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ABSTRACT

The growing demand for electricity, rising greenhouse gas emissions, and the global
emphasis on sustainability have led to the integration of intelligent optimization techniques in
modern power systems.to ensure efficient, stable, and sustainable gird operations. This thesis
addresses the Optimal Power Flow (OPF) problem, focusing on single-objective and multi-
objective formulations to optimize economic, technical, and environmental parameters in
modern power systems. Key objectives include fuel cost minimization, power loss reduction,

voltage stability improvement, voltage deviation minimization, and emission reduction.

The OPF problem is inherently complex, characterized by its nonlinear, nonconvex, and
high-dimensional nature. The nonlinear, high-dimensional nature of the OPF problem is
tackled using state-of-the-art metaheuristic algorithms, including the Learning-based Sine
Cosine Algorithm (L-SCA), Hybrid Rao-2 Sine Cosine Algorithm (HRSCA), Coot
Optimization Algorithm (COOT), and Electric Eel Foraging Optimizer (EEFO). Extensive
testing has been conducted on standard IEEE networks, including the IEEE 30-bus, 57-bus,
118-bus systems, and the Algerian 59-bus network, to validate the scalability and robustness of
these algorithms under varying operational scenarios.

Single-objective and multi-objective formulations are analyzed to optimize control variables
such as generator outputs, bus voltages, transformer tap settings, and reactive power
compensation. Additionally, the integration of Distributed Generation (DG) units as constant
power sources is investigated to assess the impact of renewable energy integration on system
performance. The findings highlight significant improvements in system efficiency, reduced
operational costs, enhanced stability, and reduced environmental impact.

The proposed methodologies demonstrate rapid convergence, high-quality solutions, and
computational efficiency, showcasing their applicability to real-world power systems. By
addressing critical challenges such as fuel cost minimization, handling load growth scenarios,
voltage collapse prevention, and emission reduction, this work contributes significantly to the
development of sustainable and reliable energy systems. Future studies could explore the
integration of advanced hybrid optimization techniques and real-time dynamic control systems
to further enhance the efficiency and scalability of the proposed methodologies, particularly

for large-scale, decentralized power systems with renewable energy integration.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

The secure and efficient operation of power systems is increasingly critical, particularly as
global energy demand rises and as renewable energy sources (RES) and power electronic
appliances become integral to modern, interconnected power grids. Effective management,
planning, and control are essential to support this demand, along with ensuring the stability and
economic operation of both existing and future electrical grids. Achieving these objectives is
often facilitated by the Optimal Power Flow (OPF) framework, which provides essential
results for economic operation, planning, and control. The purpose of the OPF is to optimize a
chosen objective function by optimal setting of the power system control variables within

specified equality and inequality constraints.

The objectives of OPF can be broadly categorized into techno-economic and environmental
aspects, each crucial to modern power systems. Techno-economic objectives primarily include
fuel cost minimization (FCM) and real or active power loss minimization (RPLM/APLM).
FCM is frequently prioritized for its direct impact on reducing generation costs, which is vital
for efficient economic operation. RPLM further helps in reducing overall power production
requirements by minimizing system losses. Additionally, technical objectives encompass
voltage stability enhancement (VSE) to ensure system resilience and voltage profile

improvement (VPI) to maintain optimal voltage levels across the network.

As thermal power plants continue to play a significant role in meeting the increasing
demand, environmental objectives such as emission cost minimization (ECM) have become
essential to address the environmental impacts of power generation. By balancing these techno-
economic and environmental objectives, OPF methodologies enable a more robust, sustainable,

and cost-effective power system.

1.2 Historical Context

Since the term "Optimal Power Flow" was first introduced by Carpentier in the early 1960s
(Carpentier, 1962) and subsequently formulated by Dommel and Tinney (1968), OPF has been
extensively studied to enhance power system reliability, control, economic scheduling, and
planning (Hazra & Sinha, 2011). Initially, power systems were designed with a focus on reliable

and centralized electricity generation, with economic load dispatch being the primary



optimization objective. Classic optimization methods, such as linear programming and mixed-
integer programming, were used to handle these early systems, focusing on balancing

generation and demand with minimal operational cost.

The 21% century brought about a paradigm shift with the integration of RES. The intermittent
nature of these sources, such as wind and solar power, introduced variability and uncertainty
into the grid. This necessitates more sophisticated optimization techniques to ensure reliable

and efficient power system operation.

Recent advancements in computational power and computational intelligence have
accelerated the development of hybrid and adaptive optimization methods. These modern
approaches are designed to address both single and multi-objective optimization needs,
balancing technical, economic, and environmental goals. This ongoing progress in optimization
techniques highlights how the field is adapting to the growing complexity and demands of

modern power systems.

1.3 Motivation

The increasing complexity of power systems presents a pressing need for advanced
optimization methods. Modern optimization techniques have evolved in response to the
increasing complexities of power systems. Classical deterministic methods are now frequently
supplemented or replaced by metaheuristic algorithms, such as particle swarm optimization
(PSO), genetic algorithm (GA), and newer hybrid approaches. These metaheuristic techniques
offer robust global search capabilities, enabling researchers to navigate the non-linear, multi-
objective, and high-dimensional challenges of modern power systems more effectively than
traditional methods, which often become trapped in local optima. Recent advancements in
computational intelligence have further empowered researchers to explore innovative global
optimization approaches, enabling the discovery of optimal solutions for complex power

system problems.

This research work is motivated by the need to develop and apply optimization techniques
that can address these challenges effectively. By employing advanced metaheuristic (modified
or improved version) and hybrid optimization methods, this research study aims to contribute
to the development of stable, efficient, and sustainable power systems that meet the demands

of modern grids, while considering economic and environmental objectives.

However, the stochastic nature of population-based metaheuristics makes performance

evaluation for OPF a challenging task. The "No Free Lunch" theorem by Wolpert and
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Macready (1997) highlights this complexity, demonstrating that no single optimization
algorithm can universally solve all types of engineering and complex optimization problems.
This insight highlights the importance of refining existing algorithms and developing new ones
to address specific needs in diverse contexts. Consequently, this thesis is motivated by the
objective of creating a highly efficient optimization method tailored to solve the OPF problem

effectively, offering robust solutions for stable and sustainable power system operations.

1.4 Challenges in Power System Stability and Optimization

The secure and reliable transmission of electricity is essential for modern power networks,
especially given the continuous growth in electrical demand. Long transmission distances,
economic constraints, environmental concerns related to grid expansion, and rising load
demands can all lead to stressed power systems that are more vulnerable to outages (Shiraki et
al. 2016). With the increasing integration of renewable energy sources (RES), the power grid
faces new challenges, particularly the overloading of transmission lines, which can result in
voltage drops and even system collapse during high-stress conditions (Athari and Wang 2018;

Liang et al. 2022).

Below are the main challenges that grid operators and researchers face as they seek to ensure

stable, efficient, and sustainable power delivery:
1.4.1 Economic Pressures on Grid Operation

Economic pressures influence how grids are operated, with operators often running systems
close to maximum capacity to improve loadability and reduce costs. However, this approach
heightens the risk of voltage collapse, particularly when the system approaches critical load
conditions. In cases of voltage collapse, cascading outages or blackouts can follow (Laghari et
al. 2013; Samuel et al. 2014). Therefore, it is critical for system operators to assess the stability
margins accurately and determine how much additional load capacity the system can handle
before reaching an unstable state. This tension between economic efficiency and system
reliability presents a significant operational challenge, underscoring the need for solutions that

minimize operational costs without compromising stability.
1.4.2 Voltage Instability

Overloaded transmission lines and network topology changes frequently lead to voltage
instability, a major cause of global blackouts. Accurate assessments of stability margins are

crucial to prevent cascading failures and ensure secure power system operation, especially



under contingency conditions. This technical challenge underscores the importance of

maintaining a stable voltage profile to support continuous and reliable power delivery.
1.4.3 Reliance on Load Shedding for Stability

During emergencies, operators often rely on load shedding to prevent system collapse. This
approach addresses immediate threats but indicates a reactive, rather than proactive,
management of stability, which may impact both economic and technical objectives by causing
interruptions and operational inefficiencies. This reliance highlights the need for improved
stability management strategies that reduce the necessity of disruptive, last-resort measures to

maintain system security.
1.4.4 Environmental Sustainability Challenges

The need to reduce emissions and fuel consumption adds environmental considerations,
requiring optimization techniques that support emission minimization while enhancing

operational efficiency.

Addressing the above challenges requires optimization techniques that balance competing
objectives across technical, economic, and environmental domains. These techniques should
aim to minimize fuel and emission costs, reduce power losses, and enhance voltage stability,

thereby promoting efficient and sustainable power system operations.

1.5 Objectives of OPF in Modern Power Systems
The objectives of OPF can be broadly categorized into techno-economic and environmental
aspects. Each of these objectives plays a critical role in enhancing the operational efficiency,

reliability, and sustainability of modern power systems.
1.5.1 Techno-Economic Objectives

The techno-economic objectives are pivotal for the economic efficiency and operational

reliability of power systems. Key objectives within this category include:

a) Fuel Cost Minimization (FCM)

Minimizing fuel costs is often a primary objective in OPF as it directly impacts the
overall generation costs. By optimizing the fuel usage across generators, FCM reduces
operational expenses, thereby enabling economically efficient system operation and
benefiting both utility providers and consumers. To address complex real-world conditions,

FCM is often divided into the following sub-objectives:



Fuel Cost Minimization with Valve-Point Loadings (FCM-VPL)

This objective accounts for the non-linearities introduced by valve-point effects in
generation units. Incorporating valve-point loadings enables a more accurate fuel cost
model by considering the ripple effect in the cost curve, which leads to better

optimization under real operational conditions.

Fuel Cost Minimization with Prohibited Operating Zones (FCM-POZ)
Certain operational zones within generators may be restricted due to physical or safety
limitations. This objective ensures that the OPF solution respects these zones, leading to

feasible and safe operation while still optimizing fuel costs.

Fuel Cost Minimization Considering Multiple Fuel Sources (FCM-MF'S)

Thermal generating units can be powered by multiple fuel sources, including oil, coal,
and natural gas. By incorporating fuel selection into OPF, the optimal fuel mix can be
determined, considering factors like fuel availability and price fluctuations to minimize

overall costs.

b) Real Power Loss Minimization (PLM)

PLM aims to reduce the total active power losses in the system, thus decreasing the
amount of power that must be generated to meet demand. Lower system losses lead to
reduced generation requirements, which further supports cost savings and contributes to

system efficiency.

¢) Reactive power loss minimization (RPLM)

This objective focuses on minimizing reactive power losses within the system. Reactive
power losses primarily arise due to the reactance of transmission lines, and they significantly
impact both system stability and voltage regulation. By reducing reactive power losses, the
system can operate more efficiently, as lower reactive losses enhance voltage stability and

improve overall power quality.

d) Voltage Stability Enhancement (VSE)

Voltage stability is essential for ensuring the system’s resilience to disturbances.
Enhancing voltage stability through OPF helps prevent voltage collapse, which can lead to
large-scale blackouts, and ensures the system remains robust under various operating
conditions. The L-index serves as an indicator, showing how close a bus is to a potential

voltage collapse, allowing for proactive stability management. Additionally, the objective



of VSE in contingency conditions like line outages or generator failures, etc., is also

frequently explored and addressed in OPF literature.

e) Severity Index (SI) Minimization

The Severity Index (SI) quantifies the severity of line overloads within the power system.
Contingencies are ranked based on this index, with higher values indicating greater severity.
System operators can leverage the SI to prioritize actions and address critical issues, thereby

enhancing system stability and mitigating the risk of failures.

Unlike the SI, which solely considers line overloads, the Severity Value Minimization
(SVM) function provides a more holistic approach. SVM aims to minimize the overall
severity of violations in the power system by accounting for both line power flows

(overloading) and bus voltage deviations.

f) Voltage Profile Improvement (VPI)/ Voltage Deviation Minimization (VDM)
Maintaining optimal voltage levels across the network is necessary for system reliability
and safety. VPI ensures that voltage levels are within desired limits throughout the system,
which not only supports the performance of equipment but also reduces the risk of voltage-
related issues. Improving the voltage profile involves minimizing voltage deviations at all

load buses, from the reference value (VD) of 1.0 p.u.

g) Voltage Security Index (VSI)

VSI serves as a performance index to evaluate a power system’s ability to maintain
voltage levels within a predefined acceptable range, thereby indicating the system’s stability
and security. Minimizing VSI indicates that the voltages across the system are closer to the

average voltage, implying less fluctuation and greater stability.
1.5.2 Environmental Objectives

In addition to techno-economic goals, OPF increasingly integrates environmental objectives

to align with sustainability goals. Common objectives include:

a) Emission Minimization (EM)

In the context of OPF, the emissions minimization objective focuses on reducing harmful
pollutants produced by power generation by thermal units. This objective considers various
emissions, such as sulfur oxides (SOx), nitrogen oxides (NOx), and thermal emissions. By
minimizing these emissions, OPF contributes to cleaner energy production and aligns with

environmental standards. This approach not only addresses the ecological impacts of power
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systems but also supports sustainable power generation by integrating cleaner technologies

and optimizing power generation strategies to reduce overall emissions.

b) Renewable Energy Integration
With the rising emphasis on clean energy, OPF also considers the optimal integration of
renewable resources. This helps in balancing conventional and renewable sources, thus

fostering a more sustainable power system.

1.6 Problem Statement

The rapid growth in energy demand, coupled with the integration of RES, has introduced
significant complexity into modern power systems. Traditional optimization techniques, such
as linear and non-linear programming, are increasingly inadequate for addressing the non-
linear, multi-objective, and high-dimensional challenges of today’s power systems. As a result,
power grids face heightened risks of instability, economic inefficiency, and environmental
impact, particularly in scenarios involving high renewable penetration and fluctuating power

generation.

This research work presented in this thesis aims to address these challenges by developing
and applying advanced optimization techniques. The primary focus is on reducing fuel costs,
lowering emissions, enhancing voltage stability, and minimizing power losses, while
addressing both individual and simultaneous objectives. By focusing on single and multi-
objective optimization through both modified (improved/enhanced) and hybrid approaches,
this study seeks to help build power systems that are resilient, efficient, and sustainable,

meeting the complex needs of today’s energy networks.

1.7 Outline of Thesis

This thesis comprises eight chapters, beginning with an introduction to the critical role of
OPF in modern power systems and a review of its evolving methodologies. Subsequent
chapters explore advanced optimization algorithms, including L-SCA, HRSCA, COA, and
EEFO, demonstrating their applications and effectiveness in addressing OPF challenges. The

thesis concludes with future research directions, followed by references.

Chapter 1: This chapter introduces the critical role of OPF in ensuring the secure, efficient,
and sustainable operation of modern power systems. It emphasizes the growing importance of
OPF in the face of increasing energy demand and the integration of renewable energy sources
(RES). The chapter discusses the evolution of OPF methodologies, from traditional approaches

to more advanced metaheuristic techniques, and highlights the need for developing
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sophisticated optimization algorithms to address the complex challenges facing today's power

grids.

Chapter 2: This chapter provides a comprehensive review of the evolution of OPF
methodologies. It focuses on the transition from classical optimization techniques to more
modern metaheuristic algorithms. It highlights the strengths, limitations, and advancements in
heuristic and hybrid approaches for addressing multi-objective and constrained OPF problems.

Recent developments and comparisons of these techniques are also covered.

Chapter 3: This chapter provides a comprehensive overview of the OPF framework,
including its structure, objectives, and constraints. Detailed descriptions and mathematical
formulations of various OPF objectives are discussed. It outlines the single- and multi-objective
formulations and describes the standard test systems used for validating optimization

techniques.

Chapter 4: This chapter introduces the L-SCA, a modified optimization algorithm that
enhances the performance of the standard SCA by incorporating a learning phase inspired by
teaching-learning mechanisms. The algorithm's ability to balance exploration and exploitation

is demonstrated through case studies on standard power systems.

Chapter 5: This chapter presents the HRSCA, a novel hybrid optimization algorithm
designed to address OPF challenges under high loading and generator outages. Combining the
strengths of SCA and Rao-2, HRSCA achieves superior results in single- and multi-objective

scenarios across various test systems, focusing on cost reduction and stability enhancement.

Chapter 6: This chapter explores the COA, inspired by the foraging behavior of coot birds,
for solving OPF problems. The algorithm's efficiency in balancing global search and local
refinement is validated through its application to fuel cost, emission, and power loss

minimization.

Chapter 7: This chapter applies EEFO algorithm to OPF problems involving distributed
generation. The EEFO algorithm's unique ability to address challenges posed by renewable
energy integration is demonstrated through its robust performance in achieving cost-effective

and stable grid operations.

Chapter 8: This chapter concludes the thesis by summarizing the effectiveness of the
proposed algorithms in addressing OPF challenges. It highlights the potential for integrating

RES, real-time applications, and multi-objective optimization in future research.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Over the past two decades, there has been a significant shift among researchers toward using
population-based metaheuristic algorithms to address power system challenges. Pandya (2008)
presented a review of various classical optimization methods as well as some Al techniques for
OPF solutions. Following this, AlRashidi and El-Hawary (2009) provided an extensive
coverage of population-based CI tools applied to OPF up to 2008. A two-part survey by Frank
et al. (2012a; 2012b) further extended the discussion, with the first part focusing on classical
and stochastic optimization methods for OPF, and the second highlighting the growing interest
in non-deterministic and hybrid techniques, analyzing their strengths, limitations, and
computational performance. Niu et al. (2014) presented a detailed survey of OPF related
research work from 2000 to 2014, covering popular heuristic optimization algorithms (HOAs)
such as evolutionary programming (EP), genetic algorithm (GA), differential evolution (DE),
and particle swarm optimization (PSO), along with some hybrid methods. Maskar et al. (2017)
followed with a review that encompassed both conventional and Al-driven techniques for OPF,
summarizing research developments up to 2016. Later, Mittal et al. (2022) presented a more
comprehensive review and comparison of OPF solution methods, focusing on widely adopted
metaheuristics and extending literature coverage to 2020. In a subsequent and more in-depth
examination, Mittal et al. (2024) analysed the application of various population-based Al
techniques that have gained significant traction in recent years (2012-2022) for addressing

OPF problems.

2.2 Traditional Approaches

The OPF problem is a non-linear, high-dimensional, non-differentiable, multi-modal, and
non-convex optimization challenge that involves both discrete and continuous control
variables. Initially, OPF challenges were addressed primarily through conventional/classical
optimization techniques (COTs). The Gradient based method (Lee et al. 1985), Newton's
method (Tinney and Hart 1967; Sun et al. 1984), quadratic programming (QP) (Reid and
Hasdorft 1973), nonlinear programming (NLP) (Dommel and Tinney 1968), interior point (Wei
et al. 1998), and linear programming (LP) (Zehar and Sayah 2008) are some popular

mathematical programming-based deterministic methods that fall under the umbrella of these



COTs and typically applied in OPF problem solution. However, these conventional approaches
are constrained by the requirement that the objective function be continuous and differentiable,
even though some of them typically guarantee convergence. Newton methods and gradient-
based methods have trouble handling inequality constraints and are more likely to get stuck in
local optima. Their performance is highly sensitive to initial conditions, especially in high-
dimensional control parameter spaces, which can result in insecure convergence
characteristics, as discussed by Nocedal & Wright (2006). Additionally, these methods lack the
flexibility to accurately model discrete control variables, such as voltage regulator transformer

taps and shunt compensator switching, both essential in OPF applications.

Because of these serious issues, these COTs are incapable of solving real-world OPF
problems with non-smooth, non-differentiable, and multi-modal objective functions.
Therefore, the limitations of COTs in handling non-linearities and high computational costs
necessitate exploring alternative approaches. Momoh et al. (1999a; 1999b) and Frank et al.
(2012a) have conducted an extensive survey, covering various conservative and conventional

approaches implemented on OPF solution studies.

2.3 Population-based metaheuristic algorithms

Over the last few years, the rapid progress in computational intelligence (CI) has led to the
development of population-based metaheuristic algorithms. The use of metaheuristics, under
the umbrella of computational intelligence, has revolutionized power system optimization in
the past two decades. Several standard versions of these algorithms have been applied to OPF
problems, producing incredibly promising results. These algorithms present a promising
approach to solve complex constrained optimization problems and mitigate the limitations of
classical optimization techniques (Wang et al. 2023). Recognizing this potential, researchers
have introduced various metaheuristic techniques to tackle complex OPF problems efficiently,
minimizing execution time.

Despite their advantages, standard implementations of these metaheuristics can encounter
issues with local optima or premature convergence in particularly complex problem spaces. To
address these limitations, researchers have developed enhanced, modified, or hybridized
versions of metaheuristics, which now serve as competitive alternatives to traditional methods.
These advanced approaches provide higher accuracy and reliability for real-world OPF
problems. Comprehensive studies by Frank et al. (2012b) and Mittal et al. (2024) have explored
a wide range of Cl-based OPF methods, showcasing the effectiveness of non-deterministic

algorithms, including their improved and hybridized versions, in addressing modern power
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system optimization challenges. Figure 2.1 provides a visual representation of the evolution of
population-based optimization techniques used for OPF problems. It categorizes these

algorithms based on their underlying principles and historical development.
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Fig. 2.1 Schematic overview depicting categorization of OPF algorithms and their inception over time

2.3.1 Evolutionary algorithms for OPF solution

Evolutionary Algorithms (EAs) are among the earliest Al-based approaches applied to
power system optimization problems (PSOPs) and are inspired by biological evolution. The
Evolutionary Programming (EP) approach is a subset of EAs. Yuryevich and Wong (1999) were
pioneers in developing an EP-based algorithm for OPF, enhancing it with gradient information
to accelerate convergence and improve performance, especially on large-scale systems. Later,
Kahourzade et al. (2015) conducted a comparative analysis of PSO, EP, and GA to assess their
effectiveness in solving the OPF problem. Using the IEEE 30-bus test system, they evaluated

these algorithms across various single and multi-objective functions.

GA has been one of the most popular and widely used evolutionary tools inspired from
biological evolution to find optimal solutions to search problems. Bakirtzis et al. (2002)
introduced an Enhanced GA to solve complex OPF problems with both continuous and discrete

control variables. By incorporating problem-specific operators, the EGA achieved
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improvements in convergence speed and solution quality. This method was validated on an
IEEE 30-bus test system and an IEEE RT-96 three-area 73-bus system. Later, Attia et al. (2012)
employed an Adapted Genetic Algorithm (AGA) with a variable population size, adjusted
based on different fitness functions, to solve the OPF problem on the IEEE 30-bus system.
However, despite these advancements, the popularity of GA in OPF has declined due to
challenges such as premature convergence, high computational costs, and sensitivity to
hyperparameters, along with the development of more efficient problem-specific algorithms

and advancements in Al techniques.

The Differential Evolution Algorithm (DEA), inspired by biological evolution, has seen
significant applications in power system optimization. El-Fergany and Hasanien (2015) applied
DEA to the IEEE 30-bus test system for various techno-economic objectives and extended it
to multi-objective OPF (MOOPF) using a fuzzy-based Pareto front. Shaheen et al. (2016)
introduced a forced initialization multi-objective DEA (MODEA) with an epsilon-constraint
approach, followed by their 2017 work on a multi-objective DE (MDE) algorithm for IEEE
57- and 118-bus systems. Reddy (2018) further advanced DEA with a multi-objective approach

for mixed control variables, demonstrating its effectiveness on IEEE 30- and 300-bus networks.

The Biogeography-Based Optimization (BBO) algorithm was initially applied by
Bhattacharya and Chattopadhyay (2009) to address economic load dispatch challenges.
Building on this, Kumar and Premalatha (2015) proposed an Adaptive Real-Coded BBO
(ARCBBO) technique designed to enhance population diversity and exploration abilities in the
OPF problem by integrating adaptive Gaussian mutation. The effectiveness of ARCBBO was
demonstrated on IEEE 30-bus and 57-bus systems, addressing both techno-economic and

environmental optimization objectives.
2.3.2 Swarm intelligence-based algorithms for OPF solution
Nature-inspired algorithms for OPF
OPF algorithms based on movement patterns & collective behavior in migration

Swarm intelligence-based optimization techniques have proven effective in addressing
OPF problems by emulating the cooperative and adaptive behavior observed in natural
swarms. Among these, PSO algorithm has been widely applied. Abido (2002) introduced
PSO for OPF, testing it on the IEEE 30-bus standard system. To improve the search
performance of standard PSO, Vlachogiannis and Lee (2006) proposed PSO with Passive
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Congregation (PSOPC) and enhanced it with the constriction factor approach to solve the
OPF on IEEE 30 and 118-bus test systems. Later, Niknam et al. (2012a) introduced an
improved PSO (IPSO) for single- and multi-objective OPF, using chaos theory and a self-
adaptive mechanism to fine-tune parameters, validated on the IEEE 30-bus test system.
Despite PSO’s minimal parameter tuning requirements, it can suffer from premature
convergence in high-dimensional, complex problems, sometimes failing to reach the global
optimum. Another swarm intelligence method, Glowworm Swarm Optimization (GSO),
was applied by Reddy and Rathnam (2016) to solve single-objective OPF (SOOPF) and
MOOPF problems. GSO was evaluated for its effectiveness in minimizing generation cost
in an SOOPF problem on both the IEEE 30-bus test system and a practical 75-bus Indian
grid system, with performance compared to PSO. In a later study, Alghamdi (2022) applied
the Firefly Algorithm (FA) to the OPF problem, proposing the Gaussian-Based Bare Bones
Lévy Flight Firefly Algorithm (GBLFA) and a modified version, the Modified GBLFA
(MGBLFA). These approaches incorporated both thermal units and RES, such as wind and
solar, and addressed various techno-economic and environmental objectives on the IEEE
30-bus network. Bouchekara and Abido (2014) applied the Differential Search Algorithm
(DSA) to solve the SOOPF problem, targeting techno-economic objectives under
contingency conditions, and validated their approach on IEEE 30- and 118-bus networks.
Abaci and Yamacli (2016) further applied DSA to both SOOPF and MOOPF objectives,
using [EEE 9-, 30-, and 57-bus test systems to address techno-economic and environmental
objectives. Dash et al. (2022) proposed Boundary Assigned Animal Migration Optimization
(BAAMO) to address OPF problems. BAAMO was evaluated on IEEE 30, 57, and 118-bus
systems, considering techno-economic and technical objectives. BAAMO demonstrated
superior performance compared to PSO, GA, DE, ABC, and GSA in terms of fuel cost
reduction and improved system performance. However, the algorithm's computational time
was relatively high due to its iterative update process. Mirjalili (2015) introduced Moth-
Flame Optimization (MFO) algorithm inspired by the natural navigation strategy known as
"transverse orientation," used by moths. Buch et al. (2017) applied MFO algorithm to a
standard IEEE 30-bus system, focusing on techno-economic and environmental objectives.
Compared to other algorithms like PSO, GWO, and ABC, the proposed MFO consistently
delivered high-quality solutions for OPF problems. Taher et al. (2019a) proposed an
improved MFO (IMFO) algorithm that incorporates modified spiral paths for moths as they
converge around flames. The IMFO algorithm was validated on IEEE test networks with

30, 57, and 118 buses, addressing both SOOPF and MOOPF problems with fifteen different
13



objective functions. Comparative results with established optimization algorithms,
including basic MFO, GA, PSO, and TLBO, demonstrated that IMFO achieved accurate,
high-quality OPF solutions with faster convergence rates. Buch and Trivedi (2019)
introduced an enhanced MFO, namely adaptive MFO (AMFO), to address large-scale OPF
problems. AMFO incorporated an adaptive mechanism to improve the optimization process.
The algorithm was tested on the IEEE 118-bus system, considering various techno-
economic and environmental single-objective functions. AMFO outperformed other
algorithms like basic MFO, GWO, and the SCA in terms of solution quality and convergence

speed, demonstrating its effectiveness in solving large-scale OPF problems.

Mohamed et al. (2017) introduced the Moth Swarm Algorithm (MSA), building on the
conventional MFO algorithm to enhance its optimization performance. MSA integrates new
optimization operators inspired by moth behaviour to strengthen both exploration and
exploitation capabilities. The algorithm was applied to IEEE 30-, 57-, and 118-bus systems,
addressing various techno-economic and environmental objectives. MSA outperformed
other algorithms, including modified PSO, modified DE, and MFO, in terms of solution
quality and convergence speed. Bentouati et al. (2021) proposed an enhanced version of the
Moth Swarm Algorithm (EMSA) to address limitations of the basic MSA, such as premature
convergence and lack of diversity. EMSA was tested on IEEE 30-, 37-, and 118-bus systems
for both single and multi-objective formulations, addressing technical, economic, and

emission objectives, and demonstrated superior performance over the basic MSA.

El-Fergany and Hasanien (2020) applied the Salp Swarm Algorithm (SSA) to the OPF
problem, targeting various technical, economic, and environmental objectives. Initially,
each objective was addressed individually, then jointly optimized through SSA. The study
included voltage stability analysis, using eigenvalues of a reduced Jacobian matrix to assess
proximity to voltage instability. Generator output power, voltage levels, transformer tap
settings, and capacitor placements formed the search space, and the SSA’s performance was
evaluated on IEEE 57- and 118-bus systems. Comparisons with other optimization methods,
supported by parametric and non-parametric statistical tests, highlighted SSA’s
competitiveness in effectively solving OPF challenges. Abd El-sattar et al. (2021) proposed
an improved Salp Swarm Algorithm (ISSA) to enhance exploration and exploitation
capabilities for addressing the OPF problem. The ISSA was designed to optimize various
cost-based objective functions. ISSA was tested on IEEE 30-, 57-, and 118-bus networks,

demonstrating superior convergence compared to SSA, MFO, and GA.
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OPF algorithms inspired by social behavior & foraging/hunting behavior

Amjady et al. (2012) proposed an improved Bacterial Foraging Optimization (IBFO)
algorithm to enhance the performance of the basic BFO algorithm in addressing OPF and
OPF-SC problems. The IBF algorithm incorporated innovative search mechanisms and
solution strategies to improve exploration, exploitation, and convergence. The algorithm
was evaluated on 26-bus, 30-bus, and 118-bus IEEE test systems, demonstrating superior

performance compared to other optimization algorithms like basic BFO, EP, and PSO.

Adaryani and Karami (2013) proposed an Artificial Bee Colony (ABC) algorithm
inspired by the foraging behavior of honeybees. The ABC algorithm was applied to the
MOOPF problem, considering various techno-economic and environmental objectives. The
algorithm was tested on IEEE 9, 30, and 57-bus systems, demonstrating competitive
performance compared to other optimization algorithms like PSO and GSA. Further
Khorsandi et al. (2013) developed a fuzzy-logic-based modified ABC (MABC) algorithm
for OPF, designed to handle both discrete and continuous variables for optimizing key
techno-economic and environmental objectives. The MABC algorithm was tested on IEEE
30- and 118-bus networks, addressing both SOOPF and MOOPF problems, and
demonstrated superior performance over other optimization algorithms in terms of solution
quality and convergence speed. Chen et al. (2014) proposed a multi-hive multi-objective
bee algorithm (M2OBA) to solve MOOPF problems. M20OBA incorporates a multi-hive
structure and multi-objective strategies to enhance the efficiency of the bee foraging process.
The algorithm was tested on a 30-bus IEEE system, demonstrating superior performance
compared to NSGA, MOPSO, and multi-objective ABC. He et al. (2015) proposed an
improved ABC (IABC) algorithm to solve fuzzy MOOPF problems, considering techno-
economic and environmental objectives. IABC incorporates DE operators to enhance
exploration and generate novel solutions. The algorithm was tested on 30, 57, and 300-bus
IEEE systems, demonstrating superior performance compared to ABC, GA, and PSO.
Jadhav and Bamane (2016) proposed a g-best guided ABC (GABC) algorithm to address
both standard and temperature-dependent OPF problems. The GABC algorithm was
evaluated on IEEE 30-bus and 57-bus systems with a focus on economic objectives,
showing improved performance compared to the standard ABC algorithm. The 30-bus
system was also used to assess the impact of temperature on fuel cost as well as power loss.
Bai et al. (2017) proposed an improved ABC (IABC) algorithm to solve OPF problems.

IABC incorporated orthogonal learning to improve its performance. The algorithm was
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tested on IEEE 30 and 118 bus systems, demonstrating superior performance compared to
basic ABC, enhanced GA, MDE, and others in terms of convergence speed and fuel cost

reduction.

Basu (2016) implemented the Group Search Optimization (GSO) algorithm, inspired by
the producer-scrounger behavior in animals, and tested it on IEEE 30, 57, and 118 bus
systems. The evaluation focused on techno-economic and environmental objectives,
formulating four single-objective OPF problems and two compound-objective ones.
Simulation results validated the effectiveness of GSO, demonstrating promising solutions
with faster convergence. Daryani et al. (2016) proposed an adaptive GSO (AGSO) algorithm
to address MOOPF problems, considering environmental and security aspects. AGSO was
tested on benchmark cases and IEEE 30- and 57-bus networks, demonstrating superior

performance compared to standard GSO.

Mukherji and Mukherjee (2015) enhanced the Krill Herd Algorithm (KHA) for OPF by
incorporating chaos theory, drawing inspiration from krill swarm behavior to boost
computational speed and convergence rates. This chaotic KHA was validated on both a 26-
bus system and the IEEE 57-bus test network, showing superior performance over other
computational intelligence techniques. The algorithm effectively addressed key economic
and technical objectives, achieving faster convergence and identifying optimal solutions
across diverse operational scenarios. Roy and Paul (2015) developed an enhanced KH
algorithm for OPF by incorporating genetic operators (crossover and mutation) to address
key techno-economic objectives, such as fuel cost minimization and power loss reduction.
The algorithm was tested on IEEE 30-, 57-, and 118-bus systems. The integration of
crossover and mutation operators improved the balance between local and global search,
resulting in high-quality solutions, faster convergence, and greater computational efficiency

compared to other algorithms documented in the OPF literature.

