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ABSTRACT 

The growing demand for electricity, rising greenhouse gas emissions, and the global 

emphasis on sustainability have led to the integration of intelligent optimization techniques in 

modern power systems.to ensure efficient, stable, and sustainable gird operations. This thesis 

addresses the Optimal Power Flow (OPF) problem, focusing on single-objective and multi-

objective formulations to optimize economic, technical, and environmental parameters in 

modern power systems. Key objectives include fuel cost minimization, power loss reduction, 

voltage stability improvement, voltage deviation minimization, and emission reduction.  

The OPF problem is inherently complex, characterized by its nonlinear, nonconvex, and 

high-dimensional nature. The nonlinear, high-dimensional nature of the OPF problem is 

tackled using state-of-the-art metaheuristic algorithms, including the Learning-based Sine 

Cosine Algorithm (L-SCA), Hybrid Rao-2 Sine Cosine Algorithm (HRSCA), Coot 

Optimization Algorithm (COOT), and Electric Eel Foraging Optimizer (EEFO). Extensive 

testing has been conducted on standard IEEE networks, including the IEEE 30-bus, 57-bus, 

118-bus systems, and the Algerian 59-bus network, to validate the scalability and robustness of 

these algorithms under varying operational scenarios. 

Single-objective and multi-objective formulations are analyzed to optimize control variables 

such as generator outputs, bus voltages, transformer tap settings, and reactive power 

compensation. Additionally, the integration of Distributed Generation (DG) units as constant 

power sources is investigated to assess the impact of renewable energy integration on system 

performance. The findings highlight significant improvements in system efficiency, reduced 

operational costs, enhanced stability, and reduced environmental impact. 

The proposed methodologies demonstrate rapid convergence, high-quality solutions, and 

computational efficiency, showcasing their applicability to real-world power systems. By 

addressing critical challenges such as fuel cost minimization, handling load growth scenarios, 

voltage collapse prevention, and emission reduction, this work contributes significantly to the 

development of sustainable and reliable energy systems. Future studies could explore the 

integration of advanced hybrid optimization techniques and real-time dynamic control systems 

to further enhance the efficiency and scalability of the proposed methodologies, particularly 

for large-scale, decentralized power systems with renewable energy integration.
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devices 
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optimization problem 
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CHAPTER 1 

INTRODUCTION 

 

1.1   Introduction 

The secure and efficient operation of power systems is increasingly critical, particularly as 

global energy demand rises and as renewable energy sources (RES) and power electronic 

appliances become integral to modern, interconnected power grids. Effective management, 

planning, and control are essential to support this demand, along with ensuring the stability and 

economic operation of both existing and future electrical grids. Achieving these objectives is 

often facilitated by the Optimal Power Flow (OPF) framework, which provides essential 

results for economic operation, planning, and control. The purpose of the OPF is to optimize a 

chosen objective function by optimal setting of the power system control variables within 

specified equality and inequality constraints. 

The objectives of OPF can be broadly categorized into techno-economic and environmental 

aspects, each crucial to modern power systems. Techno-economic objectives primarily include 

fuel cost minimization (FCM) and real or active power loss minimization (RPLM/APLM). 

FCM is frequently prioritized for its direct impact on reducing generation costs, which is vital 

for efficient economic operation. RPLM further helps in reducing overall power production 

requirements by minimizing system losses. Additionally, technical objectives encompass 

voltage stability enhancement (VSE) to ensure system resilience and voltage profile 

improvement (VPI) to maintain optimal voltage levels across the network. 

As thermal power plants continue to play a significant role in meeting the increasing 

demand, environmental objectives such as emission cost minimization (ECM) have become 

essential to address the environmental impacts of power generation. By balancing these techno-

economic and environmental objectives, OPF methodologies enable a more robust, sustainable, 

and cost-effective power system. 

1.2   Historical Context 

Since the term "Optimal Power Flow" was first introduced by Carpentier in the early 1960s 

(Carpentier, 1962) and subsequently formulated by Dommel and Tinney (1968), OPF has been 

extensively studied to enhance power system reliability, control, economic scheduling, and 

planning (Hazra & Sinha, 2011). Initially, power systems were designed with a focus on reliable 

and centralized electricity generation, with economic load dispatch being the primary 
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optimization objective. Classic optimization methods, such as linear programming and mixed-

integer programming, were used to handle these early systems, focusing on balancing 

generation and demand with minimal operational cost. 

The 21st century brought about a paradigm shift with the integration of RES. The intermittent 

nature of these sources, such as wind and solar power, introduced variability and uncertainty 

into the grid. This necessitates more sophisticated optimization techniques to ensure reliable 

and efficient power system operation. 

Recent advancements in computational power and computational intelligence have 

accelerated the development of hybrid and adaptive optimization methods. These modern 

approaches are designed to address both single and multi-objective optimization needs, 

balancing technical, economic, and environmental goals. This ongoing progress in optimization 

techniques highlights how the field is adapting to the growing complexity and demands of 

modern power systems. 

1.3   Motivation 

The increasing complexity of power systems presents a pressing need for advanced 

optimization methods. Modern optimization techniques have evolved in response to the 

increasing complexities of power systems. Classical deterministic methods are now frequently 

supplemented or replaced by metaheuristic algorithms, such as particle swarm optimization 

(PSO), genetic algorithm (GA), and newer hybrid approaches. These metaheuristic techniques 

offer robust global search capabilities, enabling researchers to navigate the non-linear, multi-

objective, and high-dimensional challenges of modern power systems more effectively than 

traditional methods, which often become trapped in local optima. Recent advancements in 

computational intelligence have further empowered researchers to explore innovative global 

optimization approaches, enabling the discovery of optimal solutions for complex power 

system problems. 

This research work is motivated by the need to develop and apply optimization techniques 

that can address these challenges effectively. By employing advanced metaheuristic (modified 

or improved version) and hybrid optimization methods, this research study aims to contribute 

to the development of stable, efficient, and sustainable power systems that meet the demands 

of modern grids, while considering economic and environmental objectives. 

However, the stochastic nature of population-based metaheuristics makes performance 

evaluation for OPF a challenging task. The "No Free Lunch" theorem by Wolpert and 
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Macready (1997) highlights this complexity, demonstrating that no single optimization 

algorithm can universally solve all types of engineering and complex optimization problems. 

This insight highlights the importance of refining existing algorithms and developing new ones 

to address specific needs in diverse contexts. Consequently, this thesis is motivated by the 

objective of creating a highly efficient optimization method tailored to solve the OPF problem 

effectively, offering robust solutions for stable and sustainable power system operations. 

1.4   Challenges in Power System Stability and Optimization 

The secure and reliable transmission of electricity is essential for modern power networks, 

especially given the continuous growth in electrical demand. Long transmission distances, 

economic constraints, environmental concerns related to grid expansion, and rising load 

demands can all lead to stressed power systems that are more vulnerable to outages (Shiraki et 

al. 2016). With the increasing integration of renewable energy sources (RES), the power grid 

faces new challenges, particularly the overloading of transmission lines, which can result in 

voltage drops and even system collapse during high-stress conditions (Athari and Wang 2018; 

Liang et al. 2022). 

Below are the main challenges that grid operators and researchers face as they seek to ensure 

stable, efficient, and sustainable power delivery: 

1.4.1 Economic Pressures on Grid Operation 

Economic pressures influence how grids are operated, with operators often running systems 

close to maximum capacity to improve loadability and reduce costs. However, this approach 

heightens the risk of voltage collapse, particularly when the system approaches critical load 

conditions. In cases of voltage collapse, cascading outages or blackouts can follow (Laghari et 

al. 2013; Samuel et al. 2014). Therefore, it is critical for system operators to assess the stability 

margins accurately and determine how much additional load capacity the system can handle 

before reaching an unstable state. This tension between economic efficiency and system 

reliability presents a significant operational challenge, underscoring the need for solutions that 

minimize operational costs without compromising stability. 

1.4.2 Voltage Instability 

Overloaded transmission lines and network topology changes frequently lead to voltage 

instability, a major cause of global blackouts. Accurate assessments of stability margins are 

crucial to prevent cascading failures and ensure secure power system operation, especially 
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under contingency conditions. This technical challenge underscores the importance of 

maintaining a stable voltage profile to support continuous and reliable power delivery. 

1.4.3 Reliance on Load Shedding for Stability 

During emergencies, operators often rely on load shedding to prevent system collapse. This 

approach addresses immediate threats but indicates a reactive, rather than proactive, 

management of stability, which may impact both economic and technical objectives by causing 

interruptions and operational inefficiencies. This reliance highlights the need for improved 

stability management strategies that reduce the necessity of disruptive, last-resort measures to 

maintain system security. 

1.4.4 Environmental Sustainability Challenges 

The need to reduce emissions and fuel consumption adds environmental considerations, 

requiring optimization techniques that support emission minimization while enhancing 

operational efficiency. 

Addressing the above challenges requires optimization techniques that balance competing 

objectives across technical, economic, and environmental domains. These techniques should 

aim to minimize fuel and emission costs, reduce power losses, and enhance voltage stability, 

thereby promoting efficient and sustainable power system operations. 

1.5   Objectives of OPF in Modern Power Systems 

The objectives of OPF can be broadly categorized into techno-economic and environmental 

aspects. Each of these objectives plays a critical role in enhancing the operational efficiency, 

reliability, and sustainability of modern power systems. 

1.5.1 Techno-Economic Objectives 

The techno-economic objectives are pivotal for the economic efficiency and operational 

reliability of power systems. Key objectives within this category include: 

a) Fuel Cost Minimization (FCM) 

Minimizing fuel costs is often a primary objective in OPF as it directly impacts the 

overall generation costs. By optimizing the fuel usage across generators, FCM reduces 

operational expenses, thereby enabling economically efficient system operation and 

benefiting both utility providers and consumers. To address complex real-world conditions, 

FCM is often divided into the following sub-objectives: 
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Fuel Cost Minimization with Valve-Point Loadings (FCM-VPL) 

This objective accounts for the non-linearities introduced by valve-point effects in 

generation units. Incorporating valve-point loadings enables a more accurate fuel cost 

model by considering the ripple effect in the cost curve, which leads to better 

optimization under real operational conditions.  

Fuel Cost Minimization with Prohibited Operating Zones (FCM-POZ) 

Certain operational zones within generators may be restricted due to physical or safety 

limitations. This objective ensures that the OPF solution respects these zones, leading to 

feasible and safe operation while still optimizing fuel costs. 

Fuel Cost Minimization Considering Multiple Fuel Sources (FCM-MFS) 

Thermal generating units can be powered by multiple fuel sources, including oil, coal, 

and natural gas. By incorporating fuel selection into OPF, the optimal fuel mix can be 

determined, considering factors like fuel availability and price fluctuations to minimize 

overall costs. 

b) Real Power Loss Minimization (PLM) 

PLM aims to reduce the total active power losses in the system, thus decreasing the 

amount of power that must be generated to meet demand. Lower system losses lead to 

reduced generation requirements, which further supports cost savings and contributes to 

system efficiency. 

c) Reactive power loss minimization (RPLM) 

This objective focuses on minimizing reactive power losses within the system. Reactive 

power losses primarily arise due to the reactance of transmission lines, and they significantly 

impact both system stability and voltage regulation. By reducing reactive power losses, the 

system can operate more efficiently, as lower reactive losses enhance voltage stability and 

improve overall power quality. 

d) Voltage Stability Enhancement (VSE) 

Voltage stability is essential for ensuring the system’s resilience to disturbances. 

Enhancing voltage stability through OPF helps prevent voltage collapse, which can lead to 

large-scale blackouts, and ensures the system remains robust under various operating 

conditions. The L-index serves as an indicator, showing how close a bus is to a potential 

voltage collapse, allowing for proactive stability management. Additionally, the objective 
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of VSE in contingency conditions like line outages or generator failures, etc., is also 

frequently explored and addressed in OPF literature. 

e) Severity Index (SI) Minimization 

The Severity Index (SI) quantifies the severity of line overloads within the power system. 

Contingencies are ranked based on this index, with higher values indicating greater severity. 

System operators can leverage the SI to prioritize actions and address critical issues, thereby 

enhancing system stability and mitigating the risk of failures. 

Unlike the SI, which solely considers line overloads, the Severity Value Minimization 

(SVM) function provides a more holistic approach. SVM aims to minimize the overall 

severity of violations in the power system by accounting for both line power flows 

(overloading) and bus voltage deviations. 

f) Voltage Profile Improvement (VPI)/ Voltage Deviation Minimization (VDM) 

Maintaining optimal voltage levels across the network is necessary for system reliability 

and safety. VPI ensures that voltage levels are within desired limits throughout the system, 

which not only supports the performance of equipment but also reduces the risk of voltage-

related issues. Improving the voltage profile involves minimizing voltage deviations at all 

load buses, from the reference value (VD) of 1.0 p.u. 

g) Voltage Security Index (VSI) 

VSI serves as a performance index to evaluate a power system’s ability to maintain 

voltage levels within a predefined acceptable range, thereby indicating the system’s stability 

and security. Minimizing VSI indicates that the voltages across the system are closer to the 

average voltage, implying less fluctuation and greater stability. 

1.5.2 Environmental Objectives 

In addition to techno-economic goals, OPF increasingly integrates environmental objectives 

to align with sustainability goals. Common objectives include: 

a) Emission Minimization (EM) 

In the context of OPF, the emissions minimization objective focuses on reducing harmful 

pollutants produced by power generation by thermal units. This objective considers various 

emissions, such as sulfur oxides (SOx), nitrogen oxides (NOx), and thermal emissions. By 

minimizing these emissions, OPF contributes to cleaner energy production and aligns with 

environmental standards. This approach not only addresses the ecological impacts of power 
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systems but also supports sustainable power generation by integrating cleaner technologies 

and optimizing power generation strategies to reduce overall emissions. 

b) Renewable Energy Integration 

With the rising emphasis on clean energy, OPF also considers the optimal integration of 

renewable resources. This helps in balancing conventional and renewable sources, thus 

fostering a more sustainable power system. 

1.6   Problem Statement 

The rapid growth in energy demand, coupled with the integration of RES, has introduced 

significant complexity into modern power systems. Traditional optimization techniques, such 

as linear and non-linear programming, are increasingly inadequate for addressing the non-

linear, multi-objective, and high-dimensional challenges of today’s power systems. As a result, 

power grids face heightened risks of instability, economic inefficiency, and environmental 

impact, particularly in scenarios involving high renewable penetration and fluctuating power 

generation. 

This research work presented in this thesis aims to address these challenges by developing 

and applying advanced optimization techniques. The primary focus is on reducing fuel costs, 

lowering emissions, enhancing voltage stability, and minimizing power losses, while 

addressing both individual and simultaneous objectives. By focusing on single and multi-

objective optimization through both modified (improved/enhanced) and hybrid approaches, 

this study seeks to help build power systems that are resilient, efficient, and sustainable, 

meeting the complex needs of today’s energy networks. 

1.7   Outline of Thesis 

This thesis comprises eight chapters, beginning with an introduction to the critical role of 

OPF in modern power systems and a review of its evolving methodologies. Subsequent 

chapters explore advanced optimization algorithms, including L-SCA, HRSCA, COA, and 

EEFO, demonstrating their applications and effectiveness in addressing OPF challenges. The 

thesis concludes with future research directions, followed by references. 

Chapter 1: This chapter introduces the critical role of OPF in ensuring the secure, efficient, 

and sustainable operation of modern power systems. It emphasizes the growing importance of 

OPF in the face of increasing energy demand and the integration of renewable energy sources 

(RES). The chapter discusses the evolution of OPF methodologies, from traditional approaches 

to more advanced metaheuristic techniques, and highlights the need for developing 
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sophisticated optimization algorithms to address the complex challenges facing today's power 

grids. 

Chapter 2: This chapter provides a comprehensive review of the evolution of OPF 

methodologies. It focuses on the transition from classical optimization techniques to more 

modern metaheuristic algorithms. It highlights the strengths, limitations, and advancements in 

heuristic and hybrid approaches for addressing multi-objective and constrained OPF problems. 

Recent developments and comparisons of these techniques are also covered. 

Chapter 3: This chapter provides a comprehensive overview of the OPF framework, 

including its structure, objectives, and constraints. Detailed descriptions and mathematical 

formulations of various OPF objectives are discussed. It outlines the single- and multi-objective 

formulations and describes the standard test systems used for validating optimization 

techniques. 

Chapter 4: This chapter introduces the L-SCA, a modified optimization algorithm that 

enhances the performance of the standard SCA by incorporating a learning phase inspired by 

teaching-learning mechanisms. The algorithm's ability to balance exploration and exploitation 

is demonstrated through case studies on standard power systems. 

Chapter 5: This chapter presents the HRSCA, a novel hybrid optimization algorithm 

designed to address OPF challenges under high loading and generator outages. Combining the 

strengths of SCA and Rao-2, HRSCA achieves superior results in single- and multi-objective 

scenarios across various test systems, focusing on cost reduction and stability enhancement. 

Chapter 6: This chapter explores the COA, inspired by the foraging behavior of coot birds, 

for solving OPF problems. The algorithm's efficiency in balancing global search and local 

refinement is validated through its application to fuel cost, emission, and power loss 

minimization. 

Chapter 7: This chapter applies EEFO algorithm to OPF problems involving distributed 

generation. The EEFO algorithm's unique ability to address challenges posed by renewable 

energy integration is demonstrated through its robust performance in achieving cost-effective 

and stable grid operations. 

Chapter 8: This chapter concludes the thesis by summarizing the effectiveness of the 

proposed algorithms in addressing OPF challenges. It highlights the potential for integrating 

RES, real-time applications, and multi-objective optimization in future research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Over the past two decades, there has been a significant shift among researchers toward using 

population-based metaheuristic algorithms to address power system challenges. Pandya (2008) 

presented a review of various classical optimization methods as well as some AI techniques for 

OPF solutions. Following this, AlRashidi and El-Hawary (2009) provided an extensive 

coverage of population-based CI tools applied to OPF up to 2008. A two-part survey by Frank 

et al. (2012a; 2012b) further extended the discussion, with the first part focusing on classical 

and stochastic optimization methods for OPF, and the second highlighting the growing interest 

in non-deterministic and hybrid techniques, analyzing their strengths, limitations, and 

computational performance. Niu et al. (2014) presented a detailed survey of OPF related 

research work from 2000 to 2014, covering popular heuristic optimization algorithms (HOAs) 

such as evolutionary programming (EP), genetic algorithm (GA), differential evolution (DE), 

and particle swarm optimization (PSO), along with some hybrid methods. Maskar et al. (2017) 

followed with a review that encompassed both conventional and AI-driven techniques for OPF, 

summarizing research developments up to 2016. Later, Mittal et al. (2022) presented a more 

comprehensive review and comparison of OPF solution methods, focusing on widely adopted 

metaheuristics and extending literature coverage to 2020. In a subsequent and more in-depth 

examination, Mittal et al. (2024) analysed the application of various population-based AI 

techniques that have gained significant traction in recent years (2012–2022) for addressing 

OPF problems. 

2.2 Traditional Approaches 

The OPF problem is a non-linear, high-dimensional, non-differentiable, multi-modal, and 

non-convex optimization challenge that involves both discrete and continuous control 

variables. Initially, OPF challenges were addressed primarily through conventional/classical 

optimization techniques (COTs). The Gradient based method (Lee et al. 1985), Newton's 

method (Tinney and Hart 1967; Sun et al. 1984), quadratic programming (QP) (Reid and 

Hasdorff 1973), nonlinear programming (NLP) (Dommel and Tinney 1968), interior point (Wei 

et al. 1998), and linear programming (LP) (Zehar and Sayah 2008) are some popular 

mathematical programming-based deterministic methods that fall under the umbrella of these 
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COTs and typically applied in OPF problem solution. However, these conventional approaches 

are constrained by the requirement that the objective function be continuous and differentiable, 

even though some of them typically guarantee convergence. Newton methods and gradient-

based methods have trouble handling inequality constraints and are more likely to get stuck in 

local optima. Their performance is highly sensitive to initial conditions, especially in high-

dimensional control parameter spaces, which can result in insecure convergence 

characteristics, as discussed by Nocedal & Wright (2006). Additionally, these methods lack the 

flexibility to accurately model discrete control variables, such as voltage regulator transformer 

taps and shunt compensator switching, both essential in OPF applications. 

Because of these serious issues, these COTs are incapable of solving real-world OPF 

problems with non-smooth, non-differentiable, and multi-modal objective functions. 

Therefore, the limitations of COTs in handling non-linearities and high computational costs 

necessitate exploring alternative approaches. Momoh et al. (1999a; 1999b) and Frank et al. 

(2012a) have conducted an extensive survey, covering various conservative and conventional 

approaches implemented on OPF solution studies. 

2.3 Population-based metaheuristic algorithms 

Over the last few years, the rapid progress in computational intelligence (CI) has led to the 

development of population-based metaheuristic algorithms. The use of metaheuristics, under 

the umbrella of computational intelligence, has revolutionized power system optimization in 

the past two decades. Several standard versions of these algorithms have been applied to OPF 

problems, producing incredibly promising results. These algorithms present a promising 

approach to solve complex constrained optimization problems and mitigate the limitations of 

classical optimization techniques (Wang et al. 2023). Recognizing this potential, researchers 

have introduced various metaheuristic techniques to tackle complex OPF problems efficiently, 

minimizing execution time.  

Despite their advantages, standard implementations of these metaheuristics can encounter 

issues with local optima or premature convergence in particularly complex problem spaces. To 

address these limitations, researchers have developed enhanced, modified, or hybridized 

versions of metaheuristics, which now serve as competitive alternatives to traditional methods. 

These advanced approaches provide higher accuracy and reliability for real-world OPF 

problems. Comprehensive studies by Frank et al. (2012b) and Mittal et al. (2024) have explored 

a wide range of CI-based OPF methods, showcasing the effectiveness of non-deterministic 

algorithms, including their improved and hybridized versions, in addressing modern power 



 

11 
 

system optimization challenges. Figure 2.1 provides a visual representation of the evolution of 

population-based optimization techniques used for OPF problems. It categorizes these 

algorithms based on their underlying principles and historical development. 

 

Fig. 2.1   Schematic overview depicting categorization of OPF algorithms and their inception over time 

2.3.1 Evolutionary algorithms for OPF solution 

Evolutionary Algorithms (EAs) are among the earliest AI-based approaches applied to 

power system optimization problems (PSOPs) and are inspired by biological evolution. The 

Evolutionary Programming (EP) approach is a subset of EAs. Yuryevich and Wong (1999) were 

pioneers in developing an EP-based algorithm for OPF, enhancing it with gradient information 

to accelerate convergence and improve performance, especially on large-scale systems. Later, 

Kahourzade et al. (2015) conducted a comparative analysis of PSO, EP, and GA to assess their 

effectiveness in solving the OPF problem. Using the IEEE 30-bus test system, they evaluated 

these algorithms across various single and multi-objective functions. 

GA has been one of the most popular and widely used evolutionary tools inspired from 

biological evolution to find optimal solutions to search problems. Bakirtzis et al. (2002) 

introduced an Enhanced GA to solve complex OPF problems with both continuous and discrete 

control variables. By incorporating problem-specific operators, the EGA achieved 
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improvements in convergence speed and solution quality. This method was validated on an 

IEEE 30-bus test system and an IEEE RT-96 three-area 73-bus system. Later, Attia et al. (2012) 

employed an Adapted Genetic Algorithm (AGA) with a variable population size, adjusted 

based on different fitness functions, to solve the OPF problem on the IEEE 30-bus system. 

However, despite these advancements, the popularity of GA in OPF has declined due to 

challenges such as premature convergence, high computational costs, and sensitivity to 

hyperparameters, along with the development of more efficient problem-specific algorithms 

and advancements in AI techniques. 

The Differential Evolution Algorithm (DEA), inspired by biological evolution, has seen 

significant applications in power system optimization. El-Fergany and Hasanien (2015) applied 

DEA to the IEEE 30-bus test system for various techno-economic objectives and extended it 

to multi-objective OPF (MOOPF) using a fuzzy-based Pareto front. Shaheen et al. (2016) 

introduced a forced initialization multi-objective DEA (MODEA) with an epsilon-constraint 

approach, followed by their 2017 work on a multi-objective DE (MDE) algorithm for IEEE 

57- and 118-bus systems. Reddy (2018) further advanced DEA with a multi-objective approach 

for mixed control variables, demonstrating its effectiveness on IEEE 30- and 300-bus networks. 

The Biogeography-Based Optimization (BBO) algorithm was initially applied by 

Bhattacharya and Chattopadhyay (2009) to address economic load dispatch challenges. 

Building on this, Kumar and Premalatha (2015) proposed an Adaptive Real-Coded BBO 

(ARCBBO) technique designed to enhance population diversity and exploration abilities in the 

OPF problem by integrating adaptive Gaussian mutation. The effectiveness of ARCBBO was 

demonstrated on IEEE 30-bus and 57-bus systems, addressing both techno-economic and 

environmental optimization objectives. 

2.3.2 Swarm intelligence-based algorithms for OPF solution 

Nature-inspired algorithms for OPF 

OPF algorithms based on movement patterns & collective behavior in migration 

Swarm intelligence-based optimization techniques have proven effective in addressing 

OPF problems by emulating the cooperative and adaptive behavior observed in natural 

swarms. Among these, PSO algorithm has been widely applied. Abido (2002) introduced 

PSO for OPF, testing it on the IEEE 30-bus standard system. To improve the search 

performance of standard PSO, Vlachogiannis and Lee (2006) proposed PSO with Passive 
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Congregation (PSOPC) and enhanced it with the constriction factor approach to solve the 

OPF on IEEE 30 and 118-bus test systems. Later, Niknam et al. (2012a) introduced an 

improved PSO (IPSO) for single- and multi-objective OPF, using chaos theory and a self-

adaptive mechanism to fine-tune parameters, validated on the IEEE 30-bus test system. 

Despite PSO’s minimal parameter tuning requirements, it can suffer from premature 

convergence in high-dimensional, complex problems, sometimes failing to reach the global 

optimum. Another swarm intelligence method, Glowworm Swarm Optimization (GSO), 

was applied by Reddy and Rathnam (2016) to solve single-objective OPF (SOOPF) and 

MOOPF problems. GSO was evaluated for its effectiveness in minimizing generation cost 

in an SOOPF problem on both the IEEE 30-bus test system and a practical 75-bus Indian 

grid system, with performance compared to PSO. In a later study, Alghamdi (2022) applied 

the Firefly Algorithm (FA) to the OPF problem, proposing the Gaussian-Based Bare Bones 

Lévy Flight Firefly Algorithm (GBLFA) and a modified version, the Modified GBLFA 

(MGBLFA). These approaches incorporated both thermal units and RES, such as wind and 

solar, and addressed various techno-economic and environmental objectives on the IEEE 

30-bus network. Bouchekara and Abido (2014) applied the Differential Search Algorithm 

(DSA) to solve the SOOPF problem, targeting techno-economic objectives under 

contingency conditions, and validated their approach on IEEE 30- and 118-bus networks. 

Abaci and Yamacli (2016) further applied DSA to both SOOPF and MOOPF objectives, 

using IEEE 9-, 30-, and 57-bus test systems to address techno-economic and environmental 

objectives. Dash et al. (2022) proposed Boundary Assigned Animal Migration Optimization 

(BAAMO) to address OPF problems. BAAMO was evaluated on IEEE 30, 57, and 118-bus 

systems, considering techno-economic and technical objectives. BAAMO demonstrated 

superior performance compared to PSO, GA, DE, ABC, and GSA in terms of fuel cost 

reduction and improved system performance. However, the algorithm's computational time 

was relatively high due to its iterative update process. Mirjalili (2015) introduced Moth-

Flame Optimization (MFO) algorithm inspired by the natural navigation strategy known as 

"transverse orientation," used by moths. Buch et al. (2017) applied MFO algorithm to a 

standard IEEE 30-bus system, focusing on techno-economic and environmental objectives. 

Compared to other algorithms like PSO, GWO, and ABC, the proposed MFO consistently 

delivered high-quality solutions for OPF problems. Taher et al. (2019a) proposed an 

improved MFO (IMFO) algorithm that incorporates modified spiral paths for moths as they 

converge around flames. The IMFO algorithm was validated on IEEE test networks with 

30, 57, and 118 buses, addressing both SOOPF and MOOPF problems with fifteen different 
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objective functions. Comparative results with established optimization algorithms, 

including basic MFO, GA, PSO, and TLBO, demonstrated that IMFO achieved accurate, 

high-quality OPF solutions with faster convergence rates. Buch and Trivedi (2019) 

introduced an enhanced MFO, namely adaptive MFO (AMFO), to address large-scale OPF 

problems. AMFO incorporated an adaptive mechanism to improve the optimization process. 

The algorithm was tested on the IEEE 118-bus system, considering various techno-

economic and environmental single-objective functions. AMFO outperformed other 

algorithms like basic MFO, GWO, and the SCA in terms of solution quality and convergence 

speed, demonstrating its effectiveness in solving large-scale OPF problems. 

Mohamed et al. (2017) introduced the Moth Swarm Algorithm (MSA), building on the 

conventional MFO algorithm to enhance its optimization performance. MSA integrates new 

optimization operators inspired by moth behaviour to strengthen both exploration and 

exploitation capabilities. The algorithm was applied to IEEE 30-, 57-, and 118-bus systems, 

addressing various techno-economic and environmental objectives. MSA outperformed 

other algorithms, including modified PSO, modified DE, and MFO, in terms of solution 

quality and convergence speed. Bentouati et al. (2021) proposed an enhanced version of the 

Moth Swarm Algorithm (EMSA) to address limitations of the basic MSA, such as premature 

convergence and lack of diversity. EMSA was tested on IEEE 30-, 37-, and 118-bus systems 

for both single and multi-objective formulations, addressing technical, economic, and 

emission objectives, and demonstrated superior performance over the basic MSA. 

El-Fergany and Hasanien (2020) applied the Salp Swarm Algorithm (SSA) to the OPF 

problem, targeting various technical, economic, and environmental objectives. Initially, 

each objective was addressed individually, then jointly optimized through SSA. The study 

included voltage stability analysis, using eigenvalues of a reduced Jacobian matrix to assess 

proximity to voltage instability. Generator output power, voltage levels, transformer tap 

settings, and capacitor placements formed the search space, and the SSA’s performance was 

evaluated on IEEE 57- and 118-bus systems. Comparisons with other optimization methods, 

supported by parametric and non-parametric statistical tests, highlighted SSA’s 

competitiveness in effectively solving OPF challenges. Abd El-sattar et al. (2021) proposed 

an improved Salp Swarm Algorithm (ISSA) to enhance exploration and exploitation 

capabilities for addressing the OPF problem. The ISSA was designed to optimize various 

cost-based objective functions. ISSA was tested on IEEE 30-, 57-, and 118-bus networks, 

demonstrating superior convergence compared to SSA, MFO, and GA.  



 

15 
 

OPF algorithms inspired by social behavior & foraging/hunting behavior 

Amjady et al. (2012) proposed an improved Bacterial Foraging Optimization (IBFO) 

algorithm to enhance the performance of the basic BFO algorithm in addressing OPF and 

OPF-SC problems. The IBF algorithm incorporated innovative search mechanisms and 

solution strategies to improve exploration, exploitation, and convergence. The algorithm 

was evaluated on 26-bus, 30-bus, and 118-bus IEEE test systems, demonstrating superior 

performance compared to other optimization algorithms like basic BFO, EP, and PSO.  

Adaryani and Karami (2013) proposed an Artificial Bee Colony (ABC) algorithm 

inspired by the foraging behavior of honeybees. The ABC algorithm was applied to the 

MOOPF problem, considering various techno-economic and environmental objectives. The 

algorithm was tested on IEEE 9, 30, and 57-bus systems, demonstrating competitive 

performance compared to other optimization algorithms like PSO and GSA. Further 

Khorsandi et al. (2013) developed a fuzzy-logic-based modified ABC (MABC) algorithm 

for OPF, designed to handle both discrete and continuous variables for optimizing key 

techno-economic and environmental objectives. The MABC algorithm was tested on IEEE 

30- and 118-bus networks, addressing both SOOPF and MOOPF problems, and 

demonstrated superior performance over other optimization algorithms in terms of solution 

quality and convergence speed. Chen et al. (2014) proposed a multi-hive multi-objective 

bee algorithm (M2OBA) to solve MOOPF problems. M2OBA incorporates a multi-hive 

structure and multi-objective strategies to enhance the efficiency of the bee foraging process. 

The algorithm was tested on a 30-bus IEEE system, demonstrating superior performance 

compared to NSGA, MOPSO, and multi-objective ABC. He et al. (2015) proposed an 

improved ABC (IABC) algorithm to solve fuzzy MOOPF problems, considering techno-

economic and environmental objectives. IABC incorporates DE operators to enhance 

exploration and generate novel solutions. The algorithm was tested on 30, 57, and 300-bus 

IEEE systems, demonstrating superior performance compared to ABC, GA, and PSO. 

Jadhav and Bamane (2016) proposed a g-best guided ABC (GABC) algorithm to address 

both standard and temperature-dependent OPF problems. The GABC algorithm was 

evaluated on IEEE 30-bus and 57-bus systems with a focus on economic objectives, 

showing improved performance compared to the standard ABC algorithm. The 30-bus 

system was also used to assess the impact of temperature on fuel cost as well as power loss. 

Bai et al. (2017) proposed an improved ABC (IABC) algorithm to solve OPF problems. 

IABC incorporated orthogonal learning to improve its performance. The algorithm was 
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tested on IEEE 30 and 118 bus systems, demonstrating superior performance compared to 

basic ABC, enhanced GA, MDE, and others in terms of convergence speed and fuel cost 

reduction. 

Basu (2016) implemented the Group Search Optimization (GSO) algorithm, inspired by 

the producer-scrounger behavior in animals, and tested it on IEEE 30, 57, and 118 bus 

systems. The evaluation focused on techno-economic and environmental objectives, 

formulating four single-objective OPF problems and two compound-objective ones. 

Simulation results validated the effectiveness of GSO, demonstrating promising solutions 

with faster convergence. Daryani et al. (2016) proposed an adaptive GSO (AGSO) algorithm 

to address MOOPF problems, considering environmental and security aspects. AGSO was 

tested on benchmark cases and IEEE 30- and 57-bus networks, demonstrating superior 

performance compared to standard GSO. 

Mukherji and Mukherjee (2015) enhanced the Krill Herd Algorithm (KHA) for OPF by 

incorporating chaos theory, drawing inspiration from krill swarm behavior to boost 

computational speed and convergence rates. This chaotic KHA was validated on both a 26-

bus system and the IEEE 57-bus test network, showing superior performance over other 

computational intelligence techniques. The algorithm effectively addressed key economic 

and technical objectives, achieving faster convergence and identifying optimal solutions 

across diverse operational scenarios. Roy and Paul (2015) developed an enhanced KH 

algorithm for OPF by incorporating genetic operators (crossover and mutation) to address 

key techno-economic objectives, such as fuel cost minimization and power loss reduction. 

The algorithm was tested on IEEE 30-, 57-, and 118-bus systems. The integration of 

crossover and mutation operators improved the balance between local and global search, 

resulting in high-quality solutions, faster convergence, and greater computational efficiency 

compared to other algorithms documented in the OPF literature. 

