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ABSTRACT       

      

 

Rolling element bearings are widely employed in the industrial and domestic machines 

and appliances due to their ease in mounting and efficient operational features. About 

80% bearings found in the industrial machines happens to be the rolling bearings. 

Numerous factors contribute to the deterioration of these bearings, primarily including 

wear, ageing, environmental influences, improper installation, inadequate lubrication, 

and material fatigue. A defective bearing frequently leads to reduced efficiency or, in 

some instances, significant injury to the machine. Consequently, health monitoring and 

fault diagnosis have gained significant attention in recent years, and they can be 

performed utilising various information, including acoustic emission, stress 

waveforms, oil analysis, temperature, and vibration. The prevalent method employed 

for defect detection is vibration monitoring and analysis, which provides critical 

insights into anomalies occurring within the internal structure of bearings.  

This study investigates the vibration-damping behaviour of four different types of 

antifriction bearings through experimental and computational analyses. Experiments 

are conducted on a customized rotor-bearing test rig with data acquisition through the 

OROS NV-Gate software at both the drive end (DE) and non-drive end (NDE). The 

damping characteristics are evaluated through static and dynamic analyses. 

Additionally, the study employs Taguchi and ANOVA methods to assess the effects 

of load and rotational speed on the vibrations and noise of healthy tapered roller 

bearings (SKF30206). The Taguchi method, which integrates statistical and 

mathematical techniques, is used to establish relationships between input parameters 

and system response. Twenty-seven experiments have been performed using the L27 

design of experiments (DOE) approach, considering two factors (speed and load) at 

three levels. 

Further experiments are conducted on tapered roller bearings with inner race, outer 

race, roller, and compound defects. A DOE framework comprising 64 experiments is 

designed by incorporating two continuous and one categorical factor at four levels. 

Beyond traditional signal processing techniques, soft computing methods are explored 
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to automate defect detection partially. The efficiency and relevance of this study are 

significantly enhanced by integrating machine learning and classifier algorithms for 

automated fault diagnosis. Time and frequency domain features were extracted from 

800 signal datasets to ensure optimal model performance and ranked using one-way 

ANOVA and Kruskal-Wallis selection techniques. Initially, machine learning models 

are trained and tested for automated defect classification, followed by a comparative 

analysis of different classifiers available in MATLAB. 

The results indicate that tapered roller bearings exhibit superior damping capacity 

compared to cylindrical, spherical, and self-aligned bearings. The contact between 

rolling elements and raceways played a crucial role in the damping behaviour of 

antifriction bearings. For both healthy and defective TRBs, vibration response data—

measured in terms of root mean square (RMS), kurtosis, and noise levels (Leq) are 

analyzed to evaluate performance. The study highlights the effectiveness of combined 

parametric effect analysis with DOE and the Taguchi method in predicting the 

behaviour of tapered roller bearings within rotor-bearing systems. Furthermore, 

computational analysis demonstrates that feature selection through ranking 

mechanisms significantly enhances machine learning model efficiency. Among 

various classifiers, the highest defect classification accuracy is achieved using the top 

10 features ranked by the Kruskal–Wallis test with classification accuracies of 79.0%, 

86.6%, 92.9%, 97.6%, 81.9%, and 64.4% for linear, quadratic, cubic, fine, medium, 

and coarse models, respectively. The Kruskal–Wallis test outperforms the One-way 

ANOVA in feature selection and further improves the classification accuracy. This 

integrated approach offers a robust predictive framework for assessing the 

performance of TRB (tapered roller bearings) and automating defect diagnosis in 

rotor-bearing systems. 
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Chapter 1 Introduction 
      

 This chapter deals with the introduction of rolling element bearings. It briefly 

describes different types of defects in rolling element bearings and commonly 

available techniques for diagnosing the bearing defects. It also provides a basic 

understanding of bearing dynamics and the motivation of the present research work. 

1.1 Background and Motivation 

A bearing is a component that limits the relative movement between two machine 

elements and facilitates friction reduction to ensure smooth motion.   

Bearings support and guide, with minimal friction, rotating or oscillating machine 

elements such as shafts, axles or wheels and transfer loads between machine 

components. They provide high precision and low friction, enabling high rotational 

speeds while reducing noise, heat, energy consumption and wear. Bearings are 

classified based on the nature of operation, permitted motions, and the directions of 

loads exerted on the components. They are broadly categorised into two types: rolling 

contact bearings and sliding contact bearings, based on their operational mechanism 

[1]. 

1) Plain/ Sliding bearing 

a) Plain bearings 

b) Fluid bearings 

2) Rolling Element /Antifriction bearings 

a) Ball-bearings 

i. Deep-groove ball bearings 

ii. Self-aligned ball bearings 

iii. Angular contact ball bearings 

b) Roller bearing 

i. Cylindrical bearing 

ii. Tapered roller bearing 

iii. Spherical roller bearing 
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iv. Needle roller bearing 

All rotating components in an engineering system need a machine element that 

maintains system configuration, provides support and direction, and uses minimal 

energy. In Rolling Element Bearings (REBs), the direct sliding of the shaft against the 

support is substituted by the rolling motion of the balls or rollers, which markedly 

diminishes friction.   

A REB, regardless of its type, generally consists of four primary components, as 

illustrated in Fig. 1.1. Two rings, specifically an inner ring and an outer ring, a 

collection of rolling devices in the shape of balls or rollers, and a cage or retainer.  The 

inner ring is securely affixed to the shaft, while the outer ring is typically supported 

within the housing or structure.  The rolling elements are situated between the two 

rings, and the cage maintains uniform spacing among these rolling elements.  The load 

from the shaft is sent to the inner ring, which is subsequently shared by several rolling 

elements, and from there it is conveyed to the outer ring and ultimately to the structure 

or housing. 

 

Figure 1.1 Important elements of a typical rolling element bearing [2] 

Bearings are virtually used in every piece of equipment or machinery, ranging from 

automobile parts, farm equipment, and household appliances to defence and aerospace 

equipment. This factor is projected to drive market growth shortly. There has been a 

rising demand for bearings with lower maintenance requirements, higher efficiency, 
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Figure 1.2 Bearing market share [3] 

 

and longer service life. Moreover, a rise in demand for specialised bearing solutions 

that meet different industry-specific requirements and challenges is projected to boost 

the market. For instance, the rising application of high-capacity products in wind 

turbines is expected to catapult the demand. Wind turbines utilise these products to 

enhance performance and reliability, increase energy production, and reduce lubricant 

consumption. The energy sector poses application-specific bearings. For instance, the 

growth in the usage of bearings in the wind energy sector encourages suppliers to focus 

on the bearing products required to support wind energy applications. 



4 

 

 

The global bearings market was valued at USD 102.2 billion in 2018 and is anticipated 

to expand at a CAGR of 8.1% from 2019 to 2025 and 9.1% till 2030 [3]. Most global 

bearings market vendors have introduced sensor components in ball bearings. These 

elements help digitally monitor revolution speed, axial movement, deceleration, 

acceleration, and weight-carrying capacity. These bearings are used in road rollers, 

conveyors, and electric motors. Therefore, technical developments and innovations 

drive the growth of the global bearings market. 

 

Figure 1.3 Leeds bradford airport site [4] 

Typical varieties of rotating machinery include turbines, generators, compressors, 

pumps, motors, and engines.  The malfunction of such equipment can result in 

considerable economic losses and, in extreme instances, threaten human safety. 

Research indicates that bearing failures are the predominant cause of malfunction in 

rotating machinery. A bearing malfunction enhances the rotational friction of the rotor.  

Consequently, the detection and identification of mechanical problems in rolling 

element bearings are essential for the reliability of the systems.  Diagnosing the 

condition of a bearing can prevent unscheduled machinery failures and the expensive 

damage resulting from bearing failure. 

In October 2007, a significant wheel-bearing failure caused a goods train to derail 

near Huntly, leading to eleven additional incidents in the following year—some 
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resulting in fires and infrastructure damage, yet astonishingly, no injuries were 

reported [4]. 

On 20 October 2023, as Storm Babet impacted the UK, a TUI flight with nearly 200 

passengers deviated from the runway at Leeds Bradford Airport—its pilots surprised 

by an abrupt shaking from the aircraft’s nose gear. The underlying issue: a severe 

bearing failure, undetectable through standard inspection methods. Although there 

were no casualties, the event highlighted a significant weakness in contemporary 

aviation systems [5]. 

 

Figure 1.4 Huntly derailment site [5] 

The incidents disrupted operations and posed risks to lives, highlighting a significant 

deficiency in our predictive maintenance capabilities. This thesis addresses the critical 

necessity of closing the existing gap through the creation of a comprehensive, sensor-

driven, and intelligent diagnostic framework designed to detect early-stage bearing 

faults. With this endeavour, we strive to enhance the safety and reliability of transport 

systems, ensuring that potential failures are detected proactively rather than reactively, 

thereby safeguarding lives. 

Two fundamental approaches for bearing maintenance are: statistical methods for 

bearing life estimation and condition monitoring coupled with diagnosis.  The previous 

method depends on the projected lifespan derived from statistical analyses conducted 
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on laboratory testing.  This projected lifespan may not correspond with the actual 

lifespan due to potential post-manufacturing defects and real-world operating 

situations that may not have been considered during laboratory evaluations.  

Consequently, due to this and the advancement of novel and effective signal 

processing techniques, the latter way emerged as the preferred option [6]. 

1.2 Tapered Roller Bearing 

Tapered roller bearings shown in Fig. 1.5 can accommodate substantial axial forces, 

making them effective thrust bearings, while enduring significant radial forces.  

Tapered roller bearings (TRBs) can accommodate a combination of substantial radial 

and axial forces, making them prevalent in heavy-load applications.  Misalignment in 

tapered roller bearings (TRBs) results in significant roller-edge loadings and unequal 

load distribution, rendering it more crucial than misalignment in other bearing types 

due to the tapered design and extended contact lines between the rollers and raceways. 

Figure 1.5 Tapered roller bearing [7] 

Description: The inner and outer ring raceways are cone segments, and the rollers are 

tapered so that the conical surfaces of the raceways and the roller axes, if projected, all 

meet at the same location on the bearing's main axis.  The raceways' projection lines 

meet at a common point on the bearing axis (apex point), resulting in true rolling action 

and reduced frictional moments during operation.  Tapered roller bearings' axial load 

carrying capacity improves with increasing contact angle 'α'. The contact angle is 

typically between 10° and 30°, as shown in Fig. 1.6. 
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Figure 1.6 Internal dimension for tapered roller bearing performance analysis [8] 

 

 

This conical geometry is used because it provides a larger contact patch, allowing for 

greater loads to be carried than with spherical (ball) bearings. Additionally, the 

geometry ensures that the tangential speeds of each roller's surfaces are the same as 

their raceways along the entire length of the contact patch, preventing differential 

scrubbing.  A roller slides rather than rolls can cause wear at the roller-to-race 

interface, resulting in a scrubbing action due to surface speed variations.  Wear 

degenerates the close tolerances generally held in the bearing, which might lead to 

other issues.  A tapered roller bearing allows for much closer to pure rolling, avoiding 

quick wear.  The inner ring has a flange that guides the rollers.  This prevents the 

rollers from sliding out at high speeds due to momentum.  The larger the half angles 

of these cones, the greater the axial force the bearing can withstand. 

The nomenclature for tapered roller bearings differs from other roller bearing types.  

As illustrated in Fig. 1.7, the inner ring of the bearing is referred to as the cone, while 

the outer ring is termed the cup.  The bearing's operation is linked to a pitch cone.  

Figure 1.6 also shows the dimensions and angles requisite for the performance study 

of tapered roller bearings. From Fig. 1.6, it can be seen that αi, the inner raceway–

roller contact angle = ½ (cone-included angle); αo, the outer raceway–roller contact 

angle = ½ (cup-included angle); αf, the roller large end-flange contact angle = ½ (cone 

back face rib angle); and αR is the roller-included angle. Dmax is the large-end diameter 

of the roller and Dmin is the small-end diameter of the roller, which has the end-to-end 
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length. Tapered roller bearings are frequently employed in back-to-back pairs to 

support axial forces in both directions equally.  Tapered roller bearing pairs are utilised 

in automotive wheel bearings to concurrently withstand substantial vertical (radial) 

and horizontal (axial) strains. 

Figure 1.7 Schematic drawing of a tapered roller bearing indicating nomenclature [8] 
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1.3 General Causes of Bearing Defects 

The causes of bearing failures are numerous. Although it isn't always easy to determine 

the precise cause, most bearing failures can be linked to at least one of the following 

important causes [8–10]: 

a) Foreign matter: Particles like dust, dirt, or metal can infiltrate the bearing, 

resulting in surface damage that contributes to heightened wear and vibration. 

This frequently arises due to inadequate sealing or unsanitary assembly 

conditions. 

b) Incorrect mounting: Incorrect installation techniques—like applying too 

much force or disregarding manufacturer instructions—can lead to internal 

stresses, misalignment, or harm to the bearing raceways and rolling elements. 

c) Bearing misalignment: When there is a misalignment between the shaft and 

housing, it can result in uneven load distribution, heightened friction, and 

localised stress. This situation accelerates wear and has the potential to lead to 

premature bearing failure. 

d) Electrical damage: Uncontrolled electric currents traversing the bearing can 

lead to the formation of pitting and fluting on the raceways.  This form of 

damage frequently occurs in electric motors lacking adequate grounding or 

insulation. 

e) Improper lubrication: Employing an inappropriate lubricant, inadequate 

lubrication, or contaminated grease or oil can result in metal-to-metal contact, 

excessive heat production, and hastened wear of the bearing components. 

f) Bearing fatigue and corrosion: Extended exposure to cyclic loads results in 

material fatigue, which can lead to the spalling or flaking of the bearing surface.  

Furthermore, the presence of moisture or chemical exposure leads to corrosion, 

which compromises the integrity of the metal and shortens the lifespan of the 

bearing. 

g) Defective sealing: Defective or aged seals are ineffective in preventing 

contaminants from entering and maintaining lubrication, leading to dirt 

infiltration and lubricant depletion, which hastens deterioration and eventual 

failure. 
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h) High temperature: High operating temperatures can deteriorate lubricants, 

modify material characteristics, and induce dimensional alterations in bearing 

components, potentially resulting in failure if not managed effectively. 

1.4 Defects in Bearings  

Bearing faults usually start as small pits or spalls and give sharp impulses in the early 

stages, covering a very wide frequency range (even in the ultrasonic frequency range 

of 100 kHz). However, for some faults such as brinelling, where a race is indented by 

the rolling elements, giving a permanent plastic deformation, the entry and exit events 

are not so sharp, and the range of excited frequencies is not so wide.  

However, they would still generally be detected by envelope analysis. Several 

researchers have explained the mechanism of vibration in the bearings. Even a healthy 

bearing generates vibration, but the presence of defects increases vibration levels 

significantly. Many factors, the most common of which are fatigue, wear, plastic 

deformation, corrosion, brinelling, poor lubrication, faulty installation and incorrect 

design, can cause premature bearing failures. Identifying these defects and their 

vibration is important for the condition monitoring of bearings. The bearing defects 

are broadly classified into two categories: i.e. localized and distributed [11]. 

1.4.1 Localized Defects  

A localised defect in the context of mechanical systems refers to a specific, confined 

area of damage or irregularity on a component's surface. This type of defect is typically 

not spread uniformly but occurs in a specific region, leading to distinct impacts on 

system behavior. This category of defects includes pits, cracks, and spalls that may 

develop over the rolling surfaces. Of these, spalling is the dominant mode of failure. 

Fatigue crack begins below the surface, propagating towards the surface until the 

material fails and leaves localised defects. Bentley in his paper showed that 90% of 

the total bearing faults involve damage to the inner ring, outer ring and rolling elements 

due to localised defects. The spall can have a surface or subsurface origin. A spall 

originating at the surface usually begins as a crack at a surface defect or at a debris 

dent that propagates into a crack network to form a spall. A crack that begins at a stress 
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riser, such as a hard inclusion below the running track in the region of the maximum 

shearing stress, also propagates into a crack network to form a spall [11] 

 

Figure 1.8 Subsurface-initiated spall at a hard inclusion (top) and Surface-initiated 

crack network from a surface defect [12] 

 

Figure 1.9 Localised bearing defects: (a) outer-race defect, (b) inner-race defect, and 

(c) roller element defect [12] 
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1.4.2 Distributed Defects  

Distributed defects include surface roughness, waviness, misaligned races and off-size 

rolling elements. The main causes of distributed defects are manufacturing errors, 

abrasive wear, and improper installation. In distributed defects, the contact force 

between rolling elements and raceways varies, which results in vibration. Vibration 

response due to distributed defects is mainly used for the quality inspection and 

condition monitoring of bearings [8, 11].  

 

Figure 1.10 Images of naturally born distributed faults (a) Outer and (b) Inner race [12] 

 

Figure 1.11 Abrased outer ring raceway of spherical roller bearing [13] 

 

1.4.3 Defect in Bearing Elements 

Defects may exist in several components, including surface roughness of the inner or 

outer race, waviness, misalignment of races, and improper sizing of rolling parts.  
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Other notable problems include cracks, corrosion pitting, and brinelling on the rolling 

surfaces.  Bearing issues are divided into five types based on the defects in these 

components, as outlined below: 

a) Inner race fault 

b) Outer race fault 

c) Cage fault 

d) Roller or ball fault 

e) Multiple fault 

Degradation will manifest in one of four forms: damage to the outer race, known as 

BPFO (ball pass frequency outer); damage to the inner race, known as BPFI (ball pass 

frequency inner); damage to the rolling elements, known as BSF (ball or roller spin 

frequency); or damage to the bearing cage, known as FTF (fundamental train 

frequency).  Each imperfection will produce a distinct frequency, contingent upon the 

geometry and velocity of the bearing. Characteristic defect frequencies of the bearing 

can be computed and referenced from the source, as follows [14]: 
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Where fr is the shaft speed, n is the number of rolling elements, and ϕ is the angle of 

the load from the radial plane, d and D are the ball (rolling element) and pitch 

diameters. Note that the ball spin frequency is the frequency with which the fault 

strikes the same race (inner or outer). 

The components of rolling contact bearings – i.e. inner raceway, outer raceway, rolling 

elements, and cage – interact through a combination of rolling and sliding to produce 

complex vibration signatures. The vibration level depends on the impact energy, the 
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point at which vibration is measured and the bearing construction. The various sources 

of vibrations are as follows [9]: 

a) Geometrical Imperfection  

b) Surface Roughness  

c) Waviness  

d) Raceway Defect 

e) Rolling Element Defect 

f) Variable Compliance 

1.5 Maintenance Strategies  

The maintenance strategy for rotary machines is essential for guaranteeing their 

dependable and effective performance. Various methodologies are employed, 

considering the significance of the machine, the conditions under which it operates, 

and the associated costs. These are primarily classified into three types –  

a) Corrective maintenance,  

b) Preventive maintenance and  

c) Predictive maintenance (or Condition-based maintenance CBM) 

 

Figure 1.12 Components of condition-based maintenance [15] 

 

Corrective maintenance involves the process of repairing or replacing components 

following a failure event. The objective is to return the machine to its functional state 

by addressing the identified issue. This method is typically employed when setbacks 

do not significantly impact operations or safety. Although it may appear 

straightforward and economical at first, excessive reliance on it in essential machinery 
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can result in unexpected outages, increased repair expenses, and possible harm to 

adjacent systems. Preventive maintenance is scheduled and entails regular servicing to 

prevent unforeseen failures. Predictive maintenance utilises real-time data, such as 

vibration, temperature, and noise, to evaluate machine health and schedule 

maintenance only when necessary, thereby minimising unnecessary downtime.  

CBM employs sensors to gather information regarding the components during their 

operational phase. In this case, sensors provide the benefit of collecting data in real-

time during the production process, without causing any interruptions to the workflow. 

Over time, the collected data are analysed and contrasted to forecast potential failures. 

In certain instances, this analysis is conducted solely when there is a noticeable decline 

in machine performance, thereby increasing the risk of breakdown. Condition-Based 

Monitoring (CBM) is a methodology that primarily employs sensors to assess the 

condition of various components. This procedure is conducted repeatedly at various 

intervals to ascertain the impact of time on the component. The primary advantage of 

this procedure is that it can be conducted while the components are operational, 

thereby eliminating the necessity for removal for maintenance purposes. 

Consequently, it will not impact any production schedules and offers information with 

a high degree of accuracy. The data collected from the sensors can be subjected to 

further analysis to extract information regarding malfunctions, defects, lifespan, and 

operational conditions.  

As Industry 4.0 progresses, AI-driven maintenance is being increasingly used, utilising 

data analytics and machine learning for enhanced defect prediction and optimisation.  

Choosing the appropriate method prolongs machine longevity, reduces expenses, and 

guarantees operational safety. 

1.6 Machine Health Monitoring Techniques 

Techniques for monitoring machine health are crucial for evaluating the state of 

machines in real-time and identifying faults early to avert unforeseen failures.  These 

techniques facilitate maintenance decisions that are informed by the actual condition 

of the equipment, rather than depending exclusively on time-based schedules. A 

variety of machine condition monitoring techniques, such as [9, 14, 16] 
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a) Acoustic Emission (AE) 

b) Thermography 

c) Oil Debris (OD) 

d) Vibration Analysis (VR) 

1.6.1 Acoustic Emission 

Acoustic emission (AE) monitoring detects high-frequency stress waves generated 

during the deformation of materials, crack propagation, or various structural changes. 

The emissions generally occur within the frequency range of 100 kHz to 1 MHz, 

produced as a mechanical component experiences the growth and enlargement of a 

crack. The high-frequency acoustic waves transmit crucial insights regarding the 

internal state of the material. In AE analysis, the solid-borne acoustic signal is 

measured, and its statistical features are extracted to evaluate the health state of the 

system. This method proves to be highly efficient in identifying faults in bearings and 

gears, as well as cracks in shafts and turbine blades, and defects in reciprocating 

machinery. In contrast to vibration analysis, acoustic emission can identify micro-level 

defects at an early stage, rendering it a highly sensitive and valuable instrument for 

condition monitoring. Nonetheless, it necessitates advanced sensors and a high level 

of expertise for accurate signal interpretation and effective noise discrimination. 

1.6.2 Thermography 

Thermography employs infrared cameras or sensors to assess the surface temperatures 

of machinery while it is in operation. Unusual temperature trends frequently suggest 

mechanical complications, including overheating bearings, misaligned components, 

friction from inadequate lubrication, or electrical concerns such as overloading and 

loose connections. This technique involves monitoring the temperature of the 

components to identify any abnormalities within the mechanical system. In numerous 

mechanical systems, the surface temperature fluctuates within the infrared spectrum 

(0.7 to 100 microns wave band), which is assessed using a thermal imaging camera. 

Each machine operates within a specific normal temperature range, which can increase 

due to excessive friction and wear. This can occur from insufficient lubrication, 

excessive load, or stresses caused by improper loading, faults, or misalignment. The 
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thermal images allow for the identification of high-temperature regions, emphasising 

components that are functioning abnormally and necessitating further examination for 

possible faults. This method, which is both non-contact and non-invasive, is perfectly 

suited for examining live systems without the need for shutdowns, thereby facilitating 

prompt maintenance decisions. 

1.6.3 Oil Debris 

The analysis of oil serves as an effective method for assessing the internal state of 

mechanical systems that utilise lubricants for lubrication or cooling functions. As time 

progresses, wear particles produced by components like bearings, gears, chains, and 

cylinder-piston assemblies contaminate the oil, leading to changes in its physical and 

chemical properties. Analysing a contaminated lubricant sample can yield valuable 

insights into the internal health of the machine. The measurement of viscosity serves 

as a crucial method for assessing the composition of oil and identifying the presence 

of foreign or wear particles. Additional essential indicators encompass water content, 

oxidation, acidity, pour point, and flash point, which are vital for evaluating 

degradation and contamination levels. The analysis of oil, both physical and chemical, 

offers crucial early indicators of possible issues, facilitating predictive maintenance 

and minimising the likelihood of severe failures. This method is economical and non-

invasive, rendering it particularly appropriate for regular condition assessment. 

1.6.4 Vibration Analysis 

Vibration monitoring is one of CBM's well-known methods.  It addresses abnormal 

vibration, and if it occurs, this method can identify the machine or component failure 

based on the vibration pattern.  However, one should be aware of natural frequency 

and vibration before implementing vibration monitoring. So that anomalous vibrations 

can be measured, and predictions can be made once the natural vibrational situation is 

known. In general, more vibrations are produced by worn parts. Every spinning 

component of the machine experiences fundamental vibration because of its 

revolution. The vibration-based parameter's value rises as the bearing deformation 

over time does.  An increase in the overall vibration level indicates that the machine's 

condition worsens.  The bearing components' misalignment or other defects could be 
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the source of this elevated vibration level.  The main components of vibration 

diagnostics include feature extraction from the signal and the comparison of the values 

of the healthy bearing with the defective bearing. 

Two fundamental techniques are used in every instance of vibration monitoring: 

frequency-based vibration data and time-based vibration data.  In addition to time-

frequency-based vibration, CBM data has recently gained much recognition.  

Amplitude is a variable in this case; if it is represented on a frequency scale, it is 

frequency domain analysis; if it is suppressed on a time scale, it is time-domain 

analysis. 

All rotating machines produce vibrations during operation due to their dynamic 

characteristics, which result in fluctuating stiffness or compliance under specific 

working conditions.  The vibration characteristics are modified by the emergence of 

defects in the machine, which can be quantified using an appropriate sensor.  Based 

on the frequency of the vibration signal (attributable to flaws), an appropriate vibration 

parameter (displacement, velocity, or acceleration) is chosen for measurement.  For 

bearings, the vibration signal occurs in the high-frequency range; therefore, 

accelerometers are typically utilised to capture the vibration acceleration.  Various 

signal processing techniques in both time and frequency domains are employed on the 

acquired data to improve fault-related signal attributes and eliminate unwanted noise 

or disruptions, hence facilitating accurate conclusions. 

Various instruments exist for detecting the vibration of a body, each operating on 

distinct principles, such as electrical strain gauges, linear variable differential 

transformers, piezoelectric devices, and electrodynamic transducers.  Vibration 

transducers are offered in several varieties according to the measured parameter: 

proximity probes for vibration displacement, velocity pickups for velocity 

measurement, and accelerometers for acceleration measurement.  The accelerometer 

has a wider dynamic measuring range (often 1- 20 kHz) and is optimally utilised in 

most industrial applications. 

 The piezoelectric accelerometer presents numerous advantages, including 

compactness, durability, high sensitivity, and excellent frequency response [9].  It 
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utilises the piezoelectric property, whereby electric charges are generated in a material 

(piezoelectric crystal/ceramic) during deformation due to applied pressure 

(force/stress).  The generated charge is quantified and amplified, ultimately utilised to 

assess the magnitude of force, stress, or pressure according to the calibration. 

 An accelerometer produces a continuous voltage signal captured by the data 

acquisition (DAQ) device at a designated sampling rate.  The DAQ transforms the 

continuous signal from the accelerometer into a digital signal, with the quantity of data 

points and the degree of digitisation dictated by the sampling frequency and the 

resolution of the DAQ unit.  In addition to digitisation, the latest DAQ cards feature 

an integrated signal conditioning unit for signal filtering and amplification. 