Nguyen (2019) introduced the Novel Improved Social Spider Optimization (NISSO)
algorithm to tackle the OPF problem. NISSO included several enhancements to the original
SSO algorithm, resulting in improved convergence speed and solution quality. The
algorithm was tested on IEEE 30, 57, and 118-bus systems, focusing on technical, economic,
and environmental objectives. NISSO demonstrated superior performance compared to the

original SSO algorithm and other state-of-the-art optimization methods.
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El-Fergany and Hasanien (2015) applied the Grey Wolf Optimizer (GWO) to OPF on
IEEE 30- and 118-bus systems, addressing both technical and economic objectives, though
the algorithm showed lower computational efficiency on larger systems. Meng et al. (2021)
introduced an enhanced version, the Crisscross Search-based GWO (CS-GWO), with a
single controllable parameter for improved adaptability. By incorporating crossover
operators (horizontal and vertical), CS-GWO increased population diversity and minimized
the risk of getting trapped in local optima. Tested on IEEE 30- and 118-bus networks for
both SOOPF and MOOPF scenarios (MOOPF on 30-bus only), CS-GWO outperformed
other algorithms such as PSO, ABC, BSA, and GSA, particularly in terms of solution quality

and convergence speed for larger systems.

Mahdad (2020) proposed a Partitioned Ant Lion Optimizer (PALO) algorithm to improve
the performance of the ALO algorithm (proposed by Seyedali Mirjalili in 2015) in solving
OPF problems. PALO was tested on IEEE 30-bus and large-scale Polish power systems,
considering technical and economic objectives. The algorithm demonstrated effectiveness
in solving large-scale security OPF problems with diverse FACTS devices, outperforming

other contemporary metaheuristic techniques.

El-Dabah et al. (2022) introduced a non-dominated sorting Whale Optimization
Algorithm (NSWOA) for both SOOPF and MOOPF formulations, focusing on cost-based
and various technical objectives on the IEEE 30-bus test network. The optimal compromise
solution was selected based on the minimal Euclidean distance from the non-dominated
solution set. The proposed NSWOA outperformed established methods like PSO, SCA, and

SSA, particularly in reducing fuel cost and power loss in multi-objective scenarios.

Taher et al. (2019b) proposed a modified Grasshopper Optimization Algorithm (MGOA)
to enhance the performance of the original GOA (introduced by Mirjalili in 2017). MGOA
incorporated a modified mutation process to improve global exploration and avoid local
optima. The algorithm was tested on IEEE 30-, 57-, and 118-bus systems, addressing various
techno-economic and environmental objectives across 13 distinct case studies in both
SOOPF and MOOPF formulations. MGOA outperformed GOA, GA, PSO, and TLBO,

demonstrating superior performance.

Khunkitti et al. (2021) introduced the Slime Mould Algorithm (SMA) for SOOPF and
MOOPF problems, applying it to IEEE 30-, 57-, and 118-bus systems with technical,

economic, and environmental objectives. SMA demonstrated competitive computational
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times and outperformed other algorithms in solution quality, especially on the 57- and 118-
bus systems, delivering superior Pareto fronts compared to PSO across all test cases. Al-
Kaabi et al. (2022) developed a multi-objective slime mould algorithm (MOSMA) to
address MOOPF problems on IEEE 30- and 57-bus systems, as well as a practical Iraqi
Super Grid. Across 29 case studies, they tackled various technical, economic, and
environmental objectives in two- to five-objective formulations. Using Pareto theory and
fuzzy set theory, the authors identified optimal and favorable solutions. MOSMA
demonstrated strong convergence, effectiveness, and well-distributed solutions on the

Pareto front, outperforming other recent optimization algorithms.

Islam et al. (2021) applied the Marine Predator Algorithm (MPA) to solve the SOOPF
problem, focusing on technical and economic objectives. The method was tested on the
IEEE 30-bus network and compared to popular optimization algorithms such as SCA, PSO,
and GSA. The MPA approach demonstrated competitive performance, yielding results
comparable to those of SCA, GWO, PSO, and other algorithms in terms of fuel cost and

efficiency.

Jebaraj and Sakthivel (2022) introduced the Sparrow Search Algorithm (SPSA) for OPF
optimization on IEEE 30-, 57-, and 118-bus systems, addressing 33 economic and technical
objectives across single, bi-, tri-, and quad-objective formulations, including scenarios with
single-line outage contingencies. Comparative analysis indicated that SPSA consistently
outperformed existing algorithms such as MFO, MPSO, MSA, and ABC, highlighting its

robustness and effectiveness in handling multi-objective OPF scenarios.

The Manta Ray Foraging Optimizer (MRFO) is based on the survival strategies of manta
rays. Kahraman et al. (2022) introduced an improved multi-objective Manta Ray Foraging
Optimizer (IMOMRFO) to tackle the MOOPF problem. The authors improved its
exploration and exploitation capabilities by incorporating a crowding distance-based Pareto
archival process. IMOMRFO was tested on IEEE 30- and 57-bus systems, successfully

optimizing various technical, economic, and environmental objectives simultaneously.
OPF algorithms inspired by principle of physics

The Electromagnetism-like mechanism is based on the principle of attraction and
repulsion between electrically charged particles distributed in the search space. The particle
with the highest charge, known as the optimal particle, strongly attracts particles with higher

fitness values while repelling those with lower fitness. El-Hana et al. (2016) introduced an
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improved Electromagnetism-like mechanism (IEM) to optimize control variables for
achieving optimal OPF solutions across seven single-objective cases with various
constraints. Tested on IEEE 30- and 57-bus networks, IEM demonstrated superior
performance in solution accuracy, convergence speed, and computational efficiency,

outperforming well-known algorithms like BBO, DE, and PSO.

Bouchekara et al. (2016a) utilized the Grenade Explosion Method (GEM), inspired by
the dynamics of a grenade explosion, to address both SOOPF and MOOPF problems,
focusing on six techno-economic objectives. The approach incorporated a fuzzy decision-
making method, transforming objective functions into fuzzy membership functions for
optimization. Tested on an IEEE 30-bus system, GEM demonstrated superior performance

in optimizing both single and multiple objectives.

Duman et al. (2012) introduced the Gravitational Search Algorithm (GSA) to address the
OPF problem. GSA was tested on IEEE 30- and 57-bus systems under normal and
contingency conditions, considering various economic and technical objectives. GSA
outperformed other algorithms in SOOPF scenarios, demonstrating its effectiveness in
achieving optimal solutions, especially for economic objectives. The algorithm also
exhibited strong scalability in larger systems. Bhattacharya and Roy (2012) applied GSA to
solve three single-objective (SOOPF) and three multi-objective (MOOPF) cases. The
algorithm was tested on both a standard 26-bus system and a large-scale 118-bus IEEE
system, addressing identical single, bi-objective, and tri-objective cases across both systems.
The results demonstrated that the GSA-based approach effectively determined optimal

solutions, with performance comparable to previously established algorithms.

Bouchekara (2014b) implemented the Black Hole-based Optimization (BHBO)
algorithm, which mimics the behavior of black holes by drawing candidate solutions (stars)
towards an optimal solution. The parameter-less algorithm was applied to solve various OPF
problems, optimizing control variables on IEEE 30-bus and Algerian 59-bus networks while
considering different objective functions. However, its effectiveness for MOOPF problems

was not explored.

The Colliding Bodies Optimization (CBO) algorithm, developed by Kaveh and Mahdavi
(2014), uses conservation of momentum principles to navigate search spaces. An Enhanced
CBO (ECBO) introduced by Kaveh and Ghazaan (2014) incorporated a regeneration

mechanism to circumvent local optima. Further enhancements by Bouchekara et al. (2016b)
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led to the development of an Improved CBO (ICBO), which utilized three colliding bodies
to enhance performance. ICBO was applied to IEEE test systems of 30, 57, and 118 buses,
effectively addressing OPF challenges across technical, economic, and reliability objectives
in both normal and contingency scenarios. Its robustness and adherence to constraints

showcased its potential, indicating the feasibility of developing a multi-objective CBO to

tackle broader MOOPF problems.

Saha et al. (2017) applied the Water Evaporation Algorithm (WEA), inspired by
evaporation dynamics, to solve the OPF problem. Tested on IEEE 30- and 118-bus systems,
WEA addressed various technical and economic objectives, including operational efficiency
and system stability. In multi-objective scenarios on the 30-bus system, WEA outperformed

methods like HSA, NSGA-II, and TLBO, showing strong optimization performance.

Akdag (2022) proposed an Improved Arithmetic Optimization Algorithm (IAOA) to
enhance the exploration capabilities of the original AOA. IAOA was tested on IEEE 30- and
57-bus networks and the 16-bus South Marmara system, addressing technical and economic
objectives. The algorithm demonstrated superior performance compared to TLBO, SCA,

DSA, and other methods in both single and multi-objective settings.
OPF Algorithms Inspired by human natural behavior

The Teaching-Learning-Based Optimization (TLBO) algorithm, developed by Rao et al.
(2011), 1s a parameter-free, population-based method inspired by the teaching and learning
process in classrooms. This approach simulates the transfer and collaborative exchange of
knowledge among learners, enhancing solution quality. Bouchekara et al. (2014a) applied
TLBO to solve SOOPF problem across various technical and economic objectives on IEEE
30 and 118-bus networks. Specifically, the algorithm was tested for its scalability with a
single objective on the 118-bus network. The results showed that TLBO provided better or
comparable outcomes to other documented methods, affirming its effectiveness and
scalability. Shabanpour-Haghighi et al. (2014) enhanced the Teaching-Learning-Based
Optimization (TLBO) algorithm by incorporating a self-adapting wavelet mutation
(SAWM) to address MOOPF problems, particularly focusing on economic and
environmental objectives. This modification aimed to expand the search capabilities and
efficiency of the algorithm. Tested on IEEE 30 and 57-bus systems, the modified TLBO
demonstrated improved performance, achieving faster convergence and greater precision in

fewer iterations compared to the standard TLBO. Ghasemi et al. (2015) enhanced the TLBO
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algorithm by incorporating a Lévy mutation strategy, creating the Lévy mutation-based
TLBO (LTLBO). This modification improved the algorithm’s exploration abilities and
increased population diversity, enhancing its effectiveness for OPF problems. The LTLBO
algorithm was tested on IEEE 30-bus system, focusing on objectives such as cost
minimization, voltage profile improvement, and emission reduction, and on IEEE 57-bus
system with a cost minimization objective. LTLBO demonstrated superior performance
compared to basic TLBO, ABC, GSA, and other algorithms. Akbari et al. (2022) introduced
the Teaching—Learning-Studying-Based Optimization (TLSBO) algorithm, an enhancement
of TLBO that incorporates a studying strategy. TLSBO was tested on the IEEE 30-bus
system, addressing SOOPF and MOOPF problems with economic, technical, and
environmental objectives. TLSBO outperformed the original TLBO in terms of solution

quality and convergence speed.

El-Sattar et al. (2019) developed multiple Jaya-based optimization frameworks for
addressing both SOOPF and MOOPF problems. These frameworks were designed to tackle
a range of technical, economic, and environmental objectives, applying them across 23 case
studies on IEEE 30 and 57-bus systems. Upon evaluation, these Jaya-based methods
demonstrated robust and effective performance, showcasing superior convergence and
overall robustness when compared to other existing optimization strategies. Elattar and
ElSayed (2019) introduced a modified version of Jaya (MJAYA) to overcome the problem
of premature convergence of the original Jaya. The authors applied MJAYA algorithm to
solve OPF problem including RES and examined their effects on objective functions
considering objectives such as technical (enhancing system stability), economic (reducing
operational costs), and environmental (minimizing emissions). By using pricing and
weighting parameters, they converted the multi-objective problem into a single-objective
framework for more straightforward optimization. Tested on IEEE 30 and 118-bus systems,
MIJAYA showed improved performance over existing methods. Warid (2020) introduced the
adaptive multiple teams perturbation-guiding Jaya (AMTPG-Jaya) algorithm for the first
time to solve the OPF problem, using dynamic "teams" to find optimal solutions. Tested on
IEEE 30 and 118-bus systems, AMTPG-Jaya targeted economic and technical objectives,
demonstrating superior performance over the basic TLBO and other stochastic methods.
The algorithm excelled in terms of solution quality, feasibility, and computational efficiency,

especially for large-scale power systems.
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Non-nature inspired algorithms for OPF

Non-nature-inspired algorithms, in contrast to metaheuristic algorithms that mimic natural
phenomena, are grounded in social and mathematical principles rather than biological or

environmental analogies.

Kilig (2015) pioneered the application of the Backtracking Search Algorithm (BSA) to
SOOPF problems, incorporating diverse cost functions with valve point loading and power
system constraints.The BSA was tested on the IEEE 30-bus test system and demonstrated
superior performance in terms of generation cost and convergence speed compared to other
algorithms like GA, EP, DE, modified DE, ABC, and others. While the results affirmed BSA's
effectiveness on this scale, further studies were suggested to explore its performance on larger

systems.

Chaib et al. (2016) applied the BSA to address OPF problems with complex objectives
involving discontinuities. The method was evaluated on IEEE 30-bus, 57-bus, and 118-bus
systems through 16 case studies. BSA showed superior performance and robustness over other
established algorithms like DE, PSO, ABC, GA, and BBO, especially in large-scale network
settings. Further research was recommended to extend its application to MOOPF problems
using Pareto-optimal solutions. In their study, Daqaq et al. (2021) developed a multi-objective
BSA (MOBSA) for solving OPF problems in power systems, targeting both technical and
economic objectives. Tested on IEEE 30, 57, and 118-bus networks, MOBSA successfully
generated well-distributed Pareto optimal solutions, which were further analyzed using fuzzy
membership techniques to identify optimal trade-offs. Comparative evaluations with other
multi-objective algorithms underscored MOBSA’s robustness and effectiveness, highlighting

its contribution to OPF methodologies.

Mirjalili (2016) introduced the Sine Cosine Algorithm (SCA), which uses mathematical
principles to efficiently search for optimal solutions. Attia et al. (2018) later developed a
modified version, MSCA, enhancing SCA with Lévy flights and adaptive population tuning to
improve convergence speed and avoid local optima. Tested on IEEE 30- and 118-bus networks,
MSCA demonstrated its effectiveness in optimizing cost-based and technical objectives. By
adjusting control variables in fewer iterations, MSCA proved particularly advantageous for
large-scale OPF problems, outperforming other previously documented optimization
algorithms. Karimulla and Ravi (2021) enhanced the Sine Cosine Algorithm (ESCA) by
incorporating Lévy flights to address MOOPF challenges on a 30-bus IEEE test network. They
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focused on optimizing technical, economic, and environmental objectives. ESCA outperformed
popular algorithms like GA, PSO, and the Flower Pollination Algorithm, achieving reduced

power losses and improved results across cost and emission objectives.

Rao algorithms, introduced by Rao (2020), are sophisticated metaheuristic techniques that
eliminate the need for parameter tuning. Gupta et al. (2021c) employed Rao-1, Rao-2, and Rao-
3 variants to address OPF problems on IEEE test systems comprising 30, 57, and 118 buses.
These algorithms were utilized to optimize a diverse set of objectives, including economic
efficiency, technical performance, and environmental impact, under various operating
conditions. Rao-3 consistently demonstrated superior optimization results across different

scenarios, while Rao-2 excelled specifically in minimizing power losses on the 57-bus system.

Hassan et al. (2021) enhanced the Rao-2 algorithm to create MRao-2, tailored to solve OPF
problems in power systems with significant Renewable Energy Source (RES) integration.
Improved with quasi-oppositional and Lévy flight techniques, MRao-2 was tested on IEEE 30
and 118-bus networks, addressing objectives related to economic, technical, and environmental
performance. Its efficacy was benchmarked against other algorithms like Atom Search
Optimization (ASO) and Marine Predator Algorithm (MPA), showing MRao-2's superior

convergence capabilities, especially in large-scale applications.

In recent advancements, Alghamdi (2023) introduced the Improved Turbulent Flow
Optimization (ITFWO) algorithm to address complex non-linear, non-convex OPF challenges
in power systems incorporating renewable sources like solar PV and wind turbines. Evaluated
on the IEEE 30-bus system, ITFWO efficiently balances techno-economic and environmental
objectives, dynamically adjusting energy generation parameters based on real-time renewable
input. Additionally, Alghamdi’s study explores the impact of carbon taxes on generator
scheduling, demonstrating ITFWQ’s superior performance in optimizing multiple objectives
when compared to other state-of-the-art algorithms. This research highlights a significant shift
towards OPF methods that integrate renewable sources and environmental considerations,

enhancing system efficiency under variable conditions.

2.3.3 Hybrid and Advanced Techniques
Hybrid methods have become increasingly popular over the past decade as they combine
the strengths of individual techniques while addressing their limitations. This hybridization of

two or more algorithms produces a new hybrid algorithm, which is more effective and powerful
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than any of its component methods, yields promising results by exhibiting better and faster

convergence characteristics along with covering an expanded area in lesser computational time.

Kumar and Chaturvedi (2013) introduced a hybrid approach that combined fuzzy systems
with Genetic Algorithm (GA-Fuzzy) and Particle Swarm Optimization (PSO-Fuzzy)
algorithms. This method aimed to optimize control parameters for the SOOPF problem,
specifically focusing on cost objective. Applied to a modified IEEE 30-bus network, the PSO-
Fuzzy approach achieved a lower fuel cost compared to the GA-Fuzzy method, while GA-
Fuzzy demonstrated improved average fitness on the same network. The study found that these
integrated approaches were more effective and robust than standalone PSO or GA in solving

OPF challenges.

A hybrid algorithm combining modified PSO with the Shuffle Frog Leaping Algorithm
(MPSO-SFLA) was proposed by Narimani et al. (2013) to address the MOOPF problem,
targeting cost and environmental objectives. To improve PSO’s performance, a Self-Adaptive
Probabilistic Mutation Operator (SAPMO) was introduced to enhance population diversity. A
Pareto-based methodology provided a well-distributed set of solutions, with a fuzzy decision-
making model selecting the best compromise solution. MPSO-SFLA was validated on IEEE
30-, 57-, and 118-bus systems, showing superior performance in convergence, computational

time, solution quality, and robustness compared to basic SFLA and PSO.

A hybrid PSO and GSA (PSO-GSA) algorithm was proposed by Radosavljevi¢ et al. (2015)
to solve the OPF problem by combining PSQO's global exploration with GSA's local search
capabilities. Validated on IEEE 30- and 118-bus networks, the approach addressed single and
dual objectives techno-economic objectives. When applied to 30-bus system, the hybrid
algorithm demonstrated faster convergence and improved solution quality compared to
individual PSO and GSA algorithms, especially for single and dual objective optimization
problems. However, some solutions were identified as infeasible due to violations of system
constraints, particularly load bus voltage limits. Khunkitti et al. (2018) proposed a hybrid
dragonfly-PSO (DA-PSO) algorithm to solve the MO-OPF problem, considering techno-
economic and environmental objectives. The algorithm effectively minimizes fuel cost and
transmission losses (techno-economic) and emissions (environmental) on IEEE 30- and 57-bus
systems. The hybrid approach combines the exploration capabilities of DA with the
exploitation capabilities of PSO, leading to improved performance compared to original DA

and PSO algorithms.
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Ghasemi et al. (2014) developed a novel hybrid algorithm, MICA-TLA, by integrating a
modified imperialist competitive algorithm (MICA) with the teaching-learning algorithm
(TLA). This hybrid approach leveraged TLA to boost local search efficiency, particularly near
the global optimum. The MICA-TLA was tested on the IEEE 30-bus network for single and
complex economic objectives and on the 57-bus IEEE network for economic and technical
objectives. The results demonstrated that MICA-TLA outperformed standard population-based
algorithms such as ICA, TLA, and MICA, showcasing faster convergence and improved

solution quality.

Pulluri et al. (2018) introduced the stud krill herd (SKH) algorithm to solve SOOPF
problems. SKH hybridizes KH and SGA to improve exploration and exploitation capabilities.
The algorithm was tested on IEEE 14-, 30-, and 57-bus systems, demonstrating superior

performance compared to other evolutionary algorithms.

Reddy (2019) introduced a Hybrid DE-HS algorithm, combining DE and Harmony Search
(HS) to solve SOOPF and MOOPF problems. The combination of the two algorithms led to
the development of a powerful hybrid algorithm that integrated the original DE algorithm with
HSA to achieve faster global convergence. This hybrid approach was applied to IEEE 30-, 118-

, and 300-bus systems to optimize techno-economic objectives.

El Sehiemy et al. (2020) proposed the PSO-SSO algorithm to address SOOPF and MOOPF
problems in IEEE 30, 57, and 118-bus test systems. The algorithm was evaluated across 18
case studies, considering economic, technical, and environmental objectives. Compared to
standalone PSO and SSO, PSO-SSO achieved lower power losses, reduced emissions, and

minimized fuel costs while converging faster.

Khan et al. (2020) initially implemented the Hybrid Firefly-PSO (HFPSO) method to
address SOOPF problems, including economic and technical objectives. The HFPSO algorithm
was evaluated on the IEEE 30-bus test system, where it demonstrated significant improvements
(lower costs and faster convergence in fewer iterations) over COTs, such as PSO, DE, and
BHBO. Later in the same year, Khan et al. (2020) extended the HFPSO method to a multi-
objective version (MOHFPSO) for addressing the complex MOOPF problems. This advanced
approach integrated non-dominated sorting techniques to generate Pareto optimal fronts and
determine optimal solutions across various techno-economic objectives. The MOHFPSO

algorithm was tested on IEEE 30- and 57-bus test networks, encompassing five multi-objective
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formulations that included three bi-objective and two tri-objective cases, effectively

demonstrating its capability to handle multi-dimensional optimization in power systems.

Gupta et al. (2021a) introduced the Jaya-PPS (Jaya—Powell’s Pattern Search) hybrid
algorithm to solve the OPF problem, integrating Jaya with the derivative-free PPS technique,
based on conjugate-direction principles. The algorithm was tested on IEEE 30-, 57-, and 118-
bus systems, both with and without distributed generation (DG) sources, considering techno-
economic, environmental, and combined objectives. The Jaya-PPS1 variant consistently
outperformed other algorithms by achieving optimal values for various objective combinations
on the 30- and 57-bus systems. Additionally, it significantly reduced fuel costs on the 118-bus
system. In a subsequent study, Gupta et al. (2021b) introduced a modified Jaya algorithm
incorporating a sine-cosine mutation operator (SCM-MJ) to enhance performance in OPF
optimization. This modification aimed at maintaining population diversity throughout the
search process, resulting in smoother convergence and improved solution accuracy. The SCM-
MJ algorithm was evaluated on both the practical 59-bus Algerian system and the IEEE 118-
bus network to address technical and cost-based objectives. SCM-MJ consistently achieved

superior performance, with a significant reduction in fuel costs on the 118-bus system.

Naderi et al. (2021) proposed the FAHSPSO-DE algorithm, a hybrid approach combining
fuzzy adaptive PSO and DE. This algorithm effectively addressed SOOPF and MOOPF
problems on IEEE 30-, 57-, and 118-bus systems, focusing on cost, emissions, and power loss
minimization. The algorithm's application to the IEEE 57-bus system resulted in significant

annual cost savings, highlighting its potential for medium-scale power systems.

Avvari and Vinod Kumar (2022) introduced a hybrid decomposition and local dominance-
based multi-objective evolutionary algorithm (MOEA) for tackling the MOOPF problem with
conflicting objectives. The algorithm was evaluated on IEEE 57- and 118-bus systems across
multiple case studies, considering a combination of techno-economic and environmental
objectives. The proposed method exhibited competitive performance compared to established

techniques like MOPSO and NSGA-II.

Mallala et al. (2022) developed a hybrid NSHFABC algorithm to solve MOOPF and SOOPF
problems on IEEE 30- and 118-bus systems. The algorithm effectively improved the system's
techno-economic performance by minimizing fuel cost, power loss, and severity values.
NSHFABC demonstrated competitive performance compared to established methods like DE,

PSO, and ACO, achieving significant reductions in fuel cost and severity values.
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Mohamed et al. (2022) proposed a hybrid GBO-MFO algorithm to optimize OPF
considering uncertain load and wind generation. The algorithm was tested on an IEEE 30-bus
system with FACT devices. The proposed method effectively reduced fuel cost and power loss

compared to standalone GBO, SMA, and MFO algorithms.

Keswani et al. (2023) implemented a hybrid sine cosine—grey wolf optimizer (HSC-GWO)
for MOOPF in large power grids, combining the GWO’s exploitation strengths with the SCA’s
exploration capabilities. Applied to IEEE test systems (30, 57, and 118 buses) considering
techno-economic aspects, HSC-GWO effectively minimizes fuel costs, enhances voltage
profiles, and reduces active power loss. Results showed that it outperformed other
metaheuristic methods like DE, TLBO, PSO, BBO, GWO, and others, demonstrating

efficiency and robustness in achieving optimal solutions for real-time OPF scenarios.

Upputuri et al. (2023) proposed a hybrid Improved Harris Hawks Optimization and Pattern
Search (hIHHO-PS) algorithm to solve OPF problems. The algorithm effectively addresses
various objective functions, including techno-economic objectives, social welfare
maximization (SWM), and loadability factor maximization (LFM). Additionally, the study
investigates the impact of optimally placed multi-line FACTS devices and their control modes

on OPF outcomes, demonstrating significant improvements in system performance.

Table 2.1 provides a summary of hybrid approaches for OPF reported in reputable peer-

reviewed journals over the past decade.

Table 2.1 Summary of hybrid approaches for OPF in the last decade from reputable peer-reviewed journals

SOOPF/
Hybrid Objective Test .
Author(s) Year y J . MOOPF/ Strength of Hybrid approach
approach Function(s) System(s)
Both
GA+Fuzzy, IEEE 30-
IC(E:::;V Zr:iq 2013 FCM SOOPF bus ir:)llllorz;/e:nceaverage fitness and faster
! PSO+Fuzzy (modified) verg
Pg/lgflsf;e[iiA IEEE 30, Enhanced solution diversi nd stron
Narimani etal. | 2013 FCM,EM | MOOPF 57 and anced solution diversity and strong
(HMPSO- 118-bus local search capability
SFLA)
MICA-TLA IEEE 30- Achieved  faster convergence and
Ghasemi et al. 2014 | (Modified ICA | FCM, VDM Both enhanced solution quality by boosting
and 57-bus .
+TLA) local search efficiency
. IEEE 30 . .
Radosavljevica et 2015 PSO+GSA FCM, PLM, | SOOPF and and 118- Combined exploration and local search
al. (PSOGSA) VDM, VSE MOOPF . strengths
(weight L&
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factor

approach)
DA-PSO DA-PSO combines DA's exploration and
Khunkitti et al. 2018 (Bt - FCM, EM, Both IEEE 30- PSO§ exp101tz.1t10n for . better O.PF
PSO) PLM and 57-bus | solutions, but its sequential processing
slows computation
IEEE 30-
FCM, PLM, and 118- | Avoids premature convergence and
Pulluri et al. 2018 | KH + Stud GA | VDM, VSE, SOOPF bus, enhances global optimality through SSC
EM Algerian | operators integrated into KH
59-bus
IEEE 30, . o
S. S. Reddy 2019 DE+HS FCM, VSE, Both 118 and Balanced exploration-exploitation trade-
PLM off
300 bus
FCM, VDM IEEE 30 ..
" ) ) ;
El Sehiemy etal. | 2020 (};)SS% SSS(())) PLM, VSE, Both 57 and zflﬁif:ge lgiz?;;“re convergence,
) EM 118-bus -
FCM, VDM, IEEE HFPSO blends FA's local precision and
FA+PSO VSE and . . .
Khan et al. 2020 . SOOPF PSO's quick global exploration, ensuring
(HFPSO) PLM (active .
. 30-bus efficient and balanced convergence
& reactive)
FA+PSO FCM, VSE, IEEE 30, | Balances local and global exploration,
LGERIGIED 2020 (MOHFPSO) VDM, PLM MOOPE 57-bus superior Pareto solutions
FCM. VDM MOOPF IEEE 30, | Jaya-PPS enhances local and global search
Gupta et al. 2021a Jaya+PPS ’ > | (combined | 57 and 118 | efficiency, achieving a well-balanced
EM, PLM . L
SOF) bus exploration and exploitation
MOO Algerian
SCM prevents premature convergence,
FCM, VDM, (MOF 59-bus, .
Gupta et al. 2021b SCM+MJ PLM turned into | IEEE 118- :;?;L?Ng balances global and local search
SOF) bus ey
PSO+DE IEEE 30, . . .
Naderietal. | 2021 | (FAHSPSO- FCNEI\I/)[LM’ Both 57 and %Ptlgﬂe:?de"’ffw“h dynamic parameter
DE) 118-bus Ju
(Pareto IEEE 57
Avvari and Vinod 2022 dominance and FCM, EM, MOOPF and 118- Improved exploration, exploitation, and
Kumar decomposition) | PLM, VDM uniform Pareto front
bus
+EA
Fruit fly+ABC | FCM, PLM IEEE 30 Enhanced optimal value accuracy, tackles
. ’ ’ 118- ?
Mallala et al 2022 (NSHFABC) SVM Both am‘:)us 8 premature convergence
FCM, PLM
(without and
Mohamed et al. 2022 GBO+MFO with . Both IEEE 30- | Improves convergen?e using gradient
uncertain bus search and local escaping operator (LEO)
load
demand)
FCM. VDM IEEE 30, | Combines GWO’s exploitation with
Keswani et al. 2023 HSC-GWO ; ’ Both 57 and SCA’s  exploration, achieving high
PLM .
118-bus efficiency and robustness
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Upputuri et al.

2023

IHHO+PS

FCM, PLM,
VDM,
SWM, LFM

Both

IEEE 30-
bus

Excels in cost reduction, loss
minimization, and system stability,
enhanced with UPFC/GUPFC

Figure 2.2 depicts the distribution of Optimization Algorithms (OAs) applied to address

OPF problems, offering valuable insights into their percentage-wise adoption in high-impact,

peer-reviewed journals over the past decade.

30.9%

Evolutionary
[ Swarm-intelligence (Non-hybrid)
I Hybrid Metaheuristics

Fig. 2.2 OPF Algorithm Distribution: Evolutionary (30.9%), Swarm Intelligence (53.1%), Hybrid (16%)

2.4 Gaps in Current Research and Opportunities for Further Study

The literature review reveals several research gaps and opportunities for further exploration,

as outlined below:

2.4.1 Need for a Robust Optimization Algorithm Capable of Addressing Diverse OPF

Scenarios:

Due to the varied formulations and objectives of the OPF problem, no algorithm can be

claimed as the best for solving all OPF scenarios. Each algorithm has limitations, especially

regarding convergence speed and feasibility in large-scale systems.

e Research Opportunity:

Developing a novel algorithm that is both efficient and reliable remains a critical need.

Future research could focus on creating hybrid algorithms that combine strategies from various

metaheuristic approaches to effectively address OPF challenges.

2.4.2 Load Growth and Contingency Handling in OPF:

The complex nature of modern power systems, with increased loading and potential for

unexpected generator outages, requires robust OPF solutions capable of maintaining stability
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without resorting to reactive measures like load shedding. While traditional algorithms often
struggle to adapt to both single and multi-objective requirements across different loading
scenarios, there is a need for optimization techniques that can proactively secure OPF under

diverse operational conditions.

e Research Opportunity:

Building on recent advancements in hybrid optimization, future work could explore
extending dynamic, hybrid algorithms to tackle even more diverse operational constraints and
objectives. For instance, integrating predictive modelling could allow such algorithms to pre-
emptively adjust control variables in response to varying load conditions and potential
contingencies, further enhancing system stability and operational flexibility without

compromising efficiency.

2.4.3 Integration of Renewable Energy Sources (RES) in OPF:

The integration of RES (e.g., solar, wind, hydro) offers significant benefits, such as reducing
greenhouse gas emissions and minimizing transmission losses. By inserting the RES as a
negative load, the total load demand is reduced which decreases the fuel cost of the
conventional generators and in turn reduces the total objective function. Since most renewable
resources are intermittent in nature, it may be advantageous to utilize more than one resource

when available.

e Research Opportunity:
Future studies could explore multi-objective OPF optimization that further adapts to
renewable energy, emphasizing cost reduction and stability. Additionally, hybrid algorithms

that account for multiple renewable sources can enhance the efficiency of OPF solutions.

2.4.4 Incorporation of FACTS Devices:
FACTS devices offer promising potential for improving the steady-state performance of
power systems by enhancing voltage regulation and loadability. Their role could be especially

impactful under contingency conditions, which aligns with Security Constrained OPF (SC-

OPF).

e Research Opportunity:
Incorporating FACTS devices within OPF under both standard and contingency scenarios
could be a valuable avenue for future research, potentially advancing system reliability and

stability.
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2.5 Research Objectives
Based on the literature review and research gaps observed, the following objectives have

been identified:

» Development of a new powerful computational intelligence algorithm or modifications/
improvements in the existing popular algorithms or hybridizing algorithms depending
upon the formulation and objectives of the OPF problem (MOOPF) for a given test
system.

» Comparison of the simulation results for validating the superiority and effectiveness of
the proposed algorithm over the existing ones for the same test system and objectives
reported earlier in literature.

» Examination of load changing effects on the cost and transmission losses.

» Adapting renewable energy resources for further fuel cost reduction.
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CHAPTER 3
OPTIMAL POWER FLOW: FUNDAMENTALS AND VARIOUS TEST SYSTEMS

3.1 General Structure of OPF

The OPF problem generally involves a combination of objectives and constraints. Its
solution aims to optimize a specific objective function by identifying the best possible values
for control variables. The optimized state of the power system is described using a set of state

variables.

The operation of the power system must comply with two categories of constraints: equality
constraints and inequality constraints. Equality constraints typically correspond to power
balance equations, while inequality constraints set the operational boundaries for system
elements like generator limits, voltage levels, and line capacities. Meeting all constraint

conditions is essential to ensure a realistic and practical OPF formulation.

3.1.1 Single-Objective OPF
The formulation of single-objective OPF (SOOPF) problems is as follows:

Min: Z . (x,u) (3.1)
Subject to: g, (x,u)=0 i=1,2,3,...... ,m (3.2)
and h;(x,u)<0 j=1,2,3,....... ,n (3.3)

The objective function, shown in Equation (3.1), depends on the state variables ‘x’ and the
control variables ‘u’. Equation (3.2) outlines the inequality constraints, and Equation (3.3)
defines the equality constraints, with ‘m’ as the number of equality constraints and ‘n’ as the

number of inequality constraints.

3.1.2 Multi-Objective OPF
In the MOOPF problem, a vector of objective functions is optimised rather than a single

objective function. Mathematically, MOOPF problem is stated as follows:

Min: Z . (x,u)=[Z,(x,u),Z,(x,u)......... Z,(x,u)] (3.4)

Here, ‘k’ denotes the number of objective functions optimized simultaneously, while ensuring

compliance with the constraints in Equations (3.2) and (3.3).
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The state vector i.e., the vector of dependent variables is given by Equation (3.5) where F;
is the generator voltage, ¥, is the load bus voltage, O, is the generated reactive power and
Siine 1 the apparent power flow of the transmission line.