Nguyen (2019) introduced the Novel Improved Social Spider Optimization (NISSO) 

algorithm to tackle the OPF problem. NISSO included several enhancements to the original 

SSO algorithm, resulting in improved convergence speed and solution quality. The 

algorithm was tested on IEEE 30, 57, and 118-bus systems, focusing on technical, economic, 

and environmental objectives. NISSO demonstrated superior performance compared to the 

original SSO algorithm and other state-of-the-art optimization methods. 
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El-Fergany and Hasanien (2015) applied the Grey Wolf Optimizer (GWO) to OPF on 

IEEE 30- and 118-bus systems, addressing both technical and economic objectives, though 

the algorithm showed lower computational efficiency on larger systems. Meng et al. (2021) 

introduced an enhanced version, the Crisscross Search-based GWO (CS-GWO), with a 

single controllable parameter for improved adaptability. By incorporating crossover 

operators (horizontal and vertical), CS-GWO increased population diversity and minimized 

the risk of getting trapped in local optima. Tested on IEEE 30- and 118-bus networks for 

both SOOPF and MOOPF scenarios (MOOPF on 30-bus only), CS-GWO outperformed 

other algorithms such as PSO, ABC, BSA, and GSA, particularly in terms of solution quality 

and convergence speed for larger systems. 

Mahdad (2020) proposed a Partitioned Ant Lion Optimizer (PALO) algorithm to improve 

the performance of the ALO algorithm (proposed by Seyedali Mirjalili in 2015) in solving 

OPF problems. PALO was tested on IEEE 30-bus and large-scale Polish power systems, 

considering technical and economic objectives. The algorithm demonstrated effectiveness 

in solving large-scale security OPF problems with diverse FACTS devices, outperforming 

other contemporary metaheuristic techniques. 

El-Dabah et al. (2022) introduced a non-dominated sorting Whale Optimization 

Algorithm (NSWOA) for both SOOPF and MOOPF formulations, focusing on cost-based 

and various technical objectives on the IEEE 30-bus test network. The optimal compromise 

solution was selected based on the minimal Euclidean distance from the non-dominated 

solution set. The proposed NSWOA outperformed established methods like PSO, SCA, and 

SSA, particularly in reducing fuel cost and power loss in multi-objective scenarios. 

Taher et al. (2019b) proposed a modified Grasshopper Optimization Algorithm (MGOA) 

to enhance the performance of the original GOA (introduced by Mirjalili in 2017). MGOA 

incorporated a modified mutation process to improve global exploration and avoid local 

optima. The algorithm was tested on IEEE 30-, 57-, and 118-bus systems, addressing various 

techno-economic and environmental objectives across 13 distinct case studies in both 

SOOPF and MOOPF formulations. MGOA outperformed GOA, GA, PSO, and TLBO, 

demonstrating superior performance. 

Khunkitti et al. (2021) introduced the Slime Mould Algorithm (SMA) for SOOPF and 

MOOPF problems, applying it to IEEE 30-, 57-, and 118-bus systems with technical, 

economic, and environmental objectives. SMA demonstrated competitive computational 
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times and outperformed other algorithms in solution quality, especially on the 57- and 118-

bus systems, delivering superior Pareto fronts compared to PSO across all test cases. Al-

Kaabi et al. (2022) developed a multi-objective slime mould algorithm (MOSMA) to 

address MOOPF problems on IEEE 30- and 57-bus systems, as well as a practical Iraqi 

Super Grid. Across 29 case studies, they tackled various technical, economic, and 

environmental objectives in two- to five-objective formulations. Using Pareto theory and 

fuzzy set theory, the authors identified optimal and favorable solutions. MOSMA 

demonstrated strong convergence, effectiveness, and well-distributed solutions on the 

Pareto front, outperforming other recent optimization algorithms. 

Islam et al. (2021) applied the Marine Predator Algorithm (MPA) to solve the SOOPF 

problem, focusing on technical and economic objectives. The method was tested on the 

IEEE 30-bus network and compared to popular optimization algorithms such as SCA, PSO, 

and GSA. The MPA approach demonstrated competitive performance, yielding results 

comparable to those of SCA, GWO, PSO, and other algorithms in terms of fuel cost and 

efficiency. 

Jebaraj and Sakthivel (2022) introduced the Sparrow Search Algorithm (SPSA) for OPF 

optimization on IEEE 30-, 57-, and 118-bus systems, addressing 33 economic and technical 

objectives across single, bi-, tri-, and quad-objective formulations, including scenarios with 

single-line outage contingencies. Comparative analysis indicated that SPSA consistently 

outperformed existing algorithms such as MFO, MPSO, MSA, and ABC, highlighting its 

robustness and effectiveness in handling multi-objective OPF scenarios. 

The Manta Ray Foraging Optimizer (MRFO) is based on the survival strategies of manta 

rays. Kahraman et al. (2022) introduced an improved multi-objective Manta Ray Foraging 

Optimizer (IMOMRFO) to tackle the MOOPF problem. The authors improved its 

exploration and exploitation capabilities by incorporating a crowding distance-based Pareto 

archival process. IMOMRFO was tested on IEEE 30- and 57-bus systems, successfully 

optimizing various technical, economic, and environmental objectives simultaneously. 

OPF algorithms inspired by principle of physics 

The Electromagnetism-like mechanism is based on the principle of attraction and 

repulsion between electrically charged particles distributed in the search space. The particle 

with the highest charge, known as the optimal particle, strongly attracts particles with higher 

fitness values while repelling those with lower fitness. El-Hana et al. (2016) introduced an 
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improved Electromagnetism-like mechanism (IEM) to optimize control variables for 

achieving optimal OPF solutions across seven single-objective cases with various 

constraints. Tested on IEEE 30- and 57-bus networks, IEM demonstrated superior 

performance in solution accuracy, convergence speed, and computational efficiency, 

outperforming well-known algorithms like BBO, DE, and PSO. 

Bouchekara et al. (2016a) utilized the Grenade Explosion Method (GEM), inspired by 

the dynamics of a grenade explosion, to address both SOOPF and MOOPF problems, 

focusing on six techno-economic objectives. The approach incorporated a fuzzy decision-

making method, transforming objective functions into fuzzy membership functions for 

optimization. Tested on an IEEE 30-bus system, GEM demonstrated superior performance 

in optimizing both single and multiple objectives. 

Duman et al. (2012) introduced the Gravitational Search Algorithm (GSA) to address the 

OPF problem. GSA was tested on IEEE 30- and 57-bus systems under normal and 

contingency conditions, considering various economic and technical objectives. GSA 

outperformed other algorithms in SOOPF scenarios, demonstrating its effectiveness in 

achieving optimal solutions, especially for economic objectives. The algorithm also 

exhibited strong scalability in larger systems. Bhattacharya and Roy (2012) applied GSA to 

solve three single-objective (SOOPF) and three multi-objective (MOOPF) cases. The 

algorithm was tested on both a standard 26-bus system and a large-scale 118-bus IEEE 

system, addressing identical single, bi-objective, and tri-objective cases across both systems. 

The results demonstrated that the GSA-based approach effectively determined optimal 

solutions, with performance comparable to previously established algorithms. 

Bouchekara (2014b) implemented the Black Hole-based Optimization (BHBO) 

algorithm, which mimics the behavior of black holes by drawing candidate solutions (stars) 

towards an optimal solution. The parameter-less algorithm was applied to solve various OPF 

problems, optimizing control variables on IEEE 30-bus and Algerian 59-bus networks while 

considering different objective functions. However, its effectiveness for MOOPF problems 

was not explored. 

The Colliding Bodies Optimization (CBO) algorithm, developed by Kaveh and Mahdavi 

(2014), uses conservation of momentum principles to navigate search spaces. An Enhanced 

CBO (ECBO) introduced by Kaveh and Ghazaan (2014) incorporated a regeneration 

mechanism to circumvent local optima. Further enhancements by Bouchekara et al. (2016b) 
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led to the development of an Improved CBO (ICBO), which utilized three colliding bodies 

to enhance performance. ICBO was applied to IEEE test systems of 30, 57, and 118 buses, 

effectively addressing OPF challenges across technical, economic, and reliability objectives 

in both normal and contingency scenarios. Its robustness and adherence to constraints 

showcased its potential, indicating the feasibility of developing a multi-objective CBO to 

tackle broader MOOPF problems. 

Saha et al. (2017) applied the Water Evaporation Algorithm (WEA), inspired by 

evaporation dynamics, to solve the OPF problem. Tested on IEEE 30- and 118-bus systems, 

WEA addressed various technical and economic objectives, including operational efficiency 

and system stability. In multi-objective scenarios on the 30-bus system, WEA outperformed 

methods like HSA, NSGA-II, and TLBO, showing strong optimization performance. 

Akdag (2022) proposed an Improved Arithmetic Optimization Algorithm (IAOA) to 

enhance the exploration capabilities of the original AOA. IAOA was tested on IEEE 30- and 

57-bus networks and the 16-bus South Marmara system, addressing technical and economic 

objectives. The algorithm demonstrated superior performance compared to TLBO, SCA, 

DSA, and other methods in both single and multi-objective settings. 

OPF Algorithms Inspired by human natural behavior  

The Teaching-Learning-Based Optimization (TLBO) algorithm, developed by Rao et al. 

(2011), is a parameter-free, population-based method inspired by the teaching and learning 

process in classrooms. This approach simulates the transfer and collaborative exchange of 

knowledge among learners, enhancing solution quality. Bouchekara et al. (2014a) applied 

TLBO to solve SOOPF problem across various technical and economic objectives on IEEE 

30 and 118-bus networks. Specifically, the algorithm was tested for its scalability with a 

single objective on the 118-bus network. The results showed that TLBO provided better or 

comparable outcomes to other documented methods, affirming its effectiveness and 

scalability. Shabanpour-Haghighi et al. (2014) enhanced the Teaching-Learning-Based 

Optimization (TLBO) algorithm by incorporating a self-adapting wavelet mutation 

(SAWM) to address MOOPF problems, particularly focusing on economic and 

environmental objectives. This modification aimed to expand the search capabilities and 

efficiency of the algorithm. Tested on IEEE 30 and 57-bus systems, the modified TLBO 

demonstrated improved performance, achieving faster convergence and greater precision in 

fewer iterations compared to the standard TLBO. Ghasemi et al. (2015) enhanced the TLBO 
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algorithm by incorporating a Lévy mutation strategy, creating the Lévy mutation-based 

TLBO (LTLBO). This modification improved the algorithm’s exploration abilities and 

increased population diversity, enhancing its effectiveness for OPF problems. The LTLBO 

algorithm was tested on IEEE 30-bus system, focusing on objectives such as cost 

minimization, voltage profile improvement, and emission reduction, and on IEEE 57-bus 

system with a cost minimization objective. LTLBO demonstrated superior performance 

compared to basic TLBO, ABC, GSA, and other algorithms. Akbari et al. (2022) introduced 

the Teaching–Learning-Studying-Based Optimization (TLSBO) algorithm, an enhancement 

of TLBO that incorporates a studying strategy. TLSBO was tested on the IEEE 30-bus 

system, addressing SOOPF and MOOPF problems with economic, technical, and 

environmental objectives. TLSBO outperformed the original TLBO in terms of solution 

quality and convergence speed. 

El-Sattar et al. (2019) developed multiple Jaya-based optimization frameworks for 

addressing both SOOPF and MOOPF problems. These frameworks were designed to tackle 

a range of technical, economic, and environmental objectives, applying them across 23 case 

studies on IEEE 30 and 57-bus systems. Upon evaluation, these Jaya-based methods 

demonstrated robust and effective performance, showcasing superior convergence and 

overall robustness when compared to other existing optimization strategies. Elattar and 

ElSayed (2019) introduced a modified version of Jaya (MJAYA) to overcome the problem 

of premature convergence of the original Jaya. The authors applied MJAYA algorithm to 

solve OPF problem including RES and examined their effects on objective functions 

considering objectives such as technical (enhancing system stability), economic (reducing 

operational costs), and environmental (minimizing emissions). By using pricing and 

weighting parameters, they converted the multi-objective problem into a single-objective 

framework for more straightforward optimization. Tested on IEEE 30 and 118-bus systems, 

MJAYA showed improved performance over existing methods. Warid (2020) introduced the 

adaptive multiple teams perturbation-guiding Jaya (AMTPG-Jaya) algorithm for the first 

time to solve the OPF problem, using dynamic "teams" to find optimal solutions. Tested on 

IEEE 30 and 118-bus systems, AMTPG-Jaya targeted economic and technical objectives, 

demonstrating superior performance over the basic TLBO and other stochastic methods. 

The algorithm excelled in terms of solution quality, feasibility, and computational efficiency, 

especially for large-scale power systems. 
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Non-nature inspired algorithms for OPF 

Non-nature-inspired algorithms, in contrast to metaheuristic algorithms that mimic natural 

phenomena, are grounded in social and mathematical principles rather than biological or 

environmental analogies.  

Kılıç (2015) pioneered the application of the Backtracking Search Algorithm (BSA) to 

SOOPF problems, incorporating diverse cost functions with valve point loading and power 

system constraints.The BSA was tested on the IEEE 30-bus test system and demonstrated 

superior performance in terms of generation cost and convergence speed compared to other 

algorithms like GA, EP, DE, modified DE, ABC, and others. While the results affirmed BSA's 

effectiveness on this scale, further studies were suggested to explore its performance on larger 

systems. 

Chaib et al. (2016) applied the BSA to address OPF problems with complex objectives 

involving discontinuities. The method was evaluated on IEEE 30-bus, 57-bus, and 118-bus 

systems through 16 case studies. BSA showed superior performance and robustness over other 

established algorithms like DE, PSO, ABC, GA, and BBO, especially in large-scale network 

settings. Further research was recommended to extend its application to MOOPF problems 

using Pareto-optimal solutions. In their study, Daqaq et al. (2021) developed a multi-objective 

BSA (MOBSA) for solving OPF problems in power systems, targeting both technical and 

economic objectives. Tested on IEEE 30, 57, and 118-bus networks, MOBSA successfully 

generated well-distributed Pareto optimal solutions, which were further analyzed using fuzzy 

membership techniques to identify optimal trade-offs. Comparative evaluations with other 

multi-objective algorithms underscored MOBSA’s robustness and effectiveness, highlighting 

its contribution to OPF methodologies. 

Mirjalili (2016) introduced the Sine Cosine Algorithm (SCA), which uses mathematical 

principles to efficiently search for optimal solutions. Attia et al. (2018) later developed a 

modified version, MSCA, enhancing SCA with Lévy flights and adaptive population tuning to 

improve convergence speed and avoid local optima. Tested on IEEE 30- and 118-bus networks, 

MSCA demonstrated its effectiveness in optimizing cost-based and technical objectives. By 

adjusting control variables in fewer iterations, MSCA proved particularly advantageous for 

large-scale OPF problems, outperforming other previously documented optimization 

algorithms. Karimulla and Ravi (2021) enhanced the Sine Cosine Algorithm (ESCA) by 

incorporating Lévy flights to address MOOPF challenges on a 30-bus IEEE test network. They 
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focused on optimizing technical, economic, and environmental objectives. ESCA outperformed 

popular algorithms like GA, PSO, and the Flower Pollination Algorithm, achieving reduced 

power losses and improved results across cost and emission objectives. 

Rao algorithms, introduced by Rao (2020), are sophisticated metaheuristic techniques that 

eliminate the need for parameter tuning. Gupta et al. (2021c) employed Rao-1, Rao-2, and Rao-

3 variants to address OPF problems on IEEE test systems comprising 30, 57, and 118 buses. 

These algorithms were utilized to optimize a diverse set of objectives, including economic 

efficiency, technical performance, and environmental impact, under various operating 

conditions. Rao-3 consistently demonstrated superior optimization results across different 

scenarios, while Rao-2 excelled specifically in minimizing power losses on the 57-bus system. 

Hassan et al. (2021) enhanced the Rao-2 algorithm to create MRao-2, tailored to solve OPF 

problems in power systems with significant Renewable Energy Source (RES) integration. 

Improved with quasi-oppositional and Lévy flight techniques, MRao-2 was tested on IEEE 30 

and 118-bus networks, addressing objectives related to economic, technical, and environmental 

performance. Its efficacy was benchmarked against other algorithms like Atom Search 

Optimization (ASO) and Marine Predator Algorithm (MPA), showing MRao-2's superior 

convergence capabilities, especially in large-scale applications. 

In recent advancements, Alghamdi (2023) introduced the Improved Turbulent Flow 

Optimization (ITFWO) algorithm to address complex non-linear, non-convex OPF challenges 

in power systems incorporating renewable sources like solar PV and wind turbines. Evaluated 

on the IEEE 30-bus system, ITFWO efficiently balances techno-economic and environmental 

objectives, dynamically adjusting energy generation parameters based on real-time renewable 

input. Additionally, Alghamdi’s study explores the impact of carbon taxes on generator 

scheduling, demonstrating ITFWO’s superior performance in optimizing multiple objectives 

when compared to other state-of-the-art algorithms. This research highlights a significant shift 

towards OPF methods that integrate renewable sources and environmental considerations, 

enhancing system efficiency under variable conditions. 

2.3.3 Hybrid and Advanced Techniques 

Hybrid methods have become increasingly popular over the past decade as they combine 

the strengths of individual techniques while addressing their limitations. This hybridization of 

two or more algorithms produces a new hybrid algorithm, which is more effective and powerful 
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than any of its component methods, yields promising results by exhibiting better and faster 

convergence characteristics along with covering an expanded area in lesser computational time. 

Kumar and Chaturvedi (2013) introduced a hybrid approach that combined fuzzy systems 

with Genetic Algorithm (GA-Fuzzy) and Particle Swarm Optimization (PSO-Fuzzy) 

algorithms. This method aimed to optimize control parameters for the SOOPF problem, 

specifically focusing on cost objective. Applied to a modified IEEE 30-bus network, the PSO-

Fuzzy approach achieved a lower fuel cost compared to the GA-Fuzzy method, while GA-

Fuzzy demonstrated improved average fitness on the same network. The study found that these 

integrated approaches were more effective and robust than standalone PSO or GA in solving 

OPF challenges. 

A hybrid algorithm combining modified PSO with the Shuffle Frog Leaping Algorithm 

(MPSO-SFLA) was proposed by Narimani et al. (2013) to address the MOOPF problem, 

targeting cost and environmental objectives. To improve PSO’s performance, a Self-Adaptive 

Probabilistic Mutation Operator (SAPMO) was introduced to enhance population diversity. A 

Pareto-based methodology provided a well-distributed set of solutions, with a fuzzy decision-

making model selecting the best compromise solution. MPSO-SFLA was validated on IEEE 

30-, 57-, and 118-bus systems, showing superior performance in convergence, computational 

time, solution quality, and robustness compared to basic SFLA and PSO. 

A hybrid PSO and GSA (PSO-GSA) algorithm was proposed by Radosavljević et al. (2015) 

to solve the OPF problem by combining PSO's global exploration with GSA's local search 

capabilities. Validated on IEEE 30- and 118-bus networks, the approach addressed single and 

dual objectives techno-economic objectives. When applied to 30-bus system, the hybrid 

algorithm demonstrated faster convergence and improved solution quality compared to 

individual PSO and GSA algorithms, especially for single and dual objective optimization 

problems. However, some solutions were identified as infeasible due to violations of system 

constraints, particularly load bus voltage limits. Khunkitti et al. (2018) proposed a hybrid 

dragonfly-PSO (DA-PSO) algorithm to solve the MO-OPF problem, considering techno-

economic and environmental objectives. The algorithm effectively minimizes fuel cost and 

transmission losses (techno-economic) and emissions (environmental) on IEEE 30- and 57-bus 

systems. The hybrid approach combines the exploration capabilities of DA with the 

exploitation capabilities of PSO, leading to improved performance compared to original DA 

and PSO algorithms. 
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Ghasemi et al. (2014) developed a novel hybrid algorithm, MICA-TLA, by integrating a 

modified imperialist competitive algorithm (MICA) with the teaching-learning algorithm 

(TLA). This hybrid approach leveraged TLA to boost local search efficiency, particularly near 

the global optimum. The MICA-TLA was tested on the IEEE 30-bus network for single and 

complex economic objectives and on the 57-bus IEEE network for economic and technical 

objectives. The results demonstrated that MICA-TLA outperformed standard population-based 

algorithms such as ICA, TLA, and MICA, showcasing faster convergence and improved 

solution quality. 

Pulluri et al. (2018) introduced the stud krill herd (SKH) algorithm to solve SOOPF 

problems. SKH hybridizes KH and SGA to improve exploration and exploitation capabilities. 

The algorithm was tested on IEEE 14-, 30-, and 57-bus systems, demonstrating superior 

performance compared to other evolutionary algorithms. 

Reddy (2019) introduced a Hybrid DE-HS algorithm, combining DE and Harmony Search 

(HS) to solve SOOPF and MOOPF problems. The combination of the two algorithms led to 

the development of a powerful hybrid algorithm that integrated the original DE algorithm with 

HSA to achieve faster global convergence. This hybrid approach was applied to IEEE 30-, 118-

, and 300-bus systems to optimize techno-economic objectives. 

El Sehiemy et al. (2020) proposed the PSO-SSO algorithm to address SOOPF and MOOPF 

problems in IEEE 30, 57, and 118-bus test systems. The algorithm was evaluated across 18 

case studies, considering economic, technical, and environmental objectives. Compared to 

standalone PSO and SSO, PSO-SSO achieved lower power losses, reduced emissions, and 

minimized fuel costs while converging faster.  

Khan et al. (2020) initially implemented the Hybrid Firefly-PSO (HFPSO) method to 

address SOOPF problems, including economic and technical objectives. The HFPSO algorithm 

was evaluated on the IEEE 30-bus test system, where it demonstrated significant improvements 

(lower costs and faster convergence in fewer iterations) over COTs, such as PSO, DE, and 

BHBO. Later in the same year, Khan et al. (2020) extended the HFPSO method to a multi-

objective version (MOHFPSO) for addressing the complex MOOPF problems. This advanced 

approach integrated non-dominated sorting techniques to generate Pareto optimal fronts and 

determine optimal solutions across various techno-economic objectives. The MOHFPSO 

algorithm was tested on IEEE 30- and 57-bus test networks, encompassing five multi-objective 
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formulations that included three bi-objective and two tri-objective cases, effectively 

demonstrating its capability to handle multi-dimensional optimization in power systems. 

Gupta et al. (2021a) introduced the Jaya-PPS (Jaya–Powell’s Pattern Search) hybrid 

algorithm to solve the OPF problem, integrating Jaya with the derivative-free PPS technique, 

based on conjugate-direction principles. The algorithm was tested on IEEE 30-, 57-, and 118-

bus systems, both with and without distributed generation (DG) sources, considering techno-

economic, environmental, and combined objectives. The Jaya-PPS1 variant consistently 

outperformed other algorithms by achieving optimal values for various objective combinations 

on the 30- and 57-bus systems. Additionally, it significantly reduced fuel costs on the 118-bus 

system. In a subsequent study, Gupta et al. (2021b) introduced a modified Jaya algorithm 

incorporating a sine-cosine mutation operator (SCM-MJ) to enhance performance in OPF 

optimization. This modification aimed at maintaining population diversity throughout the 

search process, resulting in smoother convergence and improved solution accuracy. The SCM-

MJ algorithm was evaluated on both the practical 59-bus Algerian system and the IEEE 118-

bus network to address technical and cost-based objectives. SCM-MJ consistently achieved 

superior performance, with a significant reduction in fuel costs on the 118-bus system.  

Naderi et al. (2021) proposed the FAHSPSO-DE algorithm, a hybrid approach combining 

fuzzy adaptive PSO and DE. This algorithm effectively addressed SOOPF and MOOPF 

problems on IEEE 30-, 57-, and 118-bus systems, focusing on cost, emissions, and power loss 

minimization. The algorithm's application to the IEEE 57-bus system resulted in significant 

annual cost savings, highlighting its potential for medium-scale power systems. 

Avvari and Vinod Kumar (2022) introduced a hybrid decomposition and local dominance-

based multi-objective evolutionary algorithm (MOEA) for tackling the MOOPF problem with 

conflicting objectives. The algorithm was evaluated on IEEE 57- and 118-bus systems across 

multiple case studies, considering a combination of techno-economic and environmental 

objectives. The proposed method exhibited competitive performance compared to established 

techniques like MOPSO and NSGA-II. 

Mallala et al. (2022) developed a hybrid NSHFABC algorithm to solve MOOPF and SOOPF 

problems on IEEE 30- and 118-bus systems. The algorithm effectively improved the system's 

techno-economic performance by minimizing fuel cost, power loss, and severity values. 

NSHFABC demonstrated competitive performance compared to established methods like DE, 

PSO, and ACO, achieving significant reductions in fuel cost and severity values. 
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Mohamed et al. (2022) proposed a hybrid GBO-MFO algorithm to optimize OPF 

considering uncertain load and wind generation. The algorithm was tested on an IEEE 30-bus 

system with FACT devices. The proposed method effectively reduced fuel cost and power loss 

compared to standalone GBO, SMA, and MFO algorithms. 

Keswani et al. (2023) implemented a hybrid sine cosine–grey wolf optimizer (HSC-GWO) 

for MOOPF in large power grids, combining the GWO’s exploitation strengths with the SCA’s 

exploration capabilities. Applied to IEEE test systems (30, 57, and 118 buses) considering 

techno-economic aspects, HSC-GWO effectively minimizes fuel costs, enhances voltage 

profiles, and reduces active power loss. Results showed that it outperformed other 

metaheuristic methods like DE, TLBO, PSO, BBO, GWO, and others, demonstrating 

efficiency and robustness in achieving optimal solutions for real-time OPF scenarios. 

Upputuri et al. (2023) proposed a hybrid Improved Harris Hawks Optimization and Pattern 

Search (hIHHO-PS) algorithm to solve OPF problems. The algorithm effectively addresses 

various objective functions, including techno-economic objectives, social welfare 

maximization (SWM), and loadability factor maximization (LFM). Additionally, the study 

investigates the impact of optimally placed multi-line FACTS devices and their control modes 

on OPF outcomes, demonstrating significant improvements in system performance. 

Table 2.1 provides a summary of hybrid approaches for OPF reported in reputable peer-

reviewed journals over the past decade.  

Table 2.1   Summary of hybrid approaches for OPF in the last decade from reputable peer-reviewed journals 

Author(s) Year 
Hybrid 

approach 

Objective 

Function(s) 

SOOPF/ 

MOOPF/ 

Both 

Test 

System(s) 
Strength of Hybrid approach 

Kumar and 

Chaturvedi 
2013 

GA+Fuzzy, 

PSO+Fuzzy 
FCM SOOPF 

IEEE 30-

bus 

(modified) 

Improved average fitness and faster 

convergence 

Narimani et al. 2013 

Modified 

PSO+SFLA 

(HMPSO-

SFLA) 

FCM, EM MOOPF 

IEEE 30, 

57 and 

118-bus 

Enhanced solution diversity and strong 

local search capability 

Ghasemi et al.  2014 

MICA-TLA 

(Modified ICA 

+ TLA) 

FCM, VDM Both 
IEEE 30- 

and 57-bus 

Achieved faster convergence and 

enhanced solution quality by boosting 

local search efficiency 

Radosavljevića et 

al.  
2015 

PSO+GSA                

(PSOGSA) 

FCM, PLM, 

VDM, VSE 

SOOPF and 

MOOPF 

(weight 

IEEE 30 

and 118-

bus 

Combined exploration and local search 

strengths 
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factor 

approach) 

Khunkitti et al. 2018 

DA-PSO 

(Dragonfly + 

PSO) 

FCM, EM, 

PLM 
Both 

IEEE 30- 

and 57-bus 

DA-PSO combines DA's exploration and 

PSO's exploitation for better OPF 

solutions, but its sequential processing 

slows computation 

Pulluri et al. 2018 KH + Stud GA 

FCM, PLM, 

VDM, VSE, 

EM 

SOOPF 

IEEE 30‐

and 118-

bus, 

Algerian 

59‐bus 

Avoids premature convergence and 

enhances global optimality through SSC 

operators integrated into KH 

S. S. Reddy 2019 DE+HS 
FCM, VSE, 

PLM 
Both 

IEEE 30, 

118 and 

300 bus 

Balanced exploration-exploitation trade-

off 

El Sehiemy et al. 2020 
PSO+SSO                                   

(PSO-SSO) 

FCM, VDM, 

PLM, VSE, 

EM 

Both 

IEEE 30, 

57 and 

118-bus 

Mitigated premature convergence, 

enhanced exploration 

Khan et al. 2020 
FA+PSO                                    

(HFPSO)                              

FCM, VDM, 

VSE and 

PLM (active 

& reactive) 

SOOPF 
IEEE  

30-bus 

HFPSO blends FA's local precision and 

PSO's quick global exploration, ensuring 

efficient and balanced convergence 

Khan et al. 2020 
FA+PSO 

(MOHFPSO)                              

FCM, VSE, 

VDM, PLM 
MOOPF 

IEEE 30, 

57-bus 

Balances local and global exploration, 

superior Pareto solutions 

Gupta et al.  2021a  Jaya+PPS 
FCM, VDM, 

EM, PLM 

MOOPF 

(combined 

SOF) 

IEEE 30, 

57 and 118 

bus 

Jaya-PPS enhances local and global search 

efficiency, achieving a well-balanced 

exploration and exploitation 

Gupta et al.  2021b SCM+MJ 
FCM, VDM, 

PLM  

MOO      

(MOF 

turned into 

SOF) 

Algerian 

59-bus, 

IEEE 118-

bus 

SCM prevents premature convergence, 

while MJ balances global and local search 

effectively 

Naderi et al.  2021 

PSO+DE                             

(FAHSPSO-

DE) 

FCM, PLM, 

EM 
Both 

IEEE 30, 

57 and 

118-bus 

Optimal trade-off with dynamic parameter 

adjustment 

Avvari and Vinod 

Kumar 
2022 

(Pareto 

dominance and 

decomposition) 

+ EA                                                                        

FCM, EM, 

PLM, VDM 
MOOPF 

IEEE 57 

and 118-

bus 

Improved exploration, exploitation, and 

uniform Pareto front 

Mallala et al.  2022 
Fruit fly+ABC                               

(NSHFABC) 

FCM, PLM, 

SVM 
Both 

IEEE 30 

and 118-

bus 

Enhanced optimal value accuracy, tackles 

premature convergence 

Mohamed et al.  2022 GBO+MFO 

FCM, PLM 

(without and 

with 

uncertain 

load 

demand) 

Both 
IEEE 30-

bus 

Improves convergence using gradient 

search and local escaping operator (LEO) 

Keswani et al.  2023 HSC-GWO 
FCM, VDM, 

PLM 
Both 

IEEE 30, 

57 and 

118-bus 

Combines GWO’s exploitation with 

SCA’s exploration, achieving high 

efficiency and robustness 
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Upputuri et al. 2023 IHHO+PS 

FCM, PLM, 

VDM, 

SWM, LFM 

Both 
IEEE 30-

bus 

Excels in cost reduction, loss 

minimization, and system stability, 

enhanced with UPFC/GUPFC 

Figure 2.2 depicts the distribution of Optimization Algorithms (OAs) applied to address 

OPF problems, offering valuable insights into their percentage-wise adoption in high-impact, 

peer-reviewed journals over the past decade. 

 

Fig. 2.2   OPF Algorithm Distribution: Evolutionary (30.9%), Swarm Intelligence (53.1%), Hybrid (16%) 

 

2.4 Gaps in Current Research and Opportunities for Further Study 

The literature review reveals several research gaps and opportunities for further exploration, 

as outlined below: 

2.4.1 Need for a Robust Optimization Algorithm Capable of Addressing Diverse OPF 

Scenarios:  

Due to the varied formulations and objectives of the OPF problem, no algorithm can be 

claimed as the best for solving all OPF scenarios. Each algorithm has limitations, especially 

regarding convergence speed and feasibility in large-scale systems. 

• Research Opportunity:  

Developing a novel algorithm that is both efficient and reliable remains a critical need. 

Future research could focus on creating hybrid algorithms that combine strategies from various 

metaheuristic approaches to effectively address OPF challenges. 

2.4.2 Load Growth and Contingency Handling in OPF:  

The complex nature of modern power systems, with increased loading and potential for 

unexpected generator outages, requires robust OPF solutions capable of maintaining stability 



 

30 
 

without resorting to reactive measures like load shedding. While traditional algorithms often 

struggle to adapt to both single and multi-objective requirements across different loading 

scenarios, there is a need for optimization techniques that can proactively secure OPF under 

diverse operational conditions. 

• Research Opportunity:  

Building on recent advancements in hybrid optimization, future work could explore 

extending dynamic, hybrid algorithms to tackle even more diverse operational constraints and 

objectives. For instance, integrating predictive modelling could allow such algorithms to pre-

emptively adjust control variables in response to varying load conditions and potential 

contingencies, further enhancing system stability and operational flexibility without 

compromising efficiency. 

2.4.3 Integration of Renewable Energy Sources (RES) in OPF:  

The integration of RES (e.g., solar, wind, hydro) offers significant benefits, such as reducing 

greenhouse gas emissions and minimizing transmission losses. By inserting the RES as a 

negative load, the total load demand is reduced which decreases the fuel cost of the 

conventional generators and in turn reduces the total objective function. Since most renewable 

resources are intermittent in nature, it may be advantageous to utilize more than one resource 

when available. 

• Research Opportunity:  

Future studies could explore multi-objective OPF optimization that further adapts to 

renewable energy, emphasizing cost reduction and stability. Additionally, hybrid algorithms 

that account for multiple renewable sources can enhance the efficiency of OPF solutions. 

2.4.4 Incorporation of FACTS Devices:  

FACTS devices offer promising potential for improving the steady-state performance of 

power systems by enhancing voltage regulation and loadability. Their role could be especially 

impactful under contingency conditions, which aligns with Security Constrained OPF (SC-

OPF). 

• Research Opportunity:  

Incorporating FACTS devices within OPF under both standard and contingency scenarios 

could be a valuable avenue for future research, potentially advancing system reliability and 

stability. 
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2.5 Research Objectives 

Based on the literature review and research gaps observed, the following objectives have 

been identified: 

➢ Development of a new powerful computational intelligence algorithm or modifications/ 

improvements in the existing popular algorithms or hybridizing algorithms depending 

upon the formulation and objectives of the OPF problem (MOOPF) for a given test 

system. 

➢ Comparison of the simulation results for validating the superiority and effectiveness of 

the proposed algorithm over the existing ones for the same test system and objectives 

reported earlier in literature. 

➢ Examination of load changing effects on the cost and transmission losses. 

➢ Adapting renewable energy resources for further fuel cost reduction. 
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CHAPTER 3 

 OPTIMAL POWER FLOW: FUNDAMENTALS AND VARIOUS TEST SYSTEMS 

3.1  General Structure of OPF 

The OPF problem generally involves a combination of objectives and constraints. Its 

solution aims to optimize a specific objective function by identifying the best possible values 

for control variables. The optimized state of the power system is described using a set of state 

variables. 

The operation of the power system must comply with two categories of constraints: equality 

constraints and inequality constraints. Equality constraints typically correspond to power 

balance equations, while inequality constraints set the operational boundaries for system 

elements like generator limits, voltage levels, and line capacities. Meeting all constraint 

conditions is essential to ensure a realistic and practical OPF formulation. 

3.1.1 Single-Objective OPF  

The formulation of single-objective OPF (SOOPF) problems is as follows: 

       Min:  min ( , )Z x u                                        (3.1) 

  Subject to:  ( , ) 0ig x u =              i = 1, 2, 3,……, m                                                       (3.2) 

  and              ( , ) 0jh x u           j = 1, 2, 3,……., n                                                         (3.3) 

The objective function, shown in Equation (3.1), depends on the state variables ‘x’ and the 

control variables ‘u’. Equation (3.2) outlines the inequality constraints, and Equation (3.3) 

defines the equality constraints, with ‘m’ as the number of equality constraints and ‘n’ as the 

number of inequality constraints. 

3.1.2 Multi-Objective OPF 

In the MOOPF problem, a vector of objective functions is optimised rather than a single 

objective function. Mathematically, MOOPF problem is stated as follows: 

Min: min 1 2( , ) [ ( , ), ( , )......... ( , )]T

kZ x u Z x u Z x u Z x u=                                                  (3.4) 

Here, ‘k’ denotes the number of objective functions optimized simultaneously, while ensuring 

compliance with the constraints in Equations (3.2) and (3.3). 
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The state vector i.e., the vector of dependent variables is given by Equation (3.5) where GP  

is the generator voltage, LV  is the load bus voltage, GQ  is the generated reactive power and 

Sline is the apparent power flow of the transmission line. 

