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ABSTRACT 

 

In this work, we have fabricated [(0.95(K0.48Na0.52)NbO3)–(0.05)(LiSbO3)]/PVDF 

piezoelectric generator (PEG), whereas a polymer matrix, PVDF is employed and KNN-LiSb 

as a filler piezoelectric substance. The stated objectives of adding lithium and antimony to 

KNN powder are to improve the piezoelectric properties. The KNN-LiSb/PVDF composite 

films have been prepared with various concentrations of KNN-LiSb ceramic particles 

(0%,5%,10%,15%, and 20% in PVDF) by using the drop-casting method. The phase and 

structural analysis of the piezoelectric composite film was investigated by XRD and FTIR. 

SEM (Scanning Electron Microscopy) analysis of the morphology of composite films revealed 

that the ceramic particles were dispersed equally throughout the PVDF matrix. Furthermore, 

the prepared generator's efficiency in harvesting energy was assessed by Electrodynamic 

Vibrator Shaker to apply pressure, followed by an estimation of the resulting voltage and short-

circuitry current. The 15% KNN-LiSb /PVDF composite film-based Piezoelectric Generator 

could also induce maximum resulting voltage and short-circuiting current of approx.15.47 V 

and 2.14 μA, respectively. The current work showed that lead-free piezoelectric ceramics can 

be modified with suitable dopants to provide high-performance PEG. Ultimately, the 

synthesized flexible piezoelectric generator's outputs indicate that there are significant 

possibilities for application in wearable and self-powered electronic devices. 
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CHAPTER 1 

1. Introduction 

The need for various sources of energy is growing day by day in modern human civilization. 

A variety of sources, including coal, petroleum, and others, can be utilized to create various 

types of energy. As a result, the demand for such sources is growing, yet these resources are 

being depleted due to overpopulation. To create energy, we need non-traditional or green 

resources. Various academics and experts are concentrating on the creation of energy or 

electricity from non-conventional sources. At the same time, piezoelectric materials are being 

investigated due to their unique features. Solar energy, piezoelectric energy (mechanical 

pressure - energy), tidal energy, and other types of energy are utilized. Among these is the 

extraction of energy from various piezoelectric materials. These materials are crucial for the 

measurement of pressure and harvesting of energy [1]. These materials are sensitive in nature 

and they are also important for artificial intelligence for obtaining environmental parameters 

like pressure, light, temperature, and voice. There are various types of piezoelectric ceramics 

like Pb (Zr, Ti) O3 (PZT)-centric piezoceramics, NKN-centric ceramics ((Na, K) NbO3–

BaTiO3 or (NKN-BT))[2-4], (Na, K) NbO3–LiNbO3–AgTaO3, etc.). In earlier research Pb-

containing ceramics (PZT) are used very commonly due to their excellent multifunctional 

ceramic attributes compared to other functional ceramics [5-8]. Taking into account the toxic 

nature of lead oxide in lead-based ceramics is harmful to humans and also ecotoxic. Due to 

toxicity of Pb, the use of Pb-based ceramics in electrical appliances is banned in the future. As 

a result, lead-free ceramics with outstanding piezoelectric, ferroelectric, and dielectric 

characteristics are required. Recent research has discovered certain non-toxic perovskite 

ceramics with high-quality piezoelectric and ferroelectric capabilities, especially (Na, K) NbO3 

(NKN) and (Bi, Na) TiO3 (BNT) [9-12]. KNN ceramics with perovskite structures have been 
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proposed as a possible lead-free material replacement to PZT [13-16]. Because of its high 

dielectric constant, high curie temperature, cost-effectiveness, lead-free and environmental 

friendliness, good piezoelectric capabilities, and exceptional future potential, KNN-LiSb {(1-

x)(K0.48Na0.52) NbO3-xLiSbO3)} ceramic was chosen as a filler material in polymers [16-20]. 

On the contrary, the most effective polymer selection and optimization of fabrication 

techniques are required to maximize performance in composite generators [21-23]. This 

approach results in increased elasticity and a monitored processing window, resulting in 

reliable energy harvesters based on a responsive polymer matrix[24-26]. Many polymers have 

been employed, including PVDF, its copolymers (P[VDF-TrFE], P[VDF-HFP], P[VDF-TFE], 

PDMS, and many more. The polyvinylidene fluoride (PVDF) polymer was chosen as the 

matrix because its crystalline structure includes five different phases, namely, α , β, γ, δ, and 

ɛ and [27-30]. PVDF's mechanical strength and flexibility are well known. It is lightweight and 

inexpensive. In comparison to other polymeric polymers such as nylon-11, polypropylene, 

polydimethylsiloxane, and others, [31-33]. PVDF has a higher piezoelectric coefficient. 

Mechanical stretching, the inclusion of different filler materials into PVDF material, and the 

electrospinning operation were used to achieve the β-phase change from α-phase to β-phase. 

[34-35].  

In this work, lead-free KNN-LiSb ceramic is used as a filler, and a PVDF matrix is used to 

analyze energy harvesting qualities. A number of characterization methods, including X-ray 

diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared 

Spectroscopy (FTIR), were used to evaluate the composite flexible films used in device 

manufacture. The piezoelectric properties of the gadget were tested using an electrodynamic 

shaker. Furthermore, the piezoelectric performance of the device was investigated in relation 

to KNN-LiSb ceramic concentration. The open-circuitry voltage and short-circuiting current 

of the device were found out to be 15.47 V and 2.14 μA, respectively. The constructed devices 
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in this work show promising characteristics like flexibility, wearability, affordability, and 

implantability, making them extremely appropriate for energy-harvesting applications. 

1.1 Piezoelectricity and its types 

Piezoelectricity is the generation of an electrical charges in solid substances such as crystals, 

ceramics, and biological materials such as DNA, proteins, and so on. This phenomenon occurs 

when these materials are subjected to mechanical stress. The theory of piezoelectricity involves 

the production of electrical energy via by means of applied pressure and the presence of latent 

heat.  

The piezoelectric effect in crystalline materials with no inversion symmetry arises from 

continuous electromechanical interactions of mechanical and electric states. Since this 

phenomenon is reversible, materials that show the piezoelectric effect also exhibit an inverse 

phenomenon as well. The inverse piezoelectric effect involves the internal development of 

mechanical pressure when an electric field is applied. PZT crystals, For instance, when 

deformed by approximately one percent of their original dimension, they result in observable 

piezoelectric energy. Conversely, applying an electric field to these materials causes them to 

shift around 0.1% of their static dimension, making use of the inverse piezoelectric effect to 

generate ultrasonic waves. 

This effect was discovered in 1880 by Jacques and Pierre Curie. Since then, the piezoelectric 

effect has found various practical applications. Sound generation and monitoring, piezo 

printing with ink jets, high-voltage power generation, clock output in electronic components, 

microbalances, driving ultrasonic nozzles, and precise focusing of optical assembly are 

examples. 
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1.1.1 Mechanism in piezoelectric materials: 

The occurrence of electrical dipole moments in materials is intimately related to the 

characteristics of the piezoelectric phenomenon. This effect can occur in crystals when ions 

occupy lattice sites with asymmetric charge distributions (as observed in materials like KNN, 

BaTiO3, and PZTs), or it can be carried by molecular groups directly (as seen in cane sugar). 

The density or polarisation of dipoles in crystals may be calculated by adding the dipole 

moments per volume of the crystalline unit cell. The dipole density P indicates a vector field 

as dipole is a vector. Proximity between dipoles leads to their alignment within regions known 

as Weiss domains. Although these domains typically exhibit random orientations, they can be 

aligned through a process called poling, which entails putting a strong electric field through 

the material, usually at elevated temperatures. However, not all piezoelectric substances can be 

poled.  

The shift in polarisation resulting from mechanical pressure is critical in the piezoelectric 

phenomena. This shift may occur as a result of environment rearrangement producing dipoles 

or reorientation of molecule dipole moment produced by external stress. Piezoelectricity, 

therefore, involves alterations in the strength, direction, or both aspects of polarization. The 

specific changes depend on: 

• the aligning of P in the crystal;  

• crystallographic symmetry; 

• the applied mechanical pressure.  
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Variations in P result in variations in surface charge density on the crystal faces, as a result of 

the changing dipole density in the whole substance, the electric field propagating between 

opposite ends changes. 

 

Piezoelectric effect types: 

• Direct Piezoelectric effect:-  

It is due to change in the electric polarisation of a substance caused by mechanical pressure. 

Electrical polarisation is the shift in positive and negative charges that produces a peripheral 

electric field. The applied force in the material causes the creation of potential differences. 

This phenomenon is known as the direct piezoelectric effect. Composite materials with high 

piezoelectric effects, such as lead zirconate titanate and lithium niobate, are the greatest 

examples. 

• Converse Piezoelectric effect:- 

The reverse piezoelectric effect happens when the piezoelectric effect is reversed. This may 

be created by using electrical energy to cause a crystal to grow. This effect's primary role is 

to transform electrical energy into mechanical energy. 
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Fig. 1.1. (a) Working process for direct piezoelectric phenomena while pressing (b) Working process for 

converse piezoelectric phenomena while releasing  

 

 

1.2 Piezoelectric materials and their types 

Piezoelectric materials (PMs) can be classified into three main types: crystalline, ceramic, 

and polymeric. Common examples of piezoelectric ceramics include lead zirconate titanate 

(PZT), BaTiO3, and lead titanate. GaN and ZnO, despite having larger band gaps, can also be 

considered ceramics. Synthetic ceramics PM's have beneficial over single crystals, as they 

can be easily produced in various forms and sizes without constraints related to 

crystallography. Organic polymer PMs, such as PVDF, have a lower Ƴ comparing with 

inorganic PMs. Piezoelectric polymers, like PVDF with a piezoelectric stress constant (g33) of 

240 mV-m/N, demonstrate higher values than ceramics like PZT with a g33 of 11 mV-m/N. 

This characteristic makes piezoelectric polymers suitable for sensor applications, where the 

g33 value is an important metric. 



20 
 

 

Fig. 1.2. Piezoelectric materials and their types 

1.3   Applications of Piezoelectric Materials: 

In modern times, electrical devices go beyond simple electrical connections and incorporate 

piezoelectricity as a common feature across various applications. Piezoelectricity finds 

application in numerous sectors like medical, electronics etc . The progress in the 

advancement of artificial piezo materials, such as piezo-ceramics, has led to their widespread 

use in several sectors. These applications include: 

• Piezoelectric Motors 

• Energy harvesters 

• Actuators  

• Sensors  

• Piezoelectric buzzers 

• Instrument pickups 

• Microphones 
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• Nano-positioning in AFM (Atomic Force Microscopy) and STM (Scanning Tunneling 

Microscopy) 

The utilization of piezoelectricity in these various fields highlights its significance and 

versatility in modern-day electrical devices. 
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CHAPTER 2 

1. Experimental section 

2.1 Material and method used:- 

Potassium Carbonate (K2CO3, 99%), Sodium Carbonate (Na2CO3, 98%), Niobium pentaoxide 

(Nb2O5, 99.5%), Lithium Carbonate (Li2CO3,99%), Antimony pentaoxide(Sb2O5,99%) and 

propanol (C3H8O) were purchased from Alfa-Aesar, India. The chemicals mentioned were 

utilized in the synthesis of pure KNN-LiSb and were used in their original form without 

undergoing additional purification. 

The Solid State Reaction Method:- 

Solid-state synthesis, often known as the ceramic method, involves a chemical method 

resulting in the creation of a fresh solid substance with an established framework from solid 

initial ingredients. The final products obtained from this process find wide application in the 

fields of energy and electrical systems, encompassing polycrystalline materials, single crystals, 

glasses, and thin-film materials. 

In the solid-state process, fine-grain metallic mixtures are thoroughly blended, shaped into 

pellets, and subjected to specific temperatures for a designated duration. Many metallic 

compounds, for instance metallic oxides alongside salts, necessitate severe surroundings, such 

as extreme pressure and temperature, in order to begin processes in either a melted flux or a 

quickly condensed vapour phase. 

The assessment of the reaction rate in solid-state process holds paramount importance. Due to 

the limited means of purifying the resulting solids, solid-state reactions must reach completion. 

The reaction rate in solid-state synthesis is influenced by various factors, includes the structure 
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characteristics, arrangement and, the rate of diffusion, and the thermodynamic aspects 

associating with nucleations and reactions. The chemical precursors and preparation techniques 

employed play a significant role in determining the chemical and physical characteristics of the 

ultimate products. 

 

2.2   Synthesis of KNN-LiSb ceramic powder:- 

Lead-free (KNN-LiSb) ceramics were prepared through the conventional solid-state reaction 

technique. The raw materials employed in this synthesis included Potassium Carbonate, 

Sodium Carbonate, Niobium Pentoxide doped with lithium carbonate, and Antimony 

Pentoxide. These materials were initially combined in stoichiometric amounts and mixed in a 

Jar roller mill with steel balls for a period of 24 hours, utilizing propanol as the medium. The 

synthesis aimed to obtain 10 grams of KNN-LiSb ceramic powder, following the reaction 

presented below: 

 0.228 K2CO3   +   0.247Nb2CO3    +   0.025Li2CO3 + 0.025Sb2O5 + 0.475Nb2O5                            

[0.95(K0.48Na0.52)NbO3 + 0.05LiSbO3] + 0.5 CO2 ↑ 

The KNN-LiSb powder was separated from the propanol by employing filter paper. 

Subsequently, the thoroughly mixed powder mixture underwent drying at 65 ºC in an oven for 

a duration of 3-4 hours. To obtain a fine powder consistency, the dried powder was manually 

ground using a mortar and pestle for approximately 6-7 hours. Finally, the dried powder was 

subjected to calcination in ambient air for 4 hours, with temperature intervals of 850 ºC, 900 

ºC, and 950 ºC. The temperature profile specified the temperature of 900º C as the key point in 

the calcination process.  
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Fig. 2.1. Systematic illustration of KNN-LiSb powder synthesis by solid-state reaction method. 

 

The reason behind choosing KNN-LiSb ceramic as filler material in polymer:- 

• high dielectric constant. 

• High curie temperature. 

• Cost-effective. 

• Lead-free and environment-friendly. 

• Good piezoelectric properties. 

• Excellent potential for the future. 

 

2.3   Synthesis of KNN-LiSb /PVDF composite film. 
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PVDF and DMF was bought from Alfa Aesar Material Company. To create a homogenous, 

clear solution, PVDF powder was mixed in (N, N)-Dimethylformamide by stirring within a 

magnetic stirrer at 50°C for 1 hour. KNN-LiSb particles that had been calcined were added to 

DMF at changing concentrations — 0%, 5%, 10%, 15%, and 20% on the weight of the polymer 

and ultrasonically processed for 30 minutes at room temperature. To reduce particle 

agglomeration, the produced KNN-LiSb solutions were afterward fused in a PVDF mixture 

and stirred by a magnetic stirrer at 50°C for 4 hours. This mixture was then subjected to a 15-

minute ultrasonication in the ultrasonic cleaner. The homogeneous solution was placed onto a 

glass substrate and dried for an hour at 80 °C for producing flexible KNN-LiSb /PVDF films. 

Finally, the film was easily detached from the glass substrate by peeling it off. The entire 

composite film extraction technique was carried out in an air-conditioned setting. Fig. 2.2 

depicts a schematic representation of the fabrication process of KNN-LiSb/PVDF flexible 

composite film. 

The reason behind choosing POLYVINYLIDENE FLUORIDE (PVDF) polymer as a matrix:- 

• It is a semi-crystalline polymer having five phases of a crystalline area like α, β, γ, δ, ɛ. 

• Highly crystalline β–phase of PVDF is well known for its piezoelectric properties. 

• PVDF is well known for good flexibility and mechanical integrity. 

• It is cost-effective and light in weight. 

• PVDF has a higher piezoelectric coefficient than other polymeric materials like nylon-11, 

polypropylene, polydimethylsiloxane, etc.  

• A variety of methods including mechanical stretching, the introduction of different filler 

materials into PVDF material, and the electrospinning process, have been utilized to 

transition from the alpha phase to the beta phase. 
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Fig. 2.2. Schematic representation of fabrication process of KNN-LiSb/PVDF flexible composite film. 

 

Drop Cast Method: 

Drop casting is a simple film-forming process that is employed by many research organizations 

since it requires no special equipment. Following the evaporation of the solvent, the solution 

containing the required material is cast on a substrate. However, getting a homogeneous layer 

and controlling its thickness (both of which are critical for producing functional OPV devices) 

is challenging [6,8]. This process is similar to spin coating. Additionally, the thickness and 

properties of the film are influenced by the volume and concentration of the dispersion. The 

structure of the film is also affected by factors such as substrate wetness, evaporation rate, and 

drying duration. It is often advised to use volatile solvents that can adequately wet the substrate 

during this process. Spin coating offers the advantage of minimizing material wastage. 
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Fig. 2.3.  Pictorial representation of thin film formation by Drop Cast Method 

 

2.4 Creation of a piezoelectric generator based on KNN-LiSb /PVDF (PEG) 

 

For the construction of PEG, the pliable KNN-LiSb /PVDF films have been created and sliced 

into 1.4*1.4 cm2 pieces, which were then taped with aluminum to construct the upper and lower 

electrode of PEG. The resultant signals when connected to the exterior circuit were then 

measured after the copper cables were joined to the aluminum foil using a silvery paste. Fig. 

2.4 depicts the circuit illustration of the constructed Piezoelectric generator apparatus. 
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Fig. 2.4. (a) Illustrative diagram of the constructed Piezo Electric Generator apparatus. (b) image of constructed 

Piezoelectric generator device. 
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   2.5 Characterization Techniques:- 

 

 

Fig. 2.5.  (Cu-Kα radiation, λ= 1.5406 Å, Make Bruker, Model: D8 Discover). 

 

The crystal lattice arrangement of the produced KNN-LiSb powder and composite films was 

highlighted by X-Ray Analysis (XRD; Rigaku, Ultima - IV) with a Cu-Kα radiative source 

(1.54Å) . Additionally, Rietveld refinement was performed using Fullprof Software to obtain 

refined cell parameters for the calcined and sintered KNN-LiSb samples. The origin of the β-

phase in KNN-LiSb/PVDF-based films was analyzed under FTIR analysis. (PerkinElmer FTIR 

spectrum-II). Furthermore, the produced resultant voltages and short-circuiting current of the 

constructed Piezo Electric Generator devices were measured with the help of DSO (Digital 

Storage Oscilloscope) (Tektronix, MDO500) plus a digital current and voltmeter (Keithley 

DMM7510). 
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       Fig. 2.6.  Photograph of Perkin Elmer Two–Spectrum FTIR spectrometers 

 

 

Fig. 2.7.  Photograph of  JEOL Japan Mode: JSM 6610LV SEM 
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CHAPTER 3 

3. Result and Discussion 

 

3.1 Structural and microstructural analysis of prepared KNN-LiSb powder:- 

To gain a comprehensive an in-depth knowledge of phase development and find the optimal 

calcination temperature for KNNLiSb powder, calcination was carried out at temperatures 

ranging from 850-950 ºC. The provided plot illustrates the room temperature powder XRD 

patterns recorded for KNNLiSb powder that underwent calcination at  900 ºC. The diffraction 

patterns exhibit Bragg peaks corresponding to various crystallographic planes, namely (100), 

(111), (102), (022), (200), (122), (211), (131), (220), (040), (222), (300), (024), and (311), for 

all the calcined samples. 

Of particular interest are the (022) and (200) peaks around 2θ = 45º-46.5º, which aid in 

determining the phase structures of KNN-based ceramics. The XRD plots clearly show a split 

peak, with the (022) diffraction peak displaying higher intensity compared to the (200) 

diffraction peak. This intensity difference suggests that the calcined ceramics adopt an 

orthorhombic phase [10-15]. The XRD data extracted is consistent with the standard JCPDS 

card no. 98-024-7572., confirming the orthorhombic structure of the KNNLiSb ceramic with 

the space group Amm2. Notably, no additional peaks were observed, indicating the successful 

synthesis of KNN ceramic powder through the solid-state reaction process. 

Throughout all the calcination temperatures, peaks corresponding to the KNN-LiSb phase 

consistently appeared. However, the X-ray peaks became progressively narrower and sharper 

as the calcination temperature increased from 850 to 950 ºC, indicating enhanced crystallinity, 

as anticipated.
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Fig. 3.1.  XRD pattern of calcined KNN-LiSb powder 

 

     Rietveld Refinement plot and analysis of Prepared KNN-LiSb powder:- 

The XRD data obtained from the calcination of KNN-LiSb ceramic powder at various 

temperatures was subjected to Rietveld refinement using Fullprof software. The matched 

XRD patterns generated by the software can be viewed in Figure 3.2, and the resulting 

structure and characteristic values are outlined in the table below. The crystalline structure 

analysis revealed that all the calcined powders exhibited a perfectly-matched orthorhombic 

phase. 

Upon inspection of the table, it is evident that the sample calcined at 900 ºC demonstrated 

the lowest value of goodness of fit (χ2), indicating the reliability and rationality of the 
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refinement results for this particular sample. Specifically, the sample calcined at 900 ºC 

exhibited lattice constants of a = 3.9524 Å, b = 5.6328 Å, and c = 5.6591 Å. A calcination 

temperature of 900 ºC was determined as the optimum temperature to produce KNN-LiSb 

ceramic powders based on XRD analysis and Rietveld refinement.. The acquired XRD data 

of the KNN-LiSb powder underwent Rietveld refinement using Fullprof software, and the 

corresponding matched XRD patterns can be seen in the table below..The resulting 

structure and characteristic values are provided, and it is noteworthy that the sample 

sintered at 900 ºC displayed the lowest value of goodness of fit (χ2). 

 

 

Fig. 3.2. Rietveld refinement of synthesized KNN-LiSb powder 
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S. No. Parameter Calcination Temperature (900º 

C) 

1. Crystal System Orthorhombic 

2. Direct Cell length, a(Å) 3.9524 

3. Direct Cell length, b(Å) 5.6328 

4. Direct Cell length, c(Å) 5.6591 

5. Direct Cell angle, α=β=γ(º) 90 

6. Normal Volume, V (Å3) 125.9884 

7. Crystal System Orthorhombic 

8. Reciprocal Cell length, a* (Å) 0.2530 

9. Reciprocal Cell length, b* (Å) 0.1775 

10. Reciprocal Cell length, c*(Å) 0.1767 

11. Reciprocal Cell angle α*=β*=γ*(º) 90 

12. Reciprocal Volume, V* (Å3) 0.007937 

13. Space Amm2 

14. Number of space groups 38 

15. Rp 24.8 

16. Rwp 23.4 

17. Re 9.81 

18. χ2 (Goodness of fit) 5.680 

 

Table 1. Various parameters were calculated using Rietveld refinement by Full Proof software. 

 

3.2 Morphology study of pure and KNN-LiSb /PVDF multilayered films 

 

The produced films, comprising only PVDF and KNN-LiSb /PVDF flexible-produced films, 

underwent XRD analysis for evaluating their crystalline properties. The corresponding graphs 

are shown in Fig. 3.3. The non-polar α-phase of PVDF is thought to be responsible for the tiny 
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and broad diffraction peak at ~18.2º, whereas the existence of a peak at ~20.1º in all 

manufactured films is thought to be a result of the polymer's polar-crystalline β- phase [41-47]. 

The greater intensity of the XRD peaks associated with the β-phase compared to the α-phase 

as shown in Fig. 3.3 further supports the dominance of the β-phase on the α-phase in all 

generated films. Furthermore, the XRD plots indicate that when the concentration of KNN-

LiSb particles grows in the PVDF matrix, the magnitude of the diffraction peaks relating to the 

KNN-LiSb particles rises while the magnitude of the PVDF-associated peaks weakens. 

 

Fig. 3.3. XRD pattern of various content of KNN-LiSb /PVDF Composite Films. 

 

SEM was employed to analyze the surface profile of the KNN-LiSb /PVDF-based composite 

film, and the resultant images are displayed in Fig. 3.4. The composite films of KNN-LiSb 

/PVDF in Fig. 3.4 exhibit homogeneous distribution and KNN-LiSb produced particles inside 

the PVDF matrix.  
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Fig. 3.4. (a-e) SEM surface morphology micrographs of KNN-LiSb /PVDF with varied concentrations of KNN-

LiSb based powder in PVDF polymer on a 10μm scale. 