C=IR VeV s Qoreees Qo> Sine, w0 Sty | (3.5)
Here, PGl represents the slack bus power. The terms NPQ, NG, and NL denote the counts of

load buses, generating units, and transmission lines, respectively. The power system status is

represented by the vector of state (or dependent) variables, as defined in Equation (3.6) below;
T
u =B s By VooV s O vees O o T s Ty (3.6)

Here, V,, denotes the voltage at the generator bus, Q. represents shunt VAR compensation,

with NC indicating the number of compensators, and 7 signifies the tap-changing transformer,

with NT representing the number of tap-changing transformers.

3.2 Constraints
For secure and economical grid operation, the state and control variables are subjected to

various constraints and limits as described below;

3.2.1 Equality constraints
In the OPF problem, the load flow equations are incorporated as equality constraints. The

mathematical formulation is presented below:

P.-P, = (G cosg, + B, sin 6, )

N (3.7)
-0, =V, Z ( . sin 0, BcosH)

In Equation (3.7), £ =1, 2, ...,n, where n signifies the total number of buses in the

network. Here, G; signifies the mutual conductance between any bus # and ;* load bus, while

BU- signifies the mutual susceptance between these buses.

3.2.2 Inequality constraints
The operating bounds of the power system are determined through the following constraints:
a) Generation constraints: For stable operation, the generators must operate within the

following ranges of real power, reactive power, and voltages:
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P <P, <P™ i=1,2,. NG
0" <0 <05" i=1,2,.., NG G5
Vo <V, <V i=1 2., NG

Here, active power generation at i” generator bus ( %, ) is bounded by £, ™" and F,™ , while
the reactive power generation (Jg, ) is bounded by qujn and O,;™ . Additionally, the bus

voltage (¥, ) of the i” generator must stay within the limits of 7, " and Ve™.

b) Shunt compensator constraints: Shunt compensation must be maintained within

specified lower and upper limits, as shown in Equation (3.9).
Qci"“i” <O <O.™ i=1,2,.,NC (3.9)

¢) Transformer constraints: There is a range of tap settings for transformers that must be

adhered to. The lower and upper limits are as follows:
™ <T <T™ i=1,2,., NT (3.10)

d) Security constraints: These constraints involve the maximum MVA limits for line flows
and the allowable voltage magnitude ranges at load buses, as represented in Equation

(3.11).
<g, max i=1 2. NL

line; line;

\S

, (3.11)
VLi min S VLI S VL‘ max

3.3 Objective Functions

In OPF, the objective functions define the goals of optimizing power system operations,
often balancing technical, economic, and environmental considerations. Below are common
objective functions in OPF, detailed with their mathematical formulations:

3.3.1 Fuel cost minimization (FCM)/Total fuel cost minimization (TFCM)

The fuel cost function ($/h) is a fundamental component of OPF analysis. It represents a
primary economic objective, aiming to minimize the cost of power generation. The cost
typically exhibits an approximate quadratic relationship with the power generated (MW)
(Yuryevich and Wong, 1999). The overall fuel cost function can be expressed mathematically,
as shown in Equation (3.12):

NG
Zpey (X,u) :(Zal‘ +bF; +CiPGZ,] ($/h) (3.12)

i=1
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Here the Z,.,,(x,u) is the overall fuel cost function expressed in $/h and the fuel cost

coefficients of i generator are a,, b, and ¢, with P, being the active power output of i

generator. The objective is to minimize the total fuel cost function.
a) Fuel cost considering valve-point effect

In practical power systems, the presence of multiple steam turbine valves alters the fuel
cost characteristics of generator units, making them non-convex and non-smooth due to ripples
introduced in the curve (Walters and Sheble, 1993). This phenomenon, known as the valve-
point loading (VPL) effect, adds complexity to the cost function. The modified cost function
for the i generator, incorporating sine components to represent the VPL effect, is expressed in
Equation (3.13).

NG

Z,,, (1) = (Zai +hP, +c,P J +|d;sin (e, (B2~ B,)) (3.13)

i=1
Here, a;, b, c¢;, d.and e are the fuel cost coefficients of i generating unit, with d.and e,

particularly representing VPL effect. Additionally, £’ " represents minimum allowable active-

power-generation limit of the i generator.

In the literature, units 1 and 2 are commonly selected to demonstrate the VPL effect, while
the remaining units are modelled using basic quadratic fuel cost (QFC) curves without the
inclusion of VPL characteristics.

b) Fuel cost considering multiple fuel sources

Practically, different fuel sources (such as oil, natural gas, etc.) could be used for thermal
generators during the operation of the power system. When multiple fuel options are available,
the fuel cost function of a generating unit becomes a piecewise polynomial function, with each
segment representing a specific type of fuel (Abou El Ela and Abido, 2010) and can be
modelled mathematically, for i generator, for fuel type k, by Equation (3.14).

NG
Z, s (X u) = (Z a,, +bikPG,. +CikPC?,- ) (3.14)
i=1

3.3.2 Voltage deviation minimization (VDM) considering quadratic fuel cost (QFC)

The second most essential objective function of OPF is to minimize load bus voltage
deviation (VD) from 1.0 p.u., taken as the reference value. In most cases, the fuel cost function
is combined with the voltage profile enhancement to form a combined objective function as

given in Equation (3.15).
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NPQ

Zns (X,10) = (Za +bP, +cP2j+deZ‘V ~1.0| (3.15)

where, K , (weighting factor) is assigned an appropriate value depending on the significance

of voltage profile objective.
3.3.3 Voltage security index (VSI)

VSI functions as a performance metric to assess a power system's capability to sustain
voltage levels within a specified acceptable range, thus reflecting the system's stability and

security. VSI is calculated using the formula provided in Equation (3.16):

2n
VSI = Z[' 1= “ng (3.16)

where, V. is the average of the maximum and minimum voltages, dV is half the voltage

avg
range, and 7 is set to 1. Minimizing VSI suggests that voltages across the system are closer to
the average value, indicating reduced fluctuations and improved stability.

3.3.4 Voltage Stability Improvement (VSI)/voltage stability enhancement (VSE)
considering QFC

The stability of an electrical power system network refers to its capacity to keep all bus
voltages within acceptable limits under normal conditions and during disturbances. Voltage
instability is more likely in systems with high load demands and extensive transmission
networks. Improving voltage stability involves reducing the voltage stability index (L-index)
across all buses. The L-index, ranging from 0 to 1, is a reliable measure of stability, where 0
represents no load and 1 signifies voltage collapse (Kessel and Glavitsch, 1986).
Mathematically, the objective of VSI, i.e., L-index minimization, can be defined using the two-
fold objective combining fuel cost with voltage stability as follows in Equation (3.17):

Z,q (x,u) = &G:ai +b,P, +c,.PCfI]+KVS (max(z,)) (3.17)

i=1
Here, K is given an appropriate value according to the priority of the voltage stability

S

objective. The L-index for any ;™ load bus is denoted as L ;and is determined by Equation

(3.18).
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Ji

L. = 1—# where j=1, 2, ...... , NPQ, W :—[inv(ij )]*[Yﬂ] (3.18)

Here, Y, represents the sum of the admittances connected to the " load bus (self-admittance),

while Y, denotes the mutual admittance of the line connecting the j"and i buses.

VSE during contingency-

Ensuring voltage stability is vital for power systems, especially when sudden disruptions like
line outages or generator breakdowns occur. Improving voltage stability during transmission
line issues often requires modelling scenarios where the loss of one line (N-1 contingency) or
multiple lines is analysed to evaluate the system’s behaviour and identify critical lines. The
objective of VSE under these contingency scenarios is a widely studied aspect within OPF-

related research.

3.3.5 Active power loss minimization (APLM)

The objective of this OPF is to minimize the total active power losses (total transmission

losses), F} ., within the power system. Equation (3.19) represents the overall active power loss

0SS

as the difference between total generation ( F; ) and total demand ( F).

NB NB NB
PLOSS:Z[: :ZPG,_ZPD,- MW (319)

i=1 i=1 i=1
The B, objective function, which is a nonlinear function of bus voltages, can be expressed

by Equation (3.20).

NL
Z oy (ou)=min (P, )= G,[V} +V} =2VV Coss,] MW (3.20)
L=l

Here, G, is used to designate the conductance of line L between i and the /" bus. V; and V.

1

are the voltages at buses i and j respectively, while J; signifies the voltage angle difference

between the two buses.

3.3.6 Reactive power loss minimization (RPLM)

This objective focuses on minimizing the total reactive power losses ({,,, ) in the system.

These losses, largely due to the reactance of transmission lines, are essential for evaluating
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system stability and voltage regulation. Reducing ), , is vital for the efficient operation of the

power system. The calculation 0, is given by the following Equation (3.21):
NL

Z oy (yu) =min (Qy) = ZBL[KZ + V/Z =2V, sind, ] (3.21)
L=1

here, B, represents the susceptance, which contributes to the reactive power flow between

nodes and is crucial for maintaining proper voltage levels and preventing voltage collapse.
3.3.7 Emission minimization (EM)/Emission cost minimization (ECM)

This OPF objective focuses on minimizing emissions by optimizing the system's control
variables. This reduces the release of harmful gases, such as SOx and NOx, into the
atmosphere. The total emission function, representing the sum of various types of emissions,
is directly related to the active power generation in MW. This function is minimized to decrease
overall pollution, as expressed in Equation (3.22).

NG
Zpy (xu) =Y (at, + BB, +7.P: +o.exp(uF,)  (ton/hr) (3.22)
i=1
Here, ai, fi, and y; represent emission coefficients, while w; and w; are associated with the
exponential term, all corresponding to the same i™ generating unit.

Minimizing emissions may be considered alongside other objectives, such as reducing fuel
costs, enhancing voltage stability, and minimizing power losses. Achieving a balanced
approach to these objectives supports the development of a more sustainable and

environmentally friendly power grid.

3.4 Constraints Handling

The penalty factor method addresses constrained optimization problems by converting
them into unconstrained ones. This is achieved by augmenting the original objective function
with penalty terms. While control variables are inherently subject to constraints, the method
incorporates inequality constraints on dependent variables (e.g., slack bus active power, load
bus voltages, reactive power generation, line loading) as quadratic penalties within the
objective function. This integration ensures that these variables remain within their specified
limits, effectively preventing infeasible solutions. The objective function from Equations (3.1)

and (3.4) can thus be reformulated as shown in Equation (3.23):

Zaug :Zmin(xau)—l_penally (323)
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A NPQ A NG A
where,  penalty = 4, (B, — B "™ + 4, > (V, =V, "™V + 2, D (D, — O™
i=1 i=1
(3.24)

NL
li 2
+ ﬂ“4 Z (Sline,- - Slinei lm)
i=1

In Equation (3.24), A4,, A,, A;and A, denote penalty factors, all assigned with the

lim

same value of 10°. If the limit value of dependent variable upon violation is denoted by x
then it can be conveniently expressed as in Equation (3.25):

xnm {xmax ; (x > xmaX)

- xmin , (x <xmin)

(3.25)

3.5 Standard Test Systems for OPF Analysis

Standardized test systems are commonly used in OPF studies to validate and benchmark
various optimization models and techniques. These test systems, ranging from simple to
complex configurations, provide a controlled environment for researchers to analyze OPF
solutions under realistic conditions. Below are the commonly used IEEE systems and standard
test systems frequently referenced in the literature:
3.5.1 IEEE 9-bus system

The IEEE 9-bus system is one of the simplest and most commonly used test networks for
educational purposes and introductory OPF and stability studies. With 3 generators, 9 buses,
and 3 loads, this system offers a basic framework for performing load flow analysis and
understanding fundamental OPF principles.
3.5.2 1EEE 14-bus system

The IEEE 14-bus system is a widely used benchmark for testing OPF algorithms, voltage
control, and economic dispatch strategies. It consists of 5 generator buses, 14 buses in total, 11
loads, and 20 transmission lines, with a real power demand of 259 MW. The system has 13
control variables, including generator active power settings, generator voltage levels,
transformer tap settings, and a shunt capacitor. Voltage magnitudes are maintained between
0.94 and 1.06 p.u., making it suitable for studies on OPF, voltage stability, and realistic power
flow analysis.
3.5.3 IEEE 26-bus system

The IEEE 26-bus system offers a mid-sized configuration that provides additional
complexity while remaining manageable. With a combination of generators and loads
distributed across 26 buses, this system is often utilized for stability, reliability, and control
strategy assessments on a scale between the 14-bus and 30-bus systems.

3.5.4 IEEE 30-bus system
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The IEEE 30-bus system is a moderately complex network with 6 generators, 30 buses, and
21 loads, featuring both radial and mesh configurations. This setup introduces challenges in
OPF analysis, particularly for minimizing power losses and ensuring voltage stability. With
generators at buses 1, 2, 5, 8, 11, and 13, along with shunt VAR compensation at nine buses
and transformers on lines 11, 12, 15, and 36, this system is ideal for research on power loss
optimization, voltage stability, and cost minimization, serving as a standard benchmark for
testing OPF algorithms.
3.5.5 IEEE 57-bus system

For more comprehensive testing, the IEEE 57-bus system provides larger and more
complex network models. The IEEE 57-bus system features 7 generators, 57 buses, and 42
loads, simulating a real-world grid structure with varied load profiles and multiple voltage
levels. This network includes a total load demand of 1250.8 MW and 336.4 MVAR, distributed
across 80 transmission lines, 15 branches with load tap-setting transformers, and shunt reactive
power sources at buses 18, 25, and 53. Voltage limits for generator buses range from 0.9 to 1.1
p-u., while load bus voltages are maintained between 0.94 and 1.06 p.u. This configuration is
widely used in OPF studies to test the efficiency of optimization algorithms in minimizing
quadratic cost functions, enhancing voltage stability, and managing reactive power, making it
an ideal representation of realistic power system operations.
3.5.6 I1EEE 118-bus system

The IEEE 118-bus system is a widely utilized benchmark for detailed OPF and stability
studies. It includes 54 generators, 118 buses, 64 loads, 186 transmission lines, 14 shunt VAR
compensators, and 9 branches with load tap-setting transformers, forming a highly
interconnected network that closely resembles a real-world power grid with diverse operational
constraints. This complex configuration, with active and reactive power demands of
approximately 4242 MW and 1439 MVAR, respectively, makes the 118-bus system particularly
suitable for testing advanced OPF algorithms, multi-objective optimization, and real-time
simulation scenarios. It is also valuable in research focused on renewable energy integration,
distributed generation, and evaluating the robustness of optimization techniques in complex
power system environments.
3.5.7 IEEE 300-bus system

The IEEE 300-bus system is one of the most extensive and complex test networks available,
featuring 69 generators, 300 buses, and 411 transmission lines. This system closely mirrors a
regional power grid in both size and complexity, with an apparent power demand of 23,525.85

MVA and a reactive power requirement of 7780 MVAR. It includes 259 control variables, such
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as generator real power outputs, voltage magnitudes, transformer tap settings, and 14 shunt
SVC devices for reactive power management. Voltage magnitudes for PV buses and
transformer tap settings are maintained between 0.9 and 1.1 p.u. With an initial total power loss
of 408.317 MW, this system is well-suited for rigorous OPF and stability studies, large-scale
contingency analysis, and evaluating high-efficiency optimization methods. Due to its
complexity, the 300-bus system is commonly utilized in high-performance computing
environments to test advanced algorithms and simulate realistic power grid operations.
3.5.8 Indian 75-bus system

The Indian 75-bus system consists of 1 slack bus, 14 generator buses, 60 load buses, and
114 transmission lines. It is a high-stress network model derived from the Uttar Pradesh State
Electricity Board's (UPSEB) grid, operating at 400 kV and 220 kV levels. This system is often
used for contingency screening and ranking, especially focusing on voltage and line flow
security. Various contingency cases, including single line outages, are evaluated under different
load conditions, making it suitable for studies on integrated security assessment, voltage
stability, and line overload risk.
3.5.9 Algerian 59-bus system

The Algerian 59-bus system includes a network configuration comprising 59 buses, 10
generators, 36 loads with a total demand of 684.10 MW, and 83 branches. In this configuration,
generator 5 at bus 13 is not operational. This system is often utilized to examine various OPF
scenarios, including generation fuel cost minimization, voltage profile improvement, voltage

stability enhancement, and emission reduction, as explored through different case studies.

3.6 Other test systems in OPF literature
3.6.1 Large-Scale Systems
Networks like the 2736-bus and 4000-bus systems are used for high-capacity studies and

for testing scalability in OPF solutions, particularly in large regional or national grids.

3.6.2 Regional and Custom Configurations
Regional models, such as the European Transmission Network or custom configurations
based on specific countries, like Indian and Algerian grids, provide realistic conditions that

reflect unique power flow patterns, load demands, and stability challenges in specific areas.

3.6.3 Specialized Test Networks
Custom test systems are also created to study specific aspects of OPF, such as renewable

energy integration, microgrid behaviour, and distributed energy resources (DERs).
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3.7 Conclusion

Chapter 3 provides a foundational understanding of OPF, covering its core structure,
constraints, and various objective functions that address economic, technical, and
environmental considerations in power systems. Both single-objective and multi-objective
OPF formulations were discussed, highlighting how these approaches balance operational
goals like fuel cost minimization, voltage stability, and power loss reduction. Additionally,
standard IEEE and international test systems were introduced, from the simpler IEEE 9-bus
and 14-bus systems to complex networks like the 118-bus and 300-bus systems. These systems
serve as benchmarks in OPF research, facilitating the evaluation of optimization algorithms

under realistic conditions.

The inclusion of regional systems, such as the Indian 75-bus and Algerian 59-bus networks,
along with large-scale configurations like the 2736-bus system and custom setups, highlights
the need for adaptability in OPF studies to address varying grid structures and operational
challenges. These diverse test systems facilitate comprehensive evaluations of OPF algorithms

across a wide range of network complexities.

Subsequent chapters will dive deeper into the formulation and application of advanced
algorithms for addressing OPF challenges. These sections will examine how such algorithms
are designed to achieve diverse objectives, including cost minimization, loss minimization,
emission reduction, and system stability enhancement, showcasing improvements achieved in

both single and multi-objective scenarios.
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CHAPTER 4

LEARNING-BASED SINE-COSINE ALGORITHM (L-SCA) FOR OPF
SOLUTIONS

4.1 Motivation for developing L-SCA

The Sine-Cosine Algorithm (SCA) is a widely used optimization method known for its
balance between exploration and exploitation in search spaces. Developed by Mirjalili (2016),
SCA utilizes trigonometric sine and cosine functions to guide candidate solutions toward
optimal solutions, making it efficient for a range of continuous parameter optimization tasks.
This SCA optimizer has demonstrated success in a variety of optimization tasks; however, it
also has certain limitations, such as slow convergence and restricted local search capabilities,

which can impact solution quality in complex problems.

To address these issues, researchers have developed several modified and hybrid variants
of SCA, aiming to enhance its performance in real-world applications. Notable adaptations
include the Interactive SCA (ISCA) by Mahdad and Srairi (2018), an Improved SCA using
Levy Flight by Li et al. (2017), and Enhanced SCA (ESCA) by Raut and Mishra (2021) for
optimized network planning, as well as multi-objective versions like the Pareto-based SCA for
distributed generation allocation. Despite these advancements, SCA still faces challenges in
terms of convergence speed and solution diversity, especially when applied to multi-objective,

constrained optimization problems like OPF.

4.2 Introduction to the Proposed Algorithm
4.2.1 Overview of SCA

SCA, a popular swarm intelligence algorithm introduced by Mirjalili in 2016, utilized for
optimizing solutions in a wide range of fields and real-world applications. SCA uses sine &
cosine functions to generate interdependent candidate solutions and update their positions
towards the optimal solution based on trigonometric equations as given in literature by Mirjalili
(2016). It offers easy implementation, fast convergence, and efficient execution time. The
algorithm balances exploratory & exploitative search patterns to locate the best regions and
converge to the global optimum. Position updates are regulated by four parameters,
transitioning from a fast random search in the exploration phase to a slow directed search in
the exploitation phase. The position of the solutions is updated using following mathematical

equations for both phases:
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(4.2)

The combination of Equations (4.1) and (4.2) is often represented as Equation (4.3) below:

x +R xsin(Rz)x‘R3Pbm1’ -x| ;R,<0.5

)C.Hl — (43)
X+ R xcos(R,)x|R,B,, —xi| iR, >0.5

Here, R, R,,R,, R, are the random variables, normally distributed according to a
Gaussian distribution, and are incorporated to help the algorithm avoid local optima. Here, |- |
represents the absolute value. The value of the adaptive parameter /R, determines whether a

solution moves closer to the best solution i.e., R, <1 or farther away from it i.e., R >1.

Equation (4.4) modifies the range of the sine and cosine functions to achieve a balance between
exploitation and exploration, ensuring that the conditions outlined in Equation (4.3) are met.

R—a 1 [Lj (4.4)
t

max

The parameter R, dictates whether the next solution moves closer to or farther from the

target solution, with a value range of 0 to 2xt. Variable R, provides random weightage to F,

est,
with a view to stochastically emphasize (R; > 1) or diminish (R;< 1) the influence of
destination in determining distance. Switching between cosine and sine components of
Equation (4.3) is carried out with equal probability using variable R, in the range (0-1) (Attia
et al. 2018).

4.2.2 Proposed Learning-based SCA (L-SCA)

The SCA algorithm is a valuable optimization tool but can encounter difficulties, such as
slow convergence and suboptimal outcomes, particularly with large, complex, and constrained
electrical power system problems. The complex tuning parameters of SCA can lead to poor
exploitation. To address these issues, a modified variant named L-SCA has been proposed,
using a learning strategy inspired by the TLBO learner phase to enhance exploitative features.
Furthermore, L-SCA preserves population diversity throughout the search, strengthening its
exploratory features and reducing the risk of suboptimal solutions. This balanced approach
between exploration and exploitation enables L-SCA to effectively tackle real-world problems,
adding an additional phase to address the classical SCA algorithm’s limitations. The following

mathematical equation has been utilized to modify the population during the learning phase:
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xnew, :xold,- +randx(xu _xv); f(xu) <f(xv)

4.5)
xnew,- = xr)ld,- + Vand X (xv - xu )’ f(‘xv) <f(xu)

In Equation (4.5), learners # and v interact at random (u = v ) within a population of 7,
where subscript ; refers to an individual in the population ranging from 1 to n, rand
corresponds to a random number generated uniformly between 0 and 1. The term (X, —X,)

represents a step in Equation (4.5). The neighbourhood search within the learner phase is
typically represented by Equation (4.6) involving the adjustment of learner positions based on
Pbmi and random selection of another neighbouring search agent, denoted as X,, .

X = ‘xold,- + I’Cll’ld X (Pbest,- - ‘xold,- ) + Vand X (‘xu - ‘xold, ) (46)

new;

If the fitness corresponding to newly generated solution vector X, is better than that of

old solution vector X, then the newly generated solution vector is accepted; otherwise, it is

rejected as per Equation (4.7):

X = {xnewl; f(xnew,. ) < f(xoldl-) 4.7)

X4, 5 otherwise

The proposed L-SCA approach prudently balances exploration and exploitation to
effectively handle real-world problems. The flowchart of the proposed L-SCA is shown in Fig.
4.1. The concise computational steps of the proposed L-SCA algorithm for the OPF problem
are presented below.

4.3 Computational Steps of the Proposed L-SCA for OPF
The concise computational steps of the proposed L-SCA algorithm for the OPF problem

are presented below:

Step 1: Set the population, control variables, load flow data to their initial values. Set the
terminating criterion and maximum number of iterations 7 . .

Step 2: Set iteration count / = 0. Generate an initial population of » individuals (search agents)
randomly, uniformly distributed within maximum and minimum values of the control
variables. For each individual, run the NRLF (Newton Raphson load flow) program and

evaluate the augmented objective function values using Equation (3.23).
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Step 3: Evaluate the fitness of each agent, sort the population, and identify the global best
position i.e., the position of the target or destination point.
Step 4: Use Equations (4.3) and (4.4) to update the position of individuals in the search space.

Update the population by sine function if R, <0.5 or cosine function if R, > 0.5. Update and

record the global best position.

Step 5: Apply the learning strategy to update the position of search agents from the total
population (randomly selected agents) using Equation (4.5) and calculate AOF value for all the
search agents using Equation (3.23).

Step 6: Conduct a neighbourhood search using Equation (4.6). If the search agent improves
with Equation (4.7), update it. Otherwise, maintain the previous solution to preserve the
excellent local search features of the algorithm.

Step 7: If I < tna, increase iteration count by 1 i.e., 7 = 7 +1, and go to Step 3. Otherwise,
proceed to Step 8.

Step 8: Terminate the procedure once the pre-set termination criteria are met. Report the best
solution as the final destination point Ppes:.

The flowchart of the proposed L-SCA is shown in Fig. 4.1.
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4.4 Case Studies using the Proposed L-SCA for OPF

The effectiveness of the proposed L-SCA algorithm was evaluated through various case
studies on practical power systems, addressing challenging and constrained OPF problems. The
algorithm was tested and validated on three power system networks: two medium-sized
systems (IEEE 57-bus and Algerian 59-bus) and one large-scale system (IEEE 118-bus). A total
of 12 different case studies were analyzed, encompassing both single and multiple objectives.
Table 4.1 provides a summary of these case studies, highlighting the key objective functions
addressed by the proposed L-SCA across various OPF scenarios. These results demonstrate L-
SCA's adaptability and effectiveness in achieving multiple OPF goals, consistently
outperforming other meta-heuristic algorithms in OPF problem-solving. The simulations were
conducted with a maximum iteration count of 150 and a population size of 30, using MATLAB

R2018a on a laptop with a 10th Gen Intel Core 17 processor, 8 GB RAM, and a 1.7 GHz clock

speed.
Table 4.1 Various cases examined in the present work using L-SCA
Case Name Objective Function Test System
Case-1 Total fuel cost minimization (TFCM) IEEE 57-bus
Case-2 Voltage deviation minimization (VDM) considering QFC
Case-3 Voltage stability improvement (VSI) considering QFC
Case-4 Active power loss minimization (APLM)
Case-5 Total fuel cost minimization (TFCM) Algerian 59-bus
Case-6 Voltage deviation minimization (VDM) considering QFC
Case-7 Voltage stability improvement (VSI)
Case-8 Active power loss minimization (APLM)
Case-9 Emission minimization (EM)
Case-10 Total fuel cost minimization (TFCM) IEEE 118-bus
Case-11 Voltage deviation minimization (VDM)
Case-12 Active power loss minimization (APLM)

Figure 4.2 illustrates the graphical framework depicting the implementation of the proposed

OPF scheme within the context of the current study.
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Fig. 4.2 Graphical framework for L-SCA based OPF implementation

4.5 Simulation Results and Analysis
4.5.1 Results for IEEE 57-Bus System

The proposed algorithm was initially tested on the IEEE 57-bus system to evaluate its
effectiveness and scalability in addressing both individual and combined OPF cases, covering
a total of 4 cases. Detailed system parameters, including upper and lower bounds on control
variables, are provided in Zimmerman and Murillo-Sanchez, Matpower 6.0 User's Manual

(2016). The network comprises 7 generators (with bus 1 as the swing bus), 80 transmission

lines, 17 regulating transformers, and 3 shunt VAR compensators. For the network, V. ™" and

V, ™ are0.94 p.u. and 1.06 p.u., respectively, and V', ™" and Ve ™ arerestricted within the

limits of 0.9 and 1.1 p.u., respectively. On a 100 MVA base, the system’s active and reactive
power demands have been calculated as 1250.8 MW and 336.4 MVAR, respectively. The
algorithm was evaluated by performing 20 independent trials on this test network, and the
optimal results for various objective function cases are presented below.
Case-1: OPF for TFCM

The primary objective of OPF is to minimize the generation system's total fuel cost i.e.
Z .y (x,u) . The mathematical formulation for TFCM (or simply FCM) is provided by
Equation (3.12) with a penalty term in Equation (3.24). Table 4.2 shows that L-SCA
outperforms other algorithms yielding best results. Also, compared to SCA (41695.2842 $/h),
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fuel cost gets reduced by 0.09% (41657.6736 $/h). Figure 4.3 illustrates that L-SCA converges
quicker than the basic SCA. Table 4.3 displays the results of L-SCA, including optimal control

variable limits and settings.

Table 4.2 Comparison of L-SCA with other popular algorithms reported in literature for Case 1

Algorithm Fuel cost ($/h)
L-SCA 41657.6736
SCA 41695.2842
Rao-3 (Gupta et al. 2021c¢) 41,659.2621
PSO-SSO (El Sehiemy et al. 2020) 41666.66
IMFO (Taher et al. 2019a) 41667.1497
MGOA (Taher et al. 2019b) 41,671.0980
PSO (Taher et al. 2019a) 41,671.9849
MSA (Mohamed et al. 2017) 41673.7231
MICA-TLA (Ghasemi et al. 2014) 41675.0545
GA (Taher et al. 2019a) 41 676.4786
SSO (El Sehiemy et al. 2020) 41678.53
LTLBO (Ghasemi et al. 2015) 41679.5451
GOA (Saremi et al. 2017) 41,679.6792
MFO (Taher et al. 2019a) 41679.3749
MO-DEA (Shaheen et al. 2016) 41683.0000
DSA (Abaci and Yamacli, 2016) 41686.82
ABC (Adaryani and Karami, 2013) 41693.9589
TLBO (Ghasemi et al. 2015) 41695.6626
GSA (Duman et al. 2012) 41695.8717
Base case 51345.570
45 x10* . .
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:
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Fig. 4.3. Fuel cost convergence characteristics for Case 1
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Table 4.3 Optimal settings of control variables

S.No. C ontrol Min. | Max. L-5CA for OPF
variables (p.u.) Case 1 Case 2 Case 3 Case 4
1 Pa2 0.0 1.0 0.9005 0.9252 0.9631 0.0792
2 Pas3 0.0 1.4 0.4524 0.4608 0.438 1.3956
3 Pas 0.0 1.0 0.7064 0.7763 0.7151 0.9999
4 Pgs 0.0 5.5 4.617 4.5429 4,5937 3.0873
5 Pao 0.0 1.0 0.9472 0.9919 0.9407 0.9999
6 P12 0.0 410 3.5956 3.5627 3.5813 4.0999
7 Vai 0.95 1.10 1.0708 1.0213 1.07 1.0681
8 Ve 0.95 1.10 1.0733 1.0247 1.0716 1.0673
9 Vas 095 | 1.10 1.0604 1.0133 1.0596 1.065
10 Ve 095 | 1.10 1.063 1.0175 1.0582 1.061
11 Vs 0.95 1.10 1.0747 1.037 1.0735 1.0695
12 Vo 0.95 1.10 1.0705 1.0271 1.0663 1.0609
13 Vsi2 0.95 1.10 1.0587 1.0009 1.0577 1.0544
14 Ta-13 0.9 1.10 1.0833 1.0974 1.0994 09718
15 Ta-13 0.9 1.10 0.9454 09 1.0946 0.9958
16 Ta120 0.9 1.10 1.0269 0.9868 1.0894 1.0253
17 Ta4.05 0.9 1.10 0.9562 1.096 1.1 1.0955
18 Tas25 0.9 1.10 1.0894 1.0173 1.0996 0.9354
19 Ta4-26 0.9 1.10 1.0224 1.0033 1.0242 1.0101
20 T7.29 0.9 1.10 0.9974 1.0161 1.0034 0.9963
21 T34-32 0.9 1.10 0.9619 0.9193 0.9423 0.9607
22 Ti1a1 0.9 1.10 0.9051 0.9012 0.9075 0.9156
23 Tis-45 0.9 1.10 0.9872 0.9419 0.9916 0.988
24 T14-46 0.9 1.10 0.9708 0.9647 0.9732 0.9726
25 Tio-s1 0.9 1.10 0.992 0.9855 0.9942 0.9825
26 T13-49 0.9 1.10 0.9528 0.9006 0.9448 0.9442
27 Tiia3 0.9 1.10 1.0148 0.9646 0.9827 0.9872
28 Ta0-56 0.9 1.10 0.9741 1.0103 1.0992 1.0014
29 T39-57 0.9 1.10 0.9957 0.9001 0.9701 0.9636
30 To.s5 0.9 1.10 1.0067 1.024 1.0114 0.9998
31 Qshis 0.0 20.0 0.1002 0.0627 0.2212 0.0437
32 Qshas 0.0 20.0 0.1389 0.1941 0.2547 0.1579
33 Qsns3 0.0 20.0 0.1109 0.2638 0.12 0.1421
Fuel cost ($/h) 41657.6736 | 41735.3577 | 41670.2097 | 44908.9339
VDM (p.u.) 1.6450 0.5953 1.8902 1.7425
VSI (L-index) 0.2388 0.241 0.2182 0.2333
APLM (MW) 14.7021 16.4383 14.9989 9.7299
Time (sec) 104.2312 107.9262 103.2718 102.3134

Case-2: OPF for VDM considering QFC

This case focuses on minimizing the deviation of load-bus voltage from 1.0 p.u. and

minimizing QFC simultaneously. Equation (3.15) and the penalty term from Equation (3.24)

51



form the combined bi-objective function with value of K , chosen as 100. Table 4.3 presents

the OPF results and optimal control variable settings. The results of Case 2 demonstrate an
improved voltage profile of 0.5953 p.u., a 63.8% improvement over Case 1's voltage deviation
of 1.6450 p.u. However, this improvement in voltage stability is accompanied by a slight

increase in fuel cost, rising from 41657.6736 $/h in Case 1 to 41735.3577 $/h in Case 2.

Table 4.4 provides a comparison of L-SCA results with those obtained from other popular
optimization methods in the literature. Additionally, Fig. 4.4 illustrates that the voltage profiles
achieved using the proposed L-SCA are closer to unity compared to those from the basic SCA

and the base case.

Table 4.4 Comparison of L-SCA with other popular algorithms reported in literature for Case 2

Algorithm Fuel Cost ($/h) VDM (p.u.)

L-SCA 41735.3577 0.5953

SCA 41731.8261 0.6896
Rao-3 (Gupta et al. 2021c¢) 42,043.2728 0.5725
MGOA (Taher et al. 2019b) 41,697.9735 0.7381
GOA (Saremi et al. 2017) 41,715.1396 0.8260

GA (Taher et al. 2019a) 41,700.4162 0.80517

PSO (Taher et al. 2019a) 41 684.4009 0.76240
TLBO (Taher et al. 2019a) 41 694.7778 0.7120
DSA (Abaci and Yamacli 2016) 41,699.4 0.762

MSA (Mohamed et al. 2017) 41,714.9851 0.67818

IMFO (Taher et al. 2019a) 41,692.7178 0.71824

MFO (Taher et al. 2019a) 41 719.8471 0.75514
SSO (El Sehiemy et al. 2020) 41705.87 0.6856
PSO-SSO (EI Sehiemy et al. 2020) 41713.72 0.6817
MICA-TLA (Ghasemi et al. 2014) 41,959.1774 0.539
Base case 51345.570 1.235
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Case-3: OPF for VSI considering QFC

Improving voltage stability requires minimizing the L-index, which ranges from O to 1. The
aim of this case is to obtain OPF solutions by minimizing both QFC and L-index. The combined
objective function is expressed by combining Equations (3.17) and (3.24), with a weight factor

K assigned a value of 6000 for OPF calculations. The resulting L-index of 0.21820 p.u.

represents an improvement over the 0.2388 p.u. achieved in Case 1, though it comes with a
slight increase in fuel cost, rising from 41657.6736 $/h in Case 1 to 41670.2097 $/h in Case 3.
As shown in Table 4.5, L-SCA outperforms other recently published optimization algorithms

in achieving these OPF objectives.

Table 4.5 Comparison of L-SCA with other popular algorithms reported in literature for Case 3

Algorithm Fuel Cost ($/h) L-Index
L-SCA 41670.2097 0.2182
SCA 41696.2959 0.224
Rao-3 (Gupta et al. 2021c¢) 41,692.6149 0.2186
MGOA (Taher et al. 2019b) 41,682.4031 0.2297
IMFO (Taher et al. 2019a) 41 673.6204 0.23525
DSA (Abaci and Yamacli 2016) 41,761.22 0.2383
MFO (Taher et al. 2019a) 41 688.6522 0.2395
GOA (Saremi et al. 2017) 41,698.1175 0.2395
GA (Taher et al. 2019a) 41 670.0872 0.2413
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PSO (Taher et al. 2019a) 41 670.1755 0.2420

TLBO (Taher et al. 2019a) 41,685.353 0.24787
SKH (Pulluri et al. 2018) 43,937.1058 0.2721
MSA (Mohamed et al. 2017) 41,675.9948 0.27481

Modified DE (Mohamed et al. 2017) 41689.5878 0.27677
MPSO (Mohamed et al. 2017) 41694.1407 0.27918
Base case 51345.570 0.2953

Case-4: OPF for APLM

The objective function for this case is Z 5, (%,u) described in Equation (3.20) added with

penalty term described by Equation (3.24). L-SCA reduces active power losses by 33.8% from
14.7021 MW (Case 1) to 9.7299 MW.

Table 4.3 presents the L-SCA results along with the optimal control variables, while Table
4.6 highlights the superior performance of L-SCA compared to other recent techniques. Figure
4.5 illustrates the smooth convergence of real power loss (showing a steady decline) for Case

4 using L-SCA, demonstrating an improvement over the SCA method.

Table 4.6 Comparison of L-SCA with other popular algorithms reported in literature for Case 4

Algorithm Power Loss (MW)
L-SCA 9.7299
SCA 10.9059
Rao-3 (Gupta et al. 2021c¢) 9.7590
SKH (Pulluri et al. 2018) 10.6877
Chaotic KHA (Prasad et al. 2017) 11.1224
HPSO-DE (Naderi et al. 2021) 11.9788
FAHSPSO-DE (Naderi et al. 2021) 11.7328
MOMICA (Naderi et al. 2021) 11.8826
PSO (Naderi et al. 2021) 12.7819
NKEA (Naderi et al. 2021) 12.5053
MSO (Kotb and El-Fergany 2020) 12.7435
MNSGA-II (Naderi et al. 2021) 12.8657
Base case 28.365
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Fig. 4.5 Active power loss convergence characteristics for Case 4

4.5.2 Results for Algerian 59-Bus System

The effectiveness and suitability of the proposed L-SCA approach in solving OPF problems
on real-world power systems has been demonstrated on a practical Algerian 59-bus power
system network. This network, consisting of 59 buses and 83 branches, has a combined output
of 684.10 MW generated by 10 generators. Notably, the generator at bus 13 is currently non-

operational.

The performance of the L-SCA algorithm was evaluated through 20 independent runs, with
detailed system parameters and bounds on control variables provided in reference (Bouchekara

et al. 2014c).

Case-5: OPF for TFCM

This case investigates the objective of minimizing generation fuel cost, usually expressed
by a quadratic function. The formulation of the objective function is the same as in Case 1. The
performance of the L-SCA algorithm for OPF, including the optimal control variable limits and

settings, is detailed in Table 4.7.

The L-SCA approach achieved a 13.13% reduction in total fuel cost, lowering it from
1943.7011 $/h (base case) to 1688.4653 $/h. Additionally, it was demonstrated to be superior
to other techniques, as evidenced in Table 4.8, and exhibited better convergence than the basic

SCA, as shown in Figure 4.6.
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Table 4.7 Optimal settings of control variables

Control L-SCA for OPF
S.N. Va(I;.&:llT;es Min. | Max. | Initial case Case 5 Case 6 Case 7 Case 8 Case 9
1 Pa2 0.1 0.7 0.7 0.2356 0.1848 0.1 0.7 0.74
2 Pas3 0.3 5.1 0.7 1.0127 0.9524 0.3 0.5391 0.8965
3 Pg4 0.2 4 1.15 1.1065 1.2341 0.2 1.4981 0.8404
4 Pai3 0.15 1.5 0 0 0 0 0 0
5 Paar 0.1 1 0.4 0.2587 0.3218 0.1047 1 0.8254
6 Pas7 0.1 1 0.3 0.5107 0.4709 0.3182 0.4092 0.5881
7 Paai 0.15 1.4 1.1 0.9669 0.5813 0.15 0.4764 0.7199
8 PG> 0.18 | 1.75 0.7 1.4081 1.7472 1.745 1.0894 0.9027
9 Pas3 0.3 4.5 2 1.0323 1.228 3.5499 1.0379 0.8527
10 Vai 0.94 1.1 1.06 1.1 1.0597 1.0996 1.0894 1.0999
11 Va2 0.94 1.1 1.04 1.0877 1.0725 1.1 1.0984 1.0962
12 Va3 0.94 1.1 1.05 1.1 1.0998 1.1 1.1 1.1
13 Vaa 0.94 1.1 1.0283 1.0808 1.0413 1.0949 1.1 1.0758
14 Vais 0.94 1.1 1 1.0938 0.9754 1.1 1.1 1.091
15 Vo1 0.94 1.1 1.0266 1.0803 1.0404 1.0999 1.0992 1.0757
16 Va3r 0.94 1.1 1.0273 1.1 1.0297 1.1 1.1 1.1
17 Vaai 0.94 1.1 1.0966 1.1 1.0082 0.9887 1.0802 1.1
18 Ve 0.94 1.1 1.034 1.1 1.0998 1.1 1.1 1.1
19 Vgs3 0.94 1.1 1 1.1 1.1 1.1 1.1 1.1
Fuel cost ($/h) 1943.7011 | 1688.4653 | 1734.8135 | 2468.8724 | 1924.1695 | 1821.3763
VDM (p.u.) 1.5757 2.6206 1.8359 2.6766 3.0488 2.6966
VSI (L-index) 0.2767 0.2175 0.219 0.2153 0.2168 0.2177
APLM (MW) 29.1409 27.6289 26.1014 46.9346 11.8485 23.7158
EM (ton/h) 0.5833 0.525 1.6563 4.3158 0.4583 0.3829
Time (sec) - 92.1921 94.2281 91.0281 96.1921 90.2038

Table 4.8 Comparison of L-SCA with other popular algorithms reported in literature for Case 5

Algorithm Fuel cost ($/h)

L-SCA 1688.4653

SCA 1689.4053

SKH (Pulluri et al. 2017a) 1688.5742

ESDE-MC (Pulluri et al. 2017b) 1688.5586

SCM-MI (Gupta et al. 2021b) 1688.5933

M-Jaya (Gupta et al. 2021b) 1689.0281

LCA (Bouchekara et al. 2014c¢) 1689.0768

KH (Pulluri et al. 2017a) 1690.4697
MFO (Bentouati et al. 2016) 1693.61
ABC (Bouchekara et al. 2014c) 1703.8

BHBO (Bouchekara 2014b) 1710.0859
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ACO (Bouchekara et al. 2014c¢) 1815.7

GA (Bouchekara et al. 2014c) 1937.1
Base case 1943.7011
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Fig. 4.6 Fuel cost convergence characteristics for Case 5

Case-6: OPF for VDM considering QFC

In Case 5, the voltage profile may not meet acceptable standards, creating a need for a
solution that both reduces fuel consumption and improves the voltage profile. In Case 6, the
formulation of the objective function remains consistent with Case 2, with the weighting factor

set to 100. The optimal control variable settings and results are provided in Table 4.7.

The present Case 6 achieved a 29.94% improvement in the voltage profile, with only a
2.67% increase in fuel cost. Table 4.9 offers a comparison of the results obtained by the
proposed L-SCA method against other well-known methods. Figure 4.7 displays the voltage
profiles for Case 6, the proposed L-SCA, basic SCA, and the base case, confirming that the

voltages at load buses fall within the acceptable limits.

Table 4.9 Comparison of L-SCA with other popular algorithms reported in literature for Case 6

Algorithm Fuel Cost ($/h) VDM (p.u.)
L-SCA 1734.8135 1.8359
SCA 1732.9160 1.8398
MFO (Bentouati et al. 2016) 1732.852 1.435
SCM-MI (Gupta et al. 2021b) 1718.48938 1.8815
M-Jaya (Gupta et al. 2021b) 1719.8954 1.8842
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LCA (Bouchekara et al. 2014c) 1755.5775 1.8404
Base Case 1943.7011 1.5757
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Fig. 4.7 Load bus voltage profile for Case 6

Case-7: OPF for VSI

The L-index (0 to 1) is a measure of voltage stability. It is calculated using Equation (3.18)
for any j load bus (Kessel and Glavitsch, 1986). Minimizing the system voltage stability
indicator, as described in Equation (4.8), can significantly improve voltage stability.
L=max(L,) where j=1, 2, ...... , NPQ; (4.8)

The proposed algorithm achieved an L-index of 0.2153 p.u. with an associated cost of
2468.8724 $/h, marking a 22.2% reduction from the base case value of 0.2767 p.u. The
proposed algorithm demonstrated superior reliability and robustness compared to other

techniques, as shown in Table 4.10.
Table 4.10 Comparison of L-SCA with other popular algorithms reported in literature for Case 7

Algorithm L-index (p.u.)

L-SCA 0.2153

SCA 0.2153

SKH (Pulluri et al. 2017a) 0.21519
LCA (Bouchekara et al. 2014c¢) 0.2152
ESDE-MC (Pulluri et al. 2017b) 0.21519
KH (Pulluri et al. 2017a) 0.21544
Base case 0.2767
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Case-8: OPF for APLM

The proposed L-SCA method in this case is shown to be effective in reducing power losses
in Algerian system. The objective function used is identical to that of Case 4. The real power
loss achieved through proposed L-SCA is 11.8485 MW, lower than the SCA algorithm
(12.0012 MW) and the base case (29.14 MW). Table 4.7 includes the results of the OPF for
this case, along with the settings of control variables.

While the fuel cost for this case is 1924.1695 $/h, slightly higher than in Case 5, it remains
below the base case fuel cost of 1943.7011 $/h. The proposed algorithm achieved a real power
loss that is lower than those reported in previous studies by SKH (11.9833 MW) and KH
(12.2491 MW) (Pulluri et al., 2017a). However, due to limited comparative studies on Algerian
power systems, fully evaluating the comparative significance of these results remains

challenging. Figure 4.8 illustrates the trend of reducing APLM using both the L-SCA and the

conventional SCA.
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Fig. 4.8 Active power loss convergence characteristics for Case 8

Case-9: OPF for EM

Pollutants like SOx and NOx pose a threat to public health and the environment. With rising
concern over environmental issues, the present case holds greater relevance. Equation (3.22)
incorporates a penalty factor from Equation (3.24) to formulate the objective function in Case
9. Table 4.7 showcases the optimal control settings and results obtained using L-SCA in the
present case. Figure 4.9 illustrates the convergence of emission cost between L-SCA and SCA

algorithms, with the emission value dropping dramatically from 0.5833 ton/h in the initial case
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to 0.3829 ton/h in Case 9, a 34.35% decrease from the initial case and a 27.07% decrease from
Case 5.

However, it's important to note that while emission reduction is a primary focus, other
objectives, such as the Total Fuel Cost Minimization (TFCM) objective, may experience slight
declines. This trade-off between different objectives highlights the complex nature of power

system optimization and the need for careful consideration of various factors.
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Fig. 4.9 Emission cost convergence characteristics for Case 9
Table 4.11 compares the results using the proposed L-SCA method to previously reported
methods, showing its superiority. The proposed algorithm effectively reduces emissions,

potentially benefiting public health and the environment in the long run.

Table 4.11 Comparison of L-SCA with other popular algorithms reported in literature for Case 9

Algorithm Emission Cost (ton/h)
L-SCA 0.3829
SCA 0.3834
MFO (Bentouati et al. 2016) 0.3844
ESDE-MC (Pulluri et al. 2017b) 0.3846
SKH (Pulluri et al. 2017a) 0.3852
KH (Pulluri et al. 2017a) 0.3875
LCA (Bouchekara et al. 2014c¢) 0.3877
PGA (Mahdad et al. 2009) 0.4213
FSLP (Zehar and Sayah 2008) 0.4329
Base case 0.5833
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4.5.3 1EEE 118-bus test network

The proposed L-SCA approach has been tested for scalability and effectiveness on a larger
IEEE 118-bus test system. Three objective functions are considered to solve OPF problems in
the IEEE 118-bus test system with both SCA and L-SCA. The IEEE 118-bus system comprises
186 transmission lines, 54 generators, 64 load buses, and one slack bus (Bus 69). Additionally,
14 buses have shunt VAR compensators, and 9 branches have tap changers. The active and
reactive power demand on a 100 MVA base are 42.4200 p.u. and 14.3800 p.u., respectively.
Detailed system data, including upper and lower limits on control variables and their initial
values, can be found in the specified references: Zimmerman et al. (2006), Christie (1993), and
PSTCA Univ of Washington (2022). To assess the performance of the L-SCA algorithm, 20

independent trials were conducted, and the best results are presented here.

Case-10: OPF for TFCM

In this case, minimizing the Total Fuel Cost (TFCM) was the primary objective for the OPF
problem, similar to Cases 1 (57-bus) and 5 (Algerian 59-bus). Table 4.12 presents the OPF
results, including initial values and control variables. The L-SCA algorithm achieved the lowest
fuel cost of 129256.218 $/h, outperforming other recent methods as shown in Table 4.13. Figure
4.10 illustrates the smooth convergence of fuel cost for L-SCA, demonstrating its suitability

for large-scale systems. The cost coefficients for all generators can be found in Zimmerman et

al. (2006).
Table 4.12 Optimal settings of control variables

S. Co.ntrol Initial L-SCA for OPF S. Coptrol Initial L-SCA for OPF

No. variables value Case 10 | Case11 | Case12 | No. variables value Case 10 Case 11 Case 12

(p-u.) (p-u.)

1 Pai 0 0.1043 0.577 0.8739 68 Ve 0.963 1.0306 1.0148 1.0306
2 Paa 0 0.005 0.0643 | 0.2988 69 Vaa 0.984 0.9781 0.9849 1.0296
3 Pas 0 0.0774 | 0.8198 | 0.9854 70 Vais 0.98 0.9712 1.0033 1.0321
4 Pas 0 0.7783 0.64 0.0097 71 Vaao 0.97 1.0318 1.0324 0.9974
5 Pcio 4.5 4.0902 | 0.4835 | 0.9255 72 Ve 0.985 1.0055 0.9832 0.999
6 Pci2 0.85 0.7307 | 1.3649 | 1.2713 73 Vaas 1.005 0.9486 1.0139 1.017
7 Pais 0 0.0643 | 0.8598 | 0.3272 74 VaGao 1.025 1.0034 1.0025 1.0032
8 Pais 0 0.0511 | 0.2266 | 0.8283 75 Vsa 0.955 0.9675 1.017 0.994
9 Paio 0 0.2218 0.667 0.9792 76 Vass 0.952 0.9575 0.9732 0.9942
10 Paoa 0 0.1895 0.169 0.5966 77 Vase 0.954 0.9533 1.0079 0.994
11 Paos 2.2 1.7638 | 0.1555 | 0.2543 78 Vaso 0.985 0.9404 0.9982 0.971
12 Paas 3.14 2.7655 | 2.0709 | 0.3178 79 Vet 0.995 0.9587 1.0337 0.9861
13 Pg27 0 0 0.8262 | 0.6952 80 Va2 0.998 0.972 0.9803 0.9913
14 Pasi 0.07 0.0801 | 0.9053 | 0.4596 81 Ves 1.005 1.06 0.9423 1.0126
15 Pgaz 0 0.4042 | 0.0062 | 09115 82 Vaes 1.05 1.0565 1.0237 1.0052
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16 P34 0 0.0505 | 0.5381 | 09772 | 83 Vaeo 1.035 0.9441 0.9816 0.9773
17 Pas6 0 0.404 | 0.6492 | 0.848 84 Vo 0.984 0.9557 0.9743 0.9964
18 Pacao 0 0.0269 | 0.5607 | 0.986 85 Van 0.98 0.9856 0.997 0.985

19 Pcaz 0 0.6158 | 0.5057 | 0.814 86 Ve 0.991 0.9788 1.0246 0.9996
20 | ifers 0.19 0.1179 | 0.7048 | 1.1549 | 87 Vara 0.958 0.9512 1.0071 1.0102
21 Paao 2.04 1.7471 | 2.8053 | 1.9784 | 88 Ve 0.943 1.0102 1.0184 0.9902
22 Pgsa 0.48 0.4956 | 1.2851 | 1.4322 | 89 Varr 1.006 0.9669 0.9912 0.9854
23 Pgss 0 0.084 | 0.0011 | 0.9499 | 90 Vaso 1.04 0.9906 1.032 0.9945
24 Pase 0 0.1862 | 0.1318 | 0.8852 | 91 Vass 0.985 1.0216 1.0035 0.9919
25 Paso 1.55 1.5056 | 2.2029 | 2.2398 | 92 Vas7 1.015 1.0324 1.0228 0.9586
26 Pce 1.6 1.5311 0.303 1.1057 | 93 Vaso 1.005 0.9949 1.0091 1.004

27 Pce2 0 0.2966 | 0.7558 0.87 94 Voo 0.985 0.9766 0.976 1.0209
28 Paes 391 3.2599 | 4.3585 | 0.701 95 Voot 0.98 0.9627 1.0419 1.0164
29 Paoe 3.92 3.357 0.686 | 0.6269 | 96 Voz 0.99 0.9631 0.9976 0.9962
30 Pg7o 0 0.0124 | 0.2485 | 0.8329 | 97 Voo 1.01 0.9531 1.0201 0.9943
31 Par 0 0.128 | 0.6637 | 0.0039 | 98 V100 1.017 0.9765 1.0285 1.0065
32 Pg73 0 0.3177 0 0.2536 | 99 Vaio3 1.01 0.9875 1.0031 1.0222
33 Pgra 0 0.0092 | 0.1828 | 0.8605 | 100 Vaio4 0.971 1.0032 1.018 1.0107
34 Par6 0 0.2613 | 0.6353 | 0.9496 | 101 Vaios 0.965 1.0182 1.0111 1.0094
35 Pg77 0 0.0069 0 0.8672 | 102 Vaio7 0.952 1.0465 0.9731 1.0032
36 Paso 4.77 3.8098 | 1.6419 | 2.4952 | 103 Vaiio 0.973 0.9879 0.9904 1.0147
37 Pass 0 0.1784 | 0.1276 | 0.8557 | 104 Ve 0.98 1.0041 0.9855 1.016

38 Pgs7 0.04 0.029 | 0.2334 | 0.1383 | 105 Ve 0.975 0.9997 0.9453 0.9975
39 Paso 6.07 4.4034 | 3.1873 | 1.3983 | 106 Va3 0.993 1.028 0.9961 1.0176
40 Paoo 0 0.0024 | 0.6939 | 0.9963 | 107 Vaiie 1.005 1.059 1.0035 1.0104
41 Pgor 0 0.0698 | 0.6053 | 0.3801 | 108 Ts 3 0.985 0.9024 1.0305 0.961

42 Paoz 0 0.0234 | 0.1809 | 0.4331 | 109 Ta6—25 0.96 0.921 0.9847 1.0915
43 Pagoo 0 0.0109 | 0.3573 | 0.6814 | 110 T30—17 0.96 0.9557 0.9785 0.9081
44 Paioo 2.52 23051 | 1.2205 | 1.4777 | 111 Tss 37 0.935 0.9928 0.9597 0.9413
45 Pgio3 0.4 0.3541 | 0.2488 | 0.1257 | 112 Te3—s9 0.96 1.0979 1.0132 1.0006
46 PGios 0 0 0.98 0.5873 | 113 Tes—61 0.985 1.0535 0.9811 1.067

47 Paios 0 0.8987 | 0.958 | 0.4629 | 114 Tes—66 0.935 0.9851 1.0243 0.9667
48 Pcio7 0 0.0681 | 0.3496 | 0.5067 | 115 Tes—60 0.935 0.9012 1.072 0.9833
49 Paiio 0 0.22 0.7612 | 0.698 116 Ts1—s0 0.935 1.0454 0.9447 0.9991
50 Pgin 0.36 0.3408 | 0.6481 | 0.0646 | 117 Qcs 0 0.2997 0.1228 0.2284
51 Pciz 0 0 0.4381 | 0.4671 | 118 Qcs4 0 0.0059 0.0155 0.121

52 Pcii3 0 0.0569 1 0.4977 | 119 Qc37 0 0.2582 0.1093 0.176
53 Paiie 0 0.0493 | 0.7561 | 0.0223 | 120 Qcas 0 0.0326 0.0535 0.2978
54 Vai 0.995 1.0267 | 1.0234 | 0.9635 | 121 Qcas 0 0.2962 0.2701 0.0979
55 Vas 0.998 1.0335 | 1.0069 | 0.9953 | 122 Qca6 0 0.2801 0.1789 0.276
56 Vas 0.99 1.0447 | 0.9969 | 0.9751 | 123 Qcas 0 0.1804 0.0117 0.1951
57 Vs 1.015 0.967 | 0.9943 | 0.9609 | 124 Qcr4 0 0.2549 0.049 0.07

58 Vaio 1.05 0.9933 | 0.9495 | 09761 | 125 Qcro 0 0.1568 0.2999 0.1323
59 Vaiz 0.99 1.0598 | 1.0044 | 0.9813 | 126 Qcs2 0 0.2761 0.271 0.2019
60 Vais 0.97 1.0402 | 1.0137 | 1.0067 | 127 Qcs3 0 0.0403 0.2438 0.2864
61 Vais 0973 | 0.9792 | 0.9487 | 1.0208 | 128 Qcios 0 0.0186 0.2942 0.0043
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62 Vaig 0.962 1.0153 | 1.0073 | 1.0138 | 129 Qcio7 0 0.159 0.2907 0.2997

63 VGoa 0.992 1.0276 | 1.0052 | 1.0151 | 130 Qci1o 0 0.1756 0.1542 0.2159
Fuel cost 131220 160918.4 | 159445.5

64 Vaas 1.05 1.06 0.9667 | 1.0235 ($/h) 57 129256.2180 300 756

65 Vaae 1.015 1.0366 | 0.9676 | 0.9732 | VDM (p.u.) 1.4389 1.9412 0.5395 1.0237

APLM 132.81
66 \Y 0.968 1.0428 | 1.0076 | 1.0249 ) 107.4547 69.4370 | 17.8810
G27 (MW) 01
67 Vasi 0.967 1.0107 | 1.0013 | 1.0263 Time (sec) - 140.0801 139.9871 | 142.1091

Table 4.13 Comparison of L-SCA and other popular algorithms for Case 10

Algorithm Fuel cost ($/h)
L-SCA 1,29,256.218
SCA 1,29,871.988
SCM-MIJ (Gupta et al. 2021b) 1,29,171.960
M-Jaya (Gupta et al. 2021b) 1,29,248.100
CS-GWO (Meng et al. 2021) 1,29,544.010
MSA (Mohamed et al. 2017) 1,29,640.719
TLBO (Bouchekara et al. 2014a) 1,29,682.844
FPA (Mohamed et al. 2017) 1,29,688.721
DSA (Bouchekara et al. 2014a) 1,29,691.615
MFO (Mohamed et al. 2017) 1,29,708.082
SKH (Pulluri et al. 2017a) 1,29,727.625
PSOGSA (Radosavljevi¢ et al. 2015) 1,29,733.580
KH (Pulluri et al. 2017a) 1,29,754.813
PSO (Bouchekara et al. 2014a) 1,29,756.228
Base Case (Radosavljevic et al. 2015) 1,31,220.520

%< 10°

Fuel Cost ($/h)

Iterations

150

Fig. 4.10 Fuel cost convergence characteristics for Case 10




Case-11: OPF for VDM

In this scenario, the L-SCA algorithm was employed to solve the OPF problem and
minimize voltage deviations at load buses to 1.0 p.u. on the 118-bus system. A penalty term
was added to the objective function (Equation 3.15) to achieve this. The approach resulted in a
significantly improved voltage profile of 0.5395 p.u., as shown in Table 4.14.

Comparative studies are limited, as only a few case studies on improving load bus voltage

profiles in IEEE 118-bus systems exist.

Table 4.14 Comparison of L-SCA and other reported algorithms for Case 11

Algorithm VDM (p.u.)
L-SCA 0.5395
SCA 0.6845
M-Jaya (Gupta et al. 2021a) 0.6771
MSCA (Attia et al. 2018) 0.995
Base Case 1.4389

Figure 4.11 compares the load bus voltage profiles of the proposed L-SCA, basic SCA, and
baseline case. The L-SCA-generated voltage profile ensures that all load bus voltages remain

within acceptable limits.
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Fig. 4.11 Load bus voltage profile for Case 11
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Case-12: OPF for APLM

The objective of this case study is to minimize power loss in the 118-bus network using an
independent objective function, identical to that in Cases 4 and 8. The OPF results demonstrate
a substantial reduction in power loss, achieving an 86.54% decrease from 132.8101 MW (base
case) to 17.881 MW. Table 4.15 provides a comparison of numerical results between the
proposed L-SCA and other recent methods. Additionally, power loss has decreased by 83.36%
from 107.4547 MW in Case 10. The L-SCA method outperforms the conventional SCA,
achieving a smoother convergence curve for power loss and more rapid attainment of the

objective function value, as shown in Fig. 4.12.

Table 4.15 Comparison of L-SCA and other popular algorithms for Case 12

Algorithm APLM (MW)
L-SCA 17.881
SCA 22.2156
SCM-MIJ (Gupta et al. 2021b) 19.1525
M-Jaya (Gupta et al. 2021b) 21.6419
SKH (Pulluri et al. 2017a) 22.1397
GWO (Meng et al. 2021) 31.77
TLBO (Gupta et al. 2021b) 36.8482
ICBO (Bouchekara et al. 2016b) 62.7315
MSCA (Attia et al. 2018) 76.22
Base Case 132.8101
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Fig. 4.12 Active power loss convergence characteristics for Case 12
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4.6 Discussion of Findings/Statistical Analysis

A statistical analysis was conducted to evaluate the reliability and robustness of the
proposed L-SCA technique. Table 4.16 summarizes the statistical results of both the proposed
L-SCA and the original SCA for solving the OPF problem. Cases 1, 4, 5, 7, 10, and 12 were
evaluated through 20 independent trials, each with identical population size and function
evaluations.

The results indicate that for all considered cases (IEEE 57-bus, IEEE 118-bus, and Algerian
59-bus systems), the best, worst, and mean values across the 20 trials are quite close, as
evidenced by the low standard deviation (SD) in Table 4.16. This statistical study demonstrates
the robustness of the proposed technique, which consistently achieves optimal or near-optimal
solutions in all trials.

This capability highlights the suitability of L-SCA for addressing both large-scale, complex

optimization problems and practical power system challenges.

Table 4.16 Statistical analysis of Cases 1, 4, 5, 7, 10 and 12 using the L-SCA and SCA algorithms

Algorithm Best ‘ Worst ‘ Mean SD Best ‘ Worst Mean ‘ SD
Case 1 (Total fuel cost) Case 7 (Voltage stability improvement)
L-SCA 41657.6736 | 41663.1653 | 41659.8873 | 0.2863 0.2153 0.2155 0.2154 0.3245
SCA 41695.2842 | 41696.8058 | 41697.2016 | 0.3152 0.2154 0.2157 0.2155 0.3406
Case 4 (Active power loss) Case 10 (Total fuel cost)
L-SCA 9.7299 9.7518 9.7437 0.0368 | 129256.2180 | 129276.0972 | 129263.7314 | 0.0318
SCA 10.9059 11.5491 10.9912 0.0394 | 129871.9878 | 129911.0381 | 129892.0341 | 0.0339
Case 5 (Total fuel cost) Case 12 (Active power loss)
L-SCA 1688.4653 | 1693.6109 | 1690.3216 | 0.3792 17.8810 21.0853 20.9010 0.3987
SCA 1689.4053 | 1695.6704 | 1692.1928 | 0.4081 22.2156 25.0912 23.3178 0.4056

4.7 Conclusion

L-SCA has proven to be a promising solution to OPF problems, outperforming other well-
known algorithms across two IEEE test systems (57-bus, 118-bus) and a real-world Algerian
network (59-bus). Across these systems, L-SCA consistently achieved reductions in fuel costs,
improvements in voltage profiles, enhanced voltage stability, reduced emissions, and
minimized power loss through 12 cases. In some cases, bi-objective formulations were
transformed into single-objective functions using the weighted sum approach.

This chapter concludes that L-SCA surpasses the original SCA and other meta-heuristic
algorithms in performance, demonstrating its superiority across power system networks of

varying sizes and complexities. L-SCA's improved performance is attributed to its efficient
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utilization of the learner phase of the TLBO algorithm, leading to faster convergence and
avoidance of local optima, as illustrated by various convergence curves.

Statistical analysis supports L-SCA's reliability and resilience, as demonstrated by its best,
worst, average, and standard deviation outcomes. For instance, L-SCA yielded fuel cost values
of 41657.6736 $/h, 1688.4653 $/h, and 129256.2180 $/h for cases 1, 5, and 10, respectively.
These values represent a respective reduction of 18.95%, 13.13%, and 1.49% of the base case,
with respective standard deviations of 0.2863, 0.3792, and 0.0318.

This research has the potential to be extended to MOOPF problems and OPF challenges in
restructured power systems under normal, severe, and contingency conditions. Furthermore,
integrating renewable energy sources and storage devices into OPF solutions could offer

significant technological, economic, and environmental advantages.
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CHAPTER 5
HYBRID RAO-2 SINE COSINE ALGORITHM FOR OPF SOLUTIONS

5.1 Introduction

The past decade has been marked by the increasing popularity of hybrid approaches for OPF.
These hybrid methods strategically combine the strengths of individual algorithms,
overcoming their limitations. These methods harness natural-inspired actions to deliver robust
solutions for complex problems (Blum et al. 2008), specifically in the optimal design of hybrid
power systems that combine solar PV and wind-based systems (Gusain et al. 2023).
Additionally, such systems benefit from the use of Cl-based hybrid machine learning
approaches which enhance OPF solutions by improving accuracy and computational efficiency
(Syed et al. 2021). Such hybridization leads to stronger algorithms with fast convergence, large
search spaces, and computation time reduction, facilitating superior OPF solutions.

Several researchers have contributed innovative hybrid algorithms to the field. Kumar and
Chaturvedi (2013) introduced hybrid approaches combining fuzzy systems with Genetic
Algorithm (GA-Fuzzy) and Particle Swarm Optimization (PSO-Fuzzy) to optimize control
parameter settings. Narimani et al. (2013) proposed a hybrid method combining Modified PSO
with the Shuffle Frog Leaping Algorithm (MPSO-SFLA) for Multi-Objective OPF (MOOPF).
Mahdad and Srairi (2014) developed a DE-APSO-PS hybrid strategy for solving MOOPF
under severe loading conditions. Radosavljevi¢ et al. (2015) presented the PSO-GSA hybrid
algorithm, merging PSO with the Gravitational Search Algorithm, to address single-objective
and MOOPF problems.

Additional hybrid methods have emerged in recent years to tackle diverse OPF challenges.
Notable examples include the hybrid DE and Harmony Search (Hybrid DE-HS) algorithm by
Reddy (2019), the Hybrid Firefly and PSO (HFPSO) by Khan et al. (2020), and the Jaya-
Powell’s Pattern Search (Jaya-PPS) by Gupta et al. (2021a). Gupta et al. (2021b) also proposed
the Sine-Cosine Mutation-based Modified Jaya (SCM-MJ) algorithm. Other significant
contributions include the FAHSPSO-DE algorithm by Naderi et al. (2021), the Hybrid Fruit
Fly-based ABC (HFABC) algorithm by Mallala et al. (2022), the Hybrid JAYA Bird Swarm
Algorithm (HIBSA) by Aurangzeb et al. (2023), and the Hybrid Sine Cosine-GWO (HSC-
GWO) by Keswani et al. (2023).

The success of hybrid approaches in OPF is evident in their ability to solve complex, large-
scale optimization problems efficiently. By combining complementary algorithmic strengths,

these methods provide advanced tools for tackling the diverse challenges of OPF, including
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cost minimization, stability enhancement, and power loss reduction, while adapting seamlessly
to evolving system demands.

In emergency scenarios, it is often necessary to shed segments of the load to preserve
overall system stability and prevent widespread blackouts caused by voltage instability in
stressed power systems. Voltage instability risks are heightened during network topology
changes or when transmission lines are overloaded. Studies have revealed that voltage
instability is the leading cause of major power blackouts globally, with overloaded transmission
systems frequently acting as the catalyst (Alhelou et al. 2019). Over the past decade, numerous
blackout reports have identified cascading grid failures stemming from voltage instability as a
critical issue.

To mitigate these challenges and augment the capacity of power systems to handle peak
demands without overloading, hybrid optimization techniques have emerged as effective
solutions to improve system loadability. For example, Gnanambal and Babulal (2012) proposed
a hybrid approach that combines DE and PSO (i.e. DEPSO) to enhance the loadability limit of
power systems. Similarly, Mahdad and Srairi (2015) introduced the Grey Wolf-Pattern Search
optimizer (GW-PS), which accounts for load margin stability and generator faults, ensuring
system security under critical conditions on the IEEE 30-bus network. In Taher et al. (2021), a
method combining Improved MFO (IMFO) with Continuation Power Flow (CPF) was
employed to optimize power system loadability and minimize load shedding during
emergencies, utilizing shunt FACTS devices. Additionally, Taher et al. (2022) presented an
approach for maximizing system loadability by strategically placing and configuring FACTS
devices through the IMFO algorithm while simultaneously optimizing multiple OPF
objectives.

These advanced hybrid techniques play a pivotal role in improving system loadability,
reducing voltage instability risks, and ensuring grid resilience under extreme conditions. By
incorporating strategies that enhance stability and optimize power flow, they significantly
contribute to minimizing the impact of emergencies on power systems.

This chapter introduces a novel hybrid optimization technique, termed HRSCA, developed
to address OPF challenges in power systems, particularly under scenarios of high loading and
unforeseen generator outages. The study examines two critical events: the system operating at
its load stability limit and contingencies involving generator outages. The simulations were
conducted using MATLAB R2018a, enabling a comprehensive evaluation of the proposed
algorithm. Extensive testing and validation on various power system networks highlight the

effectiveness of HRSCA in enhancing security-oriented OPF solutions. The algorithm
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demonstrates robust performance in optimizing power flow schemes (OPFS) across networks
of different sizes and under diverse operational conditions.
5.2 Mathematical Formulation of the OPF Problem

The OPF problem formulation fundamentally involves defining specific objectives within
a set of constraints. Solving the OPF problem requires adjusting certain power system
parameters, known as control variables (CVs), to achieve an optimal system configuration that
meets a predefined objective function. The optimized state of the power system is governed by
the state variables (SVs). Power system operation must adhere to two types of constraints:
equality constraints, represented by power balance equations, and inequality constraints, which
define the limits on controllable quantities and the operating boundaries of the power system.
The standard objective function is described in Equation (5.1), while the operating constraints
of the OPF problem chosen for this work are described in Equations (5.2—5.3) (Bouchekara et
al. 2014a).

Min: Z_. (x,u) (5.1
Subject to the constraints

g (x,u)=0 ii=1,2, 3,...... ,N, (5.2)
and, /,(x,u)<0 ;7=1,2,3,...... N, (5.3)

The objective function, Z

in » 18 Intricately linked to both the SVs, denoted by x, and the CVs,
represented by u . As shown above, &; represents the ith equality constraints imposed by non-
linear load flow equations and h ; denotes jth inequality constraints that pertain to the

operational limits of the physical components within the system. Here, ~, denotes the total
number of equality constraints, while »_ denotes the total count of inequality constraints. The

state vector, i.e., the vector of dependent variables, is given by Equation (5.4) as follows:

X =[P VoV Qoreeen O, Sine s Siien, ] (5.4)

Similarly, Equation (5.5) specifies the control variables vector, consisting of adjustable

variables optimized for the power flow scheme:

u' =[Py By VioVy O T Ty (5.5)

5.2.1 Objectives Functions
The objective functions addressed in the present work encompass five distinct objectives, each

mathematically represented as follows:

a) Fuel cost minimization (FCM)
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The fuel cost function is the most fundamental function of OPF and has been extensively
studied in the literature. Fuel cost ($//) and the power generated (MW) have an approximate
quadratic relationship as follows (Yuryevich and Wong, 1999):

NG
Zpon (X,u) = (Z a,+bP, +cF, j (8/h) (5.6)
i=l

here the Z,,(x,u) is the overall fuel cost function expressed in $/4.

b) Minimization of a Combined Voltage Deviation and Cost
The second most essential objective function of OPF aims at reducing load bus voltage
deviation (VD) from the standard reference of 1.0 per unit (p.u.). This is essential for
maintaining power system stability and ensuring the quality of power supply to consumers.
In most cases, the fuel cost function is combined with the voltage profile enhancement to
form a combined objective function as given in Equation (5.7).
NG NPQ
Zpur (X,10) = [Zai +bP, +cl.Pij+de > |7, -1.9) (5.7)
i=1 i=1
where, K, is assigned an appropriate value based on user experience and depending on the

relative importance of minimizing voltage deviation compared to minimizing fuel cost.

¢) Minimization of a Combined Voltage Stability Index (VSI) and Cost

The stability of an electrical power system network is characterized by ensuring that all
bus voltages remain within permissible ranges both during normal operation and in the event
of a disturbance. Power systems with high load demands and extensive transmission networks
are particularly vulnerable to voltage instability.

Improving voltage stability requires lowering the L-index of all buses. The L-index,
defined within a bounded interval of [0, 1], serves as a reliable stability indicator. A value of
‘0’ indicates an unloaded condition, while a value of ‘1’ signifies voltage collapse (Kessel and
Glavitsch, 1986).

Mathematically, the objective of VSI, i.e., L-index minimization, can be defined using the

two-fold objective combining fuel cost with voltage stability as follows in Equation (5.8):
NG

Z,g (1) = [Zai +b,P, +c,P: j +K,, (max(L,)) (5.8)
i=l

where, K is assigned an appropriate value based on user experience and depending on the
relative importance of voltage stability compared to fuel cost. The L-index of any jth load bus

is denoted by L and is defined by Equation (5.9).
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L. = l—# where j=1, 2, ...... , NPQ, w. :—[inv(ij )]*I:Yﬂ:l (5.9)

d) Power Loss Minimization (PLM)

The objective here is to minimize the total active power loss P,

in the power system.
Equation (5.10) calculates the difference between the total power generated by all the
generators in the system and the total power consumed by all the loads. A positive value

indicates a power loss in the system, which is undesirable.

NB NB NB
Eosses :Z})l :ZPG,- _ZPD,- MW (510)
i=1 i=1 i=l

Equation (5.11) typically represents the function for minimization of transmission loss in

a power system which is a nonlinear function of bus voltage magnitudes:

NL

ZPLM ('x’ l/l) = min (Bosses ) = ZGL

i-j
L=1

[V?+V} =2V Coss,] MW (5.11)

e) Emission Cost Minimization (ECM)

Minimizing the emission of harmful gases from thermal power plants is an important
objective in OPF, as it reduces environmental impact. The emission cost is generally
associated with the active power output of the generators.

Equation (5.12) defines the emission cost as a function of the active power output of the
ith generator measured in MW:

NG
Z s (x,u) = Emission = Z(ai +BF, + }/[PGZI_ + o, exp(uF,)  (ton/ h) (5.12)

i=1
where &, B, V;, @ and K; are the emission coefficient of ith generator.
5.2.2 Constraints:
a) Equality constraints
The equality constraints represent the conventional power flow equations that ensure the

balance between active and reactive power flows in the system. These constraints are

mathematically described by Equations (5.13) and (5.14) as follows:

NB NB
Basses :ZPG, _ZPD, (513)
i=l1 i=1
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NB NB
Qlosses = Z QGi - Z QD’. (5 14)
i=1 i=1

b) Inequality constraints

The inequality constraints set the limits for adjustable variables and operational thresholds
in the power system. These thresholds cover voltage levels at generator and load buses, active
and reactive power outputs from generators, transformer tap changer settings, and restrictions
on compensating reactive power. The inequality constraints are detailed in Equations (5.15-
5.21):

Each generator unit's active power, reactive power, and voltage magnitude are constrained

by upper and lower bounds as follows:

P,™ <P <P™ i=12,..,NG (5.15)
Vo™ <V <V™  i=12,..,NG (5.16)
0" <0, O™ i=12,...NG (5.17)

Every regulating transformer tap has lower and upper limits for discrete tap settings as:

™" <T <T™ i=12,..,NT (5.18)

Every reactive power compensator injects reactive power (i.e., shunt VAR compensation)

within discrete lower and upper limits as:
quin Q. <0, i=12,..,NC (5.19)

The transmission line power flow capacity (upper limit), and the upper and lower limits of

load bus voltage are categorized under system security constraints and are described as

follows:
Slinel- < Sline:naX l = 19 299NL (520)
"<y, <v,™  i=12,..,NPQ (5.21)

By carefully considering and incorporating these constraints into the OPF problem, we can
ensure the safe, reliable, and efficient operation of the power system. These constraints are
typically imposed through quadratic penalty terms in the objective function, utilizing a

penalty factor approach. Therefore, the Equation (5.1) can be augmented as;

Zaug = Zmin (x’ U) + penallj/ (522)
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_ NPQ . NG _
where,  penalty = 4, (PG1 - PG1 hm)z +4, Z (VL,. - VL,. hm)z +4 Z (QG,, - QG,. hm)z
i=1 i=1 5.23)
NL ' .
+ 2“4 Z (Slinei - Sline,- " )2
i=1

In Equation (5.23), 4,, 4,, 4, and 4, denote penalty factors. If the limit value of dependent

variable upon violation is denoted by X "™ then it can be conveniently expressed as per Equation

(5.24):

) xmax; X > xmax
fmz{ ( : (5.24)

min
X

s(x<x

max )

5.3 Proposed Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) Methodology

The Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) is introduced as a novel optimization
technique designed to address critical OPF challenges in power systems, particularly under
conditions of high loading and unforeseen generator outages. The algorithm is tailored to
handle two key scenarios: systems reaching their load stability limits and generator outage
contingencies. By integrating the strengths of the Sine Cosine Algorithm (SCA) and Rao-2,
HRSCA provides a robust solution that enhances both exploration and exploitation capabilities,
ensuring efficient and secure power system operation.

The hybridization of SCA and Rao-2 allows HRSCA to utilize SCA’s strong global
exploration ability, which prevents getting trapped in local optima, while employing Rao-2’s
rapid convergence and refined local search capabilities. This combination dynamically
balances exploration and exploitation, enabling diverse and optimal solutions that meet OPF
problem constraints effectively and efficiently.

HRSCA has demonstrated exceptional performance in both SOOPF and MOOPF scenarios.
Extensive testing and validation on the IEEE 30-bus and IEEE 118-bus standard test systems
reveal that the algorithm consistently delivers superior or comparable results to existing
optimization methods documented in the literature. Key objectives addressed by HRSCA
include FCM, VDM, PLM, ECM, and VSI, within both single and bi-objective frameworks.

5.3.1 Overview of Sine Cosine Algorithm (SCA)

The introduction of SCA by Mirjalili has generated significant interest among researchers,

leading to its extensive application across various fields to tackle optimization problems
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(Mirjalili, 2016). SCA and its variants have been widely used in diverse applications, including
feature selection for machine learning (Sindhu et al. 2017; Belazzoug et al. 2020), solving
global engineering optimization problems (Abd Elaziz et al. 2017), sizing distributed
generators to meet load demands in AC distribution systems (Montoya et al. 2020), addressing
single and multi-objective OPF problems (Attia et al. 2018; Gupta et al. 2021b; Karimulla and
Ravi, 2021), and enhancing loading margin stability in security OPF during contingencies.

A comprehensive overview of SCA is provided in Chapter 4, Section 4.2.1. As discussed
therein, SCA employs sine and cosine functions through a movement mechanism to reposition
search agents within the solution space. Each agent's position update is influenced by the best
solution found thus far and is determined by specific mathematical expressions, detailed in

Equation (5.25):

X+ R xsin (R, )X|RBL, =¥, 5 R, <05

t+l
Xjk =

t ., (5.25)
xj,k + Ie1 X COS (R2 ) X ‘R3Pbest]- - xfsk

; R, =205

where, x?ﬁ . represents the position of the current solution at ¢z iteration in jth dimension (j =

1,2...,n), with “n” being the number of design variables and P, , is the position of the best

solution (target point) at ¢ iteration in jth dimension. Additionally, the variables R, R, , R;,
and R, are Gaussian-distributed random variables used in the algorithm to prevent getting

stuck in local optima. In the updating process, R, dynamically guides solution movement,
initiating with a higher influence for broad search and gradually reducing for targeted
exploitation as optimization progresses. The fine tuning of R, during search process is carried
out using Equation (5.26) as:

R =a—-t xalt (5.26)

where, ! represents the current iteration number, £, denotes the maximum number of
iterations, and ‘a’is a user defined constant. The parameter R, € [0, 27] determines the step size

for exploring the search space, and parameter R; € [0, 1] provides random weight to P,,estj . The
algorithm alternates between the cosine and sine components of Equation (5.25) with equal
probability, which is controlled by the variable R, that ranges from [0-1].

Despite its success in various optimization tasks, SCA suffers from drawbacks such as slow

convergence rates and restricted local search abilities. Researchers have responded to these
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challenges by creating modified and hybrid versions of SCA tailored for real-world
applications, as previously mentioned. Expanding on these enhancements, the authors of this
study propose a new hybrid approach that combines SCA with another strategically selected

algorithm. The goal is to overcome existing limitations and improve overall performance.
5.3.2 Overview of Rao-2 Algorithm

In 2020, a new set of algorithms known as Rao-1, Rao-2, and Rao-3 was introduced and
evaluated using 23 benchmark functions, as detailed in Rao (2020). One major advantage of
these advanced Rao variants is their metaphor-free design, which frees them from the
complexities of problem-dependent control parameters. This eliminates the need for parameter
tuning, requiring only basic parameters such as population size and iteration count.
Additionally, these algorithms demonstrate a notably fast convergence rate. The Rao
algorithms operate by identifying the best and worst solutions found during the optimization
process and enabling random interactions among potential solutions. The Rao algorithms and
their various adaptations have been widely used to tackle a variety of optimization problems,
including the optimal design of mechanical components (Rao and Pawar, 2020), determining
the optimal parameters of renewable energy systems by Rao et al. 2023, optimal load frequency
regulation in hybrid power grids by Khamies et al. 2021, solving the traveling salesman
problem (TSP) by Nikum (2021), and addressing OPF problems (Gupta et al. 2021c; Hassan
et al. 2021). In our OPF study, we integrated the Rao-2 algorithm within a hybrid approach,
selecting it for its strong feature of high convergence rate and lack of reliance on any solver-
specific parameters, thus enhancing the efficiency of the optimization process.

The Rao-2 algorithm employs a search strategy that explores the solution space by utilizing
both the best and worst solutions and incorporates stochastic interactions among the

population's elements, as outlined in the model presented in Equation (5.27):

+1_ _t ¢ t  _ pt
Xjx =X, 0, X\ B £

best ' worst ;

t
+I"2j X(

X, or x;’d‘—‘x}d or x;.’k‘) (5.27)
where x;,k denotes the jth variable value (where j =1,2,...,n) for the kth candidate solution

(where k= 1,2,...,m) after the ¢ iteration, with “n” being the number of design variables and

“m” being the population size. xﬂ denotes the updated value of the jth variable in the next

tth

iteration. The best and worst candidate solutions at #” iteration are represented by P’ and

best;
P! respectively. Here, rf/ and 7, ; are the random numbers within [0, 1], generated for the

worst j

Jjth variable during the #* iteration. In Equation (5.27), the second term on the right-hand side
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guides the candidate solution based on the interaction between the best and worst solutions,
ensuring convergence toward promising regions of the solution space. The third term is

indicative of random interaction between the presently considered kth solution and a randomly

[T

picked dth solution. The term “ X}, or x ,” in Equation (5.27) compares fitness values of the

current solution and randomly selected search agent. If the fitness value of the Ath candidate
solution is better than that of the dth candidate, the term “x’, or x;.q . evaluates to xi +»and in

1
X.

that case, “x;

4 0rX;,” becomes x',. Similarly, if the fitness value of the dth candidate

solution is better than that of the kth candidate solution, the term “ x'

"« or X, ;7 evaluates to

[T

t . ., t e :
X; 4 and in such condition, “x, or x;,” evaluates to x/ ;.

While Rao-2's interaction term promotes both exploration (diversifying search capability)
and exploitation (local search capability), the algorithm may still fall into local optima due to
limited knowledge exchange, weak exploration ability, and minimal use of valuable
information gained during the search process. These shortcomings have led to hybridizing Rao-

2 with another algorithm to improve both its exploration and exploitation capabilities.
5.3.3 Hybrid Rao-2 Sine Cosine Algorithm (HRSCA)

The Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) is an innovative straightforward
approach that merges the strengths of the SCA and Rao-2 algorithms to optimize their
performance and address their limitations. The SCA provides extensive exploration capabilities
to prevent early convergence to local optima, while the Rao-2 algorithm boosts convergence
speed and improves the effectiveness of local searches.

In this hybrid approach, each search agent can choose between SCA movements or Rao-2

update procedures to update its position, based on conditions specified in Equation (5.28).

t+
Xj S

M+t rot ¢
x| —xj+R1><c0s(R2)><‘R3ij -x

X, + R xsin(R,)x

RP,, —x

best ; j

;0<R,<0.35

:0.35<R, <07 (5.28)

t+l ot t t ¢ t
xj,k - xj,k +l’i J X‘P best; Rvorst/ Xj

t t t
Xip OF X 4| =|X; 4 Or X))

t
x|

) :07<R,<I

The equation set indicates that the proposed hybrid strategy follows a straightforward
structure by adjusting its search strategy based on the value of R, . For lower values of R, (0

< R, <0.35), the algorithm explores a broader range of potential solutions by utilizing the

sine-based update mechanism. For moderate values (0.35 < R, <0.7), the cosine-based update

71



mechanism is activated. Cosine-based updates maintain exploratory behaviour while gradually

introducing exploitation characteristics, targeting promising regions of the search space with a
balanced approach. Higher values (0.7 < R, < 1.0) signify intensified exploitation, where the

Rao-2 mechanism takes over to refine the already-discovered promising areas through
intensified search, thereby improving convergence speed. HRSCA iteratively evaluates and
updates solutions based on best and worst candidates, reducing the risk of suboptimal
convergence and sustaining an effective exploration-exploitation balance throughout the
optimization process. Figure 5.1 presents a graphical framework that demonstrates the

application and process flow of the proposed HRSCA-based scheme in this study.

HRSCA based Uplimizid power flow scheme Test Systems (TS) Objective Functions (OF)
S

BUS |

e
[ A 10 1
@
Standard ; k
OPF 3 : =
; S X
Load flow data, * = : i CTSA .
Algorithm-Specific Problem dimension . . OFs @ _ ';U
Parameters (SCA) E .| IEEE * - ..v Optimized
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— Program . .\4 Y
(Base case K . 3 _’,‘u
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Control Variables
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Fig. 5.1 Graphical framework for HRSCA based OPF scheme for diverse scenarios

5.3.4 Computation Steps for HRSCA and Flowchart

Table 5.1 provides a clear and structured presentation of the implementation steps involved
in the proposed HRSCA approach, outlining the detailed computational procedure for solving

the OPF problem.
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Table 5.1 Steps in HRSCA

HRSCA
INPUT e Problem dimension, n
¢ Population size, m
e Stopping criteria: Maximum number of iterations, fmax
e Upper and lower bounds of decision variables, [Xmin, Xmax]-
INITIALIZATION e Set iteration counter, ¢ = 0.
e Randomly initialize the population of m search agents within bounds [Xmin, Xmax]-
o Identify the best ( £, ) and worst ( P, ) solutions in the initial population based on the
objective function.
EVALUATION e Compute the fitness value for each search agent using the objective function specified in
Equation (5.22).
o Fitness evaluation integrates sine-cosine updates for global adjustments and Rao-2's
stochastic interactions for refined local search.
e Update £, and P, , solutions in the population.
e Check constraint satisfaction and handle violations, if applicable.
ALGORITHM LOOP:
STEP-1 e Generate a random number R4 € [0,1], which serves as the random switching parameter.
e Update each search agent's position using R4 to determine the transition between
exploration and exploitation phases.
STEP-2 o The hybrid mechanism uses R4 to decide whether to follow SCA or Rao-2 for position
updates:
o [f 0 < R4 <0.35: Apply the sine-based update,
xj*kl =x, +R x sin(R, )x R3Pb’mj T
(Sine-based update prevents premature convergence to local optima)
¢ [f0.35 < R4 < 0.7: Apply the cosine-based update,
x?/i = x;k + R, xcos (Rz ) X R3B)tm/. - x;l\
(Cosine-based update targets promising areas of search space while maintaining diversity)
o [f 0.7 < R4 < 1.0: Use Rao-2-based stochastic updates for refining local search,
X =Xl P = Bl |78 %[ 0r X | =[x o i)
(Rao-2 update intensifies local search by refining solutions near the best-known candidates)
STEP-3 e Compute the objective function value for each updated solution.
e Compare the kth candidate solution with a randomly chosen dth candidate:
o If: Z(x)) < Z(x), (), orx! ) —>x),
o Otherwise: (', orx’,) > x’
CIrwise: ok j.d j.d
. . .
e Compare the updated solution X;Tk with its current solution X;-, ke
o If: Zz(x")) < Z(x,) : Update the solution by replacing the current one.
e Otherwise: Retain the existing solution.
STEP-4 e Check the termination condition:

o If > tmax: Stop the algorithm and return the best solution.
o If # < tmax: Increment the iteration counter (¢ = ¢ +1) and return to STEP-1.
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With this hybrid approach, search agents dynamically switch between two optimization
algorithms, guided by a stochastic process. This strategy utilizes the SCA's extensive
exploration capabilities, helping to avoid early convergence to local optima. At the same time,
the Rao-2 algorithm, with its efficient local search abilities, enhances convergence speed
toward the best solutions. This hybrid mechanism balances exploring the search space through
SCA movements and refining the best solutions identified by the population via the focused
exploitation of the Rao-2 algorithm.

The flowchart illustrating the proposed HRSCA is shown in Fig. 5.2.
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The implementation of this hybridized approach enables search agents to dynamically
switch between the two optimization algorithms, guided by a stochastic process. The SCA
enhances exploration, preventing premature convergence, while Rao-2 improves local search
efficiency, accelerating convergence to optimal solutions. This synergy balances exploration
via SCA and exploitation through Rao-2, refining the search process. The proposed HRSCA
operates with parameters detailed in Table 5.2. The "No Free Lunch" theorem, established by
Wolpert and Macready (1997), highlights the limitations of any single optimization method
and the importance of tailored algorithms for specific challenges. This makes the hybrid SCA-
Rao-2 approach a valuable tool for addressing the OPF problem effectively.

Table 5.2 Parameter settings for HRSCA in the current study

Parameter Value Component Description

Population size (1) 30 Shared Number. of candidate solutions in the
population.

. . . 100 (30-bus), Maximum number of optimization

Maximum iterations (#max) 150 (118-bus) Shared steps.

Random coefficients [0, 1] Rao-2 Randpm numbers for diversity in

(r1, 12) solution updates.

Switching parameter (Rs) [0, 1] SCA SW1‘tches transition between sine and
cosine components.
Dynamically guides solution movement

Control parameter (R) R =a —t xal/t, SCA based on iteration progress, with a = 2
(user defined)

Step size (R>) [0, 27] SCA :;arlireneter for exploring the search

Weight coefficient (R3) [0, 1] SCA Randpm weight assigned to the best
solution.

5.4 Simulation Results and Analysis

The HRSCA was rigorously tested through power system simulations, validating its
effectiveness in security OPF across different network sizes and operating scenarios. Two
electrical grids were analysed: the IEEE 30-bus network (cases 1-8) and the 118-bus network
(cases 9-12), with key characteristics summarized in Table A.1 (Appendix). For both the 30-
bus and 118-bus networks, the best results were achieved using a population size (m) of 30,
setting the iteration limits (#max) to 100 and 150, respectively (Table 5.2). The simulations were
carried out using MATLAB R2018a on a system equipped with a 10th Gen Intel Core 17
processor, 8.0 GB RAM, and a clock speed of 1.7 GHz. Each case study involved 30 successful
trials for both test systems, ensuring the robustness of results across multiple trials. The best

results from these 30 trials are presented here. Simulations have revealed that HRSCA

82



consistently outperforms contemporary OPF algorithms, proving its reliability in handling load

growth and unforeseen disruptions in real-world power system operations

5.4.1 Performance on IEEE 30-Bus Test System

The initial standard test system selected for this study has the following features: it consists
of six thermal generating units located at buses 1, 2, 5, 8, 11, and 13, with an active power
demand of 283.4 MW and reactive loading of 126.2 MVAR. Additionally, the system includes
four transformers with a +£10% tapping range located on lines 6-9, 6-10, 4-12, and 28-27.
Furthermore, nine shunt VAR compensators are positioned at buses 10, 12, 15, 17, 20, 21, 23,
24, and 29 (Lee and Park, 1985). Table 5.3 provides the minimum and maximum permissible

values for generator unit parameters, along with their respective fuel cost coefficients.

Table 5.3 Allowable generator unit parameters and fuel cost coefficients for IEEE 30-bus test system

ﬁ‘(‘f g&w) g;““v) g\ZV AR) (%;V ARy | @O/ | b (SMW) ¢ ($/h-MW?)
I |50 200 | 20 200 0 2 0.00375
2 |20 80 20 100 0 1.75 0.01750
5 |15 50 15 80 0 1 0.06250
8§ |10 35 15 60 0 325 0.00830
11 |10 30 10 50 0 3 0.02500
13 |12 40 15 60 0 3 0.02500

Additionally, load data, line data, and bus data for the 30-bus system on a 100 MVA base
are available in (Abou El Ela et al. 2010). The lower and upper bounds of the control variables
(CVs) are depicted in Table 5.4 for Cases 1-5.

5.4.1.1 Scenario-1: Standard OPF

This scenario involves a standard OPF analysis on a 30-bus power system test case. For
this scenario, five distinct single and multi-objective cases have been analyzed. These cases
aim to minimize parameters including total fuel cost, total voltage deviation, total active power
losses, emissions, and the stability index (L-index). The primary intent of this scenario is to
contrast the outcomes derived from the proposed strategy under standard operational conditions
with the outcomes yielded by recently developed optimization techniques. The five cases
considered are:

Case 1: Fuel Cost Minimization (FCM)
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Case 2: Voltage Deviation Minimization considering Fuel Cost (VDMFC)
Case 3: Voltage Stability Improvement considering Fuel Cost (VSIFC)
Case 4: (a) Power Loss Minimization (PLM)

(b) Power Loss Minimization considering Fuel Cost (PLMFC)
Case 5: Emission Cost Minimization (ECM)

Case-1 FCM

The proposed HRSCA technique was applied to Case 1, which focuses on minimizing basic
fuel cost (FCM objective). Table 5.4 displays the optimal settings and their associated objective
function values. The decision variables (Pg, Vi, Qc and T) are defined as per Equation (5.5).
The basic FCM objective is given by Equation (5.6).

The total fuel cost (FC) was reduced to 799.1617 $/h, reflecting a significant 11.4%
reduction compared to the base case (initial case). Additionally, the voltage deviation (VD) and

active power loss P, were minimized to 1.7309 p.u. and 8.6451 MW, respectively. These

results surpass the performance of several algorithms reported in the literature, including SCA
(800.1018 $/h) by Attia et al. (2018), MSCA (799.31 $/h) by Attia et al. (2018), MGOA
(800.4744 $/h) by Taher et al. (2019b), GOA (800.7806 $/k) by Taher et al. (2019b), TLBO
(800.6108 $/h) by Taher et al. (2019b), PSO (800.5912 $/h) by Taher et al. (2019b), CS-GWO
(799.9978 $/h) by Meng et al. (2021), AMTPG-Jaya (800.1946 $/h) by Warid (2020), Chaotic
Rao-2 (800.1537 $/h) by Warid (2022), and Partitioned ALO i.e. PALO (799.9160 $/k) by
Mahdad (2020).

While the Jaya optimizer in El-Sattar et al. (2019) achieved a slightly better FC value
(798.9386 $/h), it required 200 iterations to do so, with a less favourable VD value of 2.01 p.u.
Similarly, other competitive algorithms, such as MSCA, required more than 400 iterations, and
PALO needed 200 iterations to achieve their respective optimized values. In contrast, the
proposed method achieved rapid convergence within 100 iterations in approximately 92 s.
Figure 5.3 illustrates the trend of reducing the total fuel cost using the proposed hybrid
approach compared to Rao-2 and SCA.
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Table 5.4 Optimized control variables obtained by HRSCA for IEEE 30-bus test system

Case 4
CVs (p.u.) Min | Max Base case | Casel Case 2 Case 3 Case 5

(@ (b)
Pa2 20 80 80 0.4869 0.4892 0.4874 0.6626 0.5539 0.6637
Pas 15 50 50 0.2136 0.2164 0.2182 0.5 0.3788 0.5
Pas 10 35 20 0.2105 0.2208 0.2373 0.35 0.35 0.35
Pani 10 30 20 0.1193 0.124 0.1338 0.3 0.2999 0.3
P13 12 40 20 0.12 0.12 0.12 0.4 0.2604 0.4
Vai 095 | 1.1 1.05 1.1 1.0434 1.1 1.1 1.0799 1.1
Va 095 | 1.1 1.04 1.088 1.0287 1.1 1.0959 1.0687 1.1
Vas 095 | 1.1 1.01 1.0624 1.0168 1.1 1.079 1.0451 1.0821
Vas 095 | 1.1 1.01 1.0703 1.0779 1.1 1.085 1.054 1.0906
Vau 095 | 1.1 1.05 1.1 0.9999 1.1 1.1 1.0999 1.1
Va3 095 | 1.1 1.05 1.1 0.9955 1.0996 1.098 1.0591 1.0999
TS 0.9 1.1 1.078 1.0664 1.0161 0.9827 1.05 1.0773 1.0999
TSz 0.9 1.1 1.069 0.9 0.9 1.0873 0.95 0.9028 0.9
TSis 0.9 1.1 1.032 1.0001 0.9379 1.09 1.02 0.9859 1.02
TS36 0.9 1.1 1.068 0.9735 0.9685 0.981 1.003 0.9763 0.9943
Qc10 0 5 0 0.05 0.05 0.05 0.05 0.0075 0
Qci2 0 5 0 0.05 0 0.05 0.05 0.0453 0.0471
Qcis 0 5 0 0.05 0.05 0.05 0.05 0.0492 0.0485
Qc17 0 5 0 0.05 0 0.05 0.05 0.05 0
Qc20 0 5 0 0.05 0.05 0.05 0.05 0.0428 0.05
Qe21 0 5 0 0.05 0.05 0.05 0.05 0.0499 0.0497
Qc23 0 5 0 0.0392 0.05 0.05 0.0415 0.0301 0.05
Qc24 0 5 0 0.05 0.05 0.05 0.05 0.0499 0.05
Qc29 0 5 0 0.0333 0.0264 0.05 0.0305 0.0288 0.0253
FCM (8/h) - - 902.0046 | 799.1617 | 803.4166 | 800.8527 | 941.8419 | 857.2174 | 942.0814
VDM (p.u.) - - 1.1601 1.7309 0.0959 1.7544 1.6891 1.1502 1.6734
VSI (p.u.) 0.1772 0.121 0.1412 0.118 0.1234 0.1282 0.1242
PLM (MW) - - 5.8423 8.6451 10.0268 8.7055 3.0589 4.5259 3.0852
ECM (ton/h) | - - 0.2359 0.3347 0.3332 0.3258 0.2037 0.2263 0.2036
Total Load 283.4 283.4 283.4 283.4 283.4 283.4 283.4
(MW)
Load Factor , , , 1 ; 1 1
(LMS) p.u.
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Fig. 5.3 Convergence curves in Case 1 with HRSCA, Rao-2, and SCA

Case 2: VDMFC

This case focuses on minimizing the total voltage deviation (VDM) while simultaneously
optimizing the fuel cost (FC), as defined by Equation (5.7). The weighted sum method was
employed to combine these objectives. The proposed HRSCA achieves a VD of 0.0959 p.u.,
representing a substantial reduction of 91.7% compared to the initial case (1.1601 p.u.). The
corresponding fuel cost was 803.4166 $/h, with an associated power loss of 10.0268 MW.

When compared to Case 1, the fuel cost increased slightly by 0.53%, while the VD value
decreased significantly by 94.45%, demonstrating a strong trade-off between cost and voltage
profile improvement. The proposed technique outperformed results from recent literature,
including methods such as SCA (0.1082 p.u., 843.604 $/h) in Attia et al. (2018), GA
(0.1257 p.u., 803.9156 $/h) in Taher et al. (2019b), TLBO (0.1087 p.u., 804.5827 $/h) in Taher
et al. (2019b), PALO (0.1117 p.u., 850.2739 $/h) in Mahdad (2020), and various Rao variants
by Gupta et al. (2021c¢).

Although TAOA by Akdag (2022) achieved a marginally better VD value (0.0953 p.u.), it
yielded a higher FC value (803.57 $/h) and required 400 iterations, leading to increased
computational burden. Similarly, methods like ISCA by Mahdad and Srairi (2018) and
IMOMRFO by in Kahraman et al. (2022) achieved slightly better FC values than HRSCA
(802.3510 $/h and 801.3908 $/h, respectively); however, their VD values were significantly

higher, highlighting their limitations in maintaining an optimal voltage profile.
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Figure 5.4 illustrates the voltage profile, showing the distribution of voltage magnitudes at
all load buses. The proposed HRSCA demonstrates consistently stable voltage magnitudes
close to 1.0 p.u., outperforming the Rao-2 algorithm in maintaining an improved voltage

profile. The CV settings are presented in Table 5.4.
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Fig. 5.4 Comparison of voltage profiles in Case 2 using HRSCA and Rao-2 algorithms
Case 3: VSIFC

This case focuses on minimizing the voltage stability index (L-index), as defined by
Equation (5.8), while simultaneously addressing FCM and VSI objectives to form a bi-
objective function. The proposed HRSCA approach was applied, and the results, along with
the CV settings, are presented in Table 5.4.

The achieved L-index value of 0.118 p.u. represents a significant 33.4% reduction
compared to the base case (0.1772 p.u.). The corresponding fuel cost is 800.8527 $/A, reflecting
an improvement of 11.2% over the base case. These results outperform those achieved by
various optimization methods documented in the literature, including MSA by Mohamed et al.
(2017), and MFO, PSO, and TLBO reported by Taher et al. (2019b), along with other recent
approaches. Although Rao algorithm variants in Gupta et al. (2021c¢) achieved slightly better
fuel cost values, the proposed hybrid approach delivers a superior L-index, demonstrating its
effectiveness in enhancing voltage stability while maintaining competitive fuel cost

performance.

