
i

InPermHardroid: Android Malware Detection using Intents,

Permissions and Hardware Components

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF SCIENCE(M.Sc.)

IN

MATHEMATICS

Submitted By:

HIMANSHI

(23/MSCMAT/80)

Under the supervision of

PROF. ANSHUL ARORA

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY, 2023

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Himanshi, Roll No. 23/MSCMAT/80 student of Master in Science (Mathematics),

declaring that the project’s dissertation titled InPermHardroid: Android Malware

Detection using Intents, Permissions and Hardware Components is original and not

copied from any source without proper citation and is presented by me to the Department

of Applied Mathematics, Delhi Technological University, Delhi, in partial fulfilment of

the requirement for the award of the degree of Master of Science in Mathematics, is

original and not copied from any source without proper citation. This work has not

previously formed the basis for the award of any Degree, Diploma, Associateship,

Fellowship or other similar title or recognition.

Place: Delhi

Date: May 26, 2025
 Himanshi

23/MSCMAT/80

iii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby attest that the project dissertation InPermHardroid: Android Malware Detection

using Intents, Permissions and Hardware Components submitted by Himanshi, Roll No.

23/MSCMAT/80 and of Department of Applied Mathematics, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree of

Masters of Science in Mathematics, is a record of the project work carried out by the

students under my supervision. To the best of my knowledge, this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi

Date: May 26, 2025

Prof. Anshul Arora

Supervisor

iv

ACKNOWLEDGEMENT

My supervisor, Prof. Anshul Arora of the Department of Applied Mathematics at

Delhi Technological University, has my sincere gratitude for his meticulous guidance,

profound expertise, constructive criticism, attentive listening, and amiable demeanor have

been invaluable throughout the process of composing this report. I am eternally grateful

for his benevolent and supportive approach, as well as his perceptive counsel, which

played a pivotal role in the successful culmination of my project. Furthermore, I would

like to express my appreciation to all my classmates who have played a pivotal role in

aiding me to complete this endeavor by offering assistance and facilitating the exchange

of pertinent information.

Himanshi

23/MSCMAT/80

v

ABSTRACT

As mobile devices continue to evolve and become integral to daily life, the risks posed by

malicious software are increasing. Cybercriminals continuously develop more sophisticated

malware, bypassing conventional security mechanisms and compromising user privacy. To

counter these threats, it is crucial to establish a highly efficient and precise malware detection

framework. This study introduces a creative approach for malware identification and classification.

The framework employs Fisher’s P-test, a statistical method that isolates the most distinguishing

features between benign and malicious applications, eliminating irrelevant attributes early in the

process. This initial refinement improves efficiency for subsequent classification. Following this,

the Relief algorithm further enhances the data set by identifying the most relevant attributes that

contribute significantly to malware detection. The integration of these two techniques results in an

optimized dataset, reducing complexity while improving classification accuracy.

Once the features are refined, machine learning models analyze the data to detect and categorize

malware. Among the classifiers evaluated, Random Forest proves to be the most effective, utilizing

an ensemble of decision trees to enhance predictive accuracy while minimizing overfitting. When

applied to a dataset combining permissions, intents, and hardware components, the Random Forest

classifier achieves an impressive precision of approximately 97%, demonstrating the effectiveness

of a multi-dimensional approach in malware detection.

This research makes substantial contributions to the field of mobile security by designing a more

precise and interpretable malware detection system. As threats targeting mobile platforms continue

to grow, integrating advanced security techniques is essential for protecting user data and privacy.

This study provides valuable insights that pave the way for advancing machine learning-driven

cybersecurity strategies, strengthening mobile ecosystems against emerging cyber threats.

Index Terms—Mobile Malware, Android Security, Fisher’s P test, Relief Algorithm, Feature

Selection

.

vi

Contents

Candidate’s Declaration ii

Certificate iii

Acknowledgement iv

Abstract v

1. Introduction

1.1 Android OS………………………………………………………………………1

1.2 Security issues in Android OS…………………………………………………..2

1.3 Detection Analysis………………………………………………………………4

1.4 Motivation………………………………………………………………………5

1.5 Research Contributions…………………………………………………………6

1.6 Thesis Framework………………………………………………………………7

2. Prerequisites of Permission, Intent and Hardware

2.1 Overview of Permissions……………………………………………………….8

2.2 Overview of Intent………………………………………………………………8

2.3 Overview of Hardware…………………………………………………………..8

3. Related Work

3.1 Literature Analysis……………………………………………………………...9

3.2 Merits and Demerits of Existing work………………………………………….11

4. Methodology

4.1 Data Collection…………………………………………………………………13

vii

4.2 Data Preprocessing……………………………………………………………..13

4.3 Detection with Machine Learning techniques………………………………….17

5. Result

5.1 Permission Evaluation………………………………………………………….20

5.2 Intent Evaluation……………………………………………………………….20

5.3 Hardware Evaluation…………………………………………………………..21

5.4 Permission and Intent Evaluation……………………………………………...22

5.5 Permission and Hardware Evaluation…………………………………………22

5.6 Intent and Hardware Evaluation………………………………………………22

5.7 Permission, Intent and Hardware Evaluation…………………………………23

6. Conclusion

6.1 Thesis Summary………………………………………………………………..24

6.2 Future Work…………………………………………………………………….25

 References

viii

List of Tables

4.2 Fishers p test……………………………………………………………………..15

4.2 Feature Reduction……………………………………………………………….16

5.1 Detection Results for permission evaluation…………………………………….20

5.2 Detection Results for intent evaluation………………………………………….21

5.3 Detection Results for hardware evaluation……………………………………...21

5.4 Detection Results for permission and intent evaluation…………………………22

5.5 Detection Results for permission and hardware evaluation…………………......22

5.6 Detection Results for intent and hardware evaluation…………………………..23

5.7 Detection Results for permission, intent and hardware evaluation……………...23

1

Chapter 1: Introduction

1.1 Android OS

Android OS has become a go-to operating system, with a focus on touchscreen

devices. Built on the Linux kernel, it operates within an open-source framework,

giving device makers and developers around the globe the freedom to tweak and

enhance the system to fit various needs and specifications. This flexibility, paired

with its robust features, has made Android the top mobile operating system

worldwide.

One of the standout features of Android is its user-friendly interface, designed for

easy navigation. It boasts customizable home screens, interactive widgets, handy

notifications, and smooth gesture controls, all of which create a delightful user

experience. Plus, Android supports multitasking, letting users switch between apps

with ease, and its navigation system keeps getting better with each update,

enhancing accessibility and usability.

The success of Android can be largely credited to its vast application environment.

The Google Play Store is home to millions of apps spanning a wide array of

categories, from games and productivity tools to social networking and educational

resources. Developers mainly use Kotlin and Java, along with a comprehensive

Software Development Kit (SDK) and powerful development tools, to craft a

diverse range of high-quality applications that elevate the user experience.

Additionally, Android offers significant customization options for both

manufacturers and users. People can personalize their devices with various custom

launchers, themes, wallpapers, and icon packs. This level of personalization allows

users to tailor their devices to their individual tastes and needs, making Android

especially versatile compared to other operating systems.

2

1.2 Security Issues in Android OS

Android OS is one of the popular mobile operating systems out there, but it

certainly has its fair share of security hurdles. These issues arise from its open-

source design, the wide variety of devices it operates on, and the enormous range of

apps available. Because of this, Android devices often find themselves in the

crosshairs of different types of malware and cyber threats, which can jeopardize user

data and the overall integrity of the device.