1 1 11[ , ...., , ....., , ....., ]
NPQ NG NL

T

G L L G G line linex P V V Q Q S S=                                                  (3.5) 

Here,
1GP represents the slack bus power. The terms NPQ, NG, and NL denote the counts of 

load buses, generating units, and transmission lines, respectively. The power system status is 

represented by the vector of state (or dependent) variables, as defined in Equation (3.6) below; 

2 1 1 1[ ...., , ...., , ......, , ....., ]
NG NG NC

T

G G G G C C NTu P P V V Q Q T T=                                        (3.6) 

Here, GV  denotes the voltage at the generator bus, CQ represents shunt VAR compensation, 

with NC indicating the number of compensators, and T signifies the tap-changing transformer, 

with NT representing the number of tap-changing transformers. 

3.2  Constraints 

For secure and economical grid operation, the state and control variables are subjected to 

various constraints and limits as described below; 

3.2.1 Equality constraints 

In the OPF problem, the load flow equations are incorporated as equality constraints. The 

mathematical formulation is presented below: 

( )

( )

1

1

cos sin

sin cos      

i i

i i

NL

G D i j ij ij ij ij

j

NL

G D i j ij ij ij ij

j

P P V V G B

Q Q V V G B

 

 

=

=


− = + 



− = −





                               (3.7) 

In Equation (3.7), i  = 1, 2, ..., n , where n  signifies the total number of buses in the 

network. Here, ijG signifies the mutual conductance between any bus i and thj load bus, while

ijB signifies the mutual susceptance between these buses. 

3.2.2 Inequality constraints 

The operating bounds of the power system are determined through the following constraints: 

a) Generation constraints: For stable operation, the generators must operate within the 

following ranges of real power, reactive power, and voltages: 
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min max

min max

min max

                     1,  2,...,  

                    1,  2,...,  

                     1,  2,...,          

i i i

i i i

i i i

G G G

G G G

G G G

P P P i NG

Q Q Q i NG

V V V i NG

  =


  = 


  = 

                                                          (3.8) 

Here, active power generation at thi generator bus (
iGP ) is bounded by 

min

iGP and 
max

iGP , while 

the reactive power generation (
iGQ ) is bounded by 

min

iGQ  and 
max

iGQ . Additionally, the bus 

voltage (
iGV ) of the thi generator must stay within the limits of 

min

iGV and 
max

iGV . 

b) Shunt compensator constraints: Shunt compensation must be maintained within 

specified lower and upper limits, as shown in Equation (3.9). 

                      min max                    1,  2,...,  
i i iC C CQ Q Q i NC  =               (3.9) 

c) Transformer constraints: There is a range of tap settings for transformers that must be 

adhered to. The lower and upper limits are as follows: 

      
min max                      1,  2,...,  i i iT T T i NT  =             (3.10) 

d) Security constraints: These constraints involve the maximum MVA limits for line flows 

and the allowable voltage magnitude ranges at load buses, as represented in Equation 

(3.11). 

      

max

min max

                     1,  2,...,           
i i

i i i

line line

L L L

S S i NL

V V V

 = 


  

            (3.11) 

3.3  Objective Functions 

In OPF, the objective functions define the goals of optimizing power system operations, 

often balancing technical, economic, and environmental considerations. Below are common 

objective functions in OPF, detailed with their mathematical formulations: 

3.3.1 Fuel cost minimization (FCM)/Total fuel cost minimization (TFCM) 

The fuel cost function ($/h) is a fundamental component of OPF analysis. It represents a 

primary economic objective, aiming to minimize the cost of power generation. The cost 

typically exhibits an approximate quadratic relationship with the power generated (MW) 

(Yuryevich and Wong, 1999). The overall fuel cost function can be expressed mathematically, 

as shown in Equation (3.12): 

2

1

Z ( , )    $( / )
i i

NG

FCM i i G i G

i

x hu a b P c P
=

 
= + + 

 
                                     (3.12) 
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Here the Z ( , )FCM x u  is the overall fuel cost function expressed in $ / h  and the fuel cost 

coefficients of ith generator are ia , ib  and ic  with 
iGP  being the active power output of ith 

generator. The objective is to minimize the total fuel cost function. 

a) Fuel cost considering valve-point effect 

In practical power systems, the presence of multiple steam turbine valves alters the fuel 

cost characteristics of generator units, making them non-convex and non-smooth due to ripples 

introduced in the curve (Walters and Sheble, 1993). This phenomenon, known as the valve-

point loading (VPL) effect, adds complexity to the cost function. The modified cost function 

for the ith generator, incorporating sine components to represent the VPL effect, is expressed in 

Equation (3.13). 

( )2 min

1

Z ( , ) sin ( )
i i i i

NG

VPL i i G i G i i G G

i

x u a b P c P d e P P
=

 
= + + + − 

 
                             (3.13) 

Here, ia , ib , ic , id and ie are the fuel cost coefficients of ith generating unit, with id and ie

particularly representing VPL effect. Additionally, 
min

iGP represents minimum allowable active-

power-generation limit of the ith generator. 

In the literature, units 1 and 2 are commonly selected to demonstrate the VPL effect, while 

the remaining units are modelled using basic quadratic fuel cost (QFC) curves without the 

inclusion of VPL characteristics. 

b) Fuel cost considering multiple fuel sources 

Practically, different fuel sources (such as oil, natural gas, etc.) could be used for thermal 

generators during the operation of the power system. When multiple fuel options are available, 

the fuel cost function of a generating unit becomes a piecewise polynomial function, with each 

segment representing a specific type of fuel (Abou El Ela and Abido, 2010) and can be 

modelled mathematically, for ith generator, for fuel type k, by Equation (3.14). 

2

1

Z ( , )
i i

NG

MFS ik ik G ik G

i

x u a b P c P
=

 
= + + 

 
                               (3.14) 

3.3.2 Voltage deviation minimization (VDM) considering quadratic fuel cost (QFC)  

The second most essential objective function of OPF is to minimize load bus voltage 

deviation (VD) from 1.0 p.u., taken as the reference value. In most cases, the fuel cost function 

is combined with the voltage profile enhancement to form a combined objective function as 

given in Equation (3.15). 
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2

1 1

Z ( , ) 1.0
i i i

NPQNG

VDM i i G i G vd L

i i

x u a b P c P K V
= =

 
= + + + − 

 
                              (3.15) 

where, vdK (weighting factor) is assigned an appropriate value depending on the significance 

of voltage profile objective.   

3.3.3 Voltage security index (VSI) 

VSI functions as a performance metric to assess a power system's capability to sustain 

voltage levels within a specified acceptable range, thus reflecting the system's stability and 

security. VSI is calculated using the formula provided in Equation (3.16): 

2

1

n
n

i avg

i

V V
VSI

dV=

 − 
=  

 
                                      (3.16) 

where, avgV  is the average of the maximum and minimum voltages, dV is half the voltage 

range, and n is set to 1. Minimizing VSI suggests that voltages across the system are closer to 

the average value, indicating reduced fluctuations and improved stability. 

3.3.4 Voltage Stability Improvement (VSI)/voltage stability enhancement (VSE) 

considering QFC  

The stability of an electrical power system network refers to its capacity to keep all bus 

voltages within acceptable limits under normal conditions and during disturbances. Voltage 

instability is more likely in systems with high load demands and extensive transmission 

networks. Improving voltage stability involves reducing the voltage stability index (L-index) 

across all buses. The L-index, ranging from 0 to 1, is a reliable measure of stability, where 0 

represents no load and 1 signifies voltage collapse (Kessel and Glavitsch, 1986). 

Mathematically, the objective of VSI, i.e., L-index minimization, can be defined using the two-

fold objective combining fuel cost with voltage stability as follows in Equation (3.17): 

( )( )2

1

Z ( , ) max
i i

NG

VSI i i G i G vs j

i

x u a b P c P K L
=

 
= + + + 

 
                              (3.17) 

Here, vsK  is given an appropriate value according to the priority of the voltage stability 

objective. The L-index for any jth load bus is denoted as jL and is determined by Equation 

(3.18). 
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( )11         1,  2,  ......,  ;       *

NG

ji i

i
j ji jj ji

j

W V

L where j NPQ W inv Y Y
V

=    = − = = −   


                         (3.18) 

Here, jjY represents the sum of the admittances connected to the jth load bus (self-admittance), 

while jiY denotes the mutual admittance of the line connecting the jth and ith buses. 

VSE during contingency- 

Ensuring voltage stability is vital for power systems, especially when sudden disruptions like 

line outages or generator breakdowns occur. Improving voltage stability during transmission 

line issues often requires modelling scenarios where the loss of one line (N-1 contingency) or 

multiple lines is analysed to evaluate the system’s behaviour and identify critical lines. The 

objective of VSE under these contingency scenarios is a widely studied aspect within OPF-

related research. 

3.3.5 Active power loss minimization (APLM) 

The objective of this OPF is to minimize the total active power losses (total transmission 

losses), LossP  within the power system. Equation (3.19) represents the overall active power loss 

as the difference between total generation ( GP ) and total demand ( DP ). 

     Loss

1 1 1

         MW
i i i

NB NB NB

G D

i i i

P P P P
= = =

= = −                                        (3.19) 

The LossP objective function, which is a nonlinear function of bus voltages, can be expressed 

by Equation (3.20). 

( ) 2 2

1

( , ) min [ 2 ]    MW
NL

APLM Loss L i j i j ij

L

Z x u P G V V VV Cos
=

= = + −            (3.20) 

Here, LG  is used to designate the conductance of line L between ith and the jth bus. iV  and jV

are the voltages at buses i and j respectively, while δij signifies the voltage angle difference 

between the two buses. 

3.3.6 Reactive power loss minimization (RPLM) 

This objective focuses on minimizing the total reactive power losses ( LossQ ) in the system. 

These losses, largely due to the reactance of transmission lines, are essential for evaluating 
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system stability and voltage regulation. Reducing LossQ  is vital for the efficient operation of the 

power system. The calculation LossQ is given by the following Equation (3.21): 

2 2

Loss

1

( , ) min  ( ) [ 2  sin ]
NL

RPLM L i j i j ij

L

Z x u Q B V V VV 
=

= = + −              (3.21) 

here, LB  represents the susceptance, which contributes to the reactive power flow between 

nodes and is crucial for maintaining proper voltage levels and preventing voltage collapse. 

3.3.7 Emission minimization (EM)/Emission cost minimization (ECM) 

This OPF objective focuses on minimizing emissions by optimizing the system's control 

variables. This reduces the release of harmful gases, such as SOx and NOx, into the 

atmosphere. The total emission function, representing the sum of various types of emissions, 

is directly related to the active power generation in MW. This function is minimized to decrease 

overall pollution, as expressed in Equation (3.22). 

2

1

( , ) ( exp( )     (ton/ hr)
i i i

NG

EM i i G i G i i G

i

Z x u P P P    
=

= + + +                         (3.22) 

Here, αi, βi, and γi represent emission coefficients, while ωi and μi are associated with the 

exponential term, all corresponding to the same ith generating unit. 

Minimizing emissions may be considered alongside other objectives, such as reducing fuel 

costs, enhancing voltage stability, and minimizing power losses. Achieving a balanced 

approach to these objectives supports the development of a more sustainable and 

environmentally friendly power grid.  

3.4  Constraints Handling 

The penalty factor method addresses constrained optimization problems by converting 

them into unconstrained ones. This is achieved by augmenting the original objective function 

with penalty terms. While control variables are inherently subject to constraints, the method 

incorporates inequality constraints on dependent variables (e.g., slack bus active power, load 

bus voltages, reactive power generation, line loading) as quadratic penalties within the 

objective function. This integration ensures that these variables remain within their specified 

limits, effectively preventing infeasible solutions. The objective function from Equations (3.1) 

and (3.4) can thus be reformulated as shown in Equation (3.23): 

min ( , )augZ Z x u penalty= +                                                 (3.23) 
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1 1

lim 2 lim 2 lim 2

1 2 3

1 1

lim 2

4

1

where,      ( ) ( ) ( )

 (S )

i i i i

i i

NPQ NG

G G L L G G

i i

NL

line line

i

penalty P P V V Q Q

S

  



= =

=

= − + − + −

+ −

 



  (3.24) 

In Equation (3.24), 1 , 2 , 3 and 4 denote penalty factors, all assigned with the 

same value of 105. If the limit value of dependent variable upon violation is denoted by limx  

then it can be conveniently expressed as in Equation (3.25):  

max

min

max

lim

min

) 

  )

; (

 ; (

x x
x

x

x

xx
=

 



                           (3.25) 

3.5  Standard Test Systems for OPF Analysis 

Standardized test systems are commonly used in OPF studies to validate and benchmark 

various optimization models and techniques. These test systems, ranging from simple to 

complex configurations, provide a controlled environment for researchers to analyze OPF 

solutions under realistic conditions. Below are the commonly used IEEE systems and standard 

test systems frequently referenced in the literature: 

3.5.1 IEEE 9-bus system  

The IEEE 9-bus system is one of the simplest and most commonly used test networks for 

educational purposes and introductory OPF and stability studies. With 3 generators, 9 buses, 

and 3 loads, this system offers a basic framework for performing load flow analysis and 

understanding fundamental OPF principles. 

3.5.2 IEEE 14-bus system  

The IEEE 14-bus system is a widely used benchmark for testing OPF algorithms, voltage 

control, and economic dispatch strategies. It consists of 5 generator buses, 14 buses in total, 11 

loads, and 20 transmission lines, with a real power demand of 259 MW. The system has 13 

control variables, including generator active power settings, generator voltage levels, 

transformer tap settings, and a shunt capacitor. Voltage magnitudes are maintained between 

0.94 and 1.06 p.u., making it suitable for studies on OPF, voltage stability, and realistic power 

flow analysis. 

3.5.3 IEEE 26-bus system  

The IEEE 26-bus system offers a mid-sized configuration that provides additional 

complexity while remaining manageable. With a combination of generators and loads 

distributed across 26 buses, this system is often utilized for stability, reliability, and control 

strategy assessments on a scale between the 14-bus and 30-bus systems. 

3.5.4 IEEE 30-bus system  
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The IEEE 30-bus system is a moderately complex network with 6 generators, 30 buses, and 

21 loads, featuring both radial and mesh configurations. This setup introduces challenges in 

OPF analysis, particularly for minimizing power losses and ensuring voltage stability. With 

generators at buses 1, 2, 5, 8, 11, and 13, along with shunt VAR compensation at nine buses 

and transformers on lines 11, 12, 15, and 36, this system is ideal for research on power loss 

optimization, voltage stability, and cost minimization, serving as a standard benchmark for 

testing OPF algorithms. 

3.5.5 IEEE 57-bus system 

For more comprehensive testing, the IEEE 57-bus system provides larger and more 

complex network models. The IEEE 57-bus system features 7 generators, 57 buses, and 42 

loads, simulating a real-world grid structure with varied load profiles and multiple voltage 

levels. This network includes a total load demand of 1250.8 MW and 336.4 MVAR, distributed 

across 80 transmission lines, 15 branches with load tap-setting transformers, and shunt reactive 

power sources at buses 18, 25, and 53. Voltage limits for generator buses range from 0.9 to 1.1 

p.u., while load bus voltages are maintained between 0.94 and 1.06 p.u. This configuration is 

widely used in OPF studies to test the efficiency of optimization algorithms in minimizing 

quadratic cost functions, enhancing voltage stability, and managing reactive power, making it 

an ideal representation of realistic power system operations. 

3.5.6 IEEE 118-bus system  

The IEEE 118-bus system is a widely utilized benchmark for detailed OPF and stability 

studies. It includes 54 generators, 118 buses, 64 loads, 186 transmission lines, 14 shunt VAR 

compensators, and 9 branches with load tap-setting transformers, forming a highly 

interconnected network that closely resembles a real-world power grid with diverse operational 

constraints. This complex configuration, with active and reactive power demands of 

approximately 4242 MW and 1439 MVAR, respectively, makes the 118-bus system particularly 

suitable for testing advanced OPF algorithms, multi-objective optimization, and real-time 

simulation scenarios. It is also valuable in research focused on renewable energy integration, 

distributed generation, and evaluating the robustness of optimization techniques in complex 

power system environments. 

3.5.7 IEEE 300-bus system  

The IEEE 300-bus system is one of the most extensive and complex test networks available, 

featuring 69 generators, 300 buses, and 411 transmission lines. This system closely mirrors a 

regional power grid in both size and complexity, with an apparent power demand of 23,525.85 

MVA and a reactive power requirement of 7780 MVAR. It includes 259 control variables, such 
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as generator real power outputs, voltage magnitudes, transformer tap settings, and 14 shunt 

SVC devices for reactive power management. Voltage magnitudes for PV buses and 

transformer tap settings are maintained between 0.9 and 1.1 p.u. With an initial total power loss 

of 408.317 MW, this system is well-suited for rigorous OPF and stability studies, large-scale 

contingency analysis, and evaluating high-efficiency optimization methods. Due to its 

complexity, the 300-bus system is commonly utilized in high-performance computing 

environments to test advanced algorithms and simulate realistic power grid operations. 

3.5.8 Indian 75-bus system 

The Indian 75-bus system consists of 1 slack bus, 14 generator buses, 60 load buses, and 

114 transmission lines. It is a high-stress network model derived from the Uttar Pradesh State 

Electricity Board's (UPSEB) grid, operating at 400 kV and 220 kV levels. This system is often 

used for contingency screening and ranking, especially focusing on voltage and line flow 

security. Various contingency cases, including single line outages, are evaluated under different 

load conditions, making it suitable for studies on integrated security assessment, voltage 

stability, and line overload risk. 

3.5.9 Algerian 59-bus system  

The Algerian 59-bus system includes a network configuration comprising 59 buses, 10 

generators, 36 loads with a total demand of 684.10 MW, and 83 branches. In this configuration, 

generator 5 at bus 13 is not operational. This system is often utilized to examine various OPF 

scenarios, including generation fuel cost minimization, voltage profile improvement, voltage 

stability enhancement, and emission reduction, as explored through different case studies. 

3.6  Other test systems in OPF literature  

3.6.1 Large-Scale Systems 

Networks like the 2736-bus and 4000-bus systems are used for high-capacity studies and 

for testing scalability in OPF solutions, particularly in large regional or national grids. 

3.6.2 Regional and Custom Configurations 

Regional models, such as the European Transmission Network or custom configurations 

based on specific countries, like Indian and Algerian grids, provide realistic conditions that 

reflect unique power flow patterns, load demands, and stability challenges in specific areas. 

3.6.3 Specialized Test Networks 

Custom test systems are also created to study specific aspects of OPF, such as renewable 

energy integration, microgrid behaviour, and distributed energy resources (DERs). 
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3.7  Conclusion 

Chapter 3 provides a foundational understanding of OPF, covering its core structure, 

constraints, and various objective functions that address economic, technical, and 

environmental considerations in power systems. Both single-objective and multi-objective 

OPF formulations were discussed, highlighting how these approaches balance operational 

goals like fuel cost minimization, voltage stability, and power loss reduction. Additionally, 

standard IEEE and international test systems were introduced, from the simpler IEEE 9-bus 

and 14-bus systems to complex networks like the 118-bus and 300-bus systems. These systems 

serve as benchmarks in OPF research, facilitating the evaluation of optimization algorithms 

under realistic conditions. 

The inclusion of regional systems, such as the Indian 75-bus and Algerian 59-bus networks, 

along with large-scale configurations like the 2736-bus system and custom setups, highlights 

the need for adaptability in OPF studies to address varying grid structures and operational 

challenges. These diverse test systems facilitate comprehensive evaluations of OPF algorithms 

across a wide range of network complexities. 

Subsequent chapters will dive deeper into the formulation and application of advanced 

algorithms for addressing OPF challenges. These sections will examine how such algorithms 

are designed to achieve diverse objectives, including cost minimization, loss minimization, 

emission reduction, and system stability enhancement, showcasing improvements achieved in 

both single and multi-objective scenarios. 

 

 

 

 

 

 

 

 

 

 



 

43 
 

CHAPTER 4 

LEARNING-BASED SINE-COSINE ALGORITHM (L-SCA) FOR OPF 

SOLUTIONS 

4.1  Motivation for developing L-SCA 

The Sine-Cosine Algorithm (SCA) is a widely used optimization method known for its 

balance between exploration and exploitation in search spaces. Developed by Mirjalili (2016), 

SCA utilizes trigonometric sine and cosine functions to guide candidate solutions toward 

optimal solutions, making it efficient for a range of continuous parameter optimization tasks. 

This SCA optimizer has demonstrated success in a variety of optimization tasks; however, it 

also has certain limitations, such as slow convergence and restricted local search capabilities, 

which can impact solution quality in complex problems. 

To address these issues, researchers have developed several modified and hybrid variants 

of SCA, aiming to enhance its performance in real-world applications. Notable adaptations 

include the Interactive SCA (ISCA) by Mahdad and Srairi (2018), an Improved SCA using 

Levy Flight by Li et al. (2017), and Enhanced SCA (ESCA) by Raut and Mishra (2021) for 

optimized network planning, as well as multi-objective versions like the Pareto-based SCA for 

distributed generation allocation. Despite these advancements, SCA still faces challenges in 

terms of convergence speed and solution diversity, especially when applied to multi-objective, 

constrained optimization problems like OPF. 

4.2  Introduction to the Proposed Algorithm 

4.2.1 Overview of SCA 

SCA, a popular swarm intelligence algorithm introduced by Mirjalili in 2016, utilized for 

optimizing solutions in a wide range of fields and real-world applications. SCA uses sine & 

cosine functions to generate interdependent candidate solutions and update their positions 

towards the optimal solution based on trigonometric equations as given in literature by Mirjalili 

(2016). It offers easy implementation, fast convergence, and efficient execution time. The 

algorithm balances exploratory & exploitative search patterns to locate the best regions and 

converge to the global optimum. Position updates are regulated by four parameters, 

transitioning from a fast random search in the exploration phase to a slow directed search in 

the exploitation phase. The position of the solutions is updated using following mathematical 

equations for both phases: 
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The combination of Equations (4.1) and (4.2) is often represented as Equation (4.3) below: 
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Here, 1R , 2R , 3R , 4R are the random variables, normally distributed according to a 

Gaussian distribution, and are incorporated to help the algorithm avoid local optima. Here, | |

represents the absolute value. The value of the adaptive parameter 1R  determines whether a 

solution moves closer to the best solution i.e., 1 1 R  or farther away from it i.e., 1 1   R  . 

Equation (4.4) modifies the range of the sine and cosine functions to achieve a balance between 

exploitation and exploration, ensuring that the conditions outlined in Equation (4.3) are met. 

1

max

  
a

R a t
t

 
= −  

 

                                       (4.4) 

The parameter 2R dictates whether the next solution moves closer to or farther from the 

target solution, with a value range of 0 to 2π. Variable 3R  provides random weightage to 
ibestP

with a view to stochastically emphasize ( 3R  1    ) or diminish ( 3R  1  ) the influence of 

destination in determining distance. Switching between cosine and sine components of 

Equation (4.3) is carried out with equal probability using variable 4R in the range (0-1) (Attia 

et al. 2018).  

4.2.2 Proposed Learning-based SCA (L-SCA) 

The SCA algorithm is a valuable optimization tool but can encounter difficulties, such as 

slow convergence and suboptimal outcomes, particularly with large, complex, and constrained 

electrical power system problems. The complex tuning parameters of SCA can lead to poor 

exploitation. To address these issues, a modified variant named L-SCA has been proposed, 

using a learning strategy inspired by the TLBO learner phase to enhance exploitative features. 

Furthermore, L-SCA preserves population diversity throughout the search, strengthening its 

exploratory features and reducing the risk of suboptimal solutions. This balanced approach 

between exploration and exploitation enables L-SCA to effectively tackle real-world problems, 

adding an additional phase to address the classical SCA algorithm’s limitations. The following 

mathematical equation has been utilized to modify the population during the learning phase: 
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In Equation (4.5), learners u  and v  interact at random (u v ) within a population of n , 

where subscript i  refers to an individual in the population ranging from 1 to n , rand  

corresponds to a random number generated uniformly between 0 and 1. The term ( u vx x− ) 

represents a step in Equation (4.5). The neighbourhood search within the learner phase is 

typically represented by Equation (4.6) involving the adjustment of learner positions based on 

ibestP and random selection of another neighbouring search agent, denoted as ux . 
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If the fitness corresponding to newly generated solution vector 
inewx is better than that of 

old solution vector 
ioldx then the newly generated solution vector is accepted; otherwise, it is 

rejected as per Equation (4.7): 
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The proposed L-SCA approach prudently balances exploration and exploitation to 

effectively handle real-world problems. The flowchart of the proposed L-SCA is shown in Fig. 

4.1. The concise computational steps of the proposed L-SCA algorithm for the OPF problem 

are presented below. 

4.3  Computational Steps of the Proposed L-SCA for OPF 

The concise computational steps of the proposed L-SCA algorithm for the OPF problem 

are presented below: 

Step 1: Set the population, control variables, load flow data to their initial values. Set the 

terminating criterion and maximum number of iterations maxt . 

Step 2: Set iteration count I = 0. Generate an initial population of n individuals (search agents) 

randomly, uniformly distributed within maximum and minimum values of the control 

variables. For each individual, run the NRLF (Newton Raphson load flow) program and 

evaluate the augmented objective function values using Equation (3.23).  



 

46 
 

Step 3: Evaluate the fitness of each agent, sort the population, and identify the global best 

position i.e., the position of the target or destination point. 

Step 4: Use Equations (4.3) and (4.4) to update the position of individuals in the search space. 

Update the population by sine function if 4 0.5 R   or cosine function if 4   0.5R  . Update and 

record the global best position. 

Step 5: Apply the learning strategy to update the position of search agents from the total 

population (randomly selected agents) using Equation (4.5) and calculate AOF value for all the 

search agents using Equation (3.23). 

Step 6: Conduct a neighbourhood search using Equation (4.6). If the search agent improves 

with Equation (4.7), update it. Otherwise, maintain the previous solution to preserve the 

excellent local search features of the algorithm. 

Step 7: If I < tmax, increase iteration count by 1 i.e., 1I I= + , and go to Step 3. Otherwise, 

proceed to Step 8. 

Step 8: Terminate the procedure once the pre-set termination criteria are met. Report the best 

solution as the final destination point Pbest.  

The flowchart of the proposed L-SCA is shown in Fig. 4.1. 
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Fig. 4.1 Flowchart of the proposed L-SCA to solve OPF problem 
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4.4  Case Studies using the Proposed L-SCA for OPF 

The effectiveness of the proposed L-SCA algorithm was evaluated through various case 

studies on practical power systems, addressing challenging and constrained OPF problems. The 

algorithm was tested and validated on three power system networks: two medium-sized 

systems (IEEE 57-bus and Algerian 59-bus) and one large-scale system (IEEE 118-bus). A total 

of 12 different case studies were analyzed, encompassing both single and multiple objectives. 

Table 4.1 provides a summary of these case studies, highlighting the key objective functions 

addressed by the proposed L-SCA across various OPF scenarios. These results demonstrate L-

SCA's adaptability and effectiveness in achieving multiple OPF goals, consistently 

outperforming other meta-heuristic algorithms in OPF problem-solving. The simulations were 

conducted with a maximum iteration count of 150 and a population size of 30, using MATLAB 

R2018a on a laptop with a 10th Gen Intel Core i7 processor, 8 GB RAM, and a 1.7 GHz clock 

speed. 

Table 4.1   Various cases examined in the present work using L-SCA 

Case Name Objective Function Test System 

Case-1 Total fuel cost minimization (TFCM) IEEE 57-bus 

Case-2 Voltage deviation minimization (VDM) considering QFC  

Case-3 Voltage stability improvement (VSI) considering QFC  

Case-4 Active power loss minimization (APLM)  

Case-5 Total fuel cost minimization (TFCM) Algerian 59-bus 

Case-6 Voltage deviation minimization (VDM) considering QFC  

Case-7 Voltage stability improvement (VSI)  

Case-8 Active power loss minimization (APLM)  

Case-9 Emission minimization (EM)  

Case-10 Total fuel cost minimization (TFCM) IEEE 118-bus 

Case-11 Voltage deviation minimization (VDM)  

Case-12 Active power loss minimization (APLM)  

Figure 4.2 illustrates the graphical framework depicting the implementation of the proposed 

OPF scheme within the context of the current study. 
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Fig. 4.2 Graphical framework for L-SCA based OPF implementation 

4.5  Simulation Results and Analysis 

4.5.1 Results for IEEE 57-Bus System 

The proposed algorithm was initially tested on the IEEE 57-bus system to evaluate its 

effectiveness and scalability in addressing both individual and combined OPF cases, covering 

a total of 4 cases. Detailed system parameters, including upper and lower bounds on control 

variables, are provided in Zimmerman and Murillo-Sánchez, Matpower 6.0 User's Manual 

(2016). The network comprises 7 generators (with bus 1 as the swing bus), 80 transmission 

lines, 17 regulating transformers, and 3 shunt VAR compensators. For the network, 
min

iLV and 

max

iLV   are 0.94 p.u. and 1.06 p.u., respectively, and 
min

iGV  and 
max

iGV  are restricted within the 

limits of 0.9 and 1.1 p.u., respectively. On a 100 MVA base, the system’s active and reactive 

power demands have been calculated as 1250.8 MW and 336.4 MVAR, respectively. The 

algorithm was evaluated by performing 20 independent trials on this test network, and the 

optimal results for various objective function cases are presented below. 

Case-1: OPF for TFCM 

The primary objective of OPF is to minimize the generation system's total fuel cost i.e. 

Z ( , )FCM x u . The mathematical formulation for TFCM (or simply FCM) is provided by 

Equation (3.12) with a penalty term in Equation (3.24). Table 4.2 shows that L-SCA 

outperforms other algorithms yielding best results. Also, compared to SCA (41695.2842 $/h), 
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fuel cost gets reduced by 0.09% (41657.6736 $/h). Figure 4.3 illustrates that L-SCA converges 

quicker than the basic SCA. Table 4.3 displays the results of L-SCA, including optimal control 

variable limits and settings. 

Table 4.2   Comparison of L-SCA with other popular algorithms reported in literature for Case 1 

Algorithm Fuel cost ($/h) 

L-SCA 41657.6736 

SCA 41695.2842 

Rao-3 (Gupta et al. 2021c) 41,659.2621 

PSO-SSO (El Sehiemy et al. 2020) 41666.66 

IMFO (Taher et al. 2019a) 41667.1497 

MGOA (Taher et al. 2019b) 41,671.0980 

PSO (Taher et al. 2019a) 41,671.9849 

MSA (Mohamed et al. 2017) 41673.7231 

MICA-TLA (Ghasemi et al. 2014) 41675.0545 

GA (Taher et al. 2019a) 41 676.4786 

SSO (El Sehiemy et al. 2020) 41678.53 

LTLBO (Ghasemi et al. 2015) 41679.5451 

GOA (Saremi et al. 2017) 41,679.6792 

MFO (Taher et al. 2019a) 41679.3749 

MO-DEA (Shaheen et al. 2016) 41683.0000 

DSA (Abaci and Yamacli, 2016) 41686.82 

ABC (Adaryani and Karami, 2013) 41693.9589 

TLBO (Ghasemi et al. 2015) 41695.6626 

GSA (Duman et al. 2012) 41695.8717 

Base case 51345.570 

 

 

Fig. 4.3.   Fuel cost convergence characteristics for Case 1 
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Table 4.3   Optimal settings of control variables 

 

Case-2: OPF for VDM considering QFC 

This case focuses on minimizing the deviation of load-bus voltage from 1.0 p.u. and 

minimizing QFC simultaneously. Equation (3.15) and the penalty term from Equation (3.24) 

S.No. 
Control 

variables (p.u.) 
Min. Max. 

L-SCA for OPF 

Case 1 Case 2 Case 3 Case 4 

1 PG2 0.0 1.0 0.9005 0.9252 0.9631 0.0792 

2 PG3 0.0 1.4 0.4524 0.4608 0.438 1.3956 

3 PG6 0.0 1.0 0.7064 0.7763 0.7151 0.9999 

4 PG8 0.0 5.5 4.617 4.5429 4.5937 3.0873 

5 PG9 0.0 1.0 0.9472 0.9919 0.9407 0.9999 

6 PG12 0.0 410 3.5956 3.5627 3.5813 4.0999 

7 VG1 0.95 1.10 1.0708 1.0213 1.07 1.0681 

8 VG2 0.95 1.10 1.0733 1.0247 1.0716 1.0673 

9 VG3 0.95 1.10 1.0604 1.0133 1.0596 1.065 

10 VG6 0.95 1.10 1.063 1.0175 1.0582 1.061 

11 VG8 0.95 1.10 1.0747 1.037 1.0735 1.0695 

12 VG9 0.95 1.10 1.0705 1.0271 1.0663 1.0609 

13 VG12 0.95 1.10 1.0587 1.0009 1.0577 1.0544 

14 T4-18 0.9 1.10 1.0833 1.0974 1.0994 0.9718 

15 T4-18 0.9 1.10 0.9454 0.9 1.0946 0.9958 

16 T21-20 0.9 1.10 1.0269 0.9868 1.0894 1.0253 

17 T24-25 0.9 1.10 0.9562 1.096 1.1 1.0955 

18 T24-25 0.9 1.10 1.0894 1.0173 1.0996 0.9354 

19 T24-26 0.9 1.10 1.0224 1.0033 1.0242 1.0101 

20 T7-29 0.9 1.10 0.9974 1.0161 1.0034 0.9963 

21 T34-32 0.9 1.10 0.9619 0.9193 0.9423 0.9607 

22 T11-41 0.9 1.10 0.9051 0.9012 0.9075 0.9156 

23 T15-45 0.9 1.10 0.9872 0.9419 0.9916 0.988 

24 T14-46 0.9 1.10 0.9708 0.9647 0.9732 0.9726 

25 T10-51 0.9 1.10 0.992 0.9855 0.9942 0.9825 

26 T13-49 0.9 1.10 0.9528 0.9006 0.9448 0.9442 

27 T11-43 0.9 1.10 1.0148 0.9646 0.9827 0.9872 

28 T40-56 0.9 1.10 0.9741 1.0103 1.0992 1.0014 

29 T39-57 0.9 1.10 0.9957 0.9001 0.9701 0.9636 

30 T9-55 0.9 1.10 1.0067 1.024 1.0114 0.9998 

31 Qsh18 0.0 20.0 0.1002 0.0627 0.2212 0.0437 

32 Qsh25 0.0 20.0 0.1389 0.1941 0.2547 0.1579 

33 Qsh53 0.0 20.0 0.1109 0.2638 0.12 0.1421 

Fuel cost ($/h) 41657.6736 41735.3577 41670.2097 44908.9339 

VDM (p.u.) 1.6450 0.5953 1.8902 1.7425 

VSI (L-index) 0.2388 0.241 0.2182 0.2333 

APLM (MW) 14.7021 16.4383 14.9989 9.7299 

Time (sec) 104.2312 107.9262 103.2718 102.3134 
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form the combined bi-objective function with value of vdK  chosen as 100. Table 4.3 presents 

the OPF results and optimal control variable settings. The results of Case 2 demonstrate an 

improved voltage profile of 0.5953 p.u., a 63.8% improvement over Case 1's voltage deviation 

of 1.6450 p.u. However, this improvement in voltage stability is accompanied by a slight 

increase in fuel cost, rising from 41657.6736 $/h in Case 1 to 41735.3577 $/h in Case 2. 

