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Investigation of Rut Patterns in Different Terrain Conditions for 

Vehicular Movements 

Manoj Kumar Kalra 

 

ABSTRACT 

The movement of vehicles on an unpaved terrain is a common 

requirement in many fields including agriculture, forestry, automobile, planetary 

rovers and defence. Other than surface topographical features, the most important 

parameter to the movement of vehicles is the underlying soil condition. Acquiring 

the data by conventional methods is laborious and cumbersome task. The alternative 

means have therefore been explored by various researchers. One of the most 

effective ways employed for anlysing the prevalent soil condition is by monitoring 

the rut formed by vehicular movement in the area. Many soil parameters like soil 

condition, its gradation, moisture content, soil strength etc. impact the vehicular rut. 

Vehicle loading conditions like tyre size, vehicle weight, its speed, curvatures, and 

repeated passes also influence the rut shapes. Although many parametric studies have 

been conducted to characterize and model the rut shapes based on all these, yet 

several aspects are still to be studied.  

One aspect of the issues pertains to modelling and evaluation of rut 

depth. Most of the literature focuses on evaluating the rut depth. Certain issues are 

however typical in different scenarios which need to be addressed. The rut in desertic 

terrain has been observed to get filled by the sand pouring from sides. Similarly, the 

rut profile has been observed to become eccentric on the curves. This aspect 

demands for mapping the shapes of rut profiles in different terrain-vehicle running 

conditions. Moreover, with advent of technology, the rut profile measurement tools 

too have moved from manual to advanced laser-based sensors. The laser profiler on 

one hand measures the rut profile with precision, however, it needs heavy memory 

devices for storage and interpretation of data. The optimization aspect of rut profile 

data needs to be explored for efficient movement decisions. Further, a number of 

models are developed that try to characterize the influence of different causative 

factors on rut. While selection of appropriate model is one aspect, the overall impact 

of all causative factors on the maximum soil distress levels in any area is important 

to be studied for ascertaining the suitability of the terrain for any emergency 

movement. Another aspect of rutting research pertains to addressing the issues in 

wider spatial domain. While evolving suitable spatial models governing trafficability 

potential is an important aspect, the validation of interpreted information is another 

important area needing attention. Here, identification of track impressions that look 

like edges in coarse resolution images can provide useful information about 

identifying the trafficable zones. Identifying the tracks manually being tedious, 

alternate means need to be explored. Moreover, the rut tracks formed by the leading 

vehicle is said to provide useful information for the rut following robotic vehicles, 
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defence, and forestry. The delineation of track impressions form surrounding terrain 

and visibility conditions is an important consideration needing attention.  

In this research work, rut has been investigated from different 

perspectives. One aspect focuses on the experimental studies of rut profiles in 

different fields while the other one tries to address the issue of delineation of rut 

tracks by collating various image processing techniques. In the field based 

experimental studies, various shapes of rut profiles on different types of soil and 

vehicle running conditions were investigated. The rut profile data was captured using 

both manual and laser-based systems. The most common rut shapes observed in field 

are identified and grouped in different categories. Attempt was then made to devise 

better ways for optimal storage of most common rut profiles. By using the proposed 

mathematical formulations, an additional compression of more than 80% over the 

conventional compression techniques could be achieved on straight patches and 71% 

on turnings. In another experimental study, soil distress level was investigated using 

multiple vehicular passes on varied terrain conditions. This study paves the way for 

identifying and mapping the unpaved areas suitable for planning emergency support. 

Another part of study focused on visual enhancement and detection of rut-based 

track impressions. In order to detect edges like track features in satellite images, 

various edge detection algorithms are explored. The comparative study of different 

algorithms revealed that the Canny Edge detection method gives relatively better 

results. Further studies are however needed for improved detection and delineation of 

tracks. It is observed that the tracks formed by vehicular rut impressions appear like 

thin edges in images of coarse-resolution. However, when using the fine resolution 

images, the same features appear like elongated areas. In such a scenario, the edge 

detection filters and even the conventional contrast enhancement techniques are able 

to delineate these features to a limited extant. The role of texture of these tracks that 

can differentiate these tracks from their surroundings has been explored in this study. 

Gray level co-occurrence matrix (GLCM) which is a texture measurement technique 

has been employed here. To compare the effectiveness of various techniques in 

enhancement of track contrast in a given surrounding, a new quantitative track index 

(TI) based measure has been proposed in this study. Here, the effectiveness of 

technique in enhancing the track contrast has been evaluated. Various forms of track 

indices as proposed in this study have been compared. The proposed track index 

effectively sorts correctly the contrast images to the level of 88%. The proposed 

track index-based technique is seen as effective means for sorting the images based 

on track contrast. This method can bring in improved fidelity of decisions for the 

sustainable operations. The study was extended further and a new technique based on 

track index has been developed that is seen as adaptive for enhancing the track 

contrast in a given surrounding. 

The outcome of above research has been presented in various chapters of 

this thesis. The approach of bringing in optimization in data storage is a step towards 

making efficient decisions about trafficability condition of the terrain. The evaluation 

of maximum soil distress level under different dynamic conditions sets another way 

of identifying and mapping the safe trafficable zones for planning emergency 



vi  

movement. The image analysis-based improved identification of rut tracks is an 

important contribution in visual analytics-based systems on-board vehicles. The 

mobility decisions could be made better and efficient using this track index based 

technique. The edge detection algorithm could set the way for improved 

identification of unpaved tracks in satellite images. Further research is however 

needed for automated delineation of rut tracks for inferring trafficable zones. The 

machine learning approach could be explored here.  
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CHAPTER - 1 

 

INTRODUCTION 

____________________________________________________________________ 

This chapter introduces to the literature relevant to highlight the importance of rut 

studies for vehicular movements over unpaved terrain. It also highlights the gaps in 

the study, the research problems, the proposed research methodology and the 

objectives set for this research work. The structure and organisation of the thesis, the 

benefits to practitioners, researchers and society in general are also given in this 

chapter.  

1.1 General  

The movement of vehicles on an unpaved terrain is a common 

requirement in many industrial applications. During world war II, in 1945 the poor 

performance of army vehicles led to beginning the detailed studies at Waterways 

Experiment Station (WES) by US army for evaluating the trafficability potential of 

different areas. (Willoughby and Turnage, 1988).  Today, it has been the subject 

matter for evaluation by many researchers in agriculture, forestry, automobile 

industry, robotics, planetary explorations and defence (Borges et al., 2022).  

1.2 Vehicular Movement on Unpaved Terrain  

In forestry, timber logging operations are quite common and soil 

disturbance is an unavoidable in such operations. The severity of disturbance 

impacting the soil conditions for growth of plants in these areas varies as per 

prevalent conditions. Good planning and practices of soil-vehicle matching can limit 

such damages (Ares et al., 2005). The studies related regarding devising such means 

and models are therefore continued for better understanding of soil wheel interaction. 

Marra et al., 2022 studied the impact of wood extraction on soil compaction and 

rutting caused by skidding and forwarding operations. Regular attempts are made in 

the agriculture industry for devise precision agricultural practices. Efforts are made 

in a number of fields including planetary exploration, all-terrain vehicles, mining, 

and agricultural vehicles to devise systems that perceive the environment and make 

on-board decisions for travelling with limited supervision. The knowledge of terrain 

is beneficial for any vehicle to work with its environment in a better way. Reina et 

al., 2017 presented one such system wherein, three sets namely color, geometric and 

soil-wheel interaction features are considered to characterize a given terrain. The 
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studies continue to develop better understanding of terrain-vehicle interaction 

behavior for devising improved farm machinery and practices.  

With advancement of technology, these days many autonomous systems 

are coming up for different applications. For instance, Kitić et al., 2022 described 

about an autonomous robotic system for collection of soil samples in field and its 

analysis in real time. The process is fully autonomous and the samples are geo-

referenced and a map is created for precision needs of fertilization. Considering the 

issues of undesired soil compaction, the system has been designed to be lightweight. 

A survey on terrain trafficability analysis for planetary rovers is presented by 

Chhaniyara et al., 2012. The paper describes the relevance of autonomy and mobility 

on soft and unstructured terrain for the success of future surface exploration robotic 

missions. The methodology for terrain characterisation using different techniques has 

been described to trade-off the technique for improved mobility of planetary rovers. 

These studies reveal that the successful operations using such systems are dependent 

upon understanding the soil- vehicle interaction behavior under varied movement 

conditions, which is a subject of continued study in this field.  

1.3 Relevance of Rut Based Terrain Investigation 

The movement characteristic of a given vehicle depends upon various 

terrain related factors that include surfacial topographic features and subsurface 

variables comprising primarily the response of soil. There are a number of soil 

variables which have spatial and temporal variation impacting the movement 

characteristics of vehicles. Characterization of vehicular movement on an unpaved 

terrain is a challenging task. Acquiring the spatially and temporally varying soil data 

by conventional methods is laborious and cumbersome task. The alternative methods 

are therefore evolved by researchers.  

The movement of vehicles on unpaved soils leads to exerting its load and 

other forces on the soil. When the loading exceeds the bearing capacity of the soil, 

the soil begins to deform and cause rutting on the soil. The rut formed on the soil 

surface is reflective of different soil-vehicle movement conditions. The information 

about vehicle mobility in an area has been correlated with the rut impressions on the 

ground. Vehicle immobilization is said to be there when the rut depth exceeds the 

ground clearance of vehicles (Affleck, 2005).  This information forms the basis for 

deciding different mobility corridors and the suitable vehicles for a given terrain 

(Herl, 2005). The information of about rut formation is important consideration for 

protecting the environment (Liu, 2009). The rut formed by wheels on soil which is 

manifestation of various soil and vehicle running conditions is highly correlated with 

the soil strength of the terrain (Vennik et al., 2017). Various soil properties and 

vehicle parameters influence the rut characteristics. Some of the soil parameters that 

influence the rut include soil moisture, organic matter content, soil- texture and 

compaction level of soil. The influencing vehicle parameters include its load, tyre 
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inflation pressure, its size and the number of passes among others.  

On the natural terrain, the rut depth is not uniform. The rut depth is not 

same across the cross-section in situations like turning. The rut based analysis 

typically considers measurement of rut only at a few points. There is also a problem 

in synchronizing the rut depth with other measurements. Identifying such issues, 

Botha et al., 2019 presented a study to measure 3D profile of rut to assist in real time 

measurements of changed mobility condition using cameras. Based on the tests 

conducted on variety of terrain features, the research also brought out that rut depth 

can be used as useful tool to determine the vehicular mobility in changing off-road 

conditions. The technique demonstrates the potential of rut study to support the 

driver in making decisions related to mobility and safety. There are a number of 

associated aspects which are investigated by various researchers to define the 

underlying soil in a better way.  

1.4 Various Tools and Techniques for Rut Investigations 

In recent years, many innovative tools have emerged for assessing soil 

surface disturbances. The rut measurement tools have moved from manual 

measurements (Jester and Klik 2005) to the advanced innovative techniques like 

ultrasonic techniques (Lisein et al., 2013), laser profiling (Koreň et al. 2015) or by 

using photogrammetry techniques (Pierzchała et al. 2016). Each of these techniques 

has its own merits and de-merits. A sizeable knowledge gaps associated with the use 

and efficacy of these new tools have also come to surface in extending the benefits of 

these tools for the successful and efficient missions (Marra et al. 2018). One such 

issue is that when using the laser based systems, the huge point cloud demands for 

heavy resources for data storage, retrieval and its analysis. The attempts for optimal 

storage and efficient solutions are therefore the need of time. The effectiveness of 

various sensors in extreme environmental conditions of dust and moisture is a matter 

of further study.  

It is noteworthy that the rut which forms after passage of vehicles is 

different from sinkage which accounts for both elastic and plastic deformation of the 

terrain. A rheological soil model with the elasto-plastic behavior to measure sinkage 

has been described by Bolling, 1987. The elastic behavior of the soil is especially 

important for issues like evaluation of rolling resistance and available draw-bar pull 

for movement of vehicle. The relevant techniques for measurement of ground 

response need to consider this effect.  

The rut due to movement of vehicles is formed primarily by two factor. 

One relates to static sinkage which is caused by vertical load of the wheel. The other 

factor relates to dynamic sinkage caused by the slip associated with wheel rotation 

(Ishigami, 2008). The rut depth is also investigated by various other causative factors 
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including multiple wheel passes, size of wheel, loading conditions and different soil 

parameters (Crossley, 2001; Saarilahti, 2002). The studies continue to improve the 

understanding of soil behavior under various loading conditions. The cumulative rut 

on the terrain is important to be considered for overall impact analysis on the soil.  

Although parametric studies are there to quantify the prevalent conditions 

of ground, however, the most common factor that is considered in Terramechanics 

studies is cone index based approach for its simplicity in determining the 

performance of vehicles. Jones and Arp, 2017 presnted a model for depicting 

variation in Cone Index on the three different forest locations in New Brunswick 

based on daily records of snow, temperature and rain. The cone index based studies 

have also been advanced further by various researchers to correlate the vehicle 

mobility and evolve solution in variety of situations.  

Research has also moved to explore the use of satellite imagery and 

aerial platforms to study the rut and track impressions for different applications. On 

one hand the track impressions on the soil are useful for surveillance purpose while 

on other hand they reveal useful information about the soil. Bhatnagar et al., 2022 

worked on drone based imagery for wheel rut investigation using deep learning 

techniques. In such image based studies, the delineation of rut impressions is an 

important consideration. The surrounding terrain features influence the track 

contrast. Different image processing techniques including terrain texture have been 

explored by various researchers for improved identification of rut and vehicle tracks. 

The studies are continued further to improved image interpretation for better 

delineation of rut and track profiles.  

1.5 Research Gaps in Literature 

Although research is continued on investigation of rut from different 

perspectives yet there are a number of issues which if addressed can bring improved 

and efficient solution to vehicle mobility problems. The following issues present the 

research gaps whose solution needs to be explored further: 

a) The rut in desertic terrain gets filled back by the sand pouring from 

sides. This can lead to incorrect interpretations when using ultrasonic or laser sensors 

to measure the rut profile. Suitable corrections are needed. 

b) The vehicles get immobilized either by the excessive sinkage or by 

poor traction. There are models that infer the sinkage and rut and also the effect of 

slippage on draw-bar pull and net traction, etc. The models explaining the threshold 

limits in various kinds of soils and terrain surfaces under different conditions need to 

be studied.  
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c) Effect of plate size on the sinkage estimation has been observed as an 

important aspect. The rut profile obtained for various vehicles need to be explored 

further from this perspective.  

d) In view of the sudden and momentary loadings by vehicular 

movements on unpaved terrain, the rheological behavior of elasto-plastic nature of 

soil needs to be studied further.  

e) Impact of various landform features on rut formation is an important 

input that needs attention from movement planning. Suitable models integrating the 

effect of various influencing parameters need to be investigated further.  

f) The technological advances need to be utilized as per the terrain 

conditions. For instance, advanced laser techniques may not work in extreme dust 

environment while ultrasonic sensors may not work well for vehicles moving at 

higher speeds. The solution to such scenarios needs to be devised further. 

g) Interpretation of remoulding index that is dependent upon the soil 

characteristics has been explored using time consuming tests. The possibility of 

simpler means needs to be explored for better utilization in on-the-go interpretation.  

Based on the gaps as identified from the literature review, the following 

broad research studies are considered important: 

1. Investigation of rut patterns on soils of different terrain/landform features  

2. To undertake a parametric study of rut on a given terrain feature by studying the 

changes in rut pattern to identify significant causative factors in that terrain 

3. Examining the suitability of various rut measurement techniques  

4. Examining different terrain investigative tools considering elasto-plastic behavior 

of the soils 

5. Modelling rut for cumulative influence of different causative factors in spatial 

domain 

6. Improving the terrain classification based on texture study, including terrain 

properties and vehicle parameters  



6  

1.6 Research Methodology to Address the Research Problems  

Based on the literature review, identified gaps and the broad research 

problems, critical evaluation was carried out to plan further research work. Various 

aspects that are considered for deciding the research methodology and planning 

further the experimental and analytical studies are given below:  

1. The rut in desertic terrain has been observed to get filled by the sand 

pouring from sides. Similarly, the rut profile has been observed to become eccentric 

on the curves having higher depth on the outer edge and lesser on the inner one. The 

shape of the rut profile which is characteristic of given terrain type, the soil, and 

vehicle running conditions has been observed as more important than merely the rut 

depth as referred in most of the literature.  

2. In view of the sudden and momentary loadings by vehicular 

movements on unpaved terrain, the rheological behavior of elasto-plastic nature of 

soil is an important consideration for correct interpretation. Therefore, monitoring 

the soil-wheel sinkage during vehicle loading on soil and the rut after its passage are 

two different considerations. The first one i.e. sinkage is considered important for 

computing the overall resistance to the movement of vehicle while the second one 

i.e. rut is observed as better while using systems to measure the post effect of 

vehicular movement on the soils. This aspect is important for placement of 

monitoring systems on-board vehicle.  

There are a number of tools that can be used for mapping the rut profile. 

Manual rut profiler being simpler, portable for inaccessible areas and not needing 

any computational environment or power backup was used for close monitoring of 

rut shapes. The laser profiler on the other hand is an advanced tool to measure the rut 

profile with precision for better inferences. These tools however need heavy memory 

devices for storage of data. The systems for inferring movement decisions on-board 

vehicle need to optimize the memory for efficient decision.  

The vehicles get immobilized either by the excessive sinkage or by poor 

traction. There are models that infer the sinkage of wheel which has been a measure 

of static sinkage due to loading conditions. The movement of wheel on slippery 

surfaces gives rise to additional sinkage called dynamic sinkage which increases by 

increase in wheel slip. Moreover, the sinkage level on the soil is also influenced by 

the plate size and also the vehicle tyre or track configuration. In other influencing 

parameters, the effect of multiple loadings is also there on overall sinkage and the 

rut. The influence of soil type evaluated using the remoulding index of soil is also 

important. The dynamically changing parameters like compaction level and soil 

moisture also influence the rut. The cumulative effect of all such parameters on 

maximum soil distress levels in any area can give important insight about the 
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suitability of any unpaved terrain for planning the vehicular movement during 

emergencies. The identification of safe and trafficable zones considering the 

cumulative effect on maximum possible soil distress by vehicular movement is one 

such research aspect for bringing simpler decisions about movement. Specific studies 

in this regard may bring out better insight and utility of rut studies for different 

operational needs.  

3. Impact of various landform features on the rut formation is important 

consideration that needs attention from movement perspective. Various modelling 

techniques have been developed for classifying the terrain as per the trafficability 

potential. While evolving suitable models is an important aspect, the validation of 

interpreted information is another important aspect needing attention. A lot of vital 

information about the suitability of terrain can get revealed by studying the rut 

impressions in the area forming vehicle tracks on the unpaved terrain. On one hand 

satellite and aerial images can be utilized to capture the rut impressions while on the 

other hand optical cameras could be utilized manually or on-board vehicle. In the 

coarse resolution images, these tracks appear like edges. There are many edge-

enhancement measures whose suitability needs to be explored from track detection 

perspective.  

4. One aspect that has been considered important in the study of rut 

impressions in the images is the relative size of the rut. The rut and the tracks 

impressions which look like thin edges in the low-resolution images appear like 

elongated areas in the high-resolution images. These track impressions get 

highlighted as per the surrounding terrain features. The conventional tone-based 

image processing techniques can highlight these tracks to a limited extent. The role 

of texture becomes important here as it can distinguish the features by considering a 

group of pixels having distinguishing features. 

5. There are different measures based on tone and texture of the features 

which try to enhance the rut impressions in any area. The effectiveness of 

enhancement of these features could vary as per the surrounding terrain. In such a 

case, the technique that is adaptive to the given surroundings also needs to be 

explored to assist in efficient movement decision. 

The above aspects are considered for planning further research work to 

fill the gaps by considering two broad areas. One aspect of the study was planned 

was to focus on rut studies based on ground-based experimentation while the other 

aspect focused on the image analysis for improved delineation of rut impressions 

formed by vehicular movement.  
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1.7 Objectives of the Proposed Research 

Based on the above analysis, the following objectives are planned for 

further detailed investigations in this research: 

1) To study the shapes of rut profiles in different terrain-vehicle running conditions.  

2) To study the optimization aspects of rut profile data for efficient movement 

decisions. 

3) To identify the key factors influencing the rut depth and study their impact on the 

soil distress levels in the area for ascertaining the suitability of the terrain for any 

emergency movement.   

4) To explore various edge enhancement measures for their effectiveness in 

enhancing the track features.  

5) To study the effect of image texture in enhancing the track features 

6) To explore the possibility of evolving some technique for most optimal 

enhancement of rut shape in a given surrounding terrain  

1.8 Structure of the Thesis 

The following points give brief about these studies presented in different 

Chapters of this thesis.  

Chapter 1: This chapter introduces to the literature relevant to highlight the 

importance of rut studies for vehicular movements over unpaved terrain. It also 

highlights the gaps in the study, the research problems, the proposed research 

methodology and the objectives set for this research work. The structure and 

organisation of the thesis, the benefits to practitioners, researchers and society in 

general are also given in this chapter.  