• Malware Threats: Android devices are especially susceptible to various types of

malware, which can have serious consequences for users. Here are a few of the

most prevalent forms of malware:

o SMS Trojans: Unidentified apps may secretly send messages or make

calls without the user's awareness, potentially compromising security.

This not only increases costs for users but also poses risks of privacy

breaches and data theft.

o Advertising Modules: Some apps come packed with advertising modules

that bombard users with intrusive ads. These ads can redirect users to

harmful websites or encourage them to download more malicious

software, putting device security at risk.

• Exploits for Root Access: Another major security issue is the risk of attackers

exploiting vulnerabilities in the Android OS to gain root access. This level of

access allows malicious individuals to tamper with system files and settings,

leading to serious repercussions, such as:

o Data Theft: Once an attacker gains root access, they can dig into

sensitive information stored on the device, including personal messages,

contacts, and financial details.

o Device Compromise: With root access, attackers can install additional

malware, alter system settings, or even make the device unusable.

• Outdated Software: A significant number of Android devices don’t receive

timely security updates, leaving them exposed to known vulnerabilities. Many

manufacturers and carriers often overlook updates for older devices, which can

result in:

3

o Increased Vulnerability: Devices that are running outdated software are

more susceptible to attacks, as hackers can exploit known vulnerabilities.

o User Responsibility: It is important for users to regularly check for

updates and install them without delay to reduce these risks.

Unfortunately, many people often overlook this crucial part of keeping

their devices in good shape.

• Risks from Third-Party Apps: One of the great things about Android is the

ability to install apps from third-party sources, but this also brings significant

security concerns. Users who download apps from untrustworthy sources might

unintentionally introduce malware to their devices. To help protect against

harmful software, users should:

o Stick to Reputable Sources: By downloading apps only from the Google

Play Store or other trusted app stores, users can greatly lower the chances

of malware infections.

o Read Reviews and Ratings: Before hitting that install button, it's wise to

check out reviews and ratings to assess the app's reliability and safety.

• Insecure Network Connections: Android devices frequently connect to

unsecured Wi-Fi networks, which can make them exposed to various attacks,

including man in the middle attacks. These attacks can intercept data being

transmitted over the network, leading to:

o Data Breaches: Sensitive information like login credentials and personal

data can be captured by attackers.

o Using a VPN: A Virtual Private Network (VPN) can help secure data

transmission over public networks, adding an extra layer of protection

against potential threats.

• Permissions Mismanagement: Many users tend to give too many permissions to

apps during installation, which can lead to unauthorized access to sensitive

information. This mismanagement can result in:

o Privacy Violations: Apps might access personal information such as

contacts, messages, and location data without the user's clear consent.

o Reviewing Permissions: It is really important for users to take the time to

regularly check app permissions and only allow access to what’s

absolutely necessary for the app to work. This simple habit can go a long

way in keeping your personal data safe from unauthorized access.

4

1.3 Detection Analysis

As Android OS continues to lead the charge in the mobile operating system

arena, the importance of robust security measures is more crucial than ever. A vital

aspect of Android security is detection analysis, which focuses on spotting and

addressing potential threats to safeguard user data. This analysis employs a variety

of techniques and strategies aimed at uncovering malware, vulnerabilities, and

unauthorized access. The detection methods in Android security can be grouped into

several categories:

• Signature-Based Detection: This classic approach relies on known malware

patterns or signatures. Security software scans apps and files for these signatures

to pinpoint malicious content. While it works well against familiar threats, it

often falls short when faced with new or altered malware that doesn’t match

existing signatures.

• Heuristic-Based Detection: Heuristic analysis takes things a step further by

looking at how applications behave. This method assesses the actions of an app

to see if they raise any red flags or suggest malicious intent. For instance, an app

that asks for too many permissions or tries to access sensitive data without a

good reason might be marked as potentially harmful.

• Behavioral Detection: Much like heuristic detection, behavioral detection keeps

an eye on how applications behave while they’re running. It examines how an

app interacts with the system and other apps, searching for unusual activities that

could indicate malicious behavior.

• Anomaly Detection: This technique sets a standard for what normal behavior

looks like for applications and the operating system. Any significant deviation

from this norm is flagged for further scrutiny. Anomaly detection is particularly

useful for spotting odd patterns that might signal a security breach or malware

infection.

• Machine Learning and AI: The way machine learning and artificial intelligence

have been woven into detection systems has truly changed the game for Android

security. These smart technologies can shift through massive amounts of data to

spot patterns and foresee potential threats. Plus, machine learning models are

designed to adapt and get better over time, which boosts their capability to catch

new and evolving threats.

5

1.4 Motivation

 The speedy rise of mobile technology, especially the Android operating

system, has completely changed the way we interact with digital services. With

Android holding about 85% of the global mobile OS market share, it is become an

essential tool for everything from communication to banking and social networking.

However, this widespread use has also caught the eye of cybercriminals who take

advantage of weaknesses in the platform to spread various types of malware like

spyware, trojans, and ransomware. These harmful apps can seriously threaten user

privacy and security, leading to financial losses and data breaches. As mobile apps

increasingly manage sensitive transactions and personal data, the demand for

effective malware detection solutions has never been more urgent.

 In light of this, the research being proposed aims to create a strong and

understandable malware detection framework that merges advanced feature

selection techniques with machine learning algorithms. By using Fisher’s P-test and

the Relief algorithm, the study intends to pinpoint statistically significant and

relevant attributes from Android applications. This combined feature selection

method not only boosts the accuracy of malware detection systems but also cuts

down on computational demands, making the detection process more efficient.

Being able to refine the feature set is vital for enhancing model performance and

ensuring that possible threats are recognized promptly.

 The results of this research are set to make a meaningful impact on the world of

Android security by shedding light on effective strategies for detecting malware.

Early findings suggest that the proposed model, especially when using the Random

Forest classifier, can reach impressive accuracy levels, showcasing its promise for

real-time identification of harmful applications. Additionally, this work lays the

groundwork for future studies that will delve into more static features and

sophisticated detection techniques. By tackling the challenges posed by new threats,

this thesis aspires to foster a safer mobile environment for users everywhere,

ultimately boosting the overall security of mobile applications.

6

1.5 Research Contributions

The study presents an innovative feature selection method that capably merges

Fisher’s P-Test with the Relief Test. This combined approach is tailored to pinpoint

the best data set for detecting malware. By harnessing the strengths of both

statistical techniques, the research achieves several key results:

• Improved Detection Accuracy: The fusion of Fisher’s P-Test, which evaluates

the significance of features based on their ability to differentiate between classes,

with the Relief Test, which assesses the relevance of features based on their

impact on the classification task, leads to a more precise identification of

harmful applications. This dual strategy ensures that only the most relevant

features are kept, thus boosting the overall accuracy of the detection system.

• Decreased Computational Load: By streamlining the feature set, the proposed

method not only enhances detection accuracy but also significantly cuts down on

the computational resources needed for processing. This is especially crucial in

real-time malware detection scenarios, where speed and efficiency are vital.

Therefore, this hybrid feature selection approach offers a solid framework for

enhancing the efficiency of malware detection systems without sacrificing

performance.

• Extensive Dataset Utilization: This research taps into a rich dataset that

highlights the static features of Android apps, such as permissions, hardware and

intents. This thorough dataset is vital for a few key reasons:

o Diverse Feature Representation: By including a broad array of features,

the study guarantees that the model is trained on a well-rounded sample

of Android applications. This variety is crucial for building a strong

malware detection system that can adapt well to new, unseen apps.

o Successful Feature Reduction: Using techniques like the Relief Test and

Fisher’s Exact Test, the original set of features is streamlined effectively.

This trimming down results in a more efficient and lightweight malware

detection system, which has been validated on a large dataset of over

112,000 Android applications. The substantial sample size boosts the

reliability and relevance of the findings, making sure that the proposed

feature selection method is not just theoretically sound but also practical

in real-world scenarios.

7

1.6 Thesis Framework

The layout of this thesis report is organized into six distinct chapters:

Chapter 2 provides a comprehensive analysis of the key components related to

permissions, intents, and hardware in Android.

Chapter 3 presents the literature work that has been done in the field of Android

malware detection, focusing on the use of intent, hardware and permissions

components as well as their combinations to identify malicious applications.

Chapter 4 presents the proposed approach and methodology for the work.

Chapter 5 presents the detailed results of the evaluations conducted in the

Android malware detection framework.

Chapter 6 provides a comprehensive summary of the thesis and discusses potential

directions for future research.

References

8

Chapter 2: Prerequisites about

Permissions, Intents and

Hardware Components

To really get a solid grasp of the upcoming material, it is important to first

understand the key foundational concepts. Building this knowledge base will set you

up with the right framework to effectively tackle the discussions that follow.

2.1 Overview of Permissions

In the Android operating system, permissions are a vital security feature that controls

how apps access sensitive data and system resources. Essentially, permissions are

declarations made by developers in the app's manifest file, outlining what capabilities

the app needs to operate correctly. This system is designed to safeguard user privacy,

ensuring that apps cannot access sensitive information without the user’s explicit

consent. As mobile applications increasingly deal with personal data like contacts,

location, and financial details, understanding these permission components is crucial

for both developers and users.

2.2 Overview of Intents

In the Android operating system, intents are a key element that enables communiqué

between dissimilar parts of an application and even between dissimilar applications.

An intent acts as a messaging object that allows components to request actions from

one another, such as starting an activity, sending a broadcast, or initiating a service.

Intents are essential to the Android architecture, allowing developers to create active

and interactive applications that can respond to user actions and system events.

2.3 Overview of Hardware

In the world of Android, hardware components are the physical devices and sensors

that come together in mobile gadgets like smartphones and tablets. These

components are essential for boosting the functionality of apps by tapping into

various device capabilities. Think of hardware components like cameras,

microphones, GPS sensors, accelerometers, and gyroscopes. By making the most of

these features, developers can craft engaging and interactive applications that truly

enhance the user experience.

9

Chapter 3: Related work

3.1 Literature Analysis

In this section, we take a closer look at the various approaches that have been

suggested in the literature for detecting Android malware. A few studies, like those

referenced in [12] and [13], have introduced techniques that utilize feature selection

methods followed by different base classifiers to boost detection rates. Arora et al.

[14] and [15] put forward two models aimed at identifying malicious apps based on

network traffic analysis. Meanwhile, the authors of [1], [16], and [20] focused on

analyzing permissions and API calls as a means of detecting malware. Additionally,

the team behind [2] developed a malware detection system called Significant

Permission Identification (SigPID), which employs a three-level pruning process to

mine permission data and pinpoint the most crucial permissions that can effectively

differentiate between benign and malicious applications. Akbar [3] assessed an app's

maliciousness by examining the use of suspicious permissions and key features to

achieve high accuracy.

Zhao Xiaoyan [4] utilized PCA and SVM to sort the gathered data into

benign or malicious categories. They also suggested that focusing solely on

permission features, combined with machine learning techniques, can lead to

impressive detection outcomes. The authors in [5] pointed out that intent serves as a

semantically rich feature, effectively capturing the intentions behind malware. M. W.

Afridi [6] introduced the idea of using the intent generated by applications as a way

to pinpoint malicious behavior. In [22], the authors examined 17 different supervised

learning methods to conduct a comparative analysis of machine classifiers. M.

Kumaran and W. Li [7] demonstrated that a Cubic SVM classifier achieves high

accuracy by integrating both permission and intent. The authors in [8] employed

Information Gain to rank permission and intent, aiming to identify the optimal set for

detecting malware with greater precision. The authors in [9] explored how

combining permission and intent filters can help differentiate between malware and

benign apps by analyzing their respective patterns. In [10], the authors introduced a

system for classifying Android applications based on the permissions they utilize.

Lastly, the authors in [11] highlighted the potential of hardware-based approaches,

10

using machine learning classifiers that leverage Hardware Performance Counters

(HPC) for real-time malware detection..

Y. Lu [17] introduced an advanced malware detection technique that utilizes

machine learning methods, enhancing Naïve Bayesian Classification with Chi-

Square filtering. In [24], the authors implemented a KNN-based Relief algorithm for

feature selection, while malware detection was carried out using their optimized

SVM algorithm, achieving a True Positive Rate exceeding 0.7. Sharfah Ratibah Tuan

Mat [18] developed an Android malware detection system that focuses on permission

features through Bayesian classification. The authors in [19] provided a

comprehensive overview of the dataset characteristics, along with the processes for

feature extraction and selection. Shabtai [23] proposed a Host-based Intrusion

Detection System that continuously monitors various features and events from

mobile devices, applying Machine Learning techniques to classify malicious

applications. Additionally, the authors in [21] utilized feature extraction

(AppExtractor) and innovative selection algorithms (FrequenSel) to pinpoint

distinguishing features for effective malware detection..

C. P. Chenet [25] explored the link between hardware events and malware

applications, even broadening his analysis to include mixed hardware and software

strategies for better collaboration and significant improvements in hardware

monitoring units. The authors in [26] utilized the malware genome dataset and the

Drebin project for static analysis, while they turned to the CICMalDroid dataset for

dynamic analysis. Kimberly Tam [27] shared insights on malware statistics and

evasion techniques. Meanwhile, the authors in [28] focused on examining the

algorithms used in malware detection and conducted a comparative review of

existing literature. Lastly, the authors in [29] employed Android permissions and

intents as a feature set for malware detection, using Principal Component Analysis

for feature selection.

11

3.2 Merits and Demerits of Existing work

• Merits of Existing Works

o Diverse Methodologies: The existing literature showcases a rich

variety of methodologies for detecting Android malware, from feature

selection techniques to machine learning classifiers. This range gives

researchers and practitioners the flexibility to pick the approaches that

best suit their unique needs and situations.

o Focus on Permissions and API Calls: Many studies highlight the

importance of analyzing permissions and API calls, which serve as key

indicators of malicious activity. Since permissions define what

applications can do, they become a crucial feature for differentiating

between harmless and harmful apps.

o Advanced Techniques: The use of advanced methods like Principal

Component Analysis (PCA) and Support Vector Machines (SVM)

demonstrates how sophisticated statistical techniques can boost

classification accuracy. These methods can effectively reduce

dimensionality and enhance the performance of machine learning

models.

o Comprehensive Evaluation of Classifiers: A thorough comparison of

various supervised learning techniques offers valuable insights into

how effective different classifiers are. This analysis aids in pinpointing

the most appropriate algorithms for specific detection tasks, steering

future research and development in the right direction.

o Integration of Intent Features: By delving into the intentions behind

application behaviors, researchers can create more refined detection

systems that take into account not just permissions but also the context

in which they are applied.

o Hardware-Based Approaches: The focus on hardware-based strategies

underscores the potential of utilizing hardware performance counters

and mixed hardware-software methods for real-time malware

detection. This combination can lead to more resilient detection

12

systems that function efficiently.