1.7 Vibration Signal Processing and Data Analysis 

Signal processing techniques are created to extract accurate information from signals.  

The precision of signal processing primarily relies on two factors: the quality of the 

signals and the methodology employed in their processing.  In bearings, rotation 

generates impulse data, which are measured in relation to frequency and referred to as 

characteristic frequencies.  Established methodologies exist for calculating diverse 

frequencies, and juxtaposing readings with outputs from alternative approaches yields 

conclusive results on predictions [9, 17]. 

Upon accessing the data in the computer, several signal processing techniques, such 

as filtering, linearisation, amplification, noise reduction, and feature enhancement, are 

utilised to extract pertinent information on the fault from the signal.  The signal can be 

analysed in several domains (time, frequency, or a combination of time-frequency) to 

identify fault-related properties.  Trend analysis is often conducted in the time domain, 

where the signal's strength serves as an indicator of fault onset and failure.  Time 

domain statistics, such as Root Mean Square (RMS), mean value, peak value, Standard 

Deviation (SD)/variance, kurtosis, and skewness, are frequently used as fault 

parameters.  The focus in the frequency spectrum is on identifying the peaks associated 

with bearing fault pass frequencies and their harmonics. The fault pass frequencies for 

various malfunctioning components are mentioned in section 1.4.3. 
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The fault pass frequency value is contingent upon the specific component (inner or 

outer ring, cage, or rolling element) that has incurred a defect (spall), and its existence 

in the spectrum indicates the defective component within the bearing.  The bearing is 

deemed damaged if the spectrum includes fault frequencies and associated harmonics.  

To ascertain the defect's severity, alternative methodologies, typically utilising time-

frequency frames, are employed.  The strategy for bearing replacement and 

maintenance is implemented. 

Recently, the development of systems capable of human-like cognition has become 

prevalent.  However, a distinction exists between human cognition and machine 

behaviour, as humans comprehend patterns within data, but machines merely 

recognise them.  Humans typically create mental patterns via brain networks and store 

information through the biological sensors present in the body.  Artificial neural 

networks function similarly to the human brain; they utilise algorithms to train data, 

identify patterns, and evaluate data against established patterns. 

An intelligent information-based fault detection system, capable of self-learning and 

automatic updating, represents the forthcoming trend in the research of mechanical 

component failures. Signal processing techniques and the extraction of appropriate 

features are highly sensitive for identifying specific types of faults. Information-rich 

signals, such as vibrations, noise, and various physical, electrical, and material 

properties, are particularly valuable when analysed correctly.  Extracting explicit 

information from extensive data presents a significant challenge in signal processing. 

Consequently, various strategies such as time domain, frequency domain, and 

combined time-frequency domain analysis have been developed, each with its 

respective advantages and limitations [18]. 

Various techniques are commonly employed in bearing fault detection, including 

ANN, KNN, SVM, and MLR.  The fundamental process in AI methodologies 

commences with data acquisition.  The model's accuracy is significantly contingent 

upon the data available.  Increased training data enhances the model's accuracy.  Upon 

the conclusion of the data collection phase, the subsequent duty is feature selection. 

Following selecting features using various methods, the data training process 
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commences.  The final trained model is evaluated using unfamiliar data to assess its 

accuracy. 

Recently, the application of data mining techniques has become increasingly sought 

after alongside signal processing, since substantial data necessitates appropriate data 

processing.  Methods encompass data normalisation, data preparation, data selection, 

and data processing; determining the appropriate method according to specific 

requirements is a significant challenge for researchers. 

1.8 Structure of the Thesis  

This thesis comprises eight systematically organised chapters that comprehensively 

justify the research work.  

Chapter 1 introduces rolling element bearings with a focus on tapered roller bearings. 

It briefly describes different types of defects in rolling element bearings and commonly 

available techniques for diagnosing the bearing defects. It also provides a basic 

understanding of bearing dynamics and the motivation for the present research work. 

Chapter 2 presents an overview of extensive research carried out in the field of rolling 

element bearings. An in-depth exploration of the existing literature has been 

undertaken, focusing on the study of bearing dynamics. Based on the available 

research, this chapter identified the research gaps and further discussed the objectives 

that underpin the current study. 

Chapter 3 addresses the first research objective, which focuses on designing and 

developing an experimental setup for TRB. The framework is constructed to support 

both damping characterization and bearing fault diagnostics under defined loading 

circumstances. 

Chapter 4 covers the damping analysis of four antifriction bearings within a controlled 

experimental framework. Both free decay and frequency response function (FRF) 

methods are utilised to assess the damping characteristics. The objective is to analyse 

the damping characteristics among different bearing types and their respective 
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operating conditions. The findings from this analysis enhance our comprehension of 

vibration attenuation in rotating machinery. 

Chapter 5 covers the second objective, involving the vibration analysis of healthy 

TRB. An experimental study was carried out to assess the impact of various process 

parameters on the root mean square (RMS) value of vibration signals and the 

equivalent continuous sound level (Leq) produced during operation. 

Chapter 6 is dedicated to the third objective, which examines the vibration analysis 

of a faulty TRB. Bearings exhibiting artificially induced defects, including inner race 

faults, outer race faults, and roller element damage, were subjected to controlled 

testing to analyse their dynamic behaviour. The vibration signatures were captured and 

examined through unique characteristics linked to each fault type.  

Chapter 7 contributes to the fourth objective, focusing on developing an automated 

fault diagnosis framework for TRB. Leveraging experimental data gathered from 

diverse fault conditions, the framework combines signal processing techniques with 

supervised learning algorithms to facilitate automated condition monitoring. It 

includes details on an automated fault classification approach, proposed using 

supervised Machine Learning algorithms and a selected combination of statistical 

feature vectors.  

Chapter 8 presents the conclusions derived from the present work, followed by a list 

of possible future directions related to this work. The results of the damping analysis, 

fault detection experiments, and the diagnostic framework based on machine learning 

are emphasised. The study also addresses the industrial implications, highlighting how 

dependable bearing diagnostics can improve machine safety, lower maintenance 

expenses, and support sustainable engineering initiatives. 
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Chapter 2 Literature Review 
    

 

This Chapter presents an overview of extensive research carried out in the field of 

rolling element bearings. An in-depth exploration of the existing literature has been 

undertaken, focusing on the study of bearing dynamics and methodologies for 

evaluating tapered roller bearings' behaviour. Based on the available research, this 

chapter identified the research gaps and further discussed the objectives that underpin 

the current study.  

2.1 Introduction 

Current trends in driveline design emphasise super-critical, high-speed, lightweight, 

and extremely reliable systems, employing multi-objective functions to optimise 

strength and fatigue life while reducing weight and cost. Machinery supported by 

bearings and linked via couplings is an essential component of all rotating machinery.  

The optimal performance of these machines is significantly influenced by the seamless 

and silent operation of the bearings and the extent of misalignment at the coupling site. 

A functioning machine produces vibrations.  These vibrations possess a specific 

inherent frequency, and any faults or damage to machine components alters these 

vibrations.  The sensors can capture machine vibrations, facilitating fault detection.  

Diverse methodologies are employed to identify accurate bearing problems, 

encompassing measurements such as acoustic and vibration analysis, temperature 

assessment, and wear evaluation.  The study indicates that the time-domain 

characteristics, including kurtosis, root mean square (RMS), crest factor, and 

probability density, demonstrate that kurtosis is the most useful feature in vibration 

and acoustic measurement.  The frequency domain assists in identifying the location 

of problems.  Two more methodologies, namely sound pressure analysis and sound 

intensity analysis, are sometimes overlooked; however, their results are not 

encouraging [19].  

The examination of various parameters in the time-frequency domain revealed that 

kurtosis consistently demonstrates superior performance in parameter selection, as 
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noted in the literature. Additionally, a novel parameter, the product of kurtosis and 

RMS, has also yielded significant results in certain research studies.  However, only a 

limited number of scholars have embraced this novel measure [20]. Sections 2.2 

provide a concise overview of the damping study of the rotor bearing system.  

Subsequently, Section 2.2 presents a literature overview concerning the investigation 

of damping of antifriction bearings.  Section 2.3 provides the overview on fault 

analysis of bearings. Section 2.4 provides a succinct overview of studies on automated 

fault diagnosis employing machine learning approaches.  The conclusions derived 

from the literature review are presented, together with the research objectives of the 

current study. 

2.2 Literature Survey on the Damping of the Rotor Bearing System 

Understanding natural frequency or system damping is crucial before delving into 

specific fault types. Damping is crucial in rotor-bearing systems, impacting stability, 

vibration, and performance.  Damping parameters provide insights into system 

behaviour, allowing for precise modeling and analysis [21].  Damping greatly impacts 

the dynamic behaviour of the rotor bearing system.  Gregory et al. [22] emphasised 

the importance of damping in dynamic loading and the necessity for more study into 

damping mechanisms in mechanical transmission systems.  Damping is used to 

investigate nonlinearities in mechanical systems. Damping stabilizes rotating parts and 

prevents instabilities at high speeds.  This is especially crucial for aircraft, automotive, 

and industrial machinery. 

Hu and Zhou [23] examined the nonlinear QZS (Quasi-zero-stiffness) vibration 

isolation system with hysteretic damping to address the constraints of linear damping 

under fluctuating excitations. The Duffing-Ueda model and harmonic balance 

approach were employed to investigate and validate main and secondary reactions 

through simulations and tests. Nonlinear damping guaranteed constrained responses 

and enhanced isolation efficacy. Key metrics—effective isolation frequency and 

maximum transmissibility—were established to assess performance. The findings 

underscore the impact of subharmonic responses and offer design recommendations 

for enhancing isolation performance. 
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Furthermore, Brodzinski and Stone [24] observed that rolling element bearings 

significantly diminished damping in the spindle system.  Their experiments indicated 

that the connection between the outer ring and the housing was the principal source of 

damping due to the low joint stiffness, allowing relative movement between the two 

sections and facilitating energy dissipation. 

Tiwari and Vyas [25] developed a technique to assess nonlinear stiffness parameters 

of rolling element bearings in rotor systems by utilizing random vibration signals 

recorded at the bearing caps.  Utilizing the Fokker-Planck equation for system 

modeling and implementing a curve fitting algorithm, the method derives stiffness 

parameters independently of excitation force data.  The methodology is exhibited on a 

test rig and corroborated with a pre-existing analytical model. 

Tasker and Chopra [26] proposed a wavelet-based approach for estimating nonlinear 

damping in rotor-bearing systems.  Employing the Krylov–Bogobliubov approach, 

approximate solutions are obtained, and the envelope of free vibration signals is 

examined to discern damping nonlinearities.  Two damping models—coupled and 

uncoupled—are analysed, and experimental validation substantiates the method's 

efficacy. 

Chen et. al. [27] proposed a frequency-domain approach to estimate the mass, stiffness, 

and damping matrices of a structural model.  The damping matrix is discerned 

independently by converting complex modes to normal modes, while least squares 

derive the mass and stiffness matrices. Simulations illustrate the method's precision 

and resilience to measurement noise. 

Béliveau [28] established a comprehensive Bayesian framework for identifying 

damping, stiffness, and mass characteristics utilizing modal data.  A modified Newton-

Raphson approach enhances estimates by utilizing natural frequencies, damping 

coefficients, mode shapes, and phase angles.  The methodology is illustrated utilizing 

actual data from a nine-story steel structure. 

A novel approach for estimating structural damping was devised utilizing the 

established complex frequency response function matrix [29].  The proposed approach 
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applies to simpler constructions within the anticipated frequency range.  However, 

outside the examined range, the identified Frequency Response Functions (FRFs) do 

not align with the experimental FRFs.  Damping is generally determined in 

engineering through the half-power bandwidth method, necessitating the analysis of 

the frequency response curve derived from various vibration tests (such as forced 

vibration field tests and ambient vibration testing methods), all of which are predicated 

on the frequency response of a single degree of freedom (SDOF) system [30].  Wang 

[31] formulated two precise equations for the half-power bandwidth method for 

displacement and acceleration frequency response functions. The conventional half-

power bandwidth method is sufficiently precise for practical scenarios where the 

damping ratio is below 0.1.  Staszewski [32], Ta et al. [33], and Chandra et al. [34] 

employed wavelet transforms for the detection of non-linear damping. Stiffness and 

damping characteristics are determined using experimental modal analysis tests [35].  

Dietl [36] examined the impact of bearing damping on the dynamic response of multi-

body systems, especially when the bearing clearance is minimal.  They performed 

theoretical and experimental investigations to quantify the damping characteristics of 

rolling bearings.  Furthermore, they developed an analytical model to forecast the 

bearing damping coefficient, which was corroborated by experimental results.  The 

bearing attenuation coefficient escalated with both bearing load and rotating speed, as 

established by the experiment.  Furthermore, they found that the bearing clearance 

affected the damping coefficient, with reduced clearances leading to increased 

damping coefficients. 

Damping is crucial for the maximum performance and longevity of antifriction 

bearings, and its significance varies based on specific applications and operational 

conditions.  Additionally, it may manage vibrations, diminish noise, prolong bearing 

lifespan, guarantee stability in high-speed applications, withstand shock loads, 

enhance precision in instruments, and control temperatures.  High-velocity machinery 

necessitates meticulous control and stability to avert complications such as shaft 

misalignment and imbalance.  Suryawanshi et al. [37] devised a method to identify 

angular misalignment faults in rotating machinery.  Engineers must evaluate these 

parameters while developing and selecting bearings for specific applications to 
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enhance the overall performance and reliability of the machinery.  Bearing types, 

including ball and roller, exhibit inherent damping characteristics that may vary 

according to design and material composition.  Choosing the appropriate bearing type 

for the specific application is critically important. 

2.3 Literature Survey on Rotor Bearing Fault Detection and Diagnosis 

In addition to damping analysis, problem diagnostics in bearings is essential for 

maintaining the reliability and performance of rotating machinery.  Bearings are prone 

to numerous problems, including spalling, pitting, wear, and misalignment, which may 

result in heightened vibration, noise, and eventual system failure if not identified 

promptly.  Detecting these defects necessitates a thorough investigation of the 

vibration or acoustic signals produced during operation, frequently employing 

sophisticated signal processing methods such as envelope detection, wavelet 

transforms, or machine learning algorithms.  Precise defect identification not only 

improves maintenance plans but also prolongs machinery lifespan and averts 

expensive unanticipated downtimes.  Consequently, the integration of problem 

diagnostics with damping analyses yields a more thorough comprehension of bearing 

integrity and system dynamics. Since the 1980s, numerous research on condition 

monitoring have been conducted, although only a limited number have been adopted 

in industrial sectors.  Bearings account for the majority of the maintenance budget in 

any industry utilizing rotating machinery.  Rotating machines are acknowledged as 

vital and widely utilized apparatus throughout several industries, including power 

generation, automotive, aerospace, and processing sectors.  Rolling element bearings 

are identified as the primary cause of machine failure throughout diverse rotating 

equipment applications, from portable devices to heavy-duty industries.  Bearings 

seldom fail independently; but, in practical applications, unexpected and premature 

failures are common due to overloading, improper installation, inadequate lubrication, 

and unsuitable operating conditions [38, 39]. 

Cao et al. [40] have provided a detailed review of all the major mechanical models of 

rotor-bearing systems. They are categorised into five major types: lumped parameter, 

quasi-static, quasi-dynamic, dynamic, and finite element method-based models. 
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Further, for bearings with localised defects, a brief review of the mathematical models 

carried out by Shah and Patel [41] provides a quick insight into the subject.  

McFadden and Smith [42] were the first to model the vibration response of the bearing 

with single point defect on inner race (IR) in the form of defect impulses, repeating at 

characteristic defect frequencies. This model was next extended by McFadden and 

Smith [43] to the bearings with multiple point defects on the inner race.  

Tandon and Choudhary [44] proposed a model to determine the defect frequencies and 

their amplitudes due to localised defects on outer race (OR), inner race (IR) and single 

rolling elements under the action of radial and axial load. The defects were modelled 

as finite-width pulses of different shapes, and the effect of each shape was studied.  

Lorza et al. [45] generated a three-dimensional finite element (FE) model according to 

the real materials’ properties, geometry and friction coefficients of all parts that make 

up the double-row TRB. The maximum load capacity of the TRB was achieved when 

the radial load obtained was a maximum, while the stress ratios of the two contacts in 

the outer raceway of the TRB were close to 25%. 

Harsha [46] investigated the nonlinear dynamic behaviour due to cage run-out and the 

number of balls in a rotating system supported by rolling element bearings. The 

nonlinear response of a perfectly rigid balanced rotor due to self-excited vibration in a 

ball bearing with a small cage run-out was studied.  

Niu et al. [47] proposed a novel method for accurately calculating ball passing 

frequency (BPFs) based on a complete dynamic model of rolling ball bearings with 

localised surface defects. Localised surface defects were modelled accurately with 

consideration of the finite size of the ball, the additional clearance due to material 

absence, and changes in contact force directions. Two experiments were presented to 

validate the proposed method.  

Mishra et al. [48] found that the conventional diagnosis method to diagnose faults in 

the rolling element bearing was not applicable for a rotor-bearing system when the 

rotor operates at low/slow speed, bearings with no fault, fault in the outer race, inner 
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race, and ball only, and a bearing with combination fault (outer and inner raceway fault 

with ball fault). This paper used a novel diagnosis scheme based on envelope analysis 

and wavelet de-noising with sigmoid function-based thresholding to extract the fault-

related symptoms from noisy vibration signatures of defective ball bearings operating 

at slow speed. 

Antonia and Randall [49] demonstrated that spectral kurtosis (SK) provides a robust 

way of detecting incipient faults even in strong masking noise compared to classical 

kurtosis analysis. SK is a detection tool that precisely identifies which frequency 

band(s) the fault shows the best contrast from background noise. It also gives the 

concept of a program which displays the SK as a function of frequency and spectral 

resolution. 

Nataraj and Harsha [50] conducted a theoretical investigation to observe the effect of 

cage run-out on the vibration characteristics of the ball-bearing system. The results 

were presented as fast Fourier transformations and Poincare maps. The highest peaks 

in the vibrations due to cage run-out were at a frequency of the number of balls times 

the cage speed. 

Khanam et al. [51] described an approach based on the principles of engineering 

mechanics to obtain a time function of the impact force, which was used to simulate 

the response of the bearing housing. Experiments conducted on deep groove ball 

bearings for different defect sizes and speeds showed an acceptable correlation with 

the theoretical simulation. 

Yang et al. [52] discussed the mechanical behaviour of double-row tapered roller 

bearings in current work by extending the mathematical model of three degrees of 

freedom. Demonstrated the effects of external loads, axial pre-deformation, bearing 

rotating speed, and angular misalignment on double-row tapered roller bearing 

characteristics.  

Tapered roller bearings (TRBs) are extensively utilized in various industrial 

applications because of their capacity to effectively manage both radial and axial 

stresses.  Their unique design facilitates enhanced weight distribution and endurance, 
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rendering them essential components in the heavy industrial, automotive, and 

aerospace sectors.  Despite their importance, the distinct characteristics and failure 

processes of TRBs are not as thoroughly examined as those of other types of bearings, 

such as ball bearings or cylindrical roller bearings.  Minor localized defects in the inner 

race, outer race, and rolling elements of bearing components lead to machine 

malfunctions, often culminating in catastrophic failure.  Metal-on-metal contact 

induces a series of impacts as a rolling component continuously traverses a defect, 

leading to system vibration.  A prominent peak in the frequency domain signal 

associated with the fault frequency differentiates these events [53].  Sensors are affixed 

to machines for identification, diagnosis, and prognosis.  To attain this goal, it is 

essential to establish an efficient bearing condition monitoring program that allows for 

condition-based maintenance rather than schedule-based maintenance, hence enabling 

prompt remedial measures [54].  Nonetheless, initial fault impulses are often feeble 

and readily obscured by background noise and interference from other vibration 

sources, leading to misdiagnosis or undetected issues.  To address this issue, much 

research was conducted, resulting in several effective methods for extracting early 

defect characteristics from noise and interference [55].  Critical tasks necessary for 

accomplishing this objective encompass fault identification and diagnosis, defect 

severity assessment, and prognosis.  Typically, the execution of these obligations is 

facilitated by employing a dependable monitoring system for the bearing's condition.  

This system comprises sensors, data acquisition, feature extraction, pattern 

recognition, and forecasting. The sensor response signals are analyzed in the time 

domain, frequency domain [56], and time-frequency domain (Wavelet transform and 

Hilbert transform) [57–59].  In recent years, sophisticated signal processing 

techniques, including wavelets, envelopes, fuzzy logic methods, data-driven 

approaches, Hilbert-Huang Transform (HHT), Modal Energy Distribution (MED), and 

spectral kurtosis, have been developed for vibration signals.  In addition to the 

aforementioned applications, the CWT was utilized to assess the instantaneous 

rotational speed of rotary machines and to extract random vibrations from observed 

signals to acquire pertinent information on bearing conditions [60].  Signals are 

analyzed for feature extraction using statistical metrics including RMS (root mean 

square), kurtosis, peak level, and FFT.  RMS is often utilized for correlating bearing 
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and raw vibration acceleration in signal analysis [61].  Advanced signal processing 

techniques, including artificial neural networks (ANNs) [62–68], support vector 

machines (SVM) [69–72], hidden Markov models (HMM) [62], model-based analysis 

[73], vibro-acoustic data fusion [74], fuzzy logic classifiers [75–77], genetic 

algorithms in conjunction with ANN [78], wavelet transform, and various soft 

computing methods, are utilized to extract fault features from vibration signals. 

Table 2.1 provides an overview of the chosen research studies.  The efficacy of 

research is assessed through the mathematical analysis of experimental data, resulting 

in a substantial conclusion regarding the findings.  The dynamic reactions of a rotor-

bearing system are forecasted utilizing a comprehensive multifactorial design in the 

present research. 

The application of full factorial is beneficial for the development, improvement, and 

optimization of many processes [79].  Gunerkar et al. [80] examined the impact of 

localized defects of differing sizes on bearing vibrations, utilizing RMS as the response 

measure for the process.  Patil et al. [81] employed RSM analysis for the condition 

monitoring of ball bearings and utilized kurtosis as a signal processing technique to 

examine the effects of load, motion, and defects on vibration.  Kankar et al. [82] 

employed the RSM technique to detect defects in the damaged rolling bearing.  

Experimental results validated the mathematical model's capacity to forecast faults at 

their characteristic defect frequencies and harmonics.  RSM was established to predict 

the dynamic response of a rotor-bearing system.  Goyal et al. [83] proposed Response 

Surface Methodology (RSM) to ascertain the appropriate placement strategy for non-

contact sensors to achieve efficient condition monitoring of rotating machine 

components. 
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Table 2.1 Literature review 

Authors Bearing type Experimenta

l/Modelling 

Input parameters Vibration 

Feature 

extract 

Response 

parameters 

Technique 

Load RPM Fault 

Patil et al. 

(2010) [84] 

Deep groove 

ball bearing 

Experimental   IR, OR, Ball Time 

domain 

Kurtosis RSM, ANOVA 

Harsha et al. 

(2011)[85] 

Ball bearing Experimental  1000 and 

5000 RPM 

IR, OR, Ball 

with spall 

FFT RMS RSM, 

ANOVA 

Kumar et al.  

(2013)[86] 

TRB Experimental 20 and 

40 N 

1050, 2050 

and 3080 

RPM 

OR (0.5776, 

1.1820, 1.7266, 

1.9614 mm 

defect width) 

Time 

domain 

CWT, Time– 

frequency 

analysis, 

Symlet wavelet, 

Image 

processing 

Hemmati et 

al. 

(2015) [87] 

 

TRB on pillow 

block 

Experimental 100 and 

200 N 

300, 600 and 

1100 RPM 

 

OR Acoustic 

Emission 

signal 

Acoustic 

Emission, RMS, 

kurtosis, crest 

factor 

DOE, Plackett–

Burman method 

Hongrui et 

al. (2016) 

[88] 

Rolling element 

bearing- 

Experimental  460, 530, 

515 RPM  

Slightly rub in 

the outer race 

Time 

domain, 

Empirical 

Wavelet 

Transform in 

- 
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cylindrical roller 

bearing 

Frequency 

domain 

Vibration signal 

analysis 

Fabio et al. 

(2017)[89] 

Deep groove 

ball bearing 

Experimental 590 and 

1180 N 

3000 RPM OR FFT  DOE, ANOVA 

Liu et al. 

(2017) [90] 

TRB Experimental 

and 

Analytical 

120 N 1800 RPM OR, IR FFT  The non- 

Hertzian line 

contact stiffness  

Mishra et al. 

(2017) [91] 

Ball bearings 

 

Experimental 50 N 60 RPM OR, IR Time 

domain, 

Frequency 

domain 

RMS Envelope 

analysis and 

Wavelet de-

noising 

with sigmoid 

function 

He et al. 

(2018) [92] 

CWRU bearing  CWRU 

bearing data 

set 

  OR, Roller Time 

domain, 

Time-

frequency 

domain 

 multi-scale SR 

spectrogram 
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Khadersab 

et al. (2018) 

[93] 

Rolling element 

bearing- ball 

bearing 

Experimental  900 RPM OR fault 0.5mm 

through EDM 

Time 

domain 

Vibration 

analysis, FFT, 

IFFT and 

Spectrogram 

 

Yi et al.  

(2018) [94] 

Railway axle 

bearings 

(Double row 

TRB) 

 

Experimental 19600 N 581 RPM OR, Cage, 

Roller and 

Coupling 

Time 

domain, 

Time-

frequency 

domain 

Intrinsic mode 

functions of the 

vibration signals 

Ensemble 

empirical mode 

decomposition 

Jalan et al.  

(2019) [95] 

Rolling element 

bearing-Self 

aligned ball 

bearing 

Experimental 0 and 50 

N 

1500 and 

3000 RPM 

OR, IR and 

Cage fault (CF) 

Time 

domain 

 ANN and KNN 

Jalan et al. 

(2019) [96] 

Self-aligned ball 

bearing 

Experimental 50 N 700 and 1700 

RPM 

IR, OR, CF Time 

domain 

Max, Min, SD, 

Kurtosis, 

Skewness, 

RMS, Variance, 

Median, 

Peak2rms 

KNN 
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Goyal et al. 

(2019) [83] 

Self-aligned ball 

bearing 

Experimental  1200, 1600, 

2000 RPM 

OR  FFT amplitude, 

RMS 

RSM, 

ANOVA 

Anil and 

Rajesh 

(2019)  [97] 

TRB Experimental  2049 RPM Roller Time 

domain 

Kurtosis, 

Impulse factor 

Ensemble 

empirical mode 

decomposition, 

Inverse filtering  

Li et al. 

(2021) [98] 

CWRU bearing CWRU 

bearing data 

set, 

Analytical 

0,736, 

1471, 

2207 N 

 OR, IR, Ball Time 

domain 

 PSO, MOMEDA 

Tong et al. 

(2022) [99] 

Deep groove 

ball bearing 

Experimental 

and 

Analytical 

5000 N, 

7000 N 

300, 900 

RPM 

OR, IR, ball vibration 

time-

domain 

signal 

 MSMFIF 

method, 

MKACNN 

network 

Wu et al. 