Chapter 2: In this chapter, the relevant literature has been collated to reflect the 

existing and current practices in the relevant research areas. The literature also forms 

the basis for further investigation of rut from different perspectives.  
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Chapter 3: In this chapter, rut shapes as investigated from different perspectives have 

been presented. The common types of rut shapes have been identified and then 

represented using different mathematical formulations. The effectiveness of these 

equations in achieving optimisation in storage of rut profile data has been discussed.  

Chapter 4: The experimental studies have been conducted for understanding the 

effect of soil moisture and the number of vehicle passes on soil distress levels. The 

utility of the study has been explored for identifying the maximum soil distress level 

in the area to plan emergency movement on the unpaved terrain. 

Chapter 5: The study about the path formed by vehicle rut appearing as edges in the 

course resolution images has been presented. Various edge detection algorithms have 

been explored and compared for identifying the most suitable one for studying the rut 

and track features in the images. 

Chapter 6: The role of texture that becomes important in fine resolution images has 

been explored here. Specific studies have been conducted to evaluate the potential of 

different texture measures in enhancing the rut tracks. 

Chapter 7: The suitable rut enhancement measures have been observed to vary as per 

the surrounding terrain. An adaptive technique has been explored that can select the 

most effective rut enhancement measure in a given surrounding.   

Chapter 8: The important conclusions drawn from this research work have been 

presented in this chapter. The future aspects of the current study and its social impact 

have also been presented in detail. 

The above studies have been presented in this research work. 

1.9 Benefits of the Proposed Rut Studies 

The analysis of trafficability potential of any unpaved area is a common 

requirement for varied fields. The vehicles in industries like forestry, agriculture, and 

in defence frequently need to evaluate the potential of unpaved terrain for planning 

movement. Further, in many operations like firefighting, emergency response during 

peak traffic, alternate unpaved tracks are followed. In all these applications, the 

proposed rut study brings a better insight of the prevailing terrain conditions.  

The proposed technique for optimized storage of data captured by on-

board laser scanners can make the on-board mobility evaluation systems more 

efficient. The studies related to maximum soil distress under different dynamic 
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conditions can be the basis for creating maps for planning emergency movement in 

the safe areas.  

The proposed visual analytics based techniques could assist the decision-

makers for improved decisions while encountering low-contrast areas and make such 

operations sustainable. This study can have application in different industries like 

autonomous ground vehicle movement, robotic vehicles, defence, and night safari, 

etc. where the track impressions of previous vehicles can extend a vital support 

particularly in low contrast areas. 

The outcome from study on all these studies can pave way for making 

on-board mobility decisions more useful and efficient.  

1.10 References 

 

Affleck R. T. (2005). Disturbance measurements from off-road vehicles on seasonal 

terrain. ERDC/CRREL TR-05e12. US Army Corps of Engineers. Engineer Research 

and Development Center. 

 

Ares, A., Terry, T. A., Miller, R. E., Anderson, H. W., & Flaming, B. L. (2005). 

Ground‐based forest harvesting effects on soil physical properties and Douglas‐ Fir 

growth. Soil Science Society of America Journal, 69(6), 1822-1832. 

 

Bhatnagar, S., Puliti, S., Talbot, B., Heppelmann, J. B., Breidenbach, J., & Astrup, R. 

(2022). Mapping wheel-ruts from timber harvesting operations using deep learning 

techniques in drone imagery. Forestry, 95(5), 698-710. 

 

Bolling I. (1987). Bodenverdichtung und Triebkraftverhalten bei Reifen - Neue Meß- 

und Rechenmethoden. Dissertation, TU M¨unchen, 1987 

 

Borges, P., Peynot, T., Liang, S., Arain, B., Wildie, M., Minareci, M., Lichman, S., 

Samvedi, G., Sa, I., Hudson, N., Milford, M.,Moghdam P., & Corke P. (2022). A 

survey on terrain traversability analysis for autonomous ground vehicles: Methods, 

sensors, and challenges. Field Robot, 2(1), pp.1567-1627. 

 

Botha, T., Johnson, D., Els, S., & Shoop, S. (2019). Real time rut profile 

measurement in varying terrain types using digital image correlation. Journal of 

Terramechanics, 82, 53-61. 

 

Chhaniyara, S., Brunskill, C., Yeomans, B., Matthews, M. C., Saaj, C., Ransom, S., 

& Richter, L. (2012). Terrain trafficability analysis and soil mechanical property 

identification for planetary rovers: A survey. Journal of Terramechanics, 49(2), 115-

128. 

 

Herl, B. K., Doe W. W., & Jones D. S. (2005). Use of military training doctrine to 



11  

predict patterns of maneuver disturbance on the landscape. I. Theory and 

methodology. Journal of Terramechanics, 42, 353e371. 

 

Ishigami, G., Miwa, A., Nagatani, K., & Yoshida, K. (2007). Terramechanics‐based 

model for steering maneuver of planetary exploration rovers on loose soil. Journal of 

Field robotics, 24(3), 233-250. 

 

Jester W,, & Klik A. (2005) Soil surface roughness measurement—methods, 

applicability, and surface representation. CATENA 64:174–192. 

 

Jones M.F. & Arp P.A. (2017). Relating Cone Penetration and Rutting Resistance to 

Variations in Forest Soil Properties and Daily Moisture Fluctuations. Open Journal 

of Soil Science,7, 149-171. https://doi.org/10.4236/ojss.2017.77012 

 

Kitić, G., Krklješ, D., Panić, M., Petes, C., Birgermajer, S., & Crnojević, V. (2022). 

Agrobot Lala—An autonomous robotic system for real-time, in-field soil sampling, 

and analysis of nitrates. Sensors, 22(11), 4207. 

 

Koreň M., Slančík M., Suchomel J., & Dubina J. (2015). Use of terrestrial laser 

scanning to evaluate the spatial distribution of soil disturbance by skidding 

operations. Iforest 8:386–393  

 

Lisein J., Pierrot-Deseilligny M., Bonnet S., & Lejeune P. (2013). A 

Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from 

Small Unmanned Aerial System Imagery. Forests 2013, 4, 922–944 

 

Liu K. (2009). Influence of Turning on Military Vehicle Induced Rut Formation. 

PhD diss., University of Tennessee. Available at http://trace.tennessee.edu/utk 

graddiss/620. 

 

Marra, E., Cambi, M., Fernandez-Lacruz, R., Giannetti, F., Marchi, E., & Nordfjell, 

T. (2018). Photogrammetric estimation of wheel rut dimensions and soil compaction 

after increasing numbers of forwarder passes. Scandinavian Journal of Forest 

Research, 33(6), 613-620. 

 

Marra, E., Laschi, A., Fabiano, F., Foderi, C., Neri, F., Mastrolonardo, G.Nordfjell 

T.,& Marchi, E. (2022). Impacts of wood extraction on soil: Assessing rutting and 

soil compaction caused by skidding and forwarding by means of traditional and 

innovative methods. European Journal of Forest Research, 1-16. 

 

Pierzchała M., Talbot B,, & Astrup R. (2016). Measuring wheel ruts with close- 

range photogrammetry. Forestry 89:383–391. 

 

Reina, G., Milella, A., & Galati, R.  (2017). Terrain assessment for precision 

agriculture using vehicle dynamic modelling. Biosystems engineering, 162, 124-139.  

  

Saarilahti, M. (2002). Soil interaction model. Quality of Life and Management of 



12  

Living Resources Contract, No. QLK5-1999-00991. Department of Forest Resource 

management, University of Helsinki. 

 

Vennik K., Keller T., Kukk P., Krebstein K. & Reintam E. (2017). Soil rut depth 

prediction based on soil strength measurements on typical Estonian soils. Elsevier 

Journal of Bio systems engineering 163 (2017)78-86 

 

Willoughby W. E., & Turnage G. W. (1990). Review of a procedure for predicting 

rut depth. Unpublished memo 

 
 
 
 
 
 

 

 

 

 

 

 

 

 



13  

CHAPTER - 2 

LITERATURE REVIEW  

___________________________________________________________________ 

In this chapter, the relevant literature has been collated to reflect the existing and 

current practices in the relevant research areas. The literature also forms the basis 

for further investigation of rut from different perspectives. 

The rut formed by movement of vehicles on unpaved terrain has been the 

subject matter of study in various fields. It has been investigated from different 

perspectives. The following paragraphs give the relevant research conducted in this 

regard.  

The rut formed by wheels on soil which is manifestation of various soil 

and vehicle running conditions. Various soil properties and vehicle parameters 

influence the rut characteristics. Some of the soil parameters that influence the rut 

include soil moisture, organic matter content, soil- texture and compaction level of 

soil. The influencing vehicle parameters include its load, tyre inflation pressure, its 

size and the number of passes among others. The rut has been studied by various 

researchers from different perspectives which include exploring the relevant terrain 

properties (Bekker, 1960; Saarilahti, 2002; Raper,2005; Botta et al., 2006), modeling 

the effect of various influencing factors like turning (Liu et.al, 2009) and in using 

various tools (Suvinen, 2006, Jones, 2017, Mohtashami, 2022) for characterizing the 

rut. An overview of studies conducted from different perspectives has been given 

here. 

2.1 Modelling the Impact of Various Influencing Factors on Rut  

The rut that is formed after passage of vehicles is different from sinkage 

which accounts for both elastic and plastic deformation of the terrain. The rut due to 

movement of vehicles is the plastic deformation and is caused primarily by two 

factors viz the static caused by vehicle load and dynamic factors. The rut due to 

movement of vehicles is formed primarily by two factors. One relates to static 

sinkage which is caused by vertical load of the wheel. The other factor relates to 

dynamic sinkage caused by the slip associated with wheel rotation. In order to assess 

the static sinkage, the load sinkage studies reveals important insight about the terrain.  

Based on the early descriptions of such behaviour as has been reported 

by Bernstein, 1913 and also by Goriatchkin, 1937 (as cited by Bekker, 1956). The 

equation proposed for wheel sinkage is described as, 
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nkzp =          (2.1) 

Here, p is average vertical contact pressure, k is stiffness constant of soil sinkage, z is 

the sinkage depth into the soil and exponent n is a soil constant indicating exponent 

of terrain deformation. The variation of soil stiffness constant k with size of loading 

object revealed the main deficiency associated with this equation. It was also 

observed that sinkage of a rectangular plate also depends upon the width of the 

rectangle plate (Taylor, 1948). Bekker, 1956 combined these two concepts and 

suggested the pressure-sinkage relationship as, 
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where, kc and kØ are the soil stiffness constants, which are said to be independent of 

plate size. The above equation when tested in laboratory and field was found to be 

reasonably accurate. Bekker,1960 also found that the radius of the disks is the more 

appropriate measure to associate with b, whereas b is the smaller dimension when 

using the rectangular plate. 

Wong, 1978 mentions that the equation by Bekker as above is essentially 

an empirical equation. Further, understanding the limitation that the moduli kc and kφ 

are not dimensionless, Reece, 1965-66 proposed a new equation for the pressure-

sinkage relation as, 
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Also, kc’ and kφ’ are cohesive and frictional moduli of soil deformation, and n is the 

exponent of terrain deformation. ρ is the weight density of terrain here and c is 

cohesion of soil. Here, h indicates Sinkage of wheel / plate and b indicates the 

breadth of pressure plate/ unloaded width of tyre. Note that, for frictionless soil, the 

term kφ to be negligible. Similarly, for the dry cohesion-less sand, the term kc to be 

negligible. If n = 1, both these equations become equivalent equations, since c.kc’ = 

kc and ρ.kφ’ = kφ. 

Rutting research has also been observed as important in the field of 

robotics. Various principles of terramechanics are applied for modelling the wheel-

soil interface and the associated rut formation and movement characteristics of 

various planetary rovers. Based on the classical equations as above, the stresses 

exerted by rovers are evaluated further by many researchers (Ishigami, 2008; 

Senatore and Iagnemma, 2014). By employing the equation for a wheel, the 

following formulae has been derived; First, at an arbitrary wheel angle θ, the wheel 

sinkage at h(θ) is evaluated as,  

)cos(cos)( srh  −=        (2.4) 
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where, θs is the static contact angle. Subsequently, the stress p(h) at sinkage `h’ is 

evaluated as, 
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The angle θs is numerically computed by solving this equation. Finally, the static 

sinkage hs can be derived as, 

)cos1( ss rh −=         (2.6) 

On the other hand, the dynamic sinkage is a complex function which depends upon 

the wheel slip ratio, its surface pattern, together with the soil characteristics. It is 

relatively complex to obtain dynamic wheel sinkage using an analytical solution, 

however it can be calculated numerically. Total wheel sinkage `h’ is then defined as, 

ds hhh +=          (2.7) 

here, hs is the static sinkage while hd is the dynamic sinkage resulting from the 

vehicular movement on the soil. The studies are advanced further by considering 

other aspects too, e.g. the effect of number of vehicle passes, multi-tire vehicles, etc., 

making the evaluation complex. Researchers have thus developed various empirical 

approaches to address the issues with simpler techniques. 

Although parametric studies are there to define the soil deformation in a 

better way, yet for simplicity impricial relations are also devised. The cone index 

(CI) based models are widely used to correlate it with vehicle performance 

(Ciobotaru, 2009). The cone index based approach has been taken further by 

computing the mobility numerics associated with vehicle performance. Many forms 

of wheel numerics are proposed by various researchers (Taheri et al., 2015) some of 

which are directly related to wheel sinkage. 

Maclaurin, 1990 proposed a wheel sinkage model for measurement of 

(z/d) for fine-grained soils using the wheel Numeric (NCI) as the underlying basis 

which as per Turnage, 1972 has been given as, 
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where, CI is the cone index, b is the unloaded width of tire, d is the its unloaded 

diameter, δ is the tire deflection and hu is the tire unloaded section height. The effect 

of multi-pass is carried by various researchers. Multi-pass models were suggested by 

Scholander, 1974 and Abebe et al., 1984. The general form of the models has been 

given as, 
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where, Z1 is the sinkage after one loading and Zn is the sinkage after N loadings, N 

indicates the number of passes, and a here indicates multi-pass coefficient which is 

dependent on soil properties and the load intensity. Abebe et al., 1989 suggested the 

value of a as 2 for softer soil subjected to low load; and 3-4 in case of medium 

bearing soil subjected to medium load. The same for heavily loaded soils having 

higher bearing capacity, it takes the value of a as 4 or 5 (Saarilahti, 2002). The 

sinkage model of Maclaurin, 1990 was used for computing the sinkage after first 

pass, and the rut depth after every single wheel has then been calculated as,  

aaa
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where, a is the calculated multi-pass coefficient, and Zn is the wheel sinkage after N 

passes. Multi-pass effect of vehicular movements has been studied by Kane, 2010. 

The effect of number of passes on the Cumulative Impact Width (CIW) has been 

evaluated as, 

a
n NCIWCIW

1

1.=         (2.11) 

where, CIW1 and CIWn  indicate the Cumulative Impact Width after 1 and N passes 

respectively; N here is the number of passes, and a is the multi-pass coefficient.  

Vehicle maneuver patterns impacts the terrain to agreat extent. Ayers, 

1994; Affleck et al., 2004; and Althoff and Thien, 2005 brought out that the soil 

disturbance increases with the decrease in turning radius. Liu, 2009 studied the 

impact of turning of military vehicles on the rut formation and quantified it using rut 

depth, its width and the rut index as the indicators.  

Among other soil parameters, the soil stiffness estimation reveals 

important information about the underlying strata influencing the observed rut. The 

homogeneity of soil strata is another important factor influencing the stress 

distribution and associated rut that needs attention. The pressure distribution under a 

circular plate loaded by pressure p follows the equation by Boussinesq (Helenelund, 

1974) and is given as, 

)cos1.(  −= ph         (2.12) 

where, β is the angle made by the edge of circular plate with central axis at depth hv 

of the circular plate and α is concentration factor that is governed by soil 
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homogeneity.  

Soil shearing strength has been reported as a major property of soil that 

influences trafficability. A study reported by Ayers, 1987 shows that both the soil 

cohesion and its friction angle tend to increase with increase in the density of soil. 

Moreover, as per McKyes, 1989, the soil moisture influences the trafficability of a 

cohesive soil to much higher extent than the friction soils. In another study by Smith 

and Dickson, 1990, it was observed that higher loads result in more compaction in 

soil at greater depth than near the surface of soil. Usually, different types of vehicles 

have different severity levels of terrain impact. As per Janzen, 1990, using tracked 

vehicles, one can manage better the compaction and have better yield over that by a 

wheeled vehicle.  

Based on the study of four military vehicles on unpaved terrain under 

different conditions, Liu et al., 2010 identified some important vehicle and soil 

parameters that influence the rut formation. 

Smith, 2014 conducted a study over different frequency and amplitude of 

sinusoidal terrain surfaces. It was observed that the vehicles tend to move flat on the 

high frequency undulating surface and travel along the geometry when encountering 

low frequency terrain surfaces. 

Mohtashami et al., 2017 carried out a study of rut formation on logging 

sites in Sweden to understand the influence of soil type, cartographic depth-to-water 

(DTW), traffic intensity and the road reinforcement during the logging operations. In 

this study, the soil type and traffic intensity have been observed to be more 

influencing than DTW and slash reinforcement. Vennik et al., 2017 conducted 

studies over typical Estonian soils for the rut depth changes after repeated number of 

military vehicles. 

It has also been reported that when soil moisture content rises above the 

critical level, the plastic deformation replaces the elastic response of soil. The soil is 

observed to get displaced and form rut by the extra applied stress (Horn et al. 2007; 

Mohtashami, 2022).  

2.2 Various Tools and Techniques Used for Rut Investigations  

The evaluation of rut profile accurately is vital to development of terrain-

interactive models. Various researchers have developed different techniques that are 

suited to certain given environmental conditions. Rut depth measurement using a 

manual profilometer has been reported by Affleck, 2005.  
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The manual profilometer is easy to operate however it is time consuming 

and is not suitable when the continuous measurements are the requirement. The 

requirement of frequent and continuous measurement of sinkage and rut has been 

there in unmanned ground vehicles, forestry, measurement of rut on the pavements, 

movement of robots and various planetary rovers. A number of techniques for rut 

measurement are developed suiting various terrain and environmental conditions.  

Different technologies that are used for rut measurement are highlighted 

by Mallela and Wang, 2006. These include ultrasonic sensors, point lasers, scanning 

lasers and optical sensors.  

Lisein et al., 2013 presented details about use of ultrasonic sensors which 

is cost effective but the speed of measurement is limited. The system in ROMDAS 

and ARAN (automated road analyser) as shown is based on ultrasonic sensors.  

Pierzchała et al., 2014, 2016 and Haas et al., 2016 presented the potential 

of photogrammetric techniques over images captured by camera on the forest 

machinery to collect the stereo images. These images are used for obtaining highly 

accurate 3D point cloud data of terrain surface, identify and measure the wheel rut 

alongwith its dimension. The photogrammetric technique is however useful when the 

light conditions are favorable. Light Detection and Ranging (LiDAR) can therefore 

provide a better alternative. A ground-based terrestrial laser scanner is employed by 

Koreň et al., 2015 to evaluate the soil disturbance and vehicle rut caused by the 

skidding operations. Salmivaara et al., 2018 investigated rut based on a vehicle-

mounted LiDAR system. In this study the reliability and efficiency of forest machine 

mounted LiDAR sensor has been reported. LiDAR scanners are however suitable for 

rut measurements at closure intervals but they have issues in working in 

measurements in water logged areas and in dust environment.  

The associated soil properties are also important to be studied. The soil 

properties vary spatially from point to point and for application to wider areas, 

simpler means like cone penetrometer depicting soil strength are used. The cone 

penetrometer uses the penetration resistance profile of soil, comutes the cone index 

for quick estimation of trafficability. (Eid and Stark, 1998; Lowery and Morrison, 

2002). 

2.3 Analysis of Spatial Data to Infer Features Influencing Rut 

Remote sensing data is useful in mapping a number of soil properties that 

include soil minerals, its salinity, moisture, texture, and organic content among 

others. A review is presented about successful use of space borne, airborne and in 

situ measurements systems in mapping the soil properties and terrain (Mulder et al., 

2011). Later, Singh, 2016 also presented a review of the use of remote sensing data 
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in different bands including optical, microwave and hyper spectral bands. Remote 

sensing data assists in improving the incomplete spatial information of the existing 

regional and global database of soil. 

The soil moisture is the key parameter that alters the rut depth. In one of 

the studies presented by Drusch et al., 2004, captured well the temporal evaluation of 

soil moisture by using ERA40 product and the surface soil moisture data set derived 

from ERS scatterometer. 

Sadiya et al., 2017 described a GIS and remote sensing based approach 

for military terrain trafficability analysis of North-East Nigeria. This research is 

indicative of the potential of various satellite images and digital elevation model 

(DEM) in getting the information about various terrain features by using various 

Geographic Information Systems (GIS). The same can be utilized for collating and 

analyzing the associated terrain data for evaluating the trafficability potential of an 

area.  

In order to infer the soil properties on wider domain, geospatial data 

together with hydrologic and other weather conditions are there at large. However, 

the data about soil-bearing capacity for calibration and validation of models are still 

missing (Salmivaara, et.al., 2018). The important information that spatial data 

resources reveal trafficable passes quite easily is the location of tracks on the 

unpaved terrain. Zhang, 2009 worked on using the remote sensing and other 

technology for monitoring the condition of unpaved roads.  

Each terrain can be defined uniquely by a combination of parameters that 

differ for the kind of terrain. There are a number of parameters of the terrain like 

slope, soil type, moisture condition, surface cover, etc. that influence the formation 

of the rut depth with varying degree. In order to compute the cumulative effect, 

weighted overlays analysis has been commonly employed in different applications 

(Çalışkan and Atahan, 2023). 

2.4 Various Techniques Used for Enhancement of Features in Images  

The path formed by vehicle rut is observed like an edge on course 

resolution images. Delineation of these features in varied surroundings is an 

important aspect. Many edge detection techniques are developed by various 

researchers.  These techniques preserve the structural features and the high-frequency 

components belong to either of the two groups based on the derivatives (Marque, 

2011). The first one computes the Gradient or the first-order derivative of an image. 

The second one, based on the second-order derivative is a Laplacian operator. Both 

these filters highlight sharp changes or discontinuities in the picture. However, the 

gradient-based filters emphasize the prominent edges while Laplacian filters enhance 
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the finer details (Gupta and Porwal, 2016). Based on these, researchers brought out 

several edge detection algorithms. Shrivakshan and Chandasekar, 2012 compared the 

prominent edge detection algorithms covering Sobel, Robert’s cross gradient, 

Prewitt, Canny, Laplacian of Gaussian (LoG), etc. The goodness of edge detection 

algorithms depends upon measures such as the accuracy of edge detection, the 

localization of edges, and the minimal response. Canny’s edge detection has been 

shown as a computationally more expensive algorithm. It has performed better than 

other operators under varied kinds of scenarios (Narendar and Hareesh, 2011). 

Nowadays many applications are coming up where the vehicles need to 

follow the rut tracks left over by the leading vehicle. For instance, the details for rut 

following robotic operations in off-road terrain are presented by Ordonez et al., 2011. 

During strategic missions, vehicles move on unpaved terrain in low contrast dark 

conditions. In such a scenario, the delineation of tracks or the rut impressions by 

leading vehicles plays an important role.  

The track features that appear like an edge in the coarse-resolution 

images take the shape of elongated areas in fine-resolution images. In such a 

scenario, the high pass and edge detection filters give limited information to 

delineate these tracks passing through diverse surroundings.  

These days, many vehicular operations make use of vision-based 

systems. Caraffi et al., 2007 used decision networks and the stereo vision technique 

for detecting the off-road path and obstacles. Howard and Seraji, 2001 used a vision 

system-based mobile robot and applied Artificial Neural Network (ANN) for real-

time characterization of terrain. Ordonez et al., 2011 investigated the movement of 

robotic vehicles by tracking the rut in unpaved areas. Chowdhury et al., 2017 

introduced an algorithm for a line-following robot to follow the straight-line path 

autonomously.  

Various digital image processing techniques are employed to enhance the 

features of interest (Gonzalez et al., 2004). Janani et al., 2015 made a compilation of 

different image enhancement techniques. Babu et al., 2015 presented a framework 

for contrast enhancement. However, the techniques the tonal variations based 

techniques that primarily employ filters and histogram stretching extend limited aid 

for delineating the tracks. The pattern and texture of these tracks over tonal variation 

are some appropriate measures to distinguish better these tracks. The statistical 

measures of the GLCM-based texture analysis technique have shown reasonably 

good results in a wide range of applications (Mohaniah et al., 2013). Fauji et al., 

2020 presented one such study for improving the robustness of detection of road 

surfaces in varied environmental conditions using a combination of GLCM measures 

and local binary pattern (LBP). 
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Various approaches are developed that describe the texture in an image. 

Bharti et al., 2004 compared different approaches to describe the texture. Humeau- 

Heurtier, 2019 presented a survey of various methods of texture feature extraction. 

GLCM-based texture analysis could delineate well the road boundaries (Gravoc and 

Goma, 2012). Measures like energy, homogeneity, entropy, contrast, etc. define the 

texture using this approach. The most suitable texture measure that can distinguish 

the track area more prominently depends upon the surrounding. 

Several applications employ texture for extracting the required features. 

Content-based image retrieval was attempted by Zhang et al., 2008 and Alsmadi, 

2020 by combining edge detection and properties of a co-occurrence matrix. Pradhan 

et al., 2014 demonstrated the extraction of flooded areas using a GLCM-based 

texture analysis based program over TerraSAR- X satellite image. Micheal and Vani, 

2015 employed texture features for automatic mountain detection using DTM data of 

lunar images. Doycheva et al., 2019 used texture features for evaluating road distress 

conditions in real-time. Sudha and Aji, 2019 used GLCM texture features as the 

descriptors of features for image retrieval in varied applications. Liu et al., 2020 

employed the local second-order entropy to characterize the variation in the 

grayscale. Winarno et al., 2021 applied edge detection with GLCM for fingerprint 

recognition even though the edges are predominant in such images. Here, the authors 

have used edge detection for preprocessing. Feature extraction based on the GLCM 

using measures like energy, contrast, homogeneity, and correlation has been decided 

to improve the results further. Singh et al., 2022 employed features of GLCM on 

Sentinel-2 imagery for the identification of avalanche debris areas. Kar and 

Banerjee,2022 used GLCM texture features to evaluate the intensity of tropical 

cyclones. 

This study used GLCM-based measures as a good descriptor of texture 

features. Haralick et al., 1973 proposed the GLCM-based concept of measuring 

texture by computing different texture measures. He introduced 14 features to 

represent the texture of an image. Subsequently, Conners and Harlow, 1980 

presented that out of 14 parameters, only five are good enough to describe texture. 

These parameters include Energy, homogeneity, entropy, correlation, and contrast. 

Clausi, 2002 provided details about the computational complexity using 

the GLCM method, which is proportional to O (G2). Suitable selection of 

displacement value in GLCM has been a significant consideration as the large values 

result in missing the details of textural information (Gadkari, 2004). 

Many machine learning techniques including the advanced deep learning 

techniques too are evolving that try to delineate the rut and tracks from the 

surroundings. In the study of microcirculation images, the limitations of deep 

learning are reported and a hybrid model to strike a balance between accuracy and 

speed by combining traditional computer vision algorithms and CNN has been 
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proposed (Helmy et al., 2022). Thus one needs to explore various conventional 

image processing techniques too that could suitably enhance the rut and vehicle 

tracks.  

2.5 Conclusion  

The literature review as above formed the basis for undertaking the 

research work to meet the set objectives. Various aspects of the study led to devising 

suitable research methodology and plan further the experimental and analytical 

studies.  

Accordingly, research has been pursued further considering two broad 

areas. One aspect of the study has been planned to focus on rut studies based on 

ground-based experimentation wherein the data of rut is to be collected and analysed 

under different terrain-vehicle running conditions.  The other aspect is focused on 

image analysis wherein, the role of image processing techniques is to be explored 

further for improved delineation of rut impressions formed by vehicular movement.  

The details of above studies have been given in the subsequent chapters.  
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CHAPTER - 3 

OPTIMAL DATA STORAGE OF COMMONLY OBSERVED RUT 

SHAPES USING PROPOSED MATHEMATICAL FORMULATIONS 

____________________________________________________________________ 

In this chapter, rut shapes as investigated from different perspectives have been 

presented. The common types of rut shapes have been identified and then represented 

using different mathematical formulations. The effectiveness of these equations in 

achieving optimisation in storage of rut profile data has been discussed. 

3.1 Introduction  

The poor performance of military vehicles during World War II led to the 

beginning of research in trafficability at the Waterways Experiment Station (WES) in 

1945 by U.S. Army Engineer (Willoughby and Turnag, 1988). The characterization 

of vehicular movement on different unpaved terrain features is a challenging task. 

The possibility of vehicular movement depends upon the surface topographical 

features and the condition of the underlying soil. Wong, 1978, Saarilahti, 2002 and 

others considered the effect of these obstacles both empirically and mathematically. 

The soil is a dynamic material by nature, and parameters like density, 

moisture, constituents, etc. influence its state. Evaluating these parameters and their 

effect by conventional geotechnical instruments is laborious and time-consuming. 

ASAE standard EP542 give the procedure for estimating the strength of the soil 

using a cone penetrometer. However, this tool is suitable for a limited area only and 

is not convenient to map large areas. Various authors made attempts to explore 

alternate means for evaluating the soil condition. One such way is to observe the rut 

profile formed by the movement of vehicles on the unpaved ground. As strength 

decreases, the rut depth increases. Vehicle immobilization condition occurs when the 

rut depth is larger than the height of vehicle clearance (Affleck, 2005). 

However, the rut profile is considered a better measure for mapping the 

influence of terrain on turnings and conditions like sandy terrain. A study is made on 

the changes in rut volume by vehicular movements on turnings (Liu, 2009). The 

equipment for mapping rut profiles varies from manual profilometers (Affleck, 2005) 

to several advanced profilers (Malella and Wang, 2006). Different technologies in 

use for rut measurement include ultrasonic sensors, point lasers, scanning lasers, and 

optical sensors. The manual profilometer is employed to collect data for point 

locations however, it is not suitable for continuous measurements of changes in 

terrain properties. 
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Photogrammetric methods, UAV, and drone platforms are employed to 

map the rut profiles of the soil (Nevalainen et al., 2017; Marra et al., 2018; 2021 and 

2022). A forest machine-based LiDAR sensor is used by Salmivaara et al., 2018 to 

demonstrate it as a reliable and efficient way of collection of data pertaining to rut 

depth. The use of mobile laser profilometry for detecting forest road damage and its 

quantification is presented (Ferenc´ık et al., 2019). The profiler used in this study had 

eight scanner units, which could cover the whole width of the road with 1000–5000 

profiles per sec. 

Thus, it is evident how much point cloud data processing is required to 

create a profile and do further analysis. The importance of rut measurement for 

applications like controller design and implementation is highlighted by Sandu et al., 

2019. Applications of LiDAR have been advancing to mobile-based platforms. An 

iPhone-12 is used to present LiDAR-derived snow depth estimation (King et al., 

2022). This work which used a lightweight LiDAR system brings out the need for 

research on reducing the computational load for efficient decisions. 

The data collected by such scanners is vast. It needs heavy resources for 

storage, retrieval, and processing. Limited attempts are there to make use of the rut 

shape mathematically. In the study on the rut following robot, Ordonez, 2009 

modeled the previously formed rut shape using a second-order polynomial.  

Defining the shape of the deformed geometry is attempted in other 

applications too. A general equation for the deformed geometry of geosynthetic is 

given by Shukla and Sivakugan, 2009 that combines the two shapes to compute 

strain. A regression-based solution for estimating the settlement of reinforced soil 

foundation is attempted by Khosrojerdi, 2019. 

This work presents a comparative analysis of some suitably selected 

mathematical formulations that could fit the typical shapes of ruts profiles. Nonlinear 

regression analysis is attempted on the observed data to identify the most suitable 

equation representing the rut profile in different conditions.  

The suitability of these mathematical formulations for depicting rut 

profiles in different scenarios to achieve optimal data storage is discussed here. 

3.2 Field Observation of Rut Profiles 

The shape of the rut profile is typical of different terrain features, soil 

conditions, and vehicle running conditions. A manual rut profiler is used for this 

study to collect rut profile data in different kinds of terrain scenarios. This profiler 

consists of rods placed at intervals of 5 cm. The color marking of width 1 cm each is 
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made on each rod to facilitate the measurement of rut depth. Observation of rut 

impressions by movement of vehicles was made at a number of locations in open 

terrain of northern part of India. The representative sites for detailed studies were 

then identified in alluvial terrain of Chandigarh, Roorkee and the desertic terrain of 

Suratgarh. The sites in alluvial terrain having low to medium compaction level were 

identified in the agriculture fields whereas the sites having loose uncompacted sandy 

soil were identified in the desertic terrain. The rut profiles created in different 

unpaved terrain conditions of deserts and alluvial terrain in both dry and wet seasons 

were observed. This data is used for further analysis as given in this chapter.   

As illustrated in Fig. 3.1, the shallow rut profile gets formed on alluvial 

soils of medium consistency.  However, a deeper rut gets formed as the consistency 

of soil decreases. 

Fig. 3.1 Different shapes of Rut Profiles as observed in the field: a) Shallow rut in 

alluvial soils of medium consistency b) Deep rectangular rut on soils of low 

consistency c) Conical rut profile on frictionless soils of deserts d) Asymmetric rut 

shape created by vehicles on turnings 

The rut profile in loose sandy dunal soils of deserts takes a conical shape 

as the sand from the edges pours in as the rut profile. Further, when the vehicle turns 

on curves, the rut shape becomes asymmetric due to lateral loads. There are other 

possible shapes too, but the following typical cases of rut shapes being most common 

during the movement in different off-road scenarios are considered here: 

Case 1: Shallow rectangular shape rut in soils of medium consistency 

Case 2: Deep rectangular/ trapezoidal shape rut in alluvial soils of low 

consistency 
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Case 3: Conical shape rut on the desert soils  

Case 4: Asymmetric rut profile in soils on turnings by vehicle 

 

The typical cases depicted in Fig. 3.2 are considered in this study to 

explore the optimal representation of these profiles using some mathematical 

formulations.  

 

Fig. 3.2 Shapes of typical rut profile data considered for evaluation of proposed 

mathematical formulations 

The authors normalized the cross-sectional rut profile to account for the 

variation of the rut profile at different places. Thus the depth y representing d’/B’ at 

different sections x across the profile representing b’/B’ is used. Here d’ is the rut 

depth at different locations b’ across the profile, and B’ represents the total rut width. 

The consolidated rut profile data taken for study for all four cases are given in Table 

3.1. 
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Table 3.1 Depth to width ratio of rut under different soil and movement conditions 

Relative 

track 

width  

Rut profiles by vehicles in different soil and movement conditions 

On straight Paths On Turnings 

by vehicles  Alluvial soil- 

medium 

consistency 

Alluvial soil- 

low consistency 

Desert soil 

-sand dunes 

b'/B’ d'/B’ d'/B’ d'/B’ d'/B’ 

x y1 y2 y3 y4 

0 0 0 0 0 

0.05 -0.02 -0.1 -0.1 -0.02 

0.1 -0.1 -0.35 -0.3 -0.05 

0.15 -0.2 -0.6 -0.6 -0.08 

0.2 -0.2 -0.8 -0.75 -0.13 

0.25 -0.2 -0.9 -0.8 -0.2 

0.3 -0.2 -0.9 -0.82 -0.27 

0.35 -0.2 -0.9 -0.83 -0.34 

0.4 -0.2 -0.9 -0.81 -0.42 

0.45 -0.2 -0.9 -0.78 -0.48 

0.5 -0.2 -0.9 -0.75 -0.5 

0.55 -0.2 -0.9 -0.7 -0.5 

0.6 -0.2 -0.9 -0.65 -0.47 

0.65 -0.2 -0.9 -0.59 -0.43 

0.7 -0.2 -0.9 -0.53 -0.38 

0.75 -0.2 -0.9 -0.47 -0.3 

0.8 -0.2 -0.8 -0.4 -0.2 

0.85 -0.2 -0.6 -0.33 -0.13 

0.9 -0.1 -0.4 -0.22 -0.07 

0.95 -0.02 -0.2 -0.13 -0.02 

1 0 0 0 0 

3.3 Development of Mathematical Formulations for Rut Profile 

The authors explored many possible mathematical equations to develop a 

suitable mathematical formulation that explains rut profiles in varied scenarios. 

Based on the possibility of generating the most common types of shapes by changing 

the parameters, the authors chose the mathematical formulations. The equations thus 

chosen include polynomial equations of varying degrees, a generalized Gaussian 

shape equation, Fourier transformation, and a modified Bell-shaped equation. 

As a common approach, the polynomial fit of different degrees is 

resorted for defining the rut shape. The polynomial equation thus chosen is: 
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The degree of the polynomial equation improves the curve fitting for the most 

common shapes. As such, regression fit used polynomial equations starting with a 

quadratic equation and going up to the fourth degree to define the rut shapes. The rut 

shape in frictionless soils resembles an inverted shape of the Gaussian distribution of 

probability function. The generalized form of the equation for the Gaussian shape 

curve is therefore included and given as: 
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Another way of describing the rut shape is similar to converting any harmonic 

function using Fourier transformation. This method approximates the curve by using 

a combination of various sine and cosine curves of different frequencies, as given 

below: 
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The function combines various frequencies and amplitudes of the sine and cosine 

curves. In the present case, different shapes of rut are represented by considering up 

to three terms (n) of the above equation. The rut shapes on soils of different 

consistency also resemble the shape of a bell function, and accordingly, the bell 

shape function is thus chosen and given as: 
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Here, the coefficient a1 impacts the variation in rut width and depth. The 

coefficient a2 determines the center, a3 represents the rut width, and a4 the side slope 

of the membership function curve. Therefore, the use of a modified form of the 

generalized bell equation, which combines variation in the side slopes, is considered 

and is given below: 
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All these equations use the normalized rut shapes. They represent the dimensionless 

ratio of rut depth to its width at various relative locations across the rut profiles. The 

parameters a0, a1, a2, a3, a4, a5 and a6 are the coefficients of the proposed equations.  

3.4 Results and Discussion 

The suitability of proposed equations is first analyzed based on 

regression fit on rut data observed in different scenarios. As a general observation, by 

taking typical values of the variables, one can generate different shapes using any of 

the proposed mathematical formulations. Fig. 3.3 illustrates the shapes of curves as 

obtained using mathematical formulations. 
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Fig. 3.3 Different shapes as generated using proposed mathematical formulations by 

varying the input parameters to match the commonly observed rut shapes in various 

terrain types 

It indicates that using any of the proposed mathematical formulations, 

one can generate the shape of rut profiles in scenarios observed in the field. It also 

leads to the inference that the selected equations are reasonable and logical. These 

equations can thus be used as an alternate to represent the rut profiles data. The 

potential use could be to achieve the optimal data storage requirements as it becomes 

mandatory in systems using point cloud as given by Ferenc´ık, 2019. 

Further, to evaluate the effectiveness of different proposed mathematical 

formulations, authors employed non-linear regression analysis. The online desmos 

graphing tool facilitated the computation of regression coefficients and the degree of 

fit. Table 3.2 displays the result of regression analysis representing the efficacy of 

different mathematical formulations in various conditions.  
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Table 3.2 Regression fit results for rut profile in different test cases 

S 

No. 

Type of Curve Regression fit result for various types of curves 

R2 C Regression 

Coefficients 

a0 a1 a2 a3 a4 a5 a6 

Case1: Rut profile in alluvial soils of medium consistency  

1 Polynomial curve 

of 2nd degree 

-0.022 -0.834 0.8338 - - - - 0.806 7.0 

2 Polynomial curve 

of 3rd degree 

0.022 -0.834 0.8338 1E-15 - - - 0.806 5.25 

3 Polynomial curve 

of 4th degree 

0.026 -2.074 6.7335 -9.32 4.66 - - 0.924 4.2 

4 Generalised 

Gaussian shape 

equation 

- -0.202 0.5 -0.414 14.23 - - 0.991 5.25 

5 Fourier Series 

equation 

-0.006 -0.225 0 -0.064 0 0.021 0 0.941 3.0 

6 Generalised Bell 

shape equation 

- -0.201 0.5 0.401 22.58     0.998 5.25 

7 Modified 

Generalised bell 

shaped Equation 

- -0.201 0.5 5 30 -0.401 22.58 0.998 3.5 

Case2: Rut profile in alluvial soils of low consistency  

1 Polynomial curve 

of 2nd degree 

-0.027 -3.894 3.8599 - - - - 0.934 7.0 

2 Polynomial curve 

of 3rd degree 

-0.02 -3.991 4.1095 -0.166 - - - 0.934 5.25 

3 Polynomial curve 

of 4th degree 

0.095 -6.933 18.109 -22.28 11.06 - - 0.970 4.2 

4 Generalised 

Gaussian shape 

equation 

- -0.907 0.5046 -0.407 6.495 - - 0.996 5.25 

5 Fourier Series 

equation 

-0.868 0.4301 0.0156 -0.447 -3E-04 0.879 0.018 0.994 

 

3.0 

6 Generalised Bell 

shape equation 

- -0.9 0.5039 0.38 9.645 - - 0.993 5.25 

7 Modified 

Generalised bell 

shaped Equation 

- -0.906 -2.806 -3.692 85.57 2.928 -79.45 0.996 3.5 

Case 3: Rut profile on sand dunes of desert soil   

1 Polynomial curve 

of 2nd degree 

0.118 -2.118 2.0596 - - - - 0.887 7.0 

2 Polynomial curve 

of 3rd degree 

0.072 -1.488 0.4453 1.076       0.903 5.25 

3 Polynomial curve 

of 4th degree 

-0.028 1.0727 -11.74 20.33 -9.625     0.993 4.2 



37  

S 

No. 

Type of Curve Regression fit result for various types of curves 

R2 C Regression 

Coefficients 

a0 a1 a2 a3 a4 a5 a6 

4 Generalised 

Gaussian shape 

equation 

- -0.497 0.5286 -0.285 2.369     0.997 5.25 

5 Fourier Series 

equation 

-0.119 -0.219 0.0108 0.042 0.023 0.119 -0.026 0.999 3.0 

6 Generalised Bell 

shape equation 

- -0.48 0.53 0.243 3.82 - - 0.990 5.25 

7 Modified 

Generalised bell 

shaped Equation 

- -0.572 1.2327 0.476 -5.815 -0.924 11.45 0.998 3.5 

Case 4: Rut profile on turnings in soils   

1 Polynomial curve 

of 2nd degree 

-0.117 -2.903 3.1181 - - - - 0.887 7.0 

2 Polynomial curve 

of 3rd degree 

0.043 -5.087 8.7144 -3.731 - - - 0.970 5.25 

3 Polynomial curve 

of 4th degree 

0.089 -6.286 14.419 -12.74 4.506 - - 0.978 4.2 

4 Generalised 

Gaussian shape 

equation 

- -0.768 0.4547 -0.381 3.884 - - 0.912 5.25 

5 Fourier Series 

equation 

-0.334 -0.244 -0.167 -0.192 0.023 0.345 0.007 0.989 3.0 

6 Generalised Bell 

shape equation 

- -0.758 0.4503 0.341 5.755 - - 0.911 5.25 

7 Modified 

Generalised Bell 

shaped Equation 

- 1.1156 1.0156 0.324 -1.368 -0.881 24.06 0.996 3.5 

Here, the compression ratio C represents the storage efficiency. It is the 

ratio of the number of original datasets to the number of parameters needed to 

represent the profile using mathematical formulation. The value of C in Table 2 

indicates that one can achieve significant levels of data compression over 

conventional techniques by using the proposed mathematical models. The most 

optimal mathematical formulation is the one which represents the rut profile using 

least number of variables to achieve the desired goodness of fit. In the currently used 

manual observation of profiles, the compression ratio for the straight patches is 5.25. 

The %age of data compression calculated as (1-1/C)*100 indicates that one can 

achieve more than 80% compression on the straight patches. The value computes for 

areas on turning is 71%, while the accuracy level is maintained better than 99% in 

both cases. This additional data compression could pave the way for efficient data 

storage and set the basis for an onboard decision aid. The computational aspects will 

depend upon the selected mathematical formulation, regression type, algorithm 

design, parallel processing, multithreading aspects, etc. Here, the purpose is to 
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explore the potential of mathematical formulations in defining rut shapes to address 

the issues related to real-time applications. The Fig. 3.4 shows typical regression fit 

curves on the rut profile data of medium-consistency soils. The figure shows the 

relative comparison of various mathematical formulations on the observed data.  

 

 

Fig. 3.4 Typical Regression Fit curves on the rut Profile data of medium consistency 

soil 

The graph containing the data and different regression curves indicate 

that the curves using the proposed mathematical formulations follow the observed 

data for almost all the test cases. However, for identifying the most suitable 

predictive equation of the rut profile, the comparative analysis reveals further detail. 

The analysis of the regression fit shown in the table also indicates that in almost all 

the cases, the regression fit improves with the increased degree of the polynomial. 

One can plan to improvise the utility of rut profiles by representing better the rut 

shape as given by Ordonez, 2009. The study also brings out an analysis of an 

equivalent number of variables used in the regression curves. The comparison given 

for the third-degree polynomial fit with other mathematical formulations reveals 

valuable inferences. A considerable improvement is there in the generalized 

Gaussian shape function than the polynomial equations when movement is on the 

straight patches.  

The goodness of fit is relatively less along the curves. The higher degree 

equations are, therefore, employed for a better fit. The analysis of regression fit 

results also indicates that while using the proposed modified generalized bell shape 
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equation, the results are much better in almost all the scenarios. However, the 

function needs six input parameters to represent the rut shape. 

From the above analysis, some useful inferences are drawn. The 

generalized Gaussian form or Bell shape function may be advantageous for obtaining 

precision and optimal storage on straight patches. However, the modified generalized 

bell-shaped equation is more accurate on the curves. 

3.5 Conclusion and Suggestions for Further Work  

Results suggest that one can employ mathematical formulations to 

represent the rut shapes for optimal data storage. Various mathematical formulations 

are analyzed, and non-linear regression analysis is attempted on the commonly 

observed rut shapes. One can employ a generalized Gaussian or bell shape equation 

to represent the rut profile on the straight patches. However, on turnings, the 

proposed modified bell-shaped equation leads to better precision and optimization.  

By using the proposed modified bell-shaped function on these common 

shapes, the R2 value moved above 0.98. It could fetch an additional compression of 

over 80% on straight patches and 71% on turnings. Although complex scenarios 

could be dealt with separately, an optimal representation of the most common rut 

shapes can aid the development of an efficient decision support system. 

An interesting analysis would be to explore some complex cases in the 

future. For instance, one may encounter a class wherein two separate rut profiles are 

blended to create a single rut class. Here some additional mathematical 

representations may make the profile representation more generic and can address 

some more rut classes. 

In situations where complexity in rut morphologies is there, such as on 

crossings and different pathways, efforts need to be there to represent the rut profile 

in a better way. The present work focuses on the new ways to represent optimally the 

rut profile in different terrain conditions using mathematical equations. It will be a 

step towards developing an efficient onboard system to store and infer different rut 

profile-based properties. The categorization of rut profiles, mapping and 

characterizing the spatial variation of soil type and its condition, and inference about 

the trafficable state of terrain in near real-time mode are some directly related 

benefits. In future activities, one can explore the machine learning approach to train 

the system with rut profile data of varied field scenarios. It can make predictive 

analysis about various terrain properties and classes in different field running 

conditions. 
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The standard cases given in this study are observed prominently in actual 

off-road conditions. The proposed method indicates the utility of representing the rut 

shapes mathematically to achieve optimization. This study is a step towards bringing 

efficiency in addressing various issues of vehicular mobility during operational 

needs. 
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CHAPTER - 4 

EXPERIMENTAL INVESTIGATION OF SOIL MOISTURE AND NUMBER 

OF PASSES IN IDENTIFYING THE MAXIMUM SOIL DISTRESS LEVEL 

FOR EMERGENCY MOVEMENTS 

 

The experimental studies have been conducted for understanding the effect of soil 

moisture and the number of vehicle passes on soil distress levels. The utility of the 

study has been explored for identifying the maximum soil distress level in the area to 

plan emergency movement on the unpaved terrain.  

4.1 Introduction 

The communication network is the lifeline for any area. The flooding 

situation can arise in plains, the foothills or any place in mountains wherein the 

excessive rainfall can disrupt the conventional routes. In such situations, in order to 

access the areas for the essential services, the unpaved off-road routes are followed. 

These routes can provide vital links to access these areas impacted by such disasters. 

The soil conditions in such situations are not always convenient for movement of 

vehicles. The trafficability analysis of any area is a topic of research for varied fields.  

The vehicles in industries like forestry, agriculture, and in Defence 

frequently use the unpaved terrain for movement. Moreover, in many operations like 

firefighting, emergency response, alternate routes during peak etc., the unpaved 

tracks are followed. The surface features together with the existing state of ground, 

govern the trafficability of such areas. The movement of vehicles in such unpaved 

areas leads to soil distress. Conventional method for evaluation of soil condition 

impacting trafficability is time consuming and complex. The alternate means are 

therefore studied by various researchers. The rut depth caused by vehicular 

movement on the unpaved terrain reflecting the prevalent state of soil is used to 

evaluate mobility of vehicles. Fragkos et al., 2019 described about use of clustering 

and autonomous operations in planning evacuation strategy in disaster struck areas.  

Tremendous research continues to study the relevance of rut formed by 

vehicular movement. The improved state of soil on the earlier vehicle tracks is used 

for applications like robotics-based operations and for night safari due to better 

stability (Ordonez, 2009). Singh et al., 2022 studied the improvement aspects of 

utilizing the geosynthetic reinforcement on unpaved road. Kalra et al., 2023 proposed 

using a non-linear regression model for achieving optimal storage of rut profile data 

for efficient decisions. Detection of rut impressions is of significance in different 
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strategic missions too particularly for operations in dark conditions posing low 

contrast. Kalra et al., 2023 suggested various alternate indices that account for tone 

and texture of rut improving the contrast. 

Primarily, the vehicle immobilisation condition occurs when the rut 

depth by movement of vehicle is greater than the height of clearance under the 

vehicles (Affleck, 2005). When studied for different dynamic and seasonal changes, 

it reveals the max distress condition that prevailed in the area. There could be many 

virgin areas which may not be bearing the signature of vehicular movement. In such 

a scenario, the study of rut under different dynamic conditions may reveal vital 

inputs about the likely soil distress level and the possible trafficability condition in 

any area.  

The wheel sinkage and rut depth are although similar but for all practical 

purposes, one may ignore the difference. The wheel sinkage comprises of two parts 

i.e. static and dynamic sinkage. The static sinkage is dependent upon the vertical load 

on wheel, while the wheel rotation governs the dynamic sinkage. Bekker, 1960 gave 

the following equation to determine static sinkage: 
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where, p(h) represents the static stress under a plate, h the sinkage and b represents 

the smaller width of the plat. The coefficients kc and kφ represent cohesive modulus 

and frictional modulus of deformation respectively, while n here refers to exponent 

of deformation. These values of kc , kφ and n are computed using plate-sinkage tests. 

Further improvements in this model are made by Reece, 1965. Numerical solution is 

attempted by Ishigami et al., 2007 for understanding the wheel rotation based 

dynamic sinkage.  

The factors affecting soil disturbance, its compaction and the associated 

trafficability are presented as review for timber harvesting in the forests (Rab et al., 

2005). Raper, 2005 brought out that maximum compaction results when the loading 

is applied at soil moisture conditions near to its field capacity. Liu et al., 2010 

presented the vehicle rut is impacted by type of military vehicle, the moisture and 

texture of soil. 

Various models have been suggested to predict the rut depth. Willoughby 

and Turnage, 1988 gave following equation for the multi-pass effect of wheeled 

vehicles:  
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where, z is the sinkage in mtr, RCI is the rating cone index in kPa d is the unloaded 

tyre diameter in mtr, b is the unloaded tyre width in mtr, W is the vertical load of 

wheel in kN, δ is the deflection of loaded tyre in mtr, h is the section height of 

unloaded tyre in mtr, N is the number of Wheel passes, and S is the Slip of wheel in 

decimal. A very relevant study carried out by Yokel et al., 1980 in regard to 

identifying the soil properties that determine the stability of excavations against 

cave-in. The study also gives details about the associated simple field and laboratory 

tests which can help in determining the soil likely under distress considering its 

collapse potential. Kogure et al., 1985 made a cone index based study of soils in the 

critical layer influencing trafficability.  

Another common approach is there in Terramechanics that utilizes the 

values of CI or RCI for computing a dimensionless number, called as wheel or the 

mobility Numerics. Maclaurin, 1990 proposed the following model for sinkage in the 

fine-grained soils: 
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Here, NCI is the wheel Numeric given by Turnage, 1972 as below: 
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where CI is the cone index in kPa, δ is the tyre loaded deflection in mtr. Scholander, 

1974 described about the general equation of settlement under repetitive loading as,  
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where, Z1 is the sinkage after one loading, Zn is sinkage after N loadings or the 

number of passes. The parameter a is the multi-pass coefficient which is dependent 
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upon the soil properties and the loading condition. Hatchell et al., 1970 in their study 

brought out that only four passes of a tractor could achieve 90% of the maximum 

level of density in Atlantic Coastal Plain soils in USA. Abebe et al., 1989 in the 

study of effect on soil compaction by the multiple passes of a rigid wheel brought out 

that most of the compaction by the loaded wheel occurs during the first three passes 

only. The value of a is suggested as 2 for the softer soil that is loaded with small 

loads; 3-4 for the medium strength soil under medium loads and is recommended as 

4-5 for the heavily loaded soils with higher bearing capacity (Saarilahti, 2002). The 

change in the rut volume by turning of vehicles is studied using profile by Liu, 2009. 

Vennik et al., 2017 presented the impact of multiple passes of the military vehicles.  

Various authors employ the Nominal Ground Pressure (NGP) as the 

indicator of ground pressure by different vehicles. It is computed by the equation 

proposed by Owende et al., 2002 as:  
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where, W is the wheel load in kN, r is the wheel radius in mtr and b is the tyre width 

in mtr. The typical NGP ranges depend upon the vehicle configuration and for forest 

machinery, it ranges from 30 -70 kPa. In order to minimise the impact of movement 

on soil surface, the NGP and the soil bearing capacity should be matched. A 

relationship between rut depth and CI/NGP has been given to decide about the 

operational limit wherein CI/NGP ratio lies between 3 to 7. Among various ways to 

predict trafficability of terrain, a review of various mobility matrices is given by 

Wong et al., 2020.  

In this work, attempt is made to use the information about soil distress 

levels to predict the suitability of terrain for different emergency scenarios. In 

general, the random and unplanned movement on the unpaved areas, creates soil 

distress condition as per the prevalent state. The low-lying pockets, the agricultural 

fields etc. which are prone to water logging are impacted highly during the rainy 

seasons.  

In the current study, rut based study is conducted for ascertaining the 

suitability of areas for mobility of vehicles during different emergencies. The rut 

depth reflecting soil distress level and having strong correlation with trafficability 

condition is studied under different dynamic conditions. The multi-pass effect on the 

rut depth was also carried out to understand the maximum possible soil distress in the 

area impacting vehicular movement.  
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4.2 Materials and Methods 

In order to address the issue of soil distress, the prevalent soil strength is 

measured under different dynamic conditions using handheld cone penetrometer. In 

order to map the behavior of different soil, an ALS vehicle, 4x4 is used for the study. 

The vehicle had unladed weight of 7750 kg and its wheel diameter was 1.26 m.  The 

soil distress level is observed after repeated movement of vehicle on the same track. 

The rut measurement due to vehicular movement is carried out using manual rut 

profilometer.   

To evaluate the maximum distress level of soil, the trial site was chosen 

in an area where the water logging occurred in the past due to rains. The trials were 

conducted and observations were made in different locations of the area where the 

moisture levels varied from dry to slightly moist to moist and wet or fully saturated 

as shown in Fig. 4.1. 

  

Fig. 4.1 The study conducted under varied moisture conditions 1) Dry Area 2) 

Slightly Moist 3) Moist area and 4) Flooded area  

The vehicle was made to move on the same track in forward and reverse 

direction and the effect on the rut profile was monitored as per details indicated in 

the above Fig. 4.2. The rut profile was measured after 1, 10 and 25 passes on 

different terrain conditions.  
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Fig. 4.2 Rut profile created by vehicle on soil a) Along the wheel track b) Across the 

wheel track 

The maximum level of average rut depth indicating the soil distress was 

noted for each case. The prevalent soil strength condition in the area was also 

measured using the cone penetrometer to study the influence on soil distress levels.  

4.3 Study Area 

The study was carried out on the semi-arid region of Hisar, Haryana. The 

selected site was an open unpaved patch that was devoid of vegetation. There had 

been rainfall event in the area that led to formation of water logged condition in some 

pockets.  

4.4 Results and Discussion 

The soil strength being the prime factor determining the distress level of 

the soil, the study was made to measure the same under different dynamic conditions 

of soil. The soil strength along the depth at different places with varied moisture 

conditions was measured using cone penetrometer. The results of soil strength profile 

as observed in field are consolidated as given in Fig. 4.3.  
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Fig. 4.3 Cone Index variations under different moisture conditions in study area 

The high level of soil strength variation indicates the impact of soil 

moisture on the strength properties of the soil. The associated disturbance level is 

also monitored as shown in Fig. 4.4. Here the soil rut depth variation is indicated 

with number of vehicle passes on different portions of the tracks. The plot indicates 

that the initial level of soil distress occurs as per the initial strength of soil wherein 

the changes are brought in by the soil moisture and density after ploughing.  

 

Fig. 4.4 Rut depth after 1 and `n' passes on different terrain features 
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The plot indicates that after initial levels of rut, the rate of changes in rut 

seems to be consistent for different levels of soil moisture and also for ploughed area. 

The cone index profile as in Fig. 4.3 also indicates that the underlying strata are 

mostly intact although the top layer is influenced by water accumulation. The water 

logged condition continued for days in this area reflects a string and impermeable 

strata below top depth. The effect of tillage practices was there but upto limited 

depth. The findings are in conformity with the views given by Hatchell et al. (1970) 

who opined that 90% of maximum level of density could be achieved after just four 

passes of a tractor.  

The maximum value of average rut depth as shown in each case in Fig. 

4.4 also indicates the maximum distress level in the area. At one of the locations in 

wet areas, excessive wheel slip was observed, indicating that these kind of areas 

when remained water logged, could lead to immobilisation. Similar studies could be 

extended further to map the dynamics of other areas too. This can become a useful 

tool for identifying the areas as per the maximum soil distress level.  

Another study was conducted to understand the limiting condition for 

movement. The tyres of vehicles observed excessive slip when passing through the 

flooded condition. The analysis was carried out by computing the Nominal Ground 

Pressure (NGP) value for the trial site which in this case arrived at 20.52 psi. The 

ratio of observed cone index at 6 cm level reaches from 8 in dry condition to approx. 

1 in wet condition. The lower strata here indicate stronger conditions, while the top 

weaker strata caused slippery condition and trafficability issue. The soil strata in 

critical layer as given by Kogure et al., 1985 needs further detailed study to infer 

precisely the role in differentiating better the measures influencing different kinds of 

trafficability issues. Nevertheless, its manifestation in causing excessive rut to limits 

which restrain the movement of vehicles is important to be considered here from the 

perspective of vehicular movement planning during emergencies. 

4.5 Conclusion 

Some key conclusions drawn from the study are: 

1. The rut depth caused by movement of vehicles can provide a vital 

input about the suitability of the area for movement in case of emergencies. The soil 

distress level measured through rut depth by the vehicular movement in the area can 

provide useful information about the limit about vehicular mobility in the area.  

2. The rut depth increased as the soil moisture level increased. It reached 

maximum level when flooded.  
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3. If the flooding continues for days in the depressions or low lying 

areas, it is indicative of impermeable and compact strata could be there below certain 

level. The effect of moisture on maximum distress level remained similar.  

4. The maximum soil distress level and rut depth that could be expected 

in the area determines mobility potential in such areas. The initial level of soil 

distress occurs as per the initial condition of the soil whereas further changes in 

distress level could be brought in by the soil moisture and altered compaction level 

after ploughing etc. 

5. The present studies are conducted on semi-arid terrain. The soil 

distress level could be higher when the fine grain or organic soils are there. Studies 

on similar approach by monitoring dynamic variation of soil under different moisture 

conditions may be conducted in these areas where the possibility of off-road 

vehicular movement exists.  

6. Depending upon the expected maximum soil distress level, the 

preventive steps could be decided. As the water level in the area is the major 

contributing factor, the pockets could be identified which have relatively higher 

elevation in the area. The unpaved track passing through such areas may be pre-

marked and if possible pre-compacted to allow safe movement in the area during 

emergencies.  

The above study indicates the role of mapping the maximum soil distress 

level for planning movement in such flood impacted areas as part of managing the 

emergency support.   
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CHAPTER - 5 

INVESTIGATION OF VARIOUS EDGE DETECTION ALGORITHMS IN 

IDENTIFICATION OF PATHS FORMED BY VEHICLE RUT 

 

The study about the path formed by vehicle rut appearing as edges in the course 

resolution images has been presented. Various edge detection algorithms have been 

explored and compared for identifying the most suitable one for studying the rut and 

track features in the images.  

5.1 Introduction 

Edge detection is an image processing technique that is used to identify 

the points on the boundaries off an object having discontinuities, or sharp changes in 

the image intensity values. It is an important part of computer vision and is 

commonly used for image segmentation, pattern recognition, object identification 

and motion analysis among various applications. Edges in the image assist the visual 

processing based systems which form an essential branch of computer vision and 

machine vision systems. It is one of the first steps for applications such as face 

detection, object detection and their recognition like for thumb impressions, image 

segmentation etc. 

In the current study, edge detection is explored for identification of tracks 

both paved and unpaved which are relatively linear features. The edge detection 

helps in better delineation of tracks for creation of data base using digitization and 

also to assist in development of automated detection. The edges also help in 

delineation of rut tracks formed on unpaved terrain by vehicular movement. These 

tracks provide wealth of information about terrain strength, ground distress level, 

preferred routes for futuristic developments. Kalra et al., 2023 proposed using non-

linear regression analysis for optimal storage of rut profile data related to prevalent 

soil condition for efficient decisions. These tracks in the soft ground terrain are also 

used by rut following robotic vehicle for better stability (Ordonez, 2011). Their 

delineation has benefits in other fields like defence too and research continues in 

multi-dimension for improved delineation of these rut tracks passing through low 

contrast areas (Kalra et al., 2023).  

Over a period of time, a number of edge detection algorithms have been 

developed, each of which has its own advantage. It is reported that the problem of 

edge detection has no generic technique which is applicable for all conditions. This is 

rather the motivation for the continued research to improve the methods of edge 
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detection (Sen and Pal, 2010; Orhei et al., 2021). Attempt is therefore made here to 

study the relevance of different edge detection algorithms for identification of the 

track impressions in the images and identify the most suitable edge detection method. 

Most of the edge detection algorithms either use the first order derivative 

i.e. gradient filter or use a second order derivative i.e. a Laplacian filter (Marque, 

2011). The gradient filter in the images is computed as below: 
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Here, gx and gy are the first derivative or gradients of the image f(x,y) and show the 

pixel value changes in both x and y directions defined using a column vector f . 

The second derivative-based edge filter that is used is computed using Laplacian of 

the image f(x,y) by using a second-order differential equation as given below:  
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Based on the above procedure, a study brings out the comparative analysis of various 

edge detection algorithms like Sobel, Prewitt, and Canny (Ahmad, 2018). The 

images processed for highlighting the edges use different high-frequency filters that 

de-emphasize the low-intensity features. All such operations make use of the 

convolution of images with filters representing different edges filters as given here:  
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Here, w(s,t) denotes a filter of dimension (s x t) that scans over the image f(x,y). The 

symbol (*) stands for convolution- Conv(w,f) of image and filter. In these techniques, 

noise removal can be helpful.  

A Laplacian filter is one of the edge detector used to compute the second 

spatial derivative of an image. It measures the rate of change of first derivative i.e. 

where pixel values change dramatically.  It being sensitive to small changes and to 

noise, the Laplacian of Gaussian (LoG) was then evolved to reduce the noise in the 

images. In this approach, the image is first convoluted using a Gaussian filter to 

reduce the level of noise and then it is followed by a Laplacian convolution for 

highlighting the edges. 
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The Canny edge-detection algorithm which considers both these aspects is reported 

as a robust method for detection of edges in gray-scale images. It is widely used due 

to its short operation time and relatively simpler calculations. The traditional Canny 

algorithm uses certain steps. Firstly the image is smoothened using a Gaussian 

function, the first-order operator is applied. It is followed by non-maximum 

suppression of the magnitude of the gradient. Here, double threshold has been used 

for edge connections. Non-maximum suppression is employed to find the local 

maximum value of the pixels, and set the gray value corresponding to the non-

maximum point to zero. This implemented so that a large part of non-edge points can 

be rejected. 

Another method for detecting the edges is by using Marr–Hildreth 

algorithm which is based on zero-crossings. It is used in continuous curves that 

feature rapid and strong variations in the image brightness value. It is a simple 

algorithm and operates by convolving the image using Laplacian of Gaussian 

function, which is a fast approximation using difference of Gaussian. The edges are 

detected using Zero crossings which implies that at least two opposite neighboring 

pixels have different sign (Marr and Hildreth, 1980; Haralick, 1987). 

Laplacian is used for emphasizing fine details while gradient highlight 

the edges (Gonzalez and Woods, 2008). Dagar and Dahiya, 2016 presented review of 

Soft computing techniques for edge detection problem. Gupta and Porwar, 2016 

combined both Laplacian and Sobel filter to achieve increased sharpening of medical 

images that have less dynamic range of intensity values.  

Baburaj and Dcruz, 2018 suggested using a distributed Canny edge 

detection algorithm. In this, the whole image is first classified into number of blocks 

and then the edge detection thresholds are adaptively computed based on block type. 

Barbu, 2021 presented the details about using a fourth-degree partial differential 

equation to remove the noise. 

Orhei et al., 2021 worked on using the dilated convolution for improved 

edge detection in many of the cases. At lower threshold, the dilation is observed to be 

sensitive to artifacts while at higher threshold, the dilated filters discover new edge 

points. It is also reported that by dilating the kernels, one can get reduction in noise 

sensitivity too however, its benefits are high.  

Considering the wide variation in the results by different edge detection 

algorithms, this study attempts to make a comparative analysis of standard edge 

detection algorithms with specific reference to the detection of linear track features. 
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The outcome of the results is given here.  

5.2 Objective 

To make a comparative analysis of different edge detection algorithms 

and try to identify the most suitable underlying algorithm for the detection of tracks 

with maximum accuracy and minimal noise. 

5.3 Methodology 

The study considered various edge detection algorithms like Sobel 

operator, Prewitt operator, Poberts Edges, Zero-cross, Laplacian of Gaussian (LoG), 

Hardy cross and Canny methods for comparative analysis. One more edge filter for 

detecting edges is also used for comparison. One of the alternate edge detection 

technique is also used by assigning higher weights for the edge filter. Hence, the new 

filter with weights as given below was also used for comparison of results.  

w = [-4 0 -4; -4 24 -4; -4 0 -4]  (5.5) 

A general satellite image of terrain is taken from google map for further detection of 

edges. MATLAB software is used for the study.  

Evaluation of effectiveness of Edge-detection algorithm is an important 

but a challenging task. Multiple solutions have been presented in the literature. These 

methods are grouped as subjective and objective methods. The subjective methods 

use human observation to evaluate the effectiveness of edge detection process. In 

objective methods, quantitative measures are defined based solely on the images and 

the edge-detection results. In the evaluation, the confusion matrix remains a key 

measure. In order to compare the results, different probability measures like 

precision (P), recall (R) and F-measure (F1) are computed, the details of which are 

given by Saski, 2007. Currently, the observation based criteria which is equally 

acceptable, is considered here for comparison of results.  

5.4 Results and Discussion 

Different edge detection algorithms are applied on the image of terrain 

containing various track features as shown in Fig. 5.1. The histogram of this image is 

given in Fig. 5.2. The dynamic range of pixels on horizontal axis in the histogram 

refers to the difference between the brightest and darkest pixel values, or the range of 

intensity values present in the image. The vertical axis of the image indicates the 

number of pixels in the image with corresponding brightness level in its 8-bit gray 

image having levels 0-255. This histogram forms the basis for enhancement of 
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relevant features in the image. The features of tracks shown in Fig 5.1, lying around 

the level of 190 are highlighted by employing suitable image processing techniques 

as presented in this chapter. The outcome of various edge detection algorithms 

computed using MATLAB was and superimposed over the original image for better 

perception of outcome which are indicated in Fig. 5.3-5.9.  

 

Fig. 5.1 Original Image of the terrain around Chandigarh  

 

Fig. 5.2 Histogram of the image indicating the dynamic range of intensity values  
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Fig. 5.3 Original image superimposed by Sobel edges 

 

Fig. 5.4 Original image superimposed by Prewitt edges 
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Fig. 5.5 Original image superimposed by Roberts edges 

 

Fig. 5.6 Original image superimposed by Zerocross edges 
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Fig. 5.7 Original image superimposed by Canny edges 

 

Fig. 5.8 Original image superimposed by proposed edge filter 

Based on the observation of results obtained after convolving the images 

with different edge detection filters, some useful inferences are drawn with specific 

reference to the study of tracks.  
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The comparative analysis brings out that vast difference between the 

outcomes from different edge detection filters. This puts in the need to confirm the 

suitability of edge detection algorithm before using them for further image 

processing. The gradient filters like Sobel picks up the boundaries quite well when 

sharp changes in intensity values are there. It de-emphasizes the lower levels of 

changes. This is the reason most of the tracks are not picked up in the image as 

shown in Fig. 5.3. The prewitt edge detection does not place specific emphasis on the 

pixels which are closer to the center of mask however it works on the similar 

principle. Therefore the results are not much improved as shown in Fig. 5.4. Both 

these algorithms are sensitive to noise. The results are not improved even with the 

gradient based another Roberts based filter as shown in Fig. 5.5.   

On the other hand the Laplacian filter has been observed as more 

sensitive to highlighting the finer details, which can be seen by comparing the 

images. Laplacian however produces noisier image, therefore Laplacian over 

Gaussian (LoG) is preferred.  Laplacian edge detector which calculates the second 

order derivatives in a single pass are approximating a second derivative 

measurement. These are very sensitive to the noise. Therefore, the image 

smoothening is first carried out using Gaussian filter before using the Laplacian 

filter. The method given by Zerocross method which is based on Laplacian over 

Gaussian (LoG) thus indicates improved result over Sobel and Prewitt algorithms as 

shown in Fig. 5.6.  

Another most commonly used algorithm is the Canny edge detector 

however it is relatively much more complex. The noise reduction is first carried out 

using Gaussian filter, followed by computing first order derivatives. Non-maximum 

suppression which is an important step in the Canny algorithm is then performed. 

The purpose is to obtain the local maximum value of pixels and set the non-

maximum point to zero, so that a large part of non-edge points can be eliminated. 

Hysteresis is then used for linking the broken lines found in the previous step. All the 

essential considerations are made in this algorithm, therefore the results appear to be 

much improved as shown in Fig. 5.7. The comparative analysis using visual 

appearance of the images clearly brings out that Canny Edge detection gives far 

better results in highlighting the edges.  

Attempt was made to highlight the edges by retaining strong edge filter 

weights. The results indicate that it picked up the edges much sharply however when 

compared with Canny edges, more noise is seen to be picked up by this filter as 

shown in the lower part of image in Fig. 5.8. 
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Fig. 5.9 Original image compared with Canny Edges  

Therefore, the Canny Edge detection is better suited for applications that 

need the automated detection of track features. The outcome of edge detection 

algorithms is also shown separately for the images as shown in Fig. 5.9. It is 

designed to be better than LoG filter by reduced sensitivity to noise. The benefits of 

underlying Canny Edge detection algorithm can be combined further with other 

techniques of improvement. Therefore in further attempts, one can consider 

combining Canny edge algorithm with other methods based on higher order 

derivatives or dilated filters etc. for improved accuracy of edge detection. The Canny 

edge detection algorithm is however widely used in computer vision for identifying 

the edge locations in the images. It's a multi-stage process that aims to detect the 

sharp and clean edges while minimizing the noise and false detections. The algorithm 

considers several key steps for addressing noise reduction, gradient calculation, 

double thresholding etc. The effectiveness of this algorithm in detecting the edge 

features is studied here for delineation of vehicle tracks in the images. The rut 

impressions on the ground are delineated by employing a number of techniques 

including that by optical cameras, photogrammetry and LiDAR sensors (Salmivaara 

et al., 2018). The width of rut profiles can be ascertained by delineation of its edges 

from surroundings. The technique finds direct utility in such situations. 

5.5 Conclusions 

From the observation of results and discussion thereon, the following key 

conclusions are drawn:  

1. The edge detection filters highlight boundaries with specific 

application. The selection of suitable edge detection algorithm needs to be done 

carefully. In the study, various edge detection algorithms like Sobel operator, Prewitt 

operator, Poberts Edges, Zero-cross, Laplacian of Gaussian (LoG), Hardy cross and 

Canny methods are considered for comparative analysis. The current study leads to 

inference that the Canny Edge detection algorithm gives relatively better and 
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acceptable results for applications in linear track detection although further studies 

may lead to further improvement of edges detection. 

2. A number of possible alternates can be explored to improve the edge 

detection algorithm further. The dilated filters could be one such alternative and the 

combination of two filters like Smoothed Sobel and Laplacian could be another 

approach. The higher degree of derivatives can also be employed usefully.  

3. In further studies, one can consider combining the benefits of using 

Canny edge algorithm with other methods like higher order derivatives or dilated 

filters etc. for improved accuracy of edge detection.  
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CHAPTER - 6 

EVALUATING THE POTENTIAL OF DIFFERENT TEXTURE MEASURES 

IN ENHANCING THE RUT TRACKS 

___________________________________________________________________ 

The role of texture that becomes important in fine resolution images has been 

explored here. Specific studies have been conducted to evaluate the potential of 

different texture measures in enhancing the rut tracks. 

6.1 Introduction 

Vehicular movement in off-road unpaved areas is a common requirement 

for applications, particularly in defense, forestry, agriculture and unmanned ground 

vehicles. During operations, the vehicles at time need to pass through many of the 

soft ground conditions. The beaten tracks of leading vehicles, reported as being paths 

which are safe and suitable for guiding, are followed at times. At times, the track 

impressions of the leading vehicle need to be followed for strategic reasons (US 

Army FM 3-19, 1993). During night time operations, low-contrast conditions are 

common hindrances for these vehicles. Moreover, these days, visual-analytics-guided 

systems are seen to be replacing human efforts. Vision-based systems are 

increasingly being used in many such manned and autonomous ground vehicles 

(Graefe and Kuhnert, 1992).  

Investigators conducted a study of the rut following robotic movement on 

unpaved terrain (Ordonez et al., 2011). Monocular-camera-based off-road track 

detection for the path following robot movement is proposed (Mei et al., 2018). In 

comparison to on-road surfaces or lane classification, off-road scenarios are shown to 

face many challenging situations. There are no well-defined edge cues and the tracks 

pass through a diversity of natural terrain surfaces. A review of the traversable path 

for autonomous ground vehicles in off-road detection is reported (Islam, 2022).  

The vehicle tracks captured by these cameras have limited contrast. The 

changed illumination conditions, cluttered backgrounds, wetness and so forth bring 

about great challenges in the identification of tracks. In order to make these 

operations sustainable in such scenarios, it is important to look into alternate means 

too that can improve the track contrast in a given situation.  

A deep-learning-based CNN method is presented for lane detection using 

vision cameras (Anbalagan et al., 2023). The use of the generative adversarial 

network (GAN) for addressing the issue of extracting road boundaries in complex 
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terrain scenarios is presented (Shamsolmoali et al., 2020). A framework has been 

given for combined tracking of paved and dirt roads (Forkel et al., 2021). In this 

work, a CNN-based measurement that utilized the self-similarity of (dirt) road areas 

is shown to be tracked using a look ahead length of 25 m. Although the machine 

learning aspect is important for track detection, even for these studies to accurately 

mark the vehicle tracks with feeble boundaries, a robust and accurate dataset is 

needed.  

Furthermore, the role of traditional image processing and the computer 

vision techniques is important here. In the context of 3D robot vision, it has been 

observed that by combining both linear subspace methods and deep convolutional 

prediction leads to improved performance along with faster runtime performance 

compared to the state of the art techniques (Burchfiel and Konidaris, 2018). Ten 

different concerns for deep learning are observed and it is suggested that in order to 

reach artificial general intelligence, deep learning must be supplemented by other 

techniques (Marcus, 2018). In the study of microcirculation images, the limitations 

of deep learning are reported and a hybrid model to strike a balance between 

accuracy and speed by combining traditional computer vision algorithms and CNN is 

proposed (Helmy et al., 2022). Furthermore, for these advanced algorithms too, the 

correct delineation of tracks in different scenarios is required. This is where the 

traditional image enhancement techniques play a role.  

Several techniques for image enhancement and better contrast are 

discussed (Gonzalez, 2009; Varshney and Arora, 2004). These techniques are 

primarily based on filters and histogram stretching. Several techniques of image 

enhancement have been compiled (Janani et al., 2015). 

The unpaved track features which look like edges in low resolution 

images appear like elongated areas in the high resolution images. This additional 

aspect of comparative change in the texture of tracks with respect to their 

surroundings can reveal useful information for the improved interpretation of track 

features.  

There are various techniques of texture estimation; however, the GLCM-

based approach employing various statistical measures has shown very good results 

in a variety of applications (Mohanaiah et al., 2013). The relationship between the 

pixels in the image is characterized by using different statistical measures such as 

contrast, energy, entropy, homogeneity, etc. Texture analysis using GLCM is 

employed in the detection of road boundaries (Graovac and Goma, 2012). The 

contrast of tracks using texture based measures depends upon the surrounding terrain 

features. A study on various aspects influencing the texture is proposed (Zhang et al., 

2017).  
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Considering various measures for an enhancement in track contrast, an 

attempt is made to quantify the effectiveness in a given surrounding track contrast 

using a new track index (TI) and to sort the images as per the track contrast. In this 

work, different aspects related to contrast enhancement and the optimization aspects 

are presented.  

6.2 Review of Past Works 

The vehicular movements in off-road areas pose many challenging 

situations which are essential to be addressed for sustainable operations. In places, 

the ground strength gives way in different environmental conditions, thereby needing 

some strengthening measures. Situations of low contrast are other issues which exert 

challenges on decision making for the track or rut following vehicular operations. 

Considerable efforts continue to make the off-road operations sustainable from 

varied perspectives. Improving the strength of unpaved terrain using geosynthetics 

(Singh et al., 2019) and its evaluation (Singh et al., 2022) for sustaining vehicular 

loads are a few such alternatives employed. Machine learning processes as employed 

in the crack detection of bridges and asphalt (Kumar et al., 2020) and the proposed 

self-attention-based U-net model (Gupta et al., 2022) can be extended for the 

autonomous detection of track features too. The delineation of track zones in 

spatially varying, low-contrast terrain is another important issue that requires 

attention for sustainable operations. 

Tracks are seen to be distinguishable from their surroundings not only by 

the variation in tone but also by the pattern and texture which are differentiable with 

respect to their surroundings. Howard and Seraji, 2001 used a mobile robot with a 

vision system for real-time terrain characterization using an artificial neural network 

(ANN). An algorithm (Chowdhury et al., 2017) was introduced for a line follower 

robot to achieve the ability to autonomously follow a path that had straight lines.  

Image stretching, power functions, low–high-pass filters, histogram 

stretching and its equalization are some of the well-known techniques employed for 

image enhancement (Gonzalez, 2009). A framework based on multipeak-mean-based 

optimized histogram modification was introduced to demonstrate the enhancement in 

contrast (Babu et al., 2015). Edge detection techniques have been used in preserving 

the high-frequency components and structural features for the detection of linear 

features. Broadly, the edge detection algorithms are grouped into two types on the 

basis of derivatives (Marques, 2011) which include: a) gradient-based operators 

which compute the first-order derivatives of an image and b) Laplacian-based 

operators which are based on the second-order derivatives of an image. Both gradient 

and Laplacian filters are used to highlight discontinuities in an image. Using these in 

the background, many variants of the edge detection algorithms have been 

developed; Sobel, Prewitt, Canny, LoG, etc., have been studied for a comparison of 

results, and each of them have been shown to have their own merits.  
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Texture representing the relation of the pixels with reference to their 

neighborhood reveals very useful information distinctive to the object. Texture-based 

analysis has been employed for image understanding and for different applications 

by various researchers. Various approaches have been used to describe the textures in 

the images which differ from each other mainly by the method used for extracting 

textural features. These approaches which are based on four methods, viz. statistical 

methods, structural methods, model-based methods and transform-based methods, 

have been compared (Bharti et al., 2004). Several applications make use of texture 

information for required feature extraction. A survey of texture feature extraction 

methods is given by Humeau-Heurtier, 2019.  

In content-based image retrieval, a combination of edge information and 

texture information using co-occurrence matrix properties is used (Alsmadi, 2020). 

Texture features are used for evaluating the real-time distress conditions of roads 

(Doycheva et al., 2016). GLCM texture measures are used as feature descriptors for 

image retrieval in various applications (Sudha and Aji, 2019). A local second-order 

texture entropy has been employed to represent the nature of gray-scale variation and 

the authors, Liu et al., 2020 based on local texture entropy proposed an algorithm for 

better edge detection. 

All of these studies are significant from the perspective of enhancing the 

track contrast, and related tasks are used in this study.  

6.3 Tools and Methodology Used  

In order to investigate the role of different resolutions, the images of 

Google Earth at different resolutions were taken as the basis in this study. The 

images taken for the analysis were from an area near Chandigarh. The test sites 

presented in this study were taken based on ground trials conducted in places with 

desertic terrain features near Suratgarh, Rajasthan, and with alluvial terrain features 

in Roorkee, Uttranchal, in India. In another set of images of tracks at ground level, 

vision cameras were used. The analysis was carried out using Sentinel Application 

Platform (SNAP) 8.0 and MATLAB 2020a software. The following points give 

details about the methodology used in this study: 

6.3.1 Using Some Linear and Non-Linear Transformation Functions 

Due to changed environmental conditions, many times, it is not possible 

to interpret features directly from images captured by cameras. Many features in the 

image become prominently clear when certain image processing techniques are 

applied on the images. There are various measures which can be used to enhance the 

track contrast, and some of which that are relevant to this study are described here.  
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The contrast between the two pixels is based on the difference between 

their gray levels. Many times, the full dynamic range is not used in the image, 

thereby making the image have reduced contrast. Contrast stretching tries to make 

use of the full dynamic range and improves the contrast uniformly for the whole 

image.  

Contrast stretching as defined as improving the contrast by stretching the 

range of intensity values in a given range to the desired values. It is defined as 

follows: 
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where, g(x,y) is the array of pixels in the transformed image and f(x,y) is that for the 

original image; fmax and fmin are the maximum and minimum gray values of the 

image pixels. L indicates the quantization levels, for instance, an 8-bit image contains 

28 = 256 levels. The transformation here can also be made for a given range of gray 

values using a piecewise linear stretching function.  

There is a possibility of improving the image contrast in a specific range 

of gray levels using various non-linear transformation functions (Gonzalez, 2009; 

Varshney and Arora, 2004). Some of the transformation functions include 

logarithmic stretching, which enhances the contrast of pixels in a dark region, 

whereas the reverse function antilog enhances the contrast between bright pixels. 

Logarithmic stretching is defined using 

)'1log(.' rcs s +=   (6.2) 

where, s’ and r’ are the output and input pixel values respectively. The parameter cs 

is the scaling constant to obtain the output value in a desired dynamic range. The 

power or Gamma function can also be used to carry out the image stretching of the 

pixels to a varying degree using the following: 

γ)'.(' rcs s=  (6.3) 

In this transformation, the parameter cs is the scaling constant and the value of γ < 1 

is used when we are more sensitive to changes in the dark as compared to bright 

areas in the image. Similarly, γ > 1 is used when we are more sensitive to changes in 

bright areas than in dark areas. Another method of increasing image contrast is by 

manipulating the histogram of an image. A histogram is created by counting the 

number of times each gray-level value occurs in the image.  

kk nrh =)(
 (6.4) 
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where, rk is the kth  gray level in the range [0, L − 1] and nk represents the number of 

pixels in the image with a gray level of rk. The histogram is normalized to create a 

percentage distribution for each gray level in the image. The histogram equalization 

is the most common technique used for image contrast enhancement. It accomplishes 

this by stretching out the intensity range of the image. This allows for areas of a 

lower local contrast to gain. This method is usually seen to increases the global 

contrast of images, whereas another method of adaptive histogram equalization is 

used for contrast stretching over local areas. In this, the histograms are created for 

distinct sections of the image and the gray values are re-distributed. 

6.3.2 Using Spatial Filters 

Some spatial filtering methods have been used to sharpen the edges and 

remove much of the blur in images are quite relevant for enhancing image contrast. 

In all of these operations, the convolution of images with various filters is carried out 

using operations such as the following:  
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where, w(s,t) indicates the filter of size s x t dimension scanned over the image f(x,y). 

The symbol (*) is used to indicate the convolution of the image and filter. 

Convolution computes the output based on the weighted average of brightness values 

of pixels located in a particular spatial frame. The filters or kernel used here was the 

matrix with values in a given spatial relation, which was used for highlighting a 

specific feature. The edge filters and various low–high frequency filters were 

designed based on the above concept.  

The boundaries of the track areas represented by edges can be used to 

differentiate the track area using edge filters. Edges which are a set of connected 

pixels forming a boundary between two disjointed regions are considered as cues for 

track and road lane detection (Li et al., 2018). The vehicle tracks that are distinctive 

from the surroundings at the boundary and the role of edges representing boundaries 

were thus explored. Edge detection assists in preserving and highlighting the high-

frequency components in the image. Edge detection usually depends upon the 

calculation of first or second derivatives of the image (Marques, 2011). The first-

derivative-based edge filters were designed based on the gradient of the pixel values 

in the image and were computed as follows: 
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where, the gradients gx and gy are the first derivatives of image f(x,y) indicating pixel 

value changes occurring in both the x and y direction and are represented as the 

column vector ∇f. The second-derivative-based edge filter was also defined using the 

Laplacian of the image f(x,y), and was obtained using the second-order differential 

equation given below:  
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However, the gradient-based filters were used to highlight the prominent edges, 

while the Laplacian filters brought out the finer details (Gupta and Porwal, 2016). 

Based on the above concept, many of the edge detection filters that are designed 

include Sobel, Prewitt, Roberts, Canny, etc. These are used to highlight the edges 

based on some varying concepts, and each of which has its own merits. 

The contrast of linear features could also be highlighted by using other 

high-frequency filters, wherein the low-intensity features are deemphasized. These 

high-frequency filters which can be useful in differentiating the track and 

surrounding features based on the frequency of features were used in this study.  

6.3.3 Using Texture Measures 

The conventional techniques of image enhancement which are primarily 

based on the general understanding of brightness values in an image assist in 

highlighting the image features to an extent. When a group of pixels representing any 

feature is differentiable from its surroundings, the role of texture comes into place. 

The texture defines the spatial arrangement of these pixels in the feature. With the 

arrangement of pixels in the track zone being different from its surroundings, the role 

of texture is therefore explored in this study for improved image intelligence. 

The GLCM-based texture measure which is considered as a good 

descriptor of features was used in this study. It considers the relation between two 

pixels at a time, named as the reference pixel and the neighbor pixel. The concept of 

measuring texture using GLCM by extracting various texture features is given by 

Haralick et al., 1973. The author introduced fourteen textural features that contain 

information about image texture characteristics. Later, Conners and Harlow, 1980 

identified that only 5 of these 14 measures were sufficient, including energy, entropy, 

homogeneity, contrast and correlation. The key measures that were used in the 

current study are described here.  
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where, p(i,j) is the probability value recorded for the co-occurrence of cells (i,j) in 

the GLCM matrix; μi and μj are the means while σi and σj are standard deviations. 

Here, different statistic measures have their own significance, and the details of 

which are given by the investigators (Haralick et al., 1973; Conners and Harlow, 

1980). Energy, represented based on the angular second moment (ASM), measures 

the textural uniformity, indicating pixel pair repetitions. Entropy measures the 

disorder or complexity of an image. Homogeneity denotes the absence of intra-

regional changes in the image. Contrast is indicative of the spatial frequency of an 

image and measures the extent of local variations present in the image. Correlation 

computes the linear dependency of the gray-level values in the GLCM matrix and 

indicates the relation of the reference pixel to its neighbor.  

All of the above statistical measures were used in the analysis of texture 

over the images, as used in this study.  

6.4 Results 

In order to understand the effect of different measures in an enhancement 

in track contrast, images are enhanced using a number of techniques and some of 

these were used in this study. Since there could be several ways, only some 

significant measures influencing track contrast were considered here. In order to 

create the images using various techniques such as edge enhancement, high-pass 

filters and texture images, a filter of 5 × 5 size was convolved over the input images. 

In the study of texture, GLCM was created by downsizing the quantization levels as 

the computational complexity of this method is proportional to O (G2) (Clausi, 

2002). More levels imply more accurate textural information, but with increased 

computational cost. Applying a large displacement value to a fine-texture image 

would yield a GLCM that does not capture detailed textural information (Gadkari, 

2016). In order to compute image texture, a horizontal offset of 1 pixel and 

quantization level of 32 were used to create various texture images.  
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First of all, a comparison of various image enhancement measures was 

done on the images of different scales. So, the images of a road junction in an area 

near Chandigarh were captured at different resolutions, as given in Fig. 6.1a (source: 

Google Earth, Maxar Technologies).  

 

Fig. 6.1 Multiscale images of roads: (a) original in gray tone indicating coarse-, 

medium- and fine-scale images (source: Google Earth) enhanced using (b) Sobel 

edge detection filter, (c) Laplacian filter and (d) high-pass filter. (Images created 

using SNAP 8.0 software) 

Among conventional methods, edge detection filters, using Sobel as the 

first-order and Laplacian as the second-order derivative, and high-pass filters were 

used and convolved over the images. The results of the analysis are shown in Fig. 

6.1b–6.1d, respectively.  

The texture analysis on the same images was also carried out using 

GLCM. The images representing different statistical measures of texture were created 

Image Source: Google, Maxar Technologies 

(a) 

(b) 

(c) 

(d) 
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as shown in Fig. 6.2. 

 

 

 

Fig. 6.2 Multiscale images of roads indicating coarse-, medium- and fine-scale 

images enhanced using (a) homogeneity, (b) energy, (c) contrast and (d) entropy as 

the texture measures. (Images created using SNAP 8.0 software) 

Fig. 6.2 contains images that represent (a) homogeneity, (b) energy, (c) 

contrast and (d) entropy as the texture measures. An analysis of the images has been 

shown in Fig. 6.1, and Fig. 6.2 indicates one notable point that as the resolution 

increases, the role of enhancement measures using the non-linear filters and texture 

increases. This is because the pixels representing the track features as a group are 

prominently different to the surroundings.  

(a) 

(b) 

(c) 

(d) 



75  

The effect of various measures was investigated further to identify their 

role on the ground-scale images containing vehicle tracks. The results of the analysis 

carried out on the images of track impressions by the leading vehicle in desertic 

tracks are shown in Fig. 6.3. 

 

Fig. 6.3 Effect of different texture measures on tracks in desertic terrain: (a) original 

gray image and texture images created using filters of (b) energy, (c) entropy, (d) 

GLCM mean, (e) GLCM variance and (i) homogeneity image. (Images created using 

SNAP 8.0 software) 

The influence of other texture measures such as GLCM mean and GLCM 

variance was also explored here. The visual appearance of the results reveals the 

importance of texture in delineating the tracks in a better way than the original gray 

image. These results, along with standard image enhancement measures, can be used 

in devising an improved way for differentiating the track zones.  

6.4.1 Quantification of Track Contrast Using Proposed Track Indices 

In order to compare the track contrast quantitatively, an index-based 

approach was proposed in this study. First of all, a cross sectional profile was drawn 

a) b) c) 

d) e) f) 
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across the track in each image as per the details marked on one of the texture images, 

as displayed in Fig. 6.4.  

  

Fig. 6.4 Location of pixels chosen for comparing the contrast in track areas with 

reference to its surroundings (Image created using SNAP 8.0 software) 

As the contrast of tracks needs to be considered with respect to its 

surrounding, for each of the image enhancement measures, areas representing pixels 

on-track (PT) and pixels off-track (POT) were therefore considered. As local variation 

in the feature values was also expected, the mean value of the features value was 

taken. In this study, each measure was averaged over a rectangular area with a width 

of 11 × 100 pixels. In order to compare the contrast using various measures, the 

difference in the mean value of the statistical measure (X) on the pixels along the 

track (PT) and in the pixels in the off-track (POT) areas were computed as shown 

below: 

31
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Here, in a given enhancement measure, X1 and X3 are the values at the selected pixels 

1 2 3 
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in the off-track zones located to the left and right of the track, respectively. Similarly, 

X2 indicates the values for pixels on the track. As the range of values computed for 

different statistic measures shall be different, in order to compare the two measures, 

normalization was carried out, as shown below:  

minmax

min

XX

XX
Y

−

−
=         (6.15) 

where, Y is the normalized value of X data representing the contrast enhancement 

measure and Xmin and Xmax give the minimum and maximum values of its range. 

Here, the range in the numeric values of data gets normalized between 0 and 1. A 

number of alternates were considered for defining the contrast quantitatively. The 

following four measures of track index as defined below were used in this study:  

6.4.1.1 Based on Difference in Mean Values 

The track index was defined on the basis of difference in the mean values 

of pixels on-track and located off-track. Depending upon the used statistic measure, 

the values of measure could be higher either on-track or off-track, and the absolute 

difference was thus taken as the measure, as described below:  

),min(),max()( TOTTOT PPPPDTI −=
    (6.16) 

6.4.1.2 Based on Ratio of Mean Values 

The track index here was considered on the basis of the ratio of the mean 

values of pixels on-track and located off-track. Depending upon the used statistic 

measure, the values of measure could be higher either on-track or off-track; 

therefore, the ratio of maximum and minimum values was taken as the measure, as 

defined below:  

),min(

),max(
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TOT

PP

PP
RTI =

       (6.17) 

6.4.1.3 Based on Normalized Difference in Mean Values 

The track index here was considered by normalizing the difference in 

mean values of pixels on-track and located off-track. The measure was defined as 

follows:  
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6.4.1.4 Based on the Ratio of Coefficient of Variance  

The track index here considered the distinguishing feature of the track 

based on the standard deviation of the values of pixels on-track and located off-track. 

The co-efficient of variance (CV), which is the ratio of standard deviation to the 

mean value, was used here. Considering this measure, the variance-based index was 

then defined as below: 

100*
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=

 (6.19) 

All of the above track indices were evaluated for their effectiveness in 

this study. In order to do so, these indices were computed using data for different 

enhancement measures.  
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Fig. 6.5 Process flow to generate image with maximum track index outside of using 

various contrast enhancement measures. 

6.4.2 Analysis of Track Contrast Data 

The track impressions of the leading vehicle in the off-road terrain were 

used in this study. The track images were captured using vision cameras on board the 

vehicle. The procedure for obtaining the maximum contrast using different contrast 

enhancement measures is indicated in Fig. 6.5. 

This procedure was applied for computing the track indices on various 

images created using different enhancement measures. The results of analysis using 

different measures are presented in a consolidated image in Fig. 6.6. 

Capture Image 
Containing tracks 

Adjust Camera focus on 
Track in front of vehicle 

Compute GLCM and 
Contrast Enhancing 

Measures 

Select track and Off-
track zones and 

Compute Track Index 
(TI) for all Images 

Compare TI 
of all 

Images 

Whether TI 
compared for 

all Images 

Display Image 
with Maximum 

TI 

Create set of Images 
containing various measures 

N 

Y 

Sort Images as per Track 
Index (TI) for all Images 



80  

 

Fig. 6.6 Different contrast enhancement measures of leading vehicle tracks: (a) 

original gray image of the tracks and images created using (b) Sobel edge detection 

filter, (c) Laplacian edge filter, (d) Non-linear Max filter and (e) High-pass filter, 

and using texture measures of (f) Energy, (g) Entropy, (h) Contrast and (i) 

Homogeneity. (Images created using SNAP 8.0 software) 

The visual appearance does create an enhancement in the track index via 

one or another measure. In order to make a comparative analysis, the pixel values 

were computed across the track area. The mean and standard deviation (sigma) of the 

pixel values on-track and located off-track were also computed. Further 

computations were then carried out for evaluating different track indices. The 

analysis of data was consolidated, as shown in Table 6.1.  
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Table 6.1 Computation of track index (TI) for quantifying image contrast using 

different indices 

Enhancement 

Measure 

Computation of Track Index 

Off-

Track 

Mean 

On-

Track 

Mean 

Off-

Track 

Sigma 

On-

Track 

Sigma 

Off-

Track 

CV 

On-

Track 

CV 

TI-

Diff 
TI Ratio 

TI-Ratio-

Normalize

d 

TI-CV 

Diff 

Gray 0.52 1.00 0.32 0.01 0.61 0.01 0.48 51.80 31.76 92.15 

SobelE 0.47 0.47 0.30 0.05 0.65 0.10 0.00 99.97 0.01 51.98 

Laplacian 0.50 0.51 0.35 0.02 0.70 0.04 0.00 99.08 0.46 79.81 

Gray_Max 0.71 1.00 0.21 0.00 0.30 0.00 0.29 70.87 17.05 100.00 

High-Pass 

Filter 
0.50 0.03 0.33 0.02 0.65 0.54 0.47 1453.30 87.12 24.58 

Energy 0.03 0.94 0.05 0.15 1.66 0.16 0.91 3.15 93.89 53.37 

Entropy 0.91 0.04 0.14 0.10 0.16 2.52 0.87 2243.73 91.47 89.42 

Contrast 0.34 0.00 0.25 0.00 0.73 2.27 0.34 131279.4 99.85 80.38 

Homogeneity 0.10 0.97 0.15 0.09 1.49 0.10 0.87 10.61 80.81 23.15 

Here, the mean values and standard difference for off-track and on-track 

pixel values were taken as the basis for evaluating various track indices. These 

indices indicated the comparative difference in track index values for different image 

enhancement measures. In order to evaluate the suitability of different measures, a 

new method was proposed. The images were first sorted and ranked based on the 

visual appearance. The ranking was then computed for each of the proposed track 

indexes and marked for each enhancement measure. The obtained details are 

summarized in Table 6.2. 
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Table 6.2 Computation of effectiveness of different track indices 

 

Enhancement 

Measure 

Visual vs. Computed Rank Difference from Actual(>2 Ranks) 

Vision-

Based 

Ranking 

TI-

Diff_ 

Rank 

TI-

Ratio_ 

Rank 

TI-Ratio-

Normaliz

ed Rank 

TI-CV-

Diff 

Rank 

TI-Diff 

Rank 

TI-

Ratio_ 

Rank 

TI-Ratio-

Normalized 

Rank 

TI-

CV-

Diff 

Rank 

Gray 6 4 6 6 2 0 0 0 1 

SobelE 9 9 9 9 8 0 0 0 0 

Laplacian 8 8 8 8 5 0 0 0 1 

Gray_Max 5 7 7 7 1 0 0 0 1 

High-Pass Filter 7 5 4 4 11 0 1 1 1 

Energy 3 1 2 2 7 0 0 0 1 

Entropy 1 2 3 3 3 0 0 0 0 

Contrast 2 6 1 1 4 1 0 0 0 

Homogeneity 4 3 5 5 10 0 0 0 1 

% Age Accuracy 88.9 88.9 88.9 33.3 

 

The grading of each of the proposed track indexes was then compared 

with the visually graded rank of the images as per the track contrast. As the manually 

graded rank was subjected to some uncertainty in the correct ordering, a deviation of 

two ranks in computed rank from the manually graded rank was considered as 

acceptable. The table also indicates the results of the acceptable image ranking. The 

difference from the manual rank in the table is marked with 0 where the rank is 

within 2 images and marked as 1 where the difference is more than 2 images. The 

correctness of results was then computed and is given in the table above.  

6.5 Discussion 

The study about enhancing the track contrast using various contrast 

enhancement measures as consolidated in various Figures and tables demonstrates 

some important inferences. In the areas with low contrast, posing difficulty in the 

delineation of track areas, various image processing techniques (Gonzalez, 2009; 
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Varshney and Arora, 2004) can be used to complement the interpretation process. 

This can help vision-systems-based decision-making processes to be more robust in 

their interpretation.  

It is observed from Fig. 6.1 and Fig. 6.2 that when a group of pixels 

representing any feature has a differentiable spatial arrangement from its 

surroundings, the role of texture assumes importance. The visual appearance of the 

contrast images demonstrates the role of texture in enhancing the track contrast in 

situations posing difficulty in the delineation of tracks. Further, the contrast images 

consolidated in Fig.6.1–Fig.6.3 indicate the role of GLCM in representing texture. 

Various statistic measures used here are seen as good indicators for delineating 

vehicle tracks. This supports the view expressed by Mohanaiah et al., 2013 that 

GLCM-based measures give very good results in many fields of applications.  

Depending upon the surrounding features, the most optimal texture 

measures enhancing track features are seen to vary. The visual appearance of 

different contrast images in Fig. 6.6 demonstrates the varying role of different 

contrast enhancement measures in a given scenario. In order to make a comparative 

analysis, a quantitative method was proposed in this study. The pixel values 

computed at various locations across the track were used for this purpose. The mean 

and standard deviation of the pixel values on-track and located off-track were also 

computed and normalized to facilitate a comparison of all images with different 

ranges of contrast enhancement measures.  

Different forms of track indices have been explored and presented in this 

study, as shown in Table 1. In order to compare the effectiveness of the track indices, 

the visual comparison was taken as the basis and the images were sorted based on 

each of the track indexes. The outcome of the comparison with visual perception as 

given in Table 6.2 demonstrates the effectiveness of the proposed track indices. The 

accuracy levels of the sorted images indicate that the proposed track-index-based 

approach is quite effective in sorting the contrast images based on the levels of 

contrast.  

The proposed track-index-based approach can therefore be used for 

sorting the images of different enhancement measures based on track contrast. 

Although track indexes based on difference and ratio are both effective in sorting the 

images correctly, it is important that the influence of terrain features be considered 

here. For instance, in using the ratio-based track index, the Sobel- and Laplacian-

based images, which have minimal variations in mean values of on-track and off-

track areas, could lead to unexpected results. This kind of issue capped the overall 

accuracy of the results using the proposed track index, which in the present case 

could result in 88% accuracy. A separate study could shed more light on better 

understanding the influence of varying topography, the size of the kernel, the width 

of the interpretation channel, etc. However, on a comparative basis, the track index 
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based on the normalized ratio of difference is suggested to be used on preference, as 

it normalizes the comparison of different statistical measures rather than considering 

the absolute difference or ratio of the measures. An additional study could make this 

aspect even clearer for improving the result further. At this stage, machine learning 

tools could also be used to improve the accuracy levels of sorting the images even 

further based on inputs from all of these track indices. 

While computing the track index, certain aspects need to be considered. 

The boundary areas of features in the track area influence the values of some 

enhancement measures, particularly in texture images. Therefore, for the 

computation of the track index, points in the track zone may thus be selected away 

from boundary areas for better inference of the track index.  

Another study was carried out by the authors in desertic terrain to 

understand the influence of surrounding terrain features. Here, some additional 

parameters of GLCM were also considered and were related to GLCM mean and 

GLCM variance. The results shown in Fig. 6.3 indicate that the track could be 

delineated better than the original image by using one or another image enhancement 

measure as per the details given by Haralick, 1973 and Conners and Harlow, 1980. 

However, the most optimal measure in a given situation depends upon the 

surrounding terrain features. Therefore, the procedure given in Fig. 6.5 was adopted, 

which accounts for these variations and highlights the image with maximum track 

contrast.  

Nowadays, machine learning is replacing human efforts. A number of 

attempts are being made in related studies of lane detection and its conditions, 

applying deep learning models. The accuracy of classification depends upon the 

accuracy and robustness of training sets. There are many cases when the vehicle 

tracks are there with feeble boundaries. This is where the proposed study of 

maximizing the track contrast could also be used for generating a robust and accurate 

dataset of track contrast.  

The proposed study is seen to give a new method for making various 

tracks following off-road operations sustainable by improving decisions in low-

contrast areas. This meets the requirements of both manual and autonomous 

navigation. Thus, the earlier works on the rut or track following vehicles as presented 

by Ordonez et al., 2011; Mei et al., 2018 and Chowdhury et al., 2017 can be 

improved even further. The proposed methodology can support making intelligent 

on-board decisions for delineating track zones.  
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6.6 Conclusions 

Using visual analytics together with image intelligence and the optimal 

delineation of track features, a track-index-based contrast enhancement study was 

presented here leading to the following set of key conclusions: 

1. In the locations posing difficulty due to low contrast in the delineation 

of track areas, various image processing techniques can be employed to complement 

the interpretation process.  