• Demerits of Existing Works

o Complexity and Resource Intensity: When it comes to complexity and

resource demands, many current methodologies, especially those that

depend on intricate algorithms and a wide range of features, can be

quite resource-heavy and take a lot of time to implement.

o Overfitting Risks: Using complex models can sometimes lead to a

situation where the model excels with training data but struggles to

perform well with new, unseen applications. This is particularly

worrisome in malware detection, where accurately identifying new and

previously unknown applications is essential.

o Evasion Techniques: we cannot ignore the challenge posed by

evolving evasion techniques in malware. Many existing detection

systems might not be prepared to tackle these advanced evasion

strategies, which could leave them vulnerable in the fight against

malware.

13

Chapter 4: Methodology

In the following sections, we provide a comprehensive explanation of the

proposed methodology, detailing each aspect in depth.

4.1 Data Collection

• Obtain APKs: To get started with APKs, you'll want to download APK files

from AndroZoo, which is a great repository for Android applications.

• Organize Your APKs: First, create a specific directory to store all your APK

files. You can use a programming language to read through all the files in this

folder.

• Process Each APK: Next, set up a loop to go through each APK file. For every

file, follow these steps:

o Decompile the APK: Use Apktool to decompile the APK file. You

can usually do this with a simple command line call from your script.

o Find the AndroidManifest.xml: Once decompiled, look for the

AndroidManifest.xml file in the output directory.

o Analyze the Manifest: Open the AndroidManifest.xml file to pull out

permissions, intents, and hardware requirements.

• Save the Information: Finally, store the extracted data in a structured format,

like JSON or CSV, so you can analyze it later.

4.2 Data Preprocessing

• Feature Reduction: Feature reduction plays a energetic role in the data

preprocessing stage of machine learning and data analysis. It’s all about

picking out a relevant subset of data from the actual dataset, which can really

boost model performance, help prevent overfitting, and cut down on

computational costs. In this document, we’ll dive into the specific techniques

we used for feature reduction, such as getting rid of duplicate features.

o Removal of Duplicate Features: Duplicate features can pop up for a

variety of reasons, like errors during data collection, combining

different datasets, or just having some measurements that are

unnecessarily repeated. These duplicates can really throw off the

results, as they might distort the model's grasp of the true patterns

14

hidden in the data. We took a close look at the dataset to find features

that had the same values across all instances. If we found that the

instances or features were identical, we removed them to cut down on

redundancy.

• Statistical Hypothesis Test: A statistical hypothesis test is a technique used

in statistics to figure out if there's enough evidence in a data sample to back up

a specific claim about a larger population. This method allows researchers to

make informed decisions based on actual data instead of just assumptions.

o Statistical Ranking with Fisher's P-test: Fisher's P-Test, commonly

known as Fisher's Exact Test, is a statistical technique that helps

determine the significance of the relationship between two categorical

variables. This test delivers an exact p-value, which empowers

researchers to make well-informed decisions regarding the connections

between variables. If you're looking to apply Fisher's P-Test, here's a

method to get started:

➢ Formulating Hypotheses: Before conducting the test, we need

to establish the null and alternative hypotheses:

▪ Null Hypothesis (H0): There is no interrelation

between the two categorical variables (i.e., the

proportions are equal).

▪ Alternative Hypothesis (H1): There is a significant

interrelation between the two categorical variables (i.e.,

the proportions are not equal).

➢ Constructing a Contingency Table: The first step in applying

Fisher's P-Test is to create a contingency table that summarizes

the frequency counts of the categories. For example, consider a

study examining the effect of a new drug on recovery status

(Recovered vs. Not Recovered) across two groups (Treatment

vs. Control):

15

Table 4.2: Fisher’s P-test

 Recovered Not Recovered Total

Treatment a b a+b

Control c d c+d

Total a+c b+d n

➢ Calculating the Exact Probability: Fisher's Exact Test

calculates the probability of observing the data in the

contingency table under the null hypothesis. The probability is

given by the hypergeometric distribution:

P=(a+b)!(c+d)!(n−a−b)!a!b!c!d!n!

Where: n is the total number of observations and a, b, c, d are the counts in the

contingency table.

➢ Determining the P-Value: The p-value is calculated by adding

up the probabilities of all possible tables that are as extreme or

even more extreme than the one we observed, based on the null

hypothesis. If this p-value falls below the significance level

we've set 0 we reject the null hypothesis. This suggests that

there’s a significant relationship between the variables.

➢ Interpretation of Results: The interpretation of Fisher's P-

Test results is straightforward:

▪ P-Value <= 0: Reject the null hypothesis. There is a

statistically significant interrelation between the two

categorical variables.

▪ P-Value > 0: Fail to reject the null hypothesis. There is

no statistically significant interrelation between the two

categorical variables.

Features that exhibit a strong association with the target variable remain in the

dataset, while those with weaker associations are removed. The remaining

features move forward for the next selection process.

16

• Feature selection: In machine learning, there's a process that helps pick out the

most important features to boost how well a model performs. By getting rid of

irrelevant or repetitive data, it leads to improved accuracy and efficiency. Plus, it

makes things easier to understand by zeroing in on the key variables that really

matter. This process is essential for managing high-dimensional data and

avoiding overfitting.

o Relief Test: The Relief method is a feature selection approach that

evaluates the relevance of each feature by estimating how well it can

distinguish between similar instances. It assigns a weight to each

feature based on its ability to differentiate between near-by instances,

with higher weights indicating more relevant features.

➢ Random Sample Selection: A random instance is selected

from the training data.

➢ Nearest Neighbours Identification: The algorithm identifies

two nearest neighbours for the selected instance: a "nearest hit"

(belonging to the same class as the instance) and a "nearest

miss" (belonging to a different class).

➢ Feature Weight Update: For each feature, the algorithm

calculates a difference based on the values of the feature in the

selected instance, the nearest hit, and the nearest miss. If the

feature values are more different between the nearest hit and

the instance, the feature is considered less

important. Conversely, if the feature values are more different

between the instance and the nearest miss, the feature is

considered more important. This difference is then used to

update the feature weight.

➢ Iteration: Steps 1-3 are repeated for multiple instances to

converge on a more stable feature weight for each feature.

o Feature Ranking and Selection: After going through the data

multiple times, the algorithm sorts the features according to their final

weights. Features that end up with higher weights are seen as more

important and have a better chance of being chosen. Essentially, Relief

17

operates by repeatedly assessing how effectively each feature can tell

apart similar instances, giving weights based on this ability to

differentiate, and ultimately using these weights to rank and pick out

the most significant features.

Table 4.2: Feature Reduction

FEATURE SET Initial Count

of Features

Removing

Duplicate

Features

Removing

Features

through

Statistical

Hypothesis test

Removing features

through Relief Test

PERMISSION 130 129 75 40

INTENT 80 80 45 35

HARDWARE 89 83 13 10

PERMISSION AND

INTENT

209 208 122 40

PERMISSION AND

HARDWARE

218 211 88 50

INTENT AND

HARDWARE

168 162 59 40

PERMISSION AND

INTENT AND

HARDWARE

297 290 135 50

4.3 Detection with Machine Learning techniques

We utilize machine learning for detection purposes. We introduce a column labeled

"apk," where a value of 0 signifies benign applications and 1 indicates malicious

ones. After that, we divide the dataset into training and testing sets, and then we

apply various machine learning models like Decision Tree, Random Forest, and

Naive Bayes for detection. Our goal is to explore different algorithms to identify the

most effective technique for comparison. Here are the machine learning methods

18

we've employed:

• Decision Tree: This is a machine learning algorithm used for both

classification and regression tasks. Each internal node represents a feature of

the data, while the branches illustrate decision rules based on those features,

and the leaf nodes show the final outcome or class label. The algorithm

constructs the tree by recursively splitting the dataset into smaller subsets

based on the best feature, which is determined using criteria like Gini impurity

or entropy, until a stopping condition is reached.

