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Abstract

Univalent Function Theory (UFT) is a fascinating branch of Complex Analysis. The ele-

gance of UFT lies in its ability to derive significant insights from relatively simple geometric

considerations. Owing to its strong focus on geometric interpretations, UFT constitutes

a fundamental part of Geometric Function Theory (GFT), where such geometric prop-

erties play a central and significant role. The thesis provides a comprehensive study of

subclasses of analytic functions, offering sharp coefficient estimates, radius constants,

and inclusion relations across various classes. It introduces novel techniques, such as

convolution-defined results, differential subordinations, and new Ma-Minda subclasses,

while generalizing and extending known results in UFT. Chapter 2 introduces a unified

class of analytic functions, providing sharp estimates for initial coefficients and the Fekete-

Szegö functional, as well as results on convolution-defined classes and second order

Hankel determinants for certain close-to-convex functions. Chapter 3 explores univalent

as well as non-univalent analytic functions associated with a parabolic region, deriving

radius constants (univalence, starlikeness) and sufficient conditions, supported by dia-

grams. In Chapter 4, sharp radius problems for the class S ∗(β ) and a product function

involving tilted Carathéodory functions are determined, obtaining sharp radius constants

and generalizing earlier known results. Chapter 5 introduces a new Ma-Minda subclass

S ∗
ρ , associated with the hyperbolic cosine function cosh

√
z, establishing inclusion rela-

tions and sharp radius results in context of various analytic classes. Finally, Chapter 6

uses Briot-Bouquet differential subordination and admissibility conditions to derive suffi-

cient conditions for functions in the class S ∗
ρ . Also applications are provided, supported

by diagrams. This study offers significant insights into analytic function subclasses, ex-

tending known results and introducing novel techniques in UFT.
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Chapter 1

Introduction

This chapter gives a concise summary over the theory of Univalent functions, highlighting

foundational techniques and key developments in the field. It begins by introducing basic

terminologies and concepts, along with an exploration of fundamental aspects of univalent

function theory. It covers definitions, concepts and results required for this study, and

concludes with a brief synopsis of the thesis.

1
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1.1 Introduction and Preliminaries

Complex analysis encompasses the geometric theory of functions, with a focus on an-

alytic functions defined by their geometric properties. The theory of univalent functions

primarily addresses the geometric aspects of these functions, placing it within the frame-

work of Geometric Function Theory (GFT). The present study concentrates on exploring

various subclasses of univalent functions, investigating their distinct geometric behaviors

and properties, which play a crucial role in advancing the field. The theory of Univa-

lent functions is an old subject and an active field of research. GFT finds applications

in fluid dynamics, engineering, and digital image processing, where conformal mappings

help solve boundary value problems and simulate physical phenomena, bridging theo-

retical insights with practical applications. It is also helpful in studying the time evolution

of the free boundary of a viscous fluid in Hele-Shaw cells with either finite or infinite

boundaries [169]. The origin of the theory of univalent functions traces back to a seminal

treatise by Koebe [72]. Infact in 1914, Gronwall [49] gave proof of the Area theorem,

which is fundamental to the theