in Mg–Si alloys with Bi. Journal of Materials Processing Technology, 206(1-3), 161-166.
- 44. Wang, H. Y., Jiang, Q. C., Ma, B. X., Wang, Y., Wang, J. G., & Li, J. B. (2005). Modification of Mg2Si in Mg–Si alloys with K2TiF6, KBF4 and KBF4+ K2TiF6. Journal of Alloys and Compounds, 387(1-2), 105-108.

- 45. Qin, Q. D., Li, W. X., Zhao, K. W., Qiu, S. L., & Zhao, Y. G. (2010). Effect of modification and aging treatment on mechanical properties of Mg2Si/Al composite. Materials Science and Engineering: A, 527(9), 2253-2257.
- 46. Xiong, W., Qin, X. Y., Kong, M. G., & Li, C. H. E. N. (2006). Synthesis and properties of bulk nanocrystalline Mg2Si through ball-milling and reactive hotpressing. Transactions of Nonferrous Metals Society of China, 16(5), 987-991.
- 47. Qin, Q. D., Zhao, Y. G., Zhou, W., & Cong, P. J. (2007). Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite.

 Materials Science and Engineering: A, 447(1-2), 186-191.
- 48. Bo, R. E. N., Liu, Z. X., Zhao, R. F., Zhang, T. Q., Liu, Z. Y., Wang, M. X., & Weng, Y. G. (2010). Effect of Sb on microstructure and mechanical properties of Mg2Si/Al-Si composites. Transactions of Nonferrous Metals Society of China, 20(8), 1367-1373.
- 49. Ahlatci, H. A. Y. R. E. T. T. İ. N. (2010). Production and corrosion behaviours of the Al–12Si–XMg alloys containing in situ Mg2Si particles. Journal of alloys and compounds, 503(1), 122-126.
- 50. Hadian, R., Emamy, M., Varahram, N., & Nemati, N. (2008). The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite. Materials Science and Engineering: A, 490(1-2), 250-257.
- 51. Qin, Q. D., Zhao, Y. G., Liang, Y. H., & Zhou, W. (2005). Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite. Journal of alloys and compounds, 399(1-2), 106-109.
- 52. Liao, L., Zhang, X., Wang, H., Li, X., & Ma, N. (2007). Influence of Sb on damping capacity and mechanical properties of Mg2Si/Mg-9Al composite materials. Journal of alloys and compounds, 430(1-2), 292-296.

- 53. Zhang, Z. M., Xu, C. J., Guo, X. F., & Jia, S. Z. (2008). Reciprocating extrusion of in situ Mg2Si reinforced Mg-Al based composite. Acta Metallurgica Sinica (English Letters), 21(3), 169-177.
- 54. Gan, W. M., Wu, K., Zheng, M. Y., Wang, X. J., Chang, H., & Brokmeier, H. G. (2009). Microstructure and mechanical property of the ECAPed Mg2Si/Mg composite. Materials Science and Engineering: A, 516(1-2), 283-289.
- 55. Wei, G. U. O., WANG, Q. D., Bing, Y. E., Hao, Z. H. O. U., & LIU, J. F. (2014). Microstructure and mechanical properties of AZ31–Mg2Si in situ composite fabricated by repetitive upsetting. Transactions of Nonferrous Metals Society of China, 24(12), 3755-3761.
- 56. Metayer, J., Bing, Y. E., Wei, G. U. O., Wang, Q. D., Hao, Z. H. O. U., & Mollet, F. (2014). Microstructure and mechanical properties of Mg–Si alloys processed by cyclic closed-die forging. Transactions of Nonferrous Metals Society of China, 24(1), 66-75.
- 57. Syukron, M., Ojima, M., Seman, A. A., Hussain, Z., & Koseki, T. (2016). Mechanical properties of 1.5 wt.% TiB2-added hypoeutectic Al-Mg-Si alloys processed by equal channel angular pressing. Procedia Chemistry, 19, 106-112.
- 58. Chegini, M., Shaeri, M. H., Taghiabadi, R., & Cheginy, S. (2021). Effect of equal channel angular pressing on microstructure and mechanical properties of thermally-homogenized Al–Mg2Si composites. Materials Chemistry and Physics, 259, 124200.
- 59. Guo, W., Wang, Q., Ye, B., Li, X., Liu, X., & Zhou, H. (2012). Microstructural refinement and homogenization of Mg–SiC nanocomposites by cyclic extrusion compression. Materials Science and Engineering: A, 556, 267-270.