Case 4:
(a) PLM
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In this case, the objective is to minimize the total real power loss (B, ) as defined by

Equation (5.11). Using the proposed HRSCA technique, P,

losses

is reduced to a competitive value

of 3.0589 MW, representing a significant 47.64% reduction compared to the initial case
(5.8423 MW). The corresponding VD and FC values are 1.6891 p.u. and 941.8419 $/h,
respectively. While the VD experiences a slight increase, the substantial reduction in real power
loss highlights the effectiveness of the hybrid approach.

These results outperform several optimization methods documented in the literature,
including MSA by Mohamed et al. (2017), MFO by Taher et al. (2019a), PSO by Taher et al.
(2019b), Rao-1 by Gupta et al. (2021c), Rao-2 by Gupta et al. (2021c¢), Rao-3 by Gupta et al.
(2021c), and various other widely used approaches. However, MGOA by Taher et al. (2019b)
achieves better power loss reduction, but it is associated with higher fuel and emission costs.

Figure 5.5 illustrates the convergence trends for p,_ in Case 4(a), comparing the proposed

HRSCA with Rao-2 and SCA. The superior performance of HRSCA in minimizing real power
loss (PLM) is further validated by its ability to satisfy all operational constraints within their

permissible limits.
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Fig. 5.5 Convergence curve in Case 4 (a) with HRSCA, Rao-2 and SCA algorithms

(b) PLMFC
This case aims to evaluate the effectiveness of the proposed HRSCA in simultaneously

minimizing real power loss (P, ) and fuel cost (FC) through a bi-objective formulation defined

by Equation (5.29):
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Fppvime (6u) = Frey (,u) + KplFPLM (x,u) + penalty (5.29)
here, K i represents a weighting factor determined based on the importance assigned to the

PLM objective.

The HRSCA results demonstrate an FC value of 857.2174 $/h and an optimized B, of

losses
4.5259 MW. These results surpass those obtained by several advanced algorithms, such as
ISCA by Mahdad and Srairi (2018), MPSO by Mohamed et al. (2017), MFO by Mohamed et
al. (2017), MGOA by Taher et al. (2019b), GOA by Taher et al. (2019b), PSO by Taher et al.
(2019b), TLBO by Taher et al. (2019b), and MSA by Taher et al. (2019b). This highlights the
capability of HRSCA in handling complex OPF problems with bi-objective formulations.

In comparison, CS-GWO by Meng et al. (2021) achieved an FC of 854.9948 $/h and B,

losses
of 4.3427 MW, slightly outperforming HRSCA in power loss reduction but requiring more
iterations (250 iterations compared to just 100 for HRSCA), leading to increased computational

burden. Similarly, the Jaya optimizer by El-Sattar et al. (2019) attained an FC of 817.13 $/4,

but with a significantly higher P,

osses Of 6.04 MW. MOHFPSO by Khan et al. (2020) also
achieved lower fuel cost but incurred significantly higher power losses, reflecting a less
balanced optimization. Furthermore, MOHFPSO lacked explicit details on optimal population
size and iteration count, while the Jaya optimizer utilized 200 iterations. In contrast, the
proposed HRSCA effectively balanced both objectives, achieving competitive results within
just 100 iterations and with a reduced computational burden. Detailed optimal configurations

of control variables for this case are provided in Table 5.4.
Case 5: ECM

In this case, the HRSCA approach focuses on minimizing emissions, as defined by the
objective function in Equation (5.12). The algorithm achieves a significant 13.7% reduction in
emissions compared to the base case (0.2359 ton/4), lowering the value to 0.2036 ton/A. This
performance surpasses several established optimization techniques reported in the literature,
including conventional GOA by Taher et al. (2019b), ABC by Adaryani and Karami (2013),
PSO, TLBO, MFO (all references from Taher et al. (2019b)), and Rao variants by Gupta et al.
(2021¢)

Although MGOA by Taher et al. (2019b) exhibited marginally lower emission values, it
achieved this at the expense of increased power loss and fuel cost. Additionally, MGOA

required a larger population size of 50, compared to 30 in HRSCA, potentially increasing
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computational demands. Other leading algorithms, such as IAOA by Akdag (2022) (400
iterations), and IMFO by Taher et al. (2019a) (500 iterations), also required higher
computational resources to achieve comparable emission levels. These results demonstrate the
effectiveness of HRSCA in achieving a balance between emission reduction and computational
efficiency. Figure 5.6 illustrates the convergence curves for emission costs, comparing the
performance of HRSCA with Rao-2 and SCA. The proposed method exhibits a superior
convergence rate, further affirming its efficiency and stability in minimizing emissions. The

CV settings obtained using HRSCA are detailed in Table 5.4.
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Fig. 5.6 Convergence curves for Case 5 comparing HRSCA, Rao-2, and SCA

5.4.1.2 Scenario-2: OPF Considering Load Growth
Case 6: Optimizing OPF Objectives: Maximizing Loading Factor

This case evaluates the effectiveness of the proposed HRSCA approach in addressing
security-constrained OPF under challenging scenarios, such as load growth. Loading Margin
Stability (LMS), the technical term for the loading factor, serves as a crucial parameter for
evaluating a power system's resilience to increasing load demands. Examining LMS involves
gradually increasing the load, which essentially governs the power system's ability to handle
load expansion without instability or voltage collapse.

In this case, the load demand (Pp) was elevated to 421.6014 MW, resulting in a
corresponding LMS value of 1.487655 p.u. (Mahdad and Srairi, 2015). The proposed HRSCA
optimized decision variables within their permissible limits, including generator active powers,

generator bus voltages, transformer taps, and shunt compensations. At the specified LMS
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value, the proposed approach achieved competitive fuel costs of 1404.716 $/h, with remarkably
low total power loss (13.3886 MW), minimal voltage deviation (1.0072p.u.), and a
significantly reduced L-index (0.1964 p.u.). Furthermore, the HRSCA demonstrated minimal
environmental impact with emission levels of 0.3666 ton/A, underscoring its capability to
handle load growth while ensuring system stability, operational efficiency, and environmental
sustainability.

Table 5.5 provides the optimized CV settings along with the corresponding objective
function values, highlighting the effectiveness of the OPFS achieved using the proposed

HRSCA approach. System security is maintained by ensuring compliance with the specified

ma
ine

maximum apparent power limits (S, ) across 41 branches (detailed in the Appendix A.2).

The optimized control vector eliminates the need for load shedding, enabling the seamless
delivery of the full 421.6014 MW load to consumers, ensuring a reliable and uninterrupted
power supply.

Furthermore, by integrating constraints directly into the OPF formulation, the HRSCA
method proactively identifies solutions that minimize the risk of voltage collapse during load
growth scenarios. This demonstrates the algorithm’s capability to optimize power flow while

maintaining system stability and meeting increased electricity demand.

Table 5.5 Optimized control variables obtained for Case 6

CVs Min Max Case 6
Pa1 (Slack) (MW) 50 200 199.99
Pc2 20 80 80

Pgs 15 50 50

Pcs 10 35 35
Pani 10 30 30
P13 12 40 40
Vai (p.u.) 0.95 1.1 1.1
Var 0.95 1.1 1.0881
Vas 0.95 1.1 1.06
Vas 0.95 1.1 1.0662
Vau 0.95 1.1 1.1
Va3 0.95 1.1 1.0999
TSe-9 (p.u.) 0.9 1.1 1.092
TSe-10 0.9 1.1 0.9
TS4.12 0.9 1.1 1.0509
TS28-27 0.9 1.1 0.97
Qc10 (MVAR) 0 5 5

Qci2 0 5 491
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Qs 0 5 4.88

Qc17 0 5 5

Qc20 0 5 4.94

Qe21 0 5 483

Qc23 0 5 5

Qc24 0 5 497

Qc29 0 5 4.98
FCM (8/h) - - 1404.716
VDM (p.u.) - - 1.0072
VSI (p.u.) - - 0.1964
PLM (MW) - - 13.3886
ECM (ton/h) - - 0.3666
Total Load Demand, Ppin MW | - - 421.6014
Load Factor (LMS) in p.u. 1.487655

5.4.1.3 Scenario-3: Security OPF Considering Load Growth and Unexpected Outages at
Generating Units

The current scenario examines two significant unforeseen events: the system being pushed
to its load stability limit and the contingency of generator outage. This scenario assesses the
proficiency of the HRSCA method suggested in improving the quality of energy supplied to
consumers under critical conditions. The primary objective is to ensure system resilience
against blackouts, maintaining continuous service amidst load growth and addressing faults at
two specified generating units.

The HRSCA approach has been shown to be an effective strategy for minimizing critical
load shedding during key events, ensuring that essential services remain operational. It
successfully meets multiple objectives spanning economic (FCM), technical (VDM, VSI, and
PLM), and environmental (ECM) domains. These outcomes are achieved through the strategic
optimization of control variables while maintaining the stability and security of the system
under severe contingencies.

To safeguard the system's operational security, load shedding measures were strategically
implemented at buses 5 and 8, reducing the stress on critical components and ensuring a
balanced power flow across the network. This also facilitates secure transmission of power in
branches, preventing overloading and reducing the risk of voltage collapse. Furthermore, this
approach enables a comparative study with previously reported methods in the literature,
highlighting the advantages of HRSCA in maintaining system stability, minimizing

disruptions, and achieving superior performance metrics in critical scenarios.
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Case 7: Faults Occurred Simultaneously at G2 and G11

This case examines the impact of simultaneous faults at generators G2 and G11. To mitigate
the consequences of these contingencies, the proposed HRSCA approach optimizes CVs to
minimize disruptions in power delivery to consumers. An optimized power flow scheme
(OPFS) was achieved, with the details of CV settings provided in Table 5.6 (Case 7).

In this critical scenario, the load demand (Pp ) was adjusted to 309.7998 MW, corresponding
to a load factor of 1.0932 relative to Pp as reported by Mahdad and Srairi. At bus 5, the
optimized active and reactive power demands were 46.7124 MW and 9.4218 MVAR,
respectively. Similarly, at bus 8, the active and reactive power requirements were optimized to
26.2527 MW and 26.2527 MVAR, respectively. By maintaining the load factor of 1.0932, the
proposed HRSCA approach successfully upheld the economic (FCM) objective at
1021.6998 $/h and achieved a power loss minimization (PLM) value of 9.8845 MW. The
environmental objective (ECM) was also optimized, reaching a value of 0.3726 ton/A.

Table 5.6 further presents the optimized values for other technical objectives, including
VDM and VSI. The performance of the proposed approach was compared to that of the grey
wolf optimizer with pattern search (GWO-PS) strategy under the same generation contingency
scenario, as described by Mahdad and Srairi. The comparison revealed that while maintaining
the identical load factor, the proposed HRSCA method achieved a slight improvement of 0.03%
in the FCM objective and a 1.06% enhancement in the PLM objective. However, GWO-PS
demonstrated a marginally better voltage deviation value of 0.4794 p.u. It is worth mentioning
that GWO-PS required twice the number of iterations compared to HRSCA, and its population

size was not explicitly reported.

Table 5.6 Optimized control variables for Case 7 and Case 8 for IEEE 30-bus test system (Scenario-3)

CVs Case 7 Case 8
Pa1 (Slack) (MW) 194.6843 196.8214
Pa2 0 0

Pas 50 50

Pas 35 35

PaGii 0 30

PaG13 40 0

Vai (p.u.) 1.1 1.1

Var 0.99 1.08
Vas 1.09 1.08
Vas 1.1 1.07
Vaii 1.1 1.08
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Vaiz 1.0996 1.09
TSe-9 (p.u.) 1.1 1.06
TSe-10 0.92 0.99
TS4-12 1.1 1.01
TS28-27 1.04 1.02
Qcio (pu.) 0.05 0.05
Qc12 0.05 0.05
Qcts 0.049 0.05
Qc17 0.05 0.05
Qc20 0.05 0.05
Qc21 0.05 0.05
Q23 0.05 0.05
Qc24 0.05 0.05
Qc29 0.04 0.05
FCM (8/h) 1021.6998 | 982.8172
VDM (p.u.) 0.6377 0.7239
VSI (p.u.) 0.2187 0.2091
PLM (MW) 9.8845 9.4336
ECM (ton/h) 0.3726 0.3802
Total Load Demand, Ppin MW 309.7998 302.3878
Load Factor (LMS) in p.u. 1.0932 1.067

Case 8: Faults Occurred Simultaneously at G2 and G13

This case examines the occurrence of simultaneous faults at generators G2 and G13. To
mitigate disruptions to consumer power delivery, an OPFS was achieved by adjusting the CVs
while maintaining the same load demand (Pp =302.3878 MW) as reported in by Mahdad and
Srairi, corresponding to an LMS value of 1.067 p.u.

Atbus 5, the active power demand was set at 40.0392 MW, with the corresponding reactive
power demand set at 8.0758 MVAR. Similarly, at bus 8, the active power requirement was
fixed at 25.5027 MW, and the corresponding reactive power demand was fixed at
25.5027 MVAR. The FCM objective attained a competitive value of 982.8172 $/h,
demonstrating the algorithm’s efficiency in economic optimization.

The proposed HRSCA approach achieves a 3.46% improvement in PLM, compared to the
9.772 MW reported by Mahdad and Srairi, under identical fault and loading conditions.
Furthermore, Table 5.6 presents optimized results for other technical objectives, including
VDM and VSI, as well as the environmental objective (ECM).

Strict adherence to security constraints has been a priority throughout this scenario, ensuring

reliable and secure power system operation even in the face of concurrent generator faults.
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These results underscore the robustness and reliability of the proposed HRSCA approach in
handling challenging contingencies while achieving a balanced optimization of economic,

technical, and environmental objectives.

5.4.2 Performance on IEEE 118-Bus Test System

The scalability of the proposed HRSCA approach is evaluated using the IEEE 118-bus
standard test system. This network includes 54 generating units, an active power demand of
4242 MW, and a reactive power loading of 1438 MVAR. The system comprises 186 branches
and 64 load buses, with an acceptable voltage range at load buses between 0.94 p.u and
1.06 p.u.

The network features 9 transformers strategically positioned along lines 8-5, 26-25, 30-17,
38-37, 63-59, 64-61, 65-66, 68-69, and 81-80. Additionally, 14 buses are equipped with shunt
VAR compensators to enhance voltage regulation and stability. Detailed load data, line data,
bus data, and control variable bounds for the IEEE 118-bus system, based on a 100 MVA base,
can be found in Christie (1993). Additionally, cost coefficients and generation limits for the

system can be found in Appendix A, Table A.3.

5.4.2.1 Scenario-1: Standard OPF

This scenario involves conducting a standard OPF analysis on the IEEE 118-bus test system.

Three distinct single-objective cases are evaluated. These cases These cases aim to minimize

total FC, VD, and P,

losses - 1€ objective of this scenario is to benchmark the outcomes of the
proposed HRSCA approach under normal operating conditions against those obtained using
recently developed optimization techniques.

The three cases considered in this scenario are as follows:
Case 9: Fuel Cost Minimization (FCM)
Case 10: Voltage Deviation Minimization (VDM)

Case 11: Power Loss Minimization (PLM)
Case 9: FCM

In this case, the total fuel cost (FC) is minimized under normal operating conditions of the
power grid. The OPF results obtained using the proposed HRSCA approach, including initial
values and optimized control variables (CVs), are presented in Table 5.7. The HRSCA achieved
the lowest FC value of 129,088.6331 $/A, exhibiting a significant 1.62% enhancement over the
base case (131,220.52 $/h) and a 0.13% improvement over the results obtained using the
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standalone Rao-2 algorithm (129,256.5242 $/h). Furthermore, the HRSCA outperformed other
recent methods documented in the literature, as illustrated in Table 5.8.

The proposed HRSCA approach exhibits smooth and rapid convergence, achieving optimal
results in just 150 iterations, which underscores its stability and suitability for larger systems.
This superior performance is illustrated using convergence curves in Fig. 5.7. The cost

coefficients for all generators are available in reference Zimmerman et al. (2006).

Table 5.7 Optimized control variables obtained by HRSCA for IEEE 118-bus test system

s. |cvs |Base HRSCA for OPF s. |cvs | Base HRSCA for OPF
case case
No. | (p.u.) value | Case9 Case10 | Case11 | No. | (p.u.) value Case 9 Case 10 | Case 11
1 Pai 0 0.0887 0.6338 0.3336 69 Vs 0.984 0.9601 1.0154 1.0333
2 Pcs 0 0.006 0.363 0.4876 70 Vase 0.98 0.9608 0.9991 1.0285
3 Pgs 0 0.0481 0.2907 0.3583 71 Vaao 0.97 0.9415 1.0108 1.0152
4 Pas 0 0.4327 0.7127 0.7986 72 A\ 0.985 0.9912 0.9896 1.0243
5 Paio 4.5 4.0618 2.8383 0.6452 73 Vae 1.005 0.9781 0.953 1.0223
6 Peiz 0.85 0.8109 0.1203 1.846 74 Vag 1.025 1.0285 1.0216 1.0157
7 Pais 0 0.111 0.082 0.9879 75 Vsa 0.955 1.0595 1.0117 1.0073
8 Pcis 0 0.0575 0.207 0.077 76 Vass 0.952 1.059 1.0426 1.009
9 Pgio 0 0.0055 0.8547 0.7804 77 Vase 0.954 1.0599 1.0011 1.0084
10 Poos 0 0.056 0.5375 0.0198 78 Vaso 0.985 1.0555 0.9608 1.014
11 Pgos 2.2 2.127 2.004 0.2455 79 Vel 0.995 1.0396 1.0117 1.0158
12 Paas 3.14 2.6122 3.543 0.09 80 Ve 0.998 1.0589 0.9922 1.011
13 Pgo7 0 0.0542 0.6096 0.9738 81 Ves 1.005 0.94 0.9479 1.0463
14 Pas1 0.07 0.0352 0.4846 0.9215 82 Vaes 1.05 1.0361 1.0072 1.015
15 Pgs2 0 0.8643 0.5266 0.4844 83 Vaeo 1.035 1.0442 1.0317 1.0162
16 Pgsg 0 0.2089 0.9619 0.7468 84 Ve 0.984 1.0358 0.989 1.0225
17 Pgae 0 0 0.8679 0.8009 85 Ven 0.98 0.9793 1.0053 1.0028
18 Paao 0 0.454 0.566 0.528 86 Van 0.991 0.944 1.0144 1.0085
19 Poar 0 0.3999 0.9878 0.9771 87 Ve 0.958 1.0253 0.9976 1.0222
20 Paas 0.19 0.209 0.1769 1.0097 88 Ve 0.943 1.0345 1.0087 1.0068
21 Py 2.04 1.7846 1.2358 2.1007 89 Vg7 1.006 1.0326 1.0086 1.0005
22 Pgsa 0.48 0.481 0.8783 1.1985 90 Vso 1.04 1.0479 1.0177 0.9891
23 Pgss 0 0.0172 0.7102 0.9444 91 Vass 0.985 0.9532 1.0113 1.0172
24 Pgse 0 0.1751 0.6521 0.6943 92 Vasr 1.015 0.945 0.9898 1.0585
25 Pgso 1.55 1.6021 1.8801 2.5281 93 Vaso 1.005 1.0392 1.0053 1.0227
26 Pae1 1.6 1.5558 2.4447 1.0179 94 Voo 0.985 1.0192 1.0013 1.0123
27 Pce2 0 0.007 0.3421 0.4286 95 Vot 0.98 1.034 1.059 1.0082
28 Paes 391 3.9943 2.9204 1.5621 96 Voo 0.99 1.0599 1.0154 1.0201
29 Paes 3.92 3.547 0.8149 0.7446 97 V99 1.01 1.026 1.0564 0.9839
30 Paro 0 0.0215 0.036 0.4266 98 Vaioo 1.017 1.0397 1.0001 0.9892
31 Pan 0 0.0096 0.0475 0.0333 99 Vaios 1.01 1.0082 1.0491 0.9937
32 Psn 0 0.094 0.3391 0.4116 100 Vaio4 0.971 1.0498 0.9794 0.9741
33 Pgs 0 0.059 0.0036 0.9526 101 Vaios 0.965 1.0481 1.0028 0.9851
34 Pg76 0 0.2163 0.4545 0.9344 102 Vaio7 0.952 1.0583 1.0178 0.9979
35 Pg77 0 0.0004 0.1098 0.9426 103 Vaiio 0.973 1.0065 0.9984 1.0012
36 Paso 4.77 4.0965 0.7462 2.6551 104 Ve 0.98 0.9401 0.9422 1.0048
37 Pass 0 0.068 0.1934 0.6619 105 Vainz 0.975 0.9939 0.9976 0.9991
38 Pags7 0.04 0.0213 0.5328 0.2136 106 Vaiis 0.993 1.0064 1.0046 1.0443
39 Pasy 6.07 4.4969 1.1472 1.8227 107 Vaiis 1.005 0.95 0.999 1.0581
40 Pgoo 0 0.0064 0.6778 0.9731 108 Ts g 0.985 0.9006 0.9939 0.9673
41 Pgor 0 0.0219 0.013 0.16 109 Tas 25 0.96 1.1 0.9871 1.0066
42 PGoa 0 0.0185 0.572 0.7758 110 Ti0—17 0.96 0.9241 0.9814 0.9512
43 Pgoy 0 0.0035 0.7987 0.5345 111 Tas 37 0.935 0.9002 0.9615 0.9704
44 PG00 2.52 1.9039 1.7001 1.2773 112 Tes—s0 0.96 1.1 1.0458 0.9648
45 PGios 0.4 0.3708 0.395 0.5924 113 Tes 61 0.985 1.0444 1.0115 0.9944
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46 PGioa 0 0.0045 0.6965 0.509 114 Tes—66 0.935 1.1 0.9921 1.0771
47 Paios 0 0.698 0.0082 0.2089 115 Tes—69 0.935 0.9035 1.0398 1.0247
48 PGio7 0 0.0135 0.8418 0.4539 116 Ts1—s0 0.935 1.0933 0.9629 1.0166
49 Paio 0 0.3242 0.1637 0.188 117 Qcs 0 0.0409 0.2987 0.1822
50 Pgin 0.36 0.1726 0.6973 0.2619 118 Qcsa 0 0.2517 0.0767 0.2939
51 Pciiz 0 0.0077 0.6912 0.6553 119 Qcs7 0 0.2963 0.0062 0.1119
52 Pciis 0 0 0.5889 0.9863 120 Qcaq 0 0.0024 0.2481 0.0815
53 P:iie 0 0.0412 0.927 0.6019 121 Qcas 0 0.0902 0.0949 0.2804
54 Vai 0.995 0.9461 0.9925 1.0237 122 Qcas 0 0.0028 0.1842 0.2498
55 Vs 0.998 1.0078 1.0038 1.0019 123 Qcus 0 0.0052 0.0345 0.2216
56 Vs 0.99 1 0.9946 0.9982 124 Qcma 0 0.2978 0.004 0.2883
57 Vs 1.015 0.9898 0.9799 0.9948 125 Qe 0 0.2995 0.1412 0.2868
58 Vaio 1.05 1.0073 0.9541 1.0047 126 Qcs2 0 0.2995 0.0291 0.0977
59 Va2 0.99 0.9765 1.0103 1.0186 127 Qcss 0 0.2899 0.175 0.0663
60 Vais 0.97 0.991 0.98 1.0241 128 Qcios 0 0.0045 0.1243 0.1578
61 Vais 0.973 0.9899 0.9588 1.0293 129 Qcio7 0 0.192 0.2035 0.296
62 Vaio 0.962 0.9855 1.0171 1.028 130 Qciio 0 0.0646 0.2983 0.0965
63 Vo 0.992 0.9761 0.9837 1.0344 FCM ($/h) 131220.52 129088.6331 | 154690.85 165878.7
64 Vs 1.05 1.0589 1.0112 1.0307 VDM (p.u.) 1.4389 1.8975 0.4720 1.133
65 Vo 1.015 1.0475 0.978 1.0028 PLM (MW) 132.8101 112.2514 101.1812 | 19.2766
66 | Van 0968 | 1.0141 | 09956 | 1.0387 :;’Oz‘; Factor 1 1 1 1
67 Ve 0.967 1.028 1.0139 1.0586 Slack Power 513.8101 502.5673 1776589 | 107.5023
68 Vi 0.963 1.0108 1.0125 1.0453 (Paso) (MW)
Table 5.8 Comparison of HRSCA, Rao-2, SCA, and other algorithms for FCM in Case 9
Case 9: Case 9: Case 9:
Algorithm Algorithm Algorithm
g FCM ($/h) g FCM ($/h) g FCM ($/h)
CS-GWO (Meng SKH (Pulluri et al.
HRSCA 129088.6331 129544.01 129727.6248
etal. 2021) 2017a)
SSA (Jebaraj and KH (Pulluri et al.
Rao-2 129256.5242 Sakthivel, 2022) 129561.0305 20172) 129754.8130
Chaotic Rao-2 MSCA (Attia et PSOGSA (Reddy,
129385.643 129620.22 129733.58
(Warid, 2022) al. 2018) 2019)
SCM-MJ (Gupta SCA (Attia et al. PSO (Bouchekara
129171.96 129622.6500 129756.2275
etal. 2021b) 2018) etal. 2014a)
Jaya-PPS1 (Gupta MSA (Mohamed GSA (Reddy,
129221.889 129640.7191 129873.89
etal. 2021a) et al. 2017) 2019)
TLBO
Rao-1 (Gupta et NISSO (N,
ao-1 (Guptaet 11,0741 1787 (Bouchekara et al. | 129682.844 (Nguyen, 119879 4536
al. 2021¢) 2019)
2014a)
Rao-2 (Gupta et DSA (Bouchekara MPSO (Mohamed
129256.5242 129691.6152 132039.212
al. 2021¢c) et al. 2014a) et al. 2017)
Rao-3 (Gupta et FPA (Mohamed GA (Bouchekara
129220.6794 129688.7209 132746.3517
al. 2021c¢) et al. 2017) etal. 2014a)
M-Jaya (Gupta et MFO (Mohamed
129248.1 12 .0821
al., 2021b) 9248.10 et al. 2017) 9708.08
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Fig. 5.7 Convergence curve in Case 9 with HRSCA, Rao-2 and SCA

Case 10: VDM

The primary objective in this case is to minimize voltage deviation (VD) in the large-scale
118-bus system under normal operating conditions. The proposed HRSCA approach achieves
a minimum VD value of 0.4720 p.u., significantly improving upon both the base case
(1.4389 p.u.) and the results of Case 9 (1.8975 p.u.). The corresponding power loss is measured
at 101.1812 MW. Detailed optimized CV settings and objective function values are provided
in Table 5.7.

The performance of HRSCA surpasses that of several algorithms reported in the literature,
including MSCA (0.995 p.u.) (Attia et al. 2018), SCA (1.32 p.u.) (Attia et al. 2018), M-Jaya
(0.6771 p.u.) (Gupta et al. 2021b), and SSA (0.6078 p.u.) (Jebaraj and Sakthivel, 2022). It is
also competitive with DE-APSO-PS (0.4364 p.u.) (Mahdad and Srairi, 2014), SCM-MJ
(0.4366 p.u.) (Gupta et al. 2021b), and ISCA (0.454 p.u. with fmax=200) (Mahdad and Srairi,
2018). Furthermore, while the DE-APSO-PS algorithm exhibits competitive performance, key
control parameters such as population size and the maximum number of iterations (#max) are not
explicitly reported in the study, limiting direct comparability.

It’s important to mention here that only a few metaheuristic approaches have been explored
in the literature for optimizing this specific objective function withing the 118-bus system,
underscoring the significance of HRSCA's results. Figure 5.8(a) provides a visual

representation of the voltage profiles across all load buses, while Fig. 5.8(b) illustrates the
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convergence characteristics of voltage deviation for the proposed HRSCA in comparison to
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Fig. 5.8(b) Convergence curves for Case 10 comparing HRSCA, Rao-2, and SCA
In Case 11, the primary objective is the independent minimization of power loss (B, ), as
described in Case 4 part (a). Under normal operating conditions, the optimized CV settings

Case 11: PLM



obtained using the proposed HRSCA approach are detailed in Table 5.7. The P,

osses achieved by
HRSCA is 19.2766 MW, representing a substantial 85.4% reduction compared to the base case
power loss of 132.8101 MW. Additionally, the corresponding voltage deviation of 1.133 p.u.
reflects a 21.2% improvement over the base case. To further validate the effectiveness of
HRSCA, Table 5.9 provides a comparative analysis with Rao-2 algorithm, SCA, and other
state-of-the-art optimization algorithms documented in the literature. Figure 5.9 illustrates the
convergence characteristics of the proposed HRSCA in comparison to Rao-2 and SCA,

highlighting the efficiency and rapid convergence of the hybrid approach.

Table 5.9 Comparing HRSCA with Rao-2 and other leading algorithms for PLM in Case 11

Algorithm Case 11: PLM (MW)
HRSCA 19.2766
Rao-2 25.1265
Chaotic Rao-2 (Warid, 2022) 36.483
SCM-MJ (Gupta et al. 2021b) 19.1525
M-Jaya (Gupta et al. 2021b) 21.6419
SKH (Pulluri et al. 2017a) 22.1397
KH (Pulluri et al. 2017a) 23.3212
SSA (Jebaraj and Sakthivel, 2022) 30.7826
QOTLBO (Mandal and Roy, 2014) 353191
TLBO (Mandal and Roy, 2014) 36.8482
MSCA (Attia et al. 2018) 77.0873
SCA (Attia et al. 2018) 77.1113
BBO (Roy et al. 2010) 128.9700
PSO (Roy et al. 2010) 131.9146
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Fig.” 5.9 Convergence curves for Case 11 comparing HRSCA, Rao-2, and SCA

100



5.4.2.2 Scenario-2: Security OPF considering load growth

Case 12: Optimizing OPF Objectives: Minimizing Power Loss under Maximum Specified Load Factor

In this scenario, the IEEE 118-bus system experiences load growth while maintaining the
specified load demand (Pp= 7033.236 MW) as outlined in Mahdad and Srairi (2014). This

results in an LMS value of 1.658 p.u., with the primary objective being the minimization of
power loss (B, ) under the PLM objective.

The proposed HRSCA approach achieves an optimized power flow by adjusting CVs, as

detailed in Table 5.10, which also presents the corresponding objective function values. The

B

osses

obtained by HRSCA is 81.8483 MW at the given loadability value, while the achieved
VD is 1.1412 p.u., ensuring all bus voltages remain within prescribed limits. For comparison,

the same scenario reported by Mahdad and Srairi (2014) resulted in B =82.8415MW. The

losses
proposed HRSCA strategy achieves a 1.19% improvement over the earlier technique (DE-
APSO-PS technique by Mahdad and Srairi), demonstrating its robustness and effectiveness in

addressing complex OPF problems under high-load conditions.

Table 5.10 Optimized control variables in Case 12 with PLM Objective at LF = 1.658 p.u.

o Jow [T o [ [ o o
No. | (p.u.) (Case 12) No. (p.u.) (Case 12) No. (p.u.) (Case 12)
1 Pai 0.9895 46 PGios 0.2499 91 Vass 1.0472
2 Pc4 0.9785 47 PGios 0.9222 92 Vg7 1.0092
3 Pae 0.0795 48 Paio7 0.6787 93 Vasy 1.0359
4 Pas 0.9565 49 Paiio 0.7547 94 Voo 0.9845
5 Pcio 1.9652 50 Paii 0.0098 95 Vaoi 0.9425
6 Paiz 1.8497 51 PGz 0.9945 96 Vo2 1.0103
7 Pais 0.9359 52 PGz 1 97 Vg 1.0107
8 Pcis 1 53 Pciie 0.9292 98 Vaioo 1.0319
9 Paio 0.9878 54 Vai 1.0129 99 VaGio03 1.0207
10 Paoa 0.9853 55 Vaa 1.0396 100 Vaioa 1.0597
11 Pcos 0.0336 56 Ve 1.029 101 Vaios 1.0361
12 Paas 2.9963 57 Vs 0.9993 102 Vaio7 0.9971
13 Pacar 0.9839 58 Vaio 1.0091 103 Vaiio 1.0072
14 Pasi 0.9082 59 Va2 1.028 104 Vain 1.0109
15 Pa32 0.9811 60 Vais 0.9867 105 Vaiz 1.012
16 Pa3a 0.9019 61 Vais 0.9829 106 Va3 0.9798
17 Pa3e 0.934 62 Vi 0.9929 107 Vaiie 1.0022
18 Paao 0.998 63 Vo4 1.0022 108 Ts—s 0.906
19 Pcaz 0.9979 64 Vaas 0.944 109 Ta26—25 1.0992
20 Pacas 1.0746 65 Vaas 0.9759 110 T30—17 1.0541
21 Paag 3.0129 66 Vaor 0.9408 111 Tss—37 | 0.9021
22 Pasa 1.4634 67 Vasi 0.9802 112 Te3—s9 1.097
23 Pass 0.9987 68 Vas2 0.9704 113 Tea—s1 0.9337
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24 Pase 1 69 Vs 0.9889 114 Tes—66 | 0.9507
25 Paso 2.52 70 Vase 0.9921 115 Tes—69 0.9122
26 Pae1 2.5646 71 V4o 0.9913 116 Tsi—s0 | 0.9602
27 Pae2 0.9623 72 Vea 0.9823 117 Qcs 0.0164
28 Paes 4.5953 73 Vaas 0.9961 118 Qc34 0.0035
29 Paes 3.5307 74 Va9 1.0235 119 Qc37 0

30 Paro 0.8225 75 Vas4 0.9968 120 Qcas 0.014
31 Pan 0.2651 76 Vass 1.0046 121 Qcss 0.3

32 Pg73 0.3921 77 Vase 1.0009 122 Qc46 0.2978
33 PG4 0.8616 78 Vas9 1.0074 123 Qcas 0.1419
34 Pa6 0.9481 79 Vael 0.9972 124 Qc7a 0.1264
35 PG77 0.9935 80 Ve 0.9985 125 Qc9 0.0911
36 Paso 5.6483 81 Vaes 0.9857 126 Qcs2 0.2995
37 Pass 0.6997 82 Vaes 1.0448 127 Qcs3 0.1935
38 Pas7 0.2559 83 Voo 1.0301 128 Qci1o0s 0.0019
39 Paso 3.4807 84 Ve 0.9867 129 Qcio7 0.2998
40 Paoo 1 85 Ven 1.0207 130 Qciio 0.3

41 | Poor 0.8912 86 Ve 0.9741 FCM ($/h) 269521.7117
42 | Pgo2 0.1914 87 Va4 0.9857 VDM (p.u.) 1.1412
43 Paoo 0.9038 88 Va6 1.0034 PLM (MW) 81.8483
44 Paioo 3.4861 89 Va7 1.0053 Load Factor

45 Paios 0.4976 90 Vaso 1.017 (p.-u.) 1.658

5.5 Discussion of Findings

The study in this chapter introduces a novel hybrid optimization technique, the Hybrid Rao-
2 Sine Cosine Algorithm (HRSCA), developed to enhance security-oriented power flow
optimization across diverse operational scenarios. The algorithm is specifically tailored to
address challenges posed by load growth, unexpected contingencies such as generator outages,
and the increasing complexity of modern power systems. An innovative aspect of HRSCA is
its integration of the SCA for effective global exploration and the Rao-2 algorithm for enhanced
local exploitation, enabling faster convergence and improved solution quality. The SCA
employs simple and efficient parameters for exploration, while the parameter-free Rao-2
algorithm excels in local search, making the combination both robust and efficient. This hybrid
approach effectively addresses global and local optimization challenges, which are crucial for
managing the increasing complexity and variability of modern power systems influenced by
the integration of RES, EVs, and other emerging technologies.

