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Abstract
Image description generation, an intricate cross-disciplinary work between com-

puter vision and natural language processing (NLP), is intended to produce contex-

tually precise and semantically rich textual descriptions of visual information. The

proposed work is dedicated to filling significant research gaps in computerised image

captioning by suggesting sophisticated deep-learning architectures that promote con-

textual knowledge, semantic density, and generality across multimedia applications.

The research is organised into three main tasks: (1) creating an automatic system

for producing contextually and semantically rich image descriptions; (2) construct-

ing a deep learning system to enhance description accuracy and prediction scores;

and (3) designing image description models specific to multimedia uses. For the

purpose of fulfilling these objectives, the thesis proposes several novel models. The

VGG16-SceneGraph-BiGRU model integrates VGG16 for visual feature extraction,

scene graphs for object relationship capture, and a BiGRU network for sequential

language modelling, resulting in coherent and contextually enriched descriptions. Ad-

ditionally, the Tri-FusionNet model combines a Vision Transformer (ViT) encoder,

two attention mechanisms, a RoBERTa decoder, and a CLIP module to support im-

proved feature extraction and multimodal alignment, enhancing description accuracy.

Domain-specific use cases, such as medical imaging and autonomous driving, are also

examined in the thesis with models designed specifically for the application, such

as a ViT-GPT4 framework for chest X-ray analysis and a ResNet50 with a GPT2-

based system to describe video-based behaviour. The proposed models are tested

on benchmark data like MS COCO, Flickr8k, Flickr30k, IU Chest X-ray, NIH Chest

X-ray, MSVD, and BDD-X Vehicular dataset on metrics like BLEU (1-4), CIDEr,

METEOR, and ROUGE-L. The results show significant gains in description quality,

semantic completeness, and contextual accuracy, setting new state-of-the-art image

description generation benchmarks.
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Chapter 1

Introduction

An image description is a brief textual phrase summarising an image’s scene, objects,

or situation. A cutline is a more in-depth explanation accompanying the image, pro-

viding additional context or details. By offering contextual information and relating

visual content to pertinent topics, descriptions are essential for improving image un-

derstanding. Automated image description generation is increasingly popular, driven

by different pre-trained models and other internet-based tools in different research

areas [1].

Image caption generation is a sophisticated task combining computer vision and

natural language processing (NLP) to understand visual information and transform

it into coherent textual descriptions. As a fundamental field of artificial intelligence,

it tries to bridge the gap between language generation and image understanding by

producing meaningful descriptions. While object recognition is primarily concerned

with detecting objects, image captioning necessitates a deeper level of abstraction to

describe scenes’ interactions and relationships. It requires a solid knowledge of visual

semantics and language structures, thus being especially vital for assistive technol-

ogy to understand images. While AI-based captioning models have come a long

way, generating correctly and contextually descriptive captions remains problematic,

especially when object interactions are complex or visual objects are occluded. Ef-

fective captioning models take place through a review of predictive methods and the

construction of strong problem-solving frameworks to produce descriptive words for
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images of all types [2].

The ultimate objective is to create effective algorithms that process and encode

image content and form coherent relationships between image and text features. This

means detecting objects with their interactions and subtle details in a scene and gener-

ating semantically fluent and dense captions. Image captioning can be understood as

an image-to-sequence learning task in which a model maps pixel-based visual informa-

tion into a structured word sequence from a fixed vocabulary [3]. The encoder-decoder

model is followed in the image description generation task. A deep learning-based

vision model—typically a Convolutional Neural Network (CNN)—initially encodes

the image into a feature representation. A language model, usually a Transformer or

Recurrent Neural Network (RNN), receives this feature representation along-with the

ground-truth annotations and decodes them into an understandable written descrip-

tion.

Traditional approaches for image description generation were based on unrefined

feature extraction and rule-based sentence formation, which mainly focused on object

detection and templates. Techniques like SIFT [4] and HOG [5] could detect shapes

and textures but were usually lacking in context, hence descriptions were not very

accurate. Rule-based systems used templates with object labels that ensured gram-

matical correctness but resulted in rigid, generic descriptions [6]. Although probabilis-

tic models, such as n-grams and Hidden Markov Models, included some variations,

their rigid structure and lack of flexibility made it difficult to capture complex object

interactions [7]. Despite these advancements, traditional methods had some serious

drawbacks: reliance on the accuracy of object detection, poor generalization, and lim-

ited contextual awareness. As a result, deep learning-based approaches were adopted

to provide more flexibility and richer context-aware descriptions [8].

The emergence of deep learning made it possible to learn hierarchical represen-

tations of images directly from large datasets. [9] Earlier models used the feature

extraction properties of CNNs like VGG16 and ResNet, processing those features by

using RNNs or LSTMs to generate descriptions [10]. Such models couldn’t focus

on any specific regions in the images; hence, attention mechanisms were brought in
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to enhance the contextual accuracy of the generated descriptions. While generating

every phrase in the description, image captioning models are able to dynamically

focus on important areas of an image by using attention mechanisms. The model

enhances contextual correctness and captures finer details by giving distinct atten-

tion weights to different visual components at each decoding stage, resulting in more

relevant and detailed descriptions [11]. Recently, models such as Vision Transformer

(ViT) combined with Generative Pre-Trained Transformer (GPT) and Bidirectional

Encoder Representations from Transformers (BERT) surpassed the performance of

the traditional CNN-based model. Such transformers handle long-range dependen-

cies greatly with self-attention applications and hence, increase effectiveness for both

visual feature extraction and language generation [12]. Models such as ViT-GPT2

and Contrastive Language-Image Pre-training (CLIP) better align image and text

representations, generating very highly context-aware descriptions [13] [14].

Deep learning methods overcome traditional limitations by avoiding unrefined fea-

tures and automatically learning complex relationships. Such models generate more

coherent and meaningful descriptions and take advantage of attention mechanisms

and transformer architectures for improved fluency and contextual understanding.

However, they require significant amounts of training data, computational resources,

and fine-tuning for optimal performance. Transformer-based models use self-attention

procedures to better understand contextual linkages and long-range dependencies,

outperforming conventional CNN-RNN architectures in image captioning. They make

parallel processing possible, which speeds up training and produces descriptions that

are more logical and contextually aware.

1.1 Applications of Image Description Generation

Image description generators have many practical applications in the real world and

across different fields. In autonomous driving, for example, self-driving cars depend on

computer vision to navigate and make decisions. Image captioning can help improve

situational awareness by giving real-time descriptions of objects, road conditions, and
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potential hazards, enhancing overall safety and system reliability. NLP and image

captioning are used by assistive technology such as screen readers, object recognition

apps (Seeing AI, Be My Eyes), and wearables with AI (Google Glass, smart glasses)

to give visually impaired people speech input in real-time. By providing insightful de-

scriptions of objects, locations, and environmental obstacles, these systems translate

visual input into descriptive text and audio, facilitating autonomous navigation. By

producing thorough descriptions of X-rays, MRIs, and CT scans, image captioning

helps in diagnostic imaging in healthcare. AI models improve workflow efficiency and

decision-making for radiologists by assisting them in identifying anomalies, monitor-

ing the course of diseases, and minimising errors—particularly in places with limited

resources.

Image description generation also plays a very significant role in video surveillance

and security. With wide penetration of CCTV cameras, automated captioning can

bring real-time alerts by detecting unusual activities and triggering alarms in cases

of security breaches or accidents, thus significantly enhancing the crime prevention

and response mechanisms. Moreover, it enhances information retrieval systems, such

as Google Image Search. Since the search engine can now generate textual descrip-

tions of images, it can better categorize and retrieve images for more accurate results.

Similarly, captioning is widely used in social media for automated image annota-

tion, content moderation, and accessibility enhancements, thereby allowing a better

understanding of visual content across platforms.

1.2 Challenges in Image Description Generation

Despite advancements in image description generation, there are still a number of

issues with natural language processing and computer vision. Developing a trust-

worthy assessment metric that compares machine-generated and human-generated

descriptions is one of the main problems [15] [16]. The richness of human language

is frequently not captured by current measurements, making objective evaluation

difficult. It is still challenging to guarantee contextual relevance and grammatical
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quality in descriptions since models may have trouble interpreting complex language.

Another challenging problem is producing human-like descriptions while maintain-

ing semantic consistency, which calls for striking a compromise between grammatical

correctness and insightful, understandable explanations. The process of creating de-

scriptions is further complicated by managing occluded or unclear visual aspects and

preserving complex object relationships.

Furthermore, captioning models frequently have trouble producing descriptions

that appropriately capture the meaning or emotional tone of an image— a critical

skill in fields like social media and journalism. Computational efficiency is still a

problem since real-time applications are challenging because of the high processing

power requirements for producing high-quality descriptions. The development pro-

cess is further complicated by the need for domain-specific training datasets and a

greater comprehension of specialized vocabulary when adapting captioning models to

specialized domains, such as scientific or medical imaging.

1.3 Research Gaps and Motivation

We reviewed the state-of-the-art methods in image description generation and identi-

fied the key research gaps. Significant progress has been made, but issues in contextual

accuracy, generalization across datasets, and real-time performance still persist as ma-

jor difficulties for developing reliable and effective description generation systems for

real-world applications.

• Existing models often struggle to establish an effective alignment between visual

content and textual descriptions, primarily due to their reliance on large-scale

architectures that require significant computational resources and memory. This

limits their practical applicability, especially when capturing nuanced relation-

ships between objects, spatial arrangements, and contextual interactions within

a scene.

• Many state-of-the-art models are capable of detecting individual objects; how-
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ever, they often fall short in capturing fine-grained details and complex semantic

relationships among those objects. Moreover, achieving this level of detailed un-

derstanding typically demands resource-intensive architectures, which makes it

challenging to deploy such models in real-time or memory-constrained environ-

ments.

• Another significant gap lies in the limited generalization capability of current

models across diverse and domain-specific datasets. While many models per-

form well on standard benchmark datasets, they often exhibit poor adaptability

when exposed to unseen images or specialized domains such as medical imaging.

This limitation is further compounded by these models’ high computational and

memory demands, which hinder their scalability and practical deployment in

real-world applications.

• Models based on deep learning usually require large datasets labelled appropri-

ately to be trained correctly. However, special domains like chest X-ray analysis

and video-based image description generation usually lack enough data, which

creates challenges in developing models that can do well in real-time applica-

tions or multimedia content analysis.

• Although existing models only rely on visual data, they are limited in their

capacity to capture intent, emotions, and deeper context. Therefore, integrating

multimodal learning with audio, depth perception, or external knowledge might

improve description accuracy.

• Since models frequently inherit biases from training data, addressing bias in

image captioning is a significant challenge. This leads to skewed or conventional

descriptions that inaccurately represent a variety of demographics and cultures.

• Another significant challenge is ensuring real-time description generation. Lat-

est deep learning models, especially transformer-based architecture, require a

huge number of computational resources. Thus, it becomes hard to deploy these

models on resource-constrained environments and for real-time applications
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The significance for precise, contextually appropriate, and semantically rich image

descriptions in practical applications is what motivates research to fill these research

gaps. Enhancing visual-semantic alignment, obtaining fine-grained image details, and

guaranteeing model generalisation across various datasets are some of the main prob-

lems. Incomplete descriptions result from many models’ inability to capture subtle

object relationships, spatial arrangements, and contextual interactions. Furthermore,

deep learning models need large, labelled datasets, yet there is frequently insufficient

data in specialised domains like medical imaging and autonomous driving. The ne-

cessity for multimodal learning integration is highlighted by the fact that existing

models only use visual data, which limits their capacity to capture intent, emotions,

and deeper context. In addition to producing skewed or stereotypical descriptions,

bias in training data calls for mitigating techniques to guarantee equitable repre-

sentation. Real-time performance is another major issue because transformer-based

designs require a lot of processing power, which makes deployment challenging in con-

texts with limited resources. By addressing these issues, this study seeks to improve

image description models’ precision, effectiveness, and applicability in a variety of

crucial fields.

1.4 Problem Definition

The task of image description generation requires coherent, contextually accurate, and

semantically rich textual descriptions from visual content. Existing models fail to ad-

equately align visual information with textual descriptions, especially when dealing

with complex scenes containing multiple objects or intricate relationships. Generalisa-

tion across various datasets or strong performance in domain-specific applications like

autonomous driving or medical imaging are also not achieved by existing models due

to a lack of specialisation in data for such applications. Further, while deep learning-

based models have made tremendous strides, they need huge, labelled datasets for

proper training and substantial computational resources, making them difficult to de-

ploy in real-time applications, especially in resource-constrained environments. The
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proposed research will address the challenges by designing an automatic framework

for generating contextually and semantically complete image descriptions, a deep

learning framework to enhance the accuracy of descriptions, and adaptable models

for real-time, domain-specific applications. This work attempts to advance the state

of the art in image description generation towards greater reliability, efficiency, and

applicability in a wider variety of real-world scenarios.

1.4.1 Research Objectives

OBJECTIVE 1: To design an automatic framework for generating semantically rich

image descriptions by aligning visual content with text and capturing object-scene

relationships.

OBJECTIVE 2: To develop a transformer-based deep learning framework that

improves image descriptions by effectively capturing visual details, contextual rela-

tionships, and multimodal alignment.

OBJECTIVE 3: To develop image description models for medical imaging and

video-based image description generation in multimedia applications.

1.5 Contributions in the Thesis

In this thesis, we focus on image description generation and identify several key re-

search gaps in this field. We are focusing on the whole area of generating contextually

accurate and semantically complete descriptions for images, which involves huge chal-

lenges. In Section 1.4.1, three research objectives are outlined. We then sequentially

address each of these objectives as given in the contributions of the thesis:

(I) OBJECTIVE 1: To design an automatic framework for generating

semantically rich image descriptions by aligning visual content with

text and capturing object-scene relationships.

The difficulty of capturing semantic meaning, spatial context, and fine-grained

object relationships in image descriptions motivated us to suggest a model
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that combines visual feature extraction, object relationships, and sequence

learning for increased accuracy. We proposed an image description generation

method that utilised VGG16 for extracting visual features from the images,

scene graphs to understand the object relationships, and a BiGRU model to

learn sequence-to-sequence representations. The scene graph enhances the con-

textual understanding since it captures both spatial and semantic relationships

between the objects in the image. Visual features extracted using VGG16 are

combined with scene graph embeddings and processed within a BiGRU net-

work within the proposed model. The model is able to generate coherent and

contextually meaningful descriptions due to the bidirectional processing capa-

bility in BiGRU. It is trained on MS COCO, Flickr8k, and Flickr30k datasets,

and performance is evaluated in terms of BLEU (1-4), CIDEr, METEOR, and

ROUGE-L metrics. Experimental results confirm that the proposed VGG16-

SceneGraph-BiGRU model outperforms competitive approaches, achieving bet-

ter accuracy and semantic enrichment for the descriptions of the image.

(II) OBJECTIVE 2: To develop a transformer-based deep learning frame-

work that improves image descriptions by effectively capturing visual

details, contextual relationships, and multimodal alignment.

By adding transformer-based fusion and dual attention techniques, we aimed to

improve image description generation further than what we achieved with our

previous objective. Tri-FusionNet, a revolutionary deep-learning framework,

had been developed as a result, greatly improving the generated descriptions’

accuracy and prediction performance. Tri-FusionNet combines a dual atten-

tion mechanism to enhance emphasis on spatial and contextual variables, a

Vision Transformer (ViT) encoder to extract fine-grained visual features, and

a RoBERTa decoder to produce fluid and semantically rich textual descrip-

tions. Using contrastive learning, the addition of a CLIP-integrating module

also makes it easier to match textual and visual representations. These el-

ements work together to give the model the ability to produce descriptions

9



CHAPTER 1.

that are more accurate and contextually rich. Tri-FusionNet demonstrated its

supremacy in image description generation by achieving state-of-the-art per-

formance across BLEU (1-4), CIDEr, METEOR, and ROUGE-L metrics after

being trained on the MS COCO, Flickr8k, and Flickr30k datasets.

(III) OBJECTIVE 3: To develop image description models for medical

imaging and video-based image description generation in multimedia

applications.

In order to broaden the scope of our research, we developed transformer-

based frameworks specifically designed for multimedia applications, particu-

larly for autonomous driving and medical imaging. These domain-specific mod-

els demonstrate the versatility and applicability of the image description gen-

eration technology. We proposed two advanced transformer-based frameworks

for image description generation in multimedia applications, including medical

imaging and autonomous driving. The first model is for advanced Chest X-

Ray Analysis, where a Vision Transformer (ViT) is utilised for visual feature

extraction and a GPT-4-based decoder with cross-model attention is added to

improve the contextual accuracy of descriptions. Therefore, cross-model at-

tention effectively combines both visual and textual elements, enabling more

precise as well as understandable chest X-ray image descriptions. It was ap-

plied on the National Institutes of Health (NIH) and the Indiana University

Chest X-ray dataset with state-of-the-art performances across multiple metrics

to demonstrate how the model would assist radiologists in diagnosis as well

as the development of suitable treatment plans. Understanding and analyzing

video actions are essential for producing insightful and contextualized descrip-

tions, especially for video-based applications like intelligent monitoring and

autonomous systems. This work introduces a novel framework for producing

natural language descriptions from images and videos by combining textual

and visual modalities. The suggested architecture makes use of ResNet50 to

extract visual features from video frames that are taken from the Microsoft
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Research Video Description Corpus (MSVD), and Berkeley DeepDrive eXpla-

nation (BDD-X). The extracted visual characteristics are converted into patch

embeddings and then run through an encoder-decoder model based on trans-

formers and GPT-2. In order to align textual and visual representations and

guarantee high-quality description production, the system uses multi-head self-

attention and cross-attention techniques. The model’s efficacy is demonstrated

by performance evaluation using BLEU (1-4), CIDEr, METEOR, and ROUGE-

L.

1.6 Outlines of the Thesis

This thesis is divided into seven chapters and five appendices.

1. Chapter 1 Introduction

The objective of this chapter is to overview image description generation, em-

phasizing that multi-modal fusion enhances the description quality. Motivation

for conducting the research has been identified in terms of describing key re-

search gaps and challenges followed by defined objectives of the study. Finally,

a brief outline of the structure of the thesis is presented.

2. Chapter 2 Literature Survey

This chapter discusses different approaches to image captioning, from tradi-

tional rule-based techniques to deep learning and transformer-based models. It

emphasizes the importance of multi-modal learning in improving caption gener-

ation and explores its applications in medical imaging and autonomous driving.

The chapter also discusses commonly used evaluation metrics to measure model

performance and effectiveness.

3. Chapter 3 Proposed a Unified Framework for Contextual and Seman-

tic Image Description Generation

This chapter introduces the unified model that combines VGG16, Scene Graphs,

and BiGRU model for the generation of semantically rich and contextually com-
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plete descriptions. It discusses the use of VGG16 for feature extraction, scene

graphs to capture object relationships, and BiGRU for sequential learning. The

data details, training methodology, and performance evaluation are also dis-

cussed.

4. Chapter 4 Deep Learning Framework for Improved Image Descrip-

tion Accuracy

The proposed chapter presents a transformer-based framework called Tri-FusionNet

designed to improve description generation accuracy. This focuses on the fusion

of the ViT, RoBERTa, and CLIP modules. It also involves the designing of a

dual attention mechanism. The dataset selection, modelling training process,

and evaluation metric are then discussed. Finally, it compares the architecture

with state-of-the-art models.

5. Chapter 5 Image Description Models for Multimedia Application:

Chest X-Ray Analysis

This chapter covers one domain-specific application of image description gener-

ation. This part discusses the Advanced Chest X-Ray Analysis model based on

ViT-GPT4, using cross-model attention for medical image description genera-

tion.

6. Chapter 6 Image Description Models for Multimedia Application:

Video-based Image Description Generation

This chapter presents a transformer-based GPT-2 model that integrates visual

and textual modalities to generate action-based descriptions for video datasets

leveraging ResNet50 and evaluated on standard metrics.

7. Chapter 7 Conclusion and Future Directions

This chapter summarises key contributions of the thesis, improvements realised

in terms of image description generation, significant findings, discussions re-

garding the effect of the models proposed, and potential directions for further

work, which might include advances on real-time captioning as well as better
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domain-specific applications.

8. Appendix A Vision Transformer (ViT)

In this appendix we describe the detailed architecture of ViT, a self-attention

mechanism, as well as using it for image description generation based on feature

extraction.

9. Appendix B RoBERTa (Robustly Optimized BERT Approach)

In this appendix, we describe how RoBERTa is constituted, its architecture

based on a transformer, as well as how it significantly improves the description

generation capability to be much more context-rich and semantically accurate.

10. Appendix C Bidirectional Gated Recurrent Unit (BiGRU) Model

In this appendix, we give a detailed description of the Bi-GRU model, includ-

ing its bidirectional processing, gating mechanisms, and its role in sequential

learning for image description generation.

11. Appendix D Scene Graphs

In this appendix, we discuss scene graphs, how they are created, and what they

add to the interpretation of object relationships by image captioning models.

12. Appendix E GPT-2 and GPT-4 Transformers

In this appendix, we expand on the GPT-2 and GPT-4 transformers, language

modeling with these transformers, and how these can be used for generating

natural language descriptions of images.

The Figure 1-1 represents an overall graphical abstract of the chapter-wise distri-

bution of the thesis, illustrating the research problem, objectives, proposed models,

and key outcomes on image description generation using deep learning.
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Figure 1-1: Graphical abstract of the overall chapter-wise distribution of the thesis.
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Literature Survey

Lakshita Agarwal and Bindu Verma. "From methods to datasets: A sur-

vey on Image-Caption Generators", Multimedia Tools and Applications

(2024): Volume 83, pages 28077–28123. Impact Factor-3.0 (Published).

Lakshita Agarwal and Bindu Verma. "Comparison of Deep Learn-

ing Models for Automatic Image Descriptors", in 2023 IEEE 20th India

Council International Conference (INDICON): 914-919, IEEE (Decem-

ber, 2023) (Published).

This chapter gives an overview of the state-of-the-art approaches in image descrip-

tion generation. These approaches range from traditional methods to deep learning-

based methods. Methods in this area are critically reviewed. Traditional image

description generation often involves stages, such as the extraction of image features,

detection of objects, and template-based generation of descriptions. The feature ex-

traction process of these methods involves unrefined features and predefined rules. In

contrast, deep learning-based methods automate the process of feature extraction and

description generation using models like CNNs for visual feature extraction and RNNs

for text generation. The recent advancements with transformer-based models like Vi-

sion Transformer (ViT) and GPT have further improved the quality of generated

descriptions. The traditional and deep learning-based approaches have been given a
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lot of attention in the literature, with each method contributing to the evolution of

image description generation systems.

2.1 Literature Survey on Traditional Approaches for

Image Description Generation

Early stages of image description generation relied heavily on unrefined features,

rule-based models, and template-based description generation systems. These meth-

ods focused on identifying objects within an image and used predefined templates to

generate simple descriptions. However, these systems were limited by their inabil-

ity to handle complex interactions between objects or generate diverse, meaningful

descriptions. Jeon et al. [17] proposed an intuitive approach for annotating and re-

trieving images using a small vocabulary of blobs to characterize image regions. They

demonstrated the effectiveness of Cross-Media Relevance Models for ranked retrieval

and suggested that formal information retrieval models could enhance this research

area. The authors highlighted the need for labeled training data for algorithm evalua-

tion and suggested improved feature extraction or continuous features would improve

results. They also presented the possibility of using real descriptions instead of key-

words for image annotation. Li et al. [18] proposed a statistical modeling approach

to automatic linguistic indexing of images based on two-dimensional multi-resolution

hidden Markov models (2D MHMMs). Their technique provided independent con-

cept learning, scalability, and maintained spatial relationships between pixels. The

experiments were promising and accurate, yet they had problems with learning hard

concepts from a 2D image and high visual diversity within some categories. The

authors themselves suggested that future work was essential to overcome such limi-

tations.

Rennie et al. [19] developed self-critical sequence training: a reinforcement learning-

based approach toward improving image description generation using the Reinforce

algorithm. A bi-linear model was introduced by Lebret et al. [6] to generate image
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descriptions by linking image representations with descriptions. Their phrase-based

language model, which used syntactic statistics, offered a simpler yet effective al-

ternative to RNN-based models on MS-COCO; further improvements could refine

image-description ranking and increase its adaptability to other datasets. Another

traditional method, retrieval-based methods [20], matches input images with similar

pre-annotated ones and chooses the best description using similarity metrics like K-

Nearest Neighbours (KNN) [21] and Support Vector Machines (SVMs) [22]. These

methods worked well for structured datasets, but they had trouble with diverse, com-

plex images and failed to capture long-range dependencies, resulting in lower-quality,

less contextual captions.

Expanding on these conventional techniques, it is clear that they have a number

of significant limitations that reduce their capacity to produce detailed and contex-

tualised image descriptions. Despite being uncomplicated, template-based methods

are rigid and result in generic, repeating captions that fail to convey the individu-

ality of various images. Likewise, retrieval-based techniques are ineffective for new

or complicated scenes with numerous interacting objects since they depend on the

presence of comparable images in a pre-annotated dataset. These methods’ capacity

to generalise beyond the training data is constrained by their inability to capture the

complex relationships between objects and their difficulty adapting to a variety of

datasets. Furthermore, they fail to take semantic understanding into account, which

results in descriptions that are shallow and inaccurately contextualised.

2.2 Literature Survey on Deep Learning Methods for

Image Description Generation

In order to overcome the drawbacks of conventional techniques, deep learning-based

strategies become an effective solution. The most common approach for visual fea-

ture extraction was Convolutional Neural Networks (CNNs), whereas sequential de-

scriptions were produced by Recurrent Neural Networks (RNNs), especially Long
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Short-Term Memory (LSTM) networks. In contrast to traditional techniques, deep

learning models could generate varied and cohesive descriptions by learning patterns

from enormous datasets. By enabling individuals to concentrate on important areas

of an image when creating descriptions, attention mechanisms significantly improved

these models and increased the usefulness of the descriptions. By refining a descrip-

tion quality depending on evaluation metrics, reinforcement learning approaches like

self-critical sequence training [19] improved the performance of these deep learning

models. A number of deep learning-based techniques showed significant advances in

image description generation. The hierarchical LSTM-based method (phi-LSTM),

which was presented by Chan et al. [23], successfully organized natural language de-

scriptions. In order to compete with supervised methods, Fung et al. [24] created an

unsupervised model that simply needed a visual concept detector, a description cor-

pus, and an image dataset. The LSTM-A model was introduced by Yao et al. [25] to

improve description production by combining CNN-RNN architectures with attribute-

based learning. SentiCap, a sentiment-aware model that enhanced the capacity to

produce emotion-driven descriptions, was also presented by Mathews et al. [26]. These

developments demonstrated deep learning’s superiority over traditional approaches.

Still, they also exposed important drawbacks, including poor adaptation to previ-

ously unseen data, trouble identifying long-range relationships, and inefficiencies in

handling complex image relationships. Even with the advancements in deep learning,

attention-based RNN models have their own drawbacks. They found it difficult to

express intricate scene compositions and vague object interactions. The training was

inefficient due to RNNs’ sequential nature, which limited their capacity to manage

long-term dependencies by processing input separately. As a result, transformer-

based architectures gained popularity, bringing with them self-attention mechanisms

capable of modelling whole input sequences at once.