Table 4.4 provides a comparison of L-SCA results with those obtained from other popular 

optimization methods in the literature. Additionally, Fig. 4.4 illustrates that the voltage profiles 

achieved using the proposed L-SCA are closer to unity compared to those from the basic SCA 

and the base case. 

Table 4.4   Comparison of L-SCA with other popular algorithms reported in literature for Case 2 

Algorithm Fuel Cost ($/h) VDM (p.u.) 

L-SCA 41735.3577 0.5953 

SCA 41731.8261 0.6896 

Rao-3 (Gupta et al. 2021c) 42,043.2728 0.5725 

MGOA (Taher et al. 2019b) 41,697.9735 0.7381 

GOA (Saremi et al. 2017) 41,715.1396 0.8260 

GA (Taher et al. 2019a) 41,700.4162 0.80517 

PSO (Taher et al. 2019a) 41 684.4009 0.76240 

TLBO (Taher et al. 2019a) 41 694.7778 0.7120 

DSA (Abaci and Yamacli 2016) 41,699.4 0.762 

MSA (Mohamed et al. 2017) 41,714.9851 0.67818 

IMFO (Taher et al. 2019a) 41,692.7178 0.71824 

MFO (Taher et al. 2019a) 41 719.8471  0.75514 

SSO (El Sehiemy et al. 2020) 41705.87 0.6856 

PSO-SSO (El Sehiemy et al. 2020) 41713.72 0.6817 

MICA-TLA (Ghasemi et al. 2014) 41,959.1774 0.539 

Base case 51345.570 1.235 
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Fig. 4.4.  Load bus voltage profile for Case 2 

Case-3: OPF for VSI considering QFC 

Improving voltage stability requires minimizing the L-index, which ranges from 0 to 1. The 

aim of this case is to obtain OPF solutions by minimizing both QFC and L-index. The combined 

objective function is expressed by combining Equations (3.17) and (3.24), with a weight factor 

vsK assigned a value of 6000 for OPF calculations. The resulting L-index of 0.21820 p.u. 

represents an improvement over the 0.2388 p.u. achieved in Case 1, though it comes with a 

slight increase in fuel cost, rising from 41657.6736 $/h in Case 1 to 41670.2097 $/h in Case 3. 

As shown in Table 4.5, L-SCA outperforms other recently published optimization algorithms 

in achieving these OPF objectives. 

Table 4.5   Comparison of L-SCA with other popular algorithms reported in literature for Case 3 

Algorithm Fuel Cost ($/h) L-Index 

L-SCA 41670.2097 0.2182 

SCA 41696.2959 0.224 

Rao-3 (Gupta et al. 2021c) 41,692.6149 0.2186 

MGOA (Taher et al. 2019b) 41,682.4031 0.2297 

IMFO (Taher et al. 2019a) 41 673.6204 0.23525 

DSA (Abaci and Yamacli 2016) 41,761.22 0.2383 

MFO (Taher et al. 2019a) 41 688.6522 0.2395 

GOA (Saremi et al. 2017) 41,698.1175 0.2395 

GA (Taher et al. 2019a) 41 670.0872 0.2413 
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PSO (Taher et al. 2019a) 41 670.1755 0.2420 

TLBO (Taher et al. 2019a) 41,685.353 0.24787 

SKH (Pulluri et al. 2018) 43,937.1058 0.2721 

MSA (Mohamed et al. 2017) 41,675.9948 0.27481 

Modified DE (Mohamed et al. 2017) 41689.5878 0.27677 

MPSO (Mohamed et al. 2017) 41694.1407 0.27918 

Base case 51345.570 0.2953 

Case-4: OPF for APLM 

The objective function for this case is ( , )APLMZ x u  described in Equation (3.20) added with 

penalty term described by Equation (3.24). L-SCA reduces active power losses by 33.8% from 

14.7021 MW (Case 1) to 9.7299 MW.  

Table 4.3 presents the L-SCA results along with the optimal control variables, while Table 

4.6 highlights the superior performance of L-SCA compared to other recent techniques. Figure 

4.5 illustrates the smooth convergence of real power loss (showing a steady decline) for Case 

4 using L-SCA, demonstrating an improvement over the SCA method. 

Table 4.6   Comparison of L-SCA with other popular algorithms reported in literature for Case 4 

Algorithm Power Loss (MW) 

L-SCA 9.7299 

SCA 10.9059 

Rao-3 (Gupta et al. 2021c) 9.7590 

SKH (Pulluri et al. 2018) 10.6877 

Chaotic KHA (Prasad et al. 2017) 11.1224 

HPSO-DE (Naderi et al. 2021) 11.9788 

FAHSPSO-DE (Naderi et al. 2021) 11.7328 

MOMICA (Naderi et al. 2021) 11.8826 

PSO (Naderi et al. 2021) 12.7819 

NKEA (Naderi et al. 2021) 12.5053 

MSO (Kotb and El-Fergany 2020) 12.7435 

MNSGA-II (Naderi et al. 2021) 12.8657 

Base case 28.365 
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Fig. 4.5   Active power loss convergence characteristics for Case 4 

4.5.2 Results for Algerian 59-Bus System 

The effectiveness and suitability of the proposed L-SCA approach in solving OPF problems 

on real-world power systems has been demonstrated on a practical Algerian 59-bus power 

system network. This network, consisting of 59 buses and 83 branches, has a combined output 

of 684.10 MW generated by 10 generators. Notably, the generator at bus 13 is currently non-

operational.  

The performance of the L-SCA algorithm was evaluated through 20 independent runs, with 

detailed system parameters and bounds on control variables provided in reference (Bouchekara 

et al. 2014c). 

Case-5: OPF for TFCM 

This case investigates the objective of minimizing generation fuel cost, usually expressed 

by a quadratic function. The formulation of the objective function is the same as in Case 1. The 

performance of the L-SCA algorithm for OPF, including the optimal control variable limits and 

settings, is detailed in Table 4.7.  

The L-SCA approach achieved a 13.13% reduction in total fuel cost, lowering it from 

1943.7011 $/h (base case) to 1688.4653 $/h. Additionally, it was demonstrated to be superior 

to other techniques, as evidenced in Table 4.8, and exhibited better convergence than the basic 

SCA, as shown in Figure 4.6. 
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Table 4.7   Optimal settings of control variables 

S.N. 

Control 

variables 

(p.u.) 

Min. Max. Initial case 
L-SCA for OPF 

Case 5 Case 6 Case 7 Case 8 Case 9 

1 PG2 0.1 0.7 0.7 0.2356 0.1848 0.1 0.7 0.74 

2 PG3 0.3 5.1 0.7 1.0127 0.9524 0.3 0.5391 0.8965 

3 PG4 0.2 4 1.15 1.1065 1.2341 0.2 1.4981 0.8404 

4 PG13 0.15 1.5 0 0 0 0 0 0 

5 PG27 0.1 1 0.4 0.2587 0.3218 0.1047 1 0.8254 

6 PG37 0.1 1 0.3 0.5107 0.4709 0.3182 0.4092 0.5881 

7 PG41 0.15 1.4 1.1 0.9669 0.5813 0.15 0.4764 0.7199 

8 PG42 0.18 1.75 0.7 1.4081 1.7472 1.745 1.0894 0.9027 

9 PG53 0.3 4.5 2 1.0323 1.228 3.5499 1.0379 0.8527 

10 VG1 0.94 1.1 1.06 1.1 1.0597 1.0996 1.0894 1.0999 

11 VG2 0.94 1.1 1.04 1.0877 1.0725 1.1 1.0984 1.0962 

12 VG3 0.94 1.1 1.05 1.1 1.0998 1.1 1.1 1.1 

13 VG4 0.94 1.1 1.0283 1.0808 1.0413 1.0949 1.1 1.0758 

14 VG13 0.94 1.1 1 1.0938 0.9754 1.1 1.1 1.091 

15 VG27 0.94 1.1 1.0266 1.0803 1.0404 1.0999 1.0992 1.0757 

16 VG37 0.94 1.1 1.0273 1.1 1.0297 1.1 1.1 1.1 

17 VG41 0.94 1.1 1.0966 1.1 1.0082 0.9887 1.0802 1.1 

18 VG42 0.94 1.1 1.034 1.1 1.0998 1.1 1.1 1.1 

19 VG53 0.94 1.1 1 1.1 1.1 1.1 1.1 1.1 

Fuel cost ($/h) 1943.7011 1688.4653 1734.8135 2468.8724 1924.1695 1821.3763 

VDM (p.u.) 1.5757 2.6206 1.8359 2.6766 3.0488 2.6966 

VSI (L-index) 0.2767 0.2175 0.219 0.2153 0.2168 0.2177 

APLM (MW) 29.1409 27.6289 26.1014 46.9346 11.8485 23.7158 

EM (ton/h) 0.5833 0.525 1.6563 4.3158 0.4583 0.3829 

Time (sec) - 92.1921 94.2281 91.0281 96.1921 90.2038 

 

Table 4.8   Comparison of L-SCA with other popular algorithms reported in literature for Case 5 

Algorithm Fuel cost ($/h) 

L-SCA 1688.4653 

SCA 1689.4053 

SKH (Pulluri et al. 2017a) 1688.5742 

ESDE-MC (Pulluri et al. 2017b) 1688.5586 

SCM-MJ (Gupta et al. 2021b) 1688.5933 

M-Jaya (Gupta et al. 2021b) 1689.0281 

LCA (Bouchekara et al. 2014c) 1689.0768 

KH (Pulluri et al. 2017a) 1690.4697 

MFO (Bentouati et al. 2016) 1693.61 

ABC (Bouchekara et al. 2014c) 1703.8 

BHBO (Bouchekara 2014b) 1710.0859 
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ACO (Bouchekara et al. 2014c) 1815.7 

GA (Bouchekara et al. 2014c) 1937.1 

Base case 1943.7011 

 

 

Fig. 4.6   Fuel cost convergence characteristics for Case 5 

Case-6: OPF for VDM considering QFC 

In Case 5, the voltage profile may not meet acceptable standards, creating a need for a 

solution that both reduces fuel consumption and improves the voltage profile. In Case 6, the 

formulation of the objective function remains consistent with Case 2, with the weighting factor 

set to 100. The optimal control variable settings and results are provided in Table 4.7. 

The present Case 6 achieved a 29.94% improvement in the voltage profile, with only a 

2.67% increase in fuel cost. Table 4.9 offers a comparison of the results obtained by the 

proposed L-SCA method against other well-known methods. Figure 4.7 displays the voltage 

profiles for Case 6, the proposed L-SCA, basic SCA, and the base case, confirming that the 

voltages at load buses fall within the acceptable limits. 

Table 4.9   Comparison of L-SCA with other popular algorithms reported in literature for Case 6 

Algorithm Fuel Cost ($/h) VDM (p.u.) 

L-SCA 1734.8135 1.8359 

SCA 1732.9160 1.8398 

MFO (Bentouati et al. 2016) 1732.852 1.435 

SCM-MJ (Gupta et al. 2021b) 1718.48938 1.8815 

M-Jaya (Gupta et al. 2021b) 1719.8954 1.8842 
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LCA (Bouchekara et al. 2014c) 1755.5775 1.8404 

Base Case 1943.7011 1.5757 

 

 

Fig. 4.7   Load bus voltage profile for Case 6 

Case-7: OPF for VSI 

The L-index (0 to 1) is a measure of voltage stability. It is calculated using Equation (3.18) 

for any jth load bus (Kessel and Glavitsch, 1986). Minimizing the system voltage stability 

indicator, as described in Equation (4.8), can significantly improve voltage stability. 

max( )        1,  2,  ......,  ;       jL L where j NPQ= =                 (4.8) 

The proposed algorithm achieved an L-index of 0.2153 p.u. with an associated cost of 

2468.8724 $/h, marking a 22.2% reduction from the base case value of 0.2767 p.u. The 

proposed algorithm demonstrated superior reliability and robustness compared to other 

techniques, as shown in Table 4.10. 

Table 4.10   Comparison of L-SCA with other popular algorithms reported in literature for Case 7 

Algorithm L-index (p.u.) 

L-SCA 0.2153 

SCA 0.2153 

SKH (Pulluri et al. 2017a) 0.21519 

LCA (Bouchekara et al. 2014c) 0.2152 

ESDE-MC (Pulluri et al. 2017b) 0.21519 

KH (Pulluri et al. 2017a) 0.21544 

Base case 0.2767 
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Case-8: OPF for APLM 

The proposed L-SCA method in this case is shown to be effective in reducing power losses 

in Algerian system. The objective function used is identical to that of Case 4. The real power 

loss achieved through proposed L-SCA is 11.8485 MW, lower than the SCA algorithm 

(12.0012 MW) and the base case (29.14 MW). Table 4.7 includes the results of the OPF for 

this case, along with the settings of control variables.  

While the fuel cost for this case is 1924.1695 $/h, slightly higher than in Case 5, it remains 

below the base case fuel cost of 1943.7011 $/h. The proposed algorithm achieved a real power 

loss that is lower than those reported in previous studies by SKH (11.9833 MW) and KH 

(12.2491 MW) (Pulluri et al., 2017a). However, due to limited comparative studies on Algerian 

power systems, fully evaluating the comparative significance of these results remains 

challenging. Figure 4.8 illustrates the trend of reducing APLM using both the L-SCA and the 

conventional SCA. 

 

Fig. 4.8   Active power loss convergence characteristics for Case 8 

Case-9: OPF for EM 

Pollutants like SOx and NOx pose a threat to public health and the environment. With rising 

concern over environmental issues, the present case holds greater relevance. Equation (3.22) 

incorporates a penalty factor from Equation (3.24) to formulate the objective function in Case 

9. Table 4.7 showcases the optimal control settings and results obtained using L-SCA in the 

present case. Figure 4.9 illustrates the convergence of emission cost between L-SCA and SCA 

algorithms, with the emission value dropping dramatically from 0.5833 ton/h in the initial case 
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to 0.3829 ton/h in Case 9, a 34.35% decrease from the initial case and a 27.07% decrease from 

Case 5. 

 However, it's important to note that while emission reduction is a primary focus, other 

objectives, such as the Total Fuel Cost Minimization (TFCM) objective, may experience slight 

declines. This trade-off between different objectives highlights the complex nature of power 

system optimization and the need for careful consideration of various factors. 

 
Fig. 4.9   Emission cost convergence characteristics for Case 9 

Table 4.11 compares the results using the proposed L-SCA method to previously reported 

methods, showing its superiority. The proposed algorithm effectively reduces emissions, 

potentially benefiting public health and the environment in the long run. 

Table 4.11   Comparison of L-SCA with other popular algorithms reported in literature for Case 9 

Algorithm Emission Cost (ton/h) 

L-SCA 0.3829 

SCA 0.3834 

MFO (Bentouati et al. 2016) 0.3844 

ESDE-MC (Pulluri et al. 2017b) 0.3846 

SKH (Pulluri et al. 2017a) 0.3852 

KH (Pulluri et al. 2017a) 0.3875 

LCA (Bouchekara et al. 2014c) 0.3877 

PGA (Mahdad et al. 2009) 0.4213 

FSLP (Zehar and Sayah 2008) 0.4329 

Base case 0.5833 
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4.5.3 IEEE 118-bus test network 

The proposed L-SCA approach has been tested for scalability and effectiveness on a larger 

IEEE 118-bus test system. Three objective functions are considered to solve OPF problems in 

the IEEE 118-bus test system with both SCA and L-SCA. The IEEE 118-bus system comprises 

186 transmission lines, 54 generators, 64 load buses, and one slack bus (Bus 69). Additionally, 

14 buses have shunt VAR compensators, and 9 branches have tap changers. The active and 

reactive power demand on a 100 MVA base are 42.4200 p.u. and 14.3800 p.u., respectively. 

Detailed system data, including upper and lower limits on control variables and their initial 

values, can be found in the specified references: Zimmerman et al. (2006), Christie (1993), and 

PSTCA Univ of Washington (2022). To assess the performance of the L-SCA algorithm, 20 

independent trials were conducted, and the best results are presented here. 

Case-10: OPF for TFCM 

In this case, minimizing the Total Fuel Cost (TFCM) was the primary objective for the OPF 

problem, similar to Cases 1 (57-bus) and 5 (Algerian 59-bus). Table 4.12 presents the OPF 

results, including initial values and control variables. The L-SCA algorithm achieved the lowest 

fuel cost of 129256.218 $/h, outperforming other recent methods as shown in Table 4.13. Figure 

4.10 illustrates the smooth convergence of fuel cost for L-SCA, demonstrating its suitability 

for large-scale systems. The cost coefficients for all generators can be found in Zimmerman et 

al. (2006). 

Table 4.12   Optimal settings of control variables 

S. 

No. 

Control 

variables 

(p.u.) 

Initial 

value 

L-SCA for OPF S. 

No. 

Control 

variables 

(p.u.) 

Initial 

value 

L-SCA for OPF 

Case 10 Case 11 Case 12 Case 10 Case 11 Case 12 

1 PG1 0 0.1043 0.577 0.8739 68 VG32 0.963 1.0306 1.0148 1.0306 

2 PG4 0 0.005 0.0643 0.2988 69 VG34 0.984 0.9781 0.9849 1.0296 

3 PG6 0 0.0774 0.8198 0.9854 70 VG36 0.98 0.9712 1.0033 1.0321 

4 PG8 0 0.7783 0.64 0.0097 71 VG40 0.97 1.0318 1.0324 0.9974 

5 PG10 4.5 4.0902 0.4835 0.9255 72 VG42 0.985 1.0055 0.9832 0.999 

6 PG12 0.85 0.7307 1.3649 1.2713 73 VG46 1.005 0.9486 1.0139 1.017 

7 PG15 0 0.0643 0.8598 0.3272 74 VG49 1.025 1.0034 1.0025 1.0032 

8 PG18 0 0.0511 0.2266 0.8283 75 VG54 0.955 0.9675 1.017 0.994 

9 PG19 0 0.2218 0.667 0.9792 76 VG55 0.952 0.9575 0.9732 0.9942 

10 PG24 0 0.1895 0.169 0.5966 77 VG56 0.954 0.9533 1.0079 0.994 

11 PG25 2.2 1.7638 0.1555 0.2543 78 VG59 0.985 0.9404 0.9982 0.971 

12 PG26 3.14 2.7655 2.0709 0.3178 79 VG61 0.995 0.9587 1.0337 0.9861 

13 PG27 0 0 0.8262 0.6952 80 VG62 0.998 0.972 0.9803 0.9913 

14 PG31 0.07 0.0801 0.9053 0.4596 81 VG65 1.005 1.06 0.9423 1.0126 

15 PG32 0 0.4042 0.0062 0.9115 82 VG66 1.05 1.0565 1.0237 1.0052 
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16 PG34 0 0.0505 0.5381 0.9772 83 VG69 1.035 0.9441 0.9816 0.9773 

17 PG36 0 0.404 0.6492 0.848 84 VG70 0.984 0.9557 0.9743 0.9964 

18 PG40 0 0.0269 0.5607 0.986 85 VG72 0.98 0.9856 0.997 0.985 

19 PG42 0 0.6158 0.5057 0.814 86 VG73 0.991 0.9788 1.0246 0.9996 

20 PG46 0.19 0.1179 0.7048 1.1549 87 VG74 0.958 0.9512 1.0071 1.0102 

21 PG49 2.04 1.7471 2.8053 1.9784 88 VG76 0.943 1.0102 1.0184 0.9902 

22 PG54 0.48 0.4956 1.2851 1.4322 89 VG77 1.006 0.9669 0.9912 0.9854 

23 PG55 0 0.084 0.0011 0.9499 90 VG80 1.04 0.9906 1.032 0.9945 

24 PG56 0 0.1862 0.1318 0.8852 91 VG85 0.985 1.0216 1.0035 0.9919 

25 PG59 1.55 1.5056 2.2029 2.2398 92 VG87 1.015 1.0324 1.0228 0.9586 

26 PG61 1.6 1.5311 0.303 1.1057 93 VG89 1.005 0.9949 1.0091 1.004 

27 PG62 0 0.2966 0.7558 0.87 94 VG90 0.985 0.9766 0.976 1.0209 

28 PG65 3.91 3.2599 4.3585 0.701 95 VG91 0.98 0.9627 1.0419 1.0164 

29 PG66 3.92 3.357 0.686 0.6269 96 VG92 0.99 0.9631 0.9976 0.9962 

30 PG70 0 0.0124 0.2485 0.8329 97 VG99 1.01 0.9531 1.0201 0.9943 

31 PG72 0 0.128 0.6637 0.0039 98 VG100 1.017 0.9765 1.0285 1.0065 

32 PG73 0 0.3177 0 0.2536 99 VG103 1.01 0.9875 1.0031 1.0222 

33 PG74 0 0.0092 0.1828 0.8605 100 VG104 0.971 1.0032 1.018 1.0107 

34 PG76 0 0.2613 0.6353 0.9496 101 VG105 0.965 1.0182 1.0111 1.0094 

35 PG77 0 0.0069 0 0.8672 102 VG107 0.952 1.0465 0.9731 1.0032 

36 PG80 4.77 3.8098 1.6419 2.4952 103 VG110 0.973 0.9879 0.9904 1.0147 

37 PG85 0 0.1784 0.1276 0.8557 104 VG111 0.98 1.0041 0.9855 1.016 

38 PG87 0.04 0.029 0.2334 0.1383 105 VG112 0.975 0.9997 0.9453 0.9975 

39 PG89 6.07 4.4034 3.1873 1.3983 106 VG113 0.993 1.028 0.9961 1.0176 

40 PG90 0 0.0024 0.6939 0.9963 107 VG116 1.005 1.059 1.0035 1.0104 

41 PG91 0 0.0698 0.6053 0.3801 108 T5—8 0.985 0.9024 1.0305 0.961 

42 PG92 0 0.0234 0.1809 0.4331 109 T26—25 0.96 0.921 0.9847 1.0915 

43 PG99 0 0.0109 0.3573 0.6814 110 T30—17 0.96 0.9557 0.9785 0.9081 

44 PG100 2.52 2.3051 1.2205 1.4777 111 T38—37 0.935 0.9928 0.9597 0.9413 

45 PG103 0.4 0.3541 0.2488 0.1257 112 T63—59 0.96 1.0979 1.0132 1.0006 

46 PG104 0 0 0.98 0.5873 113 T64—61 0.985 1.0535 0.9811 1.067 

47 PG105 0 0.8987 0.958 0.4629 114 T65—66 0.935 0.9851 1.0243 0.9667 

48 PG107 0 0.0681 0.3496 0.5067 115 T68—69 0.935 0.9012 1.072 0.9833 

49 PG110 0 0.22 0.7612 0.698 116 T81—80 0.935 1.0454 0.9447 0.9991 

50 PG111 0.36 0.3408 0.6481 0.0646 117 QC5 0 0.2997 0.1228 0.2284 

51 PG112 0 0 0.4381 0.4671 118 QC34 0 0.0059 0.0155 0.121 

52 PG113 0 0.0569 1 0.4977 119 QC37 0 0.2582 0.1093 0.176 

53 PG116 0 0.0493 0.7561 0.0223 120 QC44 0 0.0326 0.0535 0.2978 

54 VG1 0.995 1.0267 1.0234 0.9635 121 QC45 0 0.2962 0.2701 0.0979 

55 VG4 0.998 1.0335 1.0069 0.9953 122 QC46 0 0.2801 0.1789 0.276 

56 VG6 0.99 1.0447 0.9969 0.9751 123 QC48 0 0.1804 0.0117 0.1951 

57 VG8 1.015 0.967 0.9943 0.9609 124 QC74 0 0.2549 0.049 0.07 

58 VG10 1.05 0.9933 0.9495 0.9761 125 QC79 0 0.1568 0.2999 0.1323 

59 VG12 0.99 1.0598 1.0044 0.9813 126 QC82 0 0.2761 0.271 0.2019 

60 VG15 0.97 1.0402 1.0137 1.0067 127 QC83 0 0.0403 0.2438 0.2864 

61 VG18 0.973 0.9792 0.9487 1.0208 128 QC105 0 0.0186 0.2942 0.0043 
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62 VG19 0.962 1.0153 1.0073 1.0138 129 QC107 0 0.159 0.2907 0.2997 

63 VG24 0.992 1.0276 1.0052 1.0151 130 QC110 0 0.1756 0.1542 0.2159 

64 VG25 1.05 1.06 0.9667 1.0235 
Fuel cost 

($/h) 
131220

.52 
129256.2180 

160918.4

300 

159445.5

756 

65 VG26 1.015 1.0366 0.9676 0.9732 VDM (p.u.) 1.4389 1.9412 0.5395 1.0237 

66 VG27 0.968 1.0428 1.0076 1.0249 
APLM 

(MW) 
132.81

01 
107.4547 69.4370 17.8810 

67 VG31 0.967 1.0107 1.0013 1.0263 Time (sec) - 140.0801 139.9871 142.1091 

 

Table 4.13   Comparison of L-SCA and other popular algorithms for Case 10 

Algorithm Fuel cost ($/h) 

L-SCA 1,29,256.218 

SCA 1,29,871.988 

SCM-MJ (Gupta et al. 2021b) 1,29,171.960 

M-Jaya (Gupta et al. 2021b) 1,29,248.100 

CS-GWO (Meng et al. 2021) 1,29,544.010 

MSA (Mohamed et al. 2017) 1,29,640.719 

TLBO (Bouchekara et al. 2014a) 1,29,682.844 

FPA (Mohamed et al. 2017) 1,29,688.721 

DSA (Bouchekara et al. 2014a) 1,29,691.615 

MFO (Mohamed et al. 2017) 1,29,708.082 

SKH (Pulluri et al. 2017a) 1,29,727.625 

PSOGSA (Radosavljević et al. 2015) 1,29,733.580 

KH (Pulluri et al. 2017a) 1,29,754.813 

PSO (Bouchekara et al. 2014a) 1,29,756.228 

Base Case (Radosavljević et al. 2015) 1,31,220.520 

 

 
Fig. 4.10   Fuel cost convergence characteristics for Case 10 
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Case-11: OPF for VDM 

In this scenario, the L-SCA algorithm was employed to solve the OPF problem and 

minimize voltage deviations at load buses to 1.0 p.u. on the 118-bus system. A penalty term 

was added to the objective function (Equation 3.15) to achieve this. The approach resulted in a 

significantly improved voltage profile of 0.5395 p.u., as shown in Table 4.14. 

Comparative studies are limited, as only a few case studies on improving load bus voltage 

profiles in IEEE 118-bus systems exist. 

Table 4.14   Comparison of L-SCA and other reported algorithms for Case 11 

Algorithm VDM (p.u.) 

L-SCA 0.5395 

SCA 0.6845 

M-Jaya (Gupta et al. 2021a) 0.6771 

MSCA (Attia et al. 2018) 0.995 

Base Case 1.4389 

 

Figure 4.11 compares the load bus voltage profiles of the proposed L-SCA, basic SCA, and 

baseline case. The L-SCA-generated voltage profile ensures that all load bus voltages remain 

within acceptable limits. 

 

Fig. 4.11   Load bus voltage profile for Case 11 
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Case-12: OPF for APLM 

The objective of this case study is to minimize power loss in the 118-bus network using an 

independent objective function, identical to that in Cases 4 and 8. The OPF results demonstrate 

a substantial reduction in power loss, achieving an 86.54% decrease from 132.8101 MW (base 

case) to 17.881 MW. Table 4.15 provides a comparison of numerical results between the 

proposed L-SCA and other recent methods. Additionally, power loss has decreased by 83.36% 

from 107.4547 MW in Case 10. The L-SCA method outperforms the conventional SCA, 

achieving a smoother convergence curve for power loss and more rapid attainment of the 

objective function value, as shown in Fig. 4.12. 

Table 4.15   Comparison of L-SCA and other popular algorithms for Case 12 

Algorithm APLM (MW) 

L-SCA 17.881 

SCA 22.2156 

SCM-MJ (Gupta et al. 2021b) 19.1525 

M-Jaya (Gupta et al. 2021b) 21.6419 

SKH (Pulluri et al. 2017a) 22.1397 

GWO (Meng et al. 2021) 31.77 

TLBO (Gupta et al. 2021b) 36.8482 

ICBO (Bouchekara et al. 2016b) 62.7315 

MSCA (Attia et al. 2018) 76.22 

Base Case 132.8101 

 

 

Fig. 4.12   Active power loss convergence characteristics for Case 12 
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4.6  Discussion of Findings/Statistical Analysis 

A statistical analysis was conducted to evaluate the reliability and robustness of the 

proposed L-SCA technique. Table 4.16 summarizes the statistical results of both the proposed 

L-SCA and the original SCA for solving the OPF problem. Cases 1, 4, 5, 7, 10, and 12 were 

evaluated through 20 independent trials, each with identical population size and function 

evaluations. 

The results indicate that for all considered cases (IEEE 57-bus, IEEE 118-bus, and Algerian 

59-bus systems), the best, worst, and mean values across the 20 trials are quite close, as 

evidenced by the low standard deviation (SD) in Table 4.16. This statistical study demonstrates 

the robustness of the proposed technique, which consistently achieves optimal or near-optimal 

solutions in all trials. 

This capability highlights the suitability of L-SCA for addressing both large-scale, complex 

optimization problems and practical power system challenges. 

Table 4.16   Statistical analysis of Cases 1, 4, 5, 7, 10 and 12 using the L-SCA and SCA algorithms 

Algorithm Best Worst Mean SD Best Worst Mean SD 

Case 1 (Total fuel cost) Case 7 (Voltage stability improvement) 

L-SCA 41657.6736 41663.1653 41659.8873 0.2863 0.2153 0.2155 0.2154 0.3245 

SCA 41695.2842 41696.8058 41697.2016 0.3152 0.2154 0.2157 0.2155 0.3406 

Case 4 (Active power loss) Case 10 (Total fuel cost) 

L-SCA 9.7299 9.7518 9.7437 0.0368 129256.2180 129276.0972 129263.7314 0.0318 

SCA 10.9059 11.5491 10.9912 0.0394 129871.9878 129911.0381 129892.0341 0.0339 

Case 5 (Total fuel cost) Case 12 (Active power loss) 

L-SCA 1688.4653 1693.6109 1690.3216 0.3792 17.8810 21.0853 20.9010 0.3987 

SCA 1689.4053 1695.6704 1692.1928 0.4081 22.2156 25.0912 23.3178 0.4056 

 

4.7  Conclusion 

L-SCA has proven to be a promising solution to OPF problems, outperforming other well-

known algorithms across two IEEE test systems (57-bus, 118-bus) and a real-world Algerian 

network (59-bus). Across these systems, L-SCA consistently achieved reductions in fuel costs, 

improvements in voltage profiles, enhanced voltage stability, reduced emissions, and 

minimized power loss through 12 cases. In some cases, bi-objective formulations were 

transformed into single-objective functions using the weighted sum approach. 

This chapter concludes that L-SCA surpasses the original SCA and other meta-heuristic 

algorithms in performance, demonstrating its superiority across power system networks of 

varying sizes and complexities. L-SCA's improved performance is attributed to its efficient 
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utilization of the learner phase of the TLBO algorithm, leading to faster convergence and 

avoidance of local optima, as illustrated by various convergence curves. 

Statistical analysis supports L-SCA's reliability and resilience, as demonstrated by its best, 

worst, average, and standard deviation outcomes. For instance, L-SCA yielded fuel cost values 

of 41657.6736 $/h, 1688.4653 $/h, and 129256.2180 $/h for cases 1, 5, and 10, respectively. 

These values represent a respective reduction of 18.95%, 13.13%, and 1.49% of the base case, 

with respective standard deviations of 0.2863, 0.3792, and 0.0318. 

This research has the potential to be extended to MOOPF problems and OPF challenges in 

restructured power systems under normal, severe, and contingency conditions. Furthermore, 

integrating renewable energy sources and storage devices into OPF solutions could offer 

significant technological, economic, and environmental advantages. 
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CHAPTER 5 

HYBRID RAO-2 SINE COSINE ALGORITHM FOR OPF SOLUTIONS 

5.1   Introduction 

The past decade has been marked by the increasing popularity of hybrid approaches for OPF. 

These hybrid methods strategically combine the strengths of individual algorithms, 

overcoming their limitations. These methods harness natural-inspired actions to deliver robust 

solutions for complex problems (Blum et al. 2008), specifically in the optimal design of hybrid 

power systems that combine solar PV and wind-based systems (Gusain et al. 2023). 

Additionally, such systems benefit from the use of CI-based hybrid machine learning 

approaches which enhance OPF solutions by improving accuracy and computational efficiency 

(Syed et al. 2021). Such hybridization leads to stronger algorithms with fast convergence, large 

search spaces, and computation time reduction, facilitating superior OPF solutions.  

Several researchers have contributed innovative hybrid algorithms to the field. Kumar and 

Chaturvedi (2013) introduced hybrid approaches combining fuzzy systems with Genetic 

Algorithm (GA-Fuzzy) and Particle Swarm Optimization (PSO-Fuzzy) to optimize control 

parameter settings. Narimani et al. (2013) proposed a hybrid method combining Modified PSO 

with the Shuffle Frog Leaping Algorithm (MPSO-SFLA) for Multi-Objective OPF (MOOPF). 

Mahdad and Srairi (2014) developed a DE-APSO-PS hybrid strategy for solving MOOPF 

under severe loading conditions. Radosavljević et al. (2015) presented the PSO-GSA hybrid 

algorithm, merging PSO with the Gravitational Search Algorithm, to address single-objective 

and MOOPF problems. 

Additional hybrid methods have emerged in recent years to tackle diverse OPF challenges. 

Notable examples include the hybrid DE and Harmony Search (Hybrid DE-HS) algorithm by 

Reddy (2019), the Hybrid Firefly and PSO (HFPSO) by Khan et al. (2020), and the Jaya-

Powell’s Pattern Search (Jaya-PPS) by Gupta et al. (2021a). Gupta et al. (2021b) also proposed 

the Sine-Cosine Mutation-based Modified Jaya (SCM-MJ) algorithm. Other significant 

contributions include the FAHSPSO-DE algorithm by Naderi et al. (2021), the Hybrid Fruit 

Fly-based ABC (HFABC) algorithm by Mallala et al. (2022), the Hybrid JAYA Bird Swarm 

Algorithm (HJBSA) by Aurangzeb et al. (2023), and the Hybrid Sine Cosine-GWO (HSC-

GWO) by Keswani et al. (2023). 

The success of hybrid approaches in OPF is evident in their ability to solve complex, large-

scale optimization problems efficiently. By combining complementary algorithmic strengths, 

these methods provide advanced tools for tackling the diverse challenges of OPF, including 
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cost minimization, stability enhancement, and power loss reduction, while adapting seamlessly 

to evolving system demands. 

In emergency scenarios, it is often necessary to shed segments of the load to preserve 

overall system stability and prevent widespread blackouts caused by voltage instability in 

stressed power systems. Voltage instability risks are heightened during network topology 

changes or when transmission lines are overloaded. Studies have revealed that voltage 

instability is the leading cause of major power blackouts globally, with overloaded transmission 

systems frequently acting as the catalyst (Alhelou et al. 2019). Over the past decade, numerous 

blackout reports have identified cascading grid failures stemming from voltage instability as a 

critical issue. 

To mitigate these challenges and augment the capacity of power systems to handle peak 

demands without overloading, hybrid optimization techniques have emerged as effective 

solutions to improve system loadability. For example, Gnanambal and Babulal (2012) proposed 

a hybrid approach that combines DE and PSO (i.e. DEPSO) to enhance the loadability limit of 

power systems. Similarly, Mahdad and Srairi (2015) introduced the Grey Wolf-Pattern Search 

optimizer (GW-PS), which accounts for load margin stability and generator faults, ensuring 

system security under critical conditions on the IEEE 30-bus network. In Taher et al. (2021), a 

method combining Improved MFO (IMFO) with Continuation Power Flow (CPF) was 

employed to optimize power system loadability and minimize load shedding during 

emergencies, utilizing shunt FACTS devices. Additionally, Taher et al. (2022) presented an 

approach for maximizing system loadability by strategically placing and configuring FACTS 

devices through the IMFO algorithm while simultaneously optimizing multiple OPF 

objectives. 