The proposed HRSCA-based OPF scheme has been rigorously validated through
simulations on a range of test networks, from small-sized (30-bus) to relatively large-sized
(118-bus) systems, ensuring its scalability and robustness across diverse scenarios. For
instance, in the IEEE 30-bus system under the standard OPF scenario, HRSCA achieved fuel
cost savings of 11.39% compared to the base case, amounting to $102.84 per hour or an annual

savings of $900,884.81. In generator outage scenarios for the same system, it achieved a

102



modest savings of 0.03%, equivalent to $0.308 per hour or $2,698.08 annually, alongside a
significant 3.46% reduction in power loss, bringing it down to 9.4336 MW, outperforming
previously reported results in the literature. Demonstrating its scalability for large-scale OPF
problems, HRSCA effectively minimized the fuel cost on the IEEE 118-bus system to
129,088.63 $/h, representing a 1.62% reduction over the base case. This translates to savings
0f 2,131.89 $/h or an annual savings of $18,676,358.40.

These findings highlight the capability of HRSCA to provide cost-effective and reliable
solutions for power system operations, offering valuable insights for policymakers and power

system planners.

5.6 Conclusion

This study presented a novel Hybrid Rao-2 Sine Cosine Algorithm (HRSCA), designed to
enhance the security and efficiency of OPF solutions under various operational conditions. By
balancing global exploration and local exploitation strategies, HRSCA ensures fast
convergence and high-quality solutions, making it a robust tool for modern power system
optimization.

The algorithm’s effectiveness was validated on IEEE 30-bus and 118-bus systems,
demonstrating its scalability, cost minimization, emission reduction, and improvement in
voltage stability and loading margins. It effectively handled both normal and contingency
scenarios, ensuring reliable power system operations.

Future research can expand the application of HRSCA to optimize distributed energy
resources (DERs) and demand response programs. Additionally, incorporating machine
learning into the HRSCA framework could enhance its efficiency by predicting system
behavior and dynamically adjusting its parameters. These advancements would enable the
algorithm to adapt to real-time conditions more effectively and further reduce the risk of
blackouts. The proven ability of HRSCA to handle complex and critical power system
challenges, coupled with its capacity to mitigate risks such as blackouts, positions it as a leading
tool for next-generation power system applications. Its robust performance under normal and
critical scenarios highlights its potential to ensure a sustainable, reliable, and secure energy

future.

103



CHAPTER 6
APPLICATION OF THE COOT OPTIMIZATION ALGORITHM FOR OPF

6.1 Introduction to the Coot Optimization Algorithm (COA)

The Coot Optimization Algorithm (COA) is a nature-inspired metaheuristic technique
modelled on the unique behaviour of coot birds. These birds exhibit collective movement,
exploration, and exploitation abilities while foraging, which serve as an analogy for solving
complex optimization problems. COA has been developed to address real-world optimization
challenges, including those in power systems, by efficiently balancing exploration (global
search) and exploitation (local search).

The OPF is a fundamental optimization problem in power system operations, aimed at
optimizing objectives such as fuel cost minimization, emission reduction, and power loss
minimization while adhering to system constraints. The increasing integration of renewable
energy resources, dynamic load profiles, and environmental concerns necessitate advanced
optimization algorithms capable of handling the multi-dimensional and non-linear nature of
OPF problems.

The COA algorithm introduces an effective approach to solving OPF problems, ensuring
high-quality solutions with improved convergence and computational efficiency. Its adaptability
to complex problem landscapes and ability to maintain a balance between exploration (global
search) and exploitation (local refinement) make it well-suited for modern power system
requirements. The algorithm operates through a series of computational steps that mimic the
collective foraging behavior of coots. The exploration phase involves the search for potential
solutions across the entire solution space, ensuring that the algorithm does not prematurely
converge to suboptimal solutions. This is followed by the exploitation phase, where the
algorithm refines the identified potential solutions to find the optimal or near-optimal solutions.

This chapter explores the application of COA to OPF, providing a comprehensive analysis
of its methodology, simulation results, and comparative performance with other state-of-the-art
optimization techniques. The specific parameter settings employed for COA, including
population size, number of leaders, maximum iterations, and random value ranges, are discussed

in the context of the IEEE 30-bus system.

6.2 Problem Formulation for OPF
OPF is a fundamental optimization problem in power system operations that aims to

determine the optimal settings of control variables while satisfying a set of equality and
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inequality constraints. The primary goal of OPF is to achieve various operational objectives,
such as minimizing fuel cost, reducing power losses, maintaining voltage stability, and
minimizing emissions, all while ensuring the secure and reliable operation of the power system.
6.2.1 Objectives of OPF

This study involves solving three diverse single-objective OPF formulations, yielding three
different cases.
Fuel cost minimization (FCM)

The cost-related objective is a fundamental component of OPF and has been thoroughly
investigated in literature. There exists an approximate quadratic correlation between the fuel

cost ($/h) and P (MW), as described by Equation (6.1) (Abaci and Yamacli, 2016).

FCM (P,) :(Z AP, +BP, +Ci] ($/h) (6.1)

i=1

For the i generator, the fuel cost coefficients are denoted by A4;, B; and C; with active power
output of P
Emission minimization (EM)

Emission minimization is a crucial objective of OPF, seeking to optimize the system control
variables that can lead to a reduction of noxious gases into the atmosphere. The quantity of these

gases present in the atmosphere is directly correlated with the generated active power (in MW),

as expressed in Equation (6.2) (Elattar 2018).

NG
EM =" [(a,+BP, + 7P, +@,exp(uP;) | (ton/h) 6.2)
i=1

here, o, B, yi, w: and p; represent the emission coefficients for i generating unit.

Active power loss minimization (PLM)

The PLM objective focuses on reducing the cumulative active power losses (Pross) in the
system, calculated as the difference between total generation and demand, as expressed in
Equation (6.3). Pross in transmission lines is calculated using Equation (6.4) as outlined in Abaci

and Yamacli (2016).

NB NB NB
PLoss :ZP,» :ZPGI. _ZPDi (63)
i=1 i=1 i=1
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NL
PLoss = Z GL[V;z + I/jz - ZI/;I/]CbSé‘U] (64)
L=1

here, G| is used to designate the conductance of line L between nodes i and j. V; and V; are the
voltages at nodes i and j respectively, while d; signifies the angle difference between voltage
phasors at these nodes. Here, NB stands for the total count of network buses.
6.2.2 Constraints in OPF

In OPF, there are two key constraint types: equality constraints governing power balance
(active and reactive) and inequality constraints establishing operating limits for power system
components, including limits to ensure system security. Consequently, voltage magnitude
constraints apply to both generator and load buses. Furthermore, there are limits on Pg and Qg
from generators, tap changer settings (T), shunt compensator reactive power (Qc), and line
flows (Sine) (Abd El-sattar et al. 2021). The objective function accounts for inequality
constraints by including quadratic penalty terms.
6.2.3 OPF Problem Formulation for COA

The COA addresses the OPF problem by formulating it as a non-linear, constrained
optimization problem. The objective functions, as defined above, are optimized while ensuring
that all equality and inequality constraints are satisfied. The algorithm dynamically explores
the solution space to identify optimal configurations that balance operational costs, technical

performance, and environmental impact.

6.3 Implementation of the Coot Optimization Algorithm
6.3.1 Overview of COA

COA is a novel metaheuristic algorithm pioneered by Naruei and Keynia (2021), making it
a relatively recent addition to the field of metaheuristic algorithms. The Coot algorithm takes
inspiration from collective behaviours and movements of a swarm of birds, known as coots,
observed on the surface of water as shown in Fig. 6.1. The algorithm simulates the intricate
behaviors observed in colonies of American coots (Fulica americana) while they move in the
sea. The Coot algorithm mimics two distinct bird movement patterns on the water surface,
which can be categorized into primary and secondary phases. The primary phase is
distinguished by low density and irregularly fluctuating body orientations. The second phase,
on the other hand, is more synchronised with uniform body orientation, surface swimming

speed, and a clearly-defined high-density pattern.
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Fig. 6.1 Coots gliding in a synchronised manner across the water surface

The transition from the primary disordered phase to the secondary synchronised phase is
driven by two factors. The first is that as individuals within the flock gain speed, they are drawn
closer to slower moving coots (coot followers) and they are enabled to align their orientation
with accelerating coots (coot leaders) as they gain speed. The movement of group leaders is
the second factor that triggers the transition between the two phases. When coot leaders alter
their orientations and speeds, it prompts the rest of the coots to trail behind them.

6.3.2 Steps in COA for OPF

The Coot algorithm is a simple population-based OA, involving following basic steps to be
carried out:

Step 1 Population initialization and population size

The Coot algorithm begins by randomly generating an initial population of coots (Neop),
encompassing the entire range of potential solutions within the search space, in accordance with

Equation (6.5).
CP(i) =rand (1, D).* (upb - lwb) + Iwb (6.5)

Where, CP(i) indicates the coot position of i coot, and D denotes the problem dimension,
determined by the count of involved decision variables. The variables involved in the problem
have upper and lower bounds, represented as upb and Iwb, respectively.

Step 2 Fitness evaluation and designation of Coot leaders

Using positions of each agent from Equation (6.5), the fitness function is evaluated for every
set of solutions. The number of leaders can be drawn at random from the total population and
termed as coot leaders (Nvreader). The rest of the coots can be termed as coot followers (Ncoor)
i.e. (Ncoot = Npop - NLeader).

Step 3 Coot position update

This step involves simulating four diverse movement behaviors of coots, resembling their

movement on water.
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1) Random movement: Using random coot movement, the algorithm investigates multiple
areas of the solution space, thereby avoiding trapping in local optima. The new position of coot

is ascertained through Equation (6.6).
CP(i)=CP(i)+ T xr2x [{mnd(l, D). *(upb - Iwb) + lwb} - CP(i)] (6.6)

Here, 72 is an arbitrarily chosen number spanning 0 to 1. The value of 7 is determined using

Equation (6.7).

T=1-(it/it, ) 6.7)

Where, if represents current iteration number and ifmax represents the maximum iteration count.

2) Chain movement: The mathematical approximation of chain movement involves
computing the distance vector between a pair of coots and moving one coot halfway towards

the other as per Equation (6.8).
CP(i) = 0.5x[CP(i 1)+ CP(i)] 6)

Where, CP(i—1) denotes second coot’s position.

3) Position adjustment through coot leaders: In the group, coot leaders take the lead
position and guide the movement, while the remaining coots adjust their positions to follow and
align with the leaders. Each coot follower is associated with a coot leader and their locations are
updated accordingly. The mechanism adopted for leader selection relies on the average position

among them, as indicated in Equation (6.9).

k=1+MOD (i, N,__,.) 6.9)

Here, i designates the index of the current coot, and & denotes the index of the coot leader.
NrLeader 18 the aggregate count of coot leaders. Each coot (7) in the group is required to align its
position with the leader (k) and subsequently adjust its position accordingly. As a result, the

next coot position with respect to its associated leader is given in Equation (6.10).

CP(i) = LP(k) + 2x rlx cos(2zr) x [ LP(k) - CP(i)] (6.10)
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Here, CP(i) is current position of the i coot and LP(k) is the leader position of the & leader

chosen. Random number »1 ranges from 0 to 1, while random number » ranges from -1 to 1.

4) Leaders position update towards the global best position: Leaders must update their
position in relation to the global best which then guides the entire flock of coot birds towards
global optima (food source location). The leader's position is updated using Equation (6.11) to

get closer to the optimal position.

U xr3xcos(2znr)x(g,,, —LP(0)+g,, :r4<0.5

U x 3% cos(2r) % (g, — LP()— g, ;74205 (6.11)

LP() = {
Here, gres: refers to the global best position, while 73 and 74 take on random values within the

interval of 0 to 1. The value of U is given by Equation (6.12).

U=2-(tlit,_ ) 6.12)

Figure 6.2 presents a flowchart illustrating the utilization of the Coot algorithm in

implementing an OPF solution.

6.3.3 Simulation Setup and Test System

This research article utilizes the Coot algorithm to conduct optimization of fuel cost (FCM),
emissions (EM), and real power loss (PLM) as individual objectives. Remarkably, the Coot
algorithm has been implemented for the first time to address OPF problems. To assess its
performance, the standard IEEE test system comprising 30 buses is chosen as the benchmark
test network. The algorithm was implemented using MATLAB 2018a and run on a laptop

featuring an Intel Core 15 processor and 8 GB of system memory.

a) IEEE 30-bus Test System

The IEEE 30-bus network, with its limited size and manageable complexity, falls into the
category of a small-scale electrical network. At the 100 MV A base, the combined demand for
active power amounts to 283.4 MW, and for reactive power, it amounts to 126.2 MVAR. The
system comprises six generating units located at buses 1, 2, 5, 8, 11, and 13, with bus 1
designated as the slack bus. The loads are distributed across 24 load buses. PV bus voltage
magnitudes are restricted to values between 0.95 and 1.1 p.u. The load buses must operate within
the acceptable operating limits of 0.95 to 1.05 p.u. Detailed system data and operating conditions
for the IEEE 30-bus system are available in the Power Systems Test Case Archive (Christie,
1993).
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Fig. 6.2 Flowchart of the Coot Optimization Algorithm for OPF
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b) Algorithm Parameters

To solve the OPF problem using the COA, a fixed population size of 40 and a maximum

iteration count of 100 were employed. These algorithmic parameters were determined through

extensive testing and evaluation. Table 6.1 presents the optimal parameter settings used for the

Coot algorithm in this case study.

Table 6.1 Algorithm Parameters assigned for COOT Algorithm on IEEE 30-bus System

Parameter Value
Nrop
NLeader 0.1* Npop = 4
Ttmax 100

rl, 2

[0, 1]

73, rd

[0, 1]

['19 1]

6.4 Case Studies, Results, and Discussion

6.4.1 Case 1- OPF for FCM

The aim of this case involves the reduction of fuel expenses using the Coot algorithm, and

the corresponding objective function is formulated in Equation (6.1). In Case 1, the Coot

algorithm significantly reduces the total system fuel cost from 902.02 $/h (base case) to

799.2125 $/h, resulting in a substantial reduction of 11.39%. The obtained total cost is compared

with other algorithms implemented to solve the given case under the same conditions, as shown

in Table 6.2.

Table 6.2 Comparison of the outcomes achieved through various optimization algorithms for Case 1

Total fuel cost Emission ..

Method ($/h) Pross (MW) (ton/h) Method Description
ISSA (Abd El-sattar et . Improved Salp Swarm
al. 2021) 800.4752 9.1044 NR Alsorithm
%?gj’;‘ (Taher et al- | g5, 4744 8.9882 0.3649 Modified Grasshopper OA
GOA (Taher et al. | g5 7506 8.9882 0.3678 Grasshopper OA
2019b)
Jaya (Warid 2020) 800.4794 9.0648 NR Jaya Algorithm
TLBO (Taher et al. Teaching-Learning  based
2019b) 800.6108 8.9899 0.3653 Oh
PSO (Khan et al. 2020) | 799.5433 8.7158 NR Particle Swarm

Optimization

I;OF;)?O (Khan et al. | ;99 153 8.6375 NR Hybrid Firefly PSO
Rao-2 (Warid et al. | g5 3965 9.0535 NR Rao-2 Algorithm
2022)
SCA (Attia et al. 2018) | 800.1018 9.0633 NR Sine-Cosine Algorithm
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ABC (Mohamed et al. Artificial Bee  Colony
2017) 800.66 9.0328 0.3651 Algorithm
Coot 799.2125 8.7353 0.3645 Coot Algorithm

Additionally, Fig. 6.3 shows the convergence traits of the Coot algorithm alongside those of
alternative competing algorithms. The COOT algorithm demonstrates superior performance
over ISSA, MGOA, GOA, TLBO, SSO, Jaya, PSO, Rao-2, SCA, and ABC in both convergence
rate and solution quality. The Coot algorithm demonstrates its remarkable convergence speed

by reaching the best value for Case 1 in just 74 iterations, especially when dealing with small-

scale OPF problems.
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Fig. 6.3 Convergence characteristics comparison of Case 1 using the Coot algorithm and other recent algorithms

6.4.2

The objective of this case is to lower emission levels resulting from the fossil-fuel fired power

Case 2- OPF for EM

plants. The corresponding objective function is defined in Equation (6.2), and the optimal
solution is presented in Table 6.3. Utilizing the Coot algorithm, the generation fuel emission is
reduced to 0.20423 ton/h, leading to a reduction of approximately 44% compared to the
emission results of cost-based OPF (Case 1). Moreover, the fuel cost increases from 799.2125
$/h (Case 1) to 943.1206 $/h, signifying a percentage increase of just 18%. It is noteworthy that
this achievement surpasses the results obtained from other OAs (i.e., TLBO, DE, IDE, GA,
PSO, and GOA), as reported in Table 6.3, while still adhering to the imposed constraints for the
identical system data. Here, MGOA achieves the best solution for minimising emissions, though
it involves trade-offs with other objectives, while IDE initially shows a faster convergence rate

but fails to attain an optimal solution.
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Table 6.3 Comparison of the outcomes achieved through various optimization algorithms for Case 2

Method E(Itnoilsii:;n (II:/IL{);) fgst:ﬂ(;;llf)l Method Description
TLBO (Taher et al. 2019b) 0.20486 3.3608 944.7442 Teaching-Learning based OA
DE (Al-Bahrani et al. 2022) 0.20488 3.2793 943.4304 Differential Evolution
IDE (Al-Bahrani et al. 2022) 0.20476 3.0120 943.7258 Improved DE
GA (Taher et al. 2019b) 0.20487 3.3776 945.0166 Genetic Algorithm
PSO (Taher et al. 2019b) 0.2049 3.4950 944.7462 Particle Swarm OA
GOA (Taher et al. 2019b) 0.20503 3.8265 946.4789 Grasshopper OA
MGOA (Taher et al. 2019b) 0.20259 3.6325 955.3623 Modified GOA
Coot 0.20423 3.4162 943.1206 Coot Algorithm

The convergence behaviors of the Coot algorithm and competing techniques are depicted in
Fig. 6.4. Remarkably, the Coot algorithm demonstrates its superiority by achieving convergence

in just 50 iterations, outperforming other recent techniques in terms of convergence speed and

effectiveness.
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Fig. 6.4 Convergence characteristics comparison of Case 2 using COA and other recent algorithms

6.4.3 Case 3- OPF for PLM

The goal here is the reduction of actual power loss (Pross) within transmission lines. Pposs can
be calculated using Equation (6.4) for any given network. Table 6.4 clearly demonstrates the
superiority of the Coot algorithm when contrasted with previously reported population-based
OAs implemented to solve the given case under identical system data, while still adhering to the

imposed constraints.
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The Coot algorithm achieves an impressive value of 3.0628 MW, which is the lowest among
techniques like SSO, DE, GOA, Rao-2, TLBO, and others, except for MGOA. This noteworthy
result represents a reduction of approximately 47.66% compared to the base case value of
5.8482 MW. The Coot algorithm exhibits rapid convergence to the optimal solution within just

38 iterations, showcasing its highly efficient convergence capabilities.

Table 6.4 Comparison of the outcomes achieved through various optimization algorithms for Case 3

Method (II:/IL:;;) Egst;ll(;;llf)l E(Itnoilsii:;n Method Description
SSO (Nguyen 2019) 3.8239 NR NR Social Spider OA
DE (Mohamed et al. 2017) | 3.38 968.23 NR Differential Evolution
GOA (Taher et al. 2019b) | 3.3141 963.099 0.2083 Grasshopper OA
%?gj’;‘ (Taher et al- | 5 5039 966.1892 | 0.2039 Modified GOA
A K R L D Pertubation- Guiding Jzye
Rao-2 (Warid et al. 2022) 3.0975 967.6599 NR Rao-2 Algorithm
TLBO (Taher et al. 2019b) | 3.1202 967.2312 0.2072 Teaching-Learning based OA
%SI‘;) (Mohamed et al. | 5 ;95 967.6636 0.20727 Moth Swarm Algorithm
Jaya (Warid et al. 2016) 3.1035 967.6827 NR Jaya Algorithm
?531% (Mohamed et al. | 5 7¢ 967.6810 0.207268 ﬁfggcitiﬁifee Colony
PSO (Taher et al. 2019b) 3.1079 967.2312 0.2072 Particle Swarm OA
Coot 3.0628 966.8212 0.2071 Coot Algorithm

Figure 6.5 vividly portrays the trend for minimizing real power losses through the

implementation of the Coot algorithm. These outcomes evidently showcase the excellence of
the Coot approach in achieving the optimal solution while demonstrating a smooth convergence
characteristic curve with highest convergence speed. In this case the MGOA offers the optimal
solution to minimize the power loss. In the meantime, the Coot algorithm achieves the second-
most optimal solution, displaying a higher convergence rate as evident from the convergence
curve in Fig. 6.5. In this case, though, additional system objective functions, like total fuel cost,

exhibited less favourable performance.
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Fig. 6.5 Convergence characteristics comparison of Case 3 with Coot algorithm and other recent algorithms

6.5 Conclusion

In this study, the recently introduced metaheuristic OA, known as the Coot optimization
algorithm, has been thoroughly examined and has successfully demonstrated its reliability and
effectiveness in solving single-objective frameworks of the OPF problem. The successful testing
of the Coot approach on IEEE 30-bus network illustrates its capability to achieve nearly global
optimal adjustments of control variables. The simulation outcomes for all test scenarios attained
using the Coot algorithm were contrasted with the outcomes achieved by competitive algorithms
like DE, GOA, TLBO, Jaya, ABC, PSO, GA, as well as other enhanced variants proposed in
existing literature. The comparison vividly accentuates the remarkable performance and

robustness of the Coot algorithm in contrast to these previously reported techniques.

However, while the basic COA enhances the convergence rate, it may encounter difficulties
in addressing complex, larger-scale problems, often getting trapped in local optima. The
selection of parameters can also significantly affect algorithm performance. Nevertheless, an
improved version with superior global search capabilities and local optima avoidance can
effectively handle large-scale electrical grid OPF problems. To address these challenges, it is
recommended to integrate the COA with other metaheuristic algorithms or Al-based

approaches, coupled with parameter tuning and the development of specialized adaptations.

Future work can expand on making the COA suitable for addressing multi-objective OPF
issues, particularly in large-scale power systems that incorporate non-conventional energy
sources alongside thermal generators. This advancement would enhance the algorithm's

adaptability and effectiveness in more complex and varied power system environments.
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CHAPTER 7

OPF WITH DISTRIBUTED GENERATION: APPLICATION OF THE
EEFO ALGORITHM

7.1 Introduction

The growing demand for electricity, along with the urgent need to curb greenhouse gas
emissions, has spurred a rapid shift towards renewable energy sources (RES) over the past two
decades. Distributed Generation (DG) refers to decentralized, small-scale electricity generation
systems located close to the point of consumption, often utilizing RES. Factors like market
deregulation and government incentives for green energy have further accelerated this shift.
Among various DG options, renewable energy-based systems have emerged as the most
promising alternatives to fossil fuels for electricity generation. Technological advancements in
these systems have led to significant reductions in installation costs while enhancing their
reliability and standardization. Current trends and reports indicate that electricity generated from
RES is poised to become more cost-effective than traditional fossil fuel-based energy production

in the near future.

Despite these advancements, the intermittent nature of RES poses significant challenges to
power system optimization. The OPF problem plays a crucial role in addressing these challenges
by ensuring the economic and stable operation of the power grid. OPF focuses on determining
the optimal settings for control variables (CVs), such as generator outputs, voltage levels, and
transformer tap positions, to achieve key objectives like cost minimization and loss reduction.
Simultaneously, it ensures system stability and adheres to operational constraints, making it an

essential tool in modern power system management. (Alghamdi, 2023)

The rapid advancements in computational power over recent years have led to a growing
trend of employing nature-inspired optimization techniques to solve OPF problems. Numerous
stochastic optimization methods have been proposed and effectively utilized, including GA (Lai
et al. 1997; Kumari and Maheswarapu 2010), PSO (Abido 2002; Vlachogiannis and Lee 2006,
Niknam et al. 2012a), DE (Abou El Ela et al. 2010), HS (Pandiarajan and Babulal 2016; Reddy
2019; Elattar 2018), ABC (Adaryani and Karami 2013; Khorsandi et al. 2013), GSA (Duman et
al. 2012; Bhattacharya and Roy 2012), TLBO algorithm (Bouchekara et al. 2014; Ghasemi et
al. 2015), BBO (Bhattacharya and Chattopadhyay 2009; Kumar et al. 2015), and Jaya algorithm
(Warid et al. 2016; Warid 2020). These approaches are particularly well-suited for handling the

nonlinear and non-convex nature of OPF problems, as detailed in various studies. However, the
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"No Free Lunch" theorem emphasizes that no single optimization method can universally solve
all complex engineering problems, underlining the importance of developing new algorithms

tailored to specific challenges (Wolpert and Macready 1997).

In this context, the present study explores the application of the Electric Eel Foraging
Optimization (EEFO) algorithm - a recently developed nature-inspired, population-based
optimization method - for solving the OPF problem in DG-integrated power systems. The EEFO
algorithm showcases significant potential for achieving optimal solutions, especially in
scenarios involving the integration of RES into power systems. By providing cost-effective and
stable grid operations, EEFO emerges as a promising and innovative tool for modern power

system optimization.

7.2 Problem Formulation
7.2.1 General Structure of OPF

The OPF framework typically encompasses objectives and constraints. An OPF solution
fine-tunes power system variables, referred to as control variables (CVs), for optimizing a
chosen objective function. The optimized state of the system is governed through the state
variables. The power system must operate under two sorts of constraints: equality constraints
and inequality constraints. All conditions of constraint satisfaction have to be followed to
formulate a realistic problem. A SOOPF problem involves only one objective function and is

formulated as:

Min: f(x,u) (7.1)
g (xu)=0 i=1,2,3,....m (7.2)
and, h,(x,u)<0  j=1,2,3,.. N (7.3)

Equation (7.1) represents the objective function, which is dependent on both the state
variables ‘x’ and the control variables ‘u’. Equation (7.2) exhibits the equality constraints, while
the inequality constraints are denoted by Equation (7.3). Here, m indicates the count of equality
constraints, while n signifies the count of inequality constraints. Equation (7.4) presents the state
vector, which is the vector of dependent variables, wherein Pg corresponds to the active power
output of generator, V is the load bus voltage, Qg is the reactive power output of generator, and
Siine 18 the loading of the power line, which must not surpass the specified upper loading limit

for any given line.
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T
=PV, eV Qg QS Sy ] (7.4)

Here, PG] represents slack bus power. The notations NPQ, NG, and NL represent the count

of load buses, generator units, and power lines, respectively. The control vector, given in

Equation (7.5), encompasses the adjustable variables used to govern the power flow scheme.

u' =[Py ..Py Vg .o

G, T Gy ?

Vi Qg oeenQe, T 1Ty (1.5)

Here, V¢ refers to the voltage at generation bus, Qc represents shunt VAR compensation and
T represents the tap changing transformer with N7 representing the count of tap changing

transformers.
7.2.2  OPF Objective Functions
This study involves solving two diverse single-objective OPF (SOOPF) formulations,

yielding two different cases:

a) Fuel cost minimization (FCM)
The cost-related objective is a core component within OPF and has been thoroughly
investigated in various literature. There exists an approximate quadratic correlation between the

fuel cost ($/h) and P (MW) as expressed in the following equation (Abaci and Yamacli, 2016).

Srew (X,u) = (fAiPé +B.P; + Cij ($/h) (7.6)

i=1
For the i generator, the fuel cost coefficients are denoted by 4;, B; and C; with active power

output of P

b) Active power loss minimization (PLM)
The PLM objective strives to reduce the cumulative active power losses (PrLoss) in the system,

calculated as the difference between total generation and demand. Prosscan be defined as follows

(Abaci and Yamacli, 2016):

NB NB NB NL
S (ett) =P =P =P, =>'P, = G,[V+V] -2V Cos5,] (7.7)
i=1 i=1 i=1 L=1
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7.2.3 Constraints

OPF problem consists of two types of constraints namely, equality and inequality. The

equality constraints, g(x,u), consist of power flow equations. The power flow equations are as

follows:

NB NB

Z(PG,» +PDGZ.):ZPD,~ + PLoss (78)
i=l i=l

NB NB

Z(QG‘ +QDG,»)ZZQD,» + QL()SS (7.9)
i=1 i=1

Where P, and Q,, are the active and reactive power output of i DG unit and NB is the

number of buses.

The inequality constraints, A(x,u), define the boundaries for adjustable variables and the

operational thresholds within the power system. These operational thresholds include voltage
levels at generator and load buses, active and reactive power outputs from generators, settings
of transformer tap changers, and limits on compensating reactive power. Additionally,
constraints on active and reactive power outputs of distributed generation must also be taken

into account.

7.3 Overview of Electric Eel Foraging Optimization (EEFO) algorithm
7.3.1 Inspiration

Electric eels, native to South America and part of the Gymnotidae family, are remarkable
predators known for their ability to generate powerful electrical discharges of up to 800 V to
stun and capture prey effectively. These High-voltage discharges serve as a defense mechanism
against predators and as an attack tool to incapacitate prey. This unique adaptation, often likened
to "high voltage wires" within freshwater ecosystems, is facilitated by specialized organs
composed of thousands of electrogenic cells known as electrocytes. These electrocytes function
as biological batteries, storing and releasing energy to support the eel's predatory and defensive
behaviours. Additionally, eels use low-voltage discharges, typically around 10 V, for navigation
and prey detection, compensating for their poor vision and enabling them to efficiently locate

fast-moving targets.

Electric eels also exhibit advanced swarm behaviours similar to social predation strategies
observed in mammals. These behaviours include interacting, migrating, resting, and hunting in

coordinated groups to locate and capture prey. For instance, when hunting in groups, eels often
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cluster together, encircle prey, and drive them into a concentrated "prey ball" before delivering
a synchronized high-voltage attack. This group hunting strategy not only increases the chances
of success but also enables eels to target larger quantities of prey in areas with abundant fish

populations.

Inspired by these sophisticated foraging and behavioural patterns, Zhao et al. (2024)
developed the Electric Eel Foraging Optimization (EEFO) algorithm. By mimicking the
dynamic and adaptive strategies of electric eels, this algorithm provides an innovative approach

to solving complex optimization problems.

7.3.2 Interacting behaviour in EEFO

The Interaction Phase in EEFO algorithm emulates the natural behaviour of eels when they
encounter a school of fish. The eels form electrified circular formations to trap smaller fish at
the centre. In the optimization context, each eel represents a candidate solution, and the best
solution found so far acts as the target prey. During this phase, eels cooperate by exchanging
positional information to enhance the search process, akin to the global exploration phase in
optimization algorithms. This enables a broader search of the solution space. Each eel’s position
is updated by evaluating the difference between a randomly selected eel's position and the search
space's centre. This update mechanism ensures effective exploration of the search space and
prevents premature convergence. The mathematical model for this phase is given by Equation

(7.10):

X+ =X,0)+nx(X

rand _Xc) (710)
where, 7 is a random number constrained to the interval [0, 1]. X, (z+1) is the updated
position of the i™ eel. x (r)is the current position of the i™ eel. x_ is the position of a

randomly selected eel. x_ is the centre of the search space, calculated as per Equation (7.11):

1 N
X =—3'x
; N,Z_ll (2 (7.11)

Additionally, eels may interact with multiple randomly selected eels to incorporate local
search information. This interaction includes the concept of ‘“churn”, which introduces
randomness into the movement of eels, ensuring diverse exploration patterns (Zhao et al., 2024).

The updated position of the eel considering churn is defined as:

Xi(t+1):Xi(t)+r2X(andl_XrandZ) (712)

120



where, X, and X, are the positions of two randomly selected eels. 7, is another random

number within the range [0,1]. This interaction mechanism mimics the dynamic and adaptive
foraging strategy of electric eels, combining global exploration with local search information

to identify promising areas in the solution space effectively.

7.3.3 Resting Behavior in EEFO

In the EEFO algorithm, resting behavior represents a crucial phase that enhances the search
efficiency by allowing electric eels to converge toward promising areas in the solution space
(Zhao et al. 2024). The resting area for the eels is determined through the normalization of the
search space and the positional information of each eel. This involves projecting the position
vector of an eel onto the main diagonal of the search space to establish a reference point. A
normalized position is calculated based on the eel's random placement, ensuring positions
remain within bounds for effective exploration and optimization. The resting position of the eel

within the resting area is then obtained as:
R(t+1)=Z(t)+ax|Z(t)—x,,, (0 (7.13)

where « , also known as the resting factor, is the scale of the resting area and controls the size

of the resting area. ¢ can be defined as;
a =a, xsin(2xr,) (7.14)

where, 7, is a random number constrained to the interval [0, 1]. Once the resting position is

determined, the eel moves toward it. The resting behavior is expressed as:
v.(t+1) =R (+1)+v,x [Rl. (t+1)-round(rand)- x, (t)] (7.15)

where V, is a random value sampled from a standard normal distribution. This mechanism

allows the eels to focus their search within a defined area while narrowing exploration over
iterations. This balance of exploration and exploitation enhances the algorithm's ability to

converge on optimal solutions.