• Random Forest: Random Forest is a powerful ensemble learning technique

that's mainly used for tasks like classification and regression. It works by

building a bunch of decision trees during the training stage and then combines

their outputs—either by taking the most common class (for classification) or

averaging the predictions (for regression). The main goal of Random Forest

is to boost the accuracy and reliability of predictions by merging the results

from several trees, which helps reduce the chances of overfitting that can

happen with just one decision tree. The process kicks off with bootstrapping,

where various subsets of the training data are created by sampling with

replacement. Each tree is skilled on a different subset, and while training each

tree, a random selection of features is chosen for splitting at each node. This

element of randomness is key to ensuring that the trees are diverse, which is

essential for the effectiveness of the ensemble method. After all the trees are

trained, predictions are made by combining the results from each tree—using

majority voting for classification tasks or averaging for regression tasks.

• Naïve Bayes: Naive Bayes is a group of probabilistic algorithms that rely on

Bayes' theorem, mainly used for classification tasks. It works on the premise

that the features are conditionally independent when given the class label.

This is a simplifying assumption that often holds up in real-world scenarios,

even if it’s not always spot-on. Thanks to this independence assumption,

Naive Bayes can quickly calculate the posterior probabilities for each class

based on the input features. The algorithm first determines the prior

probability for each class and then the conditional probability for each feature

based on that class. By applying Bayes' theorem, it merges these probabilities

to find the later probability for each class. The class with the highest posterior

19

probability is then chosen as the predicted class for the input data.

20

Chapter 5: Results

This section presents the results from our proposed Android malware detection

framework, which cleverly combines machine learning techniques with

sophisticated feature selection strategies. We have organized the findings into

clear categories based on an evaluation of essential components: permissions,

intents, hardware features, and their various combinations. Moreover, we assess

the effectiveness of different machine learning classifiers—like Decision Trees,

Random Forest, and Naive Bayes to gauge how well the framework performs.

5.1 Permission Evaluation

• The original dataset kicked off with 130 permission features pulled from a vast

array of Android apps. After running Fisher’s P-test, we trimmed that down to 75

features that really stood out statistically. Then using this selection approach i.e.

Relief algorithm, landing on a final set of 40 key permission features.

• When it came to detecting permission-based malware, the Random Forest classifier

really shown, hitting an impressive accuracy of 96.96% post-feature selection. In

comparison, the Decision Tree classifier dipped slightly from 96.53% to 96.31%,

while the Naive Bayes classifier made a significant leap from 87.35% to 90.80%.

Table 5.1: Detection Results for permission evaluation

Classifier Initial Accuracy
After Fisher’s P-

test
After Relief

Decision Tree 96.53% 96.43% 96.31%

Random Forest 97.32% 97.14% 96.96%

Naive Bayes 87.35% 88.74% 90.80%

5.2 Intent Evaluation

• The original dataset kicked off with 80 intent features, but after running Fisher’s P-

test, we trimmed it down to 45. Then, by applying the Relief algorithm, we refined it

even further to 35 features that were truly relevant for our analysis.

• When we looked at the performance of the classifiers, the Decision Tree's accuracy

slide from 88.58% to 87.16%. The Random Forest classifier also took a small hit,

21

dropping from 88.72% to 87.21%. Meanwhile, Naive Bayes saw a decrease from

76.27% to 75.26%. In the grand scheme of things, while intent features played a role

in the detection model, but they did not match up to the effectiveness of permission-

based features.

Table 5.2: Detection Results for intent evaluation

Classifier Initial Accuracy
After Fisher’s P-

test
After Relief

Decision Tree 88.58% 87.42% 87.16%

Random Forest 88.72% 88.48% 87.21%

Naive Bayes 76.27% 75.49% 75.26%

5.3 Hardware Evaluation

• The original dataset kicked off with 89 features related to hardware components,

but we trimmed that down to just 13 using Fisher’s P-test. Then, we took it a step

further with the Relief algorithm, which helped us in coming to 10 key features

for our analysis.

• When looked at the Decision Tree classifier, it was noticed a slight dip in

accuracy, dropping from 67.66% to 66.34%. The Random Forest classifier

experienced a similar fall, going from 67.70% to 66.34%. On a brighter note, the

Naive Bayes classifier actually improved, jumping from 59.71% to 66.08% after

we selected the features. In the grand scheme of things, it turns out that hardware

components didn’t play a huge role in boosting detection accuracy when

compared to permissions and intents.

Table 5.3: Detection Results for hardware evaluation

Classifier Initial Accuracy
After Fisher’s P-

test
After Relief

Decision Tree 67.66% 66.51% 66.34%

Random Forest 67.70% 66.53% 66.34%

Naive Bayes 59.71% 65.82% 66.08%

5.4 Permission and Intent Evaluation

22

• The dataset included permissions and intents, ended up with 122 features after the

feature selection process.

• The Random Forest classifier really shone, achieving an impressive accuracy of

96.96%. Meanwhile, Naive Bayes also made notable strides, boosting its accuracy to

90.80%.

Table 5.4: Detection Results for permission and intent evaluation

Classifier Initial Accuracy
After Fisher’s P-

test
After Relief

Decision Tree 96.53% 96.43% 96.31%

Random Forest 97.32% 97.14% 96.96%

Naive Bayes 87.35% 88.74% 90.80%

5.5 Permission and Hardware Evaluation

• After applying Fisher’s P-test and Relief, the permissions and hardware dataset

ended up with 88 optimized features.

• The Naive Bayes classifier experienced the biggest accuracy jump, hitting 91.28%,

while Random Forest held its ground with a solid performance at 97.12%.

Table 5.5: Detection Results for Permission and Hardware evaluation

Classifier Initial Accuracy
After Fisher’s P-

test
After Relief

Decision Tree 96.67% 96.50% 96.41%

Random Forest 97.45% 97.28% 97.12%

Naive Bayes 87.12% 89.68% 91.28%

5.6 Intent and Hardware Evaluation

• The initial 59 features for intents and hardware were processed through

Fisher’s P-test and Relief for refinement.

• The Naive Bayes classifier showed improvement, but overall accuracy was

lower compared to other combinations, indicating a limited impact of

hardware features.

Table 5.6: Detection Results for Intent and Hardware evaluation

23

Classifier Initial Accuracy
After Fisher’s P-

test
After Relief

Decision Tree 90.08% 88.53% 85.89%

Random Forest 90.39% 88.79% 85.97%

Naive Bayes 71.96% 76.43% 75.17%

5.7 Permission and Intent and Hardware Evaluation

• The dataset combined all three categories, resulting in a total of 135 optimized

features.

• The Random Forest classifier attained the maximum accuracy at 97.30%,

confirming that integrating multiple feature sets enhances malware detection.

 Table 5.7: Detection Results for Permission and Intent and Hardware evaluation

Classifier Initial Accuracy
After Fisher’s P-

test
After Relief

Decision Tree 96.92% 96.70% 96.57%

Random Forest 97.78% 97.54% 97.30%

Naive Bayes 90.22% 88.01% 88.64%

24

Chapter 6: Conclusion

6.1 Thesis Summary

In this research, we tackled the issue of detecting Android malware, a topic that’s

become increasingly vital with the surge in mobile device usage and the rise of

malicious apps. Our focus was on creating a strong and efficient malware detection

framework that harnesses machine learning techniques, specifically by using features

drawn from permissions, intents, and the hardware components of Android

applications.