 

 

 

3.3 Fourier Transform-Infrared Spectroscopy (FTIR) Studies 

 

The FTIR study provided further insight into the influence of KNN-LiSb-based particles on 

the crystalline arrangement of PVDF in composite films. The FTIR spectrum in Fig. 3.5 

confirmed the presence of both α and β phases in every produced film. The characteristic tips 

of the α-phase were identified at 765, 799, 978, and 1382 cm-1, while the characteristic tips of 

the β-phase are identified at 840, 876, 1071, 1172, 1234, and 1232 cm-1 for the range 600 to 

1500 cm-1. All of the KNN-LiSb /PVDF synthetic films had sharper β-phase absorbance peaks 

than the pristine PVDF film, showing that the inclusion of KNN-LiSb -based powder 

encourages increased PVDF β-phase crystallization. 
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Furthermore, the absorbance peak at 840 cm-1, corresponding to the β phase of PVDF, increases 

as there is an increase in the concentration of KNN-LiSb ceramic in the PVDF polymer up to 

15 % concentration, before decreasing. The sample with 15% KNN-LiSb content revealed the 

minimal absorbance magnitude for the PVDF α-phase. The growth of the PVDF β-phase in the 

composite films with the presence of KNN-LiSb ceramic can significantly impact the energy 

conversion efficiency of the produced films. 

 

 

Fig. 3.5. (a) FTIR spectra of KNN-LiSb powder content in the PVDF polymer (b) Variation in 

F(β) as a function of KNN-LiSb powder content in PVDF polymer 

 

 

 

 

 

3.4 PEG device's piezoelectric performance 
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Fig. 3.6 depicts the constructed piezoelectric generating device's operation mechanism. Electric 

dipoles orient each other in one direction when a perpendicular force is exerted through the 

device, creating a potential difference between the two terminals. As a result, as shown in Fig. 

3.6.(a) electrons travel via an external circuit from downward to upward therefore the current 

flows in opposite directions. The electric dipoles immediately reverse when the applied force 

on the device is released, causing the electron travels from upward to downward therefore  

current flows in the reverse direction as noticed in Fig. 3.6.(b). The resulting signals of this 

constructed PEG device were determined with an electrodynamic shaker on the device's 

surface. The Piezo-Electric Generator was linked to a device called a Digital Storage 

Oscilloscope for evaluating the open-circuitry voltage, and a digital multi-meter to assess the 

short-circuiting current. When pressure is applied on the device's surface, a potential difference 

develops along the generator, and the resultant voltage is observed on a computerized storing 

oscilloscope.  

 

 

Fig. 3.6. (a) Working Mechanism PEG device while pressing (b) Working Mechanism PEG device while 

releasing  
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Plotting of the open-circuit voltage produced via the manufactured gadgets by the ready devices 

at various KNN-LiSb ceramic powder concentrations in the PVDF matrix at a frequency of 3 

Hz [48-54] is displayed in Fig. 3.7. The fluctuation of the open-circuit voltage about KNN-

LiSb ceramic particle concentration in the PVDF matrix is depicted in Fig. 3.7(f). The plot 

demonstrates that open-circuitry voltage initially increased with the rise in KNN-LiSb 

concentration in the PVDF matrix up to 15 % and then subsequently drops when KNN-LiSb 

content in the PVDF matrix rises to 20 %. The sample with 15 % KNN-LiSb particles had the 

greatest open-circuit voltage at 15.4 V. The produced open-circuitry voltages for unadultered 

PVDF, 5% KNN-LiSb, 10% KNN-LiSb, and 20% KNN-LiSb based PEGs are 5.19 V, 8.98 V, 

9.12 V, and 13.82 V, respectively. Over 15% KNN-LiSb fillers are working within a Poly 

Vinylidene Fluoride matrix in an arrangement that restricts the formation of the PVDF phases 

and increases the likelihood of defects forming in the polymer matrix, which may be the cause 

of the observed drop in output voltage [46,47].  
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Fig. 3.7. (a-e) Open-circuitry voltage produced by a KNN-LiSb /PVDF PEG apparatus with varying KNN-LiSb 

based powder content within Poly Vinylidene Fluoride matrix and (f) Variability of open-circuitry current in 

PVDF matrix with change in KNN-LiSb concentration 

 

 

 

S..NO. KNN-LiSb Content (wt. %) F(β) ( in %) 

  1    0 (Pure PVDF) 44.1 

  2      5 45.09 

  3     10 46.9 

  4     15  49.3 

  5      20 44.1 

 

Table 2. Variation of generated output voltage as a function of KNN-LiSb ceramic content in PVDF matrix. 
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The constructed devices' short circuit current was measured using the Electrodynamic Shaker. 