These advanced hybrid techniques play a pivotal role in improving system loadability, 

reducing voltage instability risks, and ensuring grid resilience under extreme conditions. By 

incorporating strategies that enhance stability and optimize power flow, they significantly 

contribute to minimizing the impact of emergencies on power systems. 

This chapter introduces a novel hybrid optimization technique, termed HRSCA, developed 

to address OPF challenges in power systems, particularly under scenarios of high loading and 

unforeseen generator outages. The study examines two critical events: the system operating at 

its load stability limit and contingencies involving generator outages. The simulations were 

conducted using MATLAB R2018a, enabling a comprehensive evaluation of the proposed 

algorithm. Extensive testing and validation on various power system networks highlight the 

effectiveness of HRSCA in enhancing security-oriented OPF solutions. The algorithm 
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demonstrates robust performance in optimizing power flow schemes (OPFS) across networks 

of different sizes and under diverse operational conditions.  

5.2   Mathematical Formulation of the OPF Problem 

The OPF problem formulation fundamentally involves defining specific objectives within 

a set of constraints. Solving the OPF problem requires adjusting certain power system 

parameters, known as control variables (CVs), to achieve an optimal system configuration that 

meets a predefined objective function. The optimized state of the power system is governed by 

the state variables (SVs). Power system operation must adhere to two types of constraints: 

equality constraints, represented by power balance equations, and inequality constraints, which 

define the limits on controllable quantities and the operating boundaries of the power system. 

The standard objective function is described in Equation (5.1), while the operating constraints 

of the OPF problem chosen for this work are described in Equations (5.2–5.3) (Bouchekara et 

al. 2014a). 

Min:   min ( , )Z x u                                                               (5.1) 

Subject to the constraints 

;  1,  2,  3( , ) 0 , ,                                                                     eig x u i N= =                        (5.2) 

and,  ;  1,  2,  3, ,                                         ( , ) 0                        ej ih u Nx j =             (5.3) 

The objective function, minZ , is intricately linked to both the SVs, denoted by x , and the CVs, 

represented by u . As shown above, ig  represents the ith equality constraints imposed by non-

linear load flow equations and jh denotes jth inequality constraints that pertain to the 

operational limits of the physical components within the system. Here, 
eN  denotes the total 

number of equality constraints, while 
ieN  denotes the total count of inequality constraints. The 

state vector, i.e., the vector of dependent variables, is given by Equation (5.4) as follows: 

1 1 1, 1 ,[ , .... ...... ,....., ]
NPQ NG NL

T

G L L G G line linex P V V Q Q S S=                                              (5.4) 

Similarly, Equation (5.5) specifies the control variables vector, consisting of adjustable 

variables optimized for the power flow scheme: 

2 1 1, , 1[ .... , .... ...... ..... ]
NG NG NC

T

G G G G C C NTu P P V V Q Q T T=                           (5.5) 

5.2.1   Objectives Functions 

The objective functions addressed in the present work encompass five distinct objectives, each 

mathematically represented as follows: 

a) Fuel cost minimization (FCM) 
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The fuel cost function is the most fundamental function of OPF and has been extensively 

studied in the literature. Fuel cost ($/h) and the power generated (MW) have an approximate 

quadratic relationship as follows (Yuryevich and Wong, 1999): 

2

1

Z ( , )    $( / )
i i

NG

FCM i i G i G

i

x hu a b P c P
=

 
= + + 

 
                (5.6) 

here the Z ( , )FCM x u  is the overall fuel cost function expressed in $ / h . 

b) Minimization of a Combined Voltage Deviation and Cost 

The second most essential objective function of OPF aims at reducing load bus voltage 

deviation (VD) from the standard reference of 1.0 per unit (p.u.). This is essential for 

maintaining power system stability and ensuring the quality of power supply to consumers. 

In most cases, the fuel cost function is combined with the voltage profile enhancement to 

form a combined objective function as given in Equation (5.7). 

2

1 1

Z ( , ) 1.0
i i i

NPQNG

VDM i i G i G vd L

i i

x u a b P c P K V
= =

 
= + + + − 

 
                           (5.7) 

where, vdK is assigned an appropriate value based on user experience and depending on the 

relative importance of minimizing voltage deviation compared to minimizing fuel cost. 

c) Minimization of a Combined Voltage Stability Index (VSI) and Cost 

The stability of an electrical power system network is characterized by ensuring that all 

bus voltages remain within permissible ranges both during normal operation and in the event 

of a disturbance. Power systems with high load demands and extensive transmission networks 

are particularly vulnerable to voltage instability.  

Improving voltage stability requires lowering the L-index of all buses. The L-index, 

defined within a bounded interval of [0, 1], serves as a reliable stability indicator. A value of 

‘0’ indicates an unloaded condition, while a value of ‘1’ signifies voltage collapse (Kessel and 

Glavitsch, 1986).  

Mathematically, the objective of VSI, i.e., L-index minimization, can be defined using the 

two-fold objective combining fuel cost with voltage stability as follows in Equation (5.8): 

( )( )2

1

Z ( , ) max
i i

NG

VSI i i G i G vs j

i

x u a b P c P K L
=

 
= + + + 

 
               (5.8) 

where, vsK is assigned an appropriate value based on user experience and depending on the 

relative importance of voltage stability compared to fuel cost. The L-index of any jth load bus 

is denoted by jL and is defined by Equation (5.9). 



 

72 
 

( )11         1,  2,  ......,  ;       *

NG

ji i

i
j ji jj ji

j

W V

L where j NPQ W inv Y Y
V

=    = − = = −   


        (5.9) 

d) Power Loss Minimization (PLM) 

The objective here is to minimize the total active power loss lossesP  in the power system. 

Equation (5.10) calculates the difference between the total power generated by all the 

generators in the system and the total power consumed by all the loads. A positive value 

indicates a power loss in the system, which is undesirable. 

1 1 1

         MW
i i i

NB NB NB

losses G D

i i i

P P P P
= = =

= = −                           (5.10) 

Equation (5.11) typically represents the function for minimization of transmission loss in 

a power system which is a nonlinear function of bus voltage magnitudes: 

( ) 2 2

1

( , ) min [ 2 ]    MW
i j

NL

PLM losses L i j i j ij

L

Z x u P G V V VV Cos
−

=

= = + −                  (5.11) 

e) Emission Cost Minimization (ECM) 

Minimizing the emission of harmful gases from thermal power plants is an important 

objective in OPF, as it reduces environmental impact. The emission cost is generally 

associated with the active power output of the generators. 

Equation (5.12) defines the emission cost as a function of the active power output of the 

ith generator measured in MW: 

2

1

Emission( , ) ( exp( )     (ton / )
i i i

NG

ECM i i G i G i i G

i

Z x u P P P h    
=

= = + + +                            (5.12) 

where i , i , i , i  and i  are the emission coefficient of ith generator. 

5.2.2   Constraints: 

a) Equality constraints 

The equality constraints represent the conventional power flow equations that ensure the 

balance between active and reactive power flows in the system. These constraints are 

mathematically described by Equations (5.13) and (5.14) as follows: 

1 1
i i

NB NB

losses G D

i i

P P P
= =

= −                                                 (5.13) 
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1 1
i i

NB NB

losses G D

i i

Q Q Q
= =

= −                           (5.14) 

b) Inequality constraints 

The inequality constraints set the limits for adjustable variables and operational thresholds 

in the power system. These thresholds cover voltage levels at generator and load buses, active 

and reactive power outputs from generators, transformer tap changer settings, and restrictions 

on compensating reactive power. The inequality constraints are detailed in Equations (5.15-

5.21): 

Each generator unit's active power, reactive power, and voltage magnitude are constrained 

by upper and lower bounds as follows: 

min max       1,2,....,
i i iG G GP P P i NG  =                                    (5.15) 

min max        1,2,....,
i i iG G GV V V i NG  =                         (5.16) 

min max       1,2,.....,
i i iG G GQ Q Q i NG  =               (5.17) 

Every regulating transformer tap has lower and upper limits for discrete tap settings as: 

min max              1,2,....,i i iT T T i NT  =                        (5.18) 

Every reactive power compensator injects reactive power (i.e., shunt VAR compensation) 

within discrete lower and upper limits as: 
min max      1,2,....,

i i iC C CQ Q Q i NC  =                         (5.19) 

The transmission line power flow capacity (upper limit), and the upper and lower limits of 

load bus voltage are categorized under system security constraints and are described as 

follows: 

max                  1,2,....,
i iline lineS S i NL =                       (5.20) 

   

min max       1,2,....,
i i iL L LV V V i NPQ  =                       (5.21) 

By carefully considering and incorporating these constraints into the OPF problem, we can 

ensure the safe, reliable, and efficient operation of the power system. These constraints are 

typically imposed through quadratic penalty terms in the objective function, utilizing a 

penalty factor approach. Therefore, the Equation (5.1) can be augmented as; 

min ( , )augZ Z x u penalty= +                                      (5.22) 
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1 1

lim 2 lim 2 lim 2

1 2 3

1 1

lim 2

4

1

where,     ( ) ( ) ( )

                            (S )

i i i i

i i

NPQ NG

G G L L G G

i i

NL

line line

i

penalty P P V V Q Q

S

  



= =

=

= − + − + −

+ −

 


        (5.23) 

In Equation (5.23), 1 , 2 , 3 and 4 denote penalty factors. If the limit value of dependent 

variable upon violation is denoted by 
limx then it can be conveniently expressed as per Equation 

(5.24):  

max

max

max

lim

min

) 

  )

; (

 ; (

x x
x

x

x

xx
=

 



                (5.24) 

5.3   Proposed Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) Methodology  

The Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) is introduced as a novel optimization 

technique designed to address critical OPF challenges in power systems, particularly under 

conditions of high loading and unforeseen generator outages. The algorithm is tailored to 

handle two key scenarios: systems reaching their load stability limits and generator outage 

contingencies. By integrating the strengths of the Sine Cosine Algorithm (SCA) and Rao-2, 

HRSCA provides a robust solution that enhances both exploration and exploitation capabilities, 

ensuring efficient and secure power system operation. 

The hybridization of SCA and Rao-2 allows HRSCA to utilize SCA’s strong global 

exploration ability, which prevents getting trapped in local optima, while employing Rao-2’s 

rapid convergence and refined local search capabilities. This combination dynamically 

balances exploration and exploitation, enabling diverse and optimal solutions that meet OPF 

problem constraints effectively and efficiently. 

HRSCA has demonstrated exceptional performance in both SOOPF and MOOPF scenarios. 

Extensive testing and validation on the IEEE 30-bus and IEEE 118-bus standard test systems 

reveal that the algorithm consistently delivers superior or comparable results to existing 

optimization methods documented in the literature. Key objectives addressed by HRSCA 

include FCM, VDM, PLM, ECM, and VSI, within both single and bi-objective frameworks. 

5.3.1 Overview of Sine Cosine Algorithm (SCA) 

The introduction of SCA by Mirjalili has generated significant interest among researchers, 

leading to its extensive application across various fields to tackle optimization problems 
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(Mirjalili, 2016). SCA and its variants have been widely used in diverse applications, including 

feature selection for machine learning (Sindhu et al. 2017; Belazzoug et al. 2020), solving 

global engineering optimization problems (Abd Elaziz et al. 2017), sizing distributed 

generators to meet load demands in AC distribution systems (Montoya et al. 2020), addressing 

single and multi-objective OPF problems (Attia et al. 2018; Gupta et al. 2021b; Karimulla and 

Ravi, 2021), and enhancing loading margin stability in security OPF during contingencies. 

A comprehensive overview of SCA is provided in Chapter 4, Section 4.2.1. As discussed 

therein, SCA employs sine and cosine functions through a movement mechanism to reposition 

search agents within the solution space. Each agent's position update is influenced by the best 

solution found thus far and is determined by specific mathematical expressions, detailed in 

Equation (5.25): 

( )

( )

, 1 2 3 , 4
1

,

, 1 2 3 , 4

0.5sin      ;  

cos      ;  0

 

.5

j

j

t t t

j k best j k
t

j k
t t t

j k best j k

x R R R P x R
x

x R R R P x R

+

 +   −


= 
+   − 






            (5.25) 

where, ,

t

j kx represents the position of the current solution at tht iteration in jth dimension (j = 

1,2…,n), with “n” being the number of design variables and
j

t

bestP is the position of the best 

solution (target point) at tht iteration in jth dimension. Additionally, the variables 1R , 2R , 3R , 

and 4R  are Gaussian-distributed random variables used in the algorithm to prevent getting 

stuck in local optima. In the updating process, 1R  dynamically guides solution movement, 

initiating with a higher influence for broad search and gradually reducing for targeted 

exploitation as optimization progresses. The fine tuning of 1R  during search process is carried 

out using Equation (5.26) as: 

1 max /R a t a t= −                                                (5.26) 

where, t  represents the current iteration number, maxt  denotes the maximum number of 

iterations, and ‘a’ is a user defined constant. The parameter 2R ϵ [0, 2π] determines the step size 

for exploring the search space, and parameter 3R ϵ [0, 1] provides random weight to
jbestP . The 

algorithm alternates between the cosine and sine components of Equation (5.25) with equal 

probability, which is controlled by the variable 4R  that ranges from [0-1]. 

Despite its success in various optimization tasks, SCA suffers from drawbacks such as slow 

convergence rates and restricted local search abilities. Researchers have responded to these 
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challenges by creating modified and hybrid versions of SCA tailored for real-world 

applications, as previously mentioned. Expanding on these enhancements, the authors of this 

study propose a new hybrid approach that combines SCA with another strategically selected 

algorithm. The goal is to overcome existing limitations and improve overall performance. 

5.3.2 Overview of Rao-2 Algorithm 

In 2020, a new set of algorithms known as Rao-1, Rao-2, and Rao-3 was introduced and 

evaluated using 23 benchmark functions, as detailed in Rao (2020). One major advantage of 

these advanced Rao variants is their metaphor-free design, which frees them from the 

complexities of problem-dependent control parameters. This eliminates the need for parameter 

tuning, requiring only basic parameters such as population size and iteration count. 

Additionally, these algorithms demonstrate a notably fast convergence rate. The Rao 

algorithms operate by identifying the best and worst solutions found during the optimization 

process and enabling random interactions among potential solutions. The Rao algorithms and 

their various adaptations have been widely used to tackle a variety of optimization problems, 

including the optimal design of mechanical components (Rao and Pawar, 2020), determining 

the optimal parameters of renewable energy systems by Rao et al. 2023, optimal load frequency 

regulation in hybrid power grids by Khamies et al. 2021, solving the traveling salesman 

problem (TSP) by Nikum (2021), and addressing OPF problems (Gupta et al. 2021c; Hassan 

et al. 2021). In our OPF study, we integrated the Rao-2 algorithm within a hybrid approach, 

selecting it for its strong feature of high convergence rate and lack of reliance on any solver-

specific parameters, thus enhancing the efficiency of the optimization process.  

The Rao-2 algorithm employs a search strategy that explores the solution space by utilizing 

both the best and worst solutions and incorporates stochastic interactions among the 

population's elements, as outlined in the model presented in Equation (5.27): 

( )1

, , 1 2 , , , ,    
j j

t t t t t t t t t t

j k j k j best worst j j k j d j d j kx x r P P r x or x x or x+ = +  − +  −                 (5.27) 

where ,

t

j kx  denotes the jth variable value (where j =1,2,…,n) for the kth candidate solution 

(where k= 1,2,...,m) after the tth iteration, with “n” being the number of design variables and 

“m” being the population size. 
1

,

t

j kx +  denotes the updated value of the jth variable in the next 

iteration. The best and worst candidate solutions at tth iteration are represented by 
j

t

bestP  and  

j

t

worstP respectively. Here, 1

t

jr and 2

t

jr are the random numbers within [0, 1], generated for the 

jth variable during the tth iteration. In Equation (5.27), the second term on the right-hand side 
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guides the candidate solution based on the interaction between the best and worst solutions, 

ensuring convergence toward promising regions of the solution space. The third term is 

indicative of random interaction between the presently considered kth solution and a randomly 

picked dth solution. The term “ , ,  t t

j k j dx or x ” in Equation (5.27) compares fitness values of the 

current solution and randomly selected search agent. If the fitness value of the kth candidate 

solution is better than that of the dth candidate, the term “ , ,  t t

j k j dx or x ” evaluates to ,

t

j kx , and in 

that case, “ , ,  t t

j d j kx or x ” becomes ,

t

j dx . Similarly, if the fitness value of the dth candidate 

solution is better than that of the kth candidate solution, the term “ , ,  t t

j k j dx or x ” evaluates to  

,

t

j dx , and in such condition,  “ , ,  t t

j d j kx or x ” evaluates to ,

t

j kx .  

While Rao-2's interaction term promotes both exploration (diversifying search capability) 

and exploitation (local search capability), the algorithm may still fall into local optima due to 

limited knowledge exchange, weak exploration ability, and minimal use of valuable 

information gained during the search process. These shortcomings have led to hybridizing Rao-

2 with another algorithm to improve both its exploration and exploitation capabilities. 

5.3.3 Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) 

The Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) is an innovative straightforward 

approach that merges the strengths of the SCA and Rao-2 algorithms to optimize their 

performance and address their limitations. The SCA provides extensive exploration capabilities 

to prevent early convergence to local optima, while the Rao-2 algorithm boosts convergence 

speed and improves the effectiveness of local searches. 

In this hybrid approach, each search agent can choose between SCA movements or Rao-2 

update procedures to update its position, based on conditions specified in Equation (5.28). 
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 = +  − +  − 


   (5.28) 

The equation set indicates that the proposed hybrid strategy follows a straightforward 

structure by adjusting its search strategy based on the value of 4R . For lower values of 4R  (0 

≤ 4R  ≤ 0.35), the algorithm explores a broader range of potential solutions by utilizing the 

sine-based update mechanism. For moderate values (0.35 < 4R  ≤ 0.7), the cosine-based update 
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mechanism is activated. Cosine-based updates maintain exploratory behaviour while gradually 

introducing exploitation characteristics, targeting promising regions of the search space with a 

balanced approach. Higher values (0.7 < 4R  ≤ 1.0) signify intensified exploitation, where the 

Rao-2 mechanism takes over to refine the already-discovered promising areas through 

intensified search, thereby improving convergence speed. HRSCA iteratively evaluates and 

updates solutions based on best and worst candidates, reducing the risk of suboptimal 

convergence and sustaining an effective exploration-exploitation balance throughout the 

optimization process. Figure 5.1 presents a graphical framework that demonstrates the 

application and process flow of the proposed HRSCA-based scheme in this study.  

 

Fig. 5.1   Graphical framework for HRSCA based OPF scheme for diverse scenarios 

5.3.4 Computation Steps for HRSCA and Flowchart 

Table 5.1 provides a clear and structured presentation of the implementation steps involved 

in the proposed HRSCA approach, outlining the detailed computational procedure for solving 

the OPF problem. 
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Table 5.1   Steps in HRSCA 

HRSCA 

INPUT • Problem dimension, n 

 • Population size, m 

 • Stopping criteria: Maximum number of iterations, tmax 

 • Upper and lower bounds of decision variables, [xmin, xmax]. 

INITIALIZATION • Set iteration counter, t = 0. 

 • Randomly initialize the population of m search agents within bounds [xmin, xmax]. 

 • Identify the best ( bestP ) and worst (
worstP ) solutions in the initial population based on the 

objective function. 

EVALUATION • Compute the fitness value for each search agent using the objective function specified in 

Equation (5.22). 

 • Fitness evaluation integrates sine-cosine updates for global adjustments and Rao-2's 

stochastic interactions for refined local search. 

 • Update bestP and 
worstP  solutions in the population. 

 • Check constraint satisfaction and handle violations, if applicable. 

ALGORITHM LOOP: 

STEP-1 • Generate a random number R4 ϵ [0,1], which serves as the random switching parameter. 

 • Update each search agent's position using R4 to determine the transition between 

exploration and exploitation phases. 

STEP-2 • The hybrid mechanism uses R4 to decide whether to follow SCA or Rao-2 for position 

updates: 

 • If 0 ≤ R4 ≤ 0.35: Apply the sine-based update, 

( )1

, , 1 2 3 ,sin     
j

t t t t

j k j k best j kx x R R R P x+ = +   −  

(Sine-based update prevents premature convergence to local optima) 

 • If 0.35 < R4 ≤ 0.7: Apply the cosine-based update, 

( )1

, , 1 2 3 ,cos   
j

t t t t

j k j k best j kx x R R R P x+ = +   −  

(Cosine-based update targets promising areas of search space while maintaining diversity) 

 • If 0.7 < R4 ≤ 1.0: Use Rao-2-based stochastic updates for refining local search,  

( )1

, , 1 2 , , , ,       
j j

t t t t t t t t t t

j k j k j best worst j j k j d j d j kx x r P P r x or x x or x+ = +  − +  −  

(Rao-2 update intensifies local search by refining solutions near the best-known candidates) 

STEP-3 • Compute the objective function value for each updated solution. 

 • Compare the kth candidate solution with a randomly chosen dth candidate: 

• If: 
, , ,( ) ( ),  (   )t t t t t

k d j k j d j kZ x Z x x or x x→  

• Otherwise: , , ,(   )t t t

j k j d j dx or x x→  

 
• Compare the updated solution 

1

,

t

j kx +
 with its current solution ,

t

j kx : 

• If: 1

, ,( ) ( )t t

j k j kZZ x x+  : Update the solution by replacing the current one. 

• Otherwise: Retain the existing solution. 

STEP-4 • Check the termination condition: 

 • If t ≥ tmax: Stop the algorithm and return the best solution. 

 • If t < tmax: Increment the iteration counter (t = t +1) and return to STEP-1. 
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With this hybrid approach, search agents dynamically switch between two optimization 

algorithms, guided by a stochastic process. This strategy utilizes the SCA's extensive 

exploration capabilities, helping to avoid early convergence to local optima. At the same time, 

the Rao-2 algorithm, with its efficient local search abilities, enhances convergence speed 

toward the best solutions. This hybrid mechanism balances exploring the search space through 

SCA movements and refining the best solutions identified by the population via the focused 

exploitation of the Rao-2 algorithm. 

The flowchart illustrating the proposed HRSCA is shown in Fig. 5.2. 
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Fig. 5.2   Proposed HRSCA algorithm flow chart 
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The implementation of this hybridized approach enables search agents to dynamically 

switch between the two optimization algorithms, guided by a stochastic process. The SCA 

enhances exploration, preventing premature convergence, while Rao-2 improves local search 

efficiency, accelerating convergence to optimal solutions. This synergy balances exploration 

via SCA and exploitation through Rao-2, refining the search process. The proposed HRSCA 

operates with parameters detailed in Table 5.2. The "No Free Lunch" theorem, established by 

Wolpert and Macready (1997), highlights the limitations of any single optimization method 

and the importance of tailored algorithms for specific challenges. This makes the hybrid SCA-

Rao-2 approach a valuable tool for addressing the OPF problem effectively. 

Table 5.2   Parameter settings for HRSCA in the current study 

Parameter Value Component Description 

Population size (m) 30 Shared 
Number of candidate solutions in the 

population. 

Maximum iterations (tmax) 
100 (30-bus),  

150 (118-bus) 
Shared 

Maximum number of optimization 

steps. 

Random coefficients 

(r1, r2) 
[0, 1] Rao-2 

Random numbers for diversity in 

solution updates. 

Switching parameter (R4) [0, 1] SCA 
Switches transition between sine and 

cosine components. 

Control parameter (R1) 1 max  /R a t a t= −   SCA 

Dynamically guides solution movement 

based on iteration progress, with a = 2 

(user defined) 

Step size (R2) [0, 2π] SCA 
Parameter for exploring the search 

space. 

Weight coefficient (R3) [0, 1] SCA 
Random weight assigned to the best 

solution. 

 

5.4 Simulation Results and Analysis 

The HRSCA was rigorously tested through power system simulations, validating its 

effectiveness in security OPF across different network sizes and operating scenarios. Two 

electrical grids were analysed: the IEEE 30-bus network (cases 1-8) and the 118-bus network 

(cases 9-12), with key characteristics summarized in Table A.1 (Appendix). For both the 30-

bus and 118-bus networks, the best results were achieved using a population size (m) of 30, 

setting the iteration limits (tmax) to 100 and 150, respectively (Table 5.2). The simulations were 

carried out using MATLAB R2018a on a system equipped with a 10th Gen Intel Core i7 

processor, 8.0 GB RAM, and a clock speed of 1.7 GHz. Each case study involved 30 successful 

trials for both test systems, ensuring the robustness of results across multiple trials. The best 

results from these 30 trials are presented here. Simulations have revealed that HRSCA 
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consistently outperforms contemporary OPF algorithms, proving its reliability in handling load 

growth and unforeseen disruptions in real-world power system operations 

5.4.1 Performance on IEEE 30-Bus Test System 

The initial standard test system selected for this study has the following features: it consists 

of six thermal generating units located at buses 1, 2, 5, 8, 11, and 13, with an active power 

demand of 283.4 MW and reactive loading of 126.2 MVAR. Additionally, the system includes 

four transformers with a ±10% tapping range located on lines 6-9, 6-10, 4-12, and 28-27. 

Furthermore, nine shunt VAR compensators are positioned at buses 10, 12, 15, 17, 20, 21, 23, 

24, and 29 (Lee and Park, 1985). Table 5.3 provides the minimum and maximum permissible 

values for generator unit parameters, along with their respective fuel cost coefficients. 

Table 5.3   Allowable generator unit parameters and fuel cost coefficients for IEEE 30-bus test system 

Bus 

No. 

Pmin 

(MW) 

Pmax 

(MW) 

Qmin 

(MVAR) 

Qmax 

(MVAR) 
a ($/h) b ($/h-MW) c ($/h-MW2) 

1 50 200 -20 200 0 2 0.00375 

2 20 80 -20 100 0 1.75 0.01750 

5 15 50 -15 80 0 1 0.06250 

8 10 35 -15 60 0 3.25 0.00830 

11 10 30 -10 50 0 3 0.02500 

13 12 40 -15 60 0 3 0.02500 

Additionally, load data, line data, and bus data for the 30-bus system on a 100 MVA base 

are available in (Abou El Ela et al. 2010). The lower and upper bounds of the control variables 

(CVs) are depicted in Table 5.4 for Cases 1-5. 

5.4.1.1 Scenario-1: Standard OPF 

This scenario involves a standard OPF analysis on a 30-bus power system test case. For 

this scenario, five distinct single and multi-objective cases have been analyzed. These cases 

aim to minimize parameters including total fuel cost, total voltage deviation, total active power 

losses, emissions, and the stability index (L-index). The primary intent of this scenario is to 

contrast the outcomes derived from the proposed strategy under standard operational conditions 

with the outcomes yielded by recently developed optimization techniques. The five cases 

considered are: 

Case 1:  Fuel Cost Minimization (FCM) 
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Case 2:  Voltage Deviation Minimization considering Fuel Cost (VDMFC) 

Case 3:  Voltage Stability Improvement considering Fuel Cost (VSIFC) 

Case 4: (a) Power Loss Minimization (PLM) 

 (b) Power Loss Minimization considering Fuel Cost (PLMFC) 

Case 5:  Emission Cost Minimization (ECM)  

Case-1 FCM 

The proposed HRSCA technique was applied to Case 1, which focuses on minimizing basic 

fuel cost (FCM objective). Table 5.4 displays the optimal settings and their associated objective 

function values. The decision variables (PG, VG, QC and T) are defined as per Equation (5.5). 

The basic FCM objective is given by Equation (5.6). 

The total fuel cost (FC) was reduced to 799.1617 $/h, reflecting a significant 11.4% 

reduction compared to the base case (initial case). Additionally, the voltage deviation (VD) and 

active power loss 
lossesP were minimized to 1.7309 p.u. and 8.6451 MW, respectively. These 

results surpass the performance of several algorithms reported in the literature, including SCA 

(800.1018 $/h) by Attia et al. (2018), MSCA (799.31 $/h) by Attia et al. (2018), MGOA 

(800.4744 $/h) by Taher et al. (2019b), GOA (800.7806 $/h) by Taher et al. (2019b), TLBO 

(800.6108 $/h) by Taher et al. (2019b), PSO (800.5912 $/h) by Taher et al. (2019b), CS-GWO 

(799.9978 $/h) by Meng et al. (2021), AMTPG-Jaya (800.1946 $/h) by Warid (2020), Chaotic 

Rao-2 (800.1537 $/h) by Warid (2022), and Partitioned ALO i.e. PALO (799.9160 $/h) by 

Mahdad (2020). 

While the Jaya optimizer in El-Sattar et al. (2019) achieved a slightly better FC value 

(798.9386 $/h), it required 200 iterations to do so, with a less favourable VD value of 2.01 p.u. 

Similarly, other competitive algorithms, such as MSCA, required more than 400 iterations, and 

PALO needed 200 iterations to achieve their respective optimized values. In contrast, the 

proposed method achieved rapid convergence within 100 iterations in approximately 92 s. 

Figure 5.3 illustrates the trend of reducing the total fuel cost using the proposed hybrid 

approach compared to Rao-2 and SCA. 
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Table 5.4   Optimized control variables obtained by HRSCA for IEEE 30-bus test system 

CVs (p.u.) Min Max Base case Case 1 Case 2 Case 3 
Case 4 

Case 5 
(a) (b) 

PG2 20 80 80 0.4869 0.4892 0.4874 0.6626 0.5539 0.6637 

PG5 15 50 50 0.2136 0.2164 0.2182 0.5 0.3788 0.5 

PG8 10 35 20 0.2105 0.2208 0.2373 0.35 0.35 0.35 

PG11 10 30 20 0.1193 0.124 0.1338 0.3 0.2999 0.3 

PG13 12 40 20 0.12 0.12 0.12 0.4 0.2604 0.4 

VG1 0.95 1.1 1.05 1.1 1.0434 1.1 1.1 1.0799 1.1 

VG2 0.95 1.1 1.04 1.088 1.0287 1.1 1.0959 1.0687 1.1 

VG5 0.95 1.1 1.01 1.0624 1.0168 1.1 1.079 1.0451 1.0821 

VG8 0.95 1.1 1.01 1.0703 1.0779 1.1 1.085 1.054 1.0906 

VG11 0.95 1.1 1.05 1.1 0.9999 1.1 1.1 1.0999 1.1 

VG13 0.95 1.1 1.05 1.1 0.9955 1.0996 1.098 1.0591 1.0999 

TS11 0.9 1.1 1.078 1.0664 1.0161 0.9827 1.05 1.0773 1.0999 

TS12 0.9 1.1 1.069 0.9 0.9 1.0873 0.95 0.9028 0.9 

TS15 0.9 1.1 1.032 1.0001 0.9379 1.09 1.02 0.9859 1.02 

TS36 0.9 1.1 1.068 0.9735 0.9685 0.981 1.003 0.9763 0.9943 

Qc10 0 5 0 0.05 0.05 0.05 0.05 0.0075 0 

Qc12 0 5 0 0.05 0 0.05 0.05 0.0453 0.0471 

Qc15 0 5 0 0.05 0.05 0.05 0.05 0.0492 0.0485 

Qc17 0 5 0 0.05 0 0.05 0.05 0.05 0 

Qc20 0 5 0 0.05 0.05 0.05 0.05 0.0428 0.05 

Qc21 0 5 0 0.05 0.05 0.05 0.05 0.0499 0.0497 

Qc23 0 5 0 0.0392 0.05 0.05 0.0415 0.0301 0.05 

Qc24 0 5 0 0.05 0.05 0.05 0.05 0.0499 0.05 

Qc29 0 5 0 0.0333 0.0264 0.05 0.0305 0.0288 0.0253 

FCM ($/h) - - 902.0046 799.1617 803.4166 800.8527 941.8419 857.2174 942.0814 

VDM (p.u.) - - 1.1601 1.7309 0.0959 1.7544 1.6891 1.1502 1.6734 

VSI (p.u.)   0.1772 0.121 0.1412 0.118 0.1234 0.1282 0.1242 

PLM (MW) - - 5.8423 8.6451 10.0268 8.7055 3.0589 4.5259 3.0852 

ECM (ton/h) - - 0.2359 0.3347 0.3332 0.3258 0.2037 0.2263 0.2036 

Total Load 

(MW) 
  283.4 283.4 283.4 283.4 283.4 283.4 283.4 

Load Factor 

(LMS) p.u. 
  1 1 1 1 1 1 1 
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Fig. 5.3   Convergence curves in Case 1 with HRSCA, Rao-2, and SCA 

Case 2: VDMFC 

This case focuses on minimizing the total voltage deviation (VDM) while simultaneously 

optimizing the fuel cost (FC), as defined by Equation (5.7). The weighted sum method was 

employed to combine these objectives. The proposed HRSCA achieves a VD of 0.0959 p.u., 

representing a substantial reduction of 91.7% compared to the initial case (1.1601 p.u.). The 

corresponding fuel cost was 803.4166 $/h, with an associated power loss of 10.0268 MW.  

When compared to Case 1, the fuel cost increased slightly by 0.53%, while the VD value 

decreased significantly by 94.45%, demonstrating a strong trade-off between cost and voltage 

profile improvement. The proposed technique outperformed results from recent literature, 

including methods such as SCA (0.1082 p.u., 843.604 $/h) in Attia et al. (2018), GA 

(0.1257 p.u., 803.9156 $/h) in Taher et al. (2019b), TLBO (0.1087 p.u., 804.5827 $/h) in Taher 

et al. (2019b), PALO (0.1117 p.u., 850.2739 $/h) in Mahdad (2020), and various Rao variants 

by Gupta et al. (2021c). 

Although IAOA by Akdag (2022) achieved a marginally better VD value (0.0953 p.u.), it 

yielded a higher FC value (803.57 $/h) and required 400 iterations, leading to increased 

computational burden. Similarly, methods like ISCA by Mahdad and Srairi (2018) and 

IMOMRFO by in Kahraman et al. (2022) achieved slightly better FC values than HRSCA 

(802.3510 $/h and 801.3908 $/h, respectively); however, their VD values were significantly 

higher, highlighting their limitations in maintaining an optimal voltage profile. 
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Figure 5.4 illustrates the voltage profile, showing the distribution of voltage magnitudes at 

all load buses. The proposed HRSCA demonstrates consistently stable voltage magnitudes 

close to 1.0 p.u., outperforming the Rao-2 algorithm in maintaining an improved voltage 

profile. The CV settings are presented in Table 5.4. 

 

Fig. 5.4   Comparison of voltage profiles in Case 2 using HRSCA and Rao-2 algorithms 

Case 3: VSIFC 

This case focuses on minimizing the voltage stability index (L-index), as defined by 

Equation (5.8), while simultaneously addressing FCM and VSI objectives to form a bi-

objective function. The proposed HRSCA approach was applied, and the results, along with 

the CV settings, are presented in Table 5.4. 

The achieved L-index value of 0.118 p.u. represents a significant 33.4% reduction 

compared to the base case (0.1772 p.u.). The corresponding fuel cost is 800.8527 $/h, reflecting 

an improvement of 11.2% over the base case. These results outperform those achieved by 

various optimization methods documented in the literature, including MSA by Mohamed et al. 

(2017), and MFO, PSO, and TLBO reported by Taher et al. (2019b), along with other recent 

approaches. Although Rao algorithm variants in Gupta et al. (2021c) achieved slightly better 

fuel cost values, the proposed hybrid approach delivers a superior L-index, demonstrating its 

effectiveness in enhancing voltage stability while maintaining competitive fuel cost 

performance. 