(2022)[100] 

Angular contact 

ball bearing 

Experimental 

and 

Analytical 

400 N 10000, 

20000, 30000 

RPM 

OR Time 

domain and 

FFT 

MAE, SD, Root 

mean square 

error 

New compound 

displacement 

excitation 

function 



36 

 

 

2.4 Automated Fault Detection using Machine Learning Techniques  

The utilization of Machine Learning (ML) methodologies is progressively prevalent 

for automated condition monitoring jobs in contemporary businesses, owing to its 

straightforward implementation and comparatively acceptable accuracy [101].  This 

entails a series of processes commencing with data collecting, followed by signal 

processing and subsequent fault categorization.  Fundamental machine learning 

techniques encompass Decision Tree (DT), Support Vector Machines (SVM), Naïve 

Bayes, Neural Network, Random Forest (RF), k-Nearest Neighbor (k-NN), Artificial 

Neural Networks (ANN), Deep Belief Network (DBN), Hidden Markov Model, and 

Convolutional Neural Network (CNN).  Extensive study in this domain has led to the 

development of many algorithms, whose applications in bearing fault diagnosis have 

been extensively documented.  Utilizing a machine learning technique enables not only 

the detection of faults in a component but also, through an effective classification 

scheme, the identification of the location and severity of the defect.  The premise of 

supervised machine learning models involves training an algorithm to recognize 

various class labels based on a set of input features, thereafter assigning a label to the 

defect features of healthy data according to its previous learning.  Consequently, the 

feature vector significantly influences the precision and efficacy of the acquired model.  

In numerous earlier and certain contemporary machine learning models, fundamental 

statistics of the signal in either the time or frequency domain, or both, were employed 

for the training and testing of supervised algorithms, or to aid in informative mode 

selection in various unsupervised learning algorithms [102–107]. 

Extensive research has been conducted on the diagnostics of bearings and rotating 

machinery defects. Numerous models [108–112], signal-based methods [113], and 

data-driven methods [114] have been proposed in the literature. Model-based methods 

are employed to detect faults by constructing accurate mathematical bearings models 

and comparing the resulting output values with the actual values. A nonlinear dynamic 

model for rolling bearings effectively simulated individual and compound faults [115]. 

Traditional fault detection techniques in signal processing mostly use the manual 

extraction of fault-related information from signals to accurately identify bearing 

faults. The accuracy of diagnosis can be improved by using a method called group-
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based K-singular value decomposition denoising to extract aspects of bearing faults 

[116]. However, these strategies heavily depend on the understanding of advanced 

signal processing. 

Fault diagnosis (FD) aims to identify the status of a specific component and determine 

whether maintenance is necessary. There are two approaches to FD: model-based and 

data-driven. According to [117], the model-based method involves extensive prior 

knowledge and can be challenging to create reliable diagnosis models for complicated 

machines. Data-driven models are more popular for generating intelligent techniques. 

This approach efficiently processes machinery signals and reliably diagnoses findings 

with minimal prior expertise. The research given in [118] compares two shallow 

machine learning (ML) models for Failure Identification (FI): support vector 

regression (SVR) and relevance vector machine (RVM). RVM outperformed the SVR 

algorithm for FI based on probabilistic discoveries employing random kernel 

functions. According to [119], individually treating feature selection and parameter 

tuning can limit SVR predictions' accuracy. The author later proposed two bearing-

fault techniques for FI and FD based on an RVM of vibration signals, referencing the 

previous study, using two relevant models as an observer and classifier. In [120], the 

stator current is monitored using motor current signature analysis (MCSA) and 

frequency spectrum subtraction with wavelet transforms to remove dominating 

components. Spectral subtraction can be performed using DWT, WPD, or SWT 

techniques [121, 122].  

Machine learning methods are more practical than signal-based solutions for defect 

diagnosis. Multiple research investigations offer a robust theoretical basis for 

justifying the utilisation of machine learning in defect diagnoses. The properties that 

machine learning (ML) can extract from data are more objective compared to signal-

based approaches. Furthermore, when selecting defect diagnosis approaches, the 

primary consideration is the effectiveness of machine learning models. Researchers 

employ several machine-learning techniques to enhance the precision of bearing fault 

diagnostics. Examples of extensively utilised models include the HMM [123], ANN 

[124], and SVM [125]. ML is proposed as a method to enhance the accuracy of defect 
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diagnosis due to the significance of feature extraction when combined with feature 

ranking. The results may be affected by the findings, as feature extraction, feature 

reduction, and classification represent the three main processes in conventional 

techniques for recognising defect types in rolling bearings. A strategy employed in 

machine learning to improve the accuracy of models is feature ranking. It also 

enhances the ability of algorithms to predict outcomes by emphasising the most 

important features and eliminating the redundant and inconsequential ones. Previous 

research used pre-processing, dimensionality reduction, and feature selection (Chi-

square, Gain ratio, ReliefF, and Principal Component Analysis) to diagnose bearing 

faults accurately. Additionally, they assessed the accuracy of SVM and ANN models 

in classifying defects [126].  

One-way ANOVA and Kruskal-Wallis test feature ranking algorithms have been used 

in several applications, including text sorting, cancer prediction, e-mail spam sorting, 

microarray data classification, face identification, and tumour classification [127]. 

While there are limited studies on using Ow-A and KW technique for bearing fault 

diagnosis [128]. Ow-A offers the advantage of not requiring an same number 

observations in each group. The design arrangement and statistical analysis are simple. 

The Kruskal-Wallis test differs from other parametric tests because it does not assume 

normality or variance homogeneity. The Kruskal-Wallis test has higher reliability 

compared to other parametric tests. 

2.5 Research Gaps Based on Literature Review  

Although many investigations have been conducted in the field of bearing fault 

diagnosis, there remain several key research gaps: 

• Thorough research is available on rolling element bearings, but very limited 

literature is reported on experimental work on tapered roller bearings.  

• Various researchers concentrate on vibration analysis of single defects in ball 

and roller bearings, but very limited research is available on compound fault 

analysis. Also, the effect of multifaults in tapered roller bearings on vibration 

behaviours is limited. 
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• Various models have been developed for ball bearings through the 

computational framework in the past, but few of them have focused on tapered 

roller bearings. 

• It might be contended that minimal research has been conducted within the 

signal processing field about the necessity and characteristics of these problem 

categories.  However, the application of advanced soft computing approaches 

in auto fault diagnosis for the detection of bearing faults, without disrupting the 

operation of specific tapered bearings, is notably absent in the comprehensive 

review of rolling element bearing fault diagnosis. There exists sufficient 

information on ball bearings that can support tapered bearings, but can also 

serve as complete replacements. 

• In the past two decades, a review of pertinent research indicates that the 

optimization of parameters and their use in AI techniques for the development 

of a system capable of autonomously detecting bearing faults remains 

incomplete.  This research presents a data mining strategy, complemented by 

advanced signal processing methods, which are currently lacking in the domain 

of tapered bearing problem identification. 

• AI methodologies, mostly reliant on the available data and the parameters 

provided, can also be optimized.  The optimization of these based on the 

information has not been extensively examined and is also addressed in the 

current study. 

2.6 Objectives of this Research  

The present research aims to propose validated solutions to overcome these research 

gaps, with the four main objectives, as outlined below: 

• Design and development of an experimental framework for a tapered roller 

bearing system. 

• To study the vibration behaviour of a healthy tapered roller bearing at different 

operating load and speed. 

• To study the vibration behaviour of a faulty tapered roller bearing. 

• To develop a computational framework for a tapered roller-bearing system. 
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Chapter 3 Design and Development of an Experimental 

Framework for a Tapered Roller Bearing System 

    

 

This chapter highlights the design and fabrication of the test rig.  This pertains to the 

initial research objective, which encompasses the design and construction of an 

experimental apparatus for tapered roller bearings (TRB) under defined loading 

circumstances. 

3.1 Introduction 

A systematic design methodology was employed to create a specialized test apparatus 

for bearing defect diagnostics, during which critical system components were 

identified according to the specifications, and an initial system layout was devised.  

The power demand was established based on the greatest radial load to be exerted 

during testing.  Consequently, standard components for a compatible power 

transmission system were determined utilizing the manufacturer's catalog.  The 

appropriate support bearings were acquired based on the reaction forces exerted on the 

shaft during heavy load application.  The anti-vibration rubber mounts were ultimately 

chosen based on their damping characteristics and specified dimensions.  Upon 

finalisation of the shaft dimensions, static and dynamic analyses were conducted 

utilising impact testing to evaluate its performance under specified conditions and to 

ascertain its safety against various modes, resonance, and vibrational instability. This 

test rig is equipped with an integrated data acquisition system and display system. The 

developed test rig facilitates the execution of a diverse array of experiments while 

ensuring minimal assembly time and optimal adaptability. The next section will 

elucidate the intricate details of the components involved in the experimental test rigs. 

3.2 Experimental Test Rig 

The creation of a test rig is a crucial component of any investigative activity.  

Validating the simulation and analytical results with experimental data is crucial.  

Numerous studies [129–133] have led to the development of test rigs for the validation 
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of simulation and analytical results. This could directly help our society in terms of 

money or time. 

 

Figure 3.1 Line diagram of test rig 
 

3.2.1 Tapered Roller Bearing System and its Metallic Structure 

The base platform serves as a critical component within any rotor system.  Given that 

the rotor shaft operates at an exceptionally high speed of 6000 rpm, it is essential to 

utilise a robust base plate as the foundation for mounting all components.  The base 

plate consists of mild steel.  The rotor system is composed of a direct current motor, 

bearings, coupling, and fasteners.  All components are meticulously assembled and 

affixed to this sturdy mechanical frame, as illustrated in Fig. 3.1 and its dimension in 

Table 3.1.  The design of the structure ensures adequate rigidity and sufficient strength. 
 

Table 3.1 Shaft details 

Shaft Material Mild steel 

Effective Length (Bearing to bearing) 800 mm 

Total length 900 mm 

Diameter of the shaft 30 mm 

Density 7850 kg/m3 

 

 

 

Motor with speed 

Controller 

Loader 

Metallic Base 

Coupling Bearing with 

housing 

32 Channel Vibration 

Analyser 

Laptop with NV Gate 

software 
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3.2.2 D.C. Motor and Speed Controller 

A variable speed D.C motor is employed to rotate the shaft at different speeds during 

the dynamic analysis of a bearing.  The motor is affixed to the rotor located at the 

extreme right of the frame using fasteners and washers. Figure 3.2 illustrates a D.C. 

motor utilised in the experimental test rig with the speed controller that regulates the 

rotor's speed. 

 

Figure 3.2 DC Motor with speed controller 

 

3.2.3 Flexible Coupling 

A flexible coupling serves to connect the D.C. motor shaft with the specimen rotor 

shaft. The specimen shaft and motor shaft exhibit both lateral and angular 

misalignment under dynamic conditions. These couplings mitigate the impact of 

misalignment.  

 

Figure 3.3 Flexible coupling [134] 
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Dissipative coupling is another term for these. Neoprene rubber is subjected to 

compression and is press-fitted between the two flanges, resulting in a coupling that 

exhibits significant flexibility and durability. Figure 3.3 illustrates the flexible 

coupling utilised in the experimental test rig. 

3.2.4 Signal Acquisition and Display System 

Accurate measurement and appropriate conditioning of signal data are crucial for the 

successful execution of the experiment.  OR36/OR38 is engineered to support a high 

channel count capacity while maintaining the integrity of the analyser geographies.  

An OROS36® vibration analyser with 32 channels and a frequency range of 20 kHz 

is used to collect and analyse the accelerometer's response. They provide both time-

domain and FFT data. This analyser has real-time capabilities for simultaneously 

handling channels like FFT and 1/3 octave analysis. The OR36 and OR38 hardware 

feature blue LCD screen controls that enable the operation of the analyser, including 

functions to run or stop it, as well as adjust the fan speed, among other settings. 

 

Figure 3.4 Front panel of Oros 
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Figure 3.5 Back panel of Oros 

 

Figure 3.6 Display of signal 
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The selection of universal input usage is determined by NVGate® software throughout 

the analyzer's operations.  NVGate® software offers an extensive array of tools 

designed for the acquisition, recording, and analysis of noise and vibration data.  The 

universal inputs collect both dynamic and parametric input through a single connector.  

Each input connector features a green LED to signify that the input is active, while a 

red LED indicates an overload condition for the input.  Figure 3.4 illustrates the front 

panel of the OR36. The back panel of the OR36 is illustrated in Fig. 3.5.  The back 

panel includes several components such as the Ethernet connector, data 

emission/reception LED, connection for PC/OR36, auxiliary DB9 connector, interface 

connector, and DC power connector. 

Personal computers and laptops can be effectively utilised for online display and for 

storing experimental data for subsequent analysis. Figure 3.6 illustrates the laptop 

screen displaying the signal reception facilitated by NVGate® software and OR36. 

The next section will outline the specifics of the experimental configuration used for 

measuring damping and bearing faults. 

3.3 Experimental Arrangement for Impact Testing or Damping Analysis 

Experiments are carried out on a customised rotor bearing test rig as shown in Fig. 3.7. 

The assembly consists of a robust shaft supported by two rolling element bearings with 

rigid housing. Four different antifriction bearings have been tested with external and 

internal diameters of 62 mm and 30 mm, respectively, as shown in Fig. 3.8. The 

bearing's detailed specifications are summarised in Table 3.2. An external DC motor 

drives the shaft through a flexible Lovejoy coupling. The test rig rotor is impacted by 

a hammer i.e., plastic/Vinyl tip with no extender hammer configuration (Model: - 

PCB-086C03) with a sensitivity of 2.25 m(V)/(N) and a range of ±2224 N pk. 

The experiment also aims to observe the damping properties of the bearing based on 

the amplitude of the FFT plot in dynamic conditions. The bearing is radially loaded 

with 20, 30 and 50 N, respectively. Two Isotron accelerometers are mounted on the 

top of the bearing housing with a sensitivity of 100.6 mV/g (10.26 mV/m/s2) and 95.09 

mV/g (9.697 mV/m/s2) at 100.0 Hz. These ICP accelerometers record the signals on 
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the bearing housing at varying speeds from 1000 rpm to 3000 rpm with an interval of 

200 rpm at different loading conditions.  

 

Figure 3.7 Experimental test rig for damping analysis 

Table 3.2 Antifriction bearing's specification 

Bearing No. 
Bore diameter 

(mm) 
No. of roller Contact angle 

Tapered SKF 30206 30 17 14.03° 

Cylindrical NJ 2206 

ECP 
30 13 0° 

Spherical 22206 E 30 15 12.83° 

Self-Aligned 2206 

ETN9 
30 11 13.46° 

 

The input parameters are frequency range (0-20 kHz), triggering (threshold: 10 N, and 

start delay: -20ms), Weighting windows (force: force and acceleration: response), 

Sampling rate (25.6kS/s), FFT average (domain: spectral, size: 3), FFT analysis 

Personal Laptop with 

NV gate software

Oros Vibration 

Analyser

ICP accelerometer

Bearing housing which 

incorporates different bearing of 

external diameter 62mm

Lovejoy coupling

DC motor

Bearing housing

Impact Hammer
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(range: 2kHz, resolution: 1.25 Hz) and number of spectral lines 1601 are selected. This 

choice was made to ensure accurate and high-resolution data capture during the 

experiments. 

  
(a) Tapered roller bearing (b) Cylindrical roller bearing 

  
(c) Spherical roller bearing (d) Self-aligned bearing 

               Figure 3.8 Different rolling element or antifriction bearings 

 

3.4 Experimental Arrangement for Bearing Analysis 

The accurate prediction of bearing operating conditions and defect patterns before 

reaching the failure threshold is a critical concern in several industries. This is essential 

for improving safety, dependability and optimising the utilisation of current assets. 

The vibration signatures associated with the normal functioning of bearings, which 

serve as foundational data, can subsequently be compared to the signatures acquired 
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under outer race (OR), inner race (IR) and roller defect conditions. This section 

describes the experiment's apparatus and data collection system. 

3.4.1 Test Rig 

A test rig for conducting an experiment, as shown in Fig. 3.9, is used to replicate real-

world rotor bearing system operation. The components of the rotor bearing system are 

½ HP motor, flexible luv joy coupling, TRBs, speed controller and loaders. The 

support near the end of the motor is the drive end (DE), and the other is the non-drive 

end (NDE).  

 

Figure 3.9 Experimental test rig for bearing analysis 
 

A healthy bearing, shown in Fig. 3.10(c), is placed at the DE, and prefabricated 

defective bearings are installed at the NDE. Different predefined defective bearings 

shown in Fig. 3.10(e), such as OR, IR and roller defect, are used for the experiment. 

A mass of 2, 3 and 5 kg is also placed to impart the radial load of 20, 30 and 50 N, 

which is mounted externally to the shaft as a disk. The rotor is made up of a driving 

shaft that is supported by bearings in two places. The test rig was capable of balancing 

32 Channel Oros

Vibration Analyser

Laptop with 

NV gate software

ICP accelerometer

Loaders

SC 260 SLM

SKF 30205 taper roller bearing 

with collar support

Flexible Lovejoy 

coupling

DC motor

Bearing housing
Speed 

Controller

RPM sensor



49 

 

 

and diagnosing machine defects, which is particularly useful as an experimental 

research instrument. An accelerometer is attached to the NDE to measure the vibration 

signal. At the coupling, the RPM is also measured. 

3.4.2 Sound Level Meter 

Figure 3.10(a) depicts the CESVA SC 260 sound level metre used to measure the 

sound pressure level (SPL). The SC260 is a very user-friendly class 2 embedded sound 

level metre. Sound level metres are evaluated based on international standards (IEC 

60942: 2017): Class 1 refers to a precision grade that has a tolerance of 0.5 dB and is 

suitable for both laboratory and field use. On the other hand, Class 2 refers to a general-

purpose grade with a tolerance of 1.0 dB specifically designed for field use. The SC260 

features a versatile class 2 filter that can function as both a sound level metre (SLM) 

and a real-time spectrum analyzer. It supports 1/1 or 1/3 octave bands for precise 

analysis. 

3.4.3 Bearings Under Study 

The modular design of the experimental apparatus facilitates the removal and 

replacement of the bearing. The dimensions of the rolling element bearings used in 

this study are listed in Table 3.3. Since the majority of bearing vibrations are periodic 

movements, it is simple to derive vibration characteristics from the frequency domain 

using the powerful and well-known FFT method. Numerous publications [135–137], 

have examined the frequency characteristics of rolling bearing vibration. Rolling 

bearings typically consist of two concentric rings, known as the inner raceway and 

outer raceway, and a set of rolling elements that run in their axis shown in Fig. 3.10(d). 

Rolling element standard configurations include the ball, cylindrical roller, tapered 

roller, needle roller, and symmetrical and asymmetrical barrel roller [135]. Typically, 

the rolling elements in a bearing are positioned in a cage that provides uniform spacing 

and blocks mutual contact. A shaft with a 30 mm diameter is sustained by these 

bearings mounted on an adjusted pedestal.  

3.4.4 Defects Creation in Test Bearings 

The rectangular slits used as artificial faults in the bearings induced by EDM (electro-

discharge machining) have dimensions of 1.5 mm wide and 1 mm deep over the entire 
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length of OR, IR and Roller shown in Fig. 3.10(d&e). In the case of the outer race 

defect, the flaw was introduced on the loaded zone of the raceway centred @6:00, 

ensuring repeated contact with the rollers during rotation. This placement was chosen 

because it is the most critical region where vibration responses are most pronounced 

and comparable to real-world failure scenarios. The specified dimensions are large 

enough to be consistently observed by the experiment's sensors. Smaller defects may 

provide signals that are difficult to identify from background noise. The dimensions 

correlate with those employed in earlier bearing defect detection investigations, 

ensuring that the results are comparable. 

 

 

 

(a) (b) 

(c) 
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Figure 3.10 (a) Sound level meter (b) CAD model of TRB (c) Healthy TRB (d) 

Prefabricated faults in different parts of TRB (e) Dimensions of faults 

Table 3.3 Tapered roller bearing specifications 

Parameters Descriptions 

Type SKF 30206 

Contact angle 14.03 degree 

Pitch diameter 38.32 mm 

No. of rolling elements 17 

Rolling element diameter 6.79 mm 

No. of rows 1 

Roller fault 
Inner race fault Outer race fault 

(d) 

(e) 
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A rectangular slit creates a consistent and easily repeatable damage shape, allowing 

for controlled experimentation and ensuring repeatability of results. While actual 

bearing damages might vary in shape, rectangular slits are a simplified illustration of 

typical damage types like spalls and cracks. 

Additionally, in rolling element bearing there are a series of rolling elements which 

are moving on wavy surface with surface roughness. So, this is the origin of vibration 

in even new bearing. On top of it, so, to reduce this vibration manufacturer put a layer 

of lubricant to remove the surface asperities. But what happens in the process of 

operation, bearings are subjected to high temperature because of the process 

requirements or because of friction. So, this lubricant will get baked and then they will 

form hard carbon residues which will be on the surface of this waves. So, when the 

rolling element comes and moves on the surface it is going to get an impulse excitation 

and sometimes this hard surface or the hard residues may even scrape the surface, and 

they will generate pits of this nature. 

 

3.5 Summary of the Chapter  

This chapter primarily concentrates on the design and development of a detailed 

experimental framework for rotor bearing systems.  The framework is designed to 

facilitate the characterisation of damping and the diagnosis of bearing faults in a 

controlled laboratory environment.  This chapter consists of two primary sections.  The 

initial segment emphasises the setup and tools utilised in the test rig designed for 

damping evaluation.  The work details the configuration established to assess system 

damping characteristics across different operational scenarios, emphasising sensor 

positioning, excitation methods, and data collection techniques.  The second section 

provides a detailed examination of the test rig designed for the analysis of bearing 

faults.  This encompasses the incorporation of accelerometers and categorise prevalent 

bearing defects, including outer race, inner race, and rolling element faults. 

This chapter establishes a solid groundwork for experimental enquiries by outlining 

the rig's flexibility, the selection of components, and the instrumentation approach to 

guarantee precise and consistent outcomes in studies related to damping and fault 

diagnosis. 
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Chapter 4 Damping Analysis of Anti-friction Bearings 

    

 

 

This chapter describes the damping analysis conducted on four distinct antifriction 

bearings within a controlled experimental framework. Both free decay and frequency 

response function (FRF) methods are utilised to assess the damping characteristics. 

The objective is to analyse the damping characteristics among different bearing types 

and their respective operating conditions. The findings from this analysis enhance our 

comprehension of vibration attenuation in rotating machinery. 

4.1 Introduction  

The damping behaviour of a system necessitates a comprehensive assessment of both 

static and dynamic properties of different antifriction bearings. The static analysis aims 

to ascertain load distribution and deformation under steady-state conditions, 

guaranteeing that the rig can endure the anticipated forces without structural failure. 

This work is essential for choosing suitable bearing designs capable of enduring 

diverse loads and enhancing overall system longevity. Dynamic analysis assesses 

various antifriction bearings' vibration, resonance, and stability under varied speeds 

and loads. This factor is crucial for forecasting the system's behaviour in actual 

operational conditions, reducing undesirable vibrations and improving accuracy in 

defect identification. The amalgamation of static and dynamic analyses guarantees that 

the experimental framework is resilient and can yield consistent and reproducible data 

for examining bearing performance.  

The importance of damping in rotor-bearing systems is well recognised and directly 

affects system stability, vibration levels, and overall system performance. Damping 

parameters provide valuable system behaviour insight and enable accurate modelling 

and analysis [21].  

As shown in Fig. 4.1, damping plays a vital role in various engineering applications, 

where it helps in reducing vibrations, controlling oscillations, and enhancing system 

stability. Damping aids in stabilizing the rotating elements, preventing instabilities that 

can arise at high speeds. This is particularly important in applications such as 
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aerospace, automotive, and industrial machinery. The literature that has come before 

us sheds light on the effect of bearing on natural frequency and modes of rotor bearing 

systems in various settings. The present work effectively connects theoretical models 

with real-world bearing performance by emphasising experimental investigation for 

enhancing the damping characteristics, align with the demands and conditions of 

practical applications. Comprehending the damping characteristics of bearings is 

essential for creating dependable and effective systems, especially in situations where 

damping significantly influences stability and performance. The findings have 

potential applications in bearing system design and optimisation for rotating machines. 

However, to the author's best knowledge, the calculation of damping ratios of bearings 

has not been extensively studied.  

 

Figure 4.1 Areas of damping application 

 

This research work aims to identify the best-suited antifriction bearing for rotor-

bearing systems. Therefore, this paper experimentally compared the damping ratio of 

four different antifriction bearings under different operating conditions. Since the test 
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bearings used in this study were pre-lubricated with either grease or oil as supplied by 

the manufacturer and hence, lubrication was present during testing. The free decay and 

FRF methods have been employed to find the damping ratio of bearings. The damping 

behaviour of antifriction bearings highlights the importance of understanding the 

sources and magnitude of damping in these critical machine components. By 

understanding bearing damping, one can improve the performance and reliability of 

various mechanical systems.  

 

4.2 Damping Identification Methods 

The damping ratio is a dimensionless measure, and it is the process of dissipating 

energy to prevent vibratory motions such as mechanical oscillations, noise, and 

vibrations. It can be expressed by several metrics, including specific damping capacity, 

loss factor, Q-factor, and damping ratio [138].  

 

Figure 4.2 Methods for experimental identification of damping 

To develop accurate structural damping matrices, some scholars have researched 

damping identification for various systems, such as rotor systems, mistuned blisks, and 
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monopile foundations. The damping parameters in rotor-bearing systems can be 

determined using several experimental methods shown in Fig. 4.2.  

4.2.1 Static Condition 

In this section, we will talk about the "classic" method of determining the damping of 

a rolling bearing in static conditions. The vibration damping can be calculated using a 

time-domain or frequency-domain approach.  

4.2.1.1 Logarithmic Decrement Method 

The rate of decay of free vibrations in a system is measured using the Logarithmic 

Decrement approach. The time-domain response of an energised system exhibits a 

decreasing amplitude of subsequent peaks as it is allowed to vibrate freely. The rate at 

which this decay takes place reveals information about the damping properties of the 

system [139]. The logarithmic decrement method involves measuring the amplitude of 

vibration over multiple cycles by using equation (4.1) [140].  

𝛿 =  
1

𝑛
∗ 𝑙𝑛

𝐴𝑖

𝐴𝑖+𝑛
  

(4.1) 

𝜉 =  
𝛿

√4𝜋2 + 𝛿2
 

(4.2) 

where  ξ - damping ratio,  

             𝛿 - logarithmic decrement 

n - number of cycles,  

Ai - amplitude of the ith cycle, and  

Ai+n is the amplitude of the (i+n)th cycle. 

In a system with slower damping, a lower Logarithmic Decrement value suggests 

slower vibration decay, whereas a larger value denotes a faster decay. It is a frequently 

employed method for determining the damping ratio of a system by using equation 

(4.2). The damping ratio is a vital metric that describes the ability of a system to 

disperse energy while undergoing vibrations. It is crucial to comprehending the 

dynamic characteristics of structures and enhancing their efficiency.  
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4.2.1.2 Half-power Bandwidth 

A concept used in frequency analysis and signal processing to measure a frequency 

band width is called the half-power bandwidth.  It is frequently used in vibration 

analysis, especially when working with Frequency Response Functions (FRFs) or 

signals in the frequency domain, to describe the width of resonance peaks or modes. 

An FRF's resonance peaks show the system's reaction at its natural frequencies. 

Resonance peaks manifest themselves in the FRF when a system is excited close to its 

natural frequency. There is a noticeable rise in amplitude at these peaks. Identifying 

the frequency spots where the amplitude decreases to 0.707 times the peak amplitude 

defines the half-power bandwidth. It is common to refer to these positions as the half-

power points. In real-world vibration analysis, the frequency points at the reduced 

amplitude are identified and the FRF is measured to estimate the half-power bandwidth 

empirically by equation (4.3) [140, 141]. 

                𝜉 =   
𝜔2 − 𝜔1

2𝜔𝑛
=  

𝛥𝜔

2𝜔𝑛
 

(4.3) 

where  ξ - Damping ratio, Δ𝜔 - Bandwidth 

𝜔1 𝑎𝑛𝑑 𝜔2 – Minimum and maximum frequencies at half-power amplitude 

𝑌𝑚𝑎𝑥

√2
 

𝜔𝑛 – First Natural frequency. 

The Fourier Transform establishes a strong relationship between the FRF and a 

system's impulse response. The impulse response's Fourier Transform is known as the 

FRF. To determine a structure's inherent frequencies, damping ratios, and mode 

shapes, modal analysis makes extensive use of FRFs. Coherence is the proportion of 

the FRF's output that can be attributed to each input, measured as a function of 

frequency. It may serve as a gauge of the FRF's overall strength. It tests the FRF's 

repeatability or performance when the same measurement is repeated. During the 

impact test, one of the most important things to remember is that the impact should 

happen in the same place and direction for each average. The impact occurring in the 

same direction and place ensures a consistent and repeatable excitation of the system. 
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This consistency is essential for obtaining reliable and comparable frequency response 

measurements. 

The first mode is often the primary mode of interest in many practical engineering 

applications. Understanding the damping characteristics in the primary mode is crucial 

as it can have a significant impact on the overall dynamic behaviour and stability of 

the system [142]. In many mechanical systems, the first mode represents the dominant 

response to excitations. By concentrating on the first mode, our study aimed to provide 

focused insights into the critical mode that most directly influences system 

performance and reliability. In this research, author focused on calculating damping in 

the first mode, each of which contributes to the specific goals and scope of this study. 

4.2.2 Dynamic Condition 

In the context of a rotor-bearing system, damping is crucial in determining the system's 

dynamic behaviour and stability. Damping is efficient at preventing resonance, which 

happens when the stimulation frequency matches the system's natural frequency. 

Resonance can cause enormous vibrations, which might cause harm. Damping helps 

in shifting or broadening natural frequencies, reducing the risk of resonance. It 

affects the critical speeds of the rotor-bearing system [143]. It can potentially change 

the form and size of the response curve around critical speeds. In a rotor-bearing 

system, the bearings themselves contribute to damping. Compared to fluid film 

bearings, antifriction bearings, for example, have reduced inherent damping. The 

bearing type and design can influence the total damping properties. 

In order to verify the reliability of the data obtained under static conditions, another 

approach is used in which the rotor is subjected to regulated external forces or 

excitations in the forced excitation technique. The obtained time domain signal raw 

data are executed in MATLAB for giving response parameters in terms of RMS (root 

mean square) for vibration in both DE and NDE. The RMS value of the raw signal 

provides a measure of the overall magnitude or amplitude of the vibrations. It does not 

directly provide information about damping characteristics. Here, the authors tried to 

match the trend with the static condition results over the entire range of speed with 

different loading conditions. It has a significant impact on the RMS (Root Mean 
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Square) value of vibration data. The RMS value is a measure of the magnitude of 

vibration signals and is commonly used to quantify the overall energy content of a 

signal. It reflects the effective amplitude of the vibration signal, taking into account 

this decay. The RMS value of the amplitude of the FFT response as given by equation 

(4.4) [144, 145]. 

𝑌𝑅𝑀𝑆 =  √
1

𝑁
 ∑ 𝑦𝑖

2

𝑖

 

(4.4) 

 where  yi– Raw time signal,  

N – No. of samples 

4.3 Results and Discussion 

The experimental test rig as shown in Fig. 3.8, is used to analyse the damping 

behaviour of various antifriction bearings. Damping of antifriction bearings is 

observed in two different scenarios. The first is a static condition, where an impact 

hammer hits the shaft in the middle, and an accelerometer is placed on the bearing 

housing at DE and NDE. The decision to use the hammer to hit the middle of the shaft 

in the radial direction is made to simulate realistic loading conditions that the system 

may encounter during operation. By impacting the middle of the shaft, we aim to 

capture vibrations and responses at DE and NDE that are representative of typical 

dynamic scenarios in practical applications. The second is a dynamic condition in 

which the rotor rotates at different speeds between 1000 RPM and 3000 RPM. 

4.3.1 Static Condition 

Frequency response functions and coherence are measured for tapered, cylindrical, 

spherical and self-aligned bearings during the impact hammer test at DE and NDE. 

When the impact test is conducted, the position of the input impact has a vital effect 

on the FRF results, which can be seen in the coherence response function. All bearing's 

input and output spectra are coherent, dropping at antinodes. The experiments are 

deemed replicable due to the high coherence between the input and output spectra, 

except at the antinodes. The high sampling rate provides a high resolution of the 

frequency spectrum. However, the half-power bandwidth method is originally derived 
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from the frequency response of a single-DOF system and is also widely used for 

estimating damping in multi-DOF systems. The resonance peaks width indicates 

modal damping, and the vibration analyser software analyses the input and output 

amplitude signals. The frequency response functions (FRFs) are generated using the 

acquired input and output signals.  

 Figure 4.3 Zoomed view of cylindrical bearing graphs for damping calculation 
 

The half-power bandwidth method is employed to estimate the frequency domain 

damping ratio. Firstly, the resonant frequency (ωn) and the maximum amplitude (Ymax) 

at resonance are identified in the frequency spectrum. The half-power points are 

established when the amplitude is Ymax/√2, and the corresponding frequencies on either 

side of the resonant frequencies, ω1 and ω2, are also identified as illustrated in Fig. 4.3 

  
(a) FRF at DE (b) FRF at NDE 

  
(c) Free decay/ logarithmic decrement 

graph at DE 

(d) Free decay/logarithmic decrement 

graph at NDE 
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(a)-(b) at both DE and NDE. The frequency range between these two points is greater 

at the lower amplitudes of the excitation frequency range. To calculate the half-power 

bandwidth, divide the frequency difference between the two half-power points by the 

mode's fundamental frequency. Finally, the damping ratio is computed using the half-

power bandwidth expression given in equation (4.3) for cylindrical bearings. 

Similarly, the experimental damping ratio is then analysed using equation (4.3) for 

experimentally obtained FRF curves for various bearings. The calculated values of 

damping coefficients for all four bearings are shown in Table 4.1 for both DE and 

NDE.  

 

Table 4.1 Damping coefficients of different bearings 

 Experimental FRF Free Decay Method 

 DE NDE DE NDE 

Bearing 

type 

ωn 

(Hz) 

𝝃 

(Damping) 

ωn 

(Hz) 

𝝃 

(Damping) 

𝝃 

(Damping) 

𝝃 

(Damping) 

Tapered 90 0.02200 90 0.02202 0.02077 0.02149 

Cylindrical 116.25 0.01920 116.25 0.01920 0.01747 0.01768 

Spherical 110 0.01506 110 0.01537 0.01630 0.01658 

Self-

aligned 
103.75 0.01321 103.75 0.01351 0.01132 0.01181 

 

A free decay graph depicts the time-dependent behaviour of a damped system as 

shown in Fig. 4.3 (c)-(d) at both DE and NDE. Typically, it shows the amplitude or 

displacement of the system across successive peaks at an equilibrium position. The 

damping ratio quantifies the quantity of system damping. It is determined using the 

logarithmic decrement method, which compares the amplitudes of two peaks. In Fig. 

4.3 (c)-(d), the amplitudes of the first and fourth peaks are used for damping 

calculations for cylindrical bearings at DE and NDE. Similarly, the experimental 

damping ratio is then analysed using equation (4.2) for experimentally obtained free 

decay curves for various bearings. The damping coefficients calculated for all four 

bearings are displayed in Table 4.1 for both DE and NDE. The FRF experiment 
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essentially measures the system's response to an input force across a range of 

frequencies, whereas, the free decay method, analyses the natural decay of the system's 

vibrations after an initial impulsive excitation. It is beneficial to validate damping 

values obtained from both methods and compare the results. This can help ensure 

consistency and reliability in the measurements. If the results align closely, it adds 

confidence to the accuracy of the chosen method.  

Figures 4.4-4.7 (a)-(b) show the FRF curves of tapered roller, cylindrical roller, 

spherical roller and self-aligned bearings, respectively at both DE and NDE. It has 

been observed that the natural frequency of the rotor bearing system in the case of 

tapered roller bearings at DE and NDE is found to be 90 Hz each as shown in Fig. 4.4 

(a)-(b). Peak amplitudes decrease when the damping ratio increases, which shows that 

the system's reaction is attenuated more quickly. Conversely, larger peak amplitudes 

and lower damping ratios indicate a less damped or more resonant response. Narrower 

bandwidths also attenuate vibrations more tightly around the resonant frequency, 

which indicates a higher damping ratio. The response is influenced by a broader range 

of frequencies when the damping ratio is low [143]. In Fig. 4.4 (a)-(b), peak amplitudes 

in FRF are different, but their bandwidths are tuned to achieve the same damping ratio 

at DE and NDE, i.e., 0.02200. Similarly, for all other bearings shown in Figs. 4.5-4.7 

(a)-(b), the natural frequency at both DE and NDE is exactly same (116.25 Hz for 

cylindrical bearings, 110 Hz for spherical bearings and 103.75 Hz for self-aligned 

bearings) with some minor changes in peak amplitude and bandwidth which results in 

the same damping ratio in both DE and NDE. The experimental damping ratios of 

bearings from the FRF plot are found to be 0.01920, 0.01506 and 0.01321 at DE and 

0.01920, 0.01537 and 0.01351 at NDE for cylindrical bearings, spherical bearings and 

self-aligned bearings respectively. 

Figures 4.4-4.7 (c)-(d) show the coherence graphs corresponding to the FRF curve for 

tapered roller, cylindrical roller, spherical roller and self-aligned bearings at both DE 

and NDE. In all the graphs, the value of coherence is almost 95-100% except at 

antinodes which shows that the amplitude and phase of the FRF are very stable from 

one test to the next [146, 147].  
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Figures 4.4-4.7 (e)-(f) show the free decay curves of tapered roller, cylindrical roller, 

spherical roller and self-aligned bearings at both DE and NDE. The damping ratio 

affects the rate at which the amplitude or displacement diminishes with time. The 

damping ratio of the tapered bearing at DE is 0.02077 and at NDE is 0.02149. As 

shown in Fig. 4.4 (e)-(f), the variation in decay characteristics at the DE and NDE may 

suggest differences in damping and stiffness. It also aids in the identification of any 

imbalances, misalignments, mechanical looseness, or bearing-related problems that 

may be causing the observed discrepancies in decay patterns [148]. Similarly, for all 

other bearings, the experimental damping ratio from the free decay plot is found to be 

0.01747, 0.01630 and 0.01132 at DE and 0.01768, 0.01658 and 0.01181 at NDE for 

cylindrical bearings, spherical bearings and self-aligned bearings respectively. 

Figure 4.8 (a)-(b) show all bearings combined free decay graph to better visualise the 

settling time at DE and NDE. Furthermore, there is a significant difference in the 

settling time of the different bearings. It has been observed that the tapered roller 

bearing has the highest vibration amplitude of 2.85 m/s2, followed by the self-aligned 

bearing (2.09 m/s2), cylindrical roller bearing (1.53 m/s2), spherical roller bearing (0.74 

m/s2) at DE. The tapered roller bearing has the same settling time as cylindrical and 

spherical bearings. It has a high decay rate, which means a higher damping ratio. For 

self-aligned bearings, the settling time is much longer than other bearings, which 

indicates that self-aligned has a lower decay rate, which means a lower damping ratio. 

For an underdamped single mode, the free response is 

                         𝑥(𝑡) = 𝐴𝑒−𝜉𝜔𝑡 sin(𝜔𝑑𝑡) , 𝜔𝑑 =  𝜔𝑛 √1 − 𝜉2                             (4.5) 

The visible envelope 𝑒−𝜉𝜔𝑡 is set by modal damping ratio 𝜉 of the whole rotor bearing 

housing system. Changing the bearing changes both the equivalent damping and 

stiffness, so the decay rate change. Differences in 𝜉 arise primarily from lubricant film 

shear/traction and rolling–sliding kinematics, which depend on bearing geometry and 

preload. In tapered roller bearings, the rolling element slides slightly along its length 

due to geometry mismatch (slide–roll ratio). This produces extra damping, so 

vibrations decay faster. Cylindrical rollers are nearly pure rolling in the central band 

and sliding at ends only which results in moderate damping. Self-aligning bearings 
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have more clearance and can adjust to misalignment which means less load 

concentration, so less damping. These mechanisms also shift the effective stiffness and 

natural frequency, explaining small differences in oscillation frequency. Resonance 

peaks shift in frequency because each bearing alters the equivalent system stiffness as 

shown in Fig. 4.9 (a)-(b). 

  

(a) FRF at DE (b) FRF at NDE 

  

(c) Coherence at DE (d) Coherence at NDE 

  

(e) Free decay graph at DE (f) Free decay graph at NDE 
 

Figure 4.4 Tapered roller bearing 
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(a) FRF at DE (b) FRF at NDE 

  
(c) Coherence at DE (d) Coherence at NDE 

  
(e) Free decay graph at DE (f) Free decay graph at NDE 

 

Figure 4.5 Cylindrical roller bearing 
 

-200

-150

-100

-50

0

50

100

150

200

0

5

10

15

20

25

F
re

q
u
en

cy

2
2
.5

0

4
7
.5

0

7
2
.5

0

9
7
.5

0

1
2
2
.5

0

1
4
7
.5

0

1
7
2
.5

0

1
9
7
.5

0

2
2
2
.5

0

2
4
7
.5

0

2
7
2
.5

0

2
9
7
.5

0

3
2
2
.5

0

3
4
7
.5

0

3
7
2
.5

0

3
9
7
.5

0

4
2
2
.5

0

4
4
7
.5

0

4
7
2
.5

0

4
9
7
.5

0

P
h
as

e 
(D

eg
re

e)

A
cc

el
er

at
io

n
)/

(F
o

rc
e 

((
m

/s
²)

/(
N

) 
)

Frequency (Hz)

-200

-150

-100

-50

0

50

100

150

200

0

5

10

15

20

25

30

35

F
re

q
u
en

cy

2
2
.5

0

4
7
.5

0

7
2
.5

0

9
7
.5

0

1
2
2
.5

0

1
4
7
.5

0

1
7
2
.5

0

1
9
7
.5

0

2
2
2
.5

0

2
4
7
.5

0

2
7
2
.5

0

2
9
7
.5

0

3
2
2
.5

0

3
4
7
.5

0

3
7
2
.5

0

3
9
7

.5
0

4
2
2
.5

0

4
4
7
.5

0

4
7
2
.5

0

4
9
7
.5

0

P
h
as

e 
(D

eg
re

e)

A
cc

el
er

at
io

n
)/

(F
o

rc
e 

((
m

/s
²)

/(
N

) 
)

Frequency (Hz)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 100.00 200.00 300.00 400.00 500.00

C
o

h
er

en
ce

 (
%

)

Frequency (Hz)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 100.00 200.00 300.00 400.00 500.00

C
o

h
er

en
ce

 (
%

)

Frequency (Hz_)

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
cc

el
er

at
io

n
 (

m
/s

² 
)

Time (s)

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
cc

el
er

at
io

n
 (

m
/s

² 
)

Time (s)



66 

 

 

  

(a) FRF at DE (b) FRF at NDE 

  

(c) Coherence at DE (d) Coherence at NDE 

  

(e) Free decay graph at DE (f) Free decay graph at NDE 

Figure 4.6 Spherical roller bearing  
 

-200

-150

-100

-50

0

50

100

150

200

0

2

4

6

8

10

12

14

F
re

q
u
en

cy

2
1
.2

5

4
5
.0

0

6
8
.7

5

9
2
.5

0

1
1
6

.2
5

1
4
0
.0

0

1
6
3
.7

5

1
8
7
.5

0

2
1
1
.2

5

2
3
5
.0

0

2
5
8
.7

5

2
8
2
.5

0

3
0
6
.2

5

3
3
0
.0

0

3
5
3
.7

5

3
7
7
.5

0

4
0
1
.2

5

4
2
5

.0
0

4
4
8
.7

5

4
7
2
.5

0

4
9
6
.2

5

P
h
as

e 
(D

eg
re

e)

A
cc

el
er

at
io

n
)/

(F
o

rc
e 

((
m

/s
²)

/(
N

) 
)

Frequency (Hz)

-200

-150

-100

-50

0

50

100

150

200

0

5

10

15

20

25

F
re

q
u
en

cy

2
2
.5

0

4
7
.5

0

7
2
.5

0

9
7
.5

0

1
2
2
.5

0

1
4
7
.5

0

1
7
2
.5

0

1
9
7
.5

0

2
2
2
.5

0

2
4
7
.5

0

2
7
2
.5

0

2
9
7
.5

0

3
2
2
.5

0

3
4
7
.5

0

3
7
2
.5

0

3
9
7
.5

0

4
2
2

.5
0

4
4
7
.5

0

4
7
2
.5

0

4
9
7
.5

0

P
h
as

e 
(D

eg
re

e)

A
cc

el
er

at
io

n
)/

(F
o

rc
e 

((
m

/s
²)

/(
N

) 
)

Frequency (Hz)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 100.00 200.00 300.00 400.00 500.00

C
o

h
er

en
ce

 (
%

)

Frequency (Hz)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 100.00 200.00 300.00 400.00 500.00

C
o

h
er

en
ce

 (
%

)

Frequency (Hz)

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
cc

el
er

at
io

n
 (

m
/s

² 
)

Time (s)

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
cc

el
er

at
io

n
 (

m
/s

² 
)

Time (s)



67 

 

 

  
(a) FRF at DE (b) FRF at NDE 

  
(c) Coherence at DE (d) Coherence at NDE 

  
(e) Free decay graph at DE (f) Free decay graph at NDE 

Figure 4.7 Self-aligned bearing  
 

 

-200

-150

-100

-50

0

50

100

150

200

0

5

10

15

20

25

F
re

q
u
en

cy

2
1
.2

5

4
5
.0

0

6
8
.7

5

9
2
.5

0

1
1
6
.2

5

1
4
0
.0

0

1
6
3
.7

5

1
8
7
.5

0

2
1
1
.2

5

2
3
5
.0

0

2
5
8
.7

5

2
8
2
.5

0

3
0
6
.2

5

3
3
0
.0

0

3
5
3
.7

5

3
7
7
.5

0

4
0
1
.2

5

4
2
5
.0

0

4
4
8
.7

5

4
7
2
.5

0

4
9
6
.2

5

P
h
as

e 
(D

eg
re

e)

A
cc

el
er

at
io

n
)/

(F
o

rc
e 

((
m

/s
²)

/(
N

) 
)

Frequency (Hz)

-200

-150

-100

-50

0

50

100

150

200

0

5

10

15

20

25

30

35

F
re

q
u
en

cy

2
2
.5

0

4
7
.5

0

7
2
.5

0

9
7
.5

0

1
2
2
.5

0

1
4
7
.5

0

1
7
2
.5

0

1
9
7
.5

0

2
2
2
.5

0

2
4
7
.5

0

2
7
2
.5

0

2
9
7
.5

0

3
2
2
.5

0

3
4
7
.5

0

3
7
2
.5

0

3
9
7
.5

0

4
2
2

.5
0

4
4
7
.5

0

4
7
2
.5

0

4
9
7
.5

0

P
h
as

e 
(D

eg
re

e)

A
cc

el
er

at
io

n
)/

(F
o

rc
e 

((
m

/s
²)

/(
N

) 
)

Frequency (Hz)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 100.00 200.00 300.00 400.00 500.00

C
o

h
er

en
ce

 (
%

)

Frequency (Hz)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 100.00 200.00 300.00 400.00 500.00

C
o

h
er

en
ce

 (
%

)

Frequency (Hz)

-3.50

-2.50

-1.50

-0.50

0.50

1.50

2.50

3.50

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
cc

el
er

at
io

n
 (

m
/s

² 
)

Time (s)

-3.50

-2.50

-1.50

-0.50

0.50

1.50

2.50

3.50

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
cc

el
er

at
io

n
 (

m
/s

² 
)

Time (s)



68 

 

 

 

(a)  Free decay at DE 

 

(b)  Free decay at NDE 

Figure 4.8 Combined free decay graph for all bearings 

 

 

Figure 4.9 (a)-(b) shows the combined FRFs amplitude graph of all the bearings for 

improved visualisation at DE and NDE. It has been observed that the tapered bearing 

has a lower natural frequency of 90 Hz at both the DE and NDE. The damping ratio 

affects the natural frequency as well. The damping ratio ranges from 0 to 1 and is 

defined as the ratio of actual damping to critical damping. A higher damping ratio 

reduces the natural frequency more than a lower damping ratio [149]. As the damping 
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ratio approaches 1, the natural frequency approaches zero, denoting a system 

dampened to its critical level. 

 
 

 
(a) FRF at DE 

 

(b) FRF at NDE 

Figure 4.9 Combined FRFs for all bearings 
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4.3.2 Dynamic Condition 

Dynamic performance is the most essential analysis for a rotor-bearing system in its 

application. The antifriction bearings are loaded with different radial loads and the 

experimental frequency spectra have been obtained for four different types of bearings. 

However, the effect of the damping behaviour of different types of rolling element 

bearings is also examined with the help of the RMS value of acceleration.  

Table 4.2. RMS (m/s2) value of the acceleration of tapered roller bearing 

RPM 
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 

LOAD 

No 

load 
0.42 0.58 0.59 0.76 2.72 1.39 1.62 1.78 1.55 1.96 1.91 

2kg 0.48 0.56 0.82 1.70 1.50 1.52 1.64 1.74 2.01 2.19 2.75 

3kg 0.71 0.84 1.32 1.63 1.98 1.68 1.80 2.17 2.97 3.54 3.59 

5kg 0.39 0.57 0.78 0.93 1.05 1.12 1.39 1.41 1.91 2.15 2.02 

Table 4.3. RMS (m/s2) value of the acceleration of cylindrical roller bearing 

RPM 
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 

LOAD 

No 

load 
1.12 1.31 1.59 1.91 2.55 2.83 3.01 3.27 3.81 4.84 5.08 

2kg 1.19 1.33 1.76 1.82 2.23 2.65 3.03 3.47 3.99 4.30 4.49 

3kg 0.92 1.33 1.67 1.80 2.37 2.47 2.74 3.42 3.74 4.07 4.27 

5kg 0.87 1.34 1.49 1.81 2.09 2.64 3.01 3.44 3.95 4.19 4.18 
 

Table 4.4. RMS (m/s2) value of the acceleration of spherical roller bearing 

RPM 
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 

LOAD 

No 

load 
2.14 2.33 2.82 3.07 6.68 5.14 4.79 5.95 6.15 5.56 6.12 

2kg 1.44 1.85 2.54 3.40 3.69 4.54 5.81 7.11 7.49 8.57 10.48 

3kg 1.83 2.10 2.76 2.82 3.10 4.19 3.83 4.64 4.52 5.38 7.59 

5kg 1.75 2.30 2.42 2.74 3.29 4.16 3.54 3.88 5.16 5.18 5.67 
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Table 4.5. RMS (m/s2) value of the acceleration of self-aligned bearing 

 

RPM 
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 

LOAD 

No 

load 
2.93 4.21 5.61 8.23 9.38 10.17 11.11 13.09 19.39 20.28 20.51 

2kg 2.80 4.16 5.23 6.30 8.01 10.81 11.71 13.82 15.15 16.07 20.05 

3kg 2.87 4.98 6.35 7.52 9.02 10.35 12.65 14.68 16.65 19.84 19.84 

5kg 3.12 3.91 4.40 5.10 5.77 6.17 7.94 10.06 11.32 12.77 14.24 

 

 

The RMS values for different loading conditions (No load, 2kg, 3 kg and 5 kg radial 

load) at different speeds between 1000-3000 rpm are tabulated in Tables 4.2-4.5. The 

graphs between the measured RMS value of amplitude for bearings (tapered, 

cylindrical, spherical and self-aligned bearings) vs speed are shown in Fig. 4.10. 

Figure 4.10 (a) shows the relationship between the RMS value of acceleration and 

speed under no load conditions. An interesting result has been observed that the RMS 

value increases as the speed increases for all the bearings [150, 151]. At the same time, 

the RMS value of the tapered bearing is lower across all the speed ranges, which shows 

that the tapered bearing damps more vibration among all the bearings. The root mean 

square (RMS) value is a metric that quantifies the energy level of a signal by measuring 

the magnitude of its vibration signals. It measures the amplitude of the vibration signal, 

considering its decay. A lower RMS value corresponds to a reduced amplitude of 

vibration, indicating a higher damping ratio. 

Furthermore, the self-aligned bearing has a higher RMS value for all the speed ranges, 

showing the self-aligned bearing damps less vibration. Similarly, it has been observed 

that RMS acceleration values are low in tapered bearings at almost all shaft rotational 

speeds for other loading conditions of 2kg, 3kg and 5kg as shown in Fig. 12 (b)-(d). 

The tapered roller bearings' geometric design can potentially decrease contact stresses 

and vibrations. Tapered roller bearings are specifically engineered to accommodate 

both radial and axial loads, and their tapered shape enables effective distribution of the 

load. This design feature can facilitate a more seamless rolling interaction between the 

rolling components and the raceways, leading to reduced levels of vibration.  
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The trend of these experimental results is compared with the half-power bandwidth 

and logarithmic decrement methods to check the results correctness. The results are 

good in agreement with each other, proving the experiment's correctness and 

robustness. 

  

(a) No load (b) 2 kg load 

  

(c) 3 kg load (d) 5 kg load 

Figure 4.10 RMS value of acceleration at a different speed under different loading 

conditions 

 

4.4 Summary of the Chapter  

This chapter provided an in-depth analysis of damping in four antifriction bearings.  

The damping ratios were determined through two distinct approaches—free decay and 
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frequency response function (FRF)—while under static conditions.  To corroborate 

and reinforce the findings from the static analysis, dynamic tests were performed by 

applying forced vibration to the bearings at different speeds.  The analysis of outcomes 

from both static and dynamic methods revealed consistent patterns, enhancing the 

credibility of the experimental techniques and providing important insights into the 

damping characteristics of various bearing types. The experimental work observes the 

following significant findings: 

• The natural frequency and damping ratios are different for each antifriction 

bearing, which shows that different bearing designs exhibit different vibration 

characteristics. 

• The damping ratios derived from the frequency response function and free 

decay methods appear to be consistent between DE and NDE for each type of 

bearing. The results from these two methods align well with one another. 

• The tapered roller bearing exhibits a significant decay rate, indicating a higher 

damping ratio, in comparison to cylindrical, spherical, and self-aligned 

bearings. Experimental findings prove that ball bearings exhibit lower damping 

compared to roller bearings. The explanation could lie in their smaller contact 

area and low internal friction.   

• The trend of dynamic analysis results supports the half-power bandwidth and 

logarithmic decrement method results. Both experimental techniques validate 

each other by showing similar findings. For all bearings, vibration amplitude 

rises as rotor speed or frequency increases. RMS, on the other hand, increases 

with load until it reaches a maximum and then declines. 

• Sometimes, systems may not be fully explained by a single approach because 

many things can affect them. So, using multiple methods to characterise the 

damping behaviour of structural dynamics precisely is advantageous. 

• Due to the simplicity of the proposed implementation, the present approach 

may have future applications. It is believed that the comprehensive nature of 

our experimental setup and analysis can serve as a foundation for future 
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research in the field of bearing dynamics. Researchers can build upon our 

methodologies and findings to delve deeper into the complexities of damping 

behaviour in diverse bearing types and operating conditions, whereby deriving 

the various universal results. 
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Chapter 5 Vibration Behaviour of Healthy Tapered Roller 

Bearing at Different Operating Load and Speed 

    
 

This chapter examines the vibration and noise characteristics of a healthy tapered roller 

bearing (TRB) across different operational conditions.  An experimental study was 

carried out to assess the impact of various process parameters on the root mean square 

(RMS) value of vibration signals and the equivalent continuous sound level (Leq) 

produced during operation. 

5.1 Introduction 

The vibrational characteristics of tapered roller bearings (TRBs) under various 

operational and loading conditions are essential for comprehending their dynamic 

performance and overall reliability. Vibration and acoustic investigations have been 

performed on healthy TRBs to establish a baseline for comparison. These analyses 

assist in explaining the intrinsic vibration signatures of healthy bearings, which 

provide reference data for detecting variations in subsequent defect identification 

investigations.  

Researchers have developed various machine fault detection systems and achieved 

great success in early detection by continuous monitoring and analysing vibration 

signals [152–154]. Vibration is a mechanical phenomenon reflecting the running 

condition and fault statistics. It is widely used in the detection of bearing faults. Some 

statistical techniques based on root mean square, kurtosis, and so on have been used 

for condition monitoring in previous studies [155, 156]. The Fourier transform has 

been used to connect the time and frequency domains [157]. When dealing with 

stationary signals, the FFT is the most commonly used signal processing technique 

[158]. However, it has various drawbacks, one being the loss of temporal information 

during frequency domain transformation. It is impossible to tell when an event 

occurred by looking at the FFT of a signal. This disadvantage is not significant in the 

case of a stationary signal [159] However, it is known that its accuracy declines when 

time-varying frequencies are present. As previously stated, frequency will be the 
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primary factor in predicting faults. Many references have been provided which revolve 

around the accuracy of estimating the signal frequency. Sensor response signals are 

analysed in time, frequency, and time-frequency domains [154]. The effectiveness of 

research is marked by mathematical analysis of experiment data, which provides a 

meaningful inference of the same. RSM is valuable for the process development, 

enhancement, and optimisation [79]. RSM is used to investigate the role of localised 

defects of different sizes in bearing vibration as the process response [160]. Using 

kurtosis as a signal processing technique for condition monitoring of ball bearings, 

RSM investigates the influence of load, speed, and defect on bearing vibration [81]. 

RSM technique to diagnose defects on a faulty rolling bearing [82]. The experimental 

data confirmed the mathematical model's capacity to anticipate fault frequencies and 

harmonics. They developed RSM to predict the dynamic response of a rotor-bearing 

system. RSM was suggested by [83] to determine the ideal placement strategy for 

sensors that do not require physical contact to ensure effective monitoring of rotating 

machine parts. The essence of practical research is theoretical predictions supported 

by experimental data. The effectiveness of studies is substantially enhanced, and 

insightful conclusions can be drawn from the data collected when statistical methods 

are properly applied. The experiment's design and data analysis are the two main 

focuses of each scientific investigation. To experiment well, you need to know the 

important things that affect the results. Designing experiments helps find the important 

factors that explain a change in a process. DOE also helps people to figure out how the 

things that affect the system work together [161]. Experiments can be planned using 

approaches such as the response surface method (RSM), the factorial design, or the 

Taguchi method. Most of the researchers used the ball bearing and cylindrical roller 

bearing to obtain the optimal condition of bearing vibration through different 

optimisation techniques. But few of them considered tapered bearing for the analyses. 

The author has found that in addition to vibration analyses, the noise data is an 

important parameter and its effect on bearing response should also be investigated. 

This study examines the application of the Taguchi technique on the time domain 

values of the bearing noise and vibration signal to analyse the influence of load and 

RPM on tapered bearing performance. For statistical analysis, time domain indices 
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such as Leq for noise and RMS, crest factor, and kurtosis are typically employed for 

vibration. The RMS and Leq of the signal have been selected as the response or output 

parameters in this investigation. Kurtosis is regarded as a useful criterion for 

measuring bearing defects. The DOE approach is used to create experiments. 

Experiments were conducted using SKF 30206 tapered roller. Mathematical relations 

and models have been established to assess input factors' effect on response variables. 

 

Figure 5.1 Flowchart of the proposed methodology 

 

5.2 Design of Experiment using the Taguchi Technique 

In the present study, the Taguchi approach is used to design the experiment, and the 

importance of parameters is investigated. ANOVA is a statistical method for 

Construct the Taguchi model and validation

Is model 
fit and 

significant
?

Performing ANOVA for fitness of the regression model

Development of Mathematical model and response surface model 
equation
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determining the impact of process parameters on experiments. The F-test determines 

the extent to which the parameters contribute to the process's response. The 

significance of factors and their interactions is indicated in the analysis of variance 

table by prob < 0.05 (for 95% confidence interval, CI). Three-level full factorial design 

is a way to set up an experiment by putting each of the factors at three stages: low, 

medium, and high. These levels are encoded in computer code (1, 2, 3), and two factors 

are considered for the study. The process of the whole Taguchi is shown in Fig. 5.1. 

DOE has been established for three levels with two variables (speed and load). As 

shown in Table 5.1, all factors are evaluated as (L-1, L- 2, L-3) for the low, medium 

and high, and high levels, respectively. The experimental runs have been carried out 

as per experimental design L27 (32) to obtain vibration responses in terms of RMS and 

Leq values at drive and non-drive ends, as shown in Table 5.2. RMS values are 

calculated using the accelerometer's time domain signal for acceleration. 

Table 5.1 Input parameters and their level 

Input parameters Load (N) RPM 

Symbol A B 

L- 1 20 1000 

L- 2 30 1500 

L- 3 50 2000 

 

In the Taguchi method, the response for each observation is shown in Table 5.3 as a 

signal-to-noise (S/N) ratio. The "smaller is better" principle is used in this evaluation, 

so the RMS and Leq values must be small. The process response and the control factors 

are used to determine the signal-to-noise ratio. Also, an analysis of variance has been 

conducted to determine which governing feature was statistically important so that the 

optimal combo of the controlling factors, called the "optimal combination," could be 

predicted [162, 163]. The Taguchi method gives the S/N ratio (smaller is better) as 

follows [164]:  

(S/N) SB = -10 log (
1

𝑛
 ∑ 𝑦𝑖

2) (5.1) 

Where n= number of replications. 
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Table 5.3 provides average factor characteristics for each level. The S/N ratio response 

combines the repetitions and the effects of noise stages into one coherent piece of 

information. 

Table 5.2 I/P (uncoded form) and O/P (or response) parameters as per DOE and 

experiment results 

Exp. No 

I/P parameters O/P or response parameter 

A B 

RMS 

(DE) 

m/s2 

RMS 

(NDE) 

m/s2 

Leq (DE) 

dB 

Leq (NDE) 

dB 

1 1 1 28.65 3.1 96.4 95.6 

2 1 1 27.84 2.78 96.2 95.1 

3 1 1 28.79 3.27 96.5 95.8 

4 1 2 55.52 9.15 101.5 99.7 

5 1 2 54.72 9.93 101.1 99.6 

6 1 2 58.29 9.89 101.2 99.7 

7 1 3 73.36 13.79 103.7 101.9 

8 1 3 79.66 13.72 103.9 101.9 

9 1 3 77.87 14.22 103.7 102.1 

10 2 1 60.09 7.29 95.6 94.5 

11 2 1 52.95 6.00 95.2 94.3 

12 2 1 51.97 6.55 95.2 94.6 

13 2 2 64.66 8.26 102.2 99.6 

14 2 2 72.36 8.54 103.3 99.7 

15 2 2 68.81 8.59 102.5 99.6 

16 2 3 75.3 12.52 104.1 102.4 

17 2 3 74.95 12.81 103.9 102.5 

18 2 3 82.82 13.22 104.4 102.3 

19 3 1 37.44 6.36 92.8 92.5 

20 3 1 39.42 6.08 92.9 92.1 
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21 3 1 35.85 7.64 92.1 92.9 

22 3 2 60.38 12.5 99.2 98.4 

23 3 2 53.83 12.17 98.9 98.3 

24 3 2 62.93 12.2 99.4 98.3 

25 3 3 66.32 12.84 101.1 98.9 

26 3 3 76.8 15.74 102 99.1 

27 3 3 79.6 16.3 102.2 99.3 

 

Table 5.3 Signal-to-noise ratio for RMS DE, RMS NDE, Leq DE and Leq NDE 

Exp. No 
S/N ratio 

RMS (DE) 

S/N ratio 

RMS (NDE) 

S/N ratio 

Leq (DE) 

S/N ratio 

Leq (NDE) 

1 -29.0755 -9.70522 -39.6785 -39.6001 

2 -34.9943 -19.7025 -40.1093 -39.971 

3 -37.7308 -22.8676 -40.3212 -40.1692 

4 -34.8265 -16.4384 -39.5849 -39.5056 

5 -36.7369 -18.5521 -40.2287 -39.9681 

6 -37.8168 -22.1802 -40.3518 -40.206 

 

Table 5.4 Response table for signal-to-noise ratio 

Response Level Load RPM 

RMS DE (smaller 

is better) 

Delta 

Rank 

2.53 

2 

5.86 

1 

RMS NDE 

(smaller is better) 

Delta 

Rank 

3.21 

2 

8.63 

1 

Leq DE (smaller is 

better) 

Delta 

Rank 

0.25 

2 

0.74 

1 

Leq NDE (smaller 

is better) 

Delta 

Rank 

0.21 

2 

0.62 

1 
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5.3 Results and Discussion 

5.3.1 Effect of Process Parameters on Leq 

To achieve the lower Leq at both drive and non-drive ends is always desirable, smaller 

the better option is selected. Leq's signal-to-noise ratio is determined by Equation 

(5.1).  

For our study, we have considered L27 orthogonal array design, that is, 32 factorial 

designs with three times replication. Each of the 9 experiments is performed thrice. In 

this, 27 experimental combination runs have 26 degrees of freedom (DOF). Each main 

effect (ME) has 1 DOF. Thus 2 DOF out of 26 are utilised to analyse A and B. For 

analysing the statistical significance of factors, an additional 24 DOF are now 

available. These are used in ANOVA. It may be necessary to get an adequate degree 

of freedom, sample size, and sensitivity in case of small effects. A larger number of 

replications will provide more degrees of freedom for error term and improve the 

precision and power of the experiment. 

The linear polynomial mean of squares (MS) and a sum of squares (SS) were 

determined, and ANOVA was used to test for "probability>F" (<= 0.05) with a 95 

percent confidence interval (CI) at the 5% level of significance. For the model of Leq 

at DE and NDE, the F-values are 107.97 and 135.22, as shown in Tables 6 and 7 entails 

its significance. p-values less than 0.05 indicate significant model terms in the 

ANOVA table. Two model terms are important here: A and B. In contrast, model terms 

are deemed insignificant when p-values are greater than 0.05.  

The involvement of each input process parameter is shown in Tables 5.5 and 5.6. The 

RPM shows the maximum delta value and is graded 1, i.e., RPM is the utmost 

momentous factor for Leq followed load, as shown in Table 5.4 [87]. Analysis of 

variance results for Leq also suggests that the RPM has the prime role of about 80.43 

and 80.9% for DE and NDE, respectively, as shown in Tables 5.5 and 5.6. The 

influence of different parameters, like RPM and load on Leq, are shown in Figs. 5.2(a) 

and 5.3(a). The Leq is directly related to speed, and it always goes up as the speed goes 

up. However, Leq increases with load up to a maximum value and then decreases. This 

is because the equipment's natural frequency matches the excitation frequency, 

producing high noise, and the resonance noise becomes less after passing. Figs. 5.2(b) 
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and 5.3(b) show the main effect plot of the signal-to-noise ratio for Leq. This graph 

determines the input process variables values that decrease Leq. The minimum Leq is 

achieved at level 3 for load and level 1 for speed. The best value across various 

parameters for minimising Leq is A3B1. The linear dependency among the value of 

governing factors (Load and Speed) and Leq is obtained. Using predetermined values 

for the load, speed, and ANOVA to predict Leq, a linear regression model is built, 

which is shown below. The created model offers a linear relationship between 

parameters and the unknown quantity. 

Leq (DE) = 90.17 - 0.954 A + 0.008456 B (5.2) 

Leq (NDE) =90.48-0.842 A +0.007000 B (5.3) 

At A3B1 Leq (DE)  = 93.856 and Leq (NDE) = 93.271 

Equations (2) and (3), which is used to make a model for predicting Leq, worked well 

because the points on the normal probability graph in Figs. 5.4 and 5.5 showed an 

approximate linear pattern with a normal distribution that broke apart only slightly 

[165, 166]. Figures 5.4 and 5.5 also show that the RVFV graph displays a random 

pattern, indicating that residual variance is nearly constant. The RVOP demonstrate 

that the obtained data can be used to determine the non-random error. Also, the FVRP 

shows no outliers, which proves that the data were more diverse. But the bar chart is 

negatively skewed, indicating that the initial observations are much more crucial to the 

overall results [167]. 

Table 5.5 ANOVA effect for S/N Ratios of Leq (DE) 

Parameters DoF 
Sum of 

squares 

Mean of 

squares 
F-value 

p-

value* 

% 

Contribution 

Model 2 359.956 179.978 107.89 0.000  

LOAD 1 38.222 38.222 22.91 0.000 9.5 

RPM 1 321.734 321.734 192.87 0.000 80.43 

Error 24 40.036 1.668    

Lack-of-Fit 6 37.802 6.300 50.78 0.000  

Pure Error 18 2.233 0.124    

Total 26 399.992     
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Note: A p-value of 0.000 (commonly shown as 0.000 in software outputs, but 

technically indicating p < 0.001) holds significant importance and relevance in 

statistical analysis. The value is not zero; instead, it indicates that the p-value is 

exceedingly small—beyond the accurate display capabilities of the software [168] 

 

In Fig. 5.10 the Pareto chart shows the absolute values of the standardised effects, from 

the biggest effect to the smallest effect. A reference line is also drawn on the chart to 

show which effects are statistically important. The significance level (represented by 

alpha) determines the location of the statistical significance reference line. Figures 

5.10(a) and (b) show a Pareto chart. Bars that cross the reference line are statistically 

important. In this Pareto chart, the bars showing factors A and B cross the 2.06-point 

reference line. With the current model terms, there is a 0.05 chance that these factors 

are important. 

  

(a) Raw data (b) S/N data 

               Figure 5.3 Effect of process parameter on Leq NDE 

  

(a) Raw data (b) S/N data 

Figure 5.2 Effect of process parameter on Leq DE 
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Figure 5.4 Residual plot of Leq DE 

 

 

Figure 5.5 Residual plot of Leq NDE 
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Table 5.6 ANOVA effect for S/N Ratios of Leq (NDE) 

Parameters DoF 
Sum of 

squares 

Mean of 

squares 
F-value 

p-

value* 

% 

Contribution 

Model 2 250.281 125.140 135.22 0.000  

LOAD 1 29.781 29.781 32.18 0.000 10.9 

RPM 1 220.500 220.500 238.26 0.000 80.9 

Error 24 22.211 0.925    

Lack-of-Fit 6 21.438 3.573 83.16 0.000  

Pure Error 18 0.773 0.043    

Total 26 272.492     

 
 

5.3.2 Effect of Process Parameters on RMS 

Achieving the lower RMS value at both DE and NDE is always desirable, so smaller 

the better option have opted. The signal-to-noise ratio for RMS DE is designed by 

Equation (5.1). 

For the model of RMS at DE and NDE, the F-values are 40.97 and 112.82 in Tables 

5.7 and 5.8 shows that it is significant. In the analysis of variance table, significant 

model terms are specified with p-values < 0.05. In the RMS DE case, term A is 

significant, and term B is insignificant. But in the RMS NDE case, both terms are 

significant. Participation of numerous input parameters is shown in Tables 5.7and 5.8. 

The RPM shows the maximum delta value and is graded 1, i.e., the RPM is the utmost 

important parameter for RMS, followed by the load [83] [87], as expressed in Table 

5.4. Analysis of variance results for RMS also confirms that the RPM has a major role 

of about 77.33 and 82.7%, as shown in Tables 5.7 and 5.8. The influence of different 

parameters, like RPM and load on RMS, are shown in Figs. 5.7(a) and 5.8(a). The 

RMS is proportionate to speed and increases with an increase in speed. However, RMS 

increases with load up to a maximum value and then decreases [83]. This is because 

the equipment's natural frequency matches the excitation frequency, which produces 

high vibration, and the resonance vibration becomes less after passing. Figs. 5.7(b) and 

5.8(b) display the RMS's main effect plot of the signal-to-noise ratio. This plot is used 

to find the values of the I/P process parameters that will minimise RMS. The minimum 
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RMS reaches level 1 for load and level 1 for speed. The linear relationship between 

the values of the controlling factors (Load and Speed) and RMS is discovered. The 

linear regression equation is derived using Minitab software from established load and 

speed values. To predict RMS, the following linear regression model is obtained. The 

developed model provides a linear relationship between parameters and the unknown 

quantity. The model developed for RMS prediction, represented by Equations (4 & 5), 

was acceptable. The points on the normal probability graph shown in Figs. 5.6 and 5.9 

follow a roughly linear pattern with a normal distribution and a small disintegration. 

Figures 5.6 and 5.9 also show that the RVFV graph demonstrates a random pattern, 

which shows that residuals have an almost constant variance. The RVOP shows that 

the collected data can be used to find an error that is not random. Also, because no 

outliers were found, the plot of frequency versus residual confirms that the data vary 

more finely [167]. 

RMS (DE) = 4.82 + 0.16 A + 0.03596 B (5.4) 

RMS (NDE) = -5.65 + 0.841 A + 0.008454 B (5.5) 

 

Figure 5.6 Residual plot for RMS DE 



87 

 

 

Table 5.7 ANOVA effect for S/N Ratios for RMS DE 

Parameters DoF 
Sum of 

squares 

Mean of 

squares 
F-value p-value 

% 

Contribution 

Model 2 5821.56 2910.78 40.97 0.000  

LOAD 1 1.07 1.07 0.02 0.903 0.014 

RPM 1 5820.49 5820.49 81.92 0.000 77.33 

Error 24 1705.18 71.05    

Lack-of-Fit 6 1419.55 236.59 14.91 0.000  

Pure Error 18 285.64 15.87    

Total 26 7526.74     

 
 

  

(a) Raw data (b) S/N data 

Figure 5.7 Effect of process parameter on RMS DE 

 

  

(a) Raw data (b) S/N data 

Figure 5.8 Effect of process parameter on RMS NDE 
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Figure 5.9 Residual plot for RMS NDE 

 

Table 5.8 ANOVA effect for S/N Ratios for RMS NDE 

Parameter DoF 
Sum of 

squares 

Mean of 

squares 
F-value 

p-

value 

% 

Contribution 

Model 2 351.30 175.652 112.82 0.000  

LOAD 1 29.70 29.705 19.08 0.000 7.6 

RPM 1 321.60 321.599 206.56 0.000 82.7 

Error 24 37.37 1.557    

Lack-of-

Fit 
6 27.22 4.537 8.05 0.000 

 

Pure 

Error 
18 10.15 0.564   

 

Total 26 388.67     
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On the Pareto chart in Figs. 5.10(c) and (d), bars that cross the reference line are 

statistically significant. For RMS NDE, the bars representing factors A and B cross the 

reference line at 2.06, but only factor B crosses in RMS DE. These factors are 

statistically significant at 0.05 with the current model terms. 

 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 5.10 Pareto chart 

 

  
(a) Interaction for RMS DE between factors A and B 
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(b) Interaction for RMS NDE between factors A and B 

  
(c) Interaction for Leq DE between factors A and B 

  
(d) Interaction for Leq NDE between factors A and B 

Figure 5.11 Contour and Surface plot of interaction 

 

5.3.3 Contour and Response Surface Plot 

The contour plot is a two-dimensional (2D) representation of the responses plotted 

against combinations of process parameters. A response surface plot is a 3-D 

representation of the behaviour of responses as a function of various process 

parameters. The interaction effect between speed and load on 3D surface plots can 
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provide a clearer concept of the response surface than contour plots for vibration 

(RMS) and Noise (Leq) in both drive and non-drive ends. 

Examining Figs. 5.11(a) for the interaction between RPM and load for RMS DE, the 

vibration amplitude increases at high speed significantly for all loads. Still, around 

1600-1700 rpm, its amplitude increases and then decreases with the load. Figure 

5.11(a) also identifies dark blue regions with smaller z-values (RMS DE). The contour 

levels reveal a low value in the vicinity of 1000 rpm & 2 kg weight and 1000 rpm & 5 

kg weight. RMS DE scores in this region range from 30-40. Examining Fig. 5.11(b), 

for interaction between speed and load for RMS NDE shows a similar response 

regarding RMS value ranges as in RMS DE. The vibration response contour plot in 

DE and NDE shows analogous but varying amplitude [80]. Speed primarily increases 

dynamic excitation frequency and energy, causing higher RMS and Leq at both DE 

and NDE. Curved contour lines are observed as a result of the linear regression 

equation. Figure 5.11(c) illustrates a contour plot for noise (Leq DE) in the vertical (Z) 

direction. The higher noise amplitude can be observed near the speed range of 1800-

2000 rpm under the loading range condition of 2.5-3.5 kg. The interaction between 

load and speed for Leq NDE is plotted in Fig. 5.11(d). The noise responses in DE and 

NDE look the same on the contour plot, but the magnitudes differ. 

Table 5.9 Kurtosis value at different RPM and different loading conditions 

 

5.4 Summary of the Chapter 

In the present experimental work on tapered roller bearing, a 3-level complete factorial 

design and Taguchi are employed to determine the influence of input factors on 

vibration RMS and noise Leq. Kurtosis is regarded as a useful criterion for measuring 

bearing defects, but the bearing is healthy in this case, and all values are within the 

RPM Kurtosis (DE) Kurtosis (NDE) 

 2kg 3kg 5kg 2kg 3kg 5kg 

1000 2.55 2.76 1.34 1.95 1.89 2.32 

1500 0.37 0.88 1.15 1.33 2.02 1.59 

2000 0.05 1.39 1.50 0.42 1.05 1.31 
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range, i.e., less than 3, as shown in Table 5.9. As input variables, speed and bearing 

load are analysed for variations due to individual and interaction effects between input 

parameters. The number of experiments is determined using the Taguchi method, and 

subsequent experiments involve measuring noise and vibration responses in DE and 

NDE. Experiments are repeated three times to prevent noise and error. The ANOVA 

technique also confirms the obtained results. The MEPFM (mean effect plot for 

means) is used to investigate the consequence of input process parameters on RMS 

and Leq responses, whereas the signal-to-noise plots aid in determining the optimum 

level and values of process parameters. The ANOVA evaluates the vibration response 

for the model's applicability and fits the statistical data to the linear regression 

equation. The contour plot is also used to determine the influence of speed and load 

change levels on the vibration response. The experimental work yielded the following 

significant findings. 

• The analysis of variance indicates that speed is the most significant factor 

influencing vibration RMS and noise Leq.  Taguchi's method validates that the 

he RMS and Leq values of the tapered bearing increase as speed rises.  It has 

been found that RMS and Leq initially rise with an increase in load before 

subsequently declining. 

• The objective of the current study is to minimise RMS and Leq. In the Taguchi 

technique, S/N plots are used to determine the optimal process parameters to 

achieve the best response. The optimal level of process parameters for RMS is 

A1B1, and for Leq is A3B1. 

• The response surface in RMS at DE and NDE exhibits comparable 

characteristics, although at varying magnitudes.  Leq exhibits comparable 

characteristics for DE and NDE, albeit at a different magnitude. 

• Due to the simplicity of the proposed implementation, the current method may 

give practical, effective applications for bearing condition monitoring and 

other complex machine studies in the future. 
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Chapter 6 Vibration Behaviour of Faulty Tapered Roller-

Bearing  

     
 

This chapter examines how different fault conditions affect the vibration response of 

tapered roller bearings (TRBs). Bearings exhibiting artificially induced defects, 

including inner race faults, outer race faults, and roller element damage, were 

subjected to controlled testing to analyse their dynamic behaviour. The vibration 

signatures were captured and examined through unique characteristics linked to each 

fault type. This study presents an experimental framework and diagnostic 

methodology that establish a systematic approach for detecting faults, crucial for 

condition monitoring in rotating machinery. 

 

6.1 Introduction 

Investigating the faults of tapered roller bearings (TRB) and their influence on 

vibration behaviour is crucial for timely fault diagnosis and effective predictive 

maintenance strategies.  Vibration and acoustic analyses have been conducted on 

defective TRBs to explore these effects, facilitating a comparative evaluation with 

healthy bearings.  The analyses conducted facilitate the identification of distinct fault 

signatures and provide insights into the impact of various defects on the overall 

dynamic response of the bearing system.  Bearings typically fail on their own; 

however, in real-world applications, unexpected and early failures are common due to 

factors such as overloading, improper installation, inadequate lubrication, and 

unsuitable operating conditions [38]. 

Most researchers work on TRB for lubrication, contact behaviour [169, 170] and 

misalignment [171, 172]. Very few of them considered the faults in all components. 

The primary objective of this study is to determine the impact of faults on TRB 

components on their stability and the resulting dynamic reactions within the rotary 

system. Artificial defects on the roller, races, and compound location are introduced 

to facilitate a more comprehensive examination of faults. This aspect is not considered 

by Patil et al. and Kankar et al. in their study. Gunerkar et al. employed the L8 method 
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for analysis, which yielded a linear relationship between the parameters under 

investigation. However, the current work examines three factors at varying levels (64 

experiments) and establishes a quadratic relationship between them.  

This approach enhances the analysis of faults and nonlinearity prediction. The author 

has discovered that, alongside vibration assessments, considering noise data is also 

important for the investigation to understand its impact on bearing response. Statistical 

analysis commonly utilises time domain indices such as Leq for noise and RMS, crest 

factor, skewness and kurtosis for vibration. In this investigation, the RMS (calculated 

from time domain data and commonly used to quantify the amplitude of vibrations), 

kurtosis (calculated from time domain data and is often regarded as an accurate 

measure for evaluating the presence of bearing problems) and Leq (equivalent 

continuous sound level measured from the SLM and is often used in noise 

assessments) have been chosen as output response. The DOE methodology is used to 

design experiments. SKF 30206 TRBs are utilised in experiments. Mathematical 

relations and models have been developed to assess the effect of input factors on 

response variables. 

 

6.2 Experimental Methodology 

The methodology utilised to analyse TRB in this study is shown in Fig. 6.1. Factorial 

designs are used for modelling and analysis of issues when multiple factors affect the 

response of interest. The factorial design is commonly employed for process 

improvement, development, and optimisation. The primary effect of a factor is defined 

as the variation in the response that can be attributed to a change in the amount of that 

particular component, while keeping the other factors constant. Interaction dependence 

exists between variables when the behaviour of one factor influences the effect of 

another. Once the significant factors influencing the response have been identified, the 

factorial design is essential when it is believed that the relationship between the factor 

and dependent variable must be investigated throughout the experimental region, not 

just at the borders. This is accomplished by correlating the k active variables using the 

following form of a second-degree polynomial expression (6.1): 

                        𝑌 =  𝑏𝑜 +  ∑ 𝑏𝑖𝑥𝑖 +  ∑ 𝑏𝑖𝑖𝑥𝑖
2𝑘

𝑖=1 + ∑ ∑ 𝑏𝑖𝑗
𝑘
𝑗−𝑖=1 𝑥𝑖𝑥𝑗+ ∈𝑘−1

𝑖=1
𝑘
𝑖=1       (6.1) 
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where xi represents the variable with which we wish to correlate Y, and where Y 

represents the dependent variable. The symbols b0, bi, and bij are constants, ∈ = error 

observed in the response.  

 

Figure 6.1 Flowchart of the proposed methodology 

 

A polynomial regression is used to fit the trial values to the above equation. Normal 

statistics can then be used to check how well the fit is. The factorial designs are 

classified into 2-level factorial design, 2-level split-plot, Plackett-Burman design and 

general full factorial design. The present work uses the general full factorial design. 

In analysing the effect of defective TRBs on vibration responses, General 

multifactorial design has been used to identify the behaviour of the rotor bearing 

system against different types of faults fabricated in TRBs with a number of replicates 

one. A total of 64 trials were conducted using a full factorial analysis of three factors, 

namely speed (A), load (B), and defect (C). Experiments are conducted using healthy 

and defective bearings at four input parameter levels. The vibration signatures are 

acquired in NDE at a sampling rate of 25.6 kHz and 60 k data points are collected for 

all cases, and each experiment is repeated three times to derive the average value. 

Model analysis and validation

Is model 
fit and 

significa
nt?

Performing ANOVA for fitness of the 
regression model

Development of Mathematical model using 
ANOVA

Feature extraction (MATLAB statistical 
tool)

Performing experiment and recording 
response

Design of experiments using multilevel full 
factorial

Test rig

Vibration signal

ICP 

accelerometer

Sound level meter

Noise signal, Leq

OROS analyser 

Laptop

No

Input parameters speed, 

load and fault

RMS, Leq, Kurtosis and 

skewness
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During the removal and installation of a bearing, precautions are taken. Table 6.1 

outlines the parameters and their levels in uncoded form. RMS, Leq and Kurtosis are 

considered as response parameters. 

Root Mean Square (RMS): RMS measures the overall energy content of the vibration 

signal, which is useful for determining the bearing's general condition and health. 

Higher RMS values may indicate increasing vibration levels frequently linked to 

bearing failures. RMS can be determined from time domain data using equation 6.2 as 

[173]: 

                                              𝑌𝑟𝑚𝑠 =  √
1

𝑁
[ ∑ (𝑦𝑖)

2] 𝑁
𝑖=1    (6.2) 

where y represents the actual time signal, N is the number of samples, and i is the 

sample index. 

Leq (Equivalent Continuous Sound Level): Leq measures the steady sound level 

over a given duration with the same energy as the varying sound levels. Leq 

measures acoustic energy over time, providing information about noise characteristics 

and their impact on bearing performance. Leq is measured directly from SLM and it 

can also be determined using equation 6.3 as [174]: 

𝐿𝑒𝑞 = 10𝑙𝑜𝑔10(
1

𝑇
∫ (

𝑃𝑡

𝑃𝑜
)2𝑇

0
𝑑𝑡) (6.3) 

where T is total monitoring time, P is the sound pressure or acoustic, and Po is the 

reference pressure level 2×10-5 Pa. 

Kurtosis: Kurtosis is a statistical indicator that indicates whether a signal's distribution 

is peaked or flat. Kurtosis is used in vibration analysis to detect impulsive occurrences 

or variations from normal behaviour that may indicate bearing failures or defects. High 

kurtosis values may suggest the presence of impulsive events, which are common in 

bearing defects like spalls or cracks. Kurtosis can be determined from time domain 

data using Equation 6.4 as [84]: 

                                𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
𝑀4

𝑀2
2 =  

1

𝑁
∑ [𝑥(𝑛)−𝑥̃]4𝑁

1

[
1

𝑁
∑ [𝑥(𝑛)−𝑥̃]2]𝑁

1

2  = 
1

𝑁
∑ [𝑥(𝑛)−𝑥̃]4𝑁

1

𝜎4   
(6.4) 
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Where M4 is the fourth-order statistic moment, M2 is the second-order statistic 

moment, x(n) is the signal's amplitude for the n samples, and x is the mean value of the 

amplitudes. 

RMS and Leq assess overall vibration levels, while kurtosis provides extra information 

about the nature of the vibration signal, which is useful for diagnosing early-stage 

defects. The combination of RMS, Leq, and kurtosis enables a comprehensive and 

complex study of the vibration signals. Each metric provides distinct information that, 

when combined, creates a comprehensive picture of the bearing's condition. 

 

Table 6.1 Input parameters and levels for experimental design 

Input parameters 
Speed 

(RPM) 

Load 

(N) 
Defect type 

Symbols A B C 

L1 1000 0 Healthy 

L2 1600 20 (2kg) OR 

L3 2200 30 (3kg) IR 

L4 2800 50 (5kg) Roller 

 

During operation, bearings with local defects generate high-frequency vibration 

amplitudes modulated by pulse force [175]. As the vibration signal comprises data 

regarding the periodic impulse and intensity of each impulse, the defect fault 

characteristic factors that are derived from the signal must accurately represent the 

fault pattern and operational condition. Signals are processed utilising MATLAB's 

available tools. 

Using full factorial, models are derived from data collected by an ICP accelerometer 

along the NDE. F-value and Analysis of variance (ANOVA) analysis are conducted to 

determine whether the obtained models are productive or not. The design matrix of 

RMS, Leq and kurtosis for healthy and defective bearings is shown in Table 6.2. The 

table comprises the input parameters (speed, load, and defect type) and the 

corresponding output responses (RMS, Leq, and Kurtosis). The energy of the vibration 

signal can be enhanced by increasing the speed, which facilitates the identification of 
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defects. Energy in the vibration signal can also be increased by loading, which can 

potentially affect the wear and tear on the bearings, thereby influencing defect 

detection. Distinct vibration patterns can be generated by various forms of defects 

(Outer Race, Inner Race, Roller), which can be captured and analyzed using RMS, 

Leq, and Kurtosis. The results are investigated using ANOVA, and the obtained values 

are optimised using Minitab software. 

 

Table 6.2 Experimental design matrix 

Run 

Input parameters 

 

Output response 

Speed (A) 

(RPM) 

Load 

(B) (N) 

Defect 

(C) 
RMS (m/s2) 

Leq 

(dB) 
Kurtosis 

1 2200 0 Healthy  16.513 85 1.101 

2 2200 0 OR  179.714 86 6.535 

3 2800 0 OR  191.967 85 7.134 

4 1000 30 IR  4.823 87 3.451 

5 2200 50 OR  1.132 86 3.126 

6 1600 50 Roller  10.694 85 3.124 

7 1600 20 IR  41.629 86 6.526 

8 1000 30 Healthy  7.043 85 1.969 

9 1600 0 IR  12.103 86 3.589 

10 2200 20 IR  43.640 85 3.068 

11 1600 20 Healthy  17.371 85 1.579 

12 1600 30 IR  18.141 88 7.212 

13 2200 30 Healthy  18.273 87 1.368 

14 1600 0 Healthy  7.492 84 1.699 

15 2800 50 OR  1.132 87 3.173 

16 1600 30 OR  20.883 87 3.594 

17 1000 0 Healthy  4.124 85 1.991 

18 2800 30 OR  66.181 88 3.391 

19 2200 20 OR  21.925 86 3.198 

20 2800 30 Roller  47.697 88 3.867 

21 2200 30 Roller  22.341 88 5.335 

22 1600 0 Roller  27.924 87 3.709 

23 1000 20 Roller  5.919 85 6.437 

24 1000 50 OR  1.134 85 3.503 

25 2800 20 OR  46.712 86 9.669 

26 2200 30 IR  45.248 88 20.243 
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27 2800 20 Healthy  22.491 86 1.158 

28 2800 50 Roller  22.020 86 3.462 

29 1600 50 OR  1.134 86 3.593 

30 1600 50 IR  10.838 84 3.821 

31 2200 0 IR  19.780 87 4.251 

32 2800 50 Healthy  23.718 85 2.107 

33 1000 20 IR  5.582 85 4.826 

34 2200 50 Healthy  13.842 86 0.688 

35 1000 20 OR  7.295 86 5.523 

36 1600 30 Roller  19.131 87 7.959 

37 1000 50 Healthy  3.755 83 1.648 

38 1000 50 IR  4.736 83 3.875 

39 1600 30 Healthy  21.318 87 1.763 

40 1000 20 Healthy  4.838 86 2.556 

41 1000 0 IR  8.234 86 3.122 

42 1600 20 Roller  15.092 86 14.827 

43 2800 30 Healthy  38.772 87 1.253 

44 2800 20 IR  26.745 86 3.490 

45 1000 0 OR  8.195 85 4.175 

46 2800 50 IR  17.303 85 3.253 

47 1600 0 OR  100.692 85 5.187 

48 2200 20 Healthy  16.733 86 2.158 

49 1000 0 Roller  5.991 86 3.918 

50 2200 30 OR  68.011 87 3.066 

51 2200 50 IR  13.716 84 3.820 

52 2800 0 IR  20.027 86 5.745 

53 2800 0 Healthy  20.819 86 0.998 

54 1000 50 Roller  5.876 85 3.944 

55 2800 0 Roller  20.749 88 5.489 

56 2200 20 Roller  17.469 87 3.821 

57 2800 30 IR  22.755 87 3.024 

58 1000 30 OR  9.132 86 3.726 

59 1600 20 OR  13.687 87 3.060 

60 2200 50 Roller  14.601 84 3.620 

61 1000 30 Roller  8.755 86 3.394 

62 2200 0 Roller  18.713 87 7.241 

63 2800 20 Roller  27.826 87 3.301 

64 1600 50 Healthy  9.058 85 1.064 
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Table 6.3 Regression values of response parameters 

Response 
Standard 

deviation 
R2 

Adjusted 

R2 
PRESS 

Predicted 

R2 

RMS 0.0472410 97.46% 94.07% 0.3385 85.71% 

Leq 0.667247 87.03% 69.73% 67.5413 27.10% 

Kurtosis 0.105367 86.10% 67.57% 1.6842 21.92% 

 

6.3 Results and Discussion 

A mathematical model has been established to analyse the experimental data and 

response parameters via multilevel full factorial design. The ANOVA statistical test is 

employed to identify the significant terms in the model with a confidence level of 95%. 

The regression study of response parameters for different bearing circumstances with 

standard deviation, adjusted R2, and predicted R2 values has been depicted in Table 

6.3. 

This study incorporates a multilayer full factorial design. There are 63 degrees of 

freedom (DOF) in 64 experimental combination runs. Each main effect (ME) has three 

degrees of freedom (DOF). As a result, 9 DOF out of 63 are used to assess A, B and 

C. Each interaction effect (IE) has three degrees of freedom (DOF). An additional 27 

DOF are now accessible for examining the statistical significance of variables. These 

are employed in ANOVA. In the case of small effects, it may be necessary to obtain 

an acceptable degree of freedom, sample size, and sensitivity. The accuracy and power 

of the experiment will be enhanced by increasing the number of replications, which 

will increase the number of degrees of freedom for the error term. Minitab, a statistical 

software, is utilised to examine the response parameter RMS obtained from 

experiments. An analysis of variance (ANOVA) is performed to compute the mean 

square and sum square of second-order polynomials. The significance of the 

polynomials is evaluated by assessing the "prob>F" value with a 95% confidence 

interval (CI) at a 5% level of significance. The relevant polynomials are used to 

generate the response surface and develop the second-order regression equation. 
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6.3.1 Effect of Process Parameters on RMS 

To determine the significance of the F probability value for various bearing conditions, 

an ANOVA for the quadratic multi-response model is performed; the resulting residual 

data for RMS are presented in Table 6.4. The F-probability value of the model, which 

is less than 0.05, is satisfactory for bearing conditions. As a result, it is advised that 

the model is regarded as significant. Separate models are built for both healthy and 

defective bearings (OR, IR and roller faults) to determine the impact of input 

parameters on response variables. The regression model is adjusted to account for the 

adequacy of the response data. The Box-Cox plot is useful for determining the best 

power transformation. For the best model fit, the λ=0 transformation is used in this 

model at the 95% confidence interval. The regression equation in the uncoded factor 

is as follows: 

Fault type  
  

Healthy: ln(RMS) = 0.548 + 0.001026 A + 0.125 B - 0.000058 A*B        (6.5) 

OR: ln(RMS) = 2.517 + 0.001112 A - 0.670 B - 0.000058 A*B         (6.6) 

IR: ln(RMS) = 1.242 + 0.000879 A + 0.044 B - 0.000058 A*B        (6.7) 

Roller: ln(RMS) = 1.169 + 0.000880 A + 0.068 B - 0.000058 A*B        (6.8) 

The results of the regression analysis conducted on the root mean square (RMS) values 

of the vibration data for various bearing conditions demonstrate that the impact of 

speed, load, and fault type on the dependent variable is statistically significant. Table 

6.4 also reveals that the interaction effect between the load and fault only has 

significant contributions, as evidenced by the p-value being less than 0.05. The model's 

F-value of 28.74 indicates its relevance, with a 0.05% chance. Significant model terms 

with P-values less than 0.05 are specified in the ANOVA table. A, B, C and BC model 

terms are significant in this scenario. However, values greater than 0.05 reveal 

insignificant model terms. With insignificant terms, the reduction of the model 

improves the present model. Table 6.3 displays the model's fit statistics. R2 is 97.46% 

indicating that the data is well fitted to the regression model. The predicted R2 implies 

that healthy data is likely to explain 85.71% of the variation in the complete model. 

PRESS (prediction error sum of squares) is a cross-validation statistic that measures 
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statistical model prediction power. This is prevalent in regression analysis. Lower 

PRESS levels indicate higher predicting performance. The PRESS statistic measures 

how well the model predicts new data points that are not used in the model training. 

The PRESS value of 0.3385 shows that the model is likely to be an accurate prediction. 

Table 6.4 Model significance of RMS using ANOVA 

Source DoF 
Sum of 

squares 

% 

Contribution 

Adj. 

Sum of 

squares 

Mean of 

squares 

F 

value 

p 

value 

Model 36 2.30907 97.46% 2.30907 0.064141 28.74 0.000 

Linear 9 1.17519 49.60% 1.17519 0.130577 58.51 0.000 

Speed (A) 3 0.43294 18.27% 0.43294 0.144313 64.66 0.000 

Load (B) 3 0.59833 25.25% 0.59833 0.199444 89.37 0.000 

Fault (C) 3 0.14392 6.07% 0.14392 0.047974 21.50 0.000 

2-Way 

Interactions 
27 1.13388 47.86% 1.13388 0.041995 18.82 0.000 

Speed*Load 9 0.00752 0.32% 0.00752 0.000836 0.37 0.937 

Speed*Fault 9 0.01534 0.65% 0.01534 0.001704 0.76 0.650 

Load*Fault 9 1.11101 46.89% 1.11101 0.123446 55.31 0.000 

Error 27 0.06026 2.54% 0.06026 0.002232   

Total 63 2.36932 100.00%     

 

The main effect plot shown in Fig. 6.2 depicts the effect of several factors on RMS, 

such as speed, load, and fault type. The RMS value, which measures the overall 

vibration level, rises with the speed of rotation. This is expected since higher speeds 

cause more vibrations in mechanical systems. The trend indicates a substantial positive 

link between speed and RMS. The RMS value varies with load. Raising the load 

reduces the RMS value, but subsequent increases result in greater RMS values, 

followed by a decrease at the highest load level. This nonlinear relationship suggests 
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that the effect of load on vibration is more complex and may be influenced by other 

factors, such as equipment's inherent frequency aligning with the stimulation 

frequency or structural vibration added, which causes high vibration and reduces 

resonance vibration after passing [151]. Different fault kinds have distinct effects on 

the RMS value. Bearings with outer race defects have the highest RMS values, 

suggesting severe vibrations. Inner race faults produce lower RMS values than outer 

race faults but greater than healthy and roller situations. Bearings with roller faults 

have the lowest RMS values among all fault states, indicating less severe vibrations. 

This emphasizes the role of fault type in determining vibration characteristics. 

The minimum RMS is achieved at level 1 for speed, level 4 for load and level 1 for 

fault. A1B4C1 is the ideal value across all parameters to minimise RMS. At A1B4C1, 

RMS=3.755 m/s2. Equations (6.5-6.8), which are used to create a model for forecasting 

RMS, performed well since the points on the normal probability graph in Fig. 6.3 

displayed an approximate linear pattern with a normal distribution and only slight 

disintegration at the extremities, which implies that there may be minor deviations 

from the norm. Figure 6.3 also indicates that the RVFV (Residual vs Fit value) graph 

has a random pattern, indicating that residuals have a nearly constant variance or the 

data points appear to be evenly distributed at the top and bottom of the line. The RVOP 

(Residual Vs order plot) demonstrates that the collected data can be used to identify a 

non-random error. The RVOP also shows that residuals bounce about the zero line at 

random. This behaviour often indicates the absence of serial correlation. The graphs 

reveal a random distribution with no visible trend, indicating that the model fits and 

meets the regression assumptions. Furthermore, because no outliers are discovered, 

the frequency versus residual plot demonstrates that the data change more finely. The 

histogram further emphasises the assumption of normality by displaying a bell-shaped 

curve. Furthermore, the verses order plot is valuable for detecting patterns over time, 

such as shifts or drifts. The residuals are arbitrarily distributed around zero without 

any discernible pattern, suggesting that there is no significant time-based trend or 

autocorrelation in the residuals. These findings indicate that the regression model 

adequately accommodates the data and that the model assumptions are satisfactorily 

fulfilled. Nevertheless, it is important to consider minor deviations from normality. 
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Figure 6.2 Effect of process parameters on RMS 

 

Figure 6.3 Residual plot for RMS 
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Figure 6.4 Pareto chart for RMS 

In Fig. 6.4, the absolute values of the standardised effects are displayed on the Pareto 

chart from the largest to the smallest. A reference line is added to the chart to illustrate 

statistically significant effects. The significance level (expressed by alpha) determines 

the statistical significance reference line. The bars representing factors A, B, BC, and 

C cross the reference line at the 2.05-point mark in this Pareto chart. With the existing 

model terms, there is a 0.05 % chance that these factors are significant. Analysis of 

variance results for RMS also suggests that the A, B, C and BC are significant. 

 

6.3.2 Effect of Process Parameters on Leq 

An ANOVA for the quadratic multi-response model is done to establish the 

significance of the F probability value for various bearing states. The resulting residual 

data for Leq are provided in Table 6.5. The model's F-probability value, which is less 

than 0.05, is adequate for bearing situations and considered significant. To examine 

the influence of input parameters on response variables, distinct models are 

constructed for both healthy and faulty bearings. Adjustments are made to the 

regression model and the Box-Cox plot can be used to find the optimal power 
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transformation. The λ=8 transformation is applied in this model at 95 % CI for the best 

model fit. The uncoded factor's regression equation is as follows: 

Fault type   

Healthy: (Leqλ-1)/(λ×gλ-1) = 9.49+0.000474 A -0.183 B +0.000092 A*B      (6.9) 

OR: (Leqλ-1)/(λ×gλ-1) = 9.98+0.000292 A +0.000 B +0.000092 A*B      (6.10) 

IR: (Leqλ-1)/(λ×gλ-1) = 11.17+0.000203 A -0.533 B +0.000092 A*B      (6.11) 

Roller: (Leqλ-1)/(λ×gλ-1) = 10.71+0.000743 A -0.521 B +0.000092 A*B     (6.12) 

(λ = 8, g = 85.9288 is the geometric mean of Leq) 

 

Table 6.5 Model significance of Leq using ANOVA 

Source DoF  
Sum of 

squares  

% 

Contribution 

Adj. 

Sum of 

squares 

Mean 

of 

squares  

F 

value 

p 

value  

Model 36 80.630 87.03% 80.630 2.2397 5.03 0.000 

  Linear 9 59.220 63.92% 59.220 6.5800 14.78 0.000 

    Speed (A) 3 13.439 14.51% 13.439 4.4797 10.06 0.000 

    Load (B) 3 38.586 41.65% 38.586 12.8621 28.89 0.000 

    Fault (C) 3 7.195 7.77% 7.195 2.3983 5.39 0.005 

  2-Way 

Interactions 
27 21.409 23.11% 21.409 0.7929 1.78 0.070 

    Speed*Load 9 3.300 3.56% 3.300 0.3667 0.82 0.600 

    Speed*Fault 9 2.770 2.99% 2.770 0.3078 0.69 0.711 

    Load*Fault 9 15.339 16.56% 15.339 1.7043 3.83 0.003 

Error 27 12.021 12.97% 12.021 0.4452     

Total 63 92.650 100.00%         
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The regression analysis results on the Leq values for various bearing circumstances 

show that the influence of speed, load, and fault type on the dependent variable is 

statistically significant. Table 6.5 further shows that the interaction effect between the 

load and the fault has only effects, as demonstrated by a p-value less than 0.05. With 

a 0.05% chance, the model's F-value of 5.03 confirms its relevance. The ANOVA table 

includes important model terms with p-values less than 0.05. The model terms A, B, 

C, and BC are important in this case. The reduction of the model with insignificant 

terms enhances the current model. The model's fit statistics are shown in Table 6.3, R2 

of 87.03% indicates that the data fits the regression model effectively. According to 

the predicted R2, new data will likely explain 27.10% of the variation in the overall 

model. PRESS statistics indicate how well the model predicts new data. The PRESS 

value of 67.5413 indicates that the model will likely be correct. Figure 6.5 

demonstrates the effect of various parameters on Leq, including speed, load, and fault 

type. The Leq is proportional to speed and rises as it increases. Leq, on the other hand, 

rises with load until it reaches a peak and then falls [151]. This is due to the equipment's 

inherent frequency matching the excitation frequency, resulting in loud noise and the 

resonating noise becoming less after passing. Roller fault has the greatest impact on 

Leq value, followed by OR, IR and healthy bearing. 

At level 1 for speed, level 4 for load, and level 1 for fault, the minimum Leq is reached. 

A1B4C1 is the best number for minimising Leq across all parameters, i.e.  Leq = 83 

dB at A1B4C1. The model for predicting RMS is effectively constructed using 

equations (6.9–6.12), as evidenced by the data points depicted on the normal 

probability graph in Fig. 6.6, which showed a mostly straight pattern with a normal 

distribution and only a little disintegration. The RVFV graph in Fig. 6.6 also shows a 

random pattern and is evenly distributed at the top and bottom of the line, meaning 

that residuals have a constant variance. The RVOP indicates that information can be 

utilised to identify a non-random error. The plots also show a random distribution with 

no noticeable trend, which indicates that the model fits and meets the regression 

assumptions. In addition, the frequency versus residual plot shows that the data change 

more finely because no outliers are found. 
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Figure 6.5 Effect of process parameter on Leq 

 

 

 

Figure 6.6 Residual plot for Leq 
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Figure 6.7 Pareto chart for Leq 

 

The Pareto chart in Fig. 6.7 shows which factors are statistically important. It shows 

the absolute magnitude of the impacts, allowing for the identification of significant 

effects. However, it does not provide information on the direction of these effects, 

whether they result in an increase or decrease in the response. The significance level, 

which is written as alpha, sets the statistical significance reference line. The bars in 

this Pareto chart show that factors B, A, BC, and C all cross the 2.052-point line. Based 

on the analysis of the variance of Leq, the same factors A, B, C, and BC are significant. 

6.3.3 Effect of Process Parameters on Kurtosis 

The residual data for kurtosis obtained by conducting an analysis of variance for the 

quadratic multi-response model to determine the significance of the F probability value 

for different bearing conditions are presented in Table 6.6. The model's F-probability 

value, which is less than 0.05, is adequate for bearing conditions. Consequently, it is 

advisable to regard the model as statistically significant. To examine the influence of 

input parameters on response variables, distinct models for healthy and defective 
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bearings are developed. The regression model is modified, and the plot is utilised to 

determine the most effective power transformation. The λ= -0.5 transformation is 

implemented at the 95% CI to achieve the most optimal model fit in this model. The 

following is the regression equation for the uncoded factor: 

Fault type   

Healthy: -Kurtosis-0.5 = -0.6186-0.000097 A - 0.0073 B - 0.000002 A*B         (6.13) 

OR: -Kurtosis-0.5 = -0.4784+0.000026 A - 0.0218 B - 0.000002 A*B         (6.14) 

IR: -Kurtosis-0.5 = -0.4883+0.000005 A + 0.0027 B - 0.000002 A*B         (6.15) 

Roller: -Kurtosis-0.5 = -0.4111-0.000010 A - 0.0114 B - 0.000002 A*B         (6.16) 
 

Table 6.6 Model significance of kurtosis using ANOVA 

Source DoF  
Sum of 

squares  

% 

Contribution 

Adj. 

Sum of 

squares 

Mean of 

squares  

F 

value 

p 

value  

Model 36 1.85717 86.10% 1.85717 0.051588 4.65 0.000 

  Linear 9 1.57023 72.80% 1.57023 0.174470 15.72 0.000 

    Speed (A) 3 0.02149 1.00% 0.02149 0.007163 0.65 0.593 

    Load (B) 3 0.07679 3.56% 0.07679 0.025598 2.31 0.099 

    Fault (C) 3 1.47195 68.24% 1.47195 0.490650 44.19 0.000 

  2-Way 

Interactions 
27 0.28694 13.30% 0.28694 0.010627 0.96 0.545 

    Speed*Load 9 0.09469 4.39% 0.09469 0.010521 0.95 0.502 

    Speed*Fault 9 0.13095 6.07% 0.13095 0.014550 1.31 0.277 

    Load*Fault 9 0.06130 2.84% 0.06130 0.006811 0.61 0.775 

Error 27 0.29976 13.90% 0.29976 0.011102     

Total 63 2.15693 100.00%         
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A regression analysis conducted on the kurtosis values under different bearing 

conditions reveals that only defect type has a statistically significant effect on the 

dependent variable. A p-value below 0.05 further demonstrates in Table 6.6 that the 

fault has only effects. With a 0.05% probability, the relevance of the model is 

confirmed by its F-value of 4.65. The present model is improved through the 

elimination of insignificant variables. Table 6.3 presents the statistics of the model's 

fit. The R2 value of 86.10% suggests that the data fits the regression model well. The 

predicted R2 indicates that including new data is probable to account for 21.92% of the 

variability observed in the overall model. PRESS statistics indicate the model's ability 

to forecast new data. Based on the PRESS value of 1.6842, it can be concluded that 

the model is probably accurate. 

Figure 6.8 demonstrates the effect of various parameters on kurtosis, including speed, 

load, and fault type. The influence of speed and load on kurtosis is less at higher speeds 

[84] the p-value greater than 0.05 for speed, load and all interaction effects are 

insignificant. The minimal kurtosis is reached at level 4 for speed, level 4 for load, and 

level 1 for fault. A4B4C1 is the optimal value for kurtosis when considering a variety 

of factors. The kurtosis value is 0.688 at A4B4C1. The points on the normal 

probability graph in Fig. 6.9 show an approximate linear pattern with a normal 

distribution with minor disintegration. Equations (6.13-6.16), which are used to 

develop a model for forecasting kurtosis, worked well. Additionally, Fig. 6.9 shows a 

random pattern on the RVFV graph, which suggests that the variance of residuals is 

almost constant. A non-random error can be found using the gathered data, as shown 

by the RVOP. Moreover, the frequency versus residual plot shows that the data vary 

more finely because no outliers are found. The Pareto chart in Fig. 6.10 shows the 

standardised absolute values ranked from largest to smallest. The bars in this Pareto 

chart show only factor C crosses the 2.05 reference line. There is a 0.05 chance that 

this factor only matters with the present model terms. The results of the kurtosis value 

in the analysis of variance also indicate that only factor C, i.e., fault condition, affect 

the kurtosis value. 
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Figure 6.8 Effect of process parameters in kurtosis 

 

Figure 6.9 Residual plot for kurtosis 
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Figure 6.10 Pareto chart for kurtosis 

 

6.3.4 Response Surface Plot 

A response surface plot is a three-dimensional visual representation depicting the 

relationship between responses and process factors. The interaction effect between 

the speed (RPM) and load (N) on three-dimensional surface plots can enhance the 

comprehension and visualisation of the fundamental concept. Response surface plots 

are more advantageous than contour plots when analysing vibration levels, specifically 

the RMS (m/s2) values. Furthermore, the level of noise (Leq in dB) and kurtosis are 

also observed in non-drive ends. 

The 3-D surface plots of the interaction between speed and load on the RMS vibration 

response for healthy, OR, IR, and roller defects are depicted in Fig. 6.11. The response 

surface analysis of the bearing illustrates the impact of speed and load condition on 

the bearing over the speed range of 1000 RPM to 2800 RPM, as shown in Fig. 6.11. 

The vibration amplitude increases at high speed significantly for all bearing condition. 

Under loading conditions of 28 N at 2600 RPM, the greatest vibration amplitude of 25 

m/s2 is observed for a healthy bearing. When subjected to loads ranging from no load 
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to 25 N, the vibration response of a bearing exhibits only a slight variation as the speed 

increases. However, the vibration response drops as the load increases from 30 N to 

50 N. Without faults, vibration mainly arises from surface roughness, manufacturing 

waviness, and imbalance. The effect of an OR defect in bearing components on the 

vibration response of the system under similar speed and loading conditions is 

illustrated in Fig. 6.11(b). When load is set to 30 N at 2200 RPM, the maximum 

amplitude of vibration is observed to be 102 m/s2. The OR defect influences the RMS 

value of acceleration more significantly, followed by IR, roller and healthy bearing. 

The outer-race defect is fixed in the loaded arc, so every roller produces a strong, 

repeatable impact. Higher load increases impact force, while higher speed increases 

frequency and intensity of these impacts. The inner-race defect rotates with the shaft, 

meaning it only enters the load zone part of the time. Similar interaction effects are 

observed in Figs. 6.11(c)-(d) for IR and roller fault as of healthy bearing but with 

different magnitude. 

The interaction between speed and load on the noise response, Leq for healthy, OR, 

IR, and roller defects are depicted in Fig. 6.12. There is a trend of increased sound in 

response to speed. However, the response surface behaviour with increasing loading 

situations is substantially higher than with increasing speed. This indicates that given 

a constant speed state, the noise level declines as the load on the bearing rises. The 

interaction effect between speed and load for all bearing conditions has a similar effect 

on Leq as on RMS value vibration. The maximum amplitude of noise i.e., 88 dB, is 

observed at 30 N and 2600 RPM for roller defect and for OR, which is 87.5 dB at 30 

N and 2400 RPM, followed by IR and healthy bearing. The minimum noise is noticed 

at low speed and high load for all bearing conditions. 

Figure 6.13 shows the surface plot of kurtosis for healthy, OR, IR and roller defect 

conditions. It is observed that the kurtosis value always falls below 3 for healthy 

bearing, and for defect conditions, it is greater than 3. It is also observed that the 

kurtosis value is mostly affected by roller fault followed by OR, IR and healthy 

bearing. The minimum kurtosis is noticed at high speed and high load for healthy 

bearings. Conversely, minimal kurtosis is observed at low speed and high load for OR 
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defects. Similarly, minimal kurtosis is observed at low speed and low load for IR 

defects. Lastly, minimal kurtosis is observed at high speed and high load for roller 

defects. 

 

 
 

  

Figure 6.11 Surface plot of interaction for RMS 

 

  

(a) (b) 

(c) (d) 

(a) 
(b) 
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Figure 6.12 Surface plot of interaction for Leq 

 

 
 

  

Figure 6.13 Surface plot of interaction for kurtosis 

 

6.4 Summary of the Chapter 

This chapter provides a comprehensive experimental analysis of the vibration 

characteristics of tapered roller bearings (TRBs) across various fault conditions. Faults 

of the same dimensions were introduced independently on the outer race (OR), inner 

race (IR), and roller elements, as well as compound faults that combined various defect 

types. The aim was to assess the distinct impact of each fault type on the vibration 

response of the bearing system. 

(a) (b) 

(c) 

(c) 

(d) 

(d) 
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The experimental configuration ensured stable loading and rotational velocity, with 

vibration signals recorded through accelerometers. A full factorial design of 

experiments was utilised to quantitatively evaluate the influence of fault types and 

operating parameters. This statistical method facilitated the detection of notable main 

effects and interaction effects of fault type, load, and speed on critical response 

parameters like RMS vibration, Leq and kurtosis. The comprehensive factorial 

analysis yielded significant insights into the interplay between fault severity and 

operational parameters on bearing behaviour, establishing a solid foundation for 

condition monitoring and fault diagnosis in TRBs. The following conclusions can be 

drawn from this study. 

 

• The utilisation of the full factorial method, incorporating the Box-Cox 

transformation, has demonstrated its efficacy as a successful approach for 

evaluating the influential elements associated with bearing vibrations. 

• The ANOVA results indicate that the interaction between load and fault is the 

most significant factor influencing vibration RMS, accounting for 46.89%. 

This is followed by the linear effects of load at 25.25%, speed at 18.27%, and 

fault at 6.07%. 

• The analysis of variance indicates that the interaction of load is the most 

significant factor influencing noise (Leq), accounting for 41.65% of the 

contribution. 

• The elevation in speed leads to a corresponding rise in the RMS value of 

vibration.  The RMS value is most influenced by OR faults, followed by IR, 

roller, and healthy bearings. 

• The full factorial method provides empirical evidence supporting the positive 

correlation between speed and the root mean square (RMS) and equivalent 

sound level (Leq) of the TRB. It has been observed that the root mean square 

(RMS) and equivalent sound level (Leq) exhibit an initial increase when the 

load is increased, followed by a subsequent reduction. 

• The response of RMS and Leq shows similar features but at different 

magnitudes. 
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• A minor variation in the kurtosis value is observed at lower speeds; however, 

at elevated speeds, the kurtosis metric exhibits considerable stability. The 

sensitivity of kurtosis to load decreases as well. 

• In industrial settings, additional effort is necessary to achieve sound signal 

results. The initial step is to measure the background noise and verify the 

decibel level, followed by correction using a noise correction chart. 
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Chapter 7 Automated Fault Diagnosis for a Tapered Roller-

Bearing System using a Machine Learning Approach  

     

 

This chapter presents an automated framework designed for the detection and 

classification of faults in tapered roller bearing (TRB) systems through the application 

of machine learning techniques.  Leveraging experimental data gathered from diverse 

fault conditions, the framework combines signal processing techniques with 

supervised learning algorithms to facilitate automated condition monitoring.  The 

methodology centres on extracting features from vibration and acoustic signals, 

followed by the training and validation of models.  The strategy focusses on improving 

the precision of fault detection and facilitating predictive maintenance through the 

utilisation of data-driven insights.  This chapter outlines the development process, 

covering data preprocessing through to model evaluation, thereby creating a strong 

pipeline for intelligent TRB health assessment. 

7.1 Introduction 

In recent decades, the identification of bearing defects has been a prominent research 

focus [176]. The majority of roller bearing faults are located on the outer race, inner 

race, or rolling elements, as indicated by previous research [177]. Many methods are 

employed for data collection to identify the most probable faults that may contribute 

to failure, such as vibration monitoring, thermal imaging, and oil particle analysis. The 

extensive study and use of vibration signal analysis as a condition monitoring approach 

for roller bearings is justified by its effectiveness, cost-effectiveness, and convenience 

[178]. Various strategies have been developed for feature extraction, including time-

domain analysis, frequency-domain analysis, and time-frequency domain analysis. 

Vibration analysis is a highly effective method for closely checking the state of 

bearings. This phenomenon can be attributed to a sequence of periodic and consecutive 

impulses in machine vibration when a ball is passed through a damaged race. In 

addition, vibration-based methods offer advantages such as low equipment expenses, 

simplicity of setup, and the ability to generate detailed data on the affected region, 
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resulting in more precise outcomes. Comprehending vibration sources and vibration 

characteristics is crucial for identifying defects. Despite the presence of geometrically 

flawless bearings, a certain degree of vibration is inevitable, commonly called variable 

compliance. Vibration is caused by surface roughness, which arises from geometrical 

imperfections resulting from the manufacturing process. The extraction of fault 

features is a crucial stage in defect diagnosis. Signal analysis can be used to check the 

health of the bearing by analysing the vibration signals that are generated. 

Classification of a bearing defect can be achieved by assessing the FFT data and 

analysing the components at the characteristic fault frequencies. These frequencies are 

clearly defined and are subject to the influence of factors such as the rotational speed, 

the bearing's design, and the specific location of a defect inside the bearing [8]. 

Electrical machinery failures can arise from a range of circumstances, which can be 

categorised as either internal or external based on the origin of the issue. Internal 

source failures occur due to manufacturing defects and the degradation of materials, 

whereas external source failures arise from exposure to the working environment, 

power supply, and load. The categorization of internal and exterior source failures into 

distinct fault types, such as rotor strikes, dielectric loss, eccentricity and inappropriate 

installation, can be achieved by using mechanical, electrical, and environmental 

subcategories [179]. 

Developing a computational framework for a tapered roller bearing (TRB) system 

using a machine learning (ML) approach is vital in improving fault diagnosis and 

predictive maintenance strategies. We have focused on enhancing machine learning 

classifier performance in bearing fault diagnosis through feature-based ranking. This 

method ensures that the most relevant features are selected, improving the ML models' 

classification accuracy and robustness. The study involves extracting key features 

from vibration signals of both healthy and faulty TRBs. Time-domain and frequency-

domain features are computed to capture critical fault signatures. However, not all 

extracted features contribute equally to the classification process. To address this, 

feature selection techniques such as mutual information, correlation analysis, and 

ranking algorithms are employed to identify the most significant features that enhance 

model performance while reducing computational complexity. 
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Once the optimal features are selected, various ML classifiers are trained and evaluated 

to classify different bearing conditions effectively. Integrating feature-based ranking 

into the computational framework significantly improves the accuracy, precision, and 

overall reliability of fault detection. This approach optimises the ML model’s 

efficiency and contributes to real-time condition monitoring applications, ensuring 

early detection of TRB faults and enhancing the reliability of rotating machinery 

systems. 

One-way ANOVA and Kruskal-Wallis test feature ranking algorithms have been used 

in several applications, including text classification, cancer diagnosis, e-mail spam 

classification, microarray data classification, face recognition, and tumour 

classification [180]. While there are limited studies on using One-way ANOVA and 

the Kruskal-Wallis technique for bearing fault diagnosis. One-way ANOVA offers the 

advantage of not requiring an equal number of observations in each group. The design 

arrangement and statistical analysis are straightforward. The Kruskal-Wallis test 

differs from other parametric tests because it does not assume normality or variance 

homogeneity. This work examines the impact of two ranking strategies on bearing 

defect classification using distinct ML classifiers. Classifier performance is measured 

based on classification accuracy, training time, and prediction speed. The research is 

based on SKF30206 bearing data from a customised rotor-bearing test rig. Vibration 

datasets for healthy and damaged bearings with 20 fault classes are analysed. This 

study's results indicate that the feature ranking process, which assists in identifying 

certain features of signals in the time and frequency domains, significantly influences 

the effectiveness of machine learning classifiers. 

7.2 Machine Learning Approaches 

Machine learning techniques have greatly improved the field of fault identification and 

prognosis in bearing systems. These techniques allow for extracting significant feature 

from enormous amounts of data numerous sensors acquire. Smart defect diagnosis 

approaches often use feature identification to turn input patterns into small-

dimensional vectors for better fitting and evaluation [181, 182]. Intelligent fault 

recognition algorithms use feature vectors as input. In the fault recognition stage, data 
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from the feature space is translated to machine defects in the defect space. Decision 

Trees, a supervised learning approach, are widely used classification algorithms [183]. 

A Decision Tree consists of decision nodes, segment data, and leaf nodes, which 

generate output. Reference [184] describes utilising the Decision Tree technique to 

identify bearing defects based on time-domain information. 

The Support Vector Machine (SVM) is a strong and adaptable supervised learning 

technique that can be applied to classification and regression applications [185]. It is 

best suited for binary classification problems but may also be used for multi-class 

classification with approaches such as one-vs-one or one-vs-all. SVMs are well-known 

for their capacity to handle high-dimensional data and their success in situations where 

the number of dimensions exceeds the number of samples. The Support Vector 

Machine (SVM) technique aims to identify a hyperplane in an N-dimensional space 

(where N is the number of features) that effectively separates the data points into 

various classes. A hyperplane can be written as equation (7.1): 

                                                                    𝑤. 𝑥 − 𝑏 = 0              (7.1) 

Here, w is the weight vector, x is the input feature vector, and b is the bias term. 

For a given data point xi, the decision function can be written as equation (7.2): 

                                                                   𝑓(𝑥𝑖) = 𝑤. 𝑥𝑖 − 𝑏             (7.2) 

If f(xi) > 0, the data point is classified as one class (let's say positive class).  

If f(xi) < 0, it is classified as the other class (negative class). 

The margin can be defined in equation (7.3): 

                                                                      𝑀𝑎𝑟𝑔𝑖𝑛 =  
2

‖𝑤‖
            (7.3) 

Here, ‖𝑤‖ is the Euclidean norm of the weight vector w. 

The SVM aims to maximize the margin, which can be formulated as an optimization 

problem: 

𝑚𝑖𝑛𝑤,𝑏

1

2
‖𝑤‖2 

Subjected to: 

𝑦𝑖(𝑤 . 𝑥𝑖 − 𝑏) ≥ 1 , ∀i 



123 

 

 

Here, yi is the class label of the data point xi, which can be either +1 or -1. 

This problem can be transformed into a dual problem using Lagrange multipliers in 

equation (7.4): 

                                               𝑚𝑎𝑥∝ ∑ ∝𝑖−
1

2
∑ ∑ ∝𝑖∝𝑗 𝑦𝑖𝑦𝑗𝑥𝑖

𝑛
𝑗=1 . 𝑥𝑗

𝑛
𝑖=1

𝑛
𝑖=1            (7.4) 

Subject to 

∑ ∝𝑖 𝑦𝑗

𝑛

𝑖=1

= 0, ∝𝑖≥ 0, ∀𝑖 

Here, αi are the Lagrange multipliers. 

The data points corresponding to αi > 0 are called support vectors. These data points 

lie on the margin and are critical for defining the hyperplane. 

Kernel trick is a method that enables Support Vector Machines (SVM) to function in 

a higher-dimensional space without explicitly calculating the coordinates of the data 

in that region. Typical kernels consist of linear, polynomial and Gaussian/radial basis 

functions (Fine, Medium and Coarse Gaussian) in equation (7.5)-(7.7).  

Linear kernel 𝐾(𝑥𝑖, 𝑦𝑗) =  𝑥𝑖. 𝑦𝑗                 (7.5) 

Polynomial kernel 𝐾(𝑥𝑖, 𝑦𝑗) = (𝑥𝑖. 𝑦𝑗 + 1)𝑑, where d is degree.            (7.6) 

Radial basis function (RBF) kernel/Gaussian kernel  

                                        𝐾 (𝑥𝑖, 𝑦𝑗) = exp(−
‖𝑥𝑖−𝑦𝑗‖

2

2𝜎2
)              (7.7) 

Based on statistical learning frameworks, support vector machines (SVM) are among 

the most dependable prediction methods. Given a set of training examples, each 

designated as belonging to one of two categories, an SVM training algorithm generates 

a model that assigns new examples to one of the two categories, making it a non-

probabilistic binary linear classifier. 

The goal is to identify which class will get a new data point once some existing data 

points have been assigned to one of the two classes. In SVM, a data point is seen as a 

𝑝-dimensional vector (a list of 𝑝 numbers), and the question is whether such points can 
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be divided using a (𝑝 − 1)-dimensional hyperplane. A maximum-margin hyperplane is 

the hyperplane that maximises the distance between itself and the closest data points 

of distinct classes in a linear classification scenario, where data is separated by 

hyperplanes.  If this hyperplane exists, it is regarded as the optimal separating 

hyperplane and functions as a maximum-margin classifier. The optimal hyperplane 

can be determined by looking at the hyperplane that shows the largest margin, or 

separation, between the two classes. The classes are not divided by the hyperplane 𝐻1, 

as Fig. 7.1 illustrates. There is a small but significant advantage to the hyperplane 𝐻2. 

The hyperplane 𝐻3 divides them as much as feasible with maximum success. A study 

on SVMs for identifying bearing defects found that they outperformed neural networks 

by up to 20% [186]. Several studies have used SVM as a defect classifier [187, 188]. 

 

Figure 7.1 Two sets of data points are divided by distinct hyperplanes in SVM [189] 

 

7.3 Hyperparameter Tuning for Machine Learning Models 

A hyperparameter is a variable whose value controls an ML model's learning process. 

Hyperparameter optimization, sometimes referred to as hyperparameter tuning, is the 

process of determining an optimal collection of hyperparameters for a learning 

algorithm [190]. Hyperparameter tuning is an essential phase in developing machine 

learning models. Before the model is trained, hyperparameters are established to 

regulate the learning process. The model's performance can be substantially enhanced 
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by appropriately tuning these hyperparameters. Grid, random and Bayesian 

optimization are the three methods utilized for hyperparameter setting. 

The traditional approach to hyperparameter optimization has been grid search or 

parameter sweep, a thorough search of a manually selected subset of the 

hyperparameter space of a learning system. A performance metric, often determined 

via cross-validation on the training set [191] or assessment on a hold-out validation 

set, is required to direct a grid search algorithm. Machine learner's parameter space 

may include real-valued or unbounded value spaces, grid search may need to establish 

limits and discretise some parameters manually. 

Random search is used in random search instead of a comprehensive listing of every 

possible combination. This can be readily extended to continuous and mixed spaces, 

as well as previously discussed discrete environment. Grid search cannot match the 

performance of a machine learning method when just a small number of 

hyperparameters affect its result. In this case, the optimization problem is said to have 

low intrinsic dimensionality [192]. Random Search is embarrassingly parallel since it 

defines the distribution from which to sample and permits the inclusion of previous 

knowledge. Despite its simplicity, random search remains an essential benchmark for 

assessing the performance of novel hyperparameter optimization methods. 

For noisy black-box functions, a general optimization method is Bayesian 

optimization. The relationship between hyperparameter values and the established 

goal, as determined by a validation set, is crucial for optimising hyperparameters to 

create a probabilistic model of the function. Bayesian optimization iteratively 

evaluates a plausible hyperparameter configuration based on the current model. Then, 

it updates it to gather observations that tell as much as possible about this function, 

particularly the optimum location. It attempts to achieve a balance between 

exploitation and exploration. In real-world applications, Bayesian optimization has 

been shown [193] to yield better results in fewer evaluations than grid search and 

random search because of its ability to forecast the quality of experiments before they 

are undertaken. This study involved the application of Bayesian optimisation alongside 

cross-validation to fine-tune hyperparameters for Support Vector Machine (SVM) 
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classifiers. This approach offers a more efficient and intelligent solution for 

hyperparameter tuning compared to alternative methods, particularly in high-

dimensional search spaces. 

7.4 Feature Ranking Techniques 

Raw signals allow several aspects to be retrieved and interpreted meaningfully. Still, 

not every component is equally crucial for a given objective. Thus, optimal feature 

selection is crucial in defect diagnosis and severity estimate. Feature ranking methods 

aim to rank the features depending on physical spacing and information. The current 

work investigates their influence on the performance of machine learning models by 

following two feature ranking approaches [194]. 

7.4.1 One‑way ANOVA  

One-way ANOVA (Analysis of Variance) is a statistical approach for determining 

whether there are statistically significant variations in the means of three or more 

independent (unrelated) groups. It is used in feature ranking to identify properties that 

differ significantly across distinct groups (classes). The null hypothesis is that all 

means of the feature across all groups are equal. 𝐻𝑜 ∶  𝜇1 = 𝜇2 = 𝜇3 = ⋯ = 𝜇𝑘. 

Alternative Hypothesis (Ha) is at least one group mean is different. Total Sum of 

Squares (SST) measures the total variation in the data in equation (7.8). 

                                                                  𝑆𝑆𝑇 =  ∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1             (7.8) 

where N is the total number of observations, Xi is each observation, and  𝑋̅ is the overall 

mean. 

The between-Group Sum of Squares (SSB) measures the variation due to group 

interaction in equation (9). 

                                                                𝑆𝑆𝐵 = ∑ 𝑛𝑗(𝑋̅𝑗 − 𝑋̅)2𝑘
𝑗=1             (7.9) 

where k is the number of groups, nj is the number of observations in group j, 𝑋̅𝑗 is the 

mean of group j, and 𝑋̅ is the overall mean. 

The average of the sums of squares in equation (10). 
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                                                                𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑘−1
 𝑎𝑛𝑑 𝑀𝑆𝑊 =

𝑆𝑆𝑊

𝑁−𝑘
          (7.10) 

where MSB  is the mean square between groups and MSW is the mean square within 

groups. 

The ratio of MSB to MSW is called the F-statistic. In light of the null hypothesis, it 

adheres to the F-distribution. To ascertain whether the null hypothesis may be rejected, 

compare the computed F-statistic to the crucial value in the F-distribution table or 

utilise the p-value. Reject the null hypothesis if the p-value is less than the selected 

significance level (e.g., α=0.05). 

7.4.2 Kruskal-Wallis test 

A non-parametric technique for determining if samples come from the same 

distribution is the Kruskal-Wallis test. It is applied when the ANOVA's normality and 

equal variances assumptions are not satisfied. The null hypothesis (Ho) is that the 

distributions of the feature across all groups are equal. The alternative Hypothesis (Ha

) is that at least one group distribution differs. Combine all the group observations and 

rank them from smallest to largest, giving average ranks for ties. Test Statistics (H) in 

equation (7.11) 

                                                             𝐻 =  
12

𝑁(𝑁+1)
∑

𝑅𝑗
2

𝑛𝑗

𝑘
𝑗=1 − 3(𝑁 + 1)          (7.11) 

where N is the total number of observations across all groups, k is the number of 

groups, nj is the number of observations in group j, and Rj is the sum of ranks for group 

j. To reject the null hypothesis, compare the generated H statistic to the critical value 

from the chi-square distribution table with k-1 degrees of freedom. Alternatively, use 

the p-value. If the p-value falls below the chosen significance level (e.g., α=0.05), 

reject the null hypothesis. 

The Kruskal-Wallis test assumes that all observations are independent of each other 

and that all tests originate from populations with the similar continuous distribution, 

excluding any possible variations in locations due to group effects. The classic One-

way ANOVA replaces the weaker initial assumption with a stronger one, namely that 

the populations have normal distributions. 
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7.5 Experimental Methodology 

The experimental methodology for this study has been split into two sections. The first 

section, labelled Experimental Setup and Data Description, describes and classifies the 

data and apparatus utilised throughout the experiment. The second half focuses on 

Data Ensembles for Fault Classification and feature ranking. Figure 7.2 depicts the 

approach used to analyse taper roller bearings in this study. 

 

Figure 7.2 Methodology flowchart 
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7.6 Data set for Fault Classification 

The data from the above test rig is utilised to evaluate the proposed methodology. 

Vibration measurements are acquired with the accelerometer on the housing of NDE. 

SKF 30206 bearings are employed for both DE and NDE. Wire EDM is used to induce 

a 1.5 mm wide and 1 mm deep OR, IR, and roller defect for defective bearing signals.  

Table 7.1 Description of tapered bearing dataset chosen for fault diagnosis 

Bearing 

Position 

Shaft 

Speed 

(RPM) 

Load 

(N) 

Condition of  

bearing 

Fault  

code 

Size  

of sample 

No of 

samples 

Non-

Drive 

End 

1000 0 Healthy 1 

2560 
800 

(40x20) 

1000 50  Healthy 2 

2000 0 Healthy 3 

2000 50 Healthy 4 

1000 0 Outer race fault 5 

1000 50  Outer race fault 6 

2000 0 Outer race fault 7 

2000 50 Outer race fault 8 

1000 0 Inner race fault 9 

1000 50  Inner race fault 10 

2000 0 Inner race fault 11 

2000 50 Inner race fault 12 

1000 0 Roller fault 13 

1000 50  Roller fault 14 

2000 0 Roller fault 15 

2000 50 Roller fault 16 

1000 0 Compound fault 17 

1000 50  Compound fault 18 

2000 0 Compound fault 19 

2000 50 Compound fault 20 
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Vibration signals are recorded at 25.6 kHz, under motor speeds of 1000 and 2000 

RPM, and used load operating conditions, denoted as no-load condition and 50 N 

radial load, which is mounted externally to the shaft of the disk. The present analysis 

considers the bearing defects classes as outlined in Table 7.1. Twenty fault 

classifications have been assigned using numeric codes ranging from 1 to 20 based on 

speed and load. A total of 40 data subsets or samples created from 102400 data points, 

each subset consisting of 2560 data points, are extracted from each defect category for 

data preparation. This yields an ensemble of 800 entities. 

The approach utilized in this research consists of a series of sequential procedures 

executed within the MATLAB environment. An ensemble of raw data comprising 

healthy bearing, inner, outer, roller and compound defects is prepared in the initial 

stage. In the subsequent phase, the time domain and frequency domain characteristics 

of the ensemble of data are extracted. Supervised feature ranking techniques are 

implemented to rank the extracted features. The Kruskal-Wallis test and one-way 

ANOVA are the two methods utilized. 