By enhancing visual and textual information alignment, transformer models like

Vision Transformer (ViT) and GPT-based language models greatly improved image

captioning. This alignment was further improved using CLIP (Contrastive Language-

Image Pre-training), which allowed models to produce accurate and fluent descrip-
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tions. In order to outperform recurrent models on benchmark datasets, Cornia et

al. [27] introduced the M2 Meshed Transformer, which incorporates memory mech-

anisms. The EnTangled Attention (ETA) Transformer, developed by Li et al. [28],

successfully closed the semantic gap between language and vision. Furthermore, Yu

et al. [29] suggested a multi-modal transformer that enhanced the precision of im-

age descriptions by capturing intra- and inter-modal interactions. Transformer-based

model developments in recent years have kept pushing the limits of image description

generation. MTTSNet, which creates object-based descriptions while capturing ob-

ject relationships for improved recall, was first presented by Kim et al. [30]. FCLN,

as proposed by Johnson et al. [31], facilitates effective region localization and de-

scription creation. Nevertheless, many of these methods still have trouble expanding

their vocabulary and dealing with the constraints of textual context. This problem

was solved by Shao et al. [32] using the Enhanced Transformer Dense Captioner

(ETDC), which expanded vocabulary usage and included contextual text. Further-

more, by treating regions of interest (RoIs) differently, their Transformer-based Dense

Captioner (TDC) [33] enhanced adaptability and allowed for better domain-specific

applications.

These developments demonstrate how conventional rule-based and retrieval tech-

niques led way to deep learning strategies and, eventually, transformer-based sys-

tems. Each phase of development has improved the generated image descriptions’

accuracy, fluency, and contextual comprehension. Problems still exist even though

transformer-based models have raised the bar for image captioning by successfully

capturing long-range dependencies and coordinating textual and visual information.

Research on topics including domain adaptability, multimodal comprehension, and

effective real-time processing is still going on. Resolving these issues is essential to

expanding the range of disciplines in which image description generation can be used

and laying the foundation for understanding its numerous practical applications.
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2.3 Literature Survey based on Applications of Im-

age Description Generation

Early efforts to create associations between written descriptions and visual attributes

marked the beginning of the path toward generating accurate descriptions. The

automatic generation of image descriptions by Pan et al. [34], which linked image

features with keywords in a captioned training set, was one of the pioneering initia-

tives. In large and varied data sets, their approach obtained an accuracy of about

45%. It may be used in medical image information and approaches like Singular

Value Decomposition-based correlation (SvdCorr), Cosine similarity (Cos), Singular

Value Decomposition-based cosine similarity (SvdCos), and Correlation (Corr). By

adding blob-tokens, they improved performance even further. Researchers switched

to increasingly complex models as the field advanced. Xiong et al. [35] presented

a hierarchical Transformer-based model in medical imaging that performed better

than alternative methods for generating medical reports. As a more sophisticated

method, dense description generation created several detailed phrases to explain dif-

ferent areas of an image [36]. Automatic captioning, which provides real-time scene

descriptions to improve accessibility, has proved crucial in assistive technology for

those with visual impairments outside medical imaging [37]. Vision-language models

aid in scene comprehension in autonomous driving by describing traffic situations,

road conditions, and obstructions [38]. This helps self-driving systems make better

decisions. E-commerce systems also use automated captioning to generate product

descriptions, which improves user engagement and searchability.

However, there are still great obstacles to overcome. Deep learning models fre-

quently have trouble generalising across datasets and domains like medical imaging,

remote sensing, and industrial automation, and visual-semantic alignment is espe-

cially challenging in complex images with several interacting elements [39]. In envi-

ronmental analysis, land-use classification, and disaster monitoring, where accurate

textual descriptions can facilitate quick decision-making, satellite imagery caption-

ing is essential [40] [41]. Automatic image captioning helps with threat detection
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and anomaly reporting in security and surveillance by instantly summarising video

feeds. Furthermore, real-time performance issues arise due to transformer-based ar-

chitectures’ processing demands, and conventional evaluation measures fall short in

capturing the semantic depth of output descriptions.

The following Table 2.1 is a comprehensive summary of some key image description

generation methods and their pros and cons.

Table 2.1: Descriptive Summarization of Image Description Generation Approaches

Model Proposed Advantages Disadvantages

Cross-Media Rele-

vance Models [17]

Uses a small vocabulary of

blobs for image region char-

acterization. Useful for an-

notating and retrieving pho-

tos.

Does not extract image fea-

tures. Cannot be applied to

larger datasets.

2D MHMMs [18] Utilizes stochastic processes

for image captioning. A sta-

tistical modeling approach.

Difficult to teach concepts

with a small number of im-

ages. Time-consuming and

complex to handle.

Automatic image an-

notation method [42]

Combines picture indexing

and NLP techniques. Lays

a solid foundation for com-

plex images.

Requires extensive research

in NLP and lacks high accu-

racy.

Corr, SvdCorr, Svd-

Cos and Cos mod-

els [34]

Links keywords with image

features. Achieves 45% ac-

curacy on larger datasets.

Time-consuming, as it uses

blobs instead of full sen-

tences.

Domain-specific image

captioning model [43]

Deletes erroneous terms

while maintaining high

detail. Uses both automatic

and human evaluations.

Data-driven and limited to

specific fields. Difficult to

understand and implement.
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Model Proposed Advantages Disadvantages

Neural captioning sys-

tem: Attention model

with GRU [44]

Generates meaningful de-

scriptions for images. Out-

performs previous models.

Focuses on specific parts of

the image, limiting broader

scene understanding.

Midge Framework [45] Generates the most natural

descriptions of images.

Needs refinement to capture

more linguistic phenomena.

Reinforcement

learning (RL) tech-

nique [46]

Leverages RL for caption

generation and considers

human feedback.

Needs improvement in accu-

racy.

Captions with guiding

objects (CGO) [47]

Provides fluent and accu-

rate captions.

Focuses on one object, lim-

iting multi-object scene de-

scription. Struggles with

multiple objects in images.

Bi-directional

model [12]

Learns long-term interac-

tions and generates descrip-

tive captions.

Requires further study in

RNN-based approaches.

Multi-modal RNN

model (m-RNN) [48]

Connects images and sen-

tences for complex represen-

tations.

Embedded layers can be-

come large with a bigger

dictionary.

SentiCap RNN

model [26]

Generates sentiment-based

captions. 88% accuracy for

positive captions.

Limited in handling emo-

tions like pride or wrath.

LSTM-A (Long Short-

Term Memory with

Attributes) model [25]

Integrates attributes into

CNNs and RNNs for image

captioning.

Needs improvements in

model accuracy.

Multiple Instance

Learning (MIL)

framework [49]

Uses attention processes for

image captioning.

Validation accuracy is

not high across multiple

datasets.
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Model Proposed Advantages Disadvantages

Convolution image

captioning [50]

Uses CNN for image cap-

tioning. Performs better

than LSTM+Attn baseline.

Lacks sequential elements

found in RNN-based mod-

els.

Graph Convolutional

Networks (GCNs)

models [51]

Aligns linguistic words and

visual semantic units for

captions. Uses structured

graphs and GCNs for con-

textual embedding.

Complex to implement

without access to VSUs in

datasets.

GCN-LSTM architec-

ture [52]

Integrates spatial and se-

mantic relationships in im-

age captions. Increases

CIDEr-D performance by

8.6% on MS-COCO.

Attention mechanism still

needs thorough validation.

Slow on larger datasets.

X-Linear Atten-

tion (X-LAN) block

architecture [53]

Focuses on bi-linear pools

for attention. CIDEr per-

formance improves by 11%.

Can focus on irrelevant ar-

eas of the image.

Context-Aware Aux-

iliary Guidance

(CAAG) model [8]

Uses global context for im-

proved captioning. En-

hances existing models in

reinforcement learning.

CIDEr-D performance of

128.8% is lower than X-

LAN’s 132.0%.

Self-critical sequence

training (SCST)

model [19]

Uses Reinforce algorithm

for policy-gradient caption-

ing.

Did not produce apprecia-

ble gains.

SPIDEr model [54] Combines SPICE and

CIDEr scores for caption

evaluation. Qualitatively

improves human evaluation.

Often produces illegible sen-

tences and repetitions. In-

sensitive to syntactic qual-

ity.
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Model Proposed Advantages Disadvantages

Bi-linear model [6] Links image representations

with sentences. Useful for

phrase identification.

Needs further research on

image-sentence ranking.

Needs language model

improvement.

phi-LSTM Architec-

ture [23]

Describes salient features of

objects in an image.

Does not produce relevant

captions for images.

Retrieval-based meth-

ods [13]

Solves ranking problems

using multi-modality tech-

niques. Uses recursive

dependency trees for fea-

ture extraction.

Needs further improve-

ments in accuracy.

Unsupervised Image

captioning model [24]

Uses an encoder, sentence

generator, and discrimina-

tor. First unsupervised ap-

proach using Shutterstock.

Limited accuracy on labeled

image-sentence pairs.

In this work, we analyze the distribution of various image captioning approaches

explored in the literature. Figure 2-1 presents a pie chart illustrating the proportion

of different methodologies employed for generating image descriptions.

Most of the existing works adopted RNN-based architectures (45%), and then

attention-based models at 30%, followed by transformer-based models at 15%, and

other techniques accounted for 10%. This shows that, in image description generation,

most research is still relying on pure RNN-based structures because they are robust

to sequential dependencies. Deep learning has been the key area of research for mod-

ern image description generation efforts, primarily for its ability to merge computer

vision and natural language processing. Robust architectures are needed to generate

accurate and context-aware descriptions. Attention mechanisms, adversarial learn-

ing, and deep reinforcement learning have gained much attention in recent years, as

shown in this study. Long Short-Term Memory (LSTM) networks, along with Faster
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Figure 2-1: Distribution of approaches used in image description generation [55].

R-CNN for object detection, are still being used widely, which further strengthens the

need for structured visual and textual representations to be integrated for effective

description generation.

2.4 In Thesis Prospective:

In computer vision and natural language processing, creating semantically rich visual

descriptions has consistently been a challenge. While deep learning models employing

CNNs and RNNs enhanced captions, they still had problems with alignment and

long-range dependencies, while traditional approaches had trouble with diversity and

object interactions. Although Transformers solved a lot of issues, problems with

real-time processing and domain-specific applications still exist.

Traditional image captioning approaches frequently produced fragmented or too

simplified descriptions because they had trouble appropriately capturing object re-

lationships, spatial interdependence, and contextual significance. Despite advance-

ments, many deep learning models still lacked a systematic method for simulating

object interactions and contextual dependencies inside an image since they only used
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CNNs for feature extraction and RNNs for sequence creation. Due to these con-

straints, a more reliable framework that could produce comprehensive and contex-

tually appropriate descriptions had to be created. The first suggested framework

combines scene graphs, VGG16, and a BiGRU-based sequence model to improve con-

textual understanding and visual feature extraction to overcome these difficulties. Bi-

GRU creates organized textual descriptions that guarantee coherence and contextual

accuracy; VGG16 captures crucial visual components; and the scene graph module en-

hances understanding of the spatial and semantic relationships between objects. This

method achieves high accuracy levels across BLEU, CIDEr, METEOR, and ROUGE-

L evaluation parameters and substantially enhances description fluency and semantic

relevance. It was trained on the MS COCO, Flickr8k, and Flickr30k datasets.

Although the initial framework was successful in capturing spatial and seman-

tic linkages, more enhancements were required to enable more dense descriptions

and improved global context processing. We improved efficiency by introducing a

transformer-based model that uses advanced attention mechanisms to improve con-

textual correctness and visual-textual alignment. The second framework presents Tri-

FusionNet, a deep-learning model that combines Vision Transformer (ViT), RoBERTa,

and CLIP for better image description generation to further increase performance.

ViT improves image representation by capturing fine-grained features and ensuring

improved spatial focus on important objects through its dual attention methods.

While CLIP improves visual-textual coherence by refining cross-modal alignment

through contrastive learning, RoBERTa strengthens textual encoding for more ac-

curate and contextually aware description generation. Tri-FusionNet achieves state-

of-the-art performance, greatly improving the semantic richness, contextual relevance,

and description fluency after being trained on the MS COCO, Flickr8k, and Flickr30k

datasets.

To extend image description generation applications to specialized domains, two

domain-specific frameworks are proposed. The first framework, CrossViT-GPT4, is

designed for medical image captioning, utilizing ViT for feature extraction and GPT-

4 with cross-modal attention to generating radiology reports. Evaluated on the NIH
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and IU Chest X-ray datasets, it demonstrates high diagnostic accuracy and aids radi-

ologists in decision-making. The second framework fine-tunes GPT-2 on the Flickr8k

and BDD-X datasets for generating action-justification pairs for vehicle behavior de-

scriptions to improve the interpretability of autonomous driving systems by enhancing

the transparency of decisions and explainability. These models are effective for multi-

media applications. It is ensured through the incorporation of attention mechanisms

and transformer-based architectures, providing robust performance in complex visual

scenes involving multiple interacting objects. In addition, efficiency improvements

make real-time deployment possible, which means that autonomous vehicles and AI-

driven medical diagnosis systems are feasible. These proposed approaches yield sub-

stantial improvements in description accuracy, fluency, and semantic relevance, paving

the way for more reliable and interpretable AI-driven multimodal applications.
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Chapter 3

Proposed a Unified Framework for

Contextual and Semantic Image

Description Generation

Lakshita Agarwal and Bindu Verma. "Enriching Image Description Gener-

ation through Multi-modal Fusion of VGG16, Scene Graphs and BiGRU",

The Visual Computer (2025): 1-21. Impact Factor-3.0 (Published).

3.1 Introduction

In this chapter, we discuss the challenges involved in producing precise and con-

textually rich image descriptions, which is an essential problem for applications like

autonomous navigation, information retrieval, accessibility for the blind, and human-

computer interaction. Traditional approaches frequently have trouble guaranteeing

fluency in the generated language, preserving contextual coherence, and capturing

fine-grained visual information. We suggest a framework that combines scene graphs

for contextual comprehension, VGG16 for visual feature extraction, and Bi-directional

Gated Recurrent Unit (BiGRU) for sequence modelling to address these problems.

While VGG16 collects deep visual features and BiGRU processes them in both direc-

tions to improve sequence learning, scene graphs improve the representation of object
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relationships. Standard evaluation measures, including BLEU, CIDEr, METEOR,

and ROUGE-L, are used to train and assess the model on benchmark datasets, in-

cluding MS COCO, Flickr8k, and Flickr30k. Results from experiments show that

our method performs better than current approaches, confirming the usefulness of

combining deep visual characteristics, scene graphs, and BiGRU for reliable image

description generation.

The key contributions of the chapter are mentioned below:

• The work suggests a novel approach that integrates scene graph, VGG16 and

BiGRU for image description generation. The strengths of each component

are combined in a novel way to improve contextual awareness and produce

descriptions for complex visual images that are more accurate and relevant.

• The combination of BiGRU, scene graph and VGG16 is useful to produce de-

scriptions that are more insightful and accurate as well as which closely match

the content of the images.

• The model performs well when dealing with complicated visual scenarios that

contain several objects, a variety of properties and sophisticated interactions.

It can capture fine-grained details and interactions between objects due to the

structured representation of the scene graph and bidirectional context under-

standing of BiGRU.

• On benchmark datasets including MS COCO, Flickr8k and Flickr30K, the per-

formance of the proposed framework is thoroughly evaluated, proving its supe-

riority to other state-of-the-art image description generation techniques. The

research offers brief performance comparisons and analysis, further supporting

the validation of the model.

• The model has an improved contextual comprehension of the descriptions, im-

proved description generation quality and is used for handling challenging sit-

uations appropriately. It represent a significant achievement in the field and
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opens the way for more complex and context-aware image description genera-

tion systems.

3.2 Literature Survey

Image description generation is an interdisciplinary research area combining com-

puter vision and Natural Language Processing (NLP). It involves recognizing objects

and representing their relationships through accurate and semantically meaningful

descriptions [16]. Jin Dai et al. [56] introduced a multi-modal attention-based model

using ResNet-101 for feature extraction and Faster R-CNN for object recognition.

A multi-head attention mechanism enhanced linguistic learning, while GPU parallel

computing accelerated training. Comparative studies demonstrated improved cap-

tioning accuracy.

Deep learning frameworks are widely used in computer vision and human-computer

interaction. Chen et al. [12] proposed a bi-directional mapping approach for images

and captions, integrating GRU with Bahdanau’s attention model. Attention mech-

anisms, crucial for image description, enable models to focus on specific image re-

gions and capture long-range dependencies [57]. Yucong et al. [58] combined BiGRU

with attention for image description, showing promising results but requiring further

optimization. Transformer models incorporating local graph semantic attention [59]

improved captioning by fusing semantic and spatial data, while Li et al. [60] enhanced

content and structural relations using geometric and semantic graphs.

Recent works integrate scene graphs for better object attribute representation [61].

Li et al. [62] developed a model combining object detection, scene graph construction,

and region-based description generation. Scene graphs are often paired with LSTMs,

as seen in Xu et al. [63], who proposed a framework for structured representations.

Yang et al. [64] introduced the Scene Graph Auto-Encoder (SGAE) to generate more

human-like descriptions. To enhance performance on MSCOCO, Zhao et al. [65] de-

veloped a Multi-Level Cross-Modal Alignment (MCA) module for aligning description

and image scene graphs while reducing noise. A transformer-based approach integrat-
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ing scene graphs [66] leveraged a Graph Convolutional Network (GCN) for improved

captioning, achieving state-of-the-art results on MSCOCO and Flickr30k.

This work extends existing research by developing a more effective image de-

scription model capable of handling complex visual scenes and improving structured

information extraction. The objective is to enhance description quality and adapt-

ability for real-world applications, pushing the boundaries of traditional approaches

for context-aware image understanding.

3.3 Proposed Architecture

The proposed research suggests a hybrid framework that combines the capabilities of

VGG16, scene graphs and BiGRU in order to address the limitations. Scene graphs

and bidirectional processing are used in the suggested model to better capture object

relationships and context. The approach also focuses on solving the difficulties in

creating thorough and semantically meaningful descriptions for images. The aim is

to optimize the model parameters in order to maximize the evaluation metrics that

measure the similarity between the descriptions that are generated and the descrip-

tions provided for reference. Figure 3-1 represents the proposed model framework.

In the proposed work, the model receives an input image as the initial stage. To

maintain uniformity in pixel values and dimensions, the image is firstly pre-processed.

The visual features of a high-level present inside the pre-processed images are then

extracted using a VGG16 model. The output of the features are then stored in a

fixed-size vector of dimensional features, which is used for capturing significant visual

patterns and representations in the images. The model creates a scene graph for

the images after receiving the visual attributes. Then, the scene graph and VGG16

features are integrated and a Bidirectional Gated Recurrent Unit (BiGRU) is fed

the output information. After going through the VGG16, scene graphs and BiGRU

layers to process the input image, the model generates a description for the image.

The overview of the components present in the framework are discussed.
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Figure 3-1: Structural representation of the proposed framework: The architecture
consists of three phases. In the initial phase, the VGG16 model extracts the high-
level visual characteristics from the pre-processed images. A scene graph creation
model for extracting visual attributes in the next step. Finally, feeding this combined
information into a Bidirectional Gated Recurrent Unit (BiGRU) for generating the
image descriptions using the dense layer of network.

3.3.1 VGG16 Feature Extraction:

The first part of the proposed work comprises of a VGG16 model of deep CNN

approach. This model has been previously trained for extracting detailed visual

information from the input images. We can get high-level representations that capture

significant visual information by utilising the hierarchical framework and learning

filters of VGG16. Figure 3-2 represents the basic architecture of VGG16-CNN model.

Initially, the VGG16 model of deep learning, is trained on ImageNet, and then it

is been loaded. The model is restructured by removing the last classification layer,

leaving the last layer as the output. This layer serves as the feature extractor for

the images. Each image is pre-processed to meet input requirements of the VGG16

model. They are resized to (224, 224) pixels and then converted into a numpy ar-

ray. Then, using the image IDs as the key, the VGG16 model is implemented on

the images for representing their features. These extracted features are then kept
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Figure 3-2: Basic architecture of VGG16 [67].

in a pickle file for further usage, preventing the need to recompute image features

during consecutive executions. The second-to-last layer of the VGG16 model is the

ultimate fully-connected layer, which is used for feature extraction. To decrease the

spatial dimensions of a feature map while preserving the essential information, the

layer of max-pooling is applied after the convolutional layers. The mathematical

representation for max-pooling layer is denoted by Equation (3.1).

𝑌𝑖 = max(Region of Interest(𝑋𝑖)) (3.1)

where, 𝑋𝑖 represents the output obtained from the previous layer or input data and

𝑌𝑖 reflects the result of the 𝑖th layer utilized in the max-pooling operation. The visual

components of the image are extracted using the VGG16 model, which also serves

as an encoder and are fed into the BiGRU model, which generates the descriptions,

word per word.

3.3.2 Scene Graphs:

The scene graph extractor is the second component of the proposed framework. In

scene graphs, objects are represented as the nodes and connections between them
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are represented as the edges. It employs a Faster R-CNN model which is already

pre-trained for identifying the objects contained in images and extract scene graphs

that include data on the labels and bounding boxes of the identified objects. A

PyTorch tensor is then created from the images. This tensor is further used to detect

objects, class labels and bounding boxes, by running it through the Faster R-CNN

model. By tracing bounding boxes and adding labels to the related images, we can

visually interpret the scene graphs. Figure 3-3 illustrates the structure of scene graph

generation from an input image.

Figure 3-3: Basic architecture of scene graph generation model: The model consists
of the pre-trained Faster R-CNN which is used for identifying the objects contained
in images and to generate scene graphs that include data on the labels and bounding
boxes of the identified objects.

From the architecture, it can be observed that, the scene graph represents the

relationships between different elements in the scene. First, faster R-CNN is used

to detect objects. Then, it uses a relationship prediction process, which helps to

determine the visual relationships between the objects that were discovered. By

considering visual characteristics and spatial arrangements, this method enables us

to deduce the relationships between objects within the scene. Here, the vertices (V)

for the image are: "Boy", "Baseball" and "Orange Uniform", whereas the attributes

(A) are "Throwing" and "Wearing". The final representation between these vertices

and attributes can be presented in the form of descriptions. The approach obtains

the use of specific semantic data by adding scene graphs, enabling more precise and

context-aware production of the descriptions. Equation (3.2) describes the general

structure of a scene graph:

𝐺 = (𝑉,𝐸,𝐴) (3.2)
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where, 𝑉 = 𝑣1, 𝑣2, ..., 𝑣𝑛 is the collection of nodes that represent the scene’s objects,

𝐸 = (𝑣𝑖, 𝑣𝑗) | 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 is the collection of edges and 𝐴 = 𝑎1, 𝑎2, ..., 𝑎𝑛 is the group of

attributes connected to each node 𝑣𝑖 ∈ 𝑉 .

In order to improve upon this even further, we use a BiGRU network that examines

the identified objects and the interactions between them in a sequential manner,

gathering contextual data and strengthening the scene graph. This approach enables

us to create a more detailed and context-aware representation of the scene.

3.3.3 BiGRU for Temporal Context:

After the extraction of the objects and features from the scene graphs as well as from

the feature vector of VGG16, they are passed through a Bidirectional Gated Recurrent

Unit (BiGRU). It is introduced as the third and the final component to capture

temporal dependencies in the generated descriptions of the proposed framework. The

model successfully learns the context-relevant details necessary for producing logical

and meaningful descriptions by analysing the sequence of it in both forward direction

as well as in the backward directions. BiGRU may consider the contextual data

from both sides of the input sequence due to its bidirectional processing. Figure 3-4

illustrates the architecture of BiGRU module used for description generation.

Figure 3-4: Architecture of BiGRU Module for Description Generation.

As observed, the BiGRU module computes the words predicted from the scene
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graphs and the words/token embeddings obtained from the reference file. Also, the

visual features are fed into BiGRU from the VGG16 module. Therefore, BiGRU is

considered to have two Gated Recurrent Unit (GRU) layers and processes the input

sequences in two different directions: one layer is used for processing the sequences of

features from an image, and the second layer processes the sequences obtained from

the words/token embeddings.

The working principle of the BiGRU module is explained as follows:

Forward Pass: During this pass of the BiGRU model, the input sequence is

processed forwardly from beginning to end. Equation (3.3) represents the working of

the forward pass.

ℎ𝑓𝑡 = (1− 𝑧𝑓𝑡) ⊙ ℎ𝑓(𝑡−1) + 𝑧𝑓𝑡 ⊙ ℎ̃𝑓𝑡 (3.3)

where, ℎ𝑓𝑡 denotes the forward hidden state at the time step 𝑡 which is a vector used

to represent the model’s internal memory. ⊙ denotes the multiplication which is done

element-wise and ℎ𝑓(𝑡−1) represents the previous hidden state. 𝑧𝑓𝑡 is the update gate

which is used for finding how much information the candidate activation produces

and it can be calculated by Equation (3.4):

𝑧𝑓𝑡 = 𝜎(𝑊𝑓𝑧 · [ℎ𝑓(𝑡−1)], 𝑥𝑡]) (3.4)

where, 𝑊𝑓𝑧 is the weight matrix applied to the concatenated input for update gate,

the Sigmoid activation function is abbreviated as 𝜎 and 𝑥𝑡 stands for the input frame

at time step 𝑡. ℎ̃𝑓𝑡 denotes the candidate activation which is a dynamic value that is

used to calculate the new hidden state. It can further be evaluated by Equation (3.5):

ℎ̃𝑓𝑡 = tanh(𝑊𝑓ℎ · [𝑟𝑓𝑡 ⊙ ℎ𝑓(𝑡−1), 𝑥𝑡]) (3.5)

where, 𝑊𝑓ℎ represents weight matrices for activation function in forward pass and

the non-linearity of the activation is provided by 𝑡𝑎𝑛ℎ function, which has the values

between -1 and 1. 𝑟𝑓𝑡 is used for determining what information from the previous

hidden state ℎ𝑓(𝑡−1) must be discarded or forgotten and it can further be calculated
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by Equation (3.6):

𝑟𝑓𝑡 = 𝜎(𝑊𝑓𝑟 · [ℎ𝑓(𝑡−1), 𝑥𝑡]) (3.6)

where, 𝑊𝑓𝑟 is the weight matrices for the reset gate.

Backward Pass: The input sequence is processed in the reverse order, that is,

from the end to the beginning, during the BiGRU model’s backward pass. Following

Equation (3.7) represents the working of the backward pass.