Case 4: 

(a) PLM 
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In this case, the objective is to minimize the total real power loss (
lossesP ) as defined by 

Equation (5.11). Using the proposed HRSCA technique, 
lossesP  is reduced to a competitive value 

of 3.0589 MW, representing a significant 47.64% reduction compared to the initial case 

(5.8423 MW). The corresponding VD and FC values are 1.6891 p.u. and 941.8419 $/h, 

respectively. While the VD experiences a slight increase, the substantial reduction in real power 

loss highlights the effectiveness of the hybrid approach. 

These results outperform several optimization methods documented in the literature, 

including MSA by Mohamed et al. (2017), MFO by Taher et al. (2019a), PSO by Taher et al. 

(2019b), Rao-1 by Gupta et al. (2021c), Rao-2 by Gupta et al. (2021c), Rao-3 by Gupta et al. 

(2021c), and various other widely used approaches. However, MGOA by Taher et al. (2019b) 

achieves better power loss reduction, but it is associated with higher fuel and emission costs. 

Figure 5.5 illustrates the convergence trends for 
lossesP  in Case 4(a), comparing the proposed 

HRSCA with Rao-2 and SCA. The superior performance of HRSCA in minimizing real power 

loss (PLM) is further validated by its ability to satisfy all operational constraints within their 

permissible limits. 

 

Fig. 5.5   Convergence curve in Case 4 (a) with HRSCA, Rao-2 and SCA algorithms 

(b) PLMFC 

This case aims to evaluate the effectiveness of the proposed HRSCA in simultaneously 

minimizing real power loss (
lossesP ) and fuel cost (FC) through a bi-objective formulation defined 

by Equation (5.29): 
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( , ) ( , ) ( , )PLMFC FCM pl PLMF x u F x u K F x u penalty= + +            (5.29) 

here, plK represents a weighting factor determined based on the importance assigned to the 

PLM objective. 

The HRSCA results demonstrate an FC value of 857.2174 $/h and an optimized lossesP  of 

4.5259 MW. These results surpass those obtained by several advanced algorithms, such as 

ISCA by Mahdad and Srairi (2018), MPSO by Mohamed et al. (2017), MFO by Mohamed et 

al. (2017), MGOA by Taher et al. (2019b), GOA by Taher et al. (2019b), PSO by Taher et al. 

(2019b), TLBO by Taher et al. (2019b), and MSA by Taher et al. (2019b). This highlights the 

capability of HRSCA in handling complex OPF problems with bi-objective formulations. 

In comparison, CS-GWO by Meng et al. (2021) achieved an FC of 854.9948 $/h and lossesP  

of 4.3427 MW, slightly outperforming HRSCA in power loss reduction but requiring more 

iterations (250 iterations compared to just 100 for HRSCA), leading to increased computational 

burden. Similarly, the Jaya optimizer by El-Sattar et al. (2019) attained an FC of 817.13 $/h, 

but with a significantly higher lossesP  of 6.04 MW. MOHFPSO by Khan et al. (2020) also 

achieved lower fuel cost but incurred significantly higher power losses, reflecting a less 

balanced optimization. Furthermore, MOHFPSO lacked explicit details on optimal population 

size and iteration count, while the Jaya optimizer utilized 200 iterations. In contrast, the 

proposed HRSCA effectively balanced both objectives, achieving competitive results within 

just 100 iterations and with a reduced computational burden. Detailed optimal configurations 

of control variables for this case are provided in Table 5.4. 

Case 5: ECM 

In this case, the HRSCA approach focuses on minimizing emissions, as defined by the 

objective function in Equation (5.12). The algorithm achieves a significant 13.7% reduction in 

emissions compared to the base case (0.2359 ton/h), lowering the value to 0.2036 ton/h. This 

performance surpasses several established optimization techniques reported in the literature, 

including conventional GOA by Taher et al. (2019b), ABC by Adaryani and Karami (2013), 

PSO, TLBO, MFO (all references from Taher et al. (2019b)), and Rao variants by Gupta et al. 

(2021c) 

Although MGOA by Taher et al. (2019b) exhibited marginally lower emission values, it 

achieved this at the expense of increased power loss and fuel cost. Additionally, MGOA 

required a larger population size of 50, compared to 30 in HRSCA, potentially increasing 
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computational demands. Other leading algorithms, such as IAOA by Akdag (2022) (400 

iterations), and IMFO by Taher et al. (2019a) (500 iterations), also required higher 

computational resources to achieve comparable emission levels. These results demonstrate the 

effectiveness of HRSCA in achieving a balance between emission reduction and computational 

efficiency. Figure 5.6 illustrates the convergence curves for emission costs, comparing the 

performance of HRSCA with Rao-2 and SCA. The proposed method exhibits a superior 

convergence rate, further affirming its efficiency and stability in minimizing emissions. The 

CV settings obtained using HRSCA are detailed in Table 5.4. 

 

Fig. 5.6   Convergence curves for Case 5 comparing HRSCA, Rao-2, and SCA 

5.4.1.2 Scenario-2: OPF Considering Load Growth 

Case 6: Optimizing OPF Objectives: Maximizing Loading Factor 

This case evaluates the effectiveness of the proposed HRSCA approach in addressing 

security-constrained OPF under challenging scenarios, such as load growth. Loading Margin 

Stability (LMS), the technical term for the loading factor, serves as a crucial parameter for 

evaluating a power system's resilience to increasing load demands. Examining LMS involves 

gradually increasing the load, which essentially governs the power system's ability to handle 

load expansion without instability or voltage collapse. 

In this case, the load demand (PD) was elevated to 421.6014 MW, resulting in a 

corresponding LMS value of 1.487655 p.u. (Mahdad and Srairi, 2015). The proposed HRSCA 

optimized decision variables within their permissible limits, including generator active powers, 

generator bus voltages, transformer taps, and shunt compensations. At the specified LMS 
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value, the proposed approach achieved competitive fuel costs of 1404.716 $/h, with remarkably 

low total power loss (13.3886 MW), minimal voltage deviation (1.0072 p.u.), and a 

significantly reduced L-index (0.1964 p.u.). Furthermore, the HRSCA demonstrated minimal 

environmental impact with emission levels of 0.3666 ton/h, underscoring its capability to 

handle load growth while ensuring system stability, operational efficiency, and environmental 

sustainability. 

Table 5.5 provides the optimized CV settings along with the corresponding objective 

function values, highlighting the effectiveness of the OPFS achieved using the proposed 

HRSCA approach. System security is maintained by ensuring compliance with the specified 

maximum apparent power limits (
  max

LineS ) across 41 branches (detailed in the Appendix A.2). 

The optimized control vector eliminates the need for load shedding, enabling the seamless 

delivery of the full 421.6014 MW load to consumers, ensuring a reliable and uninterrupted 

power supply. 

Furthermore, by integrating constraints directly into the OPF formulation, the HRSCA 

method proactively identifies solutions that minimize the risk of voltage collapse during load 

growth scenarios. This demonstrates the algorithm’s capability to optimize power flow while 

maintaining system stability and meeting increased electricity demand. 

Table 5.5   Optimized control variables obtained for Case 6 

CVs Min Max Case 6 

PG1 (Slack) (MW) 50 200 199.99 

PG2 20 80 80 

PG5 15 50 50 

PG8 10 35 35 

PG11 10 30 30 

PG13 12 40 40 

VG1 (p.u.) 0.95 1.1 1.1 

VG2 0.95 1.1 1.0881 

VG5 0.95 1.1 1.06 

VG8 0.95 1.1 1.0662 

VG11 0.95 1.1 1.1 

VG13 0.95 1.1 1.0999 

TS6-9 (p.u.) 0.9 1.1 1.092 

TS6-10 0.9 1.1 0.9 

TS4-12 0.9 1.1 1.0509 

TS28-27 0.9 1.1 0.97 

Qc10 (MVAR) 0 5 5 

Qc12 0 5 4.91 
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Qc15 0 5 4.88 

Qc17 0 5 5 

Qc20 0 5 4.94 

Qc21 0 5 4.83 

Qc23 0 5 5 

Qc24 0 5 4.97 

Qc29 0 5 4.98 

FCM ($/h) - - 1404.716 

VDM (p.u.) - - 1.0072 

VSI (p.u.) - - 0.1964 

PLM (MW) - - 13.3886 

ECM (ton/h) - - 0.3666 

Total Load Demand, PD in MW - - 421.6014 

Load Factor (LMS) in p.u.   1.487655 

 

 

5.4.1.3 Scenario-3: Security OPF Considering Load Growth and Unexpected Outages at 

Generating Units 

The current scenario examines two significant unforeseen events: the system being pushed 

to its load stability limit and the contingency of generator outage. This scenario assesses the 

proficiency of the HRSCA method suggested in improving the quality of energy supplied to 

consumers under critical conditions. The primary objective is to ensure system resilience 

against blackouts, maintaining continuous service amidst load growth and addressing faults at 

two specified generating units.  

The HRSCA approach has been shown to be an effective strategy for minimizing critical 

load shedding during key events, ensuring that essential services remain operational. It 

successfully meets multiple objectives spanning economic (FCM), technical (VDM, VSI, and 

PLM), and environmental (ECM) domains. These outcomes are achieved through the strategic 

optimization of control variables while maintaining the stability and security of the system 

under severe contingencies. 

To safeguard the system's operational security, load shedding measures were strategically 

implemented at buses 5 and 8, reducing the stress on critical components and ensuring a 

balanced power flow across the network. This also facilitates secure transmission of power in 

branches, preventing overloading and reducing the risk of voltage collapse. Furthermore, this 

approach enables a comparative study with previously reported methods in the literature, 

highlighting the advantages of HRSCA in maintaining system stability, minimizing 

disruptions, and achieving superior performance metrics in critical scenarios. 
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Case 7: Faults Occurred Simultaneously at G2 and G11 

This case examines the impact of simultaneous faults at generators G2 and G11. To mitigate 

the consequences of these contingencies, the proposed HRSCA approach optimizes CVs to 

minimize disruptions in power delivery to consumers. An optimized power flow scheme 

(OPFS) was achieved, with the details of CV settings provided in Table 5.6 (Case 7). 

In this critical scenario, the load demand (PD ) was adjusted to 309.7998 MW, corresponding 

to a load factor of 1.0932 relative to PD as reported by Mahdad and Srairi. At bus 5, the 

optimized active and reactive power demands were 46.7124 MW and 9.4218 MVAR, 

respectively. Similarly, at bus 8, the active and reactive power requirements were optimized to 

26.2527 MW and 26.2527 MVAR, respectively. By maintaining the load factor of 1.0932, the 

proposed HRSCA approach successfully upheld the economic (FCM) objective at 

1021.6998 $/h and achieved a power loss minimization (PLM) value of 9.8845 MW. The 

environmental objective (ECM) was also optimized, reaching a value of 0.3726 ton/h. 

Table 5.6 further presents the optimized values for other technical objectives, including 

VDM and VSI. The performance of the proposed approach was compared to that of the grey 

wolf optimizer with pattern search (GWO-PS) strategy under the same generation contingency 

scenario, as described by Mahdad and Srairi. The comparison revealed that while maintaining 

the identical load factor, the proposed HRSCA method achieved a slight improvement of 0.03% 

in the FCM objective and a 1.06% enhancement in the PLM objective. However, GWO-PS 

demonstrated a marginally better voltage deviation value of 0.4794 p.u. It is worth mentioning 

that GWO-PS required twice the number of iterations compared to HRSCA, and its population 

size was not explicitly reported. 

Table 5.6   Optimized control variables for Case 7 and Case 8 for IEEE 30-bus test system (Scenario-3) 

CVs Case 7 Case 8 

PG1 (Slack) (MW) 194.6843 196.8214 

PG2  0 0 

PG5  50 50 

PG8   35 35 

PG11  0 30 

PG13  40 0 

VG1 (p.u.) 1.1 1.1 

VG2 0.99 1.08 

VG5 1.09 1.08 

VG8 1.1 1.07 

VG11 1.1 1.08 
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VG13 1.0996 1.09 

TS6-9 (p.u.) 1.1 1.06 

TS6-10 0.92 0.99 

TS4-12 1.1 1.01 

TS28-27 1.04 1.02 

Qc10 (p.u.) 0.05 0.05 

Qc12 0.05 0.05 

Qc15 0.049 0.05 

Qc17 0.05 0.05 

Qc20 0.05 0.05 

Qc21 0.05 0.05 

Qc23 0.05 0.05 

Qc24 0.05 0.05 

Qc29 0.04 0.05 

FCM ($/h) 1021.6998 982.8172 

VDM (p.u.) 0.6377 0.7239 

VSI (p.u.) 0.2187 0.2091 

PLM (MW) 9.8845 9.4336 

ECM (ton/h) 0.3726 0.3802 

Total Load Demand, PD in MW 309.7998 302.3878 

Load Factor (LMS) in p.u. 1.0932 1.067 

 

Case 8: Faults Occurred Simultaneously at G2 and G13 

This case examines the occurrence of simultaneous faults at generators G2 and G13. To 

mitigate disruptions to consumer power delivery, an OPFS was achieved by adjusting the CVs 

while maintaining the same load demand (PD =302.3878 MW) as reported in by Mahdad and 

Srairi, corresponding to an LMS value of 1.067 p.u. 

At bus 5, the active power demand was set at 40.0392 MW, with the corresponding reactive 

power demand set at 8.0758 MVAR. Similarly, at bus 8, the active power requirement was 

fixed at 25.5027 MW, and the corresponding reactive power demand was fixed at 

25.5027 MVAR. The FCM objective attained a competitive value of 982.8172 $/h, 

demonstrating the algorithm’s efficiency in economic optimization. 

The proposed HRSCA approach achieves a 3.46% improvement in PLM, compared to the 

9.772 MW reported by Mahdad and Srairi, under identical fault and loading conditions. 

Furthermore, Table 5.6 presents optimized results for other technical objectives, including 

VDM and VSI, as well as the environmental objective (ECM). 

Strict adherence to security constraints has been a priority throughout this scenario, ensuring 

reliable and secure power system operation even in the face of concurrent generator faults. 
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These results underscore the robustness and reliability of the proposed HRSCA approach in 

handling challenging contingencies while achieving a balanced optimization of economic, 

technical, and environmental objectives. 

5.4.2 Performance on IEEE 118-Bus Test System 

The scalability of the proposed HRSCA approach is evaluated using the IEEE 118-bus 

standard test system. This network includes 54 generating units, an active power demand of 

4242 MW, and a reactive power loading of 1438 MVAR. The system comprises 186 branches 

and 64 load buses, with an acceptable voltage range at load buses between 0.94 p.u and 

1.06 p.u. 

The network features 9 transformers strategically positioned along lines 8-5, 26-25, 30-17, 

38-37, 63-59, 64-61, 65-66, 68-69, and 81-80. Additionally, 14 buses are equipped with shunt 

VAR compensators to enhance voltage regulation and stability. Detailed load data, line data, 

bus data, and control variable bounds for the IEEE 118-bus system, based on a 100 MVA base, 

can be found in Christie (1993). Additionally, cost coefficients and generation limits for the 

system can be found in Appendix A, Table A.3. 

5.4.2.1 Scenario-1: Standard OPF 

This scenario involves conducting a standard OPF analysis on the IEEE 118-bus test system. 

Three distinct single-objective cases are evaluated. These cases These cases aim to minimize 

total FC, VD, and lossesP . The objective of this scenario is to benchmark the outcomes of the 

proposed HRSCA approach under normal operating conditions against those obtained using 

recently developed optimization techniques. 

The three cases considered in this scenario are as follows: 

Case 9:    Fuel Cost Minimization (FCM) 

Case 10:  Voltage Deviation Minimization (VDM) 

Case 11:   Power Loss Minimization (PLM) 

Case 9: FCM 

In this case, the total fuel cost (FC) is minimized under normal operating conditions of the 

power grid. The OPF results obtained using the proposed HRSCA approach, including initial 

values and optimized control variables (CVs), are presented in Table 5.7. The HRSCA achieved 

the lowest FC value of 129,088.6331 $/h, exhibiting a significant 1.62% enhancement over the 

base case (131,220.52 $/h) and a 0.13% improvement over the results obtained using the 
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standalone Rao-2 algorithm (129,256.5242 $/h). Furthermore, the HRSCA outperformed other 

recent methods documented in the literature, as illustrated in Table 5.8. 

The proposed HRSCA approach exhibits smooth and rapid convergence, achieving optimal 

results in just 150 iterations, which underscores its stability and suitability for larger systems. 

This superior performance is illustrated using convergence curves in Fig. 5.7. The cost 

coefficients for all generators are available in reference Zimmerman et al. (2006). 

Table 5.7   Optimized control variables obtained by HRSCA for IEEE 118-bus test system 

S. 

No. 

CVs 

(p.u.) 

Base 

case 

value 

HRSCA for OPF S. 

No. 

CVs 

(p.u.) 

Base 

case 

value 

HRSCA for OPF 

Case 9 Case 10 Case 11 Case 9 Case 10 Case 11 

1 PG1 0 0.0887 0.6338 0.3336 69 VG34 0.984 0.9601 1.0154 1.0333 

2 PG4 0 0.006 0.363 0.4876 70 VG36 0.98 0.9608 0.9991 1.0285 

3 PG6 0 0.0481 0.2907 0.3583 71 VG40 0.97 0.9415 1.0108 1.0152 

4 PG8 0 0.4327 0.7127 0.7986 72 VG42 0.985 0.9912 0.9896 1.0243 

5 PG10 4.5 4.0618 2.8383 0.6452 73 VG46 1.005 0.9781 0.953 1.0223 

6 PG12 0.85 0.8109 0.1203 1.846 74 VG49 1.025 1.0285 1.0216 1.0157 

7 PG15 0 0.111 0.082 0.9879 75 VG54 0.955 1.0595 1.0117 1.0073 

8 PG18 0 0.0575 0.207 0.077 76 VG55 0.952 1.059 1.0426 1.009 

9 PG19 0 0.0055 0.8547 0.7804 77 VG56 0.954 1.0599 1.0011 1.0084 

10 PG24 0 0.056 0.5375 0.0198 78 VG59 0.985 1.0555 0.9608 1.014 

11 PG25 2.2 2.127 2.004 0.2455 79 VG61 0.995 1.0396 1.0117 1.0158 

12 PG26 3.14 2.6122 3.543 0.09 80 VG62 0.998 1.0589 0.9922 1.011 

13 PG27 0 0.0542 0.6096 0.9738 81 VG65 1.005 0.94 0.9479 1.0463 

14 PG31 0.07 0.0352 0.4846 0.9215 82 VG66 1.05 1.0361 1.0072 1.015 

15 PG32 0 0.8643 0.5266 0.4844 83 VG69 1.035 1.0442 1.0317 1.0162 

16 PG34 0 0.2089 0.9619 0.7468 84 VG70 0.984 1.0358 0.989 1.0225 

17 PG36 0 0 0.8679 0.8009 85 VG72 0.98 0.9793 1.0053 1.0028 

18 PG40 0 0.454 0.566 0.528 86 VG73 0.991 0.944 1.0144 1.0085 

19 PG42 0 0.3999 0.9878 0.9771 87 VG74 0.958 1.0253 0.9976 1.0222 

20 PG46 0.19 0.209 0.1769 1.0097 88 VG76 0.943 1.0345 1.0087 1.0068 

21 PG49 2.04 1.7846 1.2358 2.1007 89 VG77 1.006 1.0326 1.0086 1.0005 

22 PG54 0.48 0.481 0.8783 1.1985 90 VG80 1.04 1.0479 1.0177 0.9891 

23 PG55 0 0.0172 0.7102 0.9444 91 VG85 0.985 0.9532 1.0113 1.0172 

24 PG56 0 0.1751 0.6521 0.6943 92 VG87 1.015 0.945 0.9898 1.0585 

25 PG59 1.55 1.6021 1.8801 2.5281 93 VG89 1.005 1.0392 1.0053 1.0227 

26 PG61 1.6 1.5558 2.4447 1.0179 94 VG90 0.985 1.0192 1.0013 1.0123 

27 PG62 0 0.007 0.3421 0.4286 95 VG91 0.98 1.034 1.059 1.0082 

28 PG65 3.91 3.9943 2.9204 1.5621 96 VG92 0.99 1.0599 1.0154 1.0201 

29 PG66 3.92 3.547 0.8149 0.7446 97 VG99 1.01 1.026 1.0564 0.9839 

30 PG70 0 0.0215 0.036 0.4266 98 VG100 1.017 1.0397 1.0001 0.9892 

31 PG72 0 0.0096 0.0475 0.0333 99 VG103 1.01 1.0082 1.0491 0.9937 

32 PG73 0 0.094 0.3391 0.4116 100 VG104 0.971 1.0498 0.9794 0.9741 

33 PG74 0 0.059 0.0036 0.9526 101 VG105 0.965 1.0481 1.0028 0.9851 

34 PG76 0 0.2163 0.4545 0.9344 102 VG107 0.952 1.0583 1.0178 0.9979 

35 PG77 0 0.0004 0.1098 0.9426 103 VG110 0.973 1.0065 0.9984 1.0012 

36 PG80 4.77 4.0965 0.7462 2.6551 104 VG111 0.98 0.9401 0.9422 1.0048 

37 PG85 0 0.068 0.1934 0.6619 105 VG112 0.975 0.9939 0.9976 0.9991 

38 PG87 0.04 0.0213 0.5328 0.2136 106 VG113 0.993 1.0064 1.0046 1.0443 

39 PG89 6.07 4.4969 1.1472 1.8227 107 VG116 1.005 0.95 0.999 1.0581 

40 PG90 0 0.0064 0.6778 0.9731 108 T5—8 0.985 0.9006 0.9939 0.9673 

41 PG91 0 0.0219 0.013 0.16 109 T26—25 0.96 1.1 0.9871 1.0066 

42 PG92 0 0.0185 0.572 0.7758 110 T30—17 0.96 0.9241 0.9814 0.9512 

43 PG99 0 0.0035 0.7987 0.5345 111 T38—37 0.935 0.9002 0.9615 0.9704 

44 PG100 2.52 1.9039 1.7001 1.2773 112 T63—59 0.96 1.1 1.0458 0.9648 

45 PG103 0.4 0.3708 0.395 0.5924 113 T64—61 0.985 1.0444 1.0115 0.9944 
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46 PG104 0 0.0045 0.6965 0.509 114 T65—66 0.935 1.1 0.9921 1.0771 

47 PG105 0 0.698 0.0082 0.2089 115 T68—69 0.935 0.9035 1.0398 1.0247 

48 PG107 0 0.0135 0.8418 0.4539 116 T81—80 0.935 1.0933 0.9629 1.0166 

49 PG110 0 0.3242 0.1637 0.188 117 QC5 0 0.0409 0.2987 0.1822 

50 PG111 0.36 0.1726 0.6973 0.2619 118 QC34 0 0.2517 0.0767 0.2939 

51 PG112 0 0.0077 0.6912 0.6553 119 QC37 0 0.2963 0.0062 0.1119 

52 PG113 0 0 0.5889 0.9863 120 QC44 0 0.0024 0.2481 0.0815 

53 PG116 0 0.0412 0.927 0.6019 121 QC45 0 0.0902 0.0949 0.2804 

54 VG1 0.995 0.9461 0.9925 1.0237 122 QC46 0 0.0028 0.1842 0.2498 

55 VG4 0.998 1.0078 1.0038 1.0019 123 QC48 0 0.0052 0.0345 0.2216 

56 VG6 0.99 1 0.9946 0.9982 124 QC74 0 0.2978 0.004 0.2883 

57 VG8 1.015 0.9898 0.9799 0.9948 125 QC79 0 0.2995 0.1412 0.2868 

58 VG10 1.05 1.0073 0.9541 1.0047 126 QC82 0 0.2995 0.0291 0.0977 

59 VG12 0.99 0.9765 1.0103 1.0186 127 QC83 0 0.2899 0.175 0.0663 

60 VG15 0.97 0.991 0.98 1.0241 128 QC105 0 0.0045 0.1243 0.1578 

61 VG18 0.973 0.9899 0.9588 1.0293 129 QC107 0 0.192 0.2035 0.296 

62 VG19 0.962 0.9855 1.0171 1.028 130 QC110 0 0.0646 0.2983 0.0965 

63 VG24 0.992 0.9761 0.9837 1.0344 FCM ($/h) 131220.52 129088.6331 154690.85 165878.7 

64 VG25 1.05 1.0589 1.0112 1.0307 VDM (p.u.) 1.4389 

 

1.8975 

 

0.4720 1.133 

65 VG26 1.015 1.0475 0.978 1.0028 PLM (MW) 132.8101 112.2514 101.1812 19.2766 

66 VG27 0.968 1.0141 0.9956 1.0387 
Load Factor 

(p.u.) 
1 1 1 1 

67 VG31 0.967 1.028 1.0139 1.0586 Slack Power 

(PG69) (MW) 
513.8101 502.5673 177.6589 107.5023 

68 VG32 0.963 1.0108 1.0125 1.0453 

 

Table 5.8   Comparison of HRSCA, Rao-2, SCA, and other algorithms for FCM in Case 9 

Algorithm 
Case 9: 

FCM ($/h) 

 
Algorithm 

Case 9: 

FCM ($/h) 

 
Algorithm 

Case 9: 

FCM ($/h) 

HRSCA 129088.6331 
CS-GWO (Meng 

et al. 2021) 
129544.01 

SKH (Pulluri et al. 

2017a) 
129727.6248 

Rao-2 129256.5242 
SSA (Jebaraj and 

Sakthivel, 2022) 
129561.0305 

KH (Pulluri et al. 

2017a) 
129754.8130 

Chaotic Rao-2 

(Warid, 2022) 
129385.643 

MSCA (Attia et 

al. 2018) 
129620.22 

PSOGSA (Reddy, 

2019) 
129733.58 

SCM-MJ (Gupta 

et al. 2021b) 
129171.96 

SCA (Attia et al. 

2018) 
129622.6500 

PSO (Bouchekara 

et al. 2014a) 
129756.2275 

Jaya-PPS1 (Gupta 

et al. 2021a) 
129221.889 

MSA (Mohamed 

et al. 2017) 
129640.7191 

GSA (Reddy, 

2019) 
129873.89 

Rao-1 (Gupta et 

al. 2021c) 
129241.1787 

TLBO 

(Bouchekara et al. 

2014a) 
129682.844 

NISSO (Nguyen, 

2019) 
129879.4536 

Rao-2 (Gupta et 

al. 2021c) 
129256.5242 

DSA (Bouchekara 

et al. 2014a) 
129691.6152 

MPSO (Mohamed 

et al. 2017) 
132039.212 

Rao-3 (Gupta et 

al. 2021c) 
129220.6794 

FPA (Mohamed 

et al. 2017) 
129688.7209 

GA (Bouchekara 

et al. 2014a) 
132746.3517 

M-Jaya (Gupta et 

al., 2021b) 
129248.10 

MFO (Mohamed 

et al. 2017) 
129708.0821  
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Fig. 5.7   Convergence curve in Case 9 with HRSCA, Rao-2 and SCA 

 

Case 10: VDM 

The primary objective in this case is to minimize voltage deviation (VD) in the large-scale 

118-bus system under normal operating conditions. The proposed HRSCA approach achieves 

a minimum VD value of 0.4720 p.u., significantly improving upon both the base case 

(1.4389 p.u.) and the results of Case 9 (1.8975 p.u.). The corresponding power loss is measured 

at 101.1812 MW. Detailed optimized CV settings and objective function values are provided 

in Table 5.7. 

The performance of HRSCA surpasses that of several algorithms reported in the literature, 

including MSCA (0.995 p.u.) (Attia et al. 2018), SCA (1.32 p.u.) (Attia et al. 2018), M-Jaya 

(0.6771 p.u.) (Gupta et al. 2021b), and SSA (0.6078 p.u.) (Jebaraj and Sakthivel, 2022). It is 

also competitive with DE-APSO-PS (0.4364 p.u.) (Mahdad and Srairi, 2014), SCM-MJ 

(0.4366 p.u.) (Gupta et al. 2021b), and ISCA (0.454 p.u. with tmax=200) (Mahdad and Srairi, 

2018). Furthermore, while the DE-APSO-PS algorithm exhibits competitive performance, key 

control parameters such as population size and the maximum number of iterations (tmax) are not 

explicitly reported in the study, limiting direct comparability. 

It’s important to mention here that only a few metaheuristic approaches have been explored 

in the literature for optimizing this specific objective function withing the 118-bus system, 

underscoring the significance of HRSCA's results. Figure 5.8(a) provides a visual 

representation of the voltage profiles across all load buses, while Fig. 5.8(b) illustrates the 
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convergence characteristics of voltage deviation for the proposed HRSCA in comparison to 

Rao-2 and SCA algorithm. 

 
Fig. 5.8(a)   Comparison of voltage profiles in Case 10 using HRSCA, Rao-2, and the base case 

 

Fig. 5.8(b)   Convergence curves for Case 10 comparing HRSCA, Rao-2, and SCA 

Case 11: PLM 

In Case 11, the primary objective is the independent minimization of power loss ( lossesP ), as 

described in Case 4 part (a). Under normal operating conditions, the optimized CV settings 
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obtained using the proposed HRSCA approach are detailed in Table 5.7. The lossesP  achieved by 

HRSCA is 19.2766 MW, representing a substantial 85.4% reduction compared to the base case 

power loss of 132.8101 MW. Additionally, the corresponding voltage deviation of 1.133 p.u. 

reflects a 21.2% improvement over the base case. To further validate the effectiveness of 

HRSCA, Table 5.9 provides a comparative analysis with Rao-2 algorithm, SCA, and other 

state-of-the-art optimization algorithms documented in the literature. Figure 5.9 illustrates the 

convergence characteristics of the proposed HRSCA in comparison to Rao-2 and SCA, 

highlighting the efficiency and rapid convergence of the hybrid approach. 

Table 5.9   Comparing HRSCA with Rao-2 and other leading algorithms for PLM in Case 11 

Algorithm Case 11: PLM (MW) 

HRSCA 19.2766 

Rao-2 25.1265 

Chaotic Rao-2 (Warid, 2022) 36.483 

SCM-MJ (Gupta et al. 2021b) 19.1525 

M-Jaya (Gupta et al. 2021b) 21.6419 

SKH (Pulluri et al. 2017a) 22.1397 

KH (Pulluri et al. 2017a) 23.3212 

SSA (Jebaraj and Sakthivel, 2022) 30.7826 

QOTLBO (Mandal and Roy, 2014) 35.3191 

TLBO (Mandal and Roy, 2014) 36.8482 

MSCA (Attia et al. 2018) 77.0873 

SCA (Attia et al. 2018) 77.1113 

BBO (Roy et al. 2010) 128.9700 

PSO (Roy et al. 2010) 131.9146 

 

Fig.` 5.9   Convergence curves for Case 11 comparing HRSCA, Rao-2, and SCA 
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5.4.2.2  Scenario-2: Security OPF considering load growth 

Case 12: Optimizing OPF Objectives: Minimizing Power Loss under Maximum Specified Load Factor 

In this scenario, the IEEE 118-bus system experiences load growth while maintaining the 

specified load demand (PD = 7033.236 MW) as outlined in Mahdad and Srairi (2014). This 

results in an LMS value of 1.658 p.u., with the primary objective being the minimization of 

power loss ( lossesP ) under the PLM objective. 

The proposed HRSCA approach achieves an optimized power flow by adjusting CVs, as 

detailed in Table 5.10, which also presents the corresponding objective function values. The 

lossesP  obtained by HRSCA is 81.8483 MW at the given loadability value, while the achieved 

VD is 1.1412 p.u., ensuring all bus voltages remain within prescribed limits. For comparison, 

the same scenario reported by Mahdad and Srairi (2014) resulted in lossesP = 82.8415MW. The 

proposed HRSCA strategy achieves a 1.19% improvement over the earlier technique (DE-

APSO-PS technique by Mahdad and Srairi), demonstrating its robustness and effectiveness in 

addressing complex OPF problems under high-load conditions. 

Table 5.10   Optimized control variables in Case 12 with PLM Objective at LF = 1.658 p.u. 

S. 

No. 

CVs 

(p.u.) 

Optimized 

value 

(Case 12) 

S. 

No. 

CVs 

(p.u.) 

Optimized 

value  

(Case 12) 

S.  

No. 

CVs 

(p.u.) 

Optimized 

value 

(Case 12) 

1 PG1 0.9895 46 PG104 0.2499 91 VG85 1.0472 

2 PG4 0.9785 47 PG105 0.9222 92 VG87 1.0092 

3 PG6 0.0795 48 PG107 0.6787 93 VG89 1.0359 

4 PG8 0.9565 49 PG110 0.7547 94 VG90 0.9845 

5 PG10 1.9652 50 PG111 0.0098 95 VG91 0.9425 

6 PG12 1.8497 51 PG112 0.9945 96 VG92 1.0103 

7 PG15 0.9359 52 PG113 1 97 VG99 1.0107 

8 PG18 1 53 PG116 0.9292 98 VG100 1.0319 

9 PG19 0.9878 54 VG1 1.0129 99 VG103 1.0207 

10 PG24 0.9853 55 VG4 1.0396 100 VG104 1.0597 

11 PG25 0.0336 56 VG6 1.029 101 VG105 1.0361 

12 PG26 2.9963 57 VG8 0.9993 102 VG107 0.9971 

13 PG27 0.9839 58 VG10 1.0091 103 VG110 1.0072 

14 PG31 0.9082 59 VG12 1.028 104 VG111 1.0109 

15 PG32 0.9811 60 VG15 0.9867 105 VG112 1.012 

16 PG34 0.9019 61 VG18 0.9829 106 VG113 0.9798 

17 PG36 0.934 62 VG19 0.9929 107 VG116 1.0022 

18 PG40 0.998 63 VG24 1.0022 108 T5—8 0.906 

19 PG42 0.9979 64 VG25 0.944 109 T26—25 1.0992 

20 PG46 1.0746 65 VG26 0.9759 110 T30—17 1.0541 

21 PG49 3.0129 66 VG27 0.9408 111 T38—37 0.9021 

22 PG54 1.4634 67 VG31 0.9802 112 T63—59 1.097 

23 PG55 0.9987 68 VG32 0.9704 113 T64—61 0.9337 
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24 PG56 1 69 VG34 0.9889 114 T65—66 0.9507 

25 PG59 2.52 70 VG36 0.9921 115 T68—69 0.9122 

26 PG61 2.5646 71 VG40 0.9913 116 T81—80 0.9602 

27 PG62 0.9623 72 VG42 0.9823 117 QC5 0.0164 

28 PG65 4.5953 73 VG46 0.9961 118 QC34 0.0035 

29 PG66 3.5307 74 VG49 1.0235 119 QC37 0 

30 PG70 0.8225 75 VG54 0.9968 120 QC44 0.014 

31 PG72 0.2651 76 VG55 1.0046 121 QC45 0.3 

32 PG73 0.3921 77 VG56 1.0009 122 QC46 0.2978 

33 PG74 0.8616 78 VG59 1.0074 123 QC48 0.1419 

34 PG76 0.9481 79 VG61 0.9972 124 QC74 0.1264 

35 PG77 0.9935 80 VG62 0.9985 125 QC79 0.0911 

36 PG80 5.6483 81 VG65 0.9857 126 QC82 0.2995 

37 PG85 0.6997 82 VG66 1.0448 127 QC83 0.1935 

38 PG87 0.2559 83 VG69 1.0301 128 QC105 0.0019 

39 PG89 3.4807 84 VG70 0.9867 129 QC107 0.2998 

40 PG90 1 85 VG72 1.0207 130 QC110 0.3 

41 PG91 0.8912 86 VG73 0.9741 FCM ($/h) 269521.7117 

42 PG92 0.1914 87 VG74 0.9857 VDM (p.u.) 1.1412 

43 PG99 0.9038 88 VG76 1.0034 PLM (MW) 81.8483 

44 PG100 3.4861 89 VG77 1.0053 Load Factor 

(p.u.) 
1.658 

45 PG103 0.4976 90 VG80 1.017 

 

5.5 Discussion of Findings 

The study in this chapter introduces a novel hybrid optimization technique, the Hybrid Rao-

2 Sine Cosine Algorithm (HRSCA), developed to enhance security-oriented power flow 

optimization across diverse operational scenarios. The algorithm is specifically tailored to 

address challenges posed by load growth, unexpected contingencies such as generator outages, 

and the increasing complexity of modern power systems. An innovative aspect of HRSCA is 

its integration of the SCA for effective global exploration and the Rao-2 algorithm for enhanced 

local exploitation, enabling faster convergence and improved solution quality. The SCA 

employs simple and efficient parameters for exploration, while the parameter-free Rao-2 

algorithm excels in local search, making the combination both robust and efficient. This hybrid 

approach effectively addresses global and local optimization challenges, which are crucial for 

managing the increasing complexity and variability of modern power systems influenced by 

the integration of RES, EVs, and other emerging technologies.  