- 60. El-Garhy, G., El Mahallawy, N., & Shoukry, M. K. (2021). Effect of grain refining by cyclic extrusion compression (CEC) of Al-6061 and Al-6061/SiC on wear behavior. Journal of Materials Research and Technology, 12, 1886-1897.
- 61. Charit, I., & Mishra, R. S. (2003). High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Materials Science and Engineering: A, 359(1-2), 290-296.
- 62. Kwon, Y. J., Shigematsu, I., & Saito, N. (2003). Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scripta materialia, 49(8), 785-789.
- 63. Sharma, S. R., Ma, Z. Y., & Mishra, R. S. (2004). Effect of friction stir processing on fatigue behavior of A356 alloy. Scripta Materialia, 51(3), 237-241.
- 64. Santella, M. L., Engstrom, T., Storjohann, D., & Pan, T. Y. (2005). Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356. Scripta materialia, 53(2), 201-206.
- 65. Ma, Z. Y., Sharma, S. R., & Mishra, R. S. (2006). Effect of friction stir processing on the microstructure of cast A356 aluminum. Materials Science and Engineering: A, 433(1-2), 269-278.
- 66. Cavaliere, P., & De Marco, P. P. (2007). Friction stir processing of AM60B magnesium alloy sheets. Materials Science and Engineering: A, 462(1-2), 393-397.
- 67. Kang, S. H., Chung, H. S., Han, H. N., Oh, K. H., Lee, C. G., & Kim, S. J. (2007). Relationship between formability and microstructure of Al alloy sheet locally modified by friction stir processing. Scripta Materialia, 57(1), 17-20.
- 68. Charit, I., & Mishra, R. S. (2005). Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Materialia, 53(15), 4211-4223.

- 69. Chang, C., Du, X. H., & Huang, J. C. (2008). Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing. Scripta materialia, 59(3), 356-359.
- 70. Ni, D. R., Wang, D., Feng, A. H., Yao, G., & Ma, Z. Y. (2009). Enhancing the high-cycle fatigue strength of Mg–9Al–1Zn casting by friction stir processing. Scripta Materialia, 61(6), 568-571.
- 71. Zahmatkesh, B., Enayati, M. H., & Karimzadeh, F. (2010). Tribological and microstructural evaluation of friction stir processed Al2024 alloy. Materials & Design, 31(10), 4891-4896.
- 72. Joshi, S., Singh, R. C., & Chaudhary, R. (2019). Effect of rotational speed in friction stir processing on the microstructural and mechanical characteristics of cast AS21A magnesium alloy. Materials Research Express, 6(5), 056554.
- 73. Gultekin, D., Uysal, M., Aslan, S., Alaf, M., Guler, M. O., & Akbulut, H. (2010). The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al-SiCp MMC brake disc system. Wear, 270(1-2), 73-82.
- 74. Parthasarathi, N. L., Borah, U., & Albert, S. K. (2013). Correlation between coefficient of friction and surface roughness in dry sliding wear of AISI 316L (N) stainless steel at elevated temperatures. Computer Modelling and New Technologies, 17(1), 51-63.
- 75. Krishnan, C. S., Pokhrel, R., Mondal, A. K., & Masanta, M. (2020). Effect of temperature and applied load on sliding wear behaviour of AZ91D magnesium alloy. Materials Today: Proceedings, 26, 1136-1139.
- 76. Balamurugan, K. G., & Mahadevan, K. (2013). Investigation on the changes effected by tool profile on mechanical and tribological properties of friction stir processed AZ31B magnesium alloy. Journal of Manufacturing Processes, 15(4), 659-665.

- 77. Anasyida, A. S., Daud, A. R., & Ghazali, M. J. (2009). Dry sliding wear behaviour of Al-4Si-4Mg alloys by addition of cerium. International Journal of Mechanical and Materials Engineering, 4(2), 127-130.
- 78. Kato, K. (2011). Friction and wear of passive metals and coatings. In Tribocorrosion of Passive Metals and Coatings (pp. 65-99). Woodhead Publishing.
- 79. García-Rodríguez, S., Torres, B., Maroto, A., López, A. J., Otero, E., & Rams, J. (2017). Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites. Wear, 390, 1-10.
- 80. Dwivedi, D. K. (2004). Sliding temperature and wear behaviour of cast Al–Si–Mg alloys. Materials Science and Engineering: A, 382(1-2), 328-334.