ℎ𝑏𝑡 = (1− 𝑧𝑏𝑡)⊙ ℎ𝑏(𝑡+1) + 𝑧𝑏𝑡 ⊙ ℎ̃𝑏𝑡 (3.7)

where, ℎ𝑏𝑡 represents the hidden state of backward direction at time step 𝑡, ⊙ de-

notes the multiplication which is done element-wise and ℎ𝑏(𝑡+1) represents the next

hidden state. 𝑧𝑏𝑡 is the update gate which finds how much information the candidate

activation yields and it can be calculated by Equation (3.8):

𝑧𝑏𝑡 = 𝜎(𝑊𝑏𝑧 · [ℎ𝑏(𝑡+1), 𝑥𝑡]) (3.8)

where, 𝑊𝑏𝑧 is the weight matrix applied to the concatenated input for update gate,

𝜎 is an abbreviation for the Sigmoid activation function and 𝑥𝑡 represents the input

frame at time step 𝑡. ℎ̃𝑏𝑡 denotes the candidate activation which is a dynamic value

that is used to calculate the new hidden state and it can further be evaluated by

Equation (3.9):

ℎ̃𝑏𝑡 = tanh(𝑊𝑏ℎ · [𝑟𝑏𝑡 ⊙ ℎ𝑏(𝑡+1), 𝑥𝑡]) (3.9)

where, 𝑊𝑏ℎ represents weight matrices for activation function in backward pass and

the non-linearity of the activation is provided by 𝑡𝑎𝑛ℎ function, which has the values

between -1 and 1. 𝑟𝑏𝑡 determines which information from the next hidden state ℎ𝑏(𝑡+1)

should be discarded or forgotten and it can further be calculated by Equation (3.10):

𝑟𝑏𝑡 = 𝜎(𝑊𝑏𝑟 · [ℎ𝑏(𝑡+1), 𝑥𝑡]) (3.10)

where, 𝑊𝑏𝑟 is the weight matrices for the reset gate.
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At each time step, the final hidden state is obtained by concatenating the forward

and backward hidden states: ℎ𝑡 = [ℎ𝑓𝑡, ℎ𝑏𝑡]. This enables the model to incorporate

data from both the present and the future, which is advantageous for the procedure

of creating image descriptions.

3.3.4 Description Generation Process:

After the layers of VGG16, scene graph and BiGRU comes the next phases in the

proposed model of generating image descriptions, i.e., to predict the descriptions for

given input images. The reference file for descriptions is an essential part of a descrip-

tion generation system for analysing the performance of the proposed model. The

ground-truth descriptions for each input image in the dataset are contained in this

file. A fundamental method utilised in NLP tasks, such as image description gener-

ation, is word embedding. It captures the semantic connections present between the

words by characterizing them as dense, continuous-valued vectors in a space of high-

dimension. This deep layer of network is used in the model to transform the input

sequence of word indices into dense word embedding which are transmitted into the

description generation model of BiGRU, allowing it to continuously and contextually

comprehend the meaning of words. The model creates predicted descriptions dur-

ing training and their quality is evaluated by comparing them with the descriptions

given in the reference file. Evaluation metrics of BLEU 1-4, CIDEr, METEOR and

ROUGE-L are employed to determine how closely the predicted descriptions match

the actual descriptions. These metrics make it possible to measure how effectively

the model incorporates the semantics and context of the images into the descriptions

it generates.

The Algorithm 3.1 for the proposed model with its score evaluation is described

below:
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Algorithm 3.1 Image Description Generation
1: procedure GenerateDescription(𝐼, 𝑆𝐺,𝐷𝑟𝑒𝑓 )
2: Input: Image 𝐼, Scene Graphs 𝑆𝐺, Reference Description 𝐷𝑟𝑒𝑓

3: Output: Description 𝐷
4: Preprocess the input image 𝐼 and extract visual features with the help of

VGG16 model which is pre-trained.
5: Extract object features and their relationship using the scene graphs 𝑆𝐺 util-

ising a faster R-CNN model.
6: Set the BiGRU model’s hidden states to their initial values to provide image

descriptions.
7: Set the initial input of BiGRU as a start token which is obtained from the

reference descriptions 𝐷𝑟𝑒𝑓 provided in the dataset.
8: Perform Word Embedding which is used for representing the words in the form

of vectors that are dense in a continuous semantic space.
9: 𝐷 ← empty description

10: while not maximum length or end token reached do
11: Pass visual features, object features, relationship features obtained from

VGG16 and 𝑆𝐺 along with the current input to the BiGRU model and update
the hidden states present inside it using the current input.

12: Generate the next token using the BiGRU and dense layer of network.
13: Append the generated token to the description 𝐷.
14: Set the current input to the generated token.
15: end while
16: Process the generated description 𝐷 by removing special tokens and converting

tokens to words.
17: Calculate evaluation metrics of: BLEU 1-4, CIDEr, METEOR and ROUGE-L

for the generated description 𝐷 and reference description 𝐷𝑟𝑒𝑓 .
18: Return the final generated description 𝐷 and the calculated scores.
19: end procedure

3.4 Experimental Analysis

For the evaluation of the proposed model, it requires a 64-bit version of Windows 11,

an Intel Core i7 processor, 16 GB of RAM and an NVIDIA TITAN RTX graphics

card with 24 GB of RAM. The suggested framework has been implemented using

Keras and TensorFlow 2.12. The proposed model is evaluated on three benchmark

datasets such as MS COCO, Flickr8k and Flickr30k.

Microsoft Common Objects in Context (MS COCO) dataset1: This

dataset is a well-known benchmark for image description generation tasks in the
1https://github.com/cocodataset/cocoapi
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domains of computer vision and NLP. It dataset involves 82,783 JPEG images and

has about 5 human-generated descriptions per image.

Flickr8k Dataset2: The Flickr8k dataset consists of 8092 JPEG images in total,

which come in various sizes and shapes. The remaining 1000 photos are for devel-

opment, with the remaining 6000 being used for training and testing. Figure 3-5

illustrates an image with five different reference descriptions.

Figure 3-5: A sample image from Flickr8k dataset

Flickr30k Dataset3: The Flickr30k dataset includes 5 human-annotated refer-

ence descriptions along with 31,783 images that are obtained from Flickr. Figure 3-6

is an example of the dataset.

Figure 3-6: A sample image from the Flickr30k dataset

The availability of multiple descriptions per image in the datasets allows for the

capture of inherent diversity and subjectivity in describing images. This enables

the evaluation of models in generating diverse and contextually relevant descriptions.

These datasets serve as valuable resources for training and evaluating our hybrid

model, allowing us to leverage their large-scale image-description pairs to learn robust
2https://www.kaggle.com/adityajn105/flickr8k
3https://www.kaggle.com/hsankesara/flickr-image-dataset
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visual representations and help improve the accuracy and quality of the predicted

descriptions.

3.4.1 Implementation Details:

The model of VGG16 has been used to load and pre-process the images in order to

extract visual features. Descriptions are pre-processed by converting them into lower-

case, removing digits and special characters. Tokenization has been performed using

the tokenizer object. Scene graphs are produced to further discover the objects and

their interactions present in the images. In the context of scene graphs, a JavaScript

Object Notation (.json) file is commonly used as a data format to store and represent

the structure and attributes of a scene graph. It is a communication format that is

easy to read and write for people as well as easy for programmers to understand and

generate.

The proposed architecture consists of a bidirectional GRU layer to capture contex-

tual information, with image features and word embedding concatenated to combine

visual and textual information. The layers of the model are fully connected, pooling

and convolutional layers. The input images have a shape of (batch_size, 224, 224, 3)

and the output shape varies for each layer. Evaluation is conducted on a separate test

set, and predictions have been made by feeding images through the trained model.

Different evaluation scores are obtained to assess the standard of the produced de-

scriptions. Table 3.1 provides the details of hyper-parameters used for the model that

is suggested in the proposed work.

Table 3.1: Hyper-Parameters used for the Experimental Analysis

Batch Size 32
Number of Epochs 75
Dropout 0.5
Optimizer Adam
Loss Function Categorical Cross-Entropy
Datasets Used MS COCO, Flick8k and Flickr30k
Evaluation Metrics BLEU, METEOR, CIDEr and Rouge-L
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3.4.2 Performance Measures and Evaluation

After the generation of descriptions for the given image dataset, the main parameters

used in the image description generator are the evaluation metrics: BLEU 1-4, CIDEr,

METEOR, and ROUGE-L. The following scores are primarily utilized to evaluate the

quality of the descriptions generated by the model. They are also used to predict the

highest correlations between the descriptions and to analyse their accuracy.

Bilingual Evaluation Understudy Score (BLEU): By evaluating n-gram

overlap, the BLEU score calculates how similar the created descriptions are to the

reference phrases. It can be calculated using the following Equation (3.11):

𝐵𝐿𝐸𝑈𝑠𝑐𝑜𝑟𝑒 = 𝐵𝑃 * 𝑒𝑥𝑝(1/𝑁 * 𝑠𝑢𝑚(𝑙𝑜𝑔(𝑃𝑛))) (3.11)

where, N is the total number of accurately matched values of n-grams between the

reference as well as the generated descriptions is divided by the total number of n-

grams present in the generated descriptions which are used for determining 𝑃𝑛. The

Brevity Penalty (BP) term adjusts the score by contrasting the length of the predicted

candidate descriptions with the typical length of the given reference descriptions.

Following Equation (3.12) can be used to compute it:

𝐵𝑃 =

⎧⎪⎨⎪⎩exp
(︀
1− 𝑟

𝑐

)︀
if 𝑐 > 𝑟

1 if 𝑐 ≤ 𝑟

(3.12)

where, r is the length of the given reference descriptions, and c is the length of

candidate description. This score is obtained in the range of 0 to 1. It gives us

a way to determine how well a reference description matches the set of generated

descriptions from a particular model.

Consensus-based Image Description Evaluation (CIDEr): The CIDEr au-

tomatic evaluation metric is created especially for activities involving the creation of

image descriptions. The n-gram weights employed by CIDEr are inversely connected

to their frequency in a corpus between the predicted description and reference de-

scriptions and they are utilised to determine a weighted total of similarity scores.
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The following Equation (3.13) is used to determine the CIDEr score:

𝐶𝐼𝐷𝐸𝑟 =
∑︁
𝑖

𝑤𝑖 × 𝑠𝑖
𝑁

(3.13)

where 𝑖 stands for each n-gram, 𝑤𝑖 is its given weight, 𝑠𝑖 is its similarity score and 𝑁

is the total overall number of n-grams taken into account.

Metric for Evaluation of Translation with Explicit ORdering (METEOR):

By matching up the generated description and the reference description at the word

level, METEOR takes into account both precision and recall. In the case of precision

and recall, the harmonic mean is modified, and the final score is computed using

a penalty term for unaligned words. The expected and reference descriptions must

exactly match the METEOR score, which ranges from the value of 0 to 1.

The METEOR score value is calculated by following Equation (3.14):

𝑀𝐸𝑇𝐸𝑂𝑅 = (1− 𝛼)× 𝑃 + 𝛼×𝑅 (3.14)

where the factor 𝛼 balances the contribution of recall and precision. Following

Equation (3.15), is used for calculating the accuracy (P) and recall (R):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃 ) =
matching words
predicted words

, 𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
matching words
reference words

(3.15)

Recall-Oriented Understudy for Gisting Evaluation (ROUGE): he longest

common sub-sequence, skip-bigram statistics, and n-gram co-occurrence statistics are

just a few of the approaches used for measuring the overlap occurring between the

predicted phrases and the descriptions of reference in the Rouge-L score. This score

ranges from the value of 0 to 1, with 1 denoting an exact match between the reference

and predicted phrases for the relevant n-gram or sequence.

Between the predicted description and the reference descriptions, the Rouge-L

score is mainly used for calculating the Longest Common Sub-sequence (LCS) in any
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description and is denoted by Equation (3.16):

𝑅𝑜𝑢𝑔𝑒− 𝐿 =
LCS

reference words
(3.16)

These performance measures provide different perspectives on the quality of gen-

erated descriptions, including linguistic similarity, consensus with reference descrip-

tions, and content overlap. They are frequently used to assess and compare models

for creating visual descriptions.

3.4.3 Ablation Study:

In order to assess the respective contributions of scene graphs, the BiGRU layer,

and the VGG16 visual features to the hybrid model for the generation of image de-

scriptions, we conducted an ablation study. This study set out to systematically

assess effect of each component by evaluating how it affects the performance mea-

sures. A thorough study of the outcomes from the MS COCO dataset within the

framework of the work proposed is shown in Table 3.2. It presents various evalua-

tion metrics for different models applied to the input image. The table presents an

Table 3.2: Ablation Study: Performance comparison of different components on MS
COCO dataset

Model Configuration B-1 B-2 B-3 B-4 C M R-L
VGG16 + GRU without Scene Graphs 0.598 0.471 0.426 0.291 0.834 0.171 0.337
VGG16 + BiGRU without Scene Graphs 0.714 0.522 0.489 0.316 0.947 0.213 0.415
VGG16 + Scene Graph + GRU 0.765 0.692 0.653 0.507 1.106 0.254 0.532
VGG16 + Scene Graph + BiGRU (Proposed) 0.816 0.785 0.727 0.561 1.281 0.293 0.599

ablation study evaluating different model configurations on the MS COCO dataset

for image description generation. Performance is measured using standard metrics

including BLEU, CIDEr, METEOR, and ROUGE-L. The proposed model, VGG16

+ Scene Graph + BiGRU, outperforms all others, achieving the highest scores across

BLEU-1 to BLEU-4 (0.816, 0.785, 0.727, 0.561), CIDEr (1.281), METEOR (0.293),

and ROUGE-L (0.599), indicating its strong alignment with human-annotated cap-

tions. Intermediate configurations such as VGG16 + BiGRU without scene graph and
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VGG16 + Scene Graph + GRU also demonstrate improved performance, highlighting

the individual contributions of scene understanding and bidirectional sequence mod-

elling. The baseline VGG16 + GRU without scene graph model records the lowest

scores, emphasizing the benefit of integrating scene graphs and a BiGRU decoder

for generating more contextually rich and semantically accurate image descriptions.

The graphical representation of the comparison results from the MS COCO dataset

is shown in Figure 3-7.

Figure 3-7: Comparative graphical depiction of the results obtained for various models
evaluated on MS-COCO dataset

Table 3.3 displays a comprehensive analysis of the results obtained from the

Flickr8k dataset in the context of the proposed work. It presents various evalua-

tion metrics for different models applied to the input image. The table summarizes

Table 3.3: Ablation Study: Performance comparison of different components on
Flickr8k dataset

Model Configuration B-1 B-2 B-3 B-4 C M R-L
VGG16 + GRU without Scene Graph 0.554 0.322 0.306 0.278 0.948 0.203 0.398
VGG16 + BiGRU without Scene Graph 0.554 0.322 0.306 0.278 1.005 0.237 0.435
VGG16 + Scene Graph + GRU 0.635 0.487 0.439 0.356 1.084 0.268 0.507
VGG16 + Scene Graph + BiGRU (Proposed) 0.683 0.587 0.483 0.397 1.118 0.298 0.545

the performance of various models for image description generation on the Flickr8k

dataset. VGG16 + Scene Graphs + BiGRU achieved the highest BLEU-1 to BLEU-4

scores (0.683, 0.587, 0.483, 0.397), demonstrating its superior ability to produce de-

scriptions closely aligned with human references. While VGG16 + BiGRU without
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scene graph also performed well, it did not surpass the proposed model, achieving

competitive scores, particularly in BLEU-1 (0.554) and BLEU-2 (0.322). The in-

corporation of scene graphs and BiGRU layers in the proposed model contributed

significantly to its performance. In contrast, models such as VGG16 + Attention,

VGG16 + LSTM, and ResNet50 + Bi-LSTM exhibited weaker performance across

most metrics. Overall, the proposed model excels in generating accurate, relevant,

and well-structured descriptions on the Flickr8k dataset. Figure 3-8 represents the

graphical demonstration of the comparative results obtained on the Flickr8k dataset.

Figure 3-8: Comparative graphical depiction of the results obtained for various models
evaluated on Flickr8k dataset

The analysis of the results from the Flickr30k dataset using various metrics is

shown in Table 3.4. The table presents the results of an ablation study on the

Table 3.4: Ablation Study: Performance comparison of different components on
Flickr30k dataset

Model Configuration B-1 B-2 B-3 B-4 C M R-L
VGG16 + GRU without Scene Graph 0.572 0.338 0.316 0.214 0.894 0.253 0.245
VGG16 + BiGRU without Scene Graph 0.572 0.338 0.316 0.214 0.894 0.253 0.245
VGG16 + Scene Graph + GRU 0.640 0.450 0.408 0.293 0.957 0.264 0.300
VGG16 + Scene Graph + BiGRU (Proposed) 0.675 0.546 0.465 0.339 1.006 0.287 0.345

Flickr30k dataset for image description generation. The proposed model, VGG16

+ Scene Graph + BiGRU, outperformed all other configurations, achieving the high-

est BLEU-1 to BLEU-4 scores (0.675, 0.546, 0.465, 0.339), CIDEr (1.006), METEOR
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(0.287), and Rouge-L (0.345). This highlights the effectiveness of integrating scene

graphs with BiGRU layers in generating high-quality, contextually accurate descrip-

tions. In contrast, VGG16 + GRU and VGG16 + BiGRU, both without scene graphs,

showed identical performance with lower scores across all metrics. VGG16 + Scene

Graph + GRU also showed improvement over these models, with better performance

in BLEU-1, BLEU-2, BLEU-3, and CIDEr, though still falling short of the pro-

posed model. Overall, the inclusion of scene graphs alongside BiGRU significantly

enhances performance, as demonstrated by the results of the proposed approach. Fig-

ure 3-9 represents the graphical demonstration of the comparative results obtained

on Flickr30k dataset.

Figure 3-9: Comparative graphical depiction of the results obtained for various models
evaluated on Flickr30k dataset

The following Figure 3-10 depicts the Correlation Heatmap of Evaluation Met-

rics for MSCOCO, Flickr8k and Flickr30 dataset in 3-10(a), 3-10(b) and 3-10(c),

respectively. Across the MS COCO, Flickr30k, and Flickr8k datasets, the correla-

tion heatmaps for the evaluation metrics provide valuable insight on the connections

between different performance metrics that are utilised to assess the models. The

heatmaps show how different metrics are related to each other, including ROUGE-L

(R-L), METEOR (M), CIDEr (C), and BLEU scores (B-1 to B-4). Strong positive

correlations between the BLEU scores for all three datasets show that models that

do well on one BLEU metric also typically perform well on the others. This is to be

expected because BLEU-1 to BLEU-4 measure accumulated n-gram precision. CIDEr
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Figure 3-10: Representation of the Correlation Heatmap of Evaluation Metrics for
MSCOCO, Flickr8k and Flickr30 dataset.

has a moderate to strong connection across datasets, with higher-order BLEU scores

(B-3, B-4), indicating that models with more thorough context capture are likely to

score higher on CIDEr. Also, the CIDEr and BLEU metrics show moderately good

correlations with METEOR and ROUGE-L, showing their complementary roles in

assessing model performance. Overall, the heatmaps show how the model evaluation

is consistent across different metrics and datasets, validating the robustness and abil-

ity to generalize the performance of the suggested model over a range of evaluation

criteria.

The qualitative word-by-word comparison of predictions of several models for the

Flickr8k dataset is presented in Table 3.5. The significance of the suggested VGG16 +

Scene Graphs + BiGRU model is demonstrated by a word-by-word comparison of the

predicted descriptions generated by different models on the Flickr8k dataset. While

VGG16 + Attention and VGG16 + LSTM can both predict a generic description

such as "Dog in grass" and "Dog running in grass," respectively, for the first image,

they are not very detailed when it comes to important details. A more accurate

prediction, "Puppy running across grass," is produced by VGG16 + BiGRU and is

more in line with the actual description. But with "Puppy running across the grass

with yellow toy," the suggested model accurately and thoroughly captures all the

important elements. Likewise, with regard to the second image, the models VGG16

+ Attention and VGG16 + LSTM predict, respectively, "Men in White Shirt" and

"Group of Men in White Shirt," despite the absence of any contextual information
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Table 3.5: Quantitative Results Obtained on Flickr8k Dataset

Test Image Ground Truth Descriptions Model: Predicted Descrip-
tion

1. A cute puppy fetches a yellow
ring chew toy in the yard.
2. A puppy is running across
the grass with a yellow toy in its
mouth.
3. A tan dog is running through
the grass with a yellow toy in its
mouth.
4. A tan dog with a red collar runs
with a yellow toy in its mouth.
5. Fluffy golden puppy holding yel-
low rings in mouth while running
through grass.

1. VGG16 + Attention:
Dog in grass.
2. VGG16 + LSTM: Dog
running in grass.
3. VGG16 + BiGRU:
Puppy running across grass.
4. VGG16 + Scene
Graphs + BiGRU (Pro-
posed): Puppy running across
the grass with yellow toy.

1. A group of men in white shirts
and dark shorts are running on an
athletic field.
2. A group of people in matching
uniforms jogging around a track.
3. A group of soccer players run a
lap.
4. A team of men jog around or-
ange cones.
5. A team of soccer players in
white strips are running around
cones on a sports field.

1. VGG16 + Attention:
Men in white shirt.
2. VGG16 + LSTM: Group
of men in white shirt.
3. VGG16 + BiGRU:
Group of men in white run-
ning.
4. VGG16 + Scene
Graphs + BiGRU (Pro-
posed): Group of players in
white shirt running on field.

1. A man surfing in the ocean.
2. A surfer catches a wave and
tries to hold on as the surf collapses
around him.
3. A surfer is riding a surfboard on
top of a breaking wave.
4. A surfer is riding a wave in a
large body of water.
5. A surfer on a wave.

1. VGG16 + Attention:
Man in ocean.
2. VGG16 + LSTM: Surfer
riding ocean.
3. VGG16 + BiGRU: Man
riding surfboard.
4. VGG16 + Scene
Graphs + BiGRU (Pro-
posed): Surfer riding surf-
board in wave of water.
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regarding the activity and location. The "Group of men in white running" from

VGG16 + BiGRU is still lacking in context, but it is more pertinent. On the other

hand, the "Group of players in white shirt running on pitch" in the suggested model

accurately depicts the surroundings, the individuals, and their actions. In the third

image, VGG16 + Attention yields the ambiguous prediction "Man in ocean," but

VGG16 + LSTM and VGG16 + BiGRU provide some specificity but exclude crucial

meanings like "wave." With a thorough comprehension of the image content, the

predicted image, "Surfer riding surfboard in wave of water," accurately combines all

necessary components.

Through efficient object relationships, activity detection, and scene context cap-

ture, the suggested VGG16 + Scene Graphs + BiGRU model outperforms the baseline

models, consistently yielding more detailed and contextually accurate descriptions.

3.4.4 Result and Analysis:

We use MS COCO, Flickr8k and Flickr30k as the benchmark datasets for the pro-

posed architecture. The following Table 3.6 represents the results obtained on the

sample input images, their scene graphs, obtained descriptions along with reference

description and finally their predicted scores of BLEU 1-4 (B-1 to B-4), CIDEr (C),

METEOR (M) and ROUGE-L (R-L), for MS COCO dataset.

Table 3.7 denotes the analysis of results obtained for Flickr8k dataset. It shows

the predicted descriptions and the obtained metrics of evaluation.

Table 3.8 depicts the outputs obtained for the image samples from Flickr30k

dataset. It shows the predicted descriptions and the obtained scores of evaluation.

The final outcomes from a suggested framework for producing image descriptions

for the three datasets are shown in Table 3.9. As it is already noted, several metrics

are employed to evaluate the model’s effectiveness, that includes BLEU 1-4 (B-1 to B-

4), CIDEr (C), METEOR (M) and ROUGE-L (R-L). The following average overall

results are obtained using the MS COCO dataset: BLEU 1-4: 0.816, 0.785,0.727

and 0.561; CIDER: 1.281; METEOR: 0.293 and ROUGE-L: 0.599. On Flickr8k

dataset, the average overall scores are obtained to be: CIDER: 1.118; METEOR:
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Table 3.6: Results Obtained on MS COCO Dataset

Input Image Obtained
Scene Graph

Descriptions Scores Ob-
tained

Reference:
A group of three people skiing in
a snow-covered place.
Predicted:
A group of people skiing.

B-1: 0.789
B-2: 0.652
B-3: 0.623
B-4: 0.435
C: 0.786
M: 0.187
R-L: 0.532

Reference:
A red double-decker bus driving
down a street.
Predicted:
A red bus on the street.

B-1: 0.563
B-2: 0.543
B-3: 0.452
B-4: 0.394
C: 0.678
M: 0.127
R-L: 0.389

Reference:
A large passenger jet flying
through the sky.
Predicted:
A jet flying in the sky.

B-1: 0.798
B-2: 0.697
B-3: 0.602
B-4: 0.523
C: 0.923
M: 0.211
R-L: 0.378

Reference:
Two plates of bread, a cup of cof-
fee, and a glass of water is kept
on the brown table.
Predicted:
A cup of coffee on the table.

B-1: 0.559
B-2: 0.536
B-3: 0.443
B-4: 0.397
C: 0.875
M: 0.128
R-L: 0.352

Reference:
A boy in a white t-shirt and blue
shorts is kicking a soccer ball on
the ground.
Predicted:
A boy in a white t-shirt is kicking
a soccer ball.

B-1: 0.801
B-2: 0.752
B-3: 0.694
B-4: 0.512
C: 1.006
M: 0.264
R-L: 0.547
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Table 3.7: Results Obtained for Flickr8k Dataset

Input Image Obtained
Scene Graph

Descriptions Scores Ob-
tained

Reference:
1. A child in a pink dress is climb-
ing up a set of stairs in an entry-
way.
2. A girl going into a wooden
building.
3. A little girl climbing into a
wooden playhouse.
4. A little girl climbing the stairs
to her playhouse.
5. A little girl in a pink dress go-
ing into a wooden cabin.
Predicted:
A little girl climbing wooden
stairs.

B-1: 0.628
B-2: 0.534
B-3: 0.436
B-4: 0.388
C: 1.003
M: 0.287
R-L: 0.523

Reference:
1. A brown and white dog holds
a tennis ball in his mouth.
2. A dog has a tennis ball in its
mouth.
3. A golden-colored dog, with his
eyes alert, holds a brightly col-
ored tennis ball in his mouth.
4. A tan dog is playing with the
green ball.
5. Dog running with a tennis ball
in its mouth.
Predicted:
A dog with a tennis ball.

B-1: 0.676
B-2: 0.567
B-3: 0.412
B-4: 0.348
C: 0.972
M: 0.241
R-L: 0.457

Reference:
1. A group of people jump in the
sand at the beach.
2. A group of teenagers is jump-
ing in the air on the beach.
3. A group of young people jump
up in the air while on the beach.
4. A group of young people pos-
ing in the air on a sandy beach.
5. Seven people are jumping in
the air along the shore.
Predicted:
A group of people on the beach.

B-1: 0.568
B-2: 0.437
B-3: 0.264
B-4: 0.156
C: 0.785
M: 0.142
R-L: 0.295
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Table 3.8: Results Obtained for Flickr30k Dataset

Input Image Obtained
Scene Graph

Descriptions Scores Ob-
tained

Reference:
1. A child in a blue shirt and or-
ange swim trunks is underwater.
2. A child smiling at the camera
while swimming underwater.
3. A child swims underwater in a
pool.
4. A red-haired girl in a blue T-
shirt is swimming underwater in
a pool.
5. Child dressed in blue is smiling
underwater.
Predicted:
A child swims in a pool.

B-1: 0.582
B-2: 0.543
B-3: 0.432
B-4: 0.335
C: 0.997
M: 0.237
R-L: 0.312

Reference:
1. A cyclist is riding a bicycle on
a curved road up a hill.
2. A man in aerodynamic gear
riding a bicycle down a road
around a sharp curve.
3. A man on a mountain bike is
pedaling up a hill.
4. Man bicycles up a road, while
cows graze on a hill nearby.
5. The biker is riding around a
curve in the road.
Predicted:
A man is riding a bicycle on a hill.

B-1: 0.342
B-2: 0.235
B-3: 0.154
B-4: 0.116
C: 0.775
M: 0.158
R-L: 0.165

Table 3.9: Results obtained from the proposed model

Dataset B-1 B-2 B-3 B-4 C M R-L
MS COCO 0.816 0.785 0.727 0.561 1.281 0.293 0.599
Flickr8k 0.683 0.587 0.483 0.397 1.118 0.298 0.545
Flickr30k 0.675 0.546 0.465 0.339 1.006 0.287 0.345
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0.298; ROUGE-L: 0.545; BLEU-1: 0.683; BLEU-2: 0.587; BLEU-3: 0.483; BLEU-4:

0.397. The recommended model also did well on the Flickr30k dataset, obtaining the

following average overall scores: CIDER: 1.006, METEOR: 0.287, ROUGE-L: 0.345,

BLEU-1: 0.675, BLEU-2: 0.546, BLEU-3: 0.465, BLEU-4: 0.339. The graphical

depiction of the outcomes is shown in Figure 3-11.

Figure 3-11: Graphical representation of the evaluation scores obtained from
MSCOCO, Flickr8k and Flickr30k dataset for the proposed framework.

These scores evaluate the model’s performance in generating descriptions that

align well with the reference descriptions. Higher scores indicate a higher degree of

similarity and quality in the generated descriptions.

3.4.5 Comparison With Other State-of-the-art Methods:

A comprehensive generalization study has been conducted to evaluate the proposed

hybrid model’s capacity to generate image descriptions on the three datasets: MSCOCO,

Flickr8k and FLickr30k. The primary objective of the suggested study is to assess

the model’s performance throughout a range of visual domains and datasets, focusing

on its ability to generate accurate and considerate descriptions outside of the training

set. Table 3.10 presents a comparative analysis of various image description genera-

tion models on the MS COCO dataset. It includes evaluation metrics such as BLEU,

METEOR, CIDEr and Rouge-L to measure the performance of different models.
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Table 3.10: Comparative Analysis of Image Description Generation Models on MS
COCO Dataset

Model BLEU METEOR CIDEr Rouge-L
Neural Image Caption (NIC) + Attention [68] 0.625 0.195 0.660 -
LSTM-A [25] 0.787 0.270 1.160 0.564
Graph Convolutional Networks(GCN) [52] 0.799 0.282 1.231 0.579
GCN + LSTM [69] 0.774 0.281 1.170 0.572
GCN + LSTM + Ruminant Decoder [70] 0.343 0.264 1.061 0.552
LSTM + BiGRU [11]
1. Soft Attention 0.707 0.239 - -
2. Hard Attention 0.718 0.203 - -
Scene Graph Auto-Encoder (SGAE) [64] 0.808 0.284 1.278 0.586
Transformer Model [27] 0.810 0.291 1.274 0.592
Multi-level Cross-modal with scene graphs [65] 0.785 0.282 0.117 0.576
Scene graphs with Transformer [66] 0.802 0.291 1.216 0.599
VG-Cap [60] 0.792 0.290 1.255 0.591
VGG16 + Scene Graphs + BiGRU (Proposed) 0.816 0.293 1.281 0.599

Using BLEU, METEOR, CIDEr, and Rouge-L metrics, the table provides a com-

parative examination of several image description-generating methods on the MS

COCO dataset. With the highest scores for all metrics—BLEU (0.816), METEOR

(0.293), CIDEr (1.281), and Rouge-L (0.599)—the proposed model stands out as hav-

ing the best ability to produce descriptions that closely match the reference texts in

terms of both language diversity and content relevance. Several other models, such

as Transformer Model [27] and Scene Graph Auto-Encoder (SGAE) [64], also per-

form well and rank among the best models. But other models, such as LSTM +

BiGRU with Soft Attention and Hard Attention [11] and GCN + LSTM + Ruminant

Decoder [70], perform comparably worse on several measures, suggesting room for

improvement. Also, multi-level cross-modal with scene graph [65], scene graphs with

transformer model [66] and VG-Cap [60] highlighted comparable scores. As a result,

the proposed model is the most effective image description generation model on the

MS COCO dataset, outperforming other models across all examined metrics. This

examination offers insightful information about the performance and capabilities.

Table 3.11 presents a comparative analysis of various image description generation

models on the Flickr8k dataset. It offers evaluation metrics for evaluating how well

various models perform, including BLEU, METEOR, CIDEr and Rouge-L. Using

BLEU, METEOR, CIDEr, and Rouge-L as assessment metrics, the table compares
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Table 3.11: Comparative Analysis of Image Description Generation Models on
Flickr8k Dataset

Model BLEU METEOR CIDEr Rouge-L
VGG16 + Attention [71] 0.630 - - -
Neural Image Caption (NIC) + Attention [68] 0.579 - - -
LSTM + BiGRU [11]
1. Soft Attention 0.670 0.189 - -
2. Hard Attention 0.670 0.203 - -
g-LSTM [72] 0.635 0.203 - -
Visual enhanced gLSTM [73] 0.650 0.205 0.546 0.518
Transformer based local graph semantic attention (TLGSA) [59] 0.659 - 0.471 0.465
VGG16 + Scene Graphs + BiGRU (Proposed) 0.683 0.298 1.118 0.545

several image description generation methods on the Flickr8k dataset. With the

highest scores for BLEU (0.683), METEOR (0.298), CIDEr (1.118), and Rouge-L

(0.545) among all metrics, the proposed model outperforms the others in producing

descriptions that are both linguistically varied and pertinent to the content. Other

models, such as Transformer based local graph semantic attention (TLGSA) [59]

and Visual enhanced gLSTM [73], perform competitively, especially in BLEU and

METEOR, but not well enough in CIDEr and Rouge-L scores. LSTM + BiGRU [11]

is one model that uses both soft and hard attention processes. It performs moderately,

suggesting that there is an opportunity for improvement in terms of producing detailed

and precise visual descriptions. This analysis offers important information on the

performance and capabilities of alternative models, assisting researchers in selecting

the optimum model for image description generation tasks on the Flickr8k dataset.

Table 3.12 compares various image description generation models using the Flickr30k

dataset. The analysis includes metrics for evaluating the models’ performance, such

as BLEU, METEOR, CIDEr, and Rouge-L.

Table 3.12: Comparative Analysis of Image Description Generation Models on
Flickr30k Dataset

Model BLEU METEOR CIDEr Rouge-L
Neural Image Caption (NIC) + Attention [68] 0.573 - - -
LSTM + BiGRU [11]
1. Soft Attention 0.667 0.185 - -
2. Hard Attention 0.669 0.184 - -
Adaptive Attention [74] 0.667 0.204 0.531 -
Topic Oriented Captioning [75] 0.646 0.192 0.396 0.322
Transformer based local graph semantic attention (TLGSA) [59] 0.643 - 0.450 0.289
VGG16 + Scene Graphs + BiGRU (Proposed) 0.675 0.287 1.006 0.345
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Utilizing the Flickr30k dataset, the table presents a comparative examination of

many image description generation models with the help of the BLEU, METEOR,

CIDEr, and Rouge-L metrics. With the greatest scores in BLEU (0.675), METEOR

(0.287), CIDEr (1.006), and Rouge-L (0.345), the proposed model stands out and

demonstrates its strong capacity to produce meaningful and accurate descriptions

that closely match the reference texts. While they do not outperform the proposed

model in all metrics, other models such as Transformer-based local graph semantic

attention (TLGSA) [59], also perform well. Meanwhile, models like Topic Orien-

tated Captioning [75] and Adaptive Attention [74] perform competitively, especially

in BLEU and METEOR, but fall short in CIDEr and Rouge-L scores for Flickr30k

dataset. Consequently, the proposed model outperforms other state-of-the-art models

in each evaluation metric, demonstrating that it is the best model for creating image

descriptions for all three datasets.

3.5 Conclusion

In this chapter, we introduced a unified hybrid framework that combines scene graphs,

BiGRU, and VGG16 to generate image descriptions. This approach makes exten-

sive use of scene graphs to capture semantic links, BiGRU to produce coherent and

contextually rich descriptions, and VGG16 for robust visual feature extraction. The

algorithm we used performs exceptionally well in generating accurate and comprehen-

sive descriptions for a variety of photos, according to the evaluation. Even with these

encouraging outcomes, there are still a number of directions that could be explored.

Incorporating attention techniques to improve the model’s emphasis on particular im-

age regions or objects could be beneficial for future studies. This would improve the

quality of output descriptions by giving distinct visual components varied weights.

Furthermore, using transformer-based models like BERT, GPT, or Transformer may

strengthen the model’s comprehension of context and its capacity to capture long-

range dependencies.
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Accuracy
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Description Generation with Transformer-based Fusion Network and Dual

Attention Mechanism".

Archived at: http://arxiv.org/abs/2504.16761. Communicated in: IEEE

Transactions on Human-Machine Systems, Impact Factor-3.5. (1st Major

Revision Submitted)

4.1 Introduction

While the previous approach showed significant improvements in identifying object

relationships and producing logical descriptions of images, some drawbacks remained.

The model’s capacity to generalise across complex and varied images was limited by

its dependence on specified scene graphs and successive processing. Furthermore, the

depth of generated descriptions was limited by the constraints of conventional CNN-

RNN architectures in capturing global context and long-range dependencies. This

chapter introduces Tri-FusionNet, a transformer-based architecture that combines a
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Vision Transformer (ViT) encoder with dual attention, a RoBERTa decoder, and

a CLIP integration module to enhance image description creation. By using con-

trastive learning to improve vision-language alignment and self-attention processes to

improve contextual comprehension, Tri-FusionNet produces more accurate, detailed,

and semantically relevant captions. Each component’s contribution is examined us-

ing an ablation research, which shows how dual attention, CLIP, and ViT affect the

overall performance of the model. This chapter discusses Tri-FusionNet’s architec-

ture, training procedure, and evaluation on MS COCO, Flickr8k, and Flickr30k while

showcasing the model’s competitive performance versus state-of-the-art models using

metrics including BLEU, CIDEr, METEOR, and ROUGE-L.

The major contribution of the proposed chapter are as follows:

• Development of Tri-FusionNet, a novel image description generation model that

advances multi-modal approaches for producing precise and contextually rich

descriptions.

• Integration of multiple components to enhance the model’s fine-tuning capabil-

ities, improving the overall efficacy of image description generation.

• Combination of a ViT encoder with dual attention, a RoBERTa decoder, and a

CLIP integration module to enable efficient interaction between different modal-

ities for more accurate and contextually appropriate descriptions.

• Effective handling of challenges posed by various benchmark datasets, demon-

strating adaptability to dataset-specific characteristics and the potential to

achieve new state-of-the-art results.

4.2 Literature Survey

Autonomous image description systems have been studied using deep learning frame-

works. The domains of computer vision and human-computer interaction make sub-

stantial use of these frameworks. Because the transformer is efficient at gathering
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long-range dependencies and modelling sequential data, it shows potential for multi-

modal tasks like creating visual descriptions. Cornia et al. [27] introduced M2, a

Meshed Transformer with Memory, for image description generation, while Li et

al. [28] created the EnTangled Attention (ETA) Transformer, demonstrating state-of-

the-art performance. Additionally, Yu et al. [29] presented a Multi-modal Transformer

(MT) model that allows for complex multi-modal reasoning and accurate description

development by storing intra-modal and inter-modal interactions in a single attention

block.

In order to achieve competitive performance without task-specific training, Rad-

ford et al. [76] showed that pre-training a model to predict image-caption pairs using

a dataset of 400 million (image, text) pairs allows zero-shot transfer to diverse down-

stream tasks. Using distinct task IDs, MiniGPT-v2 is a unified model created to man-

age a variety of vision-language tasks, including as visual question responding, visual

grounding, and image description, to enhance learning effectiveness and performance

on several benchmarks [77]. SAMT-Generator, a multi-stage transformer feature

augmentation network with second attention and Maxout decoding, was proposed by

Yang et al. [78]. State-of-the-art results were obtained by integrating spatially aware

pseudo-supervised and scale-wise reinforcement modules in a unique approach to the

𝑆2 transformer. [79]. Using HAPE positional encoding, LSM, RNorm function,

and LFE, Yang et al. [80] introduced CA-Captioner, a fully Transformer-based image

captioning model that improves performance, particularly in terms of BLEU4 and

CIDEr measures.

The double-attention architecture that Parvin et al. [81] presented performed bet-

ter than the most advanced models. PMA-Net [82] incorporates prototypical memory

vectors into Transformer-based image captioning, achieving a good CIDEr boost, by

using prior activations to enhance semantic attention and performance. HAAV [83]

introduces a novel approach to image captioning by treating heterogeneous encod-

ings (such visual and textual) as enhanced views, employing a hierarchical decoder

to adaptively weigh views, and a shared encoder with contrastive loss to enhance

representation quality. Notable CIDEr improvements were achieved. Yao et al. [84]
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developed DualVision Transformer (Dual-ViT), which offers improved accuracy with

efficient token vector compression. In order to achieve state-of-the-art performance

for picture description generation, Spatial Pyramid Transformer (SPT) was primarily

utilized for adaptive semantic interaction across grid resolutions, maintaining spatial

and fine-grained information.

Despite advances in medical imaging and natural language processing (NLP) with

models such as the ETA Transformer, Multimodal Transformer (MT), and Dual Level

Collaborative Transformer (DLCT), the difficulties in describing images still exist.

These difficulties include the lack of global information that is essential for scene

understanding and the semantic gap between language and vision. To solve these

problems, the proposed Tri-FusionNet combines vision transformer(ViT) with dual-

attention, RoBERTa, and CLIP transformers. It is feasible to improve comprehension

of visual content using CLIP for visual-textual fusion, RoBERTa for textual interpre-

tation, and ViT for picture embedding.

4.3 Proposed Architecture

The proposed work presents Tri-FusionNet, which combines a dual attention mecha-

nism with Vision Transformer (ViT), CLIP, and RoBERTa decoder to improve spatial

and channel-wise information extraction from images. Better descriptive words are

generated over a range of images, advancing image description generation. The model

is optimized with Adam optimizer and Cross-Entropy loss over epochs. Its perfor-

mance is assessed using metrics including BLEU, CIDEr, ROUGE-L, and METEOR

scores on benchmark datasets. Figure 4-1 represents the framework of the proposed

approach.
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Figure 4-1: Structural representation of Tri-FusionNet framework: The architecture
consists of three phases: firstly, high-level visual features are first extracted from pre-
processed images using a Vision transformer encoder with dual-attention mechanism;
next, words from the input caption file are tokenized by a RoBERTa decoder; and last,
the combined data is fed into a CLIP-integrating module to create image descriptions
using dense network layers.

4.3.1 Overview of the Proposed Architecture:

Data Pre-processing

The data preprocessing step in the proposed Tri-FusionNet framework involves nor-

malizing the input images’ pixel values to enhance the model’s performance. The

mean and standard deviation of the pixel values throughout the dataset are com-
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puted to accomplish this. The distribution of the pixel values is then altered to have

a standard deviation (or variance) of one and a mean of zero. This normalization pro-

cess reduces the effect of varied lighting or contrasts between images by standardizing

the range of pixel values. The model can learn more from the data by focusing the

values around zero and scaling them to have unit variance, guaranteeing that each

feature contributes equally to the training process. Next, to prepare the data for

the Vision Transformer (ViT) encoder module in image description generation, input

images are divided into fixed-size patches. To construct embeddings, each patch is

flattened and projected linearly. The process of patch extraction, where 𝐼 represents

the input image and 𝑃 denotes the patch size, is illustrated in Equation (4.1). This

step divides the image into non-overlapping portions, enabling the ViT to process the

image efficiently.

Patches = Reshape
(︂
𝐼,

(︂
Height

𝑃
× Width

𝑃

)︂
, 𝑃 × 𝑃 × Channels

)︂
(4.1)

Positional encoding is introduced to express spatial information by adding addi-

tional vectors (usually sine and cosine functions) to the original element embedding

that highlights sequence positions. This improves the model’s comprehension of se-

quence order, which is important for tasks like image description generation. Equa-

tion (4.2) defines positional encoding for position pos and dimension dim, where 𝑖

denotes the index.

PE(pos, 2𝑖) = sin

(︂
pos

10000
2𝑖

dim

)︂
, (4.2)

PE(pos, 2𝑖+ 1) = cos

(︂
pos

10000
2𝑖

dim

)︂
(4.3)

With the help of positional encoding, token embedding is further enhanced. Fig-

ure 4-1(a) represents the data pre-processing step for the work. The ViT encoder

receives sequences of tokenized patches that have been enhanced with positional data.

Through this procedure, the model is able to efficiently collect the image’s spatial and

visual properties, which sets the stage for the next tasks, like labeling the image.
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Vision Transformer Encoder Module with Dual Attention Mechanism

The input image is divided into fixed-size patches using the Vision Transformer’s

encoder-based architecture, which is then processed through transformer layers and

linearly embedded. Its ability to retrieve relevant data from both spatial and channel-

wise dimensions is enhanced by the dual-attention process, which makes accurate

descriptions possible. Figure 4-2 illustrates the complete architectural structure.

Figure 4-2: Model architecture for vision transformer encoder with dual attention
mechanism [85].

In the vision transformer encoder with a dual attention mechanism, we adopt a hi-

erarchical layout. The encoder combines spatial window attention with channel-group

attention and is structured into four phases: (a) insertion of the patch embedding

layer, (b) application of spatial window attention, (c) utilization of channel-group
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attention, and (d) incorporation of the jointly extracted features. In the initialization

phase, the input is in the form of patches along with positional embedding obtained

from the data pre-processing stage. Assuming a visual feature 𝑅 with dimensions

𝑅(𝑃×𝐶), where 𝑃 represents the total number of patches and 𝐶 is the total number

of channels, the standard global self-attention is represented by Equation (4.4):

𝑆𝐴(𝑄,𝐾, 𝑉 ) = Concat(head1, . . . , head𝑁ℎ), (4.4)

where,

head𝑖 = Attention(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) = Softmax
(︂
𝑄𝑖𝐾

𝑇
𝑖√

𝐶ℎ

)︂
𝑉𝑖 (4.5)

here, Q𝑖 = 𝑋𝑖 × (𝑊𝑖)
𝑄, K𝑖 = 𝑋𝑖 × (𝑊𝑖)

𝐾 and V𝑖 = 𝑋𝑖 × (𝑊𝑖)
𝑉 . Consider 𝑅𝑃×𝐶ℎ

dimensional visual features with 𝑁ℎ heads, where 𝑋𝑖 represents the 𝑖th head of the

input feature and 𝑊𝑖 denotes the projection weights for the 𝑖th head in the context

of 𝑄, 𝐾, 𝑉 , with 𝐶 = 𝐶ℎ ×𝑁ℎ.

The model concurrently arranges spatial window attention and channel group

attention in the vision transformer with a dual attention mechanism to obtain both

local and global data but with a linear complication to the spatial dimension. The

spatial window attention algorithm calculates self-attention within local windows,

which are positioned to equally and non-overlapping segments in the field of vision.

Assuming the presence of 𝑁𝑤 distinct windows, each comprised of 𝑃𝑤 patches, the

total number of patches, denoted as 𝑃 , can be expressed as 𝑃 = 𝑃𝑤 × 𝑁𝑤. The

representation of spatial window attention is given by Equation (4.6):

Attention𝑤(𝑄,𝐾, 𝑉 ) = (Attention(𝑄𝑖, 𝐾𝑖, 𝑉𝑖))
𝑁𝑤 𝑖 = 0 (4.6)

where each 𝑄𝑖, 𝐾𝑖, 𝑉𝑖 ∈ R𝑃𝑤×𝐶ℎ are local window queries, keys, and values, respec-

tively, and P is the spatial size presenting the linear complexity.

An alternative viewpoint on self-attention is provided by channel-wise attention,

which ensures thorough spatial domain coverage by concentrating on tokens at the

patch level as opposed to pixels. Each transposed token, with the number of heads
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set to 1, engages with global data in a linear spatial complexity along the channel

dimension. 𝐶 = 𝑁𝑔 × 𝐶𝑔 is the outcome of letting 𝐶𝑔 represent the number of

channels in each group and 𝑁𝑔 the number of groups. As a result, Equation (4.7)

defines global channel group attention, which allows tokens at the image level to

interact across channels.

Attention𝑐(𝑄,𝐾, 𝑉 ) =
(︁
(Attentiongroup(𝑄𝑖, 𝐾𝑖, 𝑉𝑖))

𝑇
)︁𝑁𝑔

𝑖=0
(4.7)

where, every 𝑄𝑖, 𝐾𝑖, 𝑉𝑖 ∈ R𝑃×𝐶𝑔 represents grouped channel-wise image-level queries,

keys and values.

The final encoder output of the Vision Transformer using the dual attention mech-

anism can be represented by Equation (4.8):

𝐸output = Concat(Attention𝑤(𝑄,𝐾, 𝑉 ),Attention𝑐(𝑄,𝐾, 𝑉 )) (4.8)

Attention𝑤(𝑄,𝐾, 𝑉 ) represents the spatial window attention and Attention𝑐(𝑄,𝐾, 𝑉 )

represents the channel group attention, as defined in Equations (4.6) and (4.7), re-

spectively. In order to achieve linear complexity in both dimensions for computational

efficiency, the final encoder output combines channel group attention and spatial win-

dow attention. In contrast to spatial-wise global attention, channel attention func-

tions globally, aggregating information rather than locally. It is a complement to

spatial window attention. By distributing weights according to how relevant they are

to the task, the model uses its attention mechanism to prioritize particular image

patches. By using these weights, heat maps are produced that show the areas of

the image where the model focuses. On the heat map, places that are important for

accurate and contextually rich descriptions are indicated by intense areas.

RoBERTa Decoder

The study presents a novel approach to image description generation that combines

natural language processing (NLP) and computer vision. A Vision Transformer (ViT)
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with dual attention is employed to extract visual information. Simultaneously, tex-

tual data from a "caption.txt" file is used during training to build word embeddings

and guide the model in learning semantic relationships between images and their

descriptions. This process helps optimize the model and align visual and textual fea-

tures effectively. During inference, the model does not require an input description

or text file. Instead, it generates a new description based solely on the visual fea-

tures extracted from the input image. This distinction ensures the model’s flexibility

and generalization, enabling it to produce unique and contextually rich descriptions

for each image. These embeddings are seamlessly integrated into a decoder model

based on RoBERTa, an enhanced version of BERT, along with ViT-extracted image

features. The suggested method’s decoder module is shown in Figure 4-3.

Figure 4-3: Architecture of RoBERTa Decoder Module.

The decoder uses RoBERTa’s pre-trained language understanding abilities to con-

textualize the data from the text and image embedding, allowing it to produce de-
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scriptions that generate better explanations and are relevant to the context. To

decode and generate image descriptions, the RoBERTa decoder module is obtained

from the following Equation (4.9).

𝐷Output = RoBERTaDecoder (𝑊emb, 𝐶)) , (4.9)

where, 𝑊emb represents the word embeddings generated from the caption data, 𝐶

is the additional contextual information derived from the original caption file, and

𝐷Output is the output generated by the RoBERTa decoder, which consists of the final

description of the image. Through multiple layers of feed-forward neural networks

and self-attention, multiple word embeddings are processed by the RoBERTa decoder,

which enables it to efficiently contextualize the textual information.

CLIP Integration Module

The final step of the proposed approach is the CLIP Integration module, which com-

bines image embeddings from a Vision Transformer (ViT) with a dual attention mech-

anism and text embeddings from the RoBERTa decoder. This integration aims to

combine the ViT encoder, RoBERTa decoder, and CLIP for effective image descrip-

tion generation. During the embedding generation process, the ViT encoder is used

to obtain image embeddings from the image dataset, while the RoBERTa decoder

generates text embeddings from the caption data. The joint representation of the

image and its corresponding text is then obtained by aligning these embeddings in

the subsequent phase. Specifically, CLIP’s encoder is used to align the visual and tex-

tual embeddings through contrastive learning, ensuring that the visual and textual

features are mapped into a shared space for accurate description generation.

The embeddings obtained from both the ViT encoder and the RoBERTa decoder

are concatenated to form a unified representation, as shown in Equation (4.10):

𝐶𝐿𝐼𝑃integration = Concatenate(𝐸output, 𝐷output), (4.10)
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where 𝐸output is the image embedding from the ViT encoder, 𝐷output is the text

embedding from the RoBERTa decoder, and 𝐶𝐿𝐼𝑃integration represents the combined

embedding used by the CLIP model. This integrated representation helps generate

coherent and accurate image descriptions by aligning the visual and textual informa-

tion effectively. The model uses a contrastive loss function in the embedding space

to distinguish between positive and negative pairs, ensuring the alignment between

visual and textual features.

The final integration module, after encoding and decoding the image-description

pair, generates the output descriptions. This process is guided by the CLIP model,

as depicted in Figure 4-4.

Figure 4-4: Model architecture for CLIP integration module.

The reference file for descriptions is crucial in assessing how well the Tri-FusionNet

model generates descriptions. Visual features extracted from images are projected

into a higher-dimensional space using a linear layer, allowing the model to capture

intricate relationships among input features. These features are then normalized

into a probability distribution across the lexicon of possible words or tokens using

a Softmax layer. During training and evaluation, the model generates predicted

descriptions, which are compared to reference descriptions using evaluation metrics
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such as CIDEr, ROUGE-L, BLEU 1-4, and METEOR to assess the model’s ability

to capture and translate context and image semantics into accurate descriptions.

The Tri-FusionNet model operates through a synergistic pipeline. The Vision

Transformer (ViT) encoder with dual attention, RoBERTa decoder, and CLIP inte-

gration module collaborate to generate accurate and contextually rich image captions.

• To handle input images, the Vision Transformer (ViT) encoder flattens, di-

vides them into patches, and embeds positional encodings. Its dual attention

method combines Spatial Window Self-Attention, which concentrates on local

spatial relationships to maintain contextual importance, with Channel Group

Self-Attention, which catches fine-grained features inside image channels. As a

result, both local details and global context are successfully represented in the

rich visual feature embeddings.

• To process the input text file with ground truth descriptions, the RoBERTa

decoder tokenises the text, embeds the tokens, then decodes them into con-

textual embeddings. It uses its pre-trained language understanding to ensure

fluency and coherence and Masked Self-Attention to concentrate on sequentially

relevant tokens. This produces textual embeddings that effectively express the

descriptions’ semantic meaning and linguistic structure.

• Using a contrastive learning technique, the CLIP integration module maps both

modalities into a common latent space by aligning textual embeddings from the

RoBERTa decoder and visual features from the ViT encoder. By facilitating

cross-modal fusion and preserving semantic coherence, this alignment makes it

possible to produce linguistically correct and visually justified descriptions.