The proposed HRSCA-based OPF scheme has been rigorously validated through 

simulations on a range of test networks, from small-sized (30-bus) to relatively large-sized 

(118-bus) systems, ensuring its scalability and robustness across diverse scenarios. For 

instance, in the IEEE 30-bus system under the standard OPF scenario, HRSCA achieved fuel 

cost savings of 11.39% compared to the base case, amounting to $102.84 per hour or an annual 

savings of $900,884.81. In generator outage scenarios for the same system, it achieved a 
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modest savings of 0.03%, equivalent to $0.308 per hour or $2,698.08 annually, alongside a 

significant 3.46% reduction in power loss, bringing it down to 9.4336 MW, outperforming 

previously reported results in the literature. Demonstrating its scalability for large-scale OPF 

problems, HRSCA effectively minimized the fuel cost on the IEEE 118-bus system to 

129,088.63 $/h, representing a 1.62% reduction over the base case. This translates to savings 

of 2,131.89 $/h or an annual savings of $18,676,358.40.  

These findings highlight the capability of HRSCA to provide cost-effective and reliable 

solutions for power system operations, offering valuable insights for policymakers and power 

system planners. 

5.6 Conclusion 

This study presented a novel Hybrid Rao-2 Sine Cosine Algorithm (HRSCA), designed to 

enhance the security and efficiency of OPF solutions under various operational conditions. By 

balancing global exploration and local exploitation strategies, HRSCA ensures fast 

convergence and high-quality solutions, making it a robust tool for modern power system 

optimization. 

The algorithm’s effectiveness was validated on IEEE 30-bus and 118-bus systems, 

demonstrating its scalability, cost minimization, emission reduction, and improvement in 

voltage stability and loading margins. It effectively handled both normal and contingency 

scenarios, ensuring reliable power system operations. 

Future research can expand the application of HRSCA to optimize distributed energy 

resources (DERs) and demand response programs. Additionally, incorporating machine 

learning into the HRSCA framework could enhance its efficiency by predicting system 

behavior and dynamically adjusting its parameters. These advancements would enable the 

algorithm to adapt to real-time conditions more effectively and further reduce the risk of 

blackouts. The proven ability of HRSCA to handle complex and critical power system 

challenges, coupled with its capacity to mitigate risks such as blackouts, positions it as a leading 

tool for next-generation power system applications. Its robust performance under normal and 

critical scenarios highlights its potential to ensure a sustainable, reliable, and secure energy 

future. 
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CHAPTER 6 

APPLICATION OF THE COOT OPTIMIZATION ALGORITHM FOR OPF 

6.1   Introduction to the Coot Optimization Algorithm (COA) 

The Coot Optimization Algorithm (COA) is a nature-inspired metaheuristic technique 

modelled on the unique behaviour of coot birds. These birds exhibit collective movement, 

exploration, and exploitation abilities while foraging, which serve as an analogy for solving 

complex optimization problems. COA has been developed to address real-world optimization 

challenges, including those in power systems, by efficiently balancing exploration (global 

search) and exploitation (local search). 

The OPF is a fundamental optimization problem in power system operations, aimed at 

optimizing objectives such as fuel cost minimization, emission reduction, and power loss 

minimization while adhering to system constraints. The increasing integration of renewable 

energy resources, dynamic load profiles, and environmental concerns necessitate advanced 

optimization algorithms capable of handling the multi-dimensional and non-linear nature of 

OPF problems. 

The COA algorithm introduces an effective approach to solving OPF problems, ensuring 

high-quality solutions with improved convergence and computational efficiency. Its adaptability 

to complex problem landscapes and ability to maintain a balance between exploration (global 

search) and exploitation (local refinement) make it well-suited for modern power system 

requirements. The algorithm operates through a series of computational steps that mimic the 

collective foraging behavior of coots. The exploration phase involves the search for potential 

solutions across the entire solution space, ensuring that the algorithm does not prematurely 

converge to suboptimal solutions. This is followed by the exploitation phase, where the 

algorithm refines the identified potential solutions to find the optimal or near-optimal solutions. 

This chapter explores the application of COA to OPF, providing a comprehensive analysis 

of its methodology, simulation results, and comparative performance with other state-of-the-art 

optimization techniques. The specific parameter settings employed for COA, including 

population size, number of leaders, maximum iterations, and random value ranges, are discussed 

in the context of the IEEE 30-bus system.  

6.2   Problem Formulation for OPF 

OPF is a fundamental optimization problem in power system operations that aims to 

determine the optimal settings of control variables while satisfying a set of equality and 
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inequality constraints. The primary goal of OPF is to achieve various operational objectives, 

such as minimizing fuel cost, reducing power losses, maintaining voltage stability, and 

minimizing emissions, all while ensuring the secure and reliable operation of the power system. 

6.2.1 Objectives of OPF 

This study involves solving three diverse single-objective OPF formulations, yielding three 

different cases. 

Fuel cost minimization (FCM) 

The cost-related objective is a fundamental component of OPF and has been thoroughly 

investigated in literature. There exists an approximate quadratic correlation between the fuel 

cost ($/h) and PG (MW), as described by Equation (6.1) (Abaci and Yamacli, 2016). 

2

1

FCM  (P ) P P   / )($ h
i i

NG

G i G i G i

i

A B C
=

 
= + + 

 
                              (6.1) 

For the ith generator, the fuel cost coefficients are denoted by Ai, Bi and Ci with active power 

output of P
iG  

Emission minimization (EM) 

Emission minimization is a crucial objective of OPF, seeking to optimize the system control 

variables that can lead to a reduction of noxious gases into the atmosphere. The quantity of these 

gases present in the atmosphere is directly correlated with the generated active power (in MW), 

as expressed in Equation (6.2) (Elattar 2018). 
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 = + + +                 (6.2) 

here, αi, βi, γi, ωi and μi represent the emission coefficients for ith generating unit. 

Active power loss minimization (PLM) 

 The PLM objective focuses on reducing the cumulative active power losses (PLoss) in the 

system, calculated as the difference between total generation and demand, as expressed in 

Equation (6.3). PLoss in transmission lines is calculated using Equation (6.4) as outlined in Abaci 

and Yamacli (2016). 
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2 2
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here, GL is used to designate the conductance of line L between nodes i and j. Vi and Vj are the 

voltages at nodes i and j respectively, while δij signifies the angle difference between voltage 

phasors at these nodes. Here, NB stands for the total count of network buses. 

6.2.2 Constraints in OPF 

In OPF, there are two key constraint types: equality constraints governing power balance 

(active and reactive) and inequality constraints establishing operating limits for power system 

components, including limits to ensure system security. Consequently, voltage magnitude 

constraints apply to both generator and load buses. Furthermore, there are limits on PG and QG 

from generators, tap changer settings (T), shunt compensator reactive power (QC), and line 

flows (Sline) (Abd El-sattar et al. 2021). The objective function accounts for inequality 

constraints by including quadratic penalty terms. 

6.2.3 OPF Problem Formulation for COA 

The COA addresses the OPF problem by formulating it as a non-linear, constrained 

optimization problem. The objective functions, as defined above, are optimized while ensuring 

that all equality and inequality constraints are satisfied. The algorithm dynamically explores 

the solution space to identify optimal configurations that balance operational costs, technical 

performance, and environmental impact. 

6.3   Implementation of the Coot Optimization Algorithm 

6.3.1 Overview of COA 

COA is a novel metaheuristic algorithm pioneered by Naruei and Keynia (2021), making it 

a relatively recent addition to the field of metaheuristic algorithms. The Coot algorithm takes 

inspiration from collective behaviours and movements of a swarm of birds, known as coots, 

observed on the surface of water as shown in Fig. 6.1. The algorithm simulates the intricate 

behaviors observed in colonies of American coots (Fulica americana) while they move in the 

sea. The Coot algorithm mimics two distinct bird movement patterns on the water surface, 

which can be categorized into primary and secondary phases. The primary phase is 

distinguished by low density and irregularly fluctuating body orientations. The second phase, 

on the other hand, is more synchronised with uniform body orientation, surface swimming 

speed, and a clearly-defined high-density pattern. 
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Fig. 6.1   Coots gliding in a synchronised manner across the water surface 

The transition from the primary disordered phase to the secondary synchronised phase is 

driven by two factors. The first is that as individuals within the flock gain speed, they are drawn 

closer to slower moving coots (coot followers) and they are enabled to align their orientation 

with accelerating coots (coot leaders) as they gain speed. The movement of group leaders is 

the second factor that triggers the transition between the two phases. When coot leaders alter 

their orientations and speeds, it prompts the rest of the coots to trail behind them. 

6.3.2 Steps in COA for OPF 

The Coot algorithm is a simple population-based OA, involving following basic steps to be 

carried out: 

Step 1 Population initialization and population size 

The Coot algorithm begins by randomly generating an initial population of coots (NPOP), 

encompassing the entire range of potential solutions within the search space, in accordance with 

Equation (6.5). 

( )  (1, ).*( - )= +CP i rand D upb lwb lwb                (6.5) 

Where, CP(i) indicates the coot position of ith coot, and D denotes the problem dimension, 

determined by the count of involved decision variables. The variables involved in the problem 

have upper and lower bounds, represented as upb and lwb, respectively. 

Step 2 Fitness evaluation and designation of Coot leaders 

Using positions of each agent from Equation (6.5), the fitness function is evaluated for every 

set of solutions. The number of leaders can be drawn at random from the total population and 

termed as coot leaders (NLeader). The rest of the coots can be termed as coot followers (NCOOT) 

i.e. (NCOOT = NPOP - NLeader). 

Step 3 Coot position update 

This step involves simulating four diverse movement behaviors of coots, resembling their 

movement on water. 
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1) Random movement: Using random coot movement, the algorithm investigates multiple 

areas of the solution space, thereby avoiding trapping in local optima. The new position of coot 

is ascertained through Equation (6.6). 

 ( ) ( ) 2 (1, ).*( - ) - ( )CP i CP i T r rand D upb lwb lwb CP i= +   +              (6.6) 

Here, r2 is an arbitrarily chosen number spanning 0 to 1. The value of T is determined using 

Equation (6.7). 

max1- ( / )T it it=                      (6.7) 

Where, it represents current iteration number and itmax represents the maximum iteration count. 

2) Chain movement: The mathematical approximation of chain movement involves 

computing the distance vector between a pair of coots and moving one coot halfway towards 

the other as per Equation (6.8). 

 ( ) 0.5 ( 1) ( )CP i CP i CP i=  − +                                                                                        (6.8) 

Where, ( 1)CP i −  denotes second coot’s position. 

3) Position adjustment through coot leaders: In the group, coot leaders take the lead 

position and guide the movement, while the remaining coots adjust their positions to follow and 

align with the leaders. Each coot follower is associated with a coot leader and their locations are 

updated accordingly. The mechanism adopted for leader selection relies on the average position 

among them, as indicated in Equation (6.9). 

Leader1  ( ,  )k MOD i N= +                                 (6.9) 

Here, i designates the index of the current coot, and k denotes the index of the coot leader. 

NLeader is the aggregate count of coot leaders. Each coot (i) in the group is required to align its 

position with the leader (k) and subsequently adjust its position accordingly. As a result, the 

next coot position with respect to its associated leader is given in Equation (6.10). 

 ( ) ( ) 2 1 cos(2 ) ( ) - ( )CP i LP k r r LP k CP i= +                 (6.10) 
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Here, CP(i) is current position of the ith coot and LP(k) is the leader position of the kth leader 

chosen. Random number r1 ranges from 0 to 1, while random number r ranges from -1 to 1. 

4) Leaders position update towards the global best position: Leaders must update their 

position in relation to the global best which then guides the entire flock of coot birds towards 

global optima (food source location). The leader's position is updated using Equation (6.11) to 

get closer to the optimal position. 

0.53 cos(2 ) ( ( ))     ; 4
( )

3 cos(2 ) ( ( ))     ; 4 0.5

best best

best best

U r r g LP i g r
LP i

U r r g LP i g r





   − +
= 

   − − 
            (6.11) 

Here, gbest refers to the global best position, while r3 and r4 take on random values within the 

interval of 0 to 1. The value of U is given by Equation (6.12). 

max2 ( / )U it it= −                (6.12) 

Figure 6.2 presents a flowchart illustrating the utilization of the Coot algorithm in 

implementing an OPF solution. 

6.3.3 Simulation Setup and Test System 

This research article utilizes the Coot algorithm to conduct optimization of fuel cost (FCM), 

emissions (EM), and real power loss (PLM) as individual objectives. Remarkably, the Coot 

algorithm has been implemented for the first time to address OPF problems. To assess its 

performance, the standard IEEE test system comprising 30 buses is chosen as the benchmark 

test network. The algorithm was implemented using MATLAB 2018a and run on a laptop 

featuring an Intel Core i5 processor and 8 GB of system memory. 

a) IEEE 30-bus Test System 

The IEEE 30-bus network, with its limited size and manageable complexity, falls into the 

category of a small-scale electrical network. At the 100 MVA base, the combined demand for 

active power amounts to 283.4 MW, and for reactive power, it amounts to 126.2 MVAR. The 

system comprises six generating units located at buses 1, 2, 5, 8, 11, and 13, with bus 1 

designated as the slack bus. The loads are distributed across 24 load buses. PV bus voltage 

magnitudes are restricted to values between 0.95 and 1.1 p.u. The load buses must operate within 

the acceptable operating limits of 0.95 to 1.05 p.u. Detailed system data and operating conditions 

for the IEEE 30-bus system are available in the Power Systems Test Case Archive (Christie, 

1993). 
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Fig. 6.2   Flowchart of the Coot Optimization Algorithm for OPF 
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b) Algorithm Parameters 

To solve the OPF problem using the COA, a fixed population size of 40 and a maximum 

iteration count of 100 were employed. These algorithmic parameters were determined through 

extensive testing and evaluation. Table 6.1 presents the optimal parameter settings used for the 

Coot algorithm in this case study. 

Table 6.1   Algorithm Parameters assigned for COOT Algorithm on IEEE 30-bus System 

Parameter Value 

NPOP 40 

NLeader 0.1 * NPOP  = 4 

itmax 100 

D 24 

r1, r2 [0, 1] 

r3, r4 [0, 1] 

r [-1, 1] 

 

6.4   Case Studies, Results, and Discussion 

6.4.1   Case 1- OPF for FCM 

The aim of this case involves the reduction of fuel expenses using the Coot algorithm, and 

the corresponding objective function is formulated in Equation (6.1). In Case 1, the Coot 

algorithm significantly reduces the total system fuel cost from 902.02 $/h (base case) to 

799.2125 $/h, resulting in a substantial reduction of 11.39%. The obtained total cost is compared 

with other algorithms implemented to solve the given case under the same conditions, as shown 

in Table 6.2. 

Table 6.2   Comparison of the outcomes achieved through various optimization algorithms for Case 1 

Method 
Total fuel cost 

($/h) 
PLoss (MW) 

Emission 

(ton/h) 
Method Description 

ISSA (Abd El-sattar et 

al. 2021) 
800.4752 9.1044 NR* 

Improved Salp Swarm 

Algorithm 

MGOA (Taher et al. 

2019b) 
800.4744 8.9882 0.3649 Modified Grasshopper OA 

GOA (Taher et al. 

2019b) 
800.7806 8.9882 0.3678 Grasshopper OA 

Jaya (Warid 2020) 800.4794 9.0648 NR Jaya Algorithm 

TLBO (Taher et al. 

2019b) 
800.6108 8.9899 0.3653 

Teaching-Learning based 

OA 

PSO (Khan et al. 2020) 799.5433 8.7158 NR 
Particle Swarm 

Optimization 

HFPSO (Khan et al. 

2020) 
799.123 8.6375 NR Hybrid Firefly PSO 

Rao-2 (Warid et al. 

2022) 
800.3865 9.0535 NR Rao-2 Algorithm 

SCA (Attia et al. 2018) 800.1018 9.0633 NR Sine-Cosine Algorithm 
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ABC (Mohamed et al. 

2017) 
800.66 9.0328 0.3651 

Artificial Bee Colony 

Algorithm 

Coot 799.2125 8.7353 0.3645 Coot Algorithm 

 

Additionally, Fig. 6.3 shows the convergence traits of the Coot algorithm alongside those of 

alternative competing algorithms. The COOT algorithm demonstrates superior performance 

over ISSA, MGOA, GOA, TLBO, SSO, Jaya, PSO, Rao-2, SCA, and ABC in both convergence 

rate and solution quality. The Coot algorithm demonstrates its remarkable convergence speed 

by reaching the best value for Case 1 in just 74 iterations, especially when dealing with small-

scale OPF problems. 

 

Fig. 6.3   Convergence characteristics comparison of Case 1 using the Coot algorithm and other recent algorithms 

6.4.2   Case 2- OPF for EM 

The objective of this case is to lower emission levels resulting from the fossil-fuel fired power 

plants. The corresponding objective function is defined in Equation (6.2), and the optimal 

solution is presented in Table 6.3. Utilizing the Coot algorithm, the generation fuel emission is 

reduced to 0.20423 ton/h, leading to a reduction of approximately 44% compared to the 

emission results of cost-based OPF (Case 1). Moreover, the fuel cost increases from 799.2125 

$/h (Case 1) to 943.1206 $/h, signifying a percentage increase of just 18%. It is noteworthy that 

this achievement surpasses the results obtained from other OAs (i.e., TLBO, DE, IDE, GA, 

PSO, and GOA), as reported in Table 6.3, while still adhering to the imposed constraints for the 

identical system data. Here, MGOA achieves the best solution for minimising emissions, though 

it involves trade-offs with other objectives, while IDE initially shows a faster convergence rate 

but fails to attain an optimal solution. 
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Table 6.3   Comparison of the outcomes achieved through various optimization algorithms for Case 2 

Method 
Emission 

(ton/h) 

PLoss 

(MW) 
Total fuel 

cost ($/h) 
Method Description 

TLBO (Taher et al. 2019b) 0.20486 3.3608 944.7442 Teaching-Learning based OA 

DE (Al-Bahrani et al. 2022) 0.20488 3.2793 943.4304 Differential Evolution 

IDE (Al-Bahrani et al. 2022) 0.20476 3.0120 943.7258 Improved DE 

GA (Taher et al. 2019b) 0.20487 3.3776 945.0166 Genetic Algorithm 

PSO (Taher et al. 2019b) 0.2049 3.4950 944.7462 Particle Swarm OA 

GOA (Taher et al. 2019b) 0.20503 3.8265 946.4789 Grasshopper OA 

MGOA (Taher et al. 2019b) 0.20259 3.6325 955.3623 Modified GOA 

Coot 0.20423 3.4162 943.1206 Coot Algorithm 

The convergence behaviors of the Coot algorithm and competing techniques are depicted in 

Fig. 6.4. Remarkably, the Coot algorithm demonstrates its superiority by achieving convergence 

in just 50 iterations, outperforming other recent techniques in terms of convergence speed and 

effectiveness. 

 

Fig. 6.4   Convergence characteristics comparison of Case 2 using COA and other recent algorithms 

6.4.3   Case 3- OPF for PLM 

The goal here is the reduction of actual power loss (PLoss) within transmission lines. PLoss can 

be calculated using Equation (6.4) for any given network. Table 6.4 clearly demonstrates the 

superiority of the Coot algorithm when contrasted with previously reported population-based 

OAs implemented to solve the given case under identical system data, while still adhering to the 

imposed constraints. 
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The Coot algorithm achieves an impressive value of 3.0628 MW, which is the lowest among 

techniques like SSO, DE, GOA, Rao-2, TLBO, and others, except for MGOA. This noteworthy 

result represents a reduction of approximately 47.66% compared to the base case value of 

5.8482 MW. The Coot algorithm exhibits rapid convergence to the optimal solution within just 

38 iterations, showcasing its highly efficient convergence capabilities. 

Table 6.4   Comparison of the outcomes achieved through various optimization algorithms for Case 3 

Method 
PLoss 

(MW) 

Total fuel 

cost ($/h) 

Emission 

(ton/h) 
Method Description 

SSO (Nguyen 2019) 3.8239 NR NR Social Spider OA 

DE (Mohamed et al. 2017) 3.38 968.23 NR Differential Evolution 

GOA (Taher et al. 2019b) 3.3141 963.099 0.2083 Grasshopper OA 

MGOA (Taher et al. 

2019b) 
3.0039 966.1892 0.2039 Modified GOA 

AMTPG-Jaya (Warid 

2020) 
3.0802 967.6830 NR 

Adaptive Multiple Teams 

Perturbation-Guiding Jaya  

Rao-2 (Warid et al. 2022) 3.0975 967.6599 NR Rao-2 Algorithm 

TLBO (Taher et al. 2019b) 3.1202 967.2312 0.2072 Teaching-Learning based OA 

MSA (Mohamed et al. 

2017) 
3.1005 967.6636 0.20727 Moth Swarm Algorithm 

Jaya (Warid et al. 2016) 3.1035 967.6827 NR Jaya Algorithm 

ABC (Mohamed et al. 

2017) 
3.1078 967.6810 0.207268 

Artificial Bee Colony 

Algorithm 

PSO (Taher et al. 2019b) 3.1079 967.2312 0.2072 Particle Swarm OA 

Coot 3.0628 966.8212 0.2071 Coot Algorithm 

 

Figure 6.5 vividly portrays the trend for minimizing real power losses through the 

implementation of the Coot algorithm. These outcomes evidently showcase the excellence of 

the Coot approach in achieving the optimal solution while demonstrating a smooth convergence 

characteristic curve with highest convergence speed. In this case the MGOA offers the optimal 

solution to minimize the power loss. In the meantime, the Coot algorithm achieves the second-

most optimal solution, displaying a higher convergence rate as evident from the convergence 

curve in Fig. 6.5. In this case, though, additional system objective functions, like total fuel cost, 

exhibited less favourable performance. 
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Fig. 6.5   Convergence characteristics comparison of Case 3 with Coot algorithm and other recent algorithms 

6.5   Conclusion 

In this study, the recently introduced metaheuristic OA, known as the Coot optimization 

algorithm, has been thoroughly examined and has successfully demonstrated its reliability and 

effectiveness in solving single-objective frameworks of the OPF problem. The successful testing 

of the Coot approach on IEEE 30-bus network illustrates its capability to achieve nearly global 

optimal adjustments of control variables. The simulation outcomes for all test scenarios attained 

using the Coot algorithm were contrasted with the outcomes achieved by competitive algorithms 

like DE, GOA, TLBO, Jaya, ABC, PSO, GA, as well as other enhanced variants proposed in 

existing literature. The comparison vividly accentuates the remarkable performance and 

robustness of the Coot algorithm in contrast to these previously reported techniques. 

However, while the basic COA enhances the convergence rate, it may encounter difficulties 

in addressing complex, larger-scale problems, often getting trapped in local optima. The 

selection of parameters can also significantly affect algorithm performance. Nevertheless, an 

improved version with superior global search capabilities and local optima avoidance can 

effectively handle large-scale electrical grid OPF problems. To address these challenges, it is 

recommended to integrate the COA with other metaheuristic algorithms or AI-based 

approaches, coupled with parameter tuning and the development of specialized adaptations. 

Future work can expand on making the COA suitable for addressing multi-objective OPF 

issues, particularly in large-scale power systems that incorporate non-conventional energy 

sources alongside thermal generators. This advancement would enhance the algorithm's 

adaptability and effectiveness in more complex and varied power system environments. 
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CHAPTER 7 

OPF WITH DISTRIBUTED GENERATION: APPLICATION OF THE 

EEFO ALGORITHM 

7.1   Introduction 

The growing demand for electricity, along with the urgent need to curb greenhouse gas 

emissions, has spurred a rapid shift towards renewable energy sources (RES) over the past two 

decades. Distributed Generation (DG) refers to decentralized, small-scale electricity generation 

systems located close to the point of consumption, often utilizing RES. Factors like market 

deregulation and government incentives for green energy have further accelerated this shift. 

Among various DG options, renewable energy-based systems have emerged as the most 

promising alternatives to fossil fuels for electricity generation. Technological advancements in 

these systems have led to significant reductions in installation costs while enhancing their 

reliability and standardization. Current trends and reports indicate that electricity generated from 

RES is poised to become more cost-effective than traditional fossil fuel-based energy production 

in the near future. 

Despite these advancements, the intermittent nature of RES poses significant challenges to 

power system optimization. The OPF problem plays a crucial role in addressing these challenges 

by ensuring the economic and stable operation of the power grid. OPF focuses on determining 

the optimal settings for control variables (CVs), such as generator outputs, voltage levels, and 

transformer tap positions, to achieve key objectives like cost minimization and loss reduction. 

Simultaneously, it ensures system stability and adheres to operational constraints, making it an 

essential tool in modern power system management. (Alghamdi, 2023) 

The rapid advancements in computational power over recent years have led to a growing 

trend of employing nature-inspired optimization techniques to solve OPF problems. Numerous 

stochastic optimization methods have been proposed and effectively utilized, including GA (Lai 

et al. 1997; Kumari and Maheswarapu 2010), PSO (Abido 2002; Vlachogiannis and Lee 2006, 

Niknam et al. 2012a), DE (Abou El Ela et al. 2010), HS (Pandiarajan and Babulal 2016; Reddy 

2019; Elattar 2018), ABC (Adaryani and Karami 2013; Khorsandi et al. 2013), GSA (Duman et 

al. 2012; Bhattacharya and Roy 2012), TLBO algorithm (Bouchekara et al. 2014; Ghasemi et 

al. 2015), BBO (Bhattacharya and Chattopadhyay 2009; Kumar et al. 2015), and Jaya algorithm 

(Warid et al. 2016; Warid 2020). These approaches are particularly well-suited for handling the 

nonlinear and non-convex nature of OPF problems, as detailed in various studies. However, the 
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"No Free Lunch" theorem emphasizes that no single optimization method can universally solve 

all complex engineering problems, underlining the importance of developing new algorithms 

tailored to specific challenges (Wolpert and Macready 1997). 

In this context, the present study explores the application of the Electric Eel Foraging 

Optimization (EEFO) algorithm - a recently developed nature-inspired, population-based 

optimization method - for solving the OPF problem in DG-integrated power systems. The EEFO 

algorithm showcases significant potential for achieving optimal solutions, especially in 

scenarios involving the integration of RES into power systems. By providing cost-effective and 

stable grid operations, EEFO emerges as a promising and innovative tool for modern power 

system optimization. 

7.2   Problem Formulation 

7.2.1 General Structure of OPF 

The OPF framework typically encompasses objectives and constraints. An OPF solution 

fine-tunes power system variables, referred to as control variables (CVs), for optimizing a 

chosen objective function. The optimized state of the system is governed through the state 

variables. The power system must operate under two sorts of constraints: equality constraints 

and inequality constraints. All conditions of constraint satisfaction have to be followed to 

formulate a realistic problem. A SOOPF problem involves only one objective function and is 

formulated as: 

Min:  ( , )f x u                                                                           () 

( , ) 0            = 1, 2, 3,......., ig x u i m=                           (7.2) 

and, ( , ) 0        = 1, 2, 3,........, jh x u j n                () 

Equation (7.1) represents the objective function, which is dependent on both the state 

variables ‘x’ and the control variables ‘u’. Equation (7.2) exhibits the equality constraints, while 

the inequality constraints are denoted by Equation (7.3). Here, m indicates the count of equality 

constraints, while n signifies the count of inequality constraints. Equation (7.4) presents the state 

vector, which is the vector of dependent variables, wherein PG corresponds to the active power 

output of generator, VL is the load bus voltage, QG is the reactive power output of generator, and 

Sline is the loading of the power line, which must not surpass the specified upper loading limit 

for any given line. 
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1 1 1 1, ,[P ,V ,....,V Q ,.....,Q ,....., ]
NPQ NG NL

T

G L L G G line linex S S=                       () 

Here, 
1

PG  represents slack bus power. The notations NPQ, NG, and NL represent the count 

of load buses, generator units, and power lines, respectively. The control vector, given in 

Equation (7.5), encompasses the adjustable variables used to govern the power flow scheme. 

2 1 1, , 1[P ....P ,V ....V Q ......Q T .....T ]
NG NG NC

T

G G G G C C NTu =                         () 

Here, VG refers to the voltage at generation bus, QC represents shunt VAR compensation and 

T represents the tap changing transformer with NT representing the count of tap changing 

transformers. 

7.2.2 OPF Objective Functions 

This study involves solving two diverse single-objective OPF (SOOPF) formulations, 

yielding two different cases: 

a) Fuel cost minimization (FCM) 

The cost-related objective is a core component within OPF and has been thoroughly 

investigated in various literature. There exists an approximate quadratic correlation between the 

fuel cost ($/h) and PG (MW) as expressed in the following equation (Abaci and Yamacli, 2016). 

2

1

( , ) P P $ / h ( ) 
i i

NG

FCM i G i G i

i

f x u A B C
=

 
= + + 

 
                              (7.6) 

For the ith generator, the fuel cost coefficients are denoted by Ai, Bi and Ci with active power 

output of P
iG  

b) Active power loss minimization (PLM) 

The PLM objective strives to reduce the cumulative active power losses (PLoss) in the system, 

calculated as the difference between total generation and demand. PLoss can be defined as follows 

(Abaci and Yamacli, 2016): 

( , )PLMf x u  = 2 2

Loss

1 1 1 1

P P P P [ 2 ]
i i i

NB NB NB NL

G D L i j i j ij

i i i L

G V V VV Cos
= = = =

= = − = + −                           () 

 

 

 



 

119 
 

7.2.3 Constraints 

OPF problem consists of two types of constraints namely, equality and inequality. The 

equality constraints, ( , )g x u , consist of power flow equations. The power flow equations are as 

follows: 

Loss

1 1

(P P ) P  P
i i i

NB NB

G DG D

i i= =

+ = +                      (7.8) 

Loss

1 1

(Q Q ) Q  Q
i i i

NB NB

G DG D

i i= =

+ = +                      (7.9) 

Where P
iDG and Q

iDG are the active and reactive power output of ith DG unit and NB is the 

number of buses. 

The inequality constraints, ( , )h x u , define the boundaries for adjustable variables and the 

operational thresholds within the power system. These operational thresholds include voltage 

levels at generator and load buses, active and reactive power outputs from generators, settings 

of transformer tap changers, and limits on compensating reactive power. Additionally, 

constraints on active and reactive power outputs of distributed generation must also be taken 

into account. 

7.3   Overview of Electric Eel Foraging Optimization (EEFO) algorithm 

7.3.1 Inspiration 

Electric eels, native to South America and part of the Gymnotidae family, are remarkable 

predators known for their ability to generate powerful electrical discharges of up to 800 V to 

stun and capture prey effectively. These High-voltage discharges serve as a defense mechanism 

against predators and as an attack tool to incapacitate prey. This unique adaptation, often likened 

to "high voltage wires" within freshwater ecosystems, is facilitated by specialized organs 

composed of thousands of electrogenic cells known as electrocytes. These electrocytes function 

as biological batteries, storing and releasing energy to support the eel's predatory and defensive 

behaviours. Additionally, eels use low-voltage discharges, typically around 10 V, for navigation 

and prey detection, compensating for their poor vision and enabling them to efficiently locate 

fast-moving targets. 

Electric eels also exhibit advanced swarm behaviours similar to social predation strategies 

observed in mammals. These behaviours include interacting, migrating, resting, and hunting in 

coordinated groups to locate and capture prey. For instance, when hunting in groups, eels often 
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cluster together, encircle prey, and drive them into a concentrated "prey ball" before delivering 

a synchronized high-voltage attack. This group hunting strategy not only increases the chances 

of success but also enables eels to target larger quantities of prey in areas with abundant fish 

populations. 

Inspired by these sophisticated foraging and behavioural patterns, Zhao et al. (2024) 

developed the Electric Eel Foraging Optimization (EEFO) algorithm. By mimicking the 

dynamic and adaptive strategies of electric eels, this algorithm provides an innovative approach 

to solving complex optimization problems. 

7.3.2 Interacting behaviour in EEFO 

The Interaction Phase in EEFO algorithm emulates the natural behaviour of eels when they 

encounter a school of fish. The eels form electrified circular formations to trap smaller fish at 

the centre. In the optimization context, each eel represents a candidate solution, and the best 

solution found so far acts as the target prey. During this phase, eels cooperate by exchanging 

positional information to enhance the search process, akin to the global exploration phase in 

optimization algorithms. This enables a broader search of the solution space. Each eel’s position 

is updated by evaluating the difference between a randomly selected eel's position and the search 

space's centre. This update mechanism ensures effective exploration of the search space and 

prevents premature convergence. The mathematical model for this phase is given by Equation 

(7.10): 

( )1( 1) ( )i i crandX t X t r X X+ = +  −                                      (7.10) 

where, 
1r  is a random number constrained to the interval [0, 1]. ( 1)iX t +  is the updated 

position of the ith eel. ( )iX t is the current position of the ith eel. 
randX  is the position of a 

randomly selected eel. 
cX  is the centre of the search space, calculated as per Equation (7.11): 

1

1
( )

N

c i

i

X X t
N =

=                   (7.11) 

Additionally, eels may interact with multiple randomly selected eels to incorporate local 

search information. This interaction includes the concept of “churn”, which introduces 

randomness into the movement of eels, ensuring diverse exploration patterns (Zhao et al., 2024). 

The updated position of the eel considering churn is defined as: 

( )2 1 2( 1) ( )i i r rand danX t X t r X X+ = +  −                 (7.12) 
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where, 1randX and 2randX are the positions of two randomly selected eels. 
2r  is another random 

number within the range [0,1]. This interaction mechanism mimics the dynamic and adaptive 

foraging strategy of electric eels, combining global exploration with local search information 

to identify promising areas in the solution space effectively. 

7.3.3 Resting Behavior in EEFO 

In the EEFO algorithm, resting behavior represents a crucial phase that enhances the search 

efficiency by allowing electric eels to converge toward promising areas in the solution space 

(Zhao et al. 2024). The resting area for the eels is determined through the normalization of the 

search space and the positional information of each eel. This involves projecting the position 

vector of an eel onto the main diagonal of the search space to establish a reference point. A 

normalized position is calculated based on the eel's random placement, ensuring positions 

remain within bounds for effective exploration and optimization. The resting position of the eel 

within the resting area is then obtained as: 

( 1) ( ) ( ) ( )i preyR t Z t Z t x t+ = +  −                               (7.13) 

where  , also known as the resting factor, is the scale of the resting area and controls the size 

of the resting area.  can be defined as; 

0 2sin(2 )r  =                    (7.14) 

where, 2r  is a random number constrained to the interval [0, 1]. Once the resting position is 

determined, the eel moves toward it. The resting behavior is expressed as: 

 2( 1) ( 1) ( 1) ( ) ( )i i i iv t R t v R t round rand x t+ = + +  +                                 (7.15) 

where 2v  is a random value sampled from a standard normal distribution. This mechanism 

allows the eels to focus their search within a defined area while narrowing exploration over 

iterations. This balance of exploration and exploitation enhances the algorithm's ability to 

converge on optimal solutions. 