2. In the context of identifying track zones with a significant dimension, 

texture measures play a vital role in enhancing track contrast for the improved 

delineation of vehicle tracks. Gray-level co-occurrence matrix (GLCM)-based statistic 

measures are used here to evaluate the track texture. These measures are seen to improve the 

contrast of vehicle tracks significantly. 

3. A track-index-based quantitative measure could effectively be used for 

the comparative analysis of different contrast enhancement measures with a wide 

range of variations.  

4. The proposed track-index-based technique can be usefully employed 

to sort out various images on the basis of track contrast with 88% accuracy, as seen 

in the current case. Further study to understand the influence of varying topography, 

the size of the kernel and the width of the interpretation channel, etc., could lead to 

an improvement in track index.  

5. The proposed visual analytics and track-index-based approach leading 

to improved inference of track features could augment the decision-making process 

for improved autonomous decisions in low-contrast areas.  

The proposed study is a novel way to make various tracks following off-

road operations sustainable by improving decisions in low-contrast areas. The 

proposed methodology can support intelligent decisions in on-board vehicles for the 

better delineation of track zones. 
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CHAPTER - 7 

AN ADAPTIVE TECHNIQUE TO SELECT THE MOST EFFECTIVE RUT 

ENHANCEMENT MEASURE IN A GIVEN SURROUNDING 

____________________________________________________________________ 

The suitable rut enhancement measures have been observed to vary as per the 

surrounding terrain. An adaptive technique has been explored that can select the most 

effective rut enhancement measure in a given surrounding.  

7.1 Introduction 

The movement of vehicles on unpaved terrain is quite common in 

agriculture, forestry, armed forces, robotics, Unmanned Ground Vehicles (UGV), 

night safari, etc. Many challenging operations like firefighting, search and rescue, 

and movement in snow-bound and loose desert soils for many combat missions 

utilize the unpaved off-road terrain during need. The trafficability condition of the 

area depends upon the spatial features and the ground state to support the movement 

of vehicles. Significant resources are available to infer the trafficability condition 

using spatial data resources. For instance, Pundir and Garg, 2021 worked on 

evaluating the impact of terrain features on trafficability employing spatial data 

resources. However, empirical and experimental models are there for precise 

evaluation of prevalent soil condition and their inference on trafficability conditions. 

Vehicles in many places get stuck due to these uncertainties.   

Delineation of vehicle tracks on unpaved terrain reflects the wealth of 

information about trafficable off-road routes for these areas. Moreover, the rut 

formed by the earlier vehicular movement on unpaved terrain becomes the preferred 

route for applications like night safari and robotics-based operations for better 

stability (Ordonez et al., 2011). Tremendous work exists to study the rut formed by 

vehicles from different perspectives. For instance, Kalra et al., 2023 investigated the 

rut contrast improvement using various alternate indices. Liu et al., 2009 studied the 

variation in rut width on turnings using military vehicles. In another study, Vennik et 

al., 2019 investigated the impact of single and multiple passes of military vehicles. 

During strategic missions, vehicles move on unpaved terrain in low contrast dark 

conditions ((US Army FM 3-19, 1993). In such a scenario, the delineation of tracks 

or the rut impressions by leading vehicles plays an important role.  

These days, many vehicular operations make use of vision-based 

systems. Pierzchala et al., 2016 used close-range photogrammetry to detect the rut. 

Salmivaara et al., 2018 worked on a vehicle-mounted LiDAR system for rut depth 
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detection and measurement. Digital image processing techniques are there to be 

employed to enhance the features of interest (Gonzalez et al., 2004). However, these 

techniques alone extend limited aid for delineating the tracks from their surroundings 

in an image. The pattern and texture of these tracks over tonal variation are some 

appropriate measures that enable the delineation of these tracks. The statistical 

measures of the GLCM-based texture analysis technique have shown reasonably 

good results in a wide range of applications (Mohanaiah et al., 2013). Fauji et al., 

2020 presented one such study for improving the robustness of detection of road 

surfaces in varied environmental conditions using a combination of GLCM measures 

and local binary pattern (LBP). 

In this work, the authors investigated conventional and texture-based 

analysis to delineate the tracks. The study used satellite images representing different 

resolutions and ground-based vehicle tracks formed by leading vehicles. A 

quantitative track index (TI) based approach is examined in this study to compare 

and find the most appropriate contrast measure for the delineation of tracks. The 

details of the study are presented here. 

7.2 Related Work 

Caraffi et al., 2007 used decision networks and the stereo vision 

technique for detecting the off-road path and obstacles. Howard and Seraji, 2001 

used a vision system-based mobile robot for real-time terrain characterization by 

applying Artificial Neural Network (ANN). Ordonez et al., 2011 investigated the 

movement of robotic vehicles by tracking the rut in unpaved areas. Chowdhury et al., 

2017 introduced an algorithm for a line-following robot to follow the straight-line 

path autonomously.  

There are various techniques used for the enhancement of image contrast. 

These image-processing-based techniques primarily employ filters and histogram 

stretching. Janani et al., 2015 made a compilation of different image enhancement 

techniques. Babu et al., 2015 presented a framework for contrast enhancement. The 

edge detection techniques that preserve the structural features and the high-frequency 

components belong to either of the two groups based on the derivates (Marque, 

2011). The first one computes the Gradient or the first-order derivative of an image. 

The second one, based on the second-order derivative is a Laplacian operator. Both 

these filters highlight sharp changes or discontinuities in the picture. However, the 

gradient-based filters emphasize the prominent edges while Laplacian filters enhance 

the finer details (Gupta and Porwal, 2016). Based on these, researchers brought out 

several edge detection algorithms. Shrivakshan and Chandasekar, 2012 compared the 

prominent edge detection algorithms covering Sobel, Robert’s cross gradient, 

Prewitt, Canny, Laplacian of Gaussian (LoG), etc. The goodness of edge detection 

algorithms depends upon measures such as the accuracy of edge detection, the 

localization of edges, and the minimal response. Canny’s edge detection is a 
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computationally more expensive algorithm. However, it performs better than all 

these operators under almost all scenarios (Narendra and Hareesh, 2011). 

The track features appear like an edge in the low resolution images. 

These features appear like elongated areas in  high resolution images. In such a 

scenario, various high pass and edge detection filters are seen to give limited 

information for delineation of these tracks that pass through diverse surroundings. 

However, the distinctive pattern formed by these tracks gives rise to relative 

variation in its texture from the surroundings.  

The relationship of pixels with neighboring pixels reveals worthful 

information distinctive to distinguish these objects. Various approaches exist that 

describe the texture in an image. Bharti et al., 2004 compared different approaches to 

describe the texture. Humeau-Heurtier, 2019 presented a survey of various methods 

of texture feature extraction. GLCM-based texture analysis could delineate well the 

road boundaries (Graovac and Goma, 2012). Measures like energy, homogeneity, 

entropy, contrast, etc. define the texture using this approach.  

The most suitable texture measure that can distinguish the track area 

more prominently depends upon the surrounding. A study to enhance contrast 

enhancement using different alternate approaches is presented here. The proposed 

method of comparative analysis makes way for selecting the most optimal contrast 

enhancement measure. 

7.3 Methodology Used  

 Suitable image processing techniques enhance the vehicle tracks and 

assist in their delineation in an image. The image background, resolution, and noise 

level in the image containing the tracks form the basis for selecting suitable 

measures.  

7.4 Various Edge Enhancement and High-Frequency Filters 

In some course-resolution imagery, the track impressions appear as linear 

features. In such cases, high-pass and edge-detection filters facilitate the detection of 

these features. 

Edges that form a set of connected pixels create a boundary between two 

disjoint areas. Edge detection aids in highlighting the high-frequency components in 

an image. Edge detection usually depends upon the computation of the first or 

second derivatives of the image (Marque, 2011) and computed as below: 
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Here, gx and gy are the first derivative or gradients of the image f(x,y) and show the 

pixel value changes in both x and y directions. It is defined using the column vector 

f
. The second derivative-based edge filter is also defined using Laplacian of the 

image f(x,y) computed using a second-order differential equation as given below:  
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Based on the above procedure, a study brings out the comparative analysis of various 

edge detection algorithms like Sobel, Canny, Prewitt, and LoG. The images 

processed for highlighting the edges use different high-frequency filters that de-

emphasize the low-intensity features. All such operations make use of the 

convolution of images with filters for representing various edges or other high-

frequency filters as given here:  
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here, w(s,t) denotes a filter of dimension (s x t) that scans over the image f(x,y). The 

symbol (*) stands for convolution- Conv(w,f) of image and filter. In these techniques, 

noise removal can be helpful. Barbu, 2021 presented the details about using a fourth-

degree partial differential equation to remove the noise. Tavakkol et al., 2022 showed 

a spatially adaptive technique that performs when the directional texture is there.  

7.5 Image Texture Measures  

Most of the techniques mentioned above try to enhance the image 

contrast using primarily tone-based image classification, which gives limited 

understanding. This study uses texture measures as a descriptor of the spatial relation 

of pixels. Several applications employ texture for extracting the required features. 

Zhang et al., 2008 and Alsmadi, 2020 attempted content-based image retrieval by 

combining the edge detection and properties of a co-occurrence matrix. Pradhan et 

al., 2014 demonstrated the extraction of flooded areas using a GLCM-based texture 

analysis based program over TerraSAR- X satellite image. Micheal and Vani, 2015 

employed texture features for automatic mountain detection using DTM data of lunar 
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images. Doycheva et al., 2019 used texture features for evaluating road distress 

conditions in real-time. Sudha and Aji, 2019 used GLCM texture features as the 

descriptors of features for image retrieval in varied applications. Liu et al., 2020 

employed the local second-order entropy to characterize the variation in the 

grayscale. Winarno et al., 2021 applied edge detection with GLCM for fingerprint 

recognition even though the edges are predominant in such images. Here, the authors 

used edge detection for preprocessing. Feature extraction is based on the GLCM 

using measures like energy, contrast, homogeneity, and correlation to improve the 

results further. Singh et al., 2022 employed features of GLCM on Sentinel-2 imagery 

for the identification of avalanche debris areas. Kar and Banerjee,2022 used GLCM 

texture features to evaluate the intensity of tropical cyclones. 

This study used GLCM-based measures as a good descriptor of texture 

features. Haralick et al., 1973 proposed the GLCM-based concept of measuring 

texture by computing different texture measures. He introduced 14 features to 

represent the texture of an image. Subsequently, Conners and Harlow, 1980 

presented that out of 14 parameters, only five are good enough to describe texture.  

These parameters include Energy, homogeneity, entropy, correlation, and 

contrast. The following paragraphs provide details about the key measures used in 

the current study. 

1) Energy: This parameter which reflects the uniformity and represents 

the angular second moment computes the uniformity of texture. This measure 

considers the pixel pair repetitions and detects the disorders in textures. A constant or 

periodic form shows high values of energy. The following equation defines this 

measure: 

=
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       (7.4) 

where, p(i,j) is the probability value recorded for the co-occurrence of cell i,j of the 

GLCM matrix. 

2) Homogeneity: This statistic assumes larger values for the slight 

differences in the gray tone of pair elements and is more sensitive to near diagonal 

elements of the GLCM. It gives maximum value when all the image elements have 

same value. The following equation defines this measure: 
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3) Entropy: This statistic computes the complexity or disorderliness of 

the image. Complex texture typically has high entropy. The entropy is small for the 

image containing uniform texture whose GLCM elements have large values. The 

entropy correlates inversely with energy. The following equation defines this 

measure: 

)(log)( ,
,

2, ji
ji

ji ppEntropy −=

     (7.6) 

4) Correlation: It measures the linear dependency of gray level values in 

the GLCM matrix. It reflects the relation of the reference pixel with its neighbor. The 

following equation defines this measure: 
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where, μi, μj, σi, and σj are the means and standard deviations.  

5) Contrast: This statistic represents the spatial frequency of an image 

and gives the difference-moment of GLCM. In the contiguous set of pixels, it 

evaluates the quantum of local variations by considering the difference between the 

highest and the lowest values pixels. The following equation defines this measure: 
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GLCM contrast correlates inversely but strongly with homogeneity. 

Homogeneity decreases when the contrast increases while maintaining constant 

energy levels. This study presents the utility of all the above-computed texture 

measures over the track images. It computes these statistical measures and gives 

details for optimal selection reflecting maximum contrast. 

7.6 Data and Tools Used  

This study uses filters of suitable size representing different high-pass 

and edge enhancement filters and texture measures. It convolves them over the image 

to create the resulting filtered images. This study used GLCM-based measures to 

define the image texture. More levels imply higher accuracy but with increased 

computational cost. Clausi, 2002 provided details about the computational 

complexity using the GLCM method, which is proportional to O(G2). Suitable 

selection of displacement value in GLCM is a significant consideration as the large 

values result in missing the details of textural information (Gadkari, 2004). This 
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study uses a kernel of size 5 x 5, a quantization level of 32, and a horizontal offset of 

1 pixel to compute texture. It assigns the value to the center pixel of the filter, which 

then moves further to cover the whole image. This study used MATLAB and 

Sentinel Application Platform (SNAP) for further analysis. The google earth images 

of different resolutions, displaying track areas near Chandigarh given in Fig. 7.1a 

formed the basis for further study. 

 

Fig. 7.1 a) Multi-resolution images of tracks (Source: Google, Maxar Technologies). 

Result after convolving images b) using Sobel edge detection filter c) using second-

order Laplacian filter and d) using the high-pass filter. 
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7.7 Image Analysis and Results 

Several conventional techniques can assist detection of various features 

in the image. Since the idea here is to highlight the linear track features and enhance 

their contrast, the authors analyzed the impact of edge detection and high-pass filters. 

The convolution using the Sobel gradient and Laplacian filter resulted in images as 

shown in Fig. 7.1b and Fig. 7.1c respectively. As the track boundaries are delineable 

using a high-pass filter, its convolution resulted in the image in Fig. 7.1d. The Fig. 

also shows a comparative effect of these techniques on three different resolutions. As 

the tracks have differentiable texture from the surroundings, the texture analysis 

using GLCM revealed meaningful results. Fig. 7.2 shows the outcome of various 

statistical measures on images of different resolutions.  

   

Fig. 7.2 Result of GLCM texture analysis on the multi-resolution images a) Contrast 

Image b) Entropy Image c) Energy Image and d) Variance Image  



97  

The visual appearance of the results at different resolution images brings 

out the importance of texture as the resolution improves. The texture analysis is 

carried further on the even finer resolution images captured using ground-level 

cameras. The illustration in Fig. 7.3 displays the track impressions of the leading 

vehicle. The contribution of texture increases as one moves toward the finer level of 

resolution.  

 

Fig. 7.3 Field Image of vehicle tracks impressions of leading vehicle  

The Fig. 7.4 illustrates results of different contrast enhancement 

measures and texture analysis on the image of vehicle tracks, as observed in field 

running conditions. 
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Fig. 7.4 a) Images of Vehicle Track impressions as observed in vehicle running 

condition a) In Original Gray tone and Using b) High-Pass filter c) Laplacian Filter 

d) Sobel Edge detection filter and GLCM measures of e) Dissimilarity f) Contrast g) 

Entropy h) Correlation i) Mean filter 

These results exhibit the role of texture analysis for improved delineation 

of the vehicle tracks. The authors proposed a quantitative method of computing and 

comparing the track contrast here. This method considers the relative difference in 

contrast for on-track and off-track areas and computes the track index for arriving at 

the most optimal solution. 

7.8 Track Index-based Optimal Selection  

As illustrated in Fig. 7.5, the procedure comprises drawing a cross-

sectional profile across the tracks on the image. 
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Fig. 7.5 Location of pixels chosen for comparing the contrast of track areas with 

reference to its surroundings 

It selects the Pixels On-track (PT) and Pixels Off-track (POT) in the image 

for each enhancement measure separately. It considers the average value of pixels in 

each area to account for the local variation. The authors considered this aspect by 

choosing a rectangular zone of 11x100 pixels. The average value of the statistical 

measure (xi) is:  
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where, xi, i = [1:5] are the averaged statistical measure of areas around tracks. 

Here x1, x3, and x5 are the averaged values for pixels in off-track areas left to the left 

Track, in-between Tracks, and right to the right Track, respectively. Similarly, the 

values x2 and x4 are the averaged values for pixels on the left and right Track, 

respectively. 

If the focus is to highlight any single track, for instance, the Track by any 

two-wheeler, the computation for areas representing pixels on the Track is done for 

the points on one Track. Similarly, the mean value for the area representing Off-track 

makes the basis on the two zones surrounding the Track.   

Data normalization is an important consideration here for a better 

comparison of the two measures having different ranges of values. Here, 

normalization considers the minimum and maximum values of the pixel value range 

for various contrast enhancement measures. The following equation explains this 

computation process: 
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−
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where, Y is the normalized value of X data representing the contrast enhancement 

measure and Xmin and Xmax indicate the minimum and maximum values of its range. 

Here, the range in the numeric values of data gets normalized between 0 and 1.  

The comparison of measures also needs to consider the variance in data 

for both off-track and on-track zones. Therefore, it uses the mean value and standard 

deviation to compute the coefficient of variation defined as: 




=CV

 (7.12) 

where, CV is the coefficient of variation, and μ is the mean value of the Measure and 

σ is the standard deviation,. The lower the Coefficient of Variation, the better the 

reliability of the Measure, representing contrast based on normalized off-track and 

on-track pixel values. The Track Ratio (TR) for comparing the track contrast used 

here is:  
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T

P
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Since the CV value for each image representing different contrast measures will be 
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different, the equation used for computing the normalized Track Index (TI) here 

includes: 

CV

TR
TI =

 (7.14) 

Table 7.1 gives the comparative details of the normalized track index as evaluated 

using various image enhancement measures.  

Table 7.1 Computation of Track Index (TI) quantifying image contrast 

Computation of Track Index 

Contrast 

Measure 

Off_Track 

Mean 

On_Track 

Mean 

TrackRatio 

(TR) 

Off_Tr_ 

Sigma 

Coeff of 

Variation 

Track 

Index(TI) 

Correlation 0.858 0.793 0.065 0.192 0.224 29.06 

Dissimilarity 0.480 0.551 0.071 0.372 0.775 9.11 

Contrast 0.291 0.379 0.088 0.294 1.010 8.72 

Gray 0.681 0.632 0.049 0.429 0.630 7.83 

Entropy 0.803 0.821 0.018 0.272 0.338 5.34 

GLCM 

Mean 

0.541 0.514 0.027 0.316 0.585 4.65 

High Pass 

Filter 

0.328 0.379 0.051 0.498 1.519 3.35 

GLCM 

Homogeneity 

0.243 0.219 0.024 0.311 1.281 1.86 

SobelN 0.452 0.459 0.007 0.433 0.956 0.70 

Laplacian 0.515 0.514 0.001 0.512 0.994 0.09 

GLCM 

Variance 

0.362 0.362 0.000 0.312 0.861 0.02 
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7.9 Discussion 

Table 7.1 here presents the duly sorted values of the normalized track 

index. The same suggests that one can achieve better contrast than the original Gray 

Image using one or the other texture images of Contrast, Dissimilarity, Correlation, 

etc. The track index value for the original gray image increased from 7.83% to 

29.06%. The comparative contrast of the Images shown in Fig. 7.4 confirms this 

view. It is noticeable that for testing this approach, the areas chosen in off-track and 

On-rack zones are of size 100x11 pixels. By taking larger areas, the conclusions can 

improve even further.  

The observation reveals that the GLCM texture-based technique 

effectively addresses the contrast enhancement issue. It also supports the view 

expressed by Mohanaiah et al., 2022 that GLCM-based measures give satisfying 

results in a large domain of applications. The track contrast enhancement achieved 

here verifies this point. The studies of the rut following robotic vehicles like the ones 

presented by Ordonez et al., 2011 and Chowdhury et al., 2017 can have improved 

decision-making about the track areas using the proposed technique.   

Some related aspects are notable here. If a vehicle moves in a zig-zag 

fashion or during curves, Liu et al., 2009 reported in the study of movement on 

curves that the width of the track portion increases. The localization of the track 

zones is an important consideration here. The position of the camera capturing pixels 

data focus around the mid-portion of track zones may not give correct results always. 

The other way out could be to study the improved localization of the tracks by 

employing a deep-learning model. Already attempts are there by various researchers 

like Stewart et al., 2020 to identify the road network using CNN. These techniques 

can improvise the localization aspects of these tracks. The focus here is to highlight 

the relative contrast of the track zones w.r.t. the surroundings by quantified 

comparison.  

As per the surrounding terrain, the Measure that shows better contrast 

could vary. There are some other aspects too which need consideration. For instance, 

the area around the tracks nearer to the vehicle gets captured with better resolution 

and usually has more variance of pixel values. However, the distant features around 

the tracks appear smooth to the image captured by the camera. These points may 

reveal different results at different sections along the track in the same image. This 

process considers various image enhancement measures, computes the track index in 

each case, compares, and displays the image with maximum contrast. The technique 

given in this study considers the effect of generating maximum track contrast and is 

thus adaptive to the changes in the surrounding terrain.  

Further, the index-based computation at different sections along the track 
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shall vary as the vehicle moves. With this, the contrast-based ordered set of images 

shall also alter. One can apply the probabilistic approach to get the most optimal 

contrast image set. This aspect, however, demands more computational power from 

the onboard system. Alternatively, the contrast measure based on a suitably selected 

section can help to achieve reasonably good image ordering. A better measure of 

track contrast could also emerge by considering such additional inputs. This aspect, 

however, needs further study.  