We kicked off our work by carefully selecting and preprocessing the features. We

started with a detailed dataset that encompassed various aspects related to permissions,

intents, and hardware specifications. The first order of business was to remove out any

duplicate features, which is crucial for keeping the dataset intact and ensuring our

models are trained on unique and relevant data. This step not only tidied up the dataset

but also set the stage for more precise model training and evaluation.

After clearing out the duplicates, we evaluated the performance of our detection

models—Decision Tree, Random Forest, and Naive Bayes—using the initial set of

features. This assessment gave us baseline accuracy scores, which were essential for

gauging how effective our models were before we applied any feature selection

techniques. The results showed that while the models did reasonably well, there was

still plenty of room for improvement, especially regarding accuracy and computational

efficiency..

To make our feature selection process even better, we turned to Fisher's p-test, a handy

statistical tool that helped us assess how significant each feature was in relation to our

target variable. By ranking the features according to their p-values, we could spot and

eliminate those that didn’t hold much statistical weight. This was a crucial step in fine-

tuning our feature set, ensuring we kept only the most relevant features for further

analysis. Cutting down the number of features not only made the model simpler but

also enhanced its interpretability and lowered the chances of overfitting.

Next, we brought in the Relief algorithm to further sharpen our feature selection. By

taking samples from the dataset and repeatedly assessing the importance of different

features, we crafted a more targeted feature set. The Relief algorithm’s knack for

25

recognizing feature interactions and dependencies gave us a deeper insight into which

features were key in telling benign applications apart from malicious ones. This

iterative approach, where we tracked feature importance over several rounds, allowed

us to systematically remove out the less important features while keeping those that

consistently showed high relevance.

After fine-tuning our feature set using both Fisher's p-test and the Relief algorithm, we

took a fresh look at how accurate our detection models were. The results were quite

encouraging, with the Random Forest model hitting an impressive accuracy rate of

around 97%. This notable leap in performance really highlighted how effective our

feature selection methods are and emphasized the value of a data-driven strategy to

boost model performance. Our study's findings not only add to the existing knowledge

in the realm of Android malware detection but also offer practical insights for crafting

more robust security solutions.

In summary, our research shows that an approach to feature selection, leveraging

statistical techniques like Fisher's p-test and the Relief algorithm, can greatly improve

the performance of machine learning models in Android malware detection. By honing

in on the most relevant features, we managed to enhance both the accuracy and

efficiency of our detection models, ultimately paving the way for a more secure mobile

application environment. As mobile devices become increasingly central to our

everyday lives, the demand for effective malware detection systems is only set to rise.

6.2 Future Work

Future research in this field could dive into incorporating more static and

dynamic features, along with leveraging cutting-edge machine learning techniques, to

boost the effectiveness of malware detection systems. It’s also crucial to look into how

emerging threats affect our models and to adapt them for new types of malware,

ensuring our detection framework remains effective.

26

Bibliography

[1] N. Peiravian and X. Zhu, "Machine Learning for Android Malware Detection Using

Permission and API Calls," 2013 IEEE 25th International Conference on Tools with

Artificial Intelligence, Herndon, VA, USA, 2013, pp. 300-305, doi:

10.1109/ICTAI.2013.53.

[2] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an and H. Ye, "Significant Permission

Identification for Machine-Learning-Based Android Malware Detection," in IEEE

Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3216-3225, July 2018, doi:

10.1109/TII.2017.2789219.

[3] Akbar, F.; Hussain, M.; Mumtaz, R.; Riaz, Q.; Wahab, A.W.A.; Jung, K.-H.

"Permission-Based Detection of Android Malware Using Machine Learning,"

Symmetry, 2022.

[4] Zhao Xiaoyan, Fang Juan and Wang Xiujuan, "Android malware detection based on

permission," 2014 International Conference on Information and Communications

Technologies (ICT 2014), Nanjing, China, 2014, pp. 1-5, doi:

10.1049/cp.2014.0605.

[5] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, Steven

Furnell, "AndroDialysis: Analysis of Android Intent Effectiveness in Malware

Detection," Computers and Security, Volume 65, 2017, Pages 121-134, ISSN 0167-

4048.

[6] M. W. Afridi, T. Ali, T. Alghamdi, T. Ali and M. Yasar, "Android application

behavioral analysis through intent monitoring," 2018 6th International Symposium

on Digital Forensic and Security (ISDFS), Antalya, Turkey, 2018, pp. 1-8, doi:

10.1109/ISDFS.2018.8355359.

[7] M. Kumaran and W. Li, "Lightweight malware detection based on machine learning

algorithms and the android manifest file," 2016 IEEE MIT Undergraduate Research

Technology Conference (URTC), Cambridge, MA, USA, 2016, pp. 1-3, doi:

10.1109/URTC.2016.8284090.

[8] K. Khariwal, J. Singh and A. Arora, "IPDroid: Android Malware Detection using

intent and permission," 2020 Fourth World Conference on Smart Trends in Systems,

Security and Sustainability (WorldS4), London, UK, 2020, pp. 197-202, doi:

10.1109/WorldS450073.2020.9210414.

27

[9] F. Idrees and M. Rajarajan, "Investigating the android intent and permission for

malware detection," 2014 IEEE 10th International Conference on Wireless and

Mobile Computing, Networking and Communications (WiMob), Larnaca, Cyprus,

2014, pp. 354-358, doi: 10.1109/WiMOB.2014.6962194.

[10] A. Kapoor, H. Kushwaha and E. Gandotra, "Permission based Android Malicious

Application Detection using Machine Learning," 2019 International Conference on

Signal Processing & Communication (ICSC), NOIDA, India, 2019, pp. 103-108,

doi: 10.1109/ICSC45622.2019.8938236.

[11] Nisarg Patel, Avesta Sasan, and Houman Homayoun, "Analyzing Hardware Based

Malware Detectors," in Proceedings of the 54th Annual Design Automation

Conference 2017 (DAC '17). Association for Computing Machinery, New York,

NY, USA, Article 25, 1–6.

[12] M. Dhalaria and E. Gandotra, "Android Malware Detection using Chi-Square

Feature Selection and Ensemble Learning Method," 2020 Sixth International

Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat,

India, 2020, pp. 36-41, doi: 10.1109/PDGC50313.2020.9315818.

[13] Mahindru, A., Sangal, A.L. "MLDroid—framework for Android malware detection

using machine learning techniques," Neural Comput & Applic, 33, 5183–5240

(2021).

[14] A. Arora, S. Garg and S. K. Peddoju, "Malware Detection Using Network Traffic

Analysis in Android Based Mobile Devices," 2014 Eighth International Conference

on Next Generation Mobile Apps, Services and Technologies, Oxford, UK, 2014,

pp. 66-71, doi: 10.1109/NGMAST.2014.57.

[15] Anshul Arora and Sateesh K. Peddoju, "Minimizing Network Traffic Features for

Android Mobile Malware Detection," in Proceedings of the 18th International

Conference on Distributed Computing and Networking (ICDCN '17). Association

for Computing Machinery, New York, NY, USA, Article 32, 1–10.

[16] Mahindru, A., Sangal, A.L. "PerbDroid: Effective Malware Detection Model

Developed Using Machine Learning Classification Techniques," in: Singh, J.,

Bilgaiyan, S., Mishra, B., Dehuri, S. (eds) A Journey Towards Bio-inspired

Techniques in Software Engineering. Intelligent Systems Reference Library, vol

185. Springer, Cham.

[17] Y. Lu, P. Zulie, L. Jingju and S. Yi, "Android Malware Detection Technology Based

on Improved Bayesian Classification," 2013 Third International Conference on

Instrumentation, Measurement, Computer, Communication and Control, Shenyang,

China, 2013, pp. 1338-1341, doi: 10.1109/IMCCC.2013.297.