7.7 Results and Discussion 

To diagnose rolling element bearings, signals' frequency-domain and statistical time-

domain characteristics can be employed to differentiate between healthy and defective 

states. As bearing health declines, a specific signal's peak frequency or amplitude may 

fluctuate. Skewness and Kurtosis are examples of specific higher-order signal 

properties that can be employed to accomplish the objective. With these 

characteristics, it is possible to establish threshold values that differentiate between 

healthy and problematic operations. Additionally, rapid fluctuations in the associated 

values may suggest that the bearing condition has changed. 

MATLAB was employed to conduct the analysis. Initially, a data ensemble consisting 

of various defect classes is established. The efficacy of machine learning methods in 

grouping the datasets is assessed using the fault features. The ML classifiers are 

trained, and their performance is evaluated using a variety of performance metrics, 

including Accuracy, Training Time, and Prediction Speed after the features are ranked 

using two distinct methodologies to identify effective condition indicators. 
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Table 7.2 Time-domain and frequency-domain features used for fault classification 

Time domain 

features 

peak value, shape factor, clearance factor, crest factor, impulse 

factor, standard deviation, skewness, kurtosis, SNR, SINAD, 

mean and root mean squares (RMS). 

Frequency 

domain features 
Peak amplitude, peak frequency and band power. 

 

7.7.1 Raw data 

The defect categories listed in Table 7.1 are illustrated in Fig. 7.3, which displays 

normalised vibration data ensemble measurements. These are denoted by fault codes 

1–20 and are represented by varying colours in the diagram. Figure 7.4 illustrates 

power spectral density (PSD) that highlights dominant frequency components for each 

fault case. For nearly all fault cases, a significant peak is observed in 5500–7000 Hz 

frequency range. This may be linked to the natural frequencies of the bearing structure 

or resonance zones that are induced by faults. 

 

Figure 7.3 Collective vibration raw data of 20 faults from test bearing 
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7.7.2 Feature Ranking 

Features are gauges that can serve as indicators of bearing conditions. The following 

are time domain features: peak value, shape factor, clearance factor, crest factor, 

impulse factor, standard deviation, skewness, kurtosis, SNR, SINAD, mean and root 

mean squares (RMS). Frequency domain features include peak amplitude, peak 

frequency and band power. Sixteen features were extracted from the vibration signal 

depicted in Table 7.2 for this investigation. MATLAB was employed to calculate all 

16 features from each bearing dataset. This led to a feature matrix that measured 800 

by 16. Features are ranked using Ow-A and KW tests after they have been extracted. 

The relative ranking of the features is illustrated in Table 7.3. Feature classification is 

demonstrated in Fig. 7.5, which is based on normalised scores. 

Table 7.3 Features ranked by Ow-A and KW Test 

Ow-A Test KW Test 

Features Rank Features  Rank 

Peak value  1 RMS 1 

Figure 7.4 Collective Power Spectrum density data of 20 faults from test bearing 
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Shape factor 2 Band power 2 

RMS 3 Standard deviation 3 

Clearance factor 4 Peak value 4 

Crest factor 5 Peak amplitude 5 

Impulse factor 6 Shape factor 6 

Standard deviation 7 Clearance factor 7 

Peak frequency 8 Impulse factor 8 

Band power 9 Crest factor 9 

Kurtosis 10 Kurtosis 10 

SNR 11 Peak frequency 11 

SINAD 12 SNR 12 

Skewness 13 SINAD 13 

Peak amplitude 14 Skewness 14 

Mean 15 Mean 15 

THD 16 THD 16 

 

 

 



134 

 

 

 

7.7.3 Feature Selection and Model Training 

Initially, all featuress are selected for training machine learning classifiers, 

disregarding their ranking. To evaluate the impact of feature ranking compared to non-

ranking on classifier performance, two groups, including the top five and top ten 

feature, are chosen based on their ranking scores. Numerous comparable investigations 

in the domain have employed top-N feature subsets (commonly N = 5, 10, 15) to 

evaluate the effectiveness of feature importance and the impact of dimensionality 

reduction. This convention was adhered to in order to maintain consistency and ensure 

comparability. The system is intentionally kept simple and controlled, with a focus on 

slit-type faults, which represent the initial phase of defect development in bearings. 

The experimental conditions were carefully maintained to minimize external 

disturbances, and the use of early-stage, localized damage makes the system less 

susceptible to noise interference. As a result, the extracted features remain stable and 

largely unaffected by environmental noise in our case. 

An identical analysis is conducted on SVM classifiers with different kernels. The 

classifier outcomes are presented as a scatter plot (SP) and a confusion matrix (CM). 

Figure 7.5 Normalized results of OwA and KW test for test bearing data 
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A SP actively analyses data from several fault categories and selects the most 

prominent characteristics. The SP illustrates both the training data and the 

misclassified instances. The confusion matrix is employed to evaluate the performance 

of a classifier in each class and to pinpoint the areas in which the classifier is failed. 

Columns denote predicted classes, whereas rows indicate true classes. In the cross-

validation procedure, predictions generated from data not utilised for training are 

employed to construct a confusion matrix. The diagonal cells, indicating instances 

where the true and predicted classes match, demonstrate that the classifier functioned 

as planned and accurately identified true class observations. The present study used 

the 𝑘-fold cross-validation method for training the ML models. This technique 

partitions a dataset into k equally sized folds randomly. The model is subsequently 

trained on the remaining 𝑘-1 folds after designating one-fold as the holdout set. The 

model is evaluated using the observations that were excluded in the fold. The 

procedure is executed k times, utilising a distinct set as the holdout set on each 

occasion. The 800 data samples undergo an 8-fold cross-validation technique. The 

provided data is partitioned into several folds or subsets, with one designated as a 

validation set while the other folds are utilised for model training. This procedure is 

performed multiple times, employing a distinct fold as the validation set. The outcomes 

of each validation phase are averaged to yield a more dependable assessment of the 

model's performance. Cross-validation is a crucial phase in the machine learning 

process that guarantees the selected model for deployment is resilient and applicable 

to new data. 

Figures 7.6-7.10 present scatter plots and confusion matrices for the Support Vector 

Machine (SVM) classifiers with different kernels. The classifiers were trained to utilise 

all features without feature ranking, the top five features ranked by the OwA and KW 

tests, and the top ten features in both the OwA and KW tests. The feature clearance 

factor is graphed against the feature peak value across all classifiers to evaluate the 

results. The system attains superior accuracy, necessitates reduced training duration, 

and generates swifter predictions. Table 7.4 encapsulates the quantitative data about 

classification accuracy, speed and training duration for all feature selection 

methodologies.  
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Figure 7.6 Fault classification by SVM model for all features without ranking (i) SP 

linear kernel (ii) CM for linear kernel (iii) SP quadratic kernel (iv) CM quadratic kernel 

(v) SP for cubic kernel (vi) CM for cubic kernel (vii) SP for fine kernel (viii) CM for 

fine kernel (ix) SP for medium kernel (x) CM for medium kernel (xi) SP for coarse 

kernel (xii) CP for coarse kernel 

(vii) (viii) 

(x) 

(xi) (xii) 

(ix) 
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Figure 7.7 Fault classification by SVM model for top five features of OwA test (i) SP 

linear kernel (ii) CM for linear kernel (iii) SP quadratic kernel (iv) CM quadratic kernel 

(v) SP for cubic kernel (vi) CM for cubic kernel (vii) SP for fine kernel (viii) CM for 

fine kernel (ix) SP for medium kernel (x) CM for medium kernel (xi) SP for coarse 

kernel (xii) CP for coarse kernel 

(vii) (viii) 

(ix) (x) 

(xi) (xii) 
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Figure 7.8 Fault classification by SVM model for top five features of KW test) (i) SP 

linear kernel (ii) CM for linear kernel (iii) SP quadratic kernel (iv) CM quadratic kernel 

(v) SP for cubic kernel (vi) CM for cubic kernel (vii) SP for fine kernel (viii) CM for 

fine kernel (ix) SP for medium kernel (x) CM for medium kernel (xi) SP for coarse 

kernel (xii) CP for coarse kernel 

(vii) (viii) 

(ix) (x) 

(xi) (xii) 
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Figure 7.9 Fault classification by SVM model for top 10 features of OwA test) (i) SP 

linear kernel (ii) CM for linear kernel (iii) SP quadratic kernel (iv) CM quadratic kernel 

(v) SP for cubic kernel (vi) CM for cubic kernel (vii) SP for fine kernel (viii) CM for 

fine kernel (ix) SP for medium kernel (x) CM for medium kernel (xi) SP for coarse 

kernel (xii) CP for coarse kernel 

(vii) (viii) 

(ix) (x) 

(xi) (xii) 
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Figure 7.10 Fault classification by SVM model for top 10 features of KW test) (i) SP 

linear kernel (ii) CM for linear kernel (iii) SP quadratic kernel (iv) CM quadratic kernel 

(v) SP for cubic kernel (vi) CM for cubic kernel (vii) SP for fine kernel (viii) CM for 

fine kernel (ix) SP for medium kernel (x) CM for medium kernel (xi) SP for coarse 

kernel (xii) CP for coarse kernel 

 

(vii) 
(viii) 

(ix) (x) 

(xi) (xii) 
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Table 7.4  Performance metrics of ML models with and without using feature ranking 

for test data 

Performance 

Metrics 

ML 

Model 

Without 

features 

ranking 

(All 

Features) 

With features ranking 

   One-way ANOVA Kruskal-Wallis test 

Classification 

Accuracy (%) 

  
Top 5 

features 

Top 10 

features 

Top 5 

features 

Top 10 

features 

Linear 69.8 70.9 75.4 69.0 79.0 

Quadratic 80.9 76.4 86.6 75.0 86.6 

Cubic 79.5 83.5 92.2 83.6 92.9 

Fine 60.1 92.5 96.8 85.9 97.6 

Medium 77.5 75.5 80.5 71.0 81.9 

Coarse 56.0 60.5 61.8 60.0 64.4 

Training 

Time (sec) 

Linear 8.80 1.47 1.45 1.80 1.26 

Quadratic 7.91 1.19 1.14 1.59 1.04 

Cubic 8.20 1.61 1.24 2.01 1.23 

Fine 8.04 1.20 1.36 1.29 1.35 

Medium 7.89 1.16 1.29 1.23 1.22 

Coarse 8.38 1.29 1.21 1.36 1.20 

Prediction 

Speed 

(Obs/Sec) 

Linear 2300 14000 13000 12000 9200 

Quadratic 1900 10000 10000 9700 10000 

Cubic 1800 11000 10000 10000 10000 

Fine 1800 9200 8600 9200 8800 

Medium 1800 10000 9700 9900 9400 

Coarse 1800 9900 9200 8600 9200 

 

For the SVM classifier fine kernel with five feature selection options: all features (no 

ranking), top five features ranked by the Ow-A test, top five features ranked by the 

KW test, top ten features ranked by the Ow-A, top ten features ranked by the KW test, 

The classification accuracies that were attained are, in order, 60.1%, 92.5.5%, 85.9%, 

96.8%, and 97.6%.The SVM model enhances maximum classification accuracy using 

the top 10 characteristics identified by the Kruskal–Wallis test.  The top 10 features of 

the KW test outperform Ow-A well due to its high classification accuracy and reduced 

training time for all kernels. 
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The comparative efficacy of machine learning models employing various feature 

selection methodologies is illustrated through Classification Accuracy (CA), Training 

Time (TT), and Prediction Speed (PS) in Figs. 7.11, 7.12, and 7.13, utilising bar charts. 

The principal criterion for selecting the optimal model or feature selection method is 

CA. TT and PS also contribute to identifying the best model when accuracy values are 

comparable. 

Figure 7.11 demonstrates that the Classification Accuracy reaches its peak for all SVM 

kernels for top 10 features, ranked by the KW test. However, an exception exists in 

the case of the Quadratic kernel. The maximum accuracy is 86.6%, which remains 

consistent whether evaluating the top 10 features from the KW test, utilising the top 

10 features ranked by Ow-A and incorporating all features to train the classifier. 

Consequently, accuracy alone is inadequate as a criterion for the SVM to determine 

the optimal feature selection strategy. Consequently, TT is utilised to evaluate the 

outcomes. The training durations for the classifier are 1.04 s, 1.14 s, and 7.19 s in the 

three situations, as illustrated in Fig. 7.12. Again, KW test enhance the efficiency of 

classifier training, suggesting that this method is ideal for the quadratic kernel. 

 

 

Figure 7.11 Influence of feature ranking on classification accuracy of SVM models 

with different kernels 
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Figure 7.12 Influence of feature ranking on training time of SVM models with 

different kernels 

 

Figure 7.13 Influence of feature ranking on speed of SVM models with different 

kernels 

Figure 7.13 illustrates the PS of the classifiers measured in observations per second. A 

comparison of prediction speed is emphasised to reinforce the results of the quadratic 

classifier. The respective numbers for the previously mentioned examples are 10,000 
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OwA and KW tests are identical, the maximum values support the top 10 feature 

selection methodology of the KW test, in conjunction with Classification Accuracy 

and Training Time. 

7.8 Summary of the Chapter 

This study aims to examine the impact of feature ranking by Ow-A and the KW test 

on the training of several machine learning models for the classification of bearing 

defects utilising test datasets. These methods are extensively employed in applications 

including text sorting, cancer prediction and many more; Yet the existing literature on 

fault diagnosis of rolling element bearings rarely recognises their significance.  The 

solutions presented in the literature exhibited specific limitations; therefore, evaluating 

the proposed procedures to ascertain their efficacy in the specified domain compared 

to those previously utilised was essential. This constitutes the principal contribution of 

the present study. SVM classifiers utilising different kernels are first trained on the 

complete set of features (without any feature ranking), and subsequently, training is 

conducted with the top five and top ten features chosen through both ranking 

methodologies.  A thorough assessment of model performance is performed, focussing 

on Classification Accuracy, Training Time, and Prediction Speed, both with and 

without feature ranking. 

The highest accuracy in defect classification is attained using the best 10 features 

ranked by the Kruskal–Wallis test across all classifiers. The accuracies achieved are 

79.0%, 86.6%, 92.9%, 97.6%, 81.9%, and 64.4% for linear, quadratic, cubic, fine, 

medium, and coarse models, respectively, using the test dataset. The Kruskal–Wallis 

test surpasses the One-way ANOVA. Nonetheless, there exists a singular exception 

concerning the SVM quadratic kernel. Upon assessing the top 10 characteristics of the 

KW test and identifying the top 10 features as determined by Ow-A, the maximum 

accuracy achieved is consistently 86.6% in both instances. The minimum Training 

Time of 1.04 s for the top 10 features identified by the KW test indicates that this 

scheme is optimal for the quadratic kernel, indicating that out of all the models 

examined, this feature selection approach yields the best results. 
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Chapter 8 Conclusions, Future Scope and Implications 

     
 

This concluding chapter encapsulates the essential findings and contributions of the 

study centred on the experimental and computational examination of tapered roller 

bearing (TRB) systems. The results of the damping analysis, fault detection 

experiments, and the diagnostic framework based on machine learning are 

emphasised. This chapter delineates prospective avenues for further investigation. The 

study also addresses the industrial implications, highlighting how dependable bearing 

diagnostics can improve machine safety, lower maintenance expenses, and support 

sustainable engineering initiatives. 

8.1 Contributions of the Work  

 

The summary of the thesis as follows 

This experimental framework that has been meticulously crafted to enable the 

exploration of rotor bearing systems across a range of operating and fault conditions. 

The test rig was designed with versatility in mind, allowing for various types of 

analyses, such as damping behaviour and fault diagnostics. Essential elements 

including the shaft, bearing housing, drive motor, loading mechanisms, and data 

acquisition systems were meticulously chosen and assembled to guarantee dependable 

performance and consistent measurements. Distinct configurations were examined for 

damping tests and fault analysis to guarantee that each goal could be achieved without 

sacrificing precision. 

The damping analysis of four antifriction bearings has uncovered significant variations 

in their capacity to dissipate vibrational energy. This study discusses the effect of 

damping for tapered, cylindrical, spherical and self-aligned bearings. Experimental 

damping ratios are obtained using FRF measurements and a free decay curve under 

static conditions, and dynamic testing further confirmed these findings at operational 

speeds and found that tapered roller bearing performs better in terms of damping. 

A detailed vibration and noise analysis of a healthy tapered roller bearing (TRB) 

employing the Taguchi method. The experimental study aimed to assess the impact of 
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critical process parameters—namely load, speed, and lubrication condition—on the 

root mean square (RMS) vibration values and equivalent continuous noise level (Leq). 

The Taguchi design of experiments was utilised to effectively identify the impact of 

each parameter and their optimal combination with a reduced number of trials.  

The effects of different fault types—outer race, inner race, roller element, and 

compound faults—on the vibration characteristics of tapered roller bearings (TRBs) 

are also examined. Identical dimensions of controlled faults were introduced into the 

bearings, and vibration signals were recorded under consistent operating conditions to 

ensure comparability. A comprehensive factorial analysis was conducted to 

methodically assess the impact of fault types and operational parameters, including 

load and speed. The statistical analysis revealed that the type of fault is the primary 

factor influencing the vibration response, with interaction effects related to load and 

speed following closely behind.  

Finally, the creation of an automated framework aimed at detecting and classifying 

faults in tapered roller bearing (TRB) systems through the application of machine 

learning techniques are outlined. The data on vibration gathered from experimental 

tests underwent preprocessing, and pertinent statistical and time, frequency-domain 

features were extracted to create the input dataset. A variety of supervised learning 

algorithms were developed and assessed to categorise bearing conditions, such as 

healthy, outer race fault, inner race fault, roller defect, and compound faults. The 

findings indicate that the integration of machine learning with efficient signal 

processing and feature engineering offers a strong and scalable method for diagnosing 

bearing faults intelligently. The proposed framework establishes a foundation for the 

implementation of real-time condition monitoring systems and aligns with the 

overarching objective of predictive maintenance in rotating machinery. 

 

8.2 Conclusions 

 The conclusions of the present research work: 
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• The damping ratios obtained from FRF and free decay methods seem relatively 

consistent across DE and NDE for each bearing type. These two methods are 

in good agreement with each other. 

• Tapered roller bearing has a high decay rate, which means a higher damping 

ratio, followed by cylindrical, spherical and self-aligned bearings. 

Experimental findings also show that ball bearings have less damping than 

roller bearings. The reason may be their smaller contact surface and reduced 

internal friction.   

• Based on the analysis of variance, it has been seen that speed is the most 

significant factor affecting vibration RMS and noise Leq. Taguchi's method 

confirms that the RMS and Leq of the tapered bearing rise with an increase in 

speed. It is discovered that RMS and Leq initially increase with an increase in 

load and then decrease. 

• Response surface in RMS at DE and NDE shows similar features but in a 

different magnitude. Leq also shows similar characteristics for DE and NDE 

but in a different magnitude. 

• Based on the ANOVA, it has been observed that the interaction of load and 

fault is the most significant factor affecting vibration RMS which contributes 

46.89% followed by the linear effect of load (25.25%), speed (18.27%) and 

fault (6.07%).  

• Based on the analysis of variance, it has been seen that the interaction of load 

is the most significant factor affecting noise (Leq) which contributes 41.65%. 

• For RMS value, the increase in speed results in an increase in RMS value of 

vibration. Also, RMS value is mostly affected by OR fault followed by IR, 

Roller and healthy bearing. 

• In the context of Leq noise measurements, it has been shown that a rise in speed 

leads to a corresponding increase in noise levels. Also, Leq value is mostly 

affected by Roller fault followed by OR, IR and healthy bearing.  
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• A slight fluctuation in the kurtosis value is seen at lower speeds; however, at 

higher speeds, the kurtosis metric remains quite stable. Kurtosis also becomes 

less sensitive to load. 

• The Kruskal–Wallis test surpasses the One-way ANOVA and achieve higher 

accuracy in all cases. 

• The SVM employing fine kernel classifiers has the highest classification 

accuracy of 97.6% when trained with the top 10 characteristics identified by 

the Kruskal–Wallis test.  

• As an extension, the current approach will be compared with deep learning-

based methods such as CNNs and autoencoders to evaluate trade-offs in 

accuracy, interpretability, and computational cost.  

 

8.3 Future Scope of Work  

• In real-world applications, bearings often experience multiple types of damage 

simultaneously, which can lead to more complex failure behaviour. 

Experiments that combine multiple damages on a single element to study their 

cumulative effects on bearing performance. Second is the fault of varying 

dimensions in the same element.  

• The performance of the proposed feature set for automated fault classification 

can further be examined with natural spalls of more variability. 

• The correlation between rotation speed, temperature variations, lubricant 

viscosity, and bearing damping has not been worked out. The same may be 

considered in future research. 

• The damping study is based on the first harmonics. So, the approach 

demonstrated in the present study can be extended to investigate higher modes 

if desired. 
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8.4 Implication of Work 

 

The findings of this study are of considerable importance to both society and industry, 

especially in improving the safety, reliability, and sustainability of machinery and 

mechanical systems that play a crucial role in everyday life. Tapered roller bearings 

find extensive application across various sectors, including transportation (such as 

automotive and railways), heavy machinery, energy systems, and manufacturing 

industries. Unforeseen bearing failures in these contexts may result in equipment 

malfunctions, production setbacks, heightened maintenance expenses, and, in certain 

instances, safety risks. 

This work establishes an experimental and computational framework aimed at early 

fault detection and condition monitoring of tapered roller bearings, contributing to: 

Improved Machinery Safety: Identifying faults at an early stage can avert disastrous 

failures, thus minimising the likelihood of accidents and promoting safer working 

conditions in both industrial and transportation fields. 

Cost-Effective Maintenance: This study's implementation of predictive maintenance 

strategies can greatly reduce maintenance costs by minimising unplanned downtime 

and preventing unnecessary part replacements. 

Energy Efficiency and Sustainability: Defective bearings frequently result in 

heightened friction and greater energy usage.  Prompt detection and correction of 

issues enhance the overall performance of machinery, leading to energy conservation 

and promoting environmental sustainability. 

Skill Development and Technological Advancement: This study also encourages 

the incorporation of cutting-edge technologies like machine learning into conventional 

mechanical engineering fields, enhancing interdisciplinary understanding and skill 

development for the future workforce. 
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with course work CPI of 9.0 (on scale of 10) with 1st division (Honours) from 

Delhi Technological University with Institute fellowship. 

Dissertation: Modeling and Experimental Analysis of Multifaults in a 

Tapered Roller Bearing System. 

Work brief: 
➢ Research involvement in the field of Multifaults analysis and system 

damping of rotor bearing system. 
➢ Developed a condition monitoring system to predict bearing 

component failure and classify defect using machine learning based 
on sensor data. 

➢ Knowledge of DAQ, vibration measurement and Impact hammer test. 
➢ Machine condition monitoring. 

 

• 2012 to 2014 

Master of Technology in Mechanical Engineering (Machine Design) with CPI 

of 8.778 (on scale of 10) with 1st division (Honours) from Aligarh Muslim 

University with MHRD Scholarship. 

Dissertation: Experimental Study of Balancing of Rotor Bearing-System 

Using Machinery Fault Simulator-Lite. 

Project: Study the Effect of Coupling Misalignment on Vibration Signature 

Using MFS-Lite. 
 

• 2007 to 2011  

Bachelor of Technology in Mechanical Engineering from Aligarh Muslim 

University with CPI 7.241 (on scale of 10) with 1st division. 

Project: Design of roller conveyor assembly for HFIW TUBE MILL. 

Summer Training: Four weeks of training in Diesel Bogie Section at Training 

Center, Northern Railway, Charbagh, Lucknow, U.P.  
 

• XII Standard from Senior Secondary School, AMU Aligarh in 2006 (1st 

division). 
 

• X Standard from City High School, AMU Aligarh in 2004 (1st division). 

 

ACADEMIC ACHIEVEMENTS AND DISTINCTIONS 

• Delivered a Lecture on a series of 5 days “HANDS-ON TRAINING ON 

AUTOCAD FOR FIRST-YEAR STUDENTS in the Department of Mechanical 

Engineering, DTU Delhi in Four consecutive semester of sessions 2021-2022 
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and 2022-2023. 

• Organising member in One-day seminar on “NOISE FUNDAMENTALS, 

MEASUREMENT AND ANALYSIS” in the Department of Mechanical, 

Production & Industrial and Automobile Engineering, Delhi Technological 

University, Delhi in OFFLINE MODE on 26th May 2023. 

• Organising member in One Week Short Term Training Program on 

“ROBOTICS & ARTIFICIAL INTELLIGENCE” in the Department of Mechanical, 

Production & Industrial and Automobile Engineering, Delhi Technological 

University. Delhi from 17 to 21 MAY, 2022 in physical mode. 

• 2012: Scored a percentile of 93.8 in the Graduate Aptitude Test in 

Engineering (GATE) 2012 conducted by the IIT. Eligible for the assistantship 

governed by the MHRD, Government of India. 

• Qualified all India Exam Gate in 2012,2013 and 2015  

 
 

COMPUTER SKILLS 

• AutoCAD, SolidWorks, MATLAB, AMESim 

• MS Office, HAP 
 

WORKSHOPS AND FDP 

• Successfully participated in SERB sponsored National High-End workshop on 

“Statistical Tools: Modeling and Optimisation” (STMO-2022) organised by 

Department of Industrial and Production Engineering, NIT-Jalandhar from 

18th -24th July 2022. 

• Participated and completed successfully one-week Online FDP on “Recent 

Advancements in Design and Manufacturing (RADM-2022)" from 22th- 26th 

March 2022 at Mechanical Engineering Section, University Polytechnic, 

AMU, Aligarh. 

• Participated & completed successfully AICTE Training and Learning (ATAL) 

Academy Online Elementary FDP on "Advanced MATLAB for Scientific 

Computing" from 13th-17th September 2021 at University Polytechnic, AMU 

Aligarh. 

• Participated & completed successfully AICTE Training and Learning (ATAL) 

Academy Online Elementary FDP on "Computational techniques in 

Engineering" from 2th-6th August 2021 at University Polytechnic, AMU 

Aligarh. 

• Attended the online Faculty Development Programme on “Vibration 

Analysis & Condition Monitoring for Rotating Machines” Organized at Indira 



183 

 

 

Gandhi Institute of Technology, Sarang, Dhenkanal, Odisha, India during 05- 

09 October, 2020 under TEQIP-III. 

• Attended the short-term course on “Vibration Analysis of Rotor Bearing 

Systems” under TEQIP-III held at IIT Delhi from 02nd Mar. to 06th Mar., 

2020. 

• Successfully completed E-Recourses: A Gateway for research (2019) 

organised by central library, DTU, Delhi from 2th-6th September 2019.  

• Participated in the TEQIP-III sponsored One-week international lecture 

series on Bondgragh Modelling and Simulation (BMS-2018) organized by 

Mechanical Engineering Department DTU, Delhi from 1st to 5th October 

2018. (One Week).  

 

PERSONAL DETAILS 

Name:    Abdul Khaliq Ansari 

Father’s Name:    Mr. Abdul Razzaq  

Date of Birth:    24th Sept, 1989 

Passport No.:    B7802283 (Indian) 

Marital Status:    Married 

Hobbies & Interests:   Reading & listening ghazals, Calligraphy, 

Computer Savvy. 

Languages Known:   English, Urdu & Hindi. 

 
I hereby declare that the given above information are true to the best of my 
knowledge.  
 

   Place: Delhi         
 

Abdul Khaliq Ansari                                                                                                                                                                                                                                                   