The images convolved using high-pass filters and edge detection like the 

one by Narendra and Hareesha, 2011 help highlight the boundaries of track areas 

w.r.t. its surroundings. However, there could also be many high-frequency features in 

the area that can bar distinguishing exactly the track areas. The role of texture in 

getting increased track contrast w.r.t. its surrounding becomes noticeable both 

visually and quantitatively. The GLCM texture-based results presented here support 

the views of Alsmadi, 2020 that these measures enrich the content for image 

retrieval.   

An onboard decision-making tool can usefully employ the process given 

in this study for increased track contrast in both manual and autonomous navigation 

modes. It may extend as a vital support for the rut following vehicles, particularly 

those which operate in the low contrast areas. This study can help many industries 

like defence, autonomous ground vehicles, robotic vehicles, night safari, etc. 

7.10 Conclusion 

The contrast enhancement study presented here leads to drawing the 

following key conclusions: 

The role of texture assumes importance and can reveal valuable 

information as the resolution increases. When the features of interest are of smaller 

dimensions, the texture analysis may not add much value in delineating the features. 

One can achieve better contrast than the original Gray Image using one or the other 

texture images of Contrast, Dissimilarity, Correlation, etc.  

The track index value for the original gray image increased from 7.83% 

to 29.06%. The comparative contrast of the Images also confirms this view. It is 

noticeable that for testing this approach, the areas chosen in off-track and On-rack 

zones are of size 100x11 pixels. By taking larger areas, the conclusions can improve 

even further. In the current study, the texture analysis of the image employs a kernel 

of size 5x5, horizontal displacement of 1 pixel, and 32 quantization levels. 

Considering other options of these associated parameters can give further insight into 

the dependence upon these parameters. 
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1. The statistical measures of GLCM-based texture analysis form a 

strong base for understanding the influence of texture in contrast enhancement. The 

suitable texture measure for maximizing the contrast could vary with the 

surrounding. The proposed track index-based technique can quantitatively bring out 

the variation in track contrast levels w.r.t. its surroundings. The proposed approach 

that brings out the image with optimal track contrast can thus prove vital for the on-

board decision-making. 

7.11 Scope for Further Studies 

The current study used a kernel of fixed size 5x5, horizontal 

displacement of 1 pixel, and 32 quantization levels for the texture analysis of the 

image. Considering other options of these associated parameters can give further 

insight into the dependence upon these parameters. 

The area around the tracks nearer to the vehicle gets captured with better 

resolution, while the distant features appear smooth in the image captured by the 

camera. This aspect needs further study for better insight and an improved decision 

on-board vehicle. Moreover, the track index-based study presented here considered 

images in the optical range. However, the comparative analysis of varied input 

source data could reveal some interesting results. 

The proposed technique may also find application in areas like the 

detection of wake created by ocean-going vehicles. A wake, that causes instability to 

the vehicles operating in its surrounding can last long and impact other distant 

vehicles even. Depending upon the vehicle configuration, its speed, etc., the extent 

and time of wake may vary. A study on the detection of wakes using suitable sensors 

and various image analysis techniques could give better insight. The proposed track 

index that comparatively selects the images also seems to have good potential in 

detecting the most optimal image highlighting the wake. 
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CHAPTER - 8 

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

_________________________________________________________________________ 

The important conclusions drawn from this research work have been presented in this 

chapter. The future aspects of the current study and its social impact have also been 

presented in detail. 

The research work as outlined in preceding chapters has led to useful 

conclusions. The summary of work undertaken in this research, the conclusions 

drawn, the future scope and its social impact are given in following sections:   

8.1 Summary of Work 

Today a number of industrial applications need information about the 

potential of any unpaved terrain to support movement of vehicles. Today, it is a 

subject matter of study for many researchers in agricultural field, forestry, 

automobile industry, robotics, planetary explorations and defence among others. The 

movement of vehicles on any terrain is governed by surface topographical features 

like slopes, ruggedness, unevenness, landuse etc. and the underlying soil condition. 

Acquiring the spatial and temporal variation of soil condition by conventional means 

is laborious and cumbersome task. The alternative means have therefore been 

explored by various researchers. One of the most effective ways employed for 

anlysing the prevalent soil condition is by monitoring the rut formed by vehicular 

movement on different soils. Many soil parameters like soil condition, its gradation, 

moisture content, soil strength etc. impact the shape of rut. Vehicle loading 

conditions like tyre size, vehicle weight, its speed, curvatures, and repeated passes 

also influence their shapes. Although many parametric studies are conducted to 

characterize and model the rut shapes based on different influencing parameters yet 

several aspects are still to be studied.  

One aspect of the issues pertains to modelling and evaluation of rut 

depth. Most of the literature focuses on evaluating the rut depth. Certain issues are 

however typical in different scenarios which need to be addressed. The rut in desertic 

terrain has been observed to get filled by the sand pouring from sides. Similarly, the 

rut profile has been observed to become eccentric on the curves. This aspect 

demanded for mapping the shapes of rut profiles in different terrain-vehicle running 

conditions, the same has been studied in this research work. The tools for 

measurement of rut shapes too have been advanced from manual rut profiler to the 

advanced photogrammetric, Ultrasonic and laser profiler. Each of these tools has its 
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own merits and the suitability depends upon the purpose of study. Advanced laser-

based systems are commonly used for mapping the rut profiles. However, the data 

acquired by these systems needs heavy resources for its storage, retrieval and 

analysis. The attempts for optimal storage and efficient solutions are therefore the 

need of time and have been addressed in this study.  

It is also observed that during the rainy seasons and floods, the low-lying 

pockets, agricultural fields etc. are prone to water logging. In such a scenario, the 

trafficability potential of these unpaved areas gets impacted as per the condition of 

the soil. The identification of safe and trafficable zones considering the maximum 

possible soil distress by vehicular movement is another study area for bringing 

simpler decisions about movement. This aspect has been considered for detailed 

investigation of soil distress conditions in the field under varied dynamic conditions.  

Another aspect of rutting research pertains to addressing the issues in 

wider spatial domain. While evolving suitable spatial models governing trafficability 

potential is an important aspect, the validation of interpreted information is another 

important area needing attention. Here, identification of track impressions that look 

like edges in coarse resolution images can provide useful information about 

identifying the trafficable zones. Identifying the tracks manually being tedious, 

alternate means need to be explored. Moreover, the rut tracks formed by the leading 

vehicle is said to provide useful information for the rut following robotic vehicles, 

defence, and forestry. The delineation of track impressions form surrounding terrain 

and visibility conditions is an important consideration needing attention. These 

aspects have been addressed in this research work. 

Another important aspect that needs study for many applications pertains 

to delineation of rut tracks from the images. In the rut-following robotic vehicles 

employed for operational needs, the vehicles are preferred to follow the beaten tracks 

of the leading vehicle. This is considered as safe and guiding for the vehicles 

following it. During the operations in defence too, the movement decisions also 

consider the track impressions of the leading vehicle for guidance. These track 

impressions passing through varied kinds of surroundings pose poor contrast for their 

identification using on-board cameras. The decisions based on images acquired using 

satellite or aerial platform too face the similar problem. The effective means are 

therefore needed for improving the contrast in varied surroundings.  

In this research work, rut is investigated from different perspectives. One 

aspect focuses on the experimental studies of rut profiles in different fields while the 

other one tries to address the issue of delineation of rut tracks by collating various 

image processing techniques. In the field based experimental studies, various shapes 

of rut profiles on different types of soil and vehicle running conditions are 

investigated. The most common rut shapes observed in field are identified and 

grouped in different categories. Attempt is then made to devise better ways for 



110  

optimal storage of most common rut profiles. In another experimental study, soil 

distress caused by movement of multiple vehicles is investigated for identifying and 

mapping the unpaved areas suitable for planning emergency support. Another part of 

study focuses on visual enhancement and detection of rut-based track impressions. 

Here various edge detection algorithms and texture analysis techniques are employed 

for better delineation of rut tracks. The conclusions drawn from these studies are 

given here. 

8.2 Conclusions Drawn from Rut Studies 

The conclusions drawn from the study of rut are enumerated below:  

1. Vehicle immobilization condition is reported to be there when the rut 

depth is larger than the vehicle clearance height. However, the shape of rut is not 

uniform in all cases. The rut profile in loose sandy dunal soils of deserts takes a 

conical shape as the sand from the edges pours in as the rut profile. When the vehicle 

turns on curves, the rut shape becomes asymmetric due to lateral loads. Therefore, 

computing the profile of rut shape is seen as better measure than the rut depth.  

2. Various tools are evolved that can be used for mapping the rut 

profiles. Manual profilometer is used to collect data for limited point locations 

however, it is not suitable for continuous measurements to monitor changes in terrain 

properties. In such cases, advanced systems like photogrammetric, ultrasonic and 

laser based scanners etc. are used.  

3. Advanced laser-based systems are commonly used for mapping the 

rut profiles. However, the point cloud data generated by these systems demands for 

much higher memory for its storage and further analysis. The study revealed that a 

lot of data storage can be avoided by defining the rut profile mathematically with 

high accuracy using optimal number of parameters for efficient vehicular mobility 

decisions.  

4. Various mathematical formulations are analyzed, and non-linear 

regression analysis is attempted on the commonly observed rut shapes. The proposed 

modified bell-shaped function could fetch compression of over 80% on straight 

patches and 71% on turnings while the accuracy level is maintained better than 99% 

in both cases. This also indicates that the proposal mathematical models to represent 

the rut shapes are well suited. Although complex scenarios could be dealt with 

separately, an optimal representation of the most common rut shapes can aid 

significant data saving for development of an efficient decision support system.  

5. The road communication network is the lifeline for any area. The 
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flooding like situation can arise in plains, the foothills or any place in mountains 

wherein the excessive rainfall can disrupt the conventional routes. In such situations, 

in order to access the areas for the essential services, the unpaved off-road routes are 

sometimes followed. The soil conditions of such unpaved areas are however not 

always convenient for movement of vehicles. Under such scenarios, the use of 

information about maximum soil distress level of the area can be used to predict the 

suitability of terrain for different emergency scenarios.  

6. In the current research work, rut-based investigation is carried out for 

ascertaining the maximum soil distress after multiple passes of vehicles on same 

track under different moisture levels. The rut depth is seen to increase as the soil 

moisture increased and it reached maximum when flooded. However, if the flooding 

continues for days in the depressions or low-lying areas, it is indicative of 

impermeable and compact strata below certain level. The effect of moisture on 

maximum distress level remained similar.  

7. The water logged condition continued for days in this area reflects a 

string and impermeable strata below top depth. The effect of tillage practices is there 

but upto limited depth.  

8. The outcome of this rut study can be the basis for creating maps with 

maximum soil distress level for planning emergency movement in the given area. As 

the saturation level in the area is the major contributing factor, the pockets could be 

identified which have relatively higher elevation in the area. The tracks prone to less 

moisture passing through such areas may be pre-marked and if possible pre-

compacted to allow safe movement in the area during emergencies. The maps 

indicating maximum soil distress level in any area could provide basis for sustainable 

development of any social setup.  

9. There are many applications where rut marks on soil play an 

important role. The beaten tracks of leading vehicles, being safe and suitable for 

guiding, are followed at times by the rut following robotic vehicles and operations in 

defence. These days, visual-analytics-guided systems are increasingly being used in 

many such manned and autonomous ground vehicles.  

10. In the images of terrain containing rut impressions of vehicles, the 

identification of rut and the track passing through varied kinds of surroundings is a 

big challenge. The changed illumination conditions, cluttered backgrounds, wetness 

and so forth bring about great challenges in the identification of tracks. In order to 

make these rut following operations sustainable, it is important to evolve measures 

that can highlight better the vehicle track impressions in a given situation. In this 

research work, various image processing techniques that could be suitably applied 

here are investigated.  
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11. The path formed by vehicle rut looks like an edge on course 

resolution images. Over a period of time, a number of edge detection algorithms are 

developed, each of which has its own advantage. It is reported that the problem of 

edge finding has no universally accepted technique and this is rather the motivation 

for the continued research to improve the methods of edge detection. Attempt is 

therefore made here to study the relevance of different edge detection algorithms for 

identification of the track impressions in the images.  

12. The selection of suitable edge detection algorithm needs to be done 

carefully. In this research work, various edge detection algorithms like Sobel 

operator, Prewitt operator, Poberts Edges, Zero-cross, Laplacian of Gaussian (LoG), 

Hardy cross and Canny methods are considered for comparative analysis. The 

comparison of various edge detection algorithms led to inference that the Canny 

Edge detection algorithm gives relatively better and acceptable results for linear track 

detection.  

13. Another aspect that is important in the study of rut impressions in the 

images is the relative size of the rut. The rut impressions forming tracks and 

appearing like edges in the coarse-resolution images take the shape of elongated 

areas in fine-resolution images. The surrounding terrain features play a big role in 

highlighting track impressions. The conventional tone based image processing 

techniques can highlight these tracks to a limited extent. The role of texture becomes 

important here as it can distinguish the features by considering a group of pixels 

having distinguishing features.  

14. There are various techniques of texture estimation; however, the 

GLCM-based approach that is seen to give very good results in a variety of 

applications is used in the study. Here, the relationship between different pixels of 

the image is characterized by using various statistical measures such as contrast, 

energy, entropy, homogeneity, etc. Depending upon the terrain surrounding these 

tracks, the suitable measure for enhancement of tracks also varies.  

15. In this study, various image processing techniques that can also be 

employed to enhance the track contrast are also used for comparative analysis. 

Considering various measures possible for enhancement of track contrast, an attempt 

is made to quantify the effectiveness in a given surrounding. A track index (TI) based 

quantitative approach is proposed to compare the images obtained after different 

enhancement measures and sort them. A track-index-based technique is proposed to 

sort various images as per their effectiveness in increasing the track contrast. 

Different forms of track indices are proposed and compared. The proposed track 

index is seen as effective in sorting 88.8% of contrast images correctly. The proposed 

technique of creating and sorting images based on the contrast level is seen as a 

useful tool for improved fidelity in many difficult situations for making the off-road 

operations sustainable.  
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16. An adaptive technique is also evolved that can select the most 

effective rut enhancement measure in a given surrounding. In the given case, the 

track index value for the original gray image increased from 7.83% to 29.06%. The 

comparative contrast of the Images also confirms this view. It is noticeable that for 

testing this approach, the areas chosen in off-track and On-rack zones are of size 

100x11 pixels. By taking larger areas, the conclusions can improve even further. 

Further study is however needed to understand the influence of varying topography, 

the size of the kernel, quantization level etc. All these aspects could lead to further 

improvement in the proposed track index.  

8.3 Future Research Trajectories 

Based on the research work carried out in this rut study, the following 

future research trajectories are suggested: 

1. In current studies, research focused on defining the most common rut 

shapes mathematically optimally for efficient vehicular mobility decisions. An 

interesting analysis in the future would be to explore complex cases too. For 

instance, one may encounter a class wherein two separate rut profiles are blended to 

create a single rut class or cross each other. Here some additional mathematical 

representations may make the profile representation more generic and can address 

some more rut classes. In future activities, one can also explore the machine learning 

approach to train the system to auto detect the rut field boundaries for further 

optimization of data. It can also make predictive analysis about various terrain 

properties and classes in different field running conditions. 

2. The maps indicating maximum soil distress level in any area could 

provide basis for sustainable development of any social setup by the Policy makers. 

Among some other benefits, the cultivation needs can be linked with rut depth 

attained by movement of given vehicle in the area. Suitable machinery can be 

selected to avoid excessive rutting on soil to avoid damage to roots of saplings. Rut 

depth formed by movement of vehicles on subgrade soils under different dynamic 

conditions can also provide valuable inputs for pavement design in deciding surface 

course layers. 

3. The studies are needed for further improvement of edges detection for 

delineation of tracks in the images. A number of possible alternates can be explored 

to improve the edge detection algorithm further. The dilated filters could be one such 

alternative and the combination of two filters like Smoothed Sobel and Laplacian 

could be another approach. Using higher degree of derivatives can also be employed 

usefully. One can consider combining the benefits of using Canny-edge algorithm 

with other methods like higher order derivatives or dilated filters etc. for improved 

accuracy of edge detection. The machine learning techniques could also be an 
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interesting aspect to explore it further. 

4. The proposed track index based computation is seen as very effective 

in bringing out the highest contrast using different techniques of image processing 

and texture analysis. However, with the movement of vehicle, the terrain surrounding 

shall change, and with this, the contrast-based ordered set of images shall also alter. 

Here, in future studies, one can apply the probabilistic approach to get the most 

optimal contrast image set. This will however demand for more computational power 

from the onboard system and thus needs further study. The machine learning 

approach could also be usefully employed here. 

5. An adaptive technique for optimal track contrast in a given 

surrounding is also evolved in this study. Further study is however needed to 

understand the influence of varying topography, the size of the kernel, quantization 

level etc. All these aspects could lead to further improvement in the proposed track 

index. However, the proposed new methodology of using track index for enhancing 

the track contrast optimally in a given surrounding could be vital for the on-board 

vehicular mobility systems.  

The research on the above points will bring state of the art solutions for 

the rut based systems aimed to interpret the ground response to movement of 

vehicles on any unpaved terrain. 

8.4 Social Impact and Contributions to Knowledge 

The following paragraphs bring out the social impact of the current 

research work and the contribution to the existing knowledge in this field:  

1. The analysis of trafficability potential of any unpaved area is a 

common requirement for varied fields. The vehicles in industries like forestry, 

agriculture, and in defence frequently use the unpaved terrain for movement. Further, 

in many operations like firefighting, emergency response during peak traffic, 

alternate unpaved tracks are followed. The rut profile is seen as better means to 

reflect better the impact of vehicle running conditions. The advanced laser based 

tools employed for mapping these profiles need huge storage for its point cloud data. 

The suggested mathematical models to optimise the storage of data for these profiles 

are to make the on-board mobility evaluation systems more efficient.  

2. In the current research work, rut based investigation is carried out for 

ascertaining the maximum soil distress by multiple passes of vehicles on same track 

under different moisture levels. The outcome of this rut study can be the basis for 

creating maps with maximum soil distress level for planning emergency movement 
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in the given area. As the saturation level in the area is the major contributing factor, 

the pockets could be identified which have relatively higher elevation in the area. 

The tracks prone to less moisture passing through such areas may be pre-marked and 

if possible pre-compacted to allow safe movement in the area during emergencies. 

The maps indicating maximum soil distress level in any area could provide basis for 

sustainable development of any social setup. There are other societal benefits too of 

this study.  

3. In the agriculture field, the rut study as presented here can provide 

many benefits. The agricultural industry needs the information about the prevalent 

state of compaction level, moisture level and tillage need. The information about rut 

depth can provide useful insight of the prevalent terrain condition. Rut is reflective of 

cultivation state and moisture levels in the field. The need for further irrigation may 

be directly correlated by observing the rut formed by vehicular movement.  

4. Higher levels of rut depth by vehicular movement impacts the roots 

adversely. So the information about rut depth can be useful in restricting the 

movement to protect the roots. Excessive rut in any agricultural field impacts 

adversely the movement of farm machinery and payload levels of vehicles carrying 

agriculture produce/crop.  

5. Higher levels of rut depth in any field indicate more the requirement 

of power for the forwarder vehicles Studies have shown that rutted areas can 

experience significant yield reductions.   

6. The cultivation needs can be linked with rut depth attained by 

movement of given vehicle in the area. Suitable machinery can be selected to avoid 

excessive rutting on soil to avoid damage to roots of saplings. Rut depth formed by 

movement of vehicles on subgrade soils under different dynamic conditions can also 

provide valuable inputs for pavement design in deciding surface course layers. 

7. The edge detection study for delineation of track like features has 

many advantages. It helps in delineation of rut tracks formed on unpaved terrain by 

vehicular movement. These tracks provide wealth of information about terrain 

strength, ground distress level, and preferred routes for futuristic developments. The 

tracks identification from the images acquired by satellite and aerial platform can 

also be useful for surveillance purpose by extracting information about any 

movements in the area.  

8. The proposed visual analytics and track-index-based approach leading 

to improved inference of track features could augment the decision-making process 

for improved autonomous decisions in low-contrast areas. The study can assist in 

making intelligent decisions leading to the tracks following off-road operations 
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sustainable by improving decisions in low-contrast areas. This meets the 

requirements of both manual and autonomous navigation.  

9. To select the most optimal contrast enhancement measure in a given 

scenario, authors proposed a quantified measure of track index. An onboard decision-

making tool can usefully employ the proposed track-based approach for increased 

track contrast in both manual and autonomous operations. This study can help many 

industries like defence, autonomous ground vehicles, robotic vehicles, night safari, 

etc. where the track impressions of previous vehicles extend a vital support, 

particularly in the low contrast areas. 

The benefits of the presented research work on rut study both at 

experimental and image processing level as above bring out the utility of the 

presented research work. On one hand the outcome paves way for making on-board 

mobility decisions more efficient while on the other hand, it sets the base for better 

fidelity by improved delineation of rut tracks. The soil distress level mapping is also 

seen as important from sustainable developments in any area. 
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