28

[18] Sharfah Ratibah Tuan Mat, Mohd Faizal Ab Razak, Mohd Nizam Mohmad Kahar,

Juliza Mohamad Arif, Ahmad Firdaus, "A Bayesian probability model for Android

malware detection," ICT Express, Volume 8, Issue 3, 2022, Pages 424-431, ISSN

2405-9595.

[19] L. D. Coronado-De-Alba, A. Rodríguez-Mota and P. J. Escamilla-Ambrosio,

"Feature selection and ensemble of classifiers for Android malware detection," 2016

8th IEEE Latin-American Conference on Communications (LATINCOM),

Medellin, Colombia, 2016, pp. 1-6, doi: 10.1109/LATINCOM.2016.7811605.

[20] S. R. Tiwari and R. U. Shukla, "An Android Malware Detection Technique Using

Optimized Permission and API with PCA," 2018 Second International Conference

on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, pp.

2611-2616, doi: 10.1109/ICCONS.2018.8662939.

[21] K. Zhao, D. Zhang, X. Su and W. Li, "Fest: A feature extraction and selection tool

for Android malware detection," 2015 IEEE Symposium on Computers and

Communication (ISCC), Larnaca, Cyprus, 2015, pp. 714-720, doi:

10.1109/ISCC.2015.7405598.

[22] J. Y. Ndagi and J. K. Alhassan, "Machine Learning Classification Algorithms for

Adware in Android Devices: A Comparative Evaluation and Analysis," 2019 15th

International Conference on Electronics, Computer and Computation (ICECCO),

Abuja, Nigeria, 2019, pp. 1-6, doi: 10.1109/ICECCO48375.2019.9043288.

[23] Shabtai, A., Elovici, Y. "Applying Behavioral Detection on Android-Based

Devices," in: Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds) Mobile

Wireless Middleware, Operating Systems, and Applications. MOBILWARE 2010.

Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, vol 48. Springer, Berlin, Heidelberg.

[24] Varna Priya D, Visalakshi P, "Detecting android malware using an improved filter

based technique in embedded software," Microprocessors and Microsystems,

Volume 76, 2020, 103115, ISSN 0141-9331.

[25] C. P. Chenet, A. Savino and S. Di Carlo, "A Survey on Hardware-Based Malware

Detection Approaches," in IEEE Access, vol. 12, pp. 54115-54128, 2024, doi:

10.1109/ACCESS.2024.3388716.

[26] R. B. Hadiprakoso, H. Kabetta and I. K. S. Buana, "Hybrid-Based Malware Analysis

for Effective and Efficiency Android Malware Detection," 2020 International

Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS),

Jakarta, Indonesia, 2020, pp. 8-12, doi: 10.1109/ICIMCIS51567.2020.9354315.

29

[27] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo

Cavallaro, "The Evolution of Android Malware and Android Analysis Techniques,"

ACM Comput. Surv. 49, 4, Article 76 (December 2017), 41 pages.

[28] E. C. Bayazit, O. Koray Sahingoz and B. Dogan, "Malware Detection in Android

Systems with Traditional Machine Learning Models: A Survey," 2020 International

Congress on Human-Computer Interaction, Optimization and Robotic Applications

(HORA), Ankara, Turkey, 2020, pp. 1-8, doi: 10.1109/HORA49412.2020.9152840.

[29] A. Sangal and H. K. Verma, "A Static Feature Selection-based Android Malware

Detection Using Machine Learning Techniques," 2020 International Conference on

Smart Electronics and Communication (ICOSEC), Trichy, India, 2020, pp. 48-51,

doi: 10.1109/ICOSEC49089.2020.9215355.

30

Details of Candidate’s Publication

The Paper titled ” InPermHardroid: Android Malware Detection using

Intents, Permissions and Hardware Components” was accepted in Scopus Indexed

conference titled ” 2025 The 18th International Conference on Computer and Electrical

Engineering (ICCEE 2025)”, which will be held on 20th - 22th June 2025.

Paper ID E-117

Title
InPermHardroid: Android Malware Detection using Intents, Permissions and Hardware
Components

Author (s) Himanshi, Anshul Arora
To whom it may concern,

Congratulations! Now we are pleased to inform you that your above full paper has been accepted by ICCEE 2025 for
presentation and publication after the reviewing process, monitored by the Technical Program Committee. You are
cordially invited to present your paper on the conference. Your paper will be published in conference proceedings, when
you follow the procedure to finish the registration before the set date. 2025 The 18th International Conference on Computer
and Electrical Engineering (ICCEE 2025) will be held in Singapore on June 20-22, 2025. It provides opportunities for the
different areas delegates to exchange new ideas and application experiences face to face, to establish business or research
relations and to find global partners for future collaboration.

Registration Procedure
1. Revise your paper according to Comments in review form.
2. Format your paper according to the Template attached carefully https://iccee.org/files/IOS/Word-Template.dotx
3. Fill and complete the Registration Form and pay for it online: https://iconf.young.ac.cn/RAUB6
4. Return your registration materials below to iccee_secretary@academic.net before the deadline.

A. final papers (both doc and pdf version) B. payment proof

Notes:
1. We will feedback registration status in 3 working days after receiving your registration materials. If you don’t receive any
response, please contact us proactively.
2. For registration fee and cancellation policy, please visit https://iccee.org/registration.html to check.
3. Please do not trust any contact information other than the official website. Be aware of the various types of online fraud
and be alert.
Please feel free to contact us if you have any further questions. Look forward to see you in Singapore!

Yours sincerely,
ICCEE 2025 Organizing Committee

Acceptance Letter
(Full Paper for

Presentation and Publication)

Registration deadline:

June 1st, 2025

https://iccee.org/files/IOS/Word-Template.dotx
https://iconf.young.ac.cn/RAUB6
mailto:iccee_secretary@academic.net
https://iccee.org/registration.html

11% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Quoted Text

Cited Text

Small Matches (less than 8 words)

Match Groups

76 Not Cited or Quoted 11%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

6% Internet sources

5% Publications

7% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

Page 2 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

Match Groups

76 Not Cited or Quoted 11%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

6% Internet sources

5% Publications

7% Submitted works (Student Papers)

Top Sources
The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Submitted works

Carnegie Mellon University on 2024-12-08 <1%

2 Internet

www.researchgate.net <1%

3 Publication

Lecture Notes in Computer Science, 2012. <1%

4 Internet

link.springer.com <1%

5 Publication

Thangaprakash Sengodan, Sanjay Misra, M Murugappan. "Advances in Electrical … <1%

6 Internet

www.mdpi.com <1%

7 Submitted works

Heriot-Watt University on 2025-03-27 <1%

8 Internet

medium.com <1%

9 Internet

www.coursehero.com <1%

10 Internet

ir.pdpu.ac.in:8080 <1%

Page 3 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

Page 3 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

https://www.researchgate.net/publication/331434701_Permission-based_Android_Malware_Detection_System_Using_Feature_Selection_with_Genetic_Algorithm
https://doi.org/10.1007/978-3-642-31540-4
https://link.springer.com/article/10.1007/s11468-024-02620-x?code=d46a3a53-22e3-4dba-83f4-172cb4b57588&error=cookies_not_supported
https://doi.org/10.1201/9781003515470
https://www.mdpi.com/2073-8994/14/4/718?type=check_update&version=1
https://medium.com/@cluelessrae/the-percepton-versus-naive-bayes-99c04c9da0fa
https://www.coursehero.com/file/p4l4mti/A-negative-number-would-indicate-that-the-treatment-has-a-harmful-effect-and/
http://ir.pdpu.ac.in:8080/jspui/bitstream/123456789/20/1/16MCL007.pdf