The model optimizes for metrics such as BLEU, CIDEr, METEOR, and ROUGE-

L and provides accurate and contextually rich descriptions through parallel process-

ing, dual attention, and contrastive learning. By utilizing each module’s unique ca-

pabilities to convert raw image and text inputs, the approach guarantees high-quality

description generation.
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The Algorithm 4.1 for the proposed model with its score evaluation is described

below:

Algorithm 4.1 Algorithm for Tri-FusionNet Framework
1: procedure GenerateDescription(𝐼, 𝑇𝑟𝑒𝑓 )
2: Input: Image 𝐼, Reference Description 𝑇𝑟𝑒𝑓

3: Output: Generated Description 𝑇 , Evaluation Scores
4: Step 1: Pre-processing
5: 𝐼𝑝𝑟𝑜𝑐, 𝑇𝑒𝑛𝑐 ← Preprocess Image and Tokenize Text(𝐼, 𝑇𝑟𝑒𝑓 )
6: Step 2: Feature Extraction using Vision Transformer
7: 𝑉𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← Extract Visual Features using ViT(𝐼𝑝𝑟𝑜𝑐)
8: 𝑉𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 ← Apply Dual Attention(𝑉𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
9: Step 3: Text Encoding with RoBERTa

10: 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← Encode Text using RoBERTa(𝑇𝑒𝑛𝑐)
11: Step 4: Cross-Modal Feature Fusion with CLIP
12: 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ← Align Visual and Textual Features using CLIP(𝑉𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑, 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
13: Step 5: Description Generation
14: 𝑇𝑙𝑜𝑔𝑖𝑡𝑠 ← Forward Pass through CLIP Decoder(𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)
15: 𝑇𝑔𝑒𝑛 ← Decode Logits using CLIP Tokenizer(𝑇𝑙𝑜𝑔𝑖𝑡𝑠)
16: 𝑇𝑓𝑖𝑛𝑎𝑙 ← Process Generated Description(𝑇𝑔𝑒𝑛)
17: Step 6: Evaluation
18: 𝑆𝑐𝑜𝑟𝑒𝑠← Compute BLEU, CIDEr, METEOR, ROUGE-L(𝑇𝑓𝑖𝑛𝑎𝑙, 𝑇𝑟𝑒𝑓 )
19: Return 𝑇𝑓𝑖𝑛𝑎𝑙, 𝑆𝑐𝑜𝑟𝑒𝑠
20: end procedure

4.4 Experimental Analysis

The evaluation of the proposed model requires a system with specific hardware capa-

bilities. Experiments were conducted using Google Colab Pro+, which provides access

to high-performance resources. The system utilized includes up to 52 GB of RAM,

an NVIDIA A100 Tensor Core GPU with 40 GB of VRAM, and a virtual CPU equiv-

alent to an Intel Xeon processor. The framework was implemented using Keras and

TensorFlow 2.12. Tri-FusionNet generates comprehensive and contextually rich im-

age descriptions by integrating three transformer modules, which inherently increases

computational demands. Optimization techniques such as empirical analysis, paral-

lelization, mixed precision training, and effective resource management were employed

to address these demands. These strategies reduce memory consumption and com-
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putational overhead, ensuring efficient training and inference. Despite its complexity,

Tri-FusionNet remains viable on hardware with limited resources through model par-

allelism and other optimizations. The model’s scalability was assessed by testing on

larger datasets and higher-resolution images, with training times increasing linearly

with dataset size demonstrating efficient scaling. Furthermore, its optimized atten-

tion mechanisms and parameter-sharing strategies enable competitive computational

efficiency compared to other state-of-the-art architectures. These advancements al-

low Tri-FusionNet to balance high performance with resource constraints, making it

adaptable for deployment in diverse environments. The proposed model is evaluated

on three benchmark datasets: MSCOCO, Flickr8k, and Flickr30k.

Microsoft Common Objects in Context (MSCOCO) dataset 1: MS-

COCO dataset serves as a widely recognized benchmark for tasks related to image

description generation within the fields of computer vision and natural language pro-

cessing (NLP). It plays a crucial role in extensive studies on image interpretation

and the generation of pertinent descriptions. The MS COCO 2014 dataset com-

prises 82,783 JPEG images, each accompanied by approximately 5 human-generated

descriptions per image.

Flickr30k Dataset 2: The Flickr30k dataset includes 5 human-annotated refer-

ence descriptions along with 31,783 images that are obtained from Flickr. It serves as

a common baseline for methods for creating visual descriptions and is primarily used

for understanding the visual representation of an image that matches its description.

Figure 4-5 is an example of the dataset.

Figure 4-5: A sample image from the Flickr30k dataset

1https://github.com/cocodataset/cocoapi
2https://www.kaggle.com/hsankesara/flickr-image-dataset
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Flickr8k Dataset 3: The Flickr8k dataset consists of 8092 JPEG images in total,

which come in various sizes and shapes. The remaining 1000 photos are for devel-

opment, with the remaining 6000 being used for training and testing. There are five

different descriptions for every image. These datasets serve as valuable resources for

training and evaluating the proposed model, allowing us to leverage their large-scale

image-description pairs to learn robust visual representations and helps in improving

the accuracy and quality of the predicted sentences.

The efficiency, computational cost, and scalability of Tri-FusionNet have been

compared with the characteristics of some of the most advanced image description

models in Table 4.1. Key differences are shown in the table, including performance

and resource needs for expanding to larger datasets and higher-resolution images.

Table 4.1: Comparison of Tri-FusionNet with state-of-the-art models on scalability
and computational cost.

Model Architecture Scalability Computational
Cost

Efficiency

NIC [71] CNN with At-
tention Mecha-
nism

Limited scal-
ability

Low cost and
less resource-
intensive

Good for
smaller tasks
but lacks
richness

BLIP
Trans-
former [86]

Vision-
Language Pre-
training

Scales well
with efficient
pretraining

Moderate cost
and compact
architecture

Balanced per-
formance and
cost

M2 Trans-
former [27]

Memory-
Augmented
Transformer

Effective for
mid-sized
datasets

Moderate cost
and memory-
efficient

Competitive
with moder-
ate resources

Tri-
FusionNet

ViT,
RoBERTa,
CLIP

Handles
large
datasets

Moderate cost
and memory
efficient

Superior
image-text
alignment

Because of its transformer and CLIP components, the proposed Tri-FusionNet

model has a moderate processing cost but excels at handling huge datasets. On

the other hand, BLIP Transformer [86] provides a fair trade-off between cost and

performance, whereas models such as NIC [71] and M2 Transformer [27] are more

resource-efficient but less scalable.
3https://www.kaggle.com/adityajn105/flickr8k
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4.4.1 Implementation Details:

In the proposed Tri-FusionNet framework, the model integrates Dual Attention with

a Vision Transformer (ViT) to process visual data and employs a RoBERTa decoder

for generating textual descriptions. The ViT encoder extracts image features, which

are aligned with textual features in a shared embedding space using the CLIP In-

tegrator. This alignment leverages contrastive learning to improve the coherence

and precision of the generated descriptions. A novel loss function is employed dur-

ing training, balancing the objectives of description generation and CLIP alignment.

The model is trained over 75 epochs using the Adam optimizer. A batch size of 32

was chosen to balance efficient training, stable gradient updates, and manageable

computational resources, ensuring effective learning without excessive memory usage.

The input images are pre-processed into patches of fixed size for the ViT encoder,

while textual data is tokenized and embedded using RoBERTa. The evaluation of the

generated descriptions is carried out using established metrics, including BLEU (1-

4), METEOR, ROUGE-L, and CIDEr, which measure linguistic accuracy, contextual

relevance, and semantic fidelity. These metrics provide a comprehensive assessment

of the model’s ability to translate visual content into meaningful and contextually

rich textual descriptions.

Table 4.2 outlines the architectural details of the Tri-FusionNet model, highlight-

ing the output shapes and parameter counts for each layer, providing a clear under-

standing of the structure of the framework.

Table 4.2: Architectural Details for the Proposed Model

Layer Type Output Shape Parameters
ViT Dual Attention (batch_size, d_model) 2M
RoBERTa Decoder (batch_size, seq_len) 100M
CLIP Integrator (batch_size, joint_dim) 10M
Fully Connected Layer (batch_size, 512) 262,656
Pooling Layer (batch_size, 256) 0
Convolutional Layer (batch_size, 128) 295,040
Total Number of Parameters - 112.56M
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Table 4.3 provides a summary of the Tri-FusionNet framework’s hyperparameters

and evaluation metrics.

Table 4.3: Hyperparameters and Evaluation Metrics for the Tri-FusionNet Framework

Hyperparameter Value/Description
Model Name Tri-FusionNet
Encoder Vision Transformer (ViT) with Dual Attention
Decoder RoBERTa
Integration Module CLIP Integrator with contrastive learning
Training Epochs 75
Batch Size 32
Optimizer Adam
Loss Function Categorical Cross-Entropy Loss
Evaluation Metrics BLEU (1-4), METEOR, ROUGE-L, CIDEr

4.4.2 Ablation Study:

An ablation study was carried out in order to fully comprehend the contributions

of each element in the suggested image description generation model. The objective

of this study is to assess the impact of the proposed Tri-FusionNet model, which

integrates the CLIP model, RoBERTa, and Vision Transformer (ViT) with dual at-

tention, on the overall performance. Through heat map analysis, the model can learn

more about how it interprets visual cues and focuses on various areas of the image.

This comprehension can enhance the model’s architecture, boost its functionality, and

make the model’s decision-making process more interpretable, as shown in Figure 4-6.

A thorough study of the outcomes within the framework of the work proposed

for MSCOCO dataset is shown in Table 4.4. It presents various results of evaluation

metrics for different models applied to the input image dataset. The Tri-FusionNet

model establishes a new performance benchmark for image description generation on

the MSCOCO dataset, outperforming other baseline models. It achieves the highest

scores in all metrics, including BLEU-1 (0.893), BLEU-2 (0.821), BLEU-3 (0.794),

BLEU-4 (0.725), CIDEr (1.88), METEOR (0.78), and ROUGE-L (0.689). These
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Figure 4-6: Example of obtained heat maps based on dual-attention mechanism.

Table 4.4: Performance Metrics of Image Description Generation Models in the
MSCOCO Dataset

Model B-1 B-2 B-3 B-4 C M R-L
ViT with Self Attention 0.57 0.45 0.34 0.29 1.05 0.40 0.39
ViT with Dual Attention 0.61 0.50 0.38 0.27 1.52 0.43 0.31
ViT without RoBERTa and CLIP 0.62 0.56 0.42 0.34 0.785 0.44 0.39
RoBERTa without ViT and CLIP 0.73 0.68 0.51 0.43 1.54 0.62 0.50
CLIP without ViT and RoBERTa 0.66 0.54 0.43 0.32 1.09 0.51 0.38
ViT + RoBERTa without CLIP 0.74 0.63 0.55 0.46 1.80 0.68 0.56
ViT + RoBERTa + CLIP without Dual Attention 0.78 0.69 0.65 0.58 1.83 0.73 0.62
Tri-FusionNet (Proposed) 0.893 0.821 0.794 0.725 1.88 0.78 0.689

results highlight its effectiveness in generating accurate, diverse, and high-quality

image descriptions.

Table 4.5 displays a comprehensive analysis of the results obtained from the

Flickr30k dataset in the context of the proposed work.

Table 4.5: Performance Metrics of Image Description Generation Models in the
Flickr30k Dataset

Model B-1 B-2 B-3 B-4 C M R-L
ViT with Self Attention 0.47 0.33 0.23 0.17 0.907 0.34 0.331
ViT with Dual Attention 0.43 0.36 0.275 0.242 1.02 0.373 0.21
ViT without RoBERTa and CLIP 0.614 0.586 0.542 0.443 0.855 0.544 0.393
RoBERTa without ViT and CLIP 0.653 0.589 0.431 0.367 1.14 0.512 0.460
CLIP without ViT and RoBERTa 0.516 0.424 0.343 0.232 1.256 0.534 0.489
ViT + RoBERTa without CLIP 0.724 0.613 0.455 0.346 1.250 0.368 0.256
ViT+ RoBERTa + CLIP without Dual Attention 0.741 0.621 0.573 0.428 1.092 0.389 0.432
Tri-FusionNet (Proposed) 0.767 0.654 0.647 0.456 1.679 0.478 0.567
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The Flickr30k dataset was used to evaluate several image description generation

models, including ViT with RoBERTa, ViT with Dual Attention, and Tri-FusionNet.

The Tri-FusionNet model significantly outperforms the others, achieving the high-

est BLEU-1 (0.767), BLEU-2 (0.654), BLEU-3 (0.647), and BLEU-4 (0.456) scores.

It also excels in CIDEr (1.679), METEOR (0.478), and ROUGE-L (0.567), show-

casing its ability to generate accurate, diverse, and context-aware descriptions. Tri-

FusionNet establishes a new standard for image captioning on the Flickr30k dataset.

Table 4.6 displays a comprehensive analysis of the results obtained from the

Flickr8k dataset in the context of the proposed work. It presents various evaluation

metrics for different models applied to the input image. Using the Flickr8k dataset,

Table 4.6: Performance Metrics of Image Description Generation Models in the
Flickr8k dataset

Model B-1 B-2 B-3 B-4 C M R-L
ViT with Self Attention 0.547 0.343 0.323 0.217 0.607 0.234 0.131
ViT with Dual Attention 0.543 0.436 0.344 0.246 1.002 0.253 0.121
ViT without RoBERTa and CLIP 0.542 0.466 0.342 0.266 0.675 0.344 0.343
RoBERTa without ViT and CLIP 0.553 0.459 0.413 0.337 0.983 0.312 0.156
CLIP without ViT and RoBERTa 0.525 0.324 0.244 0.132 1.065 0.234 0.289
ViT + RoBERTa without CLIP 0.745 0.513 0.456 0.312 1.189 0.298 0.457
ViT+ RoBERTa + CLIP without Dual Attention 0.756 0.652 0.518 0.460 1.231 0.321 0.528
Tri-FusionNet (Proposed) 0.784 0.678 0.538 0.479 1.381 0.389 0.654

several image description models were compared. While ViT with Self Attention and

ViT with Dual Attention show improved performance, the proposed Tri-FusionNet

model outperforms all other models. It achieves the highest scores in BLEU-1 (0.784),

BLEU-2 (0.678), BLEU-3 (0.538), and BLEU-4 (0.479), as well as leading in CIDEr

(1.381), METEOR (0.389), and ROUGE-L (0.654). This demonstrates its effective-

ness in generating accurate, diverse, and structurally rich image descriptions. By

combining language and vision transformer components, the Tri-FusionNet consis-

tently outperforms other models in the MSCOCO, Flickr30k and Flickr8k datasets,

demonstrating its superior architecture for image description generation and produc-

ing better image descriptions. It also yields higher scores in BLEU-1 to BLEU-4

metrics and CIDEr, ROUGE-L and other metrics.
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4.4.3 Results and Analysis:

The approach was evaluated on three benchmark dataset: MSCOCO, Flickr30k and

Flickr8k for the proposed architecture. The following Table 4.7 represents the re-

sults obtained for the MSCOCO dataset. Using three sets of test images from the

Table 4.7: Quantitative Results Obtained on MSCOCO Dataset

Test Image Ground Truth Predicted Description

Two men playing frisbee on grass
surrounded by trees. Two men playing frisbee on grass.

Trains on railway tracks, with
trees and blue sky. Trains on tracks with trees.

Vegetables including carrot,
radish, and turnip on a table.

Green and red vegetables on a ta-
ble.

A red bus in front of a white
building with blue sky. A white building with blue sky.

MSCOCO dataset, the table presents a thorough comparison of ground-truth descrip-

tions and predicted descriptions generated by a model. This is an effective way of

assessing and determining how well the model can provide meaningful and accurate

descriptions of images.

Table 4.8 aims to showcase how well the model aligns for Flickr30k dataset. Four

sets of test images are listed in the table, together with the accompanying ground

truth descriptions and the model’s predicted descriptions for each. This table is as an

assessment tool, demonstrating the model’s capacity to produce accurate and relevant

descriptions for a range of images found in the Flickr30k dataset.

Table 4.9 is designed to demonstrate the alignment of the model with the actual
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Table 4.8: Quantitative Results Obtained on Flickr30k Dataset

Test Image Ground Truth Descriptions Predicted De-
scription

1. A white woman standing in a grocery store not-
so-candidly posing for the camera while examining
the items on a shelf.
2. The lady with the shopping cart is surrounded
by toys galore and various children’s bicycles.
3. A woman in a green winter coat stands with a
cart in the middle of a department store aisle.
4. A woman in a green jacket is in the toy aisle
with a shopping cart and her purse.
5. The woman in the green coat is pushing a cart
through the toy aisle.

A woman in a
green coat shops
in the toy aisle
with a cart.

1. Six men are sitting or laying on a patch of earth
in a wooded area.
2. A group of workers sitting in a field take a break
from work.
3. A group of men are sitting in the farm fields
taking a break.
4. Six men sit in a field of crops containing wooden
crates.
5. Pickers working out on a farm.

Six men take a
break in a field.

1. A gray bird stands majestically on a beach while
waves roll in.
2. A white crane stands tall as it looks out upon
the ocean.
3. A tall bird is standing on the sand beside the
ocean.
4. A large bird stands in the water on the beach.
5. A water bird standing at the ocean’s edge.

A bird stands
tall on the
beach.

1. A group of people stares at a wall that is filled
with drawings in a building.
2. There are five people here looking at some pic-
tures on the wall.
3. Five people are taking in an exhibit of Japanese
art.
4. People watching the arts in an exhibition.
5. Five people looking at artwork.

Five people
looking at art in
a building.

content of the images, as indicated by the provided ground truth descriptions for the

Flickr8k dataset.
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Table 4.9: Quantitative Results Obtained on Flickr8K Dataset

Test Image Ground Truth Descriptions Predicted De-
scription

1. A winter landscape with four people walking in
the snow.
2. Beautiful snowy landscape with people treading
through the snow.
3. Cross-country skiers are traveling towards the
mountains at sunset.
4. Four people walking across thick snow during a
sunset.
5. The sun is almost behind the snowy mountains.

Four people walk
through a snowy
mountain.

1. A beautiful sunset with three people in a boat
on the lake.
2. As the sun sets, three people are on a small
boat enjoying the view.
3. Three people are in a canoe on a calm lake with
the sun reflecting yellow.
4. Three people are on a boat in the middle of the
water while the sun is in the back.
5. Three people in a boat float on the water at
sunset.

Three people en-
joying a beauti-
ful sunset from a
boat.

1. A crowd wearing red cheers on the red football
team.
2. Football players in red congratulate each other
as crowds in red cheer behind.
3. The Oklahoma Sooners football team discuss
their game while fans cheer.
4. Two football players talk during a game.
5. Two Oklahoma Sooner football players talk on
the sideline.

A crowd in red
cheers on the
football team.

1. The two small dogs run through the grass.
2. Two fluffy white dogs running in green grass.
3. Two small dogs run through the grass.
4. Two small dogs that look almost identical are
playing in the grass.
5. Two yellow dogs run together in green grass.

Two small dogs
run through the
green grass.

Two sets of test images are included in the table, each with the corresponding

ground truth descriptions and the predicted descriptions from the model. This table

serves as a means of assessment, showcasing the model’s capacity to provide accurate
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and perceptive descriptions for a range of images from the Flickr8k dataset.

When compared to reference descriptions, the model produces predicted descrip-

tions during the training and evaluation phases. The model’s efficacy in capturing

visual semantics and context is evaluated by comparing the predicted and real descrip-

tions using metrics such as BLEU 1-4, CIDEr, METEOR and ROUGE-L. Table 4.10

provides an overview of a framework that has been suggested for the development of

image descriptions from the three datasets.

Table 4.10: Overall Results obtained from the proposed model

Dataset B-1 B-2 B-3 B-4 C M R-L
MSCOCO 0.893 0.821 0.794 0.725 1.88 0.78 0.689
Flickr30k 0.767 0.654 0.647 0.456 1.679 0.478 0.567
Flickr8k 0.784 0.678 0.538 0.479 1.381 0.389 0.654

The performance metrics of the proposed model are shown in the table for the

MSCOCO, Flickr30k and Flickr8k datasets. These metrics include BLEU-1 to BLEU-

4, CIDEr, METEOR and ROUGE-L scores. The suggested framework obtained

BLEU scores for MSCOCO of 0.893 (B-1), 0.821 (B-2), 0.794 (B-3) and 0.725 (B-

4) and for CIDEr, METEOR and ROUGE-L, 1.483, 0.358 and 0.789, respectively.

With BLEU scores ranging from 0.767 (B-1) to 0.456 (B-4), bolstered by a CIDEr

score of 1.679 and METEOR (0.478) and ROUGE-L (0.567) ratings suggesting suffi-

cient matching and overlap, competitive performance was observed on the Flickr30k

dataset. A CIDEr score of 1.381, favorable matches, and overlap was shown by

BLEU scores on the Flickr8k dataset, which varied from 0.784 (B-1) to 0.479 (B-4).

METEOR (0.389) and ROUGE-L (0.654) scores also showed favorable matches and

overlap. Across a range of benchmark datasets, the proposed approach performs well

overall in producing image descriptions. The graphical depiction of the outcomes is

shown in Figure 4-7. These scores serve as evaluations of the model’s performance in

generating descriptions that align well with the reference descriptions. Higher scores

indicate a higher degree of similarity and quality in the generated descriptions.

Table 4.11 presents a qualitative comparison between the ground truth descrip-

tions and the descriptions generated by the proposed model, highlighting successful
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Figure 4-7: Graphical representation of the results obtained from MSCOCO,
Flickr30k and Flickr8k dataset for the proposed Tri-FusionNet framework.

and unsuccessful predictions and error analysis. The following table compares the

Table 4.11: Qualitative Analysis of Generated Image Descriptions

Test Image Ground Truth Description Generated Description Remarks/Error Anal-
ysis

A white dog is holding a pur-
ple frisbee in its mouth on the
green grass.

White dog holding purple fris-
bee on grass.

Success: Correct identi-
fication of objects and ac-
tions.

A gold and black motorcy-
cle parked on a paved surface
road.

A car parked on road. Failure: Incorrect ob-
ject recognition.

Three ducks stand by a calm
pond with a wooden fence in
front of them.

Three ducks stand by pond.
Success: Correct identi-
fication of objects and ac-
tions.

A red and white vintage plane
on display in a museum. Spaceship preparing to launch. Failure: Incorrect ob-

ject recognition.
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generated descriptions of four sample images with ground truth annotations to eval-

uate the performance of an image captioning model. Successful examples include

correctly identifying "three ducks on a peaceful pond" and "a white dog clutching

a purple frisbee on grass." These cases demonstrate the model’s ability to recognize

objects and actions in straightforward scenarios. However, the model exhibits notable

failures, such as mistaking a gold and black motorcycle for "a car parked on a road"

and, in row 4, misidentifying a red and white vintage plane as "a spaceship prepar-

ing to launch." These errors highlight the model’s difficulty in accurately identifying

complex objects or understanding the context of the scene. This analysis provides

valuable insights into the model’s strengths in simple situations and its limitations

when faced with more intricate or ambiguous visuals, offering guidance for improving

the model’s training and recognition capabilities.

4.4.4 Comparison with Other State-of-the-art Methods:

A comprehensive generalisation analysis highlights the performance of the proposed

model outside of the training set by assessing its capacity to produce image descrip-

tions over a wide range of visual domains and datasets. A comparison study of image

description generation models using the MSCOCO dataset is presented in Table 4.12,

which evaluates model performance using metrics such as BLEU, METEOR, CIDEr

and Rouge-L.

The performance of different models on the MSCOCO dataset indicates strong

progress in image description generation. Models like Meshed Transformer [27],

Global Enhanced Transformer [89], and Multimodal Transformer [29] show strong

overall performance in terms of high scores obtained in BLEU, METEOR, CIDEr,

and Rouge-L metrics. In contrast, models like Topic-based multi-channel attention

(TMA) [87], Transformer-based local graph semantic attention (TLGSA) [59], and

Dynamic-balanced double-attention [88] have relatively weaker performance, espe-

cially in terms of BLEU and CIDEr scores. Geometry Attention Transformer [91] and

𝑆2 Transformer [79] obtain the best CIDEr scores, while Local-global guidance for

transformer [94] reaches the best Rouge-L score of 0.651. Among the best-performing
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Table 4.12: Comparative Analysis of Image Description Generation Models on
MSCOCO Dataset

Model BLEU METEOR CIDEr Rouge-L
Topic-based multi-channel attention (TMA) model [87] 0.658 - 0.800 0.534
Transformer based local graph semantic attention (TLGSA) [59] 0.724 - 1.003 0.534
Dynamic-balanced double-attention [88] 0.741 0.254 1.107 0.537
Meshed Transformer [27] 0.816 0.294 1.293 0.592
Global Enhanced Transformer [89] 0.816 0.284 1.301 0.591
Multimodal Transformer [29] 0.817 0.294 1.30 0.596
𝑆2 Transformer [79] 0.811 0.296 1.335 0.591
PMA-Net [82] 0.847 0.305 1.414 0.613
HAAV [83] 0.810 0.302 1.415 -
SPT Transformer [90] 0.812 0.296 1.344 0.592
Geometry attention transformer [91] 0.811 0.384 1.27 0.591
Vision-enhanced and Consensus-aware Transformer [92] 0.822 0.296 1.345 0.596
X-transformer + Faster RCNN [93] 0.821 0.296 1.334 0.598
Local-global guidance for transformer [94] 0.861 0.392 1.329 0.651
SAMT [78] 0.774 0.284 1.205 0.572
Tri-FusionNet (Proposed) 0.893 0.780 1.880 0.689

models, PMA-Net [82] and HAAV [83] obtain CIDEr scores higher than 1.4. In addi-

tion, PMA-Net obtains the best BLEU score of 0.847 among all the models. However,

Tri-FusionNet breaks all other records as the new baseline, obtaining state-of-the-art

performance scores for both BLEU 0.893, METEOR 0.780, CIDEr 1.880, and also

Rouge-L with a 0.689 score in all the tested metrics, which highlights its capacity in

producing better descriptions with semantic accuracy of an image for all the existing

models.

To further validate the performance of the proposed Tri-FusionNet model, we eval-

uated it on the online MSCOCO test server, which is widely used as a benchmark for

image description generation. The comparative results are presented in Table 4.13,

highlighting the superior performance of Tri-FusionNet in all the metrics, demon-

strating its efficiency in generating contextually rich and accurate image descriptions.

The performance comparison of different image captioning models on the MSCOCO

online test server is displayed in the table. The effectiveness of the suggested Tri-

FusionNet in generating precise and varied image descriptions is demonstrated by the

fact that it outperforms all current techniques across BLEU, METEOR, ROUGE-L,

and CIDEr measures.

Table 4.14 compares various image description generation models using the Flickr30k
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Table 4.13: Comparative Analysis of Image Description Generation Models on online
MSCOCO Test Server

Model BLEU METEOR Rouge-L CIDEr
NIC [71] 0.714 0.302 0.521 0.945
m-RNN [48] 0.753 0.301 0.593 0.926
ReviewNet [95] 0.810 0.301 0.609 0.967
SCN [96] 0.828 0.309 0.619 1.013
Adaptive [74] 0.834 0.311 0.628 1.051
Att2all [19] 0.859 0.312 0.635 1.157
GateCap [97] 0.863 0.319 0.644 1.190
LSTM-A [25] 0.862 0.312 0.635 1.170
Up-Down [98] 0.877 0.322 0.648 1.192
RFNet [99] 0.877 0.327 0.657 1.240
GCN-LSTM [52] - 0.330 0.660 1.259
SGAE [64] 0.882 0.327 0.661 1.252
AoANet [100] 0.880 0.338 0.667 1.282
Tri-FusionNet (Proposed) 0.885 0.750 0.678 1.580

dataset. The analysis includes metrics for evaluating the models’ performance, such as

BLEU, METEOR, CIDEr, and Rouge-L. Models like Transformer-based local graph

Table 4.14: Comparative Analysis of Image Description Generation Models on
Flickr30k Datasets

Model BLEU METEOR CIDEr Rouge-L
Topic-based multi-channel attention (TMA) model [87] 0.650 - 0.334 0.436
Transformer based local graph semantic attention (TLGSA) [59] 0.643 - 0.450 0.489
Dynamic-balanced double-attention [88] 0.678 0.209 0.517 0.500
HAAV [83] 0.743 0.251 0.856 -
Multimodal Transformer [29] 0.744 0.236 - -
Local-global guidance for transformer [94] 0.758 0.263 0.708 0.560
X-transformer + Faster RCNN [93] 0.753 0.253 0.707 0.543
Tri-FusionNet (Proposed) 0.767 0.478 1.679 0.567

semantic attention (TLGSA) [59], Topic-based multi-channel attention (TMA) [87],

and Dynamic-balanced double- attention [88] show lower performance, particularly

in BLEU and CIDEr, indicating limitations in generating high-quality descriptions.

While the Multimodal Transformer [29] performs well in BLEU and METEOR, it

lacks comprehensive metric coverage. Local-global guidance for Transformer [94] and

X-transformer + Faster RCNN [93] demonstrate strong BLEU and CIDEr scores but

fall slightly behind in Rouge-L. HAAV [83] achieves notable performance, especially

with a CIDEr score of 0.856. However, the proposed Tri-FusionNet outperforms all
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models, achieving the highest scores across all metrics: 0.767 for BLEU, 0.478 for

METEOR, 1.679 for CIDEr, and 0.567 for Rouge-L, establishing it as the most effec-

tive model for generating accurate and contextually rich descriptions on the Flickr30k

dataset.

Table 4.15 presents a comparative analysis of various image description generation

models on the Flickr8k dataset. It offers evaluation metrics for evaluating how well

various models perform, including BLEU, METEOR, CIDEr and Rouge-L. Models

Table 4.15: Comparative Analysis of Image Description Generation Models on
Flickr8k Dataset

Model BLEU METEOR CIDEr Rouge-L
Topic-based multi-channel attention (TMA) model [87] 0.630 - 0.472 0.465
Transformer based local graph semantic attention (TLGSA) [59] 0.659 - 0.471 0.565
Vision encoder decoder [101] 0.395 0.177 0.380 0.297
Optimal transformers with Beam Search [102] 0.634 0.1987 0.520 -
SAMT [78] 0.682 0.212 - 0.448
Tri-FusionNet (Proposed) 0.784 0.389 1.381 0.654

like TLGSA based on transformer [59], Vision encoder-decoder [101], Topic-based

multi-channel attention [87], and Optimal transformers with beam search [102] have

performance relatively lower and are bad at BLEU and CIDEr score, due to the lesser

ability for producing high quality and relevant descriptions. Specifically, even though

SAMT [78] has scores of BLEU and METEOR comparatively better values, it also

lacks other competitive values of CIDEr and Rouge-L. On the other hand, proposed

Tri-FusionNet obtains excellent results with setting new state-of-the-art for all met-

rics: BLEU-0.784, METEOR-0.389, CIDEr-1.381, and Rouge-L - 0.654. Such results

emphasize that the proposed Tri-FusionNet model is more likely to produce excep-

tional, meaningful, and expressive image descriptions compared to existing models

for Flickr8k.

4.5 Conclusion

In this chapter, a new model, Tri-FusionNet, was presented to generate image descrip-

tions that combine the CLIP transformer, RoBERTa, and the Vision Transformer with

dual attention processes. The proposed model outperforms state-of-the-art models
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as a result of extensive trials on the MSCOCO, Flickr30k, and Flickr8k datasets.

It achieved notable gains across important evaluation criteria, such as BLEU, ME-

TEOR, CIDEr, and ROUGE. The model is successful because it can capture both

local and global image data, use the CLIP transformer to effectively align textual

and visual modalities, and employ RoBERTa for improved language understanding.

The suggested model has useful applications in real-time image captioning systems,

including autonomous car systems for scene detection, assistive technologies for the

blind, and content management systems for automatic image tagging. Deploying the

model still presents difficulties, though, such as managing edge devices’ demanding

processing requirements, ensuring the system is resilient to threats and noisy inputs,

and resolving ethical challenges like bias in generated descriptions. Furthermore, the

model’s performance may be impacted by the unpredictability introduced by real-

world settings, such as occlusions, dim lighting, computational cost, and other social

circumstances. To enable more extensive real-world applications, future research will

concentrate on improving fine-tuning procedures, tackling deployment issues, and ex-

tending the model’s capabilities through sophisticated multimodal fusion techniques.
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5.1 Introduction

Building on the advances of transformer-based models in image description generation

discussed in the previous chapter, this chapter focuses on a specialized application in

the medical domain: chest X-ray analysis. Although models like Tri-FusionNet have

demonstrated their effectiveness in generating detailed and contextually rich descrip-

tions, medical imaging presents unique challenges, such as domain-specific language,

subtle abnormalities, and the need for high interpretability. This chapter introduces

a novel framework that integrates a Vision Transformer (ViT) encoder with cross-

modal attention and a GPT-4-based transformer decoder to address these challenges.

ViT extracts high-quality visual features that are fused with textual data through

cross-modal attention to enhance contextual relevance and precision. The GPT-4 de-

coder then generates accurate and detailed descriptions. The model was evaluated on

the IU and NIH chest X-ray data sets, achieving high BLEU, CIDEr, METEOR, and

ROUGE-L scores. This approach improves chest radiograph interpretation, helping

radiologists in efficient diagnosis and treatment.

The key contributions of this chapter are mentioned below:

• The proposed work uses ViT to capture spatial relationships and medical termi-

nology, improving the model’s ability to interpret complex radiographic features.

• Using GPT-4, it processes pixel-level information and generates precise and

contextually relevant descriptions for medical imaging.

• The model achieves superior performance compared to existing methods on

the IU and NIH Chest X-ray datasets, demonstrating improved accuracy and

reliability.

• The chapter highlight the potential of the model to enhance clinical workflows,

assist in diagnosis, and support treatment planning through automated medical

image analysis.

• It provides a comprehensive evaluation of the strengths and limitations of the

model, showcasing its effectiveness in improving automated radiology reporting.
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5.2 Literature Survey

The primary objective of the image description model is to identify different objects

and represent their relationships through accurate, semantically correct sentences.

Various methods have been adapted to medical imaging tasks [103]. Sun et al. [104]

proposed a feature-augmented (FA) module validated on datasets such as MS-COCO,

which uses the multi-modal pre-trained CLIP model and channels attention within

the encoder to enhance image description and captioning performance. Yao et al. [84]

proposed a CNN-RNN framework for anatomical structure and abnormality iden-

tification in radiological imaging reports. Li et al. [105] used BERT-based models

to generate radiological reports from chest X-ray images, showing the significance of

contextual language understanding in medical image analysis. Shaikh et al. [106] pro-

posed an encoder-decoder transformer model combined with a pre-trained CheXNet

model, evaluated on the IU X-ray dataset, for chest X-ray report generation. The

CheXReport model [107] obtains the best-reported performance on the MIMIC-CXR

dataset, given the use of Swin Transformer blocks. Retrieval-based methods that

incorporate deep neural networks are also presented [108]. In another work, Condi-

tional Self Attention Memory-Driven Transformer was proposed, which outperformed

all existing state-of-the-art approaches with a high BLEU score value for radiological

report production by taking ResNet152 v2 for feature extraction and the self-attention

memory-driven transformer for text generation [109]. Despite these developments,

current models fail to integrate textual and visual information effectively and are not

able to handle medical language well, which makes the descriptions less understand-

able and accurate. Moreover, because these models are highly sensitive to errors,

misunderstandings in medical contexts could potentially affect diagnoses.

The suggested approach, CrossViT-GPT4, enhances previous research by integrat-

ing the benefits of GPT-4, which excels in contextual language modeling, with ViT

and a cross-model attention technique for spatial feature extraction. This combina-

tion offers a comprehensive solution for automatically generating image descriptions

in chest X-ray analysis.
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5.3 Proposed Architecture

The complicated process of automatically generating descriptions for medical images

has drawn a lot of interest, necessitating the combination of computer vision and

natural language processing (NLP). The goal of the research is to improve the ex-

traction of spatial and semantic information from chest X-rays by utilising a hybrid

framework that integrates GPT-4, cross-modal attention, and Vision Transformer

(ViT). ViT efficiently records spatial relationships and fine-grained medical features,

whereas GPT-4 generates accurate and contextually rich descriptions by processing

pixel-level data. The suggested framework enhances automated chest X-ray inter-

pretation, supporting clinical diagnosis and decision-making by tackling issues with

producing precise and semantically meaningful radiological reports. Figure 5-1 rep-

resents the overall framework of the proposed approach.

Figure 5-1: A representation of the proposed framework’s structure: CrossViT-GPT4-
During the initial stage, the ViT encoder utilizes cross-model attention to extract
high-level visual features from the pre-processed images. GPT-4 decoder uses tok-
enization to extract individual words from the provided input caption file. It then
utilizes the dense layers of the network to produce image descriptions.
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Each step of the proposed model is discussed below:

5.3.1 Data Pre-processing

The input images (𝐼) are initially partitioned into patches (𝑃 ) of a predetermined

size to prepare the input data for the encoder. Each image of size (𝐻 ×𝑊 × 𝐶) is

divided into smaller patches of size (𝑃ℎ × 𝑃𝑤), where 𝐻 and 𝑊 are the image height

and width, 𝐶 is the number of channels, and 𝑃ℎ, 𝑃𝑤 define the patch dimensions. The

total number of patches (𝑁) is given by:

𝑁 =
𝐻𝑊

𝑃ℎ𝑃𝑤

(5.1)

Each patch is then reshaped into a flattened vector:

𝑃 = Reshape(𝐼) ∈ R𝑁×(𝑃ℎ𝑃𝑤𝐶) (5.2)

where Reshape(𝐼) denotes the operation that reorganizes the image into patch

vectors. These flattened patches undergo a linear projection to embed them into a

lower-dimensional space:

𝐸patch = Linear(Flatten(𝐼patch)) + PE (5.3)

where 𝐼patch represents the image patches, Linear denotes the linear transformation

matrix used for embedding, and Flatten is the operation that flattens each patch into

a vector. The positional encoding (PE) uses sine and cosine functions to incorporate

spatial information, ensuring the model understands the positional arrangement of

patches. This is defined as:

PE(pos, 2𝑖) = sin
(︁ pos
10000(2𝑖/dim)

)︁
(5.4)

PE(pos, 2𝑖+ 1) = cos
(︁ pos
10000(2𝑖/dim)

)︁
(5.5)
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The overall data pre-processing workflow is illustrated in Figure 5-2.

Figure 5-2: Data Pre-Processing Step

This pre-processing step ensures that image patches retain their spatial informa-

tion while being effectively embedded into a sequence of vectors for further processing.

5.3.2 Encoder Module of the Proposed Architecture

The encoder part efficiently collects the spatial and visual characteristics of the image,

thereby preparing the model for subsequent tasks such as image labeling. The vision

transformer (ViT) encoder is used to receive the sequences of tokenized patches that

have been enhanced with positional data. The architectural structure for the Vision

transformer encoder is illustrated in Figure 5-3. For multi-head self-attention, the

attention is computed in parallel across ℎ heads and concatenated, as denoted in

Equations (5.6), (5.7) and (5.8):

Attention(𝑄,𝐾, 𝑉 ) = Softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉 (5.6)
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Figure 5-3: Illustration of ViT- Encoder module with heat maps

MultiHead(𝑄,𝐾, 𝑉 ) = Concat (Head1, . . . ,Headℎ)𝑊
𝑂 (5.7)

Head𝑖 = Attention(𝑄𝑊𝑄
𝑖 , 𝐾𝑊𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ) (5.8)

where, 𝑄, 𝐾, and 𝑉 represent the queries, keys, and values matrices, respectively.

𝑑𝑘 is the dimension of the keys, 𝑊𝑄
𝑖 , 𝑊𝐾

𝑖 , and 𝑊 𝑉
𝑖 are projection matrices for each

head and 𝑊𝑂 is the output projection matrix. The multi-head attention module

further generates heat maps to offer insights into the attention mechanism of the

model, as illustrated in Figure 5-3. These heat maps aid in identifying the specific

areas of the input image that impact key description elements. Additionally, the

cross-model attention mechanism is used to transmit these extracted features to the

GPT-4 decoder module for final mapping.
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5.3.3 Cross-model attention mechanism

Through cross-modal attention, which dynamically focuses on pertinent features from

each modality, the proposed model is able to match visual details with textual de-

scriptions. In image description generation, the model creates sentences by focusing

on various aspects of an image and lining them up with the context that the text

provides. Cross-model attention mechanism can be represented by the following Fig-

ure 5-4. The alignment enhances the model’s capacity to generate precise and contex-

Figure 5-4: Cross-Model Attention Mechanism.

tually appropriate descriptions, eventually leading to a richer understanding and more

coherent outputs. The cross-modal attention mechanism is defined as Equation (5.9):

CrossAttention(𝑄t, 𝐾i, 𝑉i) = Softmax
(︂
𝑄t𝐾

𝑇
i√

𝑑t

)︂
𝑉i (5.9)

where, 𝑄t represents text queries, 𝐾i and 𝑉i are the keys and values from the

image features and 𝑑t is the dimension of the text queries.

5.3.4 Decoder Module of the Proposed Architecture

The primary architecture of the decoder is based on the GPT-4 transformer model,

which is specifically designed for context-based tasks. The structure consists of layers
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of feed-forward and multiple self-attention neural networks. The diagram in Figure 5-

5 illustrates the structural framework of GPT-4.

Figure 5-5: GPT-4 Decoder Module.

Using self-attention mechanisms, every layer progressively enhances input embed-

ding, enabling the model to discern distant relationships and contextual information.

The self-attention within the GPT-4 decoder is given by Equation (5.10):

SelfAttention(𝑄t, 𝐾t, 𝑉t) = Softmax
(︂
𝑄t𝐾

𝑇
t√

𝑑t

)︂
𝑉t (5.10)

where, 𝑄t, 𝐾t, and 𝑉t represent the text queries, keys, and values respectively and

𝑑t is the dimension of the text queries. To create the next word in the sequence, the

output layer predicts the probability distribution across the vocabulary using word/-

token embedding, representing words as vectors. Due to this methodology, GPT-4

can generate cohesive and contextually suitable information by extensively working

on more substantial sentences. The final textual output is obtained by passing the
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combined attention outputs through a feed-forward (FF) network and then generating

Logits for each token in the vocabulary as represented in Equation (5.11):

Logits = FF (CrossAttention + SelfAttention) (5.11)

Linear and Softmax layers in network mapping are essential for producing the

end result and predicting evaluation scores when generating image descriptions. The

model can represent intricate relationships with them appropriately. Equation (5.12)

represents the expression denoted as Linear(𝑊,𝑋).

Linear(𝑊,𝑋) = 𝑊𝑋 + 𝑏 (5.12)

The weight matrix is symbolized by 𝑊 , the input vector is indicated by 𝑋, and

the bias vector is designated by 𝑏. Next, the updated characteristics are normalized

into a probability distribution throughout the lexicon of potential words or tokens

using the Softmax layer, as represented by Equation 5.13.

Softmax(z)𝑖 =
𝑒𝑧𝑖∑︀
𝑗 𝑒

𝑧𝑗
, (5.13)

where, the input vector is denoted as 𝑧. The accuracy of these predictions is

evaluated by comparing them to the descriptions in the reference file. The evaluation

metrics used are ROUGE-L, CIDEr, METEOR, and BLEU 1-4, which assess the

degree of similarities between the predicted and actual descriptions. These metrics

enable the evaluation of the model’s ability to effectively integrate the context and

semantics of the images into the generated descriptions.

The following describes Algorithm 5.1 for the suggested model along with its score

evaluation:
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Algorithm 5.1 Algorithm for the proposed model, CrossViT-GPT4.
1: Input: Image 𝐼
2: Output: Generated Description Outputtext, Evaluation Scores
3: Step 1: Data Pre-processing
4: 𝑃 ← Partition image 𝐼 into patches
5: 𝐸patch ← Flatten and linearly project each patch
6: 𝐸patch ← Apply positional encoding
7: Step 2: Vision Transformer Encoding
8: Visual_features← ViT Encoder(𝐸patch)
9: Enhanced_features← MultiHeadAttention(𝑄,𝐾, 𝑉 )

10: Step 3: Cross-Modal Attention
11: Cross_modal_features← CrossAttention(𝑄t, 𝐾i, 𝑉i)
12: Step 4: GPT-4 Decoding
13: for each time step 𝑡 in decoding do
14: Text_features← SelfAttention(𝑄t, 𝐾t, 𝑉t)
15: Logits← Generate next token logits
16: Outputtext ← Softmax(Logits)
17: end for
18: Step 5: Evaluation
19: Evaluation_scores← Calculate BLEU, CIDEr, METEOR, and ROUGE-L
20: Output: Outputtext,Evaluation_scores

5.4 Experimental Analysis

The experiments were performed using Google Colab Pro+, which provides high-

performance resources, including 52 GB of RAM, an NVIDIA A100 GPU with 40 GB

of VRAM, and a virtual CPU equivalent to an Intel Xeon processor. The framework

was implemented using Keras and TensorFlow 2.12. The ViT model has 86.7 million

parameters and GPT-4 has 1.76 trillion. Input images are (batch_size, 224, 224,

3), and output shapes vary by layer. The developed framework was evaluated on

two benchmark datasets: the Indiana University Chest X-Ray dataset (IU X-Ray)

and the NIH Chest X-ray dataset. The IU X-ray dataset consists of 3,955 XML

radiologist reports and 7,471 PNG images while the NIH dataset consists of 112,120

frontal X-rays with annotations for 13 thoracic illnesses across 30,805 individuals.
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5.4.1 Implementation Details:

To improve medical image captioning, the CrossViT-GPT4 architecture combines a

GPT-4 decoder and a ViT encoder with cross-modal attention. While cross-modal

attention aligns textual and visual input for improved contextual understanding, ViT

removes spatial and semantic elements. Reports produced by GPT-4 are logical and

clinically significant. Using the Adam optimiser, a batch size of 32, and categorical

cross-entropy loss, the model is trained for 75 epochs on the IU and NIH Chest X-

ray datasets. For medical terminology, a domain method of adaptation refines the

language model. BLEU (1-4), METEOR, ROUGE-L, and CIDEr assess performance,

guaranteeing linguistic correctness and clinical significance. Table 5.1describes the

CrossViT-GPT4 framework’s components, emphasizing the output dimensions and

number of parameters for each layer.

Table 5.1: Architectural Details for the Proposed Model

Layer Type Output Shape Parameters
ViT Encoder with Cross-Attention (batch_size, d_model) 3M
GPT-4 Decoder (batch_size, seq_len) 125M
Cross-Modal Attention Layer (batch_size, joint_dim) 5M
Fully Connected Layer (batch_size, 512) 262,144
Pooling Layer (batch_size, 256) 0
Convolutional Layer (batch_size, 128) 280,960
Total Number of Parameters - 133.54M

Table 5.2 describes the evaluation metrics and hyperparameters used to train

and evaluate the model. By ensuring that CrossViT-GPT4 efficiently captures the

fine-grained medical data required for precise and clinically meaningful image descrip-

tions, this implementation helps radiologists diagnose and arrange treatments more

successfully.

5.4.2 Ablation Study:

The suggested model’s image description components were clarified using ablation

analysis. This study investigates the capabilities of the proposed architecture, CrossViT-

99



CHAPTER 5.

Table 5.2: Hyperparameters and Evaluation Metrics for the CrossViT-GPT4 Frame-
work

Hyperparameter Value/Description
Model Name CrossViT-GPT4
Encoder Vision Transformer (ViT) with Cross-Modal Attention
Decoder GPT-4
Training Datasets IU Chest X-ray, NIH Chest X-ray
Training Epochs 75
Batch Size 32
Optimizer Adam
Loss Function Categorical Cross-Entropy Loss
Evaluation Metrics BLEU (1-4), METEOR, ROUGE-L, CIDEr

GPT4. In Table 5.3, we compare the performance of various models on two major

chest X-ray datasets: the IU Chest X-Ray dataset and the NIH Chest X-Ray dataset.

The results presented in the following table summarize the performance of each model

across these metrics. The table presents the performance comparison of image de-

Table 5.3: Evaluation of Models on the IU and NIH Chest X-Ray Datasets

Dataset Model B-1 B-2 B-3 B-4 CIDEr METEOR ROUGE-L

IU Chest X-Ray

ViT without GPT-4 0.398 0.373 0.354 0.343 0.658 0.286 0.316
ViT + Self Attention 0.283 0.258 0.236 0.205 0.574 0.194 0.188
ViT + Self Attention + LSTM 0.601 0.572 0.554 0.498 0.587 0.436 0.342
ViT + GPT-2 0.704 0.663 0.634 0.626 0.792 0.564 0.474
ViT + GPT-4 0.782 0.764 0.712 0.701 0.762 0.735 0.695
CrossViT-GPT4 (Proposed) 0.854 0.817 0.804 0.785 0.883 0.759 0.712

NIH Chest X-Ray

ViT without GPT-4 0.383 0.363 0.334 0.312 0.578 0.265 0.287
ViT + Self Attention 0.284 0.268 0.253 0.248 0.534 0.187 0.176
ViT + Self Attention + LSTM 0.438 0.425 0.409 0.387 0.589 0.436 0.386
ViT + GPT-2 0.687 0.658 0.644 0.612 0.763 0.582 0.604
ViT + GPT-4 0.789 0.767 0.758 0.716 0.825 0.714 0.674
CrossViT-GPT4 (Proposed) 0.825 0.806 0.795 0.772 0.857 0.726 0.705

scription generation models on the IU and NIH Chest X-ray datasets using BLEU

scores (B-1 to B-4), CIDEr (C), METEOR (M), and ROUGE-L (R-L). The pro-

posed CrossViT-GPT4 model outperforms all other models across all metrics for

both datasets. On the IU Chest X-ray dataset, it achieves BLEU-1 of 0.854, BLEU-2

of 0.817, BLEU-3 of 0.804, and BLEU-4 of 0.785, along with a CIDEr score of 0.883,

METEOR of 0.759, and ROUGE-L of 0.712. Similarly, on the NIH Chest X-ray

dataset, it attains BLEU-1 of 0.825, BLEU-2 of 0.806, BLEU-3 of 0.795, and BLEU-

4 of 0.772, with a CIDEr of 0.857, METEOR of 0.726, and ROUGE-L of 0.705.

These results highlight the superior performance of CrossViT-GPT4 in generating

high-quality medical image descriptions.
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5.4.3 Results and Analysis:

The suggested model, CrossViT-GPT4, provides an excellent approach for illustrating

images in the IU and NIH chest X-ray datasets. It combines the ViT encoder and

the GPT-4 decoder modules. The results for the chest X-ray datasets from IU and

NIH are shown in able 5.4 and 5.5, respectively.

Table 5.4: Quantitative Results Obtained on IU Chest X-Ray Dataset

Test Image Ground Truth Report Disease Predic-
tion

Predicted Re-
port

The heart is normal in size. The medi-
astinal contours are within normal lim-
its. There is mild prominence of the su-
perior mediastinum which is somewhat lu-
cent and reflects mediastinal and vascular
structures. No focal consolidation is seen.
There is no pleural effusion.

Mediastinal con-
tours within
normal limits.
Mild mediastinum
somewhat lucent.

Lateral view of the chest shows an
unchanged cardiomediastinal silhouette.
The cardiac silhouette remains moder-
ately enlarged, exaggerated by epicardial
fat pads. Interstitium is prominent. No
focal airspace consolidation or pleural ef-
fusion. There is spine spondylosis.

Unchanged cardio-
mediastinal silhou-
ette. Interstitium
prominent. Spine
spondylosis.

Table 5.5: Quantitative Results Obtained on NIH Chest X-Ray Dataset

Test Image Ground Truth Report Disease Predic-
tion

Predicted Re-
port

1. The heart is normal size. 2. The medi-
astinum is unremarkable. 3. There is no
pleural effusion, pneumothorax, or focal
airspace disease. 4. There is stable irreg-
ularity of the posterior left 6th rib which
represents an old fracture.

No pleural effusion,
pneumothorax, or
focal airspace dis-
ease.

1. The heart size and cardiomediastinal
silhouette are normal. 2. There is hyper-
expansion of the lungs with flattening of
the hemidiaphragms. 3. There is no focal
airspace opacity, pleural effusion, or pneu-
mothorax. 4. There are multilevel degen-
erative changes of the thoracic spine.

Cardiovascular
silhouette normal.
No focal airspace
opacity, pleural
effusion, or pneu-
mothorax.

The tables provide a quantitative comparison between the actual data and the

reports generated by the model for different test images. The results evaluate the
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model’s capacity to forecast diseases and produce descriptions that showcase the

model’s precision by utilizing X-ray images for both datasets.

5.4.4 Comparison With Other state-of-the-art Methods:

Compared to the most advanced methodologies currently available, the proposed

method demonstrates a substantial enhancement in disease prediction accuracy and

report production for X-ray images. The method, CrossViT-GPT4, effectively per-

forms on both the IU and NIH chest X-ray datasets by utilizing a fusion model that

incorporates the ViT encoder and GPT-4.0 decoder.

The study presented in Table 5.6 thoroughly analyzes various models used to gen-

erate image descriptions on the IU X-ray and NIH datasets. The table compares var-

Table 5.6: Comparative Analysis on IU and NIH Chest X-Ray Datasets

Model BLEU METEOR CIDEr Rouge-L
IU Chest X-Ray Dataset

R2Gen [110] 0.470 0.187 - 0.371
R2Gen + ChexNet [111] 0.508 0.222 - 0.365
Cross-modal PROtotype driven NETwork (XPRONET) [112] 0.525 0.220 - 0.411
Contrastive attention [105] 0.492 0.193 - 0.381
Knowledge-injected U-Transformer [113] 0.525 0.242 - 0.409
AERMNet [114] 0.486 0.219 0.560 0.398
CrossViT-GPT4 (Proposed) 0.854 0.759 0.883 0.712

NIH Chest X-Ray Dataset
Semantic Attention [115] 0.467 0.192 0.560 0.204
Co-Attention [116] 0.756 0.597 0.755 0.675
Clinical-BERT [117] 0.383 0.144 - 0.275
ChestBioX-Gen [118] 0.668 0.189 0.416 0.674
CrossViT-GPT4 (Proposed) 0.825 0.726 0.857 0.705

ious models for generating image descriptions on the IU Chest X-Ray and NIH Chest

X-Ray datasets, evaluating their performance using BLEU, METEOR, CIDEr, and

Rouge-L metrics. On the IU Chest X-Ray dataset, R2Gen [110] demonstrates inter-

mediate performance, while R2Gen + ChexNet [111] improves BLEU and METEOR

scores but slightly reduces Rouge-L. Both XPRONET [112] and Knowledge-injected

U-Transformer [105] achieve a BLEU score of 0.525, with the latter excelling in ME-

TEOR and Rouge-L. Contrastive Attention exhibits moderate performance, whereas

AERMNet [114] provides balanced results across metrics. The proposed CrossViT-

GPT4 model outperforms all these approaches, achieving significantly higher scores
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across all metrics: BLEU (0.854), METEOR (0.759), CIDEr (0.883), and Rouge-

L (0.712). On the NIH Chest X-Ray dataset, the CrossViT-GPT4 model similarly

leads with the highest scores across all metrics: BLEU (0.825), METEOR (0.726),

CIDEr (0.857), and Rouge-L (0.705). In comparison, Semantic Attention [115], Co-

Attention [116], ChestBioX-Gen [118], and Clinical-BERT [117] exhibit less balanced

or lower performance. These results underscore the superior capability of the pro-

posed model in generating accurate and semantically rich image descriptions across

both datasets.