7.3.4 Hunting Behavior in EEFO 

In the EEFO algorithm, the hunting behavior mimics the cooperative strategy of electric eels 

when they locate prey. Eels interact by forming an electrified circle around the prey, effectively 

trapping it within the hunting area. This coordinated behavior involves low electric discharges, 

enabling the eels to communicate and reduce the hunting area's size as their interaction 
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intensifies. The algorithm models this behavior by defining a dynamic hunting area centered 

around the prey's position, with its range determined by the initial scale of the hunting area (β0) 

and the distance from the prey. Once the hunting area is defined, a new prey position is generated 

as: 

( 1) ( ) ( ) ( )prey prey preyH t x t x t x t+ = +  −                 (7.16) 

where ( )x t  is the mean position of all eels at the current iteration t and ( )preyx t  is the position 

of the prey. Here β is the scale of hunting area defined as; 

0 3sin(2 )r  =                     (7.17) 

here, 3r  is a random number within interval [0,1]. This mechanism ensures gradual shrinkage 

of the hunting area, facilitating a transition from global exploration to focused exploitation. 

Additionally, the eels exhibit curling behavior, where their positions are updated relative to 

the prey's new position. This behavior is represented as: 

( 1) ( 1) ( 1) ( ) ( )i prey prey iv t H t H t round rand x t  + = + +  + −                (7.18) 

The curling factor η, which decreases over time, is defined as: 

4

max

(1 )

4cos(2 )

r t

T
e r 

−

=                    (7.19) 

where 4r  is a random number within the range [0,1], t is current iteration number and Tmax is 

the maximum number of iterations. The algorithm adjusts η dynamically using Equation (7.19) 

as iterations progress. At the start, a moderate value of η must be chosen to encourage diverse 

movement (exploration) across the search space. This curling behaviour allows the algorithm 

to refine the search and maintain diversity within the population, thereby ensuring an effective 

balance between exploration and exploitation throughout the optimization process. 

7.3.5 Migration behaviour in EEFO 

In the migrating phase of the EEFO algorithm, eels transition from their resting areas to 

designated hunting zones. This behaviour models the natural movement of eels as they relocate 

towards more promising regions in their search for prey. Each eel assesses its position relative 

to a defined hunting area, which is determined by the position of the prey and the surrounding 

region. The mathematical model governing this phase begins with determining the new position 

of an eel within the hunting area, represented as: 
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( )5 6( 1) ( 1) ( 1) ( 1) ( )i i r r iv t r R t r H t L H t x t+ = −  + +  + −  + −              (7.20) 

here 5r  and 6r  are random numbers in [0,1]. The term ( )( 1) ( )r iH t x t+ − directs the eel toward 

the hunting area. The variable L represents a Lévy flight function, which ensures that the 

algorithm explores the search space broadly while avoiding local optima (Zhao et al. 2024). 

The hunting area position is determined using Equation (7.21): 

( 1) ( ) ( ) ( )r prey preyH t x t x t x t+ = +  −                                  (7.21) 

where ( )rH t  is any position within the hunting area and β, also known as the hunting factor, 

defines the scale of the hunting area, as specified in Equation (7.17). 

After the new position is determined, the fitness of ( 1)iv t +  is evaluated. If the new position 

improves the fitness value, it is retained; otherwise, the eel remains at its current position: 

( 1)   ; if fitness ( ( 1)) fitness ( ( )),
( 1)

( )        ; otherwise.

i i i

i

i

v t v t x t
x t

x t

+ +
=


+ 


             (7.22) 

The social hunting behaviours of electric eels serve as the foundation for the EEFO 

algorithm. The algorithm's exploitation and exploration phases are modelled after these 

behaviours, drawing inspiration from the dynamic and cooperative strategies electric eels 

employ during foraging. 

Figure 7.1 shows the representation of electric eels using their electric pulses to locate and 

capture prey in an underwater environment. 

 

Fig. 7.1.    Electric Eels: Utilizing Electric Pulses for Prey Capture 

7.3.6 Transition from Exploration to Exploitation 

The Transition from Exploration to Exploitation in the EEFO algorithm is driven by an 

energy factor E(t), which facilitates a smooth shift between global exploration and local 
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exploitation. This transition is critical for maintaining an effective balance between searching 

new regions of the solution space and refining solutions in promising areas. The energy factor 

E  is defined in Equation (7.23): 

max 7

1
( ) 4 sin 1 ln

t
E t

T r

   
=  −   

   

                 (7.23) 

where ‘t’ is the current iteration, Tmax is the total iterations, and 7r  is a random value in [0,1]. 

When E(t) > 1, the eels engage in global exploration by interacting with other individuals 

across the entire solution space. Conversely, when E(t) ≤ 1, the algorithm prioritizes local 

exploitation through behaviors like resting, hunting, or migrating to fine-tune solutions in 

promising subregions. The probability of E > 0 being approximately 50% during optimization 

ensures a dynamic balance between exploration and exploitation. This balance prevents 

premature convergence and promotes robust search capabilities. The behavior of E(t) during 

iterations highlights its significance in improving the algorithm's adaptability and efficiency in 

solving complex optimization problems (Zhao et al. 2024). 

To provide further clarification, Figure 7.2 presents a flowchart illustrating the utilization of 

the EEFO algorithm in implementing an OPF solution. 
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Fig. 7.2.    Flowchart of the Electric Eel Foraging Optimizer for OPF 

7.4   Simulation Results and Analysis 

The effectiveness of the EEFO algorithm was validated by solving SOOPF problems with 

FCM and PLM as objectives on the IEEE 30-bus network, both with and without distributed 

generation (DG). DG was incorporated into the OPF formulation to evaluate its impact on 
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optimization. The computational setup involved a population size (NPOP) of 40 and a maximum 

iteration count (Tmax) of 100. Simulations were conducted using MATLAB R2018a on a 10th 

Gen Intel Core i5 laptop (8 GB RAM, 1.19 GHz base speed), ensuring accurate and efficient 

evaluations. The results demonstrated that EEFO consistently outperformed other algorithms, 

highlighting its effectiveness in solving real-world OPF challenges. 

7.4.1 Test System: IEEE 30-Bus 

The IEEE 30-bus standard test system utilized in this study includes six thermal generating 

units located at buses 1, 2, 5, 8, 11, and 13, with an active power demand of 283.4 MW and a 

reactive power load of 126.2 MVAR. Additionally, the system features four transformers with 

a ±10% tapping range situated on lines 6-9, 6-10, 4-12, and 28-27. The system also incorporates 

nine shunt VAR compensators at buses 10, 12, 15, 17, 20, 21, 23, 24, and 29, as described by 

Lee et al. (1985). The CV limits (lower and upper bounds), such as line data, bus data, and their 

initial settings for the IEEE 30-bus system on a 100 MVA base, were also taken from Lee et al. 

(1985) and Abou El Ela et al. (2010). Table 7.1 outlines the minimum and maximum permissible 

values for generator unit parameters along with their respective fuel cost coefficients.  

Table 7.1   Allowable generator unit parameters and fuel cost coefficients for IEEE 30-bus test system 

Bus 

No. 
Pmin Pmax Qmin Qmax 

a 
($/h) 

b 
($/h-

MW) 

c 

($/h-

MW) 

1 50 200 -20 200 0.00375 2 0 

2 20 80 -20 100 0.0175 1.75 0 

5 15 50 -15 80 0.0625 1 0 

8 10 35 -15 60 0.0083 3.25 0 

11 10 30 -10 50 0.025 3 0 

13 12 40 -15 60 0.025 3 0 

The considered IEEE 30-bus system is modified by integrating a constant power DG model 

at bus 30, identified as the optimal location for DG placement by Warid et al. (2016). Their 

sensitivity analysis identified bus 30 as the most suitable location for DG integration to minimize 

active power losses and generation costs. The integrated DG unit is a Type 1 unit capable of 

supplying both active and reactive power. It has a generation capacity of 9.1478 MW and 

operates at a 0.85 power factor, providing 5.6692 MVAR of reactive power. The EEFO 

algorithm is applied to further optimize the system, focusing on minimizing power losses and 

reducing generation costs. This Type-1 DG is, therefore, modelled as a PQ node, injecting both 

active and reactive power, in line with current operational practices and grid code requirements. 
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The best results reported in this paper were achieved using the EEFO method with a fixed 

population size of NPOP = 40 and a maximum iteration count of Tmax = 100 to solve the OPF 

problem. Table 7.2 contains the optimum parameter setting for the EEFO algorithm, identified 

through various trials. 

Table 7.2   Algorithm Parameters 

Parameter Value 

NPOP 40 

Tmax 100 

Resting factor,   0.5 

Hunting factor, β 0.5 

Curling factor, η 0.55 

7.4.2 Case Studies 

In this study, the DG unit with a capacity of 9.1478 MW is modelled as a constant power 

source to simplify the analysis. Although RES like wind and solar are inherently intermittent, a 

fixed output is assumed to focus on evaluating the impact of DG integration on key OPF 

objectives, such as FCM and PLM. This simplification allows for a focused assessment of the 

effectiveness of the EEFO algorithm in achieving optimized solutions. 

a) Case 1- OPF for FCM 

Scenario (i): OPF with no DG in IEEE 30-bus system 

The recently developed EEFO algorithm was applied to solve the OPF problem with the fuel 

cost as the objective function. The results obtained using this method, along with the optimal 

CV settings, are presented in the Table 7.3 below. Without incorporating DG, the EEFO 

algorithm successfully reduced the fuel cost from 902.0046 $/h to 800.0252 $/h within 100 

iterations, showcasing its efficient convergence capabilities as shown in Figure 7.3 (dashed 

line). Additionally, the voltage stability index was improved to 0.1301 p.u., representing an 

enhancement of approximately 24.45% over the base case. However, this improvement in 

voltage stability was accompanied by a marginal increase in power loss compared to the base 

case. To validate the effectiveness of EEFO, the results for Case 1 (Scenario (i)) were compared 

with the Jaya algorithm proposed by Warid et al. The EEFO algorithm achieved a lower fuel 

cost of 800.0252 $/h, compared to 800.479 $/h obtained by Jaya. Additionally, the power loss 

was reduced to 8.8634 MW with EEFO, compared to 9.0648 MW achieved by the Jaya 

algorithm. 
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Table 7.3   OPF solution with optimal CV settings for the IEEE 30-bus test system (Cases 1 & 2) 

CVs (p.u.) Min Max Base case 
Case-1 Case-2 

Scenario (i) Scenario (ii) Scenario (i) Scenario (ii) 

PG1 (slack) (MW) 50 200 99.24 1.7677 1.7337 0.5149 0.4227 

PG2 (MW) 20 80 80 0.48717 0.4725 0.8 0.79559 

PG5 (MW) 15 50 50 0.21521 0.21247 0.49993 0.5 

PG8 (MW) 10 35 20 0.21497 0.17392 0.3499 0.35 

PG11 (MW) 10 30 20 0.11754 0.11169 0.3 0.3 

PG13 (MW) 12 40 20 0.12001 0.12191 0.39998 0.39999 

VG1 0.95 1.1 1.05 1.0953 1.09183 1.07095 1.06755 

VG2 0.95 1.1 1.04 1.07677 1.07223 1.06658 1.06444 

VG5 0.95 1.1 1.01 1.04836 1.04147 1.04613 1.04204 

VG8 0.95 1.1 1.01 1.04891 1.0485 1.0537 1.05447 

VG11 0.95 1.1 1.05 1.09981 1.09387 1.07954 1.1 

VG13 0.95 1.1 1.05 1.05212 1.0666 1.06751 1.07513 

TS11 0.9 1.1 1.078 1.03816 1.05142 1.0854 1.03065 

TS12 0.9 1.1 1.069 0.95606 0.9022 0.9 0.95282 

TS15 0.9 1.1 1.032 0.96917 0.98702 1.00436 1.00489 

TS36 0.9 1.1 1.068 0.97861 0.987 0.9824 0.98292 

Qc10 0 5 0 0.03216 0.00017 0.04804 0.05 

Qc12 0 5 0 0.04406 0.04965 0.04997 0.00265 

Qc15 0 5 0 0.01274 0.00334 0.04993 0 

Qc17 0 5 0 0.05 0.02917 0.04787 0.04285 

Qc20 0 5 0 0.03741 0.04995 0.04735 0 

Qc21 0 5 0 0.04906 0.05 0.04944 0.05 

Qc23 0 5 0 0.02748 0.04999 0.03269 0.04995 

Qc24 0 5 0 0.04969 0.04932 0.05 0 

Qc29 0 5 0 0.02431 0.04964 0.02969 0.04831 

FCM ($/h) - - 902.0046 800.0252 766.6201 967.5437 943.9521 

VDM (p.u.) - - 1.1601 1.0525 1.1135 1.0923 0.9938 

VSI (p.u.) - - 0.1772 0.1301 0.0885 0.1285 0.0923 

PLM (MW) - - 5.8423 8.8634 8.3625 3.0728 2.5773 

ECM (ton/h) - - 0.2359 0.3343 0.3293 0.2066 0.2059 

Total Load (MW) - - 283.4 283.4 274.2522 283.4 274.2522 
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Fig. 7.3.   Convergence characteristics comparison of Case 1 using the EEFO - without DG and with DG 

scenarios 

Scenario (ii): OPF with DG unit in IEEE 30-bus system 

In this scenario, the EEFO algorithm was applied to solve the OPF problem incorporating 

one type 1 DG with the same FCM objective. As anticipated, placing the DG strategically at bus 

30 enabled the algorithm to reduce the fuel cost further to 766.6201 $/h, marking a significant 

improvement of approximately 4.18% compared to the scenario without DG and about 15% 

improvement from the base case. The convergence characteristics of the EEFO algorithm for 

both scenarios are illustrated in Fig. 7.3, with the curve (solid line) for the DG-integrated case 

achieving its optimized value in within 75 iterations, highlighting the algorithm’s rapid 

convergence capabilities. The smooth convergence curves and reduced fuel costs demonstrate 

the effectiveness of DG integration in enhancing the performance of the EEFO algorithm. 

Additionally, the incorporation of the DG unit significantly improved system stability. The L-

index decreased to 0.0885 p.u., marking a 31.94% improvement compared to the scenario 

without DG (0.1301 p.u.). Concurrently, power losses were reduced to 8.3625 MW, 

representing a 5.65% improvement over the scenario without DG. Moreover, the emission cost 

decreased from 0.3343 ton/h in the case without DG to 0.3293 ton/h with DG. This inclusion of 

DG contributed to a marginal but meaningful reduction in emissions, further demonstrating the 

effectiveness of the algorithm. 
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When compared with the Jaya algorithm by Warid et al. for DG placement at bus 30, the 

EEFO algorithm demonstrated superior performance. The fuel cost achieved by Jaya was 

768.039 $/h, whereas EEFO reduced it further to 766.6201 $/h. Similarly, the power loss was 

reduced from 8.4983 MW with Jaya to 8.3625 MW with EEFO. 

Figure 7.4 depicts the voltage profile provided by the proposed EEFO for Case 1, showing 

that voltage magnitudes at all buses remain within the specified limits in both the scenarios. 

 

 

Fig. 7.4.   Voltage profile for Case 1 - without DG and with DG scenarios 

 

b) Case 2: OPF for PLM 

Scenario (i): OPF with no DG in IEEE 30-bus system 

The primary objective in this case was to minimize active power losses (PLoss). The EEFO 

algorithm was applied to achieve the optimal solution, with the results summarized in Table 7.3. 

The EEFO algorithm proved to be highly effective in determining the optimal CV settings to 

minimize system losses. As a result, the real power losses were significantly reduced from 

5.8423 MW (base case) to 3.0728 MW, representing an improvement of approximately 47.40% 

without incorporating DG. The smooth convergence characteristics of the EEFO algorithm, as 

illustrated in Fig. 7.5 (dashed line), further highlight its efficiency in finding the optimal 

solution. 
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Scenario (ii): OPF with DG in IEEE 30-bus system 

In this case, the EEFO algorithm was utilized to solve the OPF problem considering PLM 

objective, incorporating one Type 1 DG unit. Placing the DG strategically at bus 30 resulted in 

a reduction of real power losses to 2.5773 MW, a generation fuel cost saving of approximately 

23.6 $/h, along with an impressive voltage stability index value of 0.0923 p.u. Figure 7.5 (solid 

line) demonstrates the rapid convergence of the EEFO algorithm towards the optimal solution 

within 100 iterations, showcasing its effectiveness in minimizing power losses with DG 

integration. 

In comparison to the Jaya algorithm proposed by Warid et al. for DG placement at bus 30, 

the EEFO algorithm achieved a 3.65% reduction in power losses, recording a value of 2.5773 

MW compared to Jaya's 2.67504 MW. Although, in this scenario, the Jaya algorithm 

demonstrated a slight advantage in minimizing fuel costs, the EEFO algorithm's superior 

capability in reducing power losses highlights its effectiveness in optimizing system operation. 

 

Fig. 7.5.   Convergence characteristics comparison of Case 1 using the EEFO - without DG and with DG 

scenarios 

Figure 7.6 depicts the voltage profile provided by the proposed EEFO for Case 2, showing 

that voltage magnitudes at all buses remain within the specified limits. In the with DG scenario, 

voltage magnitudes are predominantly closer to the reference value of 1.0 p.u. The addition of 
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DG results in a more uniform and stable voltage distribution across the network while adhering 

to operational constraints. 

 

Fig. 7.6.   Voltage profile for Case 2 - without DG and with DG scenarios 

7.5   Conclusion 

In this paper, the EEFO algorithm is successfully applied to solve the OPF problem in 

electrical power networks. The algorithm is tested both without and with the incorporation of 

DG in single-objective optimization cases. The primary objectives considered are generation 

cost reduction and active power loss minimization. The performance of the EEFO algorithm 

was validated using standard IEEE 30-bus test system.  

The results demonstrated that the EEFO algorithm effectively minimized fuel cost and power 

loss while adhering to system constraints, including generator limits, voltage profiles, and line 

flow limits. Compared with literature values, EEFO showcased competitive performance in 

achieving optimal solutions with fast convergence and enhanced system stability, especially 

with optimally integrated DG. 

These findings suggest that EEFO is a promising optimization technique for solving OPF 

problems in small-scale power systems. Its simplicity, solution quality, and computational 

efficiency make it a promising approach for practical power system applications. Future work 

could extend EEFO to multi-objective OPF (MOOPF) problems, large-scale systems, and 

probabilistic models to address uncertainties associated with RES, enhancing its practical 

applicability. 
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CHAPTER 8 

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

8.1   Conclusion 

This research presents innovative optimization techniques tailored to address the complex 

and multi-faceted challenges of OPF in modern power systems. Among the algorithms 

introduced and evaluated are the Hybrid Rao-2 Sine Cosine Algorithm (HRSCA), the 

Learning-based Sine Cosine Algorithm (L-SCA), the Coot Optimization Algorithm (COA), 

and the Electric Eel Foraging Optimization (EEFO) Algorithm. Each of these methods has 

demonstrated its effectiveness in solving key OPF objectives, such as fuel cost minimization 

(FCM), voltage deviation minimization (VDM), voltage stability enhancement (VSE) power 

loss minimization (PLM), and emission minimization (EM). The algorithms were rigorously 

tested on diverse power system networks, including IEEE 30-bus, 57-bus, 118-bus systems, 

and the Algerian 59-bus network, under various operating scenarios, including load growth and 

contingency events. 

The L-SCA addresses the limitations of the standard SCA by introducing a learner phase 

inspired by TLBO. This enhancement improves the algorithm's exploitation capabilities while 

maintaining population diversity. L-SCA has demonstrated significant improvements in 

solution quality, convergence speed, and scalability, making it highly effective for solving 

complex OPF problems across small-, medium-, and large-scale networks. 

Similarly, the Hybrid Rao-2 Sine Cosine Algorithm (HRSCA) demonstrates exceptional 

performance by effectively balancing exploration and exploitation dynamics. By integrating 

the global exploration capability of the SCA with the convergence efficiency of the Rao-2 

Algorithm, HRSCA achieves faster convergence and delivers high-quality solutions. This 

hybrid approach proves effective in both single-objective and multi-objective optimization 

scenarios. Extensive case studies, including scenarios involving load growth and contingency 

conditions, underline the algorithm’s robustness and adaptability. 

Additionally, the COA, inspired by the cooperative foraging behaviour of coot birds, has 

proven to be a robust and adaptive solution for OPF problems. The COA successfully handles 

the non-linear, non-convex nature of OPF by maintaining population diversity and preventing 

premature convergence. Its effectiveness has been demonstrated specifically on the 30-bus 

system. 
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The EEFO algorithm, inspired by the unique electrical behaviour of eels, stands out for its 

capability to adapt dynamically to complex and constrained optimization landscapes. By 

mimicking the electrical discharges and movement strategies of eels, this algorithm efficiently 

balances exploration and exploitation, ensuring robust convergence to high-quality solutions. 

The electric eel algorithm, specifically, was applied to the IEEE 30-bus system with two key 

objective functions: generation cost minimization (FCM objective) and real power loss 

reduction (PLM objective). By optimizing control variables and incorporating the impact of 

DG, the algorithm demonstrated significant improvements in operational efficiency. The results 

highlight reduced fuel costs and lower power losses making the Electric EEL algorithm a 

promising tool for modern OPF challenges with RER integration. 

The ability of the algorithms like L-SCA and HRSCA to optimize multiple objectives while 

satisfying system constraints positions them as valuable tools for power system optimization. 

The results obtained from this research highlight the practicality and scalability of the proposed 

algorithms in addressing real-world challenges in power systems. Collectively, these 

approaches offer reliable and efficient solutions for modern power system challenges, 

demonstrating significant improvements over conventional methods. Significant 

improvements were observed in reducing fuel costs, emissions, and power losses while 

maintaining voltage stability and ensuring operational security under normal and critical 

conditions. 

8.2   Future Scope 

The field of OPF continues to evolve with the introduction of advanced computational 

algorithms and the integration of renewable energy resources. The promising results obtained 

in this research open up exciting avenues for future exploration and development: 

8.2.1 Incorporation of Renewable Energy Sources (RES) 

The integration of RES into OPF formulations offers opportunities to enhance the 

sustainability and resilience of power systems. Future research can focus on developing 

methods to better incorporate RES, considering their intermittent and variable nature. 

Additionally, the impact of uncertainties in RES generation on the performance of the proposed 

algorithms can be investigated to improve their robustness and reliability while ensuring grid 

stability. Such studies will contribute to the development of more adaptive and sustainable 

power system operations. 
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8.2.2 Real-time Applications 

Real-time implementation of OPF can play a key role in improving the dynamic control and 

optimization of power systems. Future work can focus on developing algorithms that can 

quickly provide solutions to meet the requirements of real-time operations. Additionally, 

advanced communication technologies can be explored to ensure smooth and efficient data 

exchange between control centres and distributed energy resources (DERs). This will help in 

better coordination, faster decision-making, and improved use of resources in modern, 

decentralized power systems 

8.2.3 Multi-Objective Optimization 

The application of multi-objective optimization techniques offers significant potential for 

addressing conflicting objectives in power system operation, such as minimizing operational 

costs while maximizing renewable energy penetration. Future work can focus on developing 

and implementing advanced optimization frameworks capable of balancing economic, 

environmental, and social considerations particularly with RER integration. These frameworks 

should incorporate strategies to address trade-offs between cost-effectiveness, environmental 

sustainability, and grid reliability. 

8.2.4. Hybrid Approaches 

This thesis has demonstrated the effectiveness of a hybrid approach in specific OPF 

scenarios, but further research is needed to unlock their full potential. Future directions may 

include: 

• Advanced Hybrid Frameworks 

Developing more advanced hybrid frameworks that effectively combine the strengths of 

multiple algorithms, such as integrating metaheuristics with traditional optimization 

techniques. Additionally, ML-based methods can be explored to adaptively select and 

combine algorithms based on the characteristics of specific OPF problems, improving 

performance and flexibility. 

• Real-Time Applications 

Extending hybrid approaches for real-time OPF to handle dynamic power system 

conditions, such as load variations and fluctuating renewable energy generation. The focus 

can be on designing efficient algorithms capable of adapting quickly to real-time changes 

and providing optimal solutions within limited time frames. 

• Large-Scale Systems 
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Investigating the scalability of hybrid approaches for application in large-scale power 

systems. Future work can include developing parallel and distributed implementations to 

enhance computational efficiency and address the complexities of larger optimization 

problems effectively. 

8.2.5. Advanced Power System Models 

Incorporating more detailed power system models into OPF formulations can enhance the 

accuracy and reliability of solutions. Future research can focus on integrating dynamic models 

and performing transient stability analysis to better capture the real-world behaviour of power 

systems. 

Additionally, the influence of emerging technologies, such as Flexible AC Transmission 

Systems (FACTS) and energy storage systems, on OPF should be explored. FACTS devices 

provide greater flexibility and control over power flows, voltage levels, and system stability, 

enabling more precise management of the power grid. Energy storage systems, on the other 

hand, offer the ability to store excess energy and dispatch it during peak demand periods, 

improving overall system efficiency and reliability. These technologies can provide greater 

flexibility and control in system operations, and their integration into OPF models can further 

optimize performance under diverse operating conditions. 

8.2.6. Exploration of Novel Objective Functions 

While traditional OPF objectives like cost minimization, emission reduction, and power loss 

minimization are crucial, there is a growing need to address more customer-centric metrics. 

Future research can shift towards including reliability indices, which measure the consistency 

and dependability of the power supply, ensuring that customers experience fewer interruptions 

and better service quality. Additionally, power quality metrics, such as frequency stability, 

transient response, harmonic distortion, etc., can be incorporated to ensure that the electricity 

delivered is not only reliable but also meets high standards of quality, preventing equipment 

damage and improving overall customer satisfaction. 

Furthermore, real-time pricing optimization can be explored to better align electricity prices 

with supply and demand fluctuations, encouraging more efficient energy use. By integrating 

these metrics into OPF formulations, the focus can move towards enhancing the end-user 

experience, promoting smarter energy consumption patterns, and supporting the grid's stability 

through dynamic pricing strategies. 

Integrating social and environmental factors, such as public health benefits and 

sustainability, can lead to more holistic power system management. This approach ensures that 
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power systems are not only efficient and reliable but also aligned with societal and 

environmental goals. 

8.3   Social Impact 

The optimization techniques developed in this research have profound implications for 

societal well-being and contribute significantly to addressing key challenges in the energy 

sector.  

8.3.1 Economic Impact 

The implementation of the L-SCA and HRSCA demonstrates significant reductions in fuel 

costs and power losses. These cost efficiencies translate into substantial operational savings for 

utilities, which can ultimately lower energy prices for consumers. By making energy more 

affordable, this research contributes to the vital goal of ensuring reliable and accessible power 

for a growing population. 

8.3.2 Environmental Sustainability 

From a social perspective, the proposed algorithms contribute to global sustainability efforts 

by minimizing emissions and facilitating the integration of renewable energy sources into the 

power systems. These advancements align with international efforts to combat climate change 

and achieve carbon neutrality. By reducing the reliance on traditional, carbon-intensive energy 

generation methods, the research contributes to preserving the environment for future 

generations. 

8.3.3 Grid Stability and Resilience 

The proposed optimization techniques enhance grid stability by improving voltage stability, 

loading margin stability, and overall system security. These improvements make the power grid 

more resilient to blackouts and voltage collapses, especially under high-load conditions or 

contingency scenarios. This ensures a reliable energy supply, which is crucial for maintaining 

societal functions and economic activities, thereby bolstering community resilience against 

energy-related challenges. 

8.3.4 Advancing Smart Grids 

The research is highly relevant to next-generation power systems, particularly smart grids. 

The optimization strategies introduced in this study facilitate the efficient operation of 

advanced technologies, including electric vehicles, energy storage systems, and distributed 

energy resources. These advancements are critical for modernizing the energy sector and 

fostering the growth of more adaptive and intelligent grids. 
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8.3.5 Global Energy Transition 

On a global scale, the methodologies developed and discussed in this thesis offer a practical 

framework for addressing the dual challenges of rising energy demand and environmental 

conservation. This framework facilitates a transition towards low-carbon energy solutions, 

supporting international sustainability goals and contributing to a healthier, more sustainable 

society. 

The adaptive strategies implemented in L-SCA, along with the hybridization techniques 

introduced in HRSCA, offer substantial potential for advancing optimization methodologies. 

L-SCA, as an enhanced version of the SCA, and HRSCA, a hybrid approach combining the 

strengths of SCA and the Rao-2 algorithm, demonstrate exceptional capability in addressing 

complex optimization challenges. While primarily applied to power systems in this research, 

these methodologies hold promise for broader applications across various engineering and 

industrial domains. By providing scalable and robust solutions, they open up new possibilities 

for addressing complex optimization challenges in diverse fields. 

In conclusion, the optimization techniques developed in this research not only tackle the 

current challenges in power system management but also lay the groundwork for a sustainable, 

efficient, and socially responsible energy future. These contributions play a key role in the 

development of smarter, greener, and more adaptive energy systems, supporting the global 

transition toward a sustainable and low-carbon energy landscape. 
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Appendix 

Table A.1   Summary of systems under study 

Characteristics  
IEEE 30  IEEE 118 

Quantity Details  Quantity Details 

Buses 30 [59]  118 [65] 

Branches  41 [59]  186 [65] 

Generators 6 
Buses:1 (swing), 2, 5, 

8, 11 and 13 

 

54 

Buses: 1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 26, 27, 

31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 61, 

62, 65, 66, 69 (swing), 70, 72, 73, 74, 76, 77, 80, 

85, 87, 89, 90, 91, 92, 99, 100, 103, 104, 105, 107, 

110, 111, 112, 113 and 116 

Shunt VAR 

compensators 
9 

Buses: 10, 12, 15, 17, 

20, 21, 23, 24 and 29 

 
14 

Buses: 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 

105, 107 and 110 

Transformers 4 
Branches: 11, 12, 15 

and 36 

 
9 Branches: 8, 32, 36, 51, 93, 95, 102, 107 and 127 

Control variables 24 ---  130 --- 

Load volt. limits [0.95-1.05] p.u  [0.94-1.06] p.u. 

Gen. volt. limits [0.95-1.1] p.u.  [0.94-1.06] p.u. 

Tap-setting limits [0.9-1.1] p.u.  [0.9-1.1] p.u. 

Connected load 283.4 MW, 126.2 MVAR  4242 MW, 1438 MVAR 

 

Table A.2   Branch power flow in Case 6 with PD = 421.6014 MW 

Branch 

No.  

(NL)  

 

From   

ith 

bus 

To jth 

bus 

PQ sent PQ received 

  max

LineS

(MVA) 

Branch 

No.  

(NL)  

 

From   

ith 

bus 

To jth 

bus 

PQ sent PQ received 
  max

LineS  

(MVA) 

1 1-2 1.2987 - 0.1828i -1.2893 + 0.2350i 130 22 15-18 0.0967 + 0.0122i -0.0957 - 0.0103i 16 
2 1-3 0.6836 - 0.0012i -0.6662 + 0.0486i 130 23 18-19 0.0481 - 0.0031i -0.0480 + 0.0034i 16 
3 2-4 0.4121 - 0.0256i -0.4039 + 0.0291i 65 24 19-20 -0.0933 - 0.0540i 0.0937 + 0.0547i 32 
4 3-4 0.6305 - 0.0665i -0.6259 + 0.0748i 130 25 10-20 0.1279 + 0.0189i -0.1264 - 0.0157i 32 
5 2-5 0.8018 + 0.0059i -0.7761 + 0.0777i 130 26 10-17 0.0642 + 0.0469i -0.0640 - 0.0464i 32 
6 2-6 0.5526 - 0.0161i -0.5376 + 0.0399i 65 27 10-21 0.2347 + 0.0902i -0.2327 - 0.0859i 32 
7 4-6 0.6230 + 0.0249i -0.6190 - 0.0160i 90 28 10-22 0.1127 + 0.0375i -0.1118 - 0.0356i 32 
8 5-7 -0.1252 + 0.1384i 0.1267 - 0.1460i 70 29 21-22 -0.0277 - 0.0324i 0.0277 + 0.0325i 32 
9 6-7 0.4712 + 0.0228i -0.4659 - 0.0162i 130 30 15-23 0.0861 - 0.0070i -0.0854 + 0.0084i 16 
10 6-8 0.1177 - 0.1114i -0.1174 + 0.1073i 32 31 22-24 0.0841 + 0.0031i -0.0834 - 0.0019i 16 
11 6-9 0.1538 - 0.3123i -0.1538 + 0.3389i 65 32 23-24 0.0378 + 0.0178i -0.0375 - 0.0174i 16 
12 6-10 0.1720 + 0.2913i -0.1720 - 0.2457i 32 33 24-25 -0.0085 - 0.0307i 0.0087 + 0.0310i 16 
13 9-11 -0.3000 - 0.2877i 0.3000 + 0.3208i 65 34 25-26 0.0530 + 0.0357i -0.0521 - 0.0342i 16 
14 9-10 0.4538 - 0.0512i -0.4538 + 0.0724i 65 35 25-27 -0.0617 - 0.0667i 0.0626 + 0.0683i 16 
15 4-12 0.2938 - 0.1526i -0.2938 + 0.1797i 65 36 28-27 0.2618 + 0.0972i -0.2618 - 0.0711i 65 
16 12-13 -0.4000 - 0.2927i 0.4000 + 0.3233i 65 37 27-29 0.0932 - 0.0097i -0.0915 + 0.0130i 16 
17 12-14 0.1178 + 0.0140i -0.1163 - 0.0108i 32 38 27-30 0.1060 + 0.0125i -0.1027 - 0.0064i 16 
18 12-15 0.2856 + 0.0163i -0.2808 - 0.0068i 32 39 29-30 0.0558 + 0.0234i -0.0550 - 0.0219i 16 
19 12-16 0.1237 + 0.0203i -0.1224 - 0.0175i 32 40 8-28 0.0211 - 0.0162i -0.0208 - 0.0077i 32 
20 14-15 0.0241 - 0.0130i -0.0239 + 0.0132i 16 41 6-28 0.2419 + 0.0858i -0.2409 - 0.0895i 32 
21 16-17 0.0703 - 0.0093i -0.0699 + 0.0102i 16      
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Table A.3   Allowable generator unit parameters and fuel cost coefficients for IEEE 118-bus test system 

Generators 

(G) 

Bus 

No. 

Pmin 

(MW) 

Pmax 

(MW) 

Qmin 

(MVAR) 

Qmax 

(MVAR) 

a  

($/h) 

b  

($/h-MW) 

c  

($/h-MW2) 

G1 10 50 500 -147 200 0 1.818 0.0018 

G2 12 10 90 -35 120 0 5.405 0.0054 

G3 25 30 300 -47 140 0 3.215 0.0032 

G4 26 40 400 -1000 1000 0 2.415 0.0024 

G5 31 0 10 -300 300 0 9.346 0.0093 

G6 46 0 23 -100 100 0 3.743 0.0031 

G7 49 30 240 -85 210 0 3.589 0.0033 

G8 69 20 200 -60 180 0 2.612 0.0024 

G9 61 20 200 -60 180 0 2.453 0.0023 

G10 65 90 600 -67 200 0 2.21 0.002 

G11 66 90 600 -67 200 0 2.21 0.002 

G12 69 100 900 -300 300 0 1.242 0.0014 

G13 80 50 600 -165 280 0 9.95 0.0096 

G14 87 0 5 -100 1000 0 1.951 0.0019 

G15 89 50 700 -210 300 0 2.841 0.0028 

G16 100 50 300 -210 300 0 2.841 0.0028 

G17 103 0 50 -15 40 0 2.841 0.0028 

G18 111 0 40 -100 100 0 7.353 0.0074 

G19 111 0 40 -100 100 0 7.353 0.0074 
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