11 Internet

core.ac.uk <1%

12 Internet

vitalflux.com <1%

13 Submitted works

Curtin University of Technology on 2015-06-08 <1%

14 Publication

Garima Kumari, Anshul Arora. "Smartphone Malware Detection using Permission… <1%

15 Publication

Narendra M. Shekokar, Hari Vasudevan, Surya S. Durbha, Antonis Michalas, Tatw… <1%

16 Submitted works

University of Birmingham on 2018-12-21 <1%

17 Internet

repository.tudelft.nl <1%

18 Submitted works

University of Northumbria at Newcastle on 2025-05-19 <1%

19 Submitted works

Wright State University on 2023-04-24 <1%

20 Internet

fr.slideshare.net <1%

21 Internet

zn63.co-aol.com <1%

22 Submitted works

Griffth University on 2024-05-30 <1%

23 Publication

Raden Budiarto Hadiprakoso, Herman Kabetta, I Komang Setia Buana. "Hybrid-B… <1%

24 Submitted works

Roehampton University on 2023-07-26 <1%

Page 4 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

Page 4 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

https://core.ac.uk/download/588591781.pdf
https://vitalflux.com/differences-between-decision-tree-random-forest/
https://doi.org/10.1109/ICSCSS57650.2023.10169391
https://doi.org/10.1201/9781003408307
https://repository.tudelft.nl/islandora/object/uuid:a1bb9cd0-6eef-4665-a910-969d55667f35/datastream/OBJ/download
http://fr.slideshare.net/jeissonvasco/introductory-biostatistics-for-the-health-sciences
https://zn63.co-aol.com/r-is-4pi-r-2-imagine
https://doi.org/10.1109/ICIMCIS51567.2020.9354315

25 Internet

neuroquantology.com <1%

26 Publication

Maria Drogkoula, Konstantinos Kokkinos, Nicholas Samaras. "A Comprehensive S… <1%

27 Internet

campatho.files.wordpress.com <1%

28 Internet

stax.strath.ac.uk <1%

29 Internet

theemcoe.org <1%

30 Internet

www2.mdpi.com <1%

31 Publication

"Data Management, Analytics and Innovation", Springer Science and Business Me… <1%

32 Submitted works

535 on 2015-02-11 <1%

33 Publication

Aditya Kapoor, Himanshu Kushwaha, Ekta Gandotra. "Permission based Android … <1%

34 Publication

Boadu, Bernard O.. "Dual Vision: Enhancing Autonomous Navigation With AutoG… <1%

35 Submitted works

CSU Northridge on 2024-05-03 <1%

36 Submitted works

Chester College of Higher Education on 2023-10-05 <1%

37 Submitted works

Glasgow Caledonian University on 2025-04-17 <1%

38 Submitted works

Indian Institute of Technology, Kanpur on 2016-01-11 <1%

Page 5 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

Page 5 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

https://neuroquantology.com/data-cms/articles/20220721032305pmNQ33236.pdf
https://doi.org/10.3390/app132212147
https://campatho.files.wordpress.com/2009/07/medicalstatisticsataglance2000petrie_0632050756p448.pdf
https://stax.strath.ac.uk/downloads/w0892b45q?locale=en
https://theemcoe.org/attachments/NAAC/2022-23/c3/3.2.2.1.pdf
https://www2.mdpi.com/2504-4990/6/2/36
https://doi.org/10.1007/978-981-19-2600-6
https://doi.org/10.1109/ICSC45622.2019.8938236
https://gateway.proquest.com/openurl?res_dat=xri%3Apqm&rft_dat=xri%3Apqdiss%3A31145077&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&url_ver=Z39.88-2004

39 Submitted works

Liverpool John Moores University on 2024-02-02 <1%

40 Publication

Sahil Sharma, Bhavna Arora. "Chapter 61 On Static Android Malware Detection an… <1%

41 Submitted works

University of Wales, Lampeter on 2023-09-13 <1%

42 Internet

iku.unirepos.com <1%

43 Internet

www.ej-eng.org <1%

44 Internet

www.nature.com <1%

45 Submitted works

Australian National University on 2025-05-08 <1%

46 Submitted works

Chester College of Higher Education on 2023-12-13 <1%

47 Submitted works

Chester College of Higher Education on 2024-03-27 <1%

48 Publication

H.L. Gururaj, Francesco Flammini, S. Srividhya, M.L. Chayadevi, Sheba Selvam. "Co… <1%

49 Publication

Jinxin Liu, Michele Nogueira, Johan Fernandes, Burak Kantarci. "Adversarial Mach… <1%

50 Submitted works

Liverpool John Moores University on 2024-08-26 <1%

51 Submitted works

National Institute Of Technology, Tiruchirappalli on 2023-05-05 <1%

52 Submitted works

University of Auckland on 2024-04-25 <1%

Page 6 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

Page 6 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

https://doi.org/10.1007/978-981-97-2550-2_61
https://iku.unirepos.com/entities/publication/9995d734-a3d9-4358-bcfa-7dc5ec340873
https://www.ej-eng.org/index.php/ejeng/article/view/3141
https://www.nature.com/articles/s41598-022-25361-5?code=4fa052b1-8980-47bb-bb6d-2e62173db504&error=cookies_not_supported
https://doi.org/10.1201/9781003565024
https://doi.org/10.1109/COMST.2021.3136132

53 Submitted works

University of Lincoln on 2023-09-07 <1%

54 Submitted works

University of Northumbria at Newcastle on 2022-05-05 <1%

55 Submitted works

University of Southampton on 2017-09-08 <1%

56 Publication

Vandana Mohindru Sood, Yashwant Singh, Bharat Bhargava, Sushil Kumar Naran… <1%

57 Publication

William Wolfgang Arrasmith. "Handbook of Systems Engineering and Analysis of … <1%

58 Internet

aircconline.com <1%

59 Internet

cse.nirmauni.ac.in <1%

60 Internet

etd.auburn.edu <1%

61 Internet

galib19.github.io <1%

62 Submitted works

nith on 2023-05-24 <1%

63 Internet

tel.archives-ouvertes.fr <1%

64 Internet

www.ijert.org <1%

65 Internet

www.rama.mahidol.ac.th <1%

66 Internet

www.researchsquare.com <1%

Page 7 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

Page 7 of 41 - Integrity Overview Submission ID trn:oid:::27535:97469133

https://doi.org/10.1201/9781003406105
https://doi.org/10.1201/9781003624097
https://aircconline.com/csit/papers/vol12/csit122308.pdf
https://cse.nirmauni.ac.in/wp-content/uploads/sites/22/2022/03/Face.pdf
https://etd.auburn.edu/bitstream/handle/10415/3854/thesis.pdf?isAllowed=y&sequence=2
https://galib19.github.io/files/MSSE_Thesis_Asadullah_Hill_Galib_MSSE_0718.pdf
https://tel.archives-ouvertes.fr/tel-03194472/document
https://www.ijert.org/malware-attack-identification-and-system-protection
https://www.rama.mahidol.ac.th/ceb/sites/default/files/public/pdf/ACADEMIC/2019/RACE625/analysis_for_categorical_data_13-08-2019.pdf
https://www.researchsquare.com/article/rs-1908636/v1