5.5 Conclusion

In this chapter, combining the Vision Transformer encoder module (ViT) with cross-

model attention and the Generative Pre-trained Transformers 4 (GPT 4.0) decoder

module results in an efficient framework, CrossViT-GPT4, for producing visual de-

scriptions. The model uses vision-based feature extraction and language modeling

to analyze and characterize complex medical images thoroughly. When textual and

visual components are combined, chest X-ray pathology reports can be described and

explained more precisely. Transformer-based designs are scalable and adaptable, pro-

moting medical image analysis research and innovation. Their adaptability enables

them to efficiently manage diverse datasets and tasks. By enhancing medical image

processing, the suggested approach may increase diagnostic precision and assist clini-

cal decision-making platforms. Poor image quality can seriously affect model accuracy

by restricting the ability to extract features and generate accurate descriptions.
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(1st Major Revision)

6.1 Introduction

In this chapter, we introduce a method for understanding and analyzing video actions,

which is essential for producing insightful and contextualized descriptions, particu-

larly in video-based applications like intelligent monitoring and autonomous systems.

This work presents a novel framework for generating natural language descriptions

from images and videos by integrating textual and visual modalities. The proposed

architecture utilizes ResNet50 to extract visual features from video frames sourced

from the Microsoft Research Video Description Corpus (MSVD), the Berkeley Deep-

Drive eXplanation (BDD-X) dataset, and filtered image-caption pairs from Flickr8k.
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The extracted visual features are transformed into patch embeddings and processed

through an encoder-decoder model based on transformers and GPT-2. To ensure

high-quality description generation, the system employs multi-head self-attention

and cross-attention mechanisms for aligning textual and visual representations. The

model’s effectiveness is validated through performance evaluation using BLEU (1-4),

CIDEr, METEOR, and ROUGE-L.

The major contributions of the proposed work are summarized below:

• To provide natural language descriptions of video sequences, the following work

proposes a transformer-based architecture that integrates a GPT-2-based lan-

guage model with the visual features retrieved by ResNet50.

• The method combines video datasets from various sources (MSVD and BDD-X),

allowing the model to generalize across domains. High-quality training samples

are guaranteed via sophisticated preprocessing.

• Gradient accumulation and mixed precision training are used to optimise the

model, increasing computing efficiency without sacrificing output quality.

• Fluency, contextual relevance, and coherence are ensured by thoroughly eval-

uating the generated descriptions using BLEU (1–4), CIDEr, METEOR, and

ROUGE-L standards.

• Although this method is extremely beneficial for intelligent transportation and

autonomous driving, it can also be used in other fields, including robotics,

assistive technology, and surveillance.

6.2 Literature Survey

In computer vision and natural language processing, video-based description creation

is an essential task that allows systems to produce textual summaries of visual con-

tent. The creation of video descriptions must consider temporal relationships, object

interactions, and dynamic scene changes across frames, in contrast to static image
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captioning. Early video description generation approaches included recurrent neural

networks (RNNs) or long short-term memory (LSTM) networks for text synthesis and

convolutional neural networks (CNNs) for feature extraction.

A Sequence-to-Sequence (Seq2Seq) model trained on MSVD [119] was presented

by Venugopalan et al. [120] to produce video descriptions. However, because of

the limits of LSTMs, these models have trouble handling contextual inconsisten-

cies and long-range dependencies. Later, to make generated descriptions more rele-

vant, attention techniques were added [121]. Transformer-based models have led to

a considerable improvement in video captioning systems. End-to-end dense Video

Captioning was proposed by Zhou et al. [122], who used spatiotemporal attention

mechanisms to grasp multiple frames. Compared to conventional RNN-based mod-

els, MART (Memory-Augmented Recurrent Transformer), which was introduced by

Lei et al. [123], performs more effectively at capturing long-term video dependen-

cies. More recently, multimodal pretraining for video-language understanding has

been investigated by VideoBERT [124] and ClipBERT [125]. These methods achieve

state-of-the-art outcomes on datasets such as MSVD [119] and MSR-VTT [126] by

aligning textual and visual representations. Datasets such as Berkeley DeepDrive eX-

planation (BDD-X) [127] have been useful for producing explainable AI-driven anno-

tations for vehicle-based video description generation. Studies like Shoman et al. [128]

integrated explainability processes into vision-language models and concentrated on

justification-based video descriptions for autonomous driving. An attention-guided

transformer was developed by Cui et al. [129] to improve contextual reasoning in

captioning models based on BDD-X.

Recent advancements in multimodal learning combine text, audio, and visual data.

Hori et al. [130] introduced an audio-visual attention model using speech and scene

context, while Yu et al. [29] enhanced captioning on datasets like Flickr8k and MSVD

using spatiotemporal object graphs. These methods improve contextual awareness,

particularly in dynamic scenarios like vehicle interactions. Despite progress, gen-

erating accurate, human-like video descriptions remains challenging. The proposed

approach addresses this by combining a GPT-2 encoder-decoder with ResNet50-based
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feature extraction, outperforming prior methods on BLEU (1–4), CIDEr, METEOR,

and ROUGE-L. It refines multimodal embeddings for context-aware captions and

boosts efficiency with gradient accumulation and mixed precision training. By bridg-

ing explainable vehicular (BDD-X) and general (MSVD) video captioning, the model

delivers interpretable, context-rich descriptions suitable for real-world use.

6.3 Proposed Architecture

The proposed study introduces a context-sensitive and transformer-based reasoning

framework to generate logical and relevant video descriptions. Using the BDD-X and

MSVD datasets, the system learns from both action-justified driving videos and di-

verse scene representations. It employs an optimised GPT-2 encoder-decoder model

with multihead attention and ResNet50-based visual feature extraction to enhance

contextual understanding. Training is guided by action-justification pairs from BDD-

X and captioned sequences from MSVD, promoting coherent human-like output. Gra-

dient accumulation and mixed precision training boost computational efficiency with-

out compromising accuracy. Evaluations using BLEU (1–4), CIDEr, METEOR, and

ROUGE-L show superior performance over traditional methods. The basic architec-

ture of the proposed framework is shown in Figure 6-1, which further demonstrates

the pipeline for data pre-processing, model training, and description generation.

6.3.1 Data Pre-processing

The input data includes video frames from the BDD-X and MSVD datasets. Video

frames are extracted, pertinent images are filtered, and then the frames are trans-

formed into structured input for the model as part of the pre-processing pipeline.

ResNet50, which converts spatial information from images into high-dimensional fea-

ture vectors, is used for feature extraction. After that, a linear projection and po-

sition encoding method are used to patch and embed these feature vectors. The

GPT-2 encoder-decoder module then receives the processed embeddings and aligns

the word/token embeddings with the appropriate visual features. To further improve
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Figure 6-1: Framework for the Proposed Model (ResNet50-GPT2): The system incor-
porates ResNet50 for image feature extraction and a GPT-2 encoder-decoder model
to generate context-aware video-based image descriptions.

model resilience, tokenization, data augmentation, and train-test splits are used.

6.3.2 Model Architecture

The proposed method combines a GPT-2 encoder-decoder model to generate context-

aware descriptions of vehicle actions with ResNet50 to extract image features. The

model is fine-tuned on the BDD-X and MSVD datasets to become optimal in dy-

namic scenarios for generating meaningful descriptions. The training process employs

gradient accumulation and mixed precision training to achieve optimal computing ef-

ficiency.

ResNet50 acts as a feature extractor by passing each input frame 𝑥 ∈ R3×𝐻×𝑊

through a series of convolutional, batch normalization, ReLU, and residual layers.

The output feature vector 𝑓 is computed as:

𝑓 = ResNet50(𝑥) = AvgPool(𝐹res(𝑥)) (6.1)

where, 𝐹res denotes the output of the final convolutional block, and AvgPool is the

global average pooling operation applied to extract the final feature representation

𝑓 ∈ R2048.
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Using position embeddings 𝑃 ∈ R𝑁×𝑑 and a learnable linear projection 𝑊𝑝 ∈

R2048×𝑑, the visual characteristics retrieved by ResNet50 are transformed into embed-

ded visual tokens:

𝐸𝑣 = 𝑓𝑊𝑝 + 𝑃 (6.2)

The GPT-2 model uses these embedded patches as input tokens to produce de-

scriptions that are logical and sensitive to context. The model utilizes self-attention

mechanisms to enhance contextual understanding, formulated as:

Self-Attention(𝑄,𝐾, 𝑉 ) = Softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉 (6.3)

where 𝑑𝑘 is the key vector dimension, and 𝑄,𝐾, 𝑉 represent the query, key, and value

matrices.

To maintain the semantic relevance of the generated descriptions to video-based

activities, the multi-head cross-attention method aligns image embeddings with tex-

tual descriptions. The decoder uses attention-weighted contextual embeddings to

improve the textual output:

Decoder-Attention(𝑄,𝐾, 𝑉 ) = Softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉 (6.4)

The final word prediction probability is computed as:

𝑦𝑡 = Softmax(𝑊𝑜ℎ𝑡 + 𝑏𝑜) (6.5)

where 𝑊𝑜 and 𝑏𝑜 are the output weight matrix and bias, respectively, and ℎ𝑡 represents

the hidden state at time step 𝑡.

To enhance generalization, the model employs a combined loss function incorpo-

rating cross-entropy loss and L2 regularization:

ℒ = −
𝑇∑︁
𝑡=1

log𝑃 (𝑦𝑡 | 𝑦<𝑡) + 𝜆‖𝜃‖2 (6.6)
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where 𝜆 is the regularization parameter and 𝑃 (𝑦𝑡 | 𝑦<𝑡) denotes the probability of

predicting 𝑦𝑡 given prior words.

In BLEU-4, CIDEr, METEOR, and ROUGE-L metrics, the proposed framework

outperforms traditional methods, ensuring that the generated descriptions are sensi-

ble, logical, and context-aware. These metrics are utilized to analyze the contextual

validity and linguistic quality of the descriptions generated by the GPT-2 model

for unseen videos upon training. The method achieves performance improvement

over traditional methods by contrasting the generated descriptions with ground-truth

annotations. Ultimately, the framework generates natural language narratives that

effectively describe dynamic visual scenes, promoting explainability in a range of ap-

plications.

The following summarizes the Algorithm 6.1 for the proposed model and its eval-

uation:

Algorithm 6.1 Context-Aware Description Generation
1: Input: Video frames (BDD-X, MSVD), image-caption pairs (Flickr8k)
2: Output: Generated descriptions, Evaluation Scores
3: 1. Preprocessing and Embedding
4: Extract and embed image frames using patch encoding
5: Tokenize and format textual descriptions
6: 2. Dataset Split
7: Create balanced train-test sets with captions and action-justification pairs
8: 3. Feature Extraction
9: Visual_features← ResNet50(𝐼)

10: Project features and tokenize text using GPT-2
11: 4. Model Training
12: Initialize GPT-2 with multi-head attention and cross-modal fusion
13: Train with AdamW, gradient accumulation, and mixed precision
14: 5. Inference and Evaluation
15: for each test sample do
16: Generate and decode descriptions
17: end for
18: Compute BLEU-4, CIDEr, METEOR, ROUGE-L
19: 6. Output
20: Present evaluation scores and visualize results
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6.4 Experimental Analysis

The proposed model was implemented in PyTorch and evaluated on Google Colab

Pro+ using 52GB RAM, an NVIDIA A100 GPU (40GB VRAM), and a virtual Intel

Xeon CPU. It generates context-aware descriptions using a GPT-2 encoder-decoder

(approximately 66.7M parameters) and ResNet50 for visual feature extraction. In-

put frames were resized to (batch_size, 224, 224, 3). Training was conducted

over 75 epochs with the AdamW optimizer (learning rate 1 × 10−5, weight decay

0.01), using a batch size of 32 and gradient accumulation. Mixed precision training

and gradient clipping were applied to improve computational efficiency and training

stability. The model was trained using the MSVD dataset1, which contains short

descriptive captions for diverse video clips, and the BDD-X dataset2, which includes

over 26K annotated actions across 8.4M frames and 6,970 videos. During prepro-

cessing, linguistic descriptions were tokenized and structured into action-justification

pairs, while image frames were embedded via ResNet50 and projected linearly into

patch embeddings. These embeddings were then fed into the multi-head self-attention

module of the GPT-2 encoder-decoder to align image and text contexts effectively.

Performance was evaluated on a 20% test split using BLEU-4, CIDEr, METEOR, and

ROUGE-L. The model consistently outperformed conventional captioning techniques,

demonstrating its ability to generate logical, contextually accurate descriptions across

diverse visual inputs. The architecture’s use of self- and cross-attention mechanisms

ensured semantic accuracy and narrative coherence, reinforcing its applicability in

real-world visual captioning tasks. The following Table 6.1 depicts the overall archi-

tectural structure of the proposed framework.

6.4.1 Ablation Study

Utilising the BDD-X and the MSVD datasets, an ablation research was carried out

to evaluate the contribution of various components in the suggested model. The re-
1https://www.kaggle.com/datasets/vtrnanh/msvd-dataset-corpus
2https://github.com/JinkyuKimUCB/BDD-X-dataset
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Table 6.1: Experimental Setup and Performance Metrics

Component Details
Framework Used PyTorch
Image Feature Extractor ResNet-50
Model GPT-2 Transformer-based Encoder-Decoder
Input Size (224, 224, 3)
Batch size 32
Number of Epochs 75
Learning Rate 1× 10−5

Optimizer AdamW
Training Strategy Gradient Accumulation, Mixed-Precision Training
Datasets Used BDD-X, MSVD, Filtered Flickr8k
Evaluation Metrics BLEU 1-4, CIDEr, METEOR, ROUGE-L

search methodically eliminated or altered important architectural components, such

as multi-head attention, gradient accumulation and mixed precision training optimi-

sations, and visual feature extraction (ResNet-50), in order to assess each compo-

nent’s effect on model performance. Model modifications were compared using the

BLEU-1 to BLEU-4, CIDEr, METEOR, and ROUGE-L metrics, which provided a

thorough assessment of the effects of each component on the quality of description

production. As can be seen from Table 6.2, the results demonstrate the importance of

each element in producing textual descriptions for video frames that are both logical

and contextually rich. The model’s performance on the MSVD and BDD-X datasets

Table 6.2: Ablation Study: Comparing the Impact of Model Components on Different
Datasets

Dataset Model Variant BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE-L
BDD-X GPT-2 without

ResNet50
0.693 0.668 0.638 0.601 0.921 0.234 0.640

GPT-2 + Single-
Head Attention

0.731 0.705 0.673 0.634 1.032 0.257 0.672

GPT-2 + Without
Gradient Accumu-
lation

0.785 0.758 0.723 0.681 1.142 0.278 0.710

ResNet50 +
GPT-2 (Pro-
posed)

0.860 0.835 0.800 0.755 1.235 0.312 0.782

MSVD GPT-2 without
ResNet50

0.710 0.685 0.654 0.612 0.980 0.242 0.651

GPT-2 + Single-
Head Attention

0.742 0.715 0.683 0.641 1.105 0.265 0.685

GPT-2 + Without
Gradient Accumu-
lation

0.798 0.772 0.740 0.698 1.231 0.293 0.724

ResNet50 +
GPT-2 (Pro-
posed)

0.880 0.855 0.823 0.778 1.315 0.329 0.795
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emphasizes the critical role of each architectural component. The most substantial

performance drop occurred when ResNet-50 was removed, resulting in BLEU-4 and

CIDEr declines of 15.4% and 25.4% on BDD-X, and 21.3% and 25.5% on MSVD,

respectively—underscoring the importance of strong visual feature extraction. Re-

placing multi-head attention with a single-head variant led to moderate performance

degradation, with a 16.0% drop in CIDEr on the MSVD dataset, highlighting its

contribution to capturing fine-grained cross-modal interactions. Omitting gradient

accumulation reduced training stability and effectiveness, leading to average drops of

9.8% in BLEU-4 and 7.5% in CIDEr across the two datasets. Figure 6-2 illustrates

these results. The proposed framework obtained the best scores on all evaluation

Figure 6-2: Demonstration of Ablation Study for the Proposed Work

measures, outperforming the ablated versions on all the datasets consistently. The

improvements are especially clear in MSVD and BDD-X, where temporal dependency

modelling and interpreting intricate visual scenes are critical. This better performance

is a result of the synergy among multiple important elements: ResNet50 for feature

extraction of high-level spatial features from images, GPT-2 as a strong language

model with the ability to produce fluent and coherent text sequences, multi-head

attention for modelling fine-grained alignments between visual and linguistic modali-

ties, and gradient accumulation with mixed-precision training for efficient and stable

optimization. The use of GPT-2, specifically, adds to the model’s capacity to generate

contextually accurate and linguistically advanced descriptions. Collectively, these fea-
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tures make the proposed framework capable of generating high-quality, context-aware

descriptions, with each module contributing significantly to the overall performance

improvement.

6.4.2 Results and Analysis:

To assess the efficacy of the suggested architecture, we carried out a comprehensive

performance analysis on two benchmark datasets: MSVD and BDD-X. The suggested

framework was tested against many model ablations, such as excluding gradient ac-

cumulation, using single-head attention, and removing ResNet-50. The evaluation’s

findings are compiled in Table 6.3. The outcomes shown in the table demonstrate how

Table 6.3: Results and Analysis of the Proposed Framework

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE-L
BDD-X 0.860 0.835 0.800 0.755 1.235 0.312 0.782
MSVD 0.880 0.855 0.823 0.778 1.315 0.329 0.795

well our suggested methodology performs across datasets, consistently achieving top

scores in all evaluation metrics. While high BLEU scores reflect fluency and gram-

matical accuracy, the superior performance in CIDEr and METEOR highlights strong

semantic alignment and high-quality descriptions. With a BLEU-4 score of 0.778 and

a CIDEr score of 1.315, the MSVD dataset showcases the model’s strength in pro-

ducing diverse and precise captions for short video content. Similarly, the BDD-X

dataset results—0.755 BLEU-4 and 1.235 CIDEr—illustrate the model’s robustness

in capturing intricate driving scenes and generating contextually appropriate, de-

scriptive narratives. Consistently high ROUGE-L scores (0.795 for MSVD and 0.782

for BDD-X) further validate the framework’s ability to generate outputs that closely

align with human references. Notably, elevated CIDEr values emphasize the model’s

effectiveness in capturing contextual and domain-specific nuances, while higher ME-

TEOR scores reflect improved alignment and paraphrasing capabilities. Figure 6-3

demonstrates the graphical representation of the results obtained for the proposed

framework. In general, the findings demonstrate that the suggested approach greatly
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Figure 6-3: Graphical Representation of the Results Obtained

improves the ability of video-based descriptions, resulting in syntactically fluid, se-

mantically rich, and contextually relevant descriptions.

6.4.3 Comparison With State-of-the-Art Methods:

We compare the performance of the suggested model with current state-of-the-art

(SOTA) captioning methods on two benchmark datasets—BDD-X and MSVD—in

order to assess its efficacy. A thorough evaluation employing several evaluation met-

rics, such as BLEU-1 to BLEU-4, CIDEr, METEOR, and ROUGE-L, is given by

the results in Table 6.4. On both datasets, the proposed framework significantly

outperforms earlier approaches, proving its capacity to produce more semantically

precise and contextually rich descriptions for behaviours involving vehicles. Specifi-

cally, the suggested model leads in terms of BLEU-4 and CIDEr scores, demonstrat-

ing enhanced description coherence and relevance. The table’s comparative analysis

demonstrates how the BDD-X and MSVD datasets have advanced regarding vehi-

cle action comprehension and general video-based description generation. Previous

models like OSCAR [132], ViT-GPT2 [131], X-LAN [53], and AoANet [100] showed

consistent improvements in descriptive quality on the BDD-X dataset, with AoANet

receiving the highest scores. However, with a BLEU-4 score of 0.755 and a CIDEr

score of 1.235, the proposed model outperforms all of these approaches, significantly

advancing over prior research. Similarly, on the MSVD dataset, transformer-based

models such as M2 Transformer [27] and GRU-EVE [134] performed well, with GRU-
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Table 6.4: Comparison of State-of-the-Art Models for Vehicle Action Understanding

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE-L

BDD-X

GPT-2 (Baseline) 0.312 0.285 0.210 0.152 0.653 0.185 0.356
X-LAN [53] 0.451 0.412 0.356 0.293 0.998 0.265 0.541
ViT-GPT2 [131] 0.482 0.445 0.398 0.324 1.086 0.258 0.523
OSCAR [132] 0.510 0.472 0.423 0.358 1.124 0.276 0.548
AoANet [100] 0.532 0.495 0.442 0.372 1.189 0.289 0.573
ResNet50-GPT2
(Proposed)

0.860 0.835 0.800 0.755 1.235 0.312 0.782

MSVD

GPT-2 (Baseline) 0.334 0.305 0.243 0.178 0.705 0.192 0.372
Show, Attend and
Tell [71]

0.480 0.443 0.395 0.304 0.943 0.252 0.520

M2 Transformer [27] 0.520 0.486 0.438 0.391 1.270 0.292 0.586
Dense Video Caption-
ing [133]

0.498 0.463 0.412 0.357 1.135 0.268 0.552

GRU-EVE [134] 0.535 0.502 0.456 0.370 1.246 0.285 0.594
ResNet50-GPT2
(Proposed)

0.880 0.855 0.823 0.778 1.315 0.329 0.795

EVE achieving a BLEU-4 score of 0.370 and CIDEr of 1.246. The proposed model

demonstrates clear improvements, especially in BLEU-4 (0.778) and CIDEr (1.315),

showcasing its ability to generate contextually rich and semantically aligned descrip-

tions. Figure 6-4 depicts a graphical representation of SOTA methods. Overall, the

Figure 6-4: Graphical Representation of the SOTA Methods

suggested approach continuously outperforms comparison on all datasets, setting new

benchmarks and proving its ability to capture fine-grained contextual information for

interpreting video-based actions.
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6.5 Conclusion

The proposed approach successfully combines ResNet50 for feature extraction with

an improved GPT-2 model, allowing for the production of contextually aware, high-

quality descriptions of video footage from the BDD-X and MSVD datasets. Through

the use of transformer-based language modelling, the method guarantees descrip-

tions that are consistent with ground-truth annotations and logical. In comparison

to traditional approaches, the combination of ResNet50 for visual feature extraction

and GPT-2 for text generation, as well as dataset augmentation, gradient accumu-

lation, and mixed precision training, improves training efficiency and performance.

Although transformer-based architectures are effective when used for large datasets,

the study emphasizes that domain-specific fine-tuning is necessary to produce accu-

rate and comprehensible descriptions. By enhancing interpretability, transparency,

and decision-making clarity, this research advances explainable AI and increases the

adaptability and dependability of automated video comprehension for various appli-

cations.
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Conclusion

The thesis fully investigates automated image description generation, covering the

vital issues of producing contextually precise and semantically rich descriptions in

various domains. In order to achieve three main research objectives, we present

and defend four advanced deep learning architectures in this thesis. The VGG16-

SceneGraph-BiGRU model improves contextual comprehension by combining visual

information with object relationships. In contrast, the Tri-FusionNet architecture

attains state-of-the-art description generation using transformer-based fusion and

dual attention. The thesis emphasizes the versatility of image description genera-

tion models in multimedia applications. The ViT-GPT4-based framework improves

chest radiograph diagnosis with accurate descriptions, while the ResNet50 model with

GPT 2-based model improves the transparency of context-aware description gener-

ation in video-based datasets. Experiments on different datasets verify the efficacy

of the models, pushing image description generation further toward unifying visual

comprehension and natural language synthesis. Finally, this work provides a great

platform for future research on image description generation, indicating directions

such as adding attention mechanisms, investigating transformer-based architectures,

and developing multimodal learning strategies. These developments can further en-

hance real-time description generation, domain-based applications, video-based image

description generation, and accessibility technology, making image description gener-

ation systems more impactful and useful.

118



CHAPTER 7.

7.1 Summary and Contribution of the Thesis

In this thesis, we proposed an extensive study on automatic image description genera-

tion, solving the major challenges of producing contextually correct and semantically

rich descriptions. The study fills the gap between natural language processing and

computer vision through the creation of sophisticated deep learning architectures spe-

cific to different applications. The primary contributions of the thesis are as follows:

• The incapacity of existing models to accurately depict object relationships

within an image frequently results in the generation of descriptions that lack se-

mantic significance. Therefore, we present the unified hybrid VGG16-SceneGraph-

BiGRU system to address this problem. The proposed work combines a BiGRU

network for sequential learning, scene graphs to model object interactions, and

VGG16 for visual feature extraction. Extensive tests conducted on the MS

COCO, Flickr8k, and Flickr30k datasets show that the suggested model dramat-

ically improves contextual coherence and performs better than current methods.

Standard metrics such as BLEU (1-4), CIDEr, METEOR, and ROUGE-L were

used to thoroughly test the models.

• Although image captioning has advanced, traditional systems still have trou-

ble with multimodal alignment, which results in descriptions that are not con-

sistent. In order to address this problem, we present a deep learning-based

framework known as Tri-FusionNet, which consists of a CLIP module for better

vision-language alignment, a RoBERTa decoder for enhanced linguistic fluency,

two attention mechanisms to improve multimodal learning, and a Vision Trans-

former (ViT) encoder for robust feature extraction. Significant improvements

in prediction scores and caption quality have been established by experimental

evaluations conducted on several benchmark datasets like MSCOCO, Flickr30k

and Flickr8k. The models consistently showed improved performance and es-

tablished new benchmarks in image description generation after being thor-

oughly tested using standard evaluation metrics such as BLEU (1-4), CIDEr,

METEOR, and ROUGE-L.
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• To help medical practitioners, medical image captioning needs to be accurate

and comprehensible. However, domain-specific expertise is frequently absent

from current models. In order to tackle this, we suggest a ViT-GPT4 architec-

ture that uses a GPT-4-based decoder with cross-modal attention to produce

medically appropriate descriptions and Vision Transformers (ViT) for high-level

feature extraction. The model’s efficacy in producing comprehensible and trust-

worthy radiology reports is demonstrated by its validation on the NIH Chest

X-rays and Indiana University Chest X-ray datasets. The models consistently

shown improved performance and established new benchmarks in image descrip-

tion generation after being thoroughly tested using standard evaluation metrics

such as BLEU (1-4), CIDEr, METEOR, and ROUGE-L.

• Finally, natural language descriptions are needed to increase the interpretabil-

ity and transparency of autonomous systems for video-based tasks. However,

current models are not good at producing accurate and context-aware descrip-

tions of changing scenes in rich environments. In order to tackle this issue, we

created a ResNet50-based GPT-2 framework that combines textual and visual

modalities, utilizing video frames from MSVD and BDD-X as well as filtered

image-caption pairs from Flickr8k. Through aligning visual characteristics with

textual accounts with multi-head self-attention and cross-attention mechanisms,

the model creates structured and explainable descriptions of various video con-

texts. Performance tests through BLEU (1-4), CIDEr, METEOR, and ROUGE-

L affirm the effectiveness of the model in creating coherent and context-aware

descriptions in video understanding and autonomous decision-making.