Fig. 3.8 shows comparable graphs. The short circuit current values for the samples containing 

0%, 5%, 10%, 15%, and 20% KNN-LiSb powder in the PVDF matrix were 1.91μA, 1.95 μA, 

2.05 μA, 2.14 μA, and 2.08 μA, respectively. The frequency range used for the measurements 

was 3 Hz to 4 Hz. Fig. 3.8(f) demonstrates how the amount of KNN-LiSb ceramic particles 

within a PVDF matrix affects the variation in short-circuit current. The Piezoelectric generator 

device with 15% KNN-LiSb within a PVDF matrix achieved the most significant short-

circuiting current value. The mechanical reliability and longevity associated with 15% KNN-

LiSb /PVDF PEG were tested under constant force ~1N. 

 

 

Fig. 3.8. (a-e) Short-circuiting current produced by a KNN-LiSb /PVDF PEG circuitry with varying KNN-LiSb 

powder content in the PVDF polymer and (f) Plot of short-circuiting current in PVDF matrix with of KNN-LiSb 

concentrations 
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S..NO. KNN-LiSb Content (wt. %) Output current (μA) 

  1    0 (Pure PVDF) 1.91 

  2      5 1.95 

  3     10 2.05 

  4     15  2.14 

  5      20 2.08 

 

Table 3. Variation of generated output current as a function of KNN-LiSb ceramic content in PVDF matrix. 
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CHAPTER 4 

4. Conclusion:- 

Finally, the researchers created an environmentally safe, Pb-free, flexible Piezo-Electric 

Energy Generator. They achieved this by utilizing a powdered version of KNN-LiSb as a filling 

agent within a polymer matrix. The X-Ray Diffractometry plot demonstrated that the PVDF β-

phase was present in all of the films prepared. Furthermore, FTIR analysis found that the 

mixing of KNN-LiSb particulates had significant impacts on the β-phase of Poly Vinylidene 

Fluoride. The use of KNN-LiSb powdered form as a filler agent within the Poly Vinylidene 

Fluoride matrix improved the PEG device's reaction or feedback. The maximum no-load 

voltage and short-circuiting current of the PVDF polymer PEG device are 15.47 V and 2.14μA, 

respectively. Furthermore, Circuitry was demonstrated to successfully collect energy by human 

body actions such as elbow bending, tap contracting, and so on. This study's synthesis 

technique proved to be practical and cost-effective, making it suitable for the production of 

large-scale, enhanced-performance ceramic-polymer multifunctional PEGs that are flexible, 

stable, and durable, and can be used in a variety of wearable and flexible powered electronics 

applications [56-58]. When creating a enhanced-performance PEG, the choice of piezoelectric 

material is important. In this investigation, KNN-LiSb ceramic was mixed in polymer matrix. 

One downside of KNN-LiSb ceramics is that they have a high leakage current density, which 

restricts the PEG film's piezoelectric output responses [43-47]. Chemical doping, on the other 

hand, can increase the piezoelectric properties of KNN by raising its piezoelectric coefficient 

and stabilising its performance [46]. Substituting Nb5+ ions in Potassium Sodium Niobate with 

Ta5+, Zi4+, Cu2+, Li+, and Sb5+ ions, for example, might result in complex defects that restrict 

domain wall motion, minimise dielectric losses, and improve piezoelectric performance. 

Despite the fact that there have been few studies on employing modified KNN-LiSb in the 
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polymer matrix to construct PEG, it is an area of research with significant potential to improve 

the performance of PEG appliances [59]. As a result, In the future, there is significant potential 

for the advancement of PEG devices with enhanced piezoelectric performance. This progress 

can be achieved by incorporating chemically modified KNN-LiSb lead-free ceramic powder 

into PVDF (polyvinylidene fluoride) materials. 
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