7.3.4 Hunting Behavior in EEFO

In the EEFO algorithm, the hunting behavior mimics the cooperative strategy of electric eels
when they locate prey. Eels interact by forming an electrified circle around the prey, effectively
trapping it within the hunting area. This coordinated behavior involves low electric discharges,

enabling the eels to communicate and reduce the hunting area's size as their interaction
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intensifies. The algorithm models this behavior by defining a dynamic hunting area centered
around the prey's position, with its range determined by the initial scale of the hunting area (o)
and the distance from the prey. Once the hunting area is defined, a new prey position is generated

as:
H (6 1) =X, (0)+ BX[(0) = X,,,, (1 (7.16)

where x(¢) is the mean position of all eels at the current iteration ¢ and X, (¢) is the position

prey

of the prey. Here f is the scale of hunting area defined as;

B = fyxsin(2zr,) (7.17)
here, #; is a random number within interval [0,1]. This mechanism ensures gradual shrinkage

of the hunting area, facilitating a transition from global exploration to focused exploitation.

Additionally, the eels exhibit curling behavior, where their positions are updated relative to

the prey's new position. This behavior is represented as:

v(t+l)=H

prey

(t+1)+77><[H

prey

(t+1)—round(rand)- x, (t)} (7.18)

The curling factor 7, which decreases over time, is defined as:

1, (1-t)

n=e ™ xcos(2zr,) (7.19)

where 7, is a random number within the range [0,1], # is current iteration number and 7Tinax 1S

the maximum number of iterations. The algorithm adjusts # dynamically using Equation (7.19)
as iterations progress. At the start, a moderate value of # must be chosen to encourage diverse
movement (exploration) across the search space. This curling behaviour allows the algorithm
to refine the search and maintain diversity within the population, thereby ensuring an effective

balance between exploration and exploitation throughout the optimization process.

7.3.5 Migration behaviour in EEFO

In the migrating phase of the EEFO algorithm, eels transition from their resting areas to
designated hunting zones. This behaviour models the natural movement of eels as they relocate
towards more promising regions in their search for prey. Each eel assesses its position relative
to a defined hunting area, which is determined by the position of the prey and the surrounding
region. The mathematical model governing this phase begins with determining the new position

of an eel within the hunting area, represented as:
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V(t+) == xR (t+D)+r, xH (t+1) = Lx(H, (t+1)—x,(1)) (7.20)

here 75 and 7; are random numbers in [0,1]. The term (H L+ —x, (t)) directs the eel toward

the hunting area. The variable L represents a Lévy flight function, which ensures that the
algorithm explores the search space broadly while avoiding local optima (Zhao et al. 2024).

The hunting area position is determined using Equation (7.21):

H,(t41) =X, (0) + BX[H(0) = %, (1) (7.21)

where H(?) is any position within the hunting area and , also known as the hunting factor,

defines the scale of the hunting area, as specified in Equation (7.17).

After the new position is determined, the fitness of v, (z + 1) is evaluated. If the new position

improves the fitness value, it is retained; otherwise, the eel remains at its current position:

v.(t+1) ;if fitness (v,(z +1)) < fitness (x,(?)),

. (7.22)
x,(?) ; otherwise.

%U+D={

The social hunting behaviours of electric eels serve as the foundation for the EEFO
algorithm. The algorithm's exploitation and exploration phases are modelled after these
behaviours, drawing inspiration from the dynamic and cooperative strategies electric eels

employ during foraging.

Figure 7.1 shows the representation of electric eels using their electric pulses to locate and

capture prey in an underwater environment.

Fig. 7.1. Electric Eels: Utilizing Electric Pulses for Prey Capture

7.3.6 Transition from Exploration to Exploitation
The Transition from Exploration to Exploitation in the EEFO algorithm is driven by an

energy factor E(t), which facilitates a smooth shift between global exploration and local
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exploitation. This transition is critical for maintaining an effective balance between searching
new regions of the solution space and refining solutions in promising areas. The energy factor

E is defined in Equation (7.23):

E@t) = 4xsin(l —Tij (rl] (7.23)

where ‘¢’ 1s the current iteration, Tmax 1s the total iterations, and 7z, is a random value in [0,1].

When E(t) > 1, the eels engage in global exploration by interacting with other individuals
across the entire solution space. Conversely, when E(t) < 1, the algorithm prioritizes local
exploitation through behaviors like resting, hunting, or migrating to fine-tune solutions in
promising subregions. The probability of £ > 0 being approximately 50% during optimization
ensures a dynamic balance between exploration and exploitation. This balance prevents
premature convergence and promotes robust search capabilities. The behavior of E(t) during
iterations highlights its significance in improving the algorithm's adaptability and efficiency in
solving complex optimization problems (Zhao et al. 2024).

To provide further clarification, Figure 7.2 presents a flowchart illustrating the utilization of

the EEFO algorithm in implementing an OPF solution.
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Fig. 7.2. Flowchart of the Electric Eel Foraging Optimizer for OPF
7.4 Simulation Results and Analysis

The effectiveness of the EEFO algorithm was validated by solving SOOPF problems with
FCM and PLM as objectives on the IEEE 30-bus network, both with and without distributed

generation (DG). DG was incorporated into the OPF formulation to evaluate its impact on
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optimization. The computational setup involved a population size (Npor) of 40 and a maximum
iteration count (7max) of 100. Simulations were conducted using MATLAB R2018a on a 10th
Gen Intel Core 15 laptop (8 GB RAM, 1.19 GHz base speed), ensuring accurate and efficient
evaluations. The results demonstrated that EEFO consistently outperformed other algorithms,

highlighting its effectiveness in solving real-world OPF challenges.

7.4.1 Test System: IEEE 30-Bus

The IEEE 30-bus standard test system utilized in this study includes six thermal generating
units located at buses 1, 2, 5, 8, 11, and 13, with an active power demand of 283.4 MW and a
reactive power load of 126.2 MVAR. Additionally, the system features four transformers with
a +£10% tapping range situated on lines 6-9, 6-10, 4-12, and 28-27. The system also incorporates
nine shunt VAR compensators at buses 10, 12, 15, 17, 20, 21, 23, 24, and 29, as described by
Lee et al. (1985). The CV limits (lower and upper bounds), such as line data, bus data, and their
initial settings for the IEEE 30-bus system on a 100 MV A base, were also taken from Lee et al.
(1985) and Abou El Ela et al. (2010). Table 7.1 outlines the minimum and maximum permissible

values for generator unit parameters along with their respective fuel cost coefficients.

Table 7.1 Allowable generator unit parameters and fuel cost coefficients for IEEE 30-bus test system

Bus a b ¢
NO. Pmin Pmax Qmin Qmax ($/h) ($/h- ($/h-
MW) MW)

1 50 200 -20 200 0.00375 2 0

2 20 80 -20 100 0.0175 1.75 0

5 15 50 -15 80 0.0625 1 0

8 10 35 -15 60 0.0083 3.25 0

1 10 30 -10 50 0.025 3 0

13 12 40 -15 60 0.025 3 0

The considered IEEE 30-bus system is modified by integrating a constant power DG model
at bus 30, identified as the optimal location for DG placement by Warid et al. (2016). Their
sensitivity analysis identified bus 30 as the most suitable location for DG integration to minimize
active power losses and generation costs. The integrated DG unit is a Type 1 unit capable of
supplying both active and reactive power. It has a generation capacity of 9.1478 MW and
operates at a 0.85 power factor, providing 5.6692 MVAR of reactive power. The EEFO
algorithm is applied to further optimize the system, focusing on minimizing power losses and
reducing generation costs. This Type-1 DG is, therefore, modelled as a PQ node, injecting both

active and reactive power, in line with current operational practices and grid code requirements.
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The best results reported in this paper were achieved using the EEFO method with a fixed
population size of Npop = 40 and a maximum iteration count of 7Tmax = 100 to solve the OPF
problem. Table 7.2 contains the optimum parameter setting for the EEFO algorithm, identified

through various trials.

Table 7.2 Algorithm Parameters

Parameter Value
NPOP 40
Tnax 100

Resting factor, & 0.5

Hunting factor, f 0.5

Curling factor, 5 0.55

7.4.2 Case Studies

In this study, the DG unit with a capacity of 9.1478 MW is modelled as a constant power
source to simplify the analysis. Although RES like wind and solar are inherently intermittent, a
fixed output is assumed to focus on evaluating the impact of DG integration on key OPF
objectives, such as FCM and PLM. This simplification allows for a focused assessment of the

effectiveness of the EEFO algorithm in achieving optimized solutions.

a) Case 1- OPF for FCM
Scenario (i): OPF with no DG in IEEE 30-bus system

The recently developed EEFO algorithm was applied to solve the OPF problem with the fuel
cost as the objective function. The results obtained using this method, along with the optimal
CV settings, are presented in the Table 7.3 below. Without incorporating DG, the EEFO
algorithm successfully reduced the fuel cost from 902.0046 $/A to 800.0252 $/h within 100
iterations, showcasing its efficient convergence capabilities as shown in Figure 7.3 (dashed
line). Additionally, the voltage stability index was improved to 0.1301 p.u., representing an
enhancement of approximately 24.45% over the base case. However, this improvement in
voltage stability was accompanied by a marginal increase in power loss compared to the base
case. To validate the effectiveness of EEFO, the results for Case 1 (Scenario (1)) were compared
with the Jaya algorithm proposed by Warid et al. The EEFO algorithm achieved a lower fuel
cost of 800.0252 $/h, compared to 800.479 $/h obtained by Jaya. Additionally, the power loss
was reduced to 8.8634 MW with EEFO, compared to 9.0648 MW achieved by the Jaya

algorithm.
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Table 7.3 OPF solution with optimal CV settings for the IEEE 30-bus test system (Cases 1 & 2)

Case-1 Case-2

CVs (p.u.) Min | Max | Base case
Scenario (i) | Scenario (ii) | Scenario (i) | Scenario (ii)

Pai (slack) (MW) 50 200 99.24 1.7677 1.7337 0.5149 0.4227
Pc2 (MW) 20 80 80 0.48717 0.4725 0.8 0.79559
Pas (MW) 15 50 50 0.21521 0.21247 0.49993 0.5
Pas (MW) 10 35 20 0.21497 0.17392 0.3499 0.35
PGt (MW) 10 30 20 0.11754 0.11169 0.3 0.3
PG (MW) 12 40 20 0.12001 0.12191 0.39998 0.39999
Vai 095 | 1.1 1.05 1.0953 1.09183 1.07095 1.06755
Va2 095 | 1.1 1.04 1.07677 1.07223 1.06658 1.06444
Vas 095 | 1.1 1.01 1.04836 1.04147 1.04613 1.04204
Vas 095 | 1.1 1.01 1.04891 1.0485 1.0537 1.05447
Van 095 | 1.1 1.05 1.09981 1.09387 1.07954 1.1
Vaiz 095 | 1.1 1.05 1.05212 1.0666 1.06751 1.07513
TS 0.9 1.1 1.078 1.03816 1.05142 1.0854 1.03065
TS12 0.9 1.1 1.069 0.95606 0.9022 0.9 0.95282
TS5 0.9 1.1 1.032 0.96917 0.98702 1.00436 1.00489
TSs6 0.9 1.1 1.068 0.97861 0.987 0.9824 0.98292
Qclo 0 5 0 0.03216 0.00017 0.04804 0.05
Qc12 0 5 0 0.04406 0.04965 0.04997 0.00265
Qcls 0 5 0 0.01274 0.00334 0.04993 0
Qc17 0 5 0 0.05 0.02917 0.04787 0.04285
Qc20 0 5 0 0.03741 0.04995 0.04735 0
Qc21 0 5 0 0.04906 0.05 0.04944 0.05
Qc23 0 5 0 0.02748 0.04999 0.03269 0.04995
Qc24 0 5 0 0.04969 0.04932 0.05 0
Qc29 0 5 0 0.02431 0.04964 0.02969 0.04831
FCM (8/h) - - 902.0046 800.0252 766.6201 967.5437 943.9521
VDM (p.u.) - - 1.1601 1.0525 1.1135 1.0923 0.9938
VSI (p.u.) - - 0.1772 0.1301 0.0885 0.1285 0.0923
PLM (MW) - - 5.8423 8.8634 8.3625 3.0728 2.5773
ECM (ton/h) - - 0.2359 0.3343 0.3293 0.2066 0.2059
Total Load (MW) | - - 283.4 283.4 274.2522 283.4 274.2522
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Fig. 7.3. Convergence characteristics comparison of Case 1 using the EEFO - without DG and with DG
scenarios

Scenario (ii): OPF with DG unit in IEEE 30-bus system

In this scenario, the EEFO algorithm was applied to solve the OPF problem incorporating
one type 1 DG with the same FCM objective. As anticipated, placing the DG strategically at bus
30 enabled the algorithm to reduce the fuel cost further to 766.6201 $/h, marking a significant
improvement of approximately 4.18% compared to the scenario without DG and about 15%
improvement from the base case. The convergence characteristics of the EEFO algorithm for
both scenarios are illustrated in Fig. 7.3, with the curve (solid line) for the DG-integrated case
achieving its optimized value in within 75 iterations, highlighting the algorithm’s rapid
convergence capabilities. The smooth convergence curves and reduced fuel costs demonstrate
the effectiveness of DG integration in enhancing the performance of the EEFO algorithm.
Additionally, the incorporation of the DG unit significantly improved system stability. The L-
index decreased to 0.0885 p.u., marking a 31.94% improvement compared to the scenario
without DG (0.1301 p.u.). Concurrently, power losses were reduced to 8.3625 MW,
representing a 5.65% improvement over the scenario without DG. Moreover, the emission cost
decreased from 0.3343 ton// in the case without DG to 0.3293 ton/i with DG. This inclusion of
DG contributed to a marginal but meaningful reduction in emissions, further demonstrating the

effectiveness of the algorithm.
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When compared with the Jaya algorithm by Warid et al. for DG placement at bus 30, the
EEFO algorithm demonstrated superior performance. The fuel cost achieved by Jaya was
768.039 $/h, whereas EEFO reduced it further to 766.6201 $/A. Similarly, the power loss was
reduced from 8.4983 MW with Jaya to 8.3625 MW with EEFO.

Figure 7.4 depicts the voltage profile provided by the proposed EEFO for Case 1, showing

that voltage magnitudes at all buses remain within the specified limits in both the scenarios.
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Fig. 7.4. Voltage profile for Case 1 - without DG and with DG scenarios

b) Case 2: OPF for PLM
Scenario (i): OPF with no DG in IEEE 30-bus system

The primary objective in this case was to minimize active power losses (Pross). The EEFO
algorithm was applied to achieve the optimal solution, with the results summarized in Table 7.3.
The EEFO algorithm proved to be highly effective in determining the optimal CV settings to
minimize system losses. As a result, the real power losses were significantly reduced from
5.8423 MW (base case) to 3.0728 MW, representing an improvement of approximately 47.40%
without incorporating DG. The smooth convergence characteristics of the EEFO algorithm, as
illustrated in Fig. 7.5 (dashed line), further highlight its efficiency in finding the optimal

solution.
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Scenario (ii): OPF with DG in IEEE 30-bus system

In this case, the EEFO algorithm was utilized to solve the OPF problem considering PLM
objective, incorporating one Type 1 DG unit. Placing the DG strategically at bus 30 resulted in
a reduction of real power losses to 2.5773 MW, a generation fuel cost saving of approximately
23.6 $/h, along with an impressive voltage stability index value of 0.0923 p.u. Figure 7.5 (solid
line) demonstrates the rapid convergence of the EEFO algorithm towards the optimal solution

within 100 iterations, showcasing its effectiveness in minimizing power losses with DG

integration.

In comparison to the Jaya algorithm proposed by Warid et al. for DG placement at bus 30,
the EEFO algorithm achieved a 3.65% reduction in power losses, recording a value of 2.5773
MW compared to Jaya's 2.67504 MW. Although, in this scenario, the Jaya algorithm
demonstrated a slight advantage in minimizing fuel costs, the EEFO algorithm's superior

capability in reducing power losses highlights its effectiveness in optimizing system operation.

= - === Without DG
3.5 ——— With DG

> o o
o n o
1 1 ]

Total Power Loss (MW)
T

3.0

245 T | T | T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Iteration

Fig. 7.5. Convergence characteristics comparison of Case 1 using the EEFO - without DG and with DG
scenarios

Figure 7.6 depicts the voltage profile provided by the proposed EEFO for Case 2, showing
that voltage magnitudes at all buses remain within the specified limits. In the with DG scenario,

voltage magnitudes are predominantly closer to the reference value of 1.0 p.u. The addition of
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DG results in a more uniform and stable voltage distribution across the network while adhering

to operational constraints.
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Fig. 7.6. Voltage profile for Case 2 - without DG and with DG scenarios

7.5 Conclusion

In this paper, the EEFO algorithm is successfully applied to solve the OPF problem in
electrical power networks. The algorithm is tested both without and with the incorporation of
DG in single-objective optimization cases. The primary objectives considered are generation
cost reduction and active power loss minimization. The performance of the EEFO algorithm

was validated using standard IEEE 30-bus test system.

The results demonstrated that the EEFO algorithm effectively minimized fuel cost and power
loss while adhering to system constraints, including generator limits, voltage profiles, and line
flow limits. Compared with literature values, EEFO showcased competitive performance in
achieving optimal solutions with fast convergence and enhanced system stability, especially

with optimally integrated DG.

These findings suggest that EEFO is a promising optimization technique for solving OPF
problems in small-scale power systems. Its simplicity, solution quality, and computational
efficiency make it a promising approach for practical power system applications. Future work
could extend EEFO to multi-objective OPF (MOOPF) problems, large-scale systems, and
probabilistic models to address uncertainties associated with RES, enhancing its practical

applicability.
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CHAPTER 8
CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT

8.1 Conclusion

This research presents innovative optimization techniques tailored to address the complex
and multi-faceted challenges of OPF in modern power systems. Among the algorithms
introduced and evaluated are the Hybrid Rao-2 Sine Cosine Algorithm (HRSCA), the
Learning-based Sine Cosine Algorithm (L-SCA), the Coot Optimization Algorithm (COA),
and the Electric Eel Foraging Optimization (EEFO) Algorithm. Each of these methods has
demonstrated its effectiveness in solving key OPF objectives, such as fuel cost minimization
(FCM), voltage deviation minimization (VDM), voltage stability enhancement (VSE) power
loss minimization (PLM), and emission minimization (EM). The algorithms were rigorously
tested on diverse power system networks, including IEEE 30-bus, 57-bus, 118-bus systems,
and the Algerian 59-bus network, under various operating scenarios, including load growth and
contingency events.

The L-SCA addresses the limitations of the standard SCA by introducing a learner phase
inspired by TLBO. This enhancement improves the algorithm's exploitation capabilities while
maintaining population diversity. L-SCA has demonstrated significant improvements in
solution quality, convergence speed, and scalability, making it highly effective for solving
complex OPF problems across small-, medium-, and large-scale networks.

Similarly, the Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) demonstrates exceptional
performance by effectively balancing exploration and exploitation dynamics. By integrating
the global exploration capability of the SCA with the convergence efficiency of the Rao-2
Algorithm, HRSCA achieves faster convergence and delivers high-quality solutions. This
hybrid approach proves effective in both single-objective and multi-objective optimization
scenarios. Extensive case studies, including scenarios involving load growth and contingency
conditions, underline the algorithm’s robustness and adaptability.

Additionally, the COA, inspired by the cooperative foraging behaviour of coot birds, has
proven to be a robust and adaptive solution for OPF problems. The COA successfully handles
the non-linear, non-convex nature of OPF by maintaining population diversity and preventing
premature convergence. Its effectiveness has been demonstrated specifically on the 30-bus

system.
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The EEFO algorithm, inspired by the unique electrical behaviour of eels, stands out for its
capability to adapt dynamically to complex and constrained optimization landscapes. By
mimicking the electrical discharges and movement strategies of eels, this algorithm efficiently
balances exploration and exploitation, ensuring robust convergence to high-quality solutions.
The electric eel algorithm, specifically, was applied to the IEEE 30-bus system with two key
objective functions: generation cost minimization (FCM objective) and real power loss
reduction (PLM objective). By optimizing control variables and incorporating the impact of
DG, the algorithm demonstrated significant improvements in operational efficiency. The results
highlight reduced fuel costs and lower power losses making the Electric EEL algorithm a
promising tool for modern OPF challenges with RER integration.

The ability of the algorithms like L-SCA and HRSCA to optimize multiple objectives while
satisfying system constraints positions them as valuable tools for power system optimization.
The results obtained from this research highlight the practicality and scalability of the proposed
algorithms in addressing real-world challenges in power systems. Collectively, these
approaches offer reliable and efficient solutions for modern power system challenges,
demonstrating significant improvements over conventional methods. Significant
improvements were observed in reducing fuel costs, emissions, and power losses while
maintaining voltage stability and ensuring operational security under normal and critical

conditions.

8.2 Future Scope

The field of OPF continues to evolve with the introduction of advanced computational
algorithms and the integration of renewable energy resources. The promising results obtained

in this research open up exciting avenues for future exploration and development:

8.2.1 Incorporation of Renewable Energy Sources (RES)

The integration of RES into OPF formulations offers opportunities to enhance the
sustainability and resilience of power systems. Future research can focus on developing
methods to better incorporate RES, considering their intermittent and variable nature.
Additionally, the impact of uncertainties in RES generation on the performance of the proposed
algorithms can be investigated to improve their robustness and reliability while ensuring grid
stability. Such studies will contribute to the development of more adaptive and sustainable

power system operations.
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8.2.2 Real-time Applications

Real-time implementation of OPF can play a key role in improving the dynamic control and
optimization of power systems. Future work can focus on developing algorithms that can
quickly provide solutions to meet the requirements of real-time operations. Additionally,
advanced communication technologies can be explored to ensure smooth and efficient data
exchange between control centres and distributed energy resources (DERs). This will help in
better coordination, faster decision-making, and improved use of resources in modern,

decentralized power systems

8.2.3 Multi-Objective Optimization

The application of multi-objective optimization techniques offers significant potential for
addressing conflicting objectives in power system operation, such as minimizing operational
costs while maximizing renewable energy penetration. Future work can focus on developing
and implementing advanced optimization frameworks capable of balancing economic,
environmental, and social considerations particularly with RER integration. These frameworks
should incorporate strategies to address trade-offs between cost-effectiveness, environmental

sustainability, and grid reliability.

8.2.4. Hybrid Approaches

This thesis has demonstrated the effectiveness of a hybrid approach in specific OPF
scenarios, but further research is needed to unlock their full potential. Future directions may
include:

e Advanced Hybrid Frameworks
Developing more advanced hybrid frameworks that effectively combine the strengths of

multiple algorithms, such as integrating metaheuristics with traditional optimization
techniques. Additionally, ML-based methods can be explored to adaptively select and
combine algorithms based on the characteristics of specific OPF problems, improving
performance and flexibility.

e Real-Time Applications
Extending hybrid approaches for real-time OPF to handle dynamic power system

conditions, such as load variations and fluctuating renewable energy generation. The focus
can be on designing efficient algorithms capable of adapting quickly to real-time changes
and providing optimal solutions within limited time frames.

e Large-Scale Systems
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Investigating the scalability of hybrid approaches for application in large-scale power
systems. Future work can include developing parallel and distributed implementations to
enhance computational efficiency and address the complexities of larger optimization

problems effectively.

8.2.5. Advanced Power System Models

Incorporating more detailed power system models into OPF formulations can enhance the
accuracy and reliability of solutions. Future research can focus on integrating dynamic models
and performing transient stability analysis to better capture the real-world behaviour of power
systems.

Additionally, the influence of emerging technologies, such as Flexible AC Transmission
Systems (FACTS) and energy storage systems, on OPF should be explored. FACTS devices
provide greater flexibility and control over power flows, voltage levels, and system stability,
enabling more precise management of the power grid. Energy storage systems, on the other
hand, offer the ability to store excess energy and dispatch it during peak demand periods,
improving overall system efficiency and reliability. These technologies can provide greater
flexibility and control in system operations, and their integration into OPF models can further

optimize performance under diverse operating conditions.

8.2.6. Exploration of Novel Objective Functions

While traditional OPF objectives like cost minimization, emission reduction, and power loss
minimization are crucial, there is a growing need to address more customer-centric metrics.
Future research can shift towards including reliability indices, which measure the consistency
and dependability of the power supply, ensuring that customers experience fewer interruptions
and better service quality. Additionally, power quality metrics, such as frequency stability,
transient response, harmonic distortion, etc., can be incorporated to ensure that the electricity
delivered is not only reliable but also meets high standards of quality, preventing equipment
damage and improving overall customer satisfaction.

Furthermore, real-time pricing optimization can be explored to better align electricity prices
with supply and demand fluctuations, encouraging more efficient energy use. By integrating
these metrics into OPF formulations, the focus can move towards enhancing the end-user
experience, promoting smarter energy consumption patterns, and supporting the grid's stability
through dynamic pricing strategies.

Integrating social and environmental factors, such as public health benefits and

sustainability, can lead to more holistic power system management. This approach ensures that
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power systems are not only efficient and reliable but also aligned with societal and

environmental goals.

8.3 Social Impact

The optimization techniques developed in this research have profound implications for
societal well-being and contribute significantly to addressing key challenges in the energy

sector.

8.3.1 Economic Impact

The implementation of the L-SCA and HRSCA demonstrates significant reductions in fuel
costs and power losses. These cost efficiencies translate into substantial operational savings for
utilities, which can ultimately lower energy prices for consumers. By making energy more
affordable, this research contributes to the vital goal of ensuring reliable and accessible power

for a growing population.

8.3.2 Environmental Sustainability

From a social perspective, the proposed algorithms contribute to global sustainability efforts
by minimizing emissions and facilitating the integration of renewable energy sources into the
power systems. These advancements align with international efforts to combat climate change
and achieve carbon neutrality. By reducing the reliance on traditional, carbon-intensive energy
generation methods, the research contributes to preserving the environment for future

generations.

8.3.3 Grid Stability and Resilience

The proposed optimization techniques enhance grid stability by improving voltage stability,
loading margin stability, and overall system security. These improvements make the power grid
more resilient to blackouts and voltage collapses, especially under high-load conditions or
contingency scenarios. This ensures a reliable energy supply, which is crucial for maintaining
societal functions and economic activities, thereby bolstering community resilience against

energy-related challenges.

8.3.4 Advancing Smart Grids

The research is highly relevant to next-generation power systems, particularly smart grids.
The optimization strategies introduced in this study facilitate the efficient operation of
advanced technologies, including electric vehicles, energy storage systems, and distributed
energy resources. These advancements are critical for modernizing the energy sector and

fostering the growth of more adaptive and intelligent grids.
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8.3.5 Global Energy Transition

On a global scale, the methodologies developed and discussed in this thesis offer a practical
framework for addressing the dual challenges of rising energy demand and environmental
conservation. This framework facilitates a transition towards low-carbon energy solutions,
supporting international sustainability goals and contributing to a healthier, more sustainable
society.

The adaptive strategies implemented in L-SCA, along with the hybridization techniques
introduced in HRSCA, offer substantial potential for advancing optimization methodologies.
L-SCA, as an enhanced version of the SCA, and HRSCA, a hybrid approach combining the
strengths of SCA and the Rao-2 algorithm, demonstrate exceptional capability in addressing
complex optimization challenges. While primarily applied to power systems in this research,
these methodologies hold promise for broader applications across various engineering and
industrial domains. By providing scalable and robust solutions, they open up new possibilities
for addressing complex optimization challenges in diverse fields.

In conclusion, the optimization techniques developed in this research not only tackle the
current challenges in power system management but also lay the groundwork for a sustainable,
efficient, and socially responsible energy future. These contributions play a key role in the
development of smarter, greener, and more adaptive energy systems, supporting the global

transition toward a sustainable and low-carbon energy landscape.
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Appendix

Table A.1 Summary of systems under study

L. IEEE 30 IEEE 118
Characteristics - - - -
Quantity Details Quantity  Details
Buses 30 [59] 118 [65]
Branches 41 [59] 186 [65]
Buses: 1,4,6,8,10, 12, 15, 18, 19, 24, 25, 26, 27,
Buses:1 (swing), 2, 5, 31, 32, 34, 36, 40,. 42, 46, 49, 54, 55, 56, 59, 61,
Generators 6 8 11 and 13 54 62, 65, 66, 69 (swing), 70, 72, 73, 74, 76, 77, 80,
’ 85,87, 89,90,91, 92,99, 100, 103, 104, 105, 107,
110,111, 112,113 and 116
Shunt VAR 9 Buses: 10, 12, 15, 17, 14 Buses: 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83,
compensators 20, 21, 23, 24 and 29 105, 107 and 110
Branches: 11, 12, 15
Transformers 4 and 36 9 Branches: 8, 32, 36, 51, 93, 95, 102, 107 and 127
Control variables 24 - 130 -
Load volt. limits [0.95-1.05] p.u [0.94-1.06] p.u.
Gen. volt. limits [0.95-1.1] p.u. [0.94-1.06] p.u.
Tap-setting limits ~ [0.9-1.1] p.u. [0.9-1.1] p.u.

Connected load

283.4 MW, 126.2 MVAR

4242 MW, 1438 MVAR

Table A.2 Branch power flow in Case 6 with Pp =421.6014 MW

Branch I_Jmm Branch lj“rom
No. o . S Noo W . 5,
(VL) bus' PQ sent PQ received (MYA) (NL) bus' PQ sent PQ received (MVA)

To jth To jth

bus bus
1 1-2 1.2987 - 0.1828i -1.2893 +0.2350i 130 22 15-18  0.0967 +0.0122i -0.0957 - 0.0103i 16
2 1-3 0.6836 - 0.0012i -0.6662 +0.04861 130 23 18-19  0.0481 - 0.0031i -0.0480 +0.0034i 16
3 2-4 0.4121 - 0.02561 -0.4039 +0.02911 65 24 19-20  -0.0933 -0.0540i  0.0937 + 0.0547i 32
4 3-4 0.6305 - 0.06651 -0.6259 +0.07481 130 25 10-20  0.1279 + 0.0189i -0.1264 - 0.0157i 32
5 2-5 0.8018 + 0.0059i -0.7761 +0.07771 130 26 10-17  0.0642 + 0.0469i -0.0640 - 0.0464i 32
6 2-6 0.5526 - 0.0161i -0.5376 +0.03991 65 27 10-21  0.2347 + 0.0902i -0.2327-0.08591 32
7 4-6 0.6230 + 0.0249i -0.6190 - 0.0160i 90 28 10-22  0.1127 +0.0375i -0.1118 - 0.03561 32
8 5-7 -0.1252 +0.13841  0.1267 - 0.1460i 70 29 21-22  -0.0277-0.0324i  0.0277 + 0.0325i 32
9 6-7 0.4712 +0.0228i -0.4659 - 0.0162i 130 30 15-23  0.0861 - 0.0070i -0.0854 +0.0084i 16
10 6-8 0.1177 -0.1114i -0.1174 +0.10731 32 31 22-24  0.0841 +0.0031i -0.0834 -0.00191 16
11 6-9 0.1538 - 0.3123i -0.1538 +0.33891 65 32 23-24  0.0378 +0.0178i -0.0375 - 0.0174i 16
12 6-10  0.1720 +0.2913i -0.1720 - 0.24571 32 33 24-25 -0.0085-0.0307i  0.0087 +0.0310i 16
13 9-11 -0.3000 - 0.2877i 0.3000 + 0.3208i 65 34 25-26  0.0530 + 0.0357i -0.0521 -0.0342i 16
14 9-10  0.4538-0.0512i -0.4538 +0.0724i 65 35 25-27  -0.0617-0.0667i  0.0626 + 0.06831 16
15 4-12  0.2938 - 0.1526i -0.2938 +0.17971 65 36 28-27  0.2618 +0.0972i -0.2618 -0.0711i 65
16 12-13  -0.4000 - 0.2927i 0.4000 + 0.3233i 65 37 27-29  0.0932 - 0.0097i -0.0915 +0.0130i 16
17 12-14  0.1178 + 0.01401 -0.1163 - 0.0108i 32 38 27-30  0.1060 + 0.01251 -0.1027 - 0.00641 16
18 12-15 0.2856 +0.0163i -0.2808 - 0.00681 32 39 29-30  0.0558 +0.0234i -0.0550 - 0.0219i 16
19 12-16  0.1237 +0.0203i -0.1224 -0.01751 32 40 8-28 0.0211 - 0.0162i -0.0208 - 0.00771 32
20 14-15  0.0241 - 0.01301 -0.0239 +0.01321 16 41 6-28 0.2419 + 0.08581 -0.2409 - 0.08951 32
21 16-17  0.0703 - 0.0093i -0.0699 +0.0102i 16
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Table A.3 Allowable generator unit parameters and fuel cost coefficients for IEEE 118-bus test system

Generators Bus  Pmin Prnax Omin Omax a b c

(G) No. MW) (MW) (MVAR) (MVAR) ($/h) $/h-MW)  ($/h-MW?)
Gi 10 50 500 -147 200 0 1.818 0.0018
Gz 12 10 90 -35 120 0 5.405 0.0054
Gs3 25 30 300 -47 140 0 3.215 0.0032
Ga 26 40 400 -1000 1000 0 2.415 0.0024
Gs 31 0 10 -300 300 0 9.346 0.0093
Ge 46 0 23 -100 100 0 3.743 0.0031
G 49 30 240 -85 210 0 3.589 0.0033
Gs 69 20 200 -60 180 0 2.612 0.0024
Go 61 20 200 -60 180 0 2.453 0.0023
Gio 65 90 600 -67 200 0 2.21 0.002
Gii 66 90 600 -67 200 0 2.21 0.002
G2 69 100 900 -300 300 0 1.242 0.0014
Gz 80 50 600 -165 280 0 9.95 0.0096
Gua 87 0 5 -100 1000 0 1.951 0.0019
Gis 89 50 700 -210 300 0 2.841 0.0028
Gie 100 50 300 -210 300 0 2.841 0.0028
Gr7 103 0 50 -15 40 0 2.841 0.0028
Gis 111 0 40 -100 100 0 7.353 0.0074
Gy 111 0 40 -100 100 0 7.353 0.0074
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