Compared with current state-of-the-art models, the experimental findings consis-

tently show greater performance. In addition to these quantitative enhancements,

our research contributes to multimodal learning by expanding real-world uses in au-

tonomous systems and medical imaging. The suggested frameworks significantly ad-

vance deep learning research by improving the interpretability, accuracy, and contex-

tual richness of image description generation.
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7.2 Future Directions

• Future research can concentrate on creating real-time image description genera-

tion systems capable of producing accurate and contextually sound descriptions

in real-time, allowing applications for live video analysis and assistive technol-

ogy for the blind.

• Enhancing multimodal fusion techniques—using deeper architectures like Graph

Convolutional Networks (GCNs) and dynamic attention—to better capture in-

teractions between textual and visual data is a crucial area for future research.

• Models should also be extended to handle 3D and multiview image data for bet-

ter contextual understanding in applications like medical imaging, augmented

reality, and robotics.

• In the future, self-supervised and unsupervised learning methods will be in-

vestigated to decrease reliance on large annotated datasets and make image

description generation more scalable and transferable to new domains.

• Future research can investigate incorporating image description generation sys-

tems with AI-enabled IoT devices, facilitating real-time environmental compre-

hension and description creation for applications such as smart surveillance and

home automation.

• In the future, as one possible direction, we would like to explore combining

emotional and affective context in image descriptions for more human and

empathetic-like description generation.
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Appendix A

Vision Transformer (ViT)

A thorough yet brief explanation of Vision Transformer (ViT), including its archi-

tecture, mathematical formulation, benefits, and applications, is discussed in this

appendix.

A.1 Overview

The Vision Transformer (ViT) adapts the transformer architecture, initially designed

for NLP tasks, to process visual data. Unlike CNNs, which capture local spatial

features, ViTs use self-attention to model global relationships between image patches.

ViTs have shown state-of-the-art performance in various computer vision tasks such

as classification, object detection, and segmentation. Vision Transformer architecture

comprises several key stages as depicted in Figure A-1:

A.1.1 Image Patching and Embedding

The image is divided into fixed-size patches, for example, a 224x224 image split into

16x16 patches, resulting in 196 patches. Each patch is flattened into a 1D vector,

then projected into a higher-dimensional space using a learnable linear projection.

𝑁 =
𝐻

𝑃
× 𝑊

𝑃
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Figure A-1: Basic Architecture of Vision Transformer (ViT) [135]

where 𝑁 is the number of patches.

A.1.2 Positional Encoding

Since transformers do not inherently preserve spatial order, positional encodings are

added to each patch embedding. These encodings provide spatial context, allowing

the model to understand patch relationships. Positional encodings can be either fixed

or learned, with most ViTs using learnable encodings.

A.1.3 Transformer Encoder

The patch embeddings with positional information pass through transformer encoder

layers, which include Multi-Head Self-Attention (MSA) and a Feed-Forward Network

(FFN).

Multi-Head Self-Attention: Self-attention allows each patch to attend to every

other patch, modeling long-range dependencies. The attention mechanism is defined
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as:

Attention(𝑄,𝐾, 𝑉 ) = softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉

Feed-Forward Network: Each transformer layer passes the patches through a feed-

forward network with two fully connected layers and a non-linear activation.

Multiple transformer encoder layers are stacked, refining the patch embeddings

and producing more abstract representations of the image.

A.1.4 Classification Token (CLS Token)

A CLS token is introduced at the beginning of the sequence. It aggregates information

from all patches, learning to represent the entire image. After the transformer layers,

the CLS token is used for classification.

A.1.5 Classification Head (MLP Head)

The output of the CLS token is passed through a Multi-Layer Perceptron (MLP) with

a softmax layer to predict the image label.

The Vision Transformer (ViT) revolutionizes image processing by capturing global

relationships between image patches, offering a powerful alternative to CNNs. While

flexible and scalable, ViTs require large datasets and computational resources, and

are expected to play an increasingly important role in future computer vision tasks.
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Appendix B

RoBERTa (Robustly Optimized

BERT Approach)

This appendix provides a brief overview of the RoBERTa decoder, highlighting its

architecture, functionality, and applications in natural language processing.

B.1 Overview

RoBERTa (Robustly Optimized BERT Approach) is an improved variant of the BERT

model, designed to enhance pretraining by optimizing key hyperparameters and re-

moving certain limitations. It utilizes the transformer architecture as depicted in

Figure B-1, originally introduced for NLP tasks, and has been shown to achieve su-

perior performance on a wide range of natural language understanding tasks.

B.1.1 Architecture

RoBERTa builds upon the BERT architecture by training with larger batches, more

data, and longer training times. It differs from BERT in that it removes the Next

Sentence Prediction (NSP) objective and trains on longer sequences. RoBERTa pro-

cesses input text using multiple transformer layers, each consisting of Multi-Head

Self-Attention (MSA) and Feed-Forward Networks (FFN).
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Figure B-1: Basic Architecture of RoBERTa

Multi-Head Self-Attention: The self-attention mechanism allows RoBERTa

to model dependencies across the entire sequence, focusing on important contextual

relationships between words. This is achieved by calculating attention scores using the

dot product between queries (Q) and keys (K), followed by a softmax normalization:

Attention(𝑄,𝐾, 𝑉 ) = softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉

Feed-Forward Network: After the attention mechanism, the data is passed through

a feed-forward network consisting of two fully connected layers, followed by a non-

linear activation function (typically GELU).

B.1.2 Position-wise Feed-Forward Network (FFN)

Each transformer layer includes a position-wise FFN, consisting of two linear trans-

formations with a non-linear activation function in between. The FFN allows the

model to process each token independently, enhancing the learning of contextual in-

formation.
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B.1.3 Token Embedding

RoBERTa tokenizes the input text into subword units, which are then embedded into

continuous vectors using a shared embedding matrix. These embeddings are passed

through the transformer layers to learn richer representations.

B.1.4 Final Output

The output of the transformer layers is processed by a classification head (MLP) to

make predictions. The hidden states corresponding to each token are passed through

the MLP, with the final output representing the predicted sequence or token.

B.1.5 Applications

RoBERTa has been used successfully in various NLP tasks such as question answer-

ing, sentiment analysis, and language modeling. Its robust pretraining allows it to

generalize well to a wide range of text-based tasks, making it a popular choice for

downstream NLP applications.

RoBERTa, through its improved architecture and optimization techniques, has be-

come a leading model for natural language understanding, demonstrating significant

improvements over BERT in multiple benchmarks.
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Appendix C

Bidirectional Gated Recurrent Unit

(BiGRU) Model

This appendix provides a brief overview of the Bi-GRU (Bidirectional Gated Recur-

rent Unit) model, covering its architecture, working principle, and applications in

sequence modeling.

C.1 Overview

The Bi-GRU model is a type of Recurrent Neural Network (RNN) that uses GRU cells

for sequence modeling. It enhances traditional GRU by processing input sequences

in both forward and backward directions, allowing the model to capture contextual

information from both past and future time steps. This bidirectional processing makes

it more effective for tasks where context from both directions is important, such as

language modeling, speech recognition, and machine translation.

C.1.1 Architecture

Bi-GRU consists of two GRU layers: one processes the sequence in a forward direc-

tion, while the other processes it in reverse. The outputs from both directions are

concatenated, enabling the model to learn richer context from the entire sequence.
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The basic architecture of Bi-GRU Model is depicted in Figure C-1.

Figure C-1: Basic architecture of Bi-GRU Model

GRU Cell: The GRU unit is a variant of LSTM (Long Short-Term Memory)

that simplifies the gating mechanism to improve efficiency. It consists of two main

gates: the update gate and the reset gate.

Update Gate: 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1)

Reset Gate: 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)

Hidden State:ℎ𝑡 = (1− 𝑧𝑡)⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1))

where 𝑧𝑡 is the update gate, 𝑟𝑡 is the reset gate, and ℎ𝑡 is the hidden state.

C.1.2 Bidirectional GRU

In the Bi-GRU model, two GRU layers are applied to the input sequence: one pro-

cesses the sequence from left to right (forward) and the other from right to left

(backward). The outputs of both directions are concatenated to form a richer rep-

resentation of the sequence. This bidirectional approach helps the model capture

dependencies from both past and future contexts, which is especially useful for tasks

such as sequence classification, named entity recognition, and sentiment analysis.
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C.1.3 Applications

Bi-GRU models are widely used in various natural language processing (NLP) tasks,

including:

• Machine Translation: Capturing context from both directions of the input

sentence improves translation quality.

• Speech Recognition: Bi-GRU helps in understanding both previous and fu-

ture speech context, leading to better transcription accuracy.

• Text Classification: Bidirectional processing allows the model to better un-

derstand the context of words and sentences.

Bi-GRU models have become a standard in sequence modeling tasks, offering an

effective method for learning contextual relationships in sequential data.
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Scene Graphs

This appendix provides a concise overview of scene graphs and their role in image

description generation.

D.1 Overview

Scene graphs are structured representations of visual scenes where objects are nodes,

and relationships between them are edges. Scene graphs capture the spatial and

semantic relationships between objects, providing a higher-level understanding of the

image. They are used in image captioning to enhance the generation of contextually

rich and accurate descriptions by incorporating relationships between visual entities.

D.1.1 Scene Graph Construction

To construct a scene graph, objects in an image are detected using object detection

models (e.g., Faster R-CNN or YOLO). Each detected object is represented as a

node in the graph. The relationships between these objects, such as "on," "in front

of," or "next to," are identified through methods such as region-based convolutional

neural networks (R-CNNs) or graph neural networks (GNNs). These relationships

are represented as edges connecting the nodes.

Example: In an image of a dog sitting next to a tree, the scene graph might have

148



APPENDIX D.

nodes for "dog" and "tree" and an edge labeled "next to" connecting the two.

D.1.2 Scene Graphs in Image Captioning

In image captioning, scene graphs provide additional context that helps the model

generate more accurate and semantically rich captions. Instead of focusing solely on

detecting objects, scene graphs enable the model to understand how objects interact

with one another. This contextual information allows the model to produce captions

that are not just object-centric but also include relationships between objects.

Example: "A dog is sitting next to a tree" is a more descriptive caption than

simply "A dog is in the image." Scene graphs help generate such detailed descriptions

by providing information about the spatial relationships between objects.

D.1.3 Integration with Deep Learning Models

Scene graphs are often integrated with deep learning models, especially transformer-

based models like Vision Transformers (ViT) and attention-based mechanisms. By

combining scene graph representations with visual features extracted from the image,

models can generate captions that reflect both the objects in the scene and their

relationships.

Scene Graphs and Attention Mechanisms: Scene graphs can be used as

inputs to attention-based models, where attention is focused not only on individual

objects but also on the relationships between them, further enriching the generated

descriptions.

D.1.4 Applications

Scene graphs in image description generation are particularly useful for tasks requiring

rich contextual understanding, such as:

• Complex Scene Understanding: Scene graphs help in understanding com-

plex relationships in images, such as interactions between multiple objects.

149



APPENDIX D.

• Detailed Caption Generation: By capturing spatial and semantic relation-

ships, scene graphs enable the generation of detailed, human-like captions.

• Visual Question Answering (VQA): Scene graphs can be used to answer

questions that require an understanding of object relationships, such as "What

is the dog doing near the tree?"

Scene graphs enhance image captioning by adding a structured and relational layer

of information, improving both the accuracy and context of generated descriptions.
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GPT-2 and GPT-4 Transformers

This appendix provides an overview of the GPT-2 and GPT-4 transformers, high-

lighting their architecture, working principles, and applications.

E.1 Overview

GPT (Generative Pre-trained Transformer) models are a family of transformer-based

architectures designed for natural language generation (NLG). GPT-2 and GPT-4 are

two popular models in this family, each offering unique capabilities and improvements

in language generation tasks.

E.1.1 GPT-2 Architecture

GPT-2 is a large-scale, unsupervised language model developed by OpenAI. It utilizes

the transformer architecture and is pre-trained on a vast corpus of text data using a

causal (autoregressive) language modeling objective. In GPT-2, the model generates

text by predicting the next token in a sequence based on the preceding context. The

basic architecture is shown in Figure E-1.

Architecture: GPT-2 is built on a stack of transformer decoder layers, with

each layer consisting of Multi-Head Self-Attention (MSA) and Feed-Forward Networks

(FFN). GPT-2 processes sequences of tokens one at a time, predicting the next token
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Figure E-1: Basic Architecture of GPT-2 Transformer Model

based on prior tokens.

Attention(𝑄,𝐾, 𝑉 ) = softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉

where 𝑄 (query), 𝐾 (key), and 𝑉 (value) are the learned representations of input

tokens.

Applications: GPT-2 is used for a variety of tasks, including text generation,

summarization, translation, and dialogue systems.

E.1.2 GPT-4 Architecture

GPT-4 is a more advanced version of the GPT series, with significantly more pa-

rameters and improved capabilities over GPT-2. It introduces refinements in both

training techniques and model architecture to enhance performance, especially on

more complex tasks.

Architecture: GPT-4 uses a larger transformer architecture with more layers

and parameters compared to GPT-2. It improves upon GPT-2’s autoregressive gen-
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eration by incorporating better handling of context, leading to more coherent and

contextually accurate responses. GPT-4 also benefits from multimodal capabilities,

being able to process both text and image inputs.

Capabilities: GPT-4 achieves better performance on tasks requiring deep un-

derstanding, such as logical reasoning, multi-step problem solving, and generating

creative content. It also demonstrates improved performance on nuanced NLP tasks

like sentiment analysis, translation, and summarization.

E.1.3 Key Differences Between GPT-2 and GPT-4

• Size: GPT-4 is significantly larger, with billions more parameters compared

to GPT-2, allowing it to model more complex relationships and generate more

accurate outputs.

• Multimodal: GPT-4 can handle both text and image inputs, whereas GPT-2

is limited to text-based inputs.

• Contextual Understanding: GPT-4 exhibits superior contextual understand-

ing, allowing it to generate more coherent and contextually relevant responses.

• Performance: GPT-4 excels at tasks involving complex reasoning, logic, and

multi-step problem solving, whereas GPT-2 performs well on simpler tasks.

GPT-2 and GPT-4 transform the field of natural language processing by enabling

advanced language understanding and generation, with GPT-4 representing the state-

of-the-art in language modeling and multimodal processing.

153



LIST OF PUBLICATION AND THEIR PROOFS 

LIST OF JOURNALS:  

Journal Paper: 1 - SCIE Indexed 

Agarwal, L., Verma, B. From methods to datasets: A survey on Image-Caption Generators. Multimedia 

Tools Appl 83, 28077–28123 (2024). DOI: https://doi.org/10.1007/s11042-023-16560-x (Published, 

SCIE Indexed,  I.F. = 3) 

 



Journal Paper: 2  - SCIE Indexed 

Agarwal, L., Verma, B. Enriching image description generation through multi-modal fusion of 

VGG16, scene graphs and BiGRU. Visual Computer (2025). 

DOI: https://doi.org/10.1007/s00371-024-03790-9 (Published, SCIE Indexed,  I.F. = 3.0) 

 



Journal Paper: 3 - IEEE Transaction 

Lakshita Agarwal, and Bindu Verma. "Tri-FusionNet: Enhancing Image Description Generation with 

Transformer-based Fusion Network and Dual Attention Mechanism" is communicated in IEEE 

Transactions on Human-Machine Systems (Communicated- 1st Major Revision Submitted, I.F. = 3.5). 

Archived at: http://arxiv.org/abs/2504.16761. 

 

Journal Paper: 4 – SCIE Indexed 

Lakshita Agarwal, and Bindu Verma. “Advanced Chest X-Ray Analysis via Transformer-Based 

Image Descriptors and Cross-Model Attention Mechanism” is communicated in Computational 

Intelligence (Wiley) (Communicated, SCIE Indexed, I.F. = 1.8). Archived at: 

http://arxiv.org/abs/2504.16774. 

 



Journal Paper: 5 – SCIE Indexed 

Lakshita Agarwal, and Bindu Verma. "Towards Explainable AI: Multi-Modal Transformer for 

Video-based Image Description Generation" is communicated in Signal, Image and Video Processing 

(Springer). (Communicated, SCIE Indexed, I.F. = 2.0). Archived at: http://arxiv.org/abs/2504.16788 

 

 

 

 



LIST OF CONFERENCES 

International Conference: 1 

L. Agarwal and B. Verma, "Comparison of Deep Learning Models for Automatic Image 

Descriptors," 2023 IEEE 20th India Council International Conference (INDICON), Hyderabad, India, 

2023, pp. 914-919. DOI: 10.1109/INDICON59947.2023.10440731 (Published) 

 

International Conference 1: Certificate 

 



International Conference: 2 

Lakshita Agarwal, and Bindu Verma. "Utilizing Transformer-Based Image Descriptors for 

Improving Chest X-Ray Analysis" presented in 5th International Conference on Data Science 

and Applications (ICDSA 2024), Springer. (Published) 

 

International Conference 2: Certificate 

 



Total Pages: 171 Pages 

DELHI TECHNOLOGICAL UNIVERSITY 
(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road, Delhi-110042 

Title of the Thesis: Design a Framework for Generation of Image Description using Deep Learning 

Name of the Scholar: Lakshita Agarvwal 

Supervisor: Dr. Bindu Verma 

PLAGIARISM VERIFICATION 

Department: Information Technology 

Date: May 8, 2025 

This is to report that the above thesis was scanned for similarity detection. Process and outcome are given 

below: 

Software used: Turnitin 

Candidate's Signature 

Similarity Index: 79% Word Count: 40,741 Words 

Signature of Supervisor 



Page 2 of 182 - Integrity Overview Submission ID trn:oid:::27535:94895527 

Page 2 of 182 - Integrity Overview Submission ID trn:oid:::27535:94895527 

 

 

Lakshita Agarwal 

Lakshita Agarwal PHD Thesis.pdf 
 Delhi Technological University 

 

 

Document Details 

 
Submission ID 

trn:oid:::27535:94895527 

Submission Date 

May 8, 2025, 3:30 PM GMT+5:30 

 

Download Date 

May 8, 2025, 3:34 PM GMT+5:30 

 

File Name 

Lakshita Agarwal PHD Thesis.pdf 

 

File Size 

25.3 MB 

7% Overall Similarity 
The combined total of all matches, including overlapping sources, for each database. 

 

Filtered from the Report 

 Bibliography 

 Quoted Text 

 Cited Text 

 Small Matches (less than 9 words) 

 

Exclusions 

 2 Excluded Sources 

 

 

Match Groups 

 241Not Cited or Quoted 7% 

Matches with neither in-text citation nor quotation marks 

0  Missing Quotations 0% 

Matches that are still very similar to source material 

0  Missing Citation 0% 

Matches that have quotation marks, but no in-text citation 

0  Cited and Quoted 0% 

Matches with in-text citation present, but no quotation marks 

Top Sources 
 

2% Internet sources 

5% Publications 

3%  Submitted works (Student Papers) 

 

Integrity Flags 

0 Integrity Flags for Review 

No suspicious text manipulations found. 

 

170 Pages 

 

40,741 Words 

 

234,194 Characters 

 
Lakshita Agarwal 

(Ph.D. Student) 

 

 
Dr. Bindu Verma 

(Supervisor) 



 

EDUCATION: 

• Doctorate of Philosophy (Ph.D.- Information Technology)- August 2021- Present (Pursuing): 

Delhi Technological University (DTU), Delhi. CGPA- 9.60 CGPA (Course Work). 

• Masters of Technology (M. Tech.-Computer Engineering)- 2019 to 2021: College of Technology-   

G. B.  Pant University of Agriculture & Technology, Pantnagar, Uttarakhand. CGPA- 8.246 CGPA.  

• Bachelors of Technology (B.Tech.- Computer Science and Engineering)- 2015 to 2019: College 

of Engineering Roorkee, Affiliated To- Uttarakhand Technical University, Dehradun, 

Uttarakhand. Aggregate- 81.72%. 

• Class 12th (2014- 2015): Maria Assumpta Convent School, Kashipur, Uttarakhand (CBSE). 

Aggregate- 78.2%. 

• Class 10th (2012- 2013): Maria Assumpta Convent School, Kashipur, Uttarakhand (CBSE). 

CGPA- 9.2 CGPA. 

CAREER OBJECTIVE: 

My goal is to get associated with an organization/institution where I can utilize my skills and gain 

further experience while enhancing the productivity and reputation of the organization/institution. 

LIST OF PUBLICATIONS: 

Journal Papers: 

1. Lakshita Agarwal, and Bindu Verma. "From methods to datasets: A survey on Image-Caption 

Generators" Multimedia Tools and Applications (2023): 28077–28123. 

2. Lakshita Agarwal, and Bindu Verma. "Enriching image description generation through multi-

modal fusion of VGG16, scene graphs and BiGRU" The Visual Computer (2024): 1-21. 

3. Lakshita Agarwal, Chetan Singh Negi, Jalaj Sharma, and Sunita Jalal. "A survey on the controller 

placement problem in SDN." International Journal of Advanced Networking and Applications 13, 

no. 2 (2021): 4896-4914. 

International Conferences: 

1. Lakshita Agarwal, and Bindu Verma. "Comparison of Deep Learning Models for Automatic 

Image Descriptors". In 2023 IEEE 20th India Council International Conference (INDICON) (pp. 

Lakshita Agarwal 

Ph.D. Scholar (Department of IT, Delhi Technological University, Delhi) 

Email IDs: lakshitaa3@gmail.com, lakshitaagarwal_2k21phdit05@dtu.ac.in. 

Contact Nos.: 9837786375, 7983277026 

Date of Birth: 03/03/1998 

 

 



914-919) IEEE, 2023. 

2. Lakshita Agarwal, and Bindu Verma. "Utilizing Transformer-Based Image Descriptors for 

Improving Chest X-Ray Analysis" presented in 5th International Conference on Data Science and 

Applications (ICDSA 2024), Springer. 

PROFESSIONAL SKILLS AND PROFICIENCY: 

• Domains of Interest: Computer Vision, Natural Language Processing, Deep Learning, Artificial 

Intelligence, Digital Image Processing, Autonomous Driving, Software Defined Networks. 

• Coding Languages- Python, C, C++, Java and HTML. 

• Microsoft Office Skills- Word, PowerPoint, Excel. 

• Operating System- Windows, UNIX/Linux 

• Tools- Google Colab, Kaggle, GitHub, Anaconda Navigator, NS2 and NS3 Simulators, Visual 

Studio, Orange. 

ACHIEVEMENTS & CERTIFICATIONS: 

1. Attended One-week Short Term Course on 'Recent Trends in Machine Learning and Deep 

Learning for AI Applications organized by Department of Information Technology, Delhi 

Technological University, Delhi from 5th June, 2023 - 9th June, 2023. 

2. Attended the ‘Delhi Technological University Seminar on Awareness of Engineering Village’ at 

Delhi Technological University, on 08 March, 2022. 

3. Certificate of participation in the online course on “Overview of Geoprocessing Using Python” 

conducted by IIRS, Dehradun from 18.01.2021- 29.01.2021 (duration: 13 hours and 30 minutes). 

4. Certification in The Fundamentals of Digital Marketing by Google Digital Unlocked on 

24.05.2020 (duration: 40 hours). 

5. Participated in a workshop on Android App Development and Big Data Analytics on 20.03.2018 

at COER, Roorkee conducted by DUCAT, Noida. 

6. Certification in Life Skills training conducted by GTT and NASSCOM Foundation at COER, 

Roorkee on 13.09.2017 (Access to Employment certificate). 

 

DECLARATION: 

I hereby declare that all the above-mentioned information is true and correct to the best of my 

knowledge. 

 

- Lakshita Agarwal 
 

 
 
 


	b92a1a05853d816a11fe594b6d3a68548266aca06df868ffc53a5c4624f602e8.pdf
	Acknowledgements
	Certificate

	b2f32dcb09dc75be0775af3ed5da16360b77b25a23759a1a06cd9b5d2facce31.pdf
	996ca0e869429e5fbabaae29f176c031991cacaab02a514d3d8d06c8c8a456a6.pdf
	cdc036eded768162ef85835abad0825838e6f5218e3681e74419ca7ebd08bf35.pdf
	b92a1a05853d816a11fe594b6d3a68548266aca06df868ffc53a5c4624f602e8.pdf
	List of tables
	List of Figures
	List of Abbreviations
	Introduction
	Applications of Image Description Generation
	Challenges in Image Description Generation
	Research Gaps and Motivation
	Problem Definition
	Research Objectives

	Contributions in the Thesis
	Outlines of the Thesis

	Literature Survey
	Literature Survey on Traditional Approaches for Image Description Generation
	Literature Survey on Deep Learning Methods for Image Description Generation
	Literature Survey based on Applications of Image Description Generation
	In Thesis Prospective:

	Proposed a Unified Framework for Contextual and Semantic Image Description Generation
	Introduction
	Literature Survey
	Proposed Architecture
	VGG16 Feature Extraction:
	Scene Graphs:
	BiGRU for Temporal Context:
	Description Generation Process:

	Experimental Analysis
	Implementation Details:
	Performance Measures and Evaluation
	Ablation Study:
	Result and Analysis:
	Comparison With Other State-of-the-art Methods:

	Conclusion

	Deep Learning Framework for Improved Image Description Accuracy
	Introduction
	Literature Survey
	Proposed Architecture
	Overview of the Proposed Architecture:

	Experimental Analysis
	Implementation Details:
	Ablation Study:
	Results and Analysis:
	Comparison with Other State-of-the-art Methods:

	Conclusion

	Image Description Models for Multimedia Application: Chest X-Ray Analysis
	Introduction
	Literature Survey
	Proposed Architecture
	Data Pre-processing
	Encoder Module of the Proposed Architecture
	Cross-model attention mechanism
	Decoder Module of the Proposed Architecture

	Experimental Analysis
	Implementation Details:
	Ablation Study:
	Results and Analysis:
	Comparison With Other state-of-the-art Methods:

	Conclusion

	Image Description Models for Multimedia Application: Video-based Image Description Generation
	Introduction
	Literature Survey
	Proposed Architecture
	Data Pre-processing
	Model Architecture

	Experimental Analysis
	Ablation Study
	Results and Analysis:
	Comparison With State-of-the-Art Methods:

	Conclusion

	Conclusion
	Summary and Contribution of the Thesis
	Future Directions

	Bibliography
	Appendix Vision Transformer (ViT)
	Overview
	Image Patching and Embedding
	Positional Encoding
	Transformer Encoder
	Classification Token (CLS Token)
	Classification Head (MLP Head)


	Appendix RoBERTa (Robustly Optimized BERT Approach)
	Overview
	Architecture
	Position-wise Feed-Forward Network (FFN)
	Token Embedding
	Final Output
	Applications


	Appendix Bidirectional Gated Recurrent Unit (BiGRU) Model
	Overview
	Architecture
	Bidirectional GRU
	Applications


	Appendix Scene Graphs
	Overview
	Scene Graph Construction
	Scene Graphs in Image Captioning
	Integration with Deep Learning Models
	Applications


	Appendix GPT-2 and GPT-4 Transformers
	Overview
	GPT-2 Architecture
	GPT-4 Architecture
	Key Differences Between GPT-2 and GPT-4


	List of Publications and their Proofs
	Plagiarism Report
	Curriculum Vitae

	201baaaeb363cf283a5430e3809c7a69a36f44f9cc010dfb3779e2a30621d543.pdf
	b92a1a05853d816a11fe594b6d3a68548266aca06df868ffc53a5c4624f602e8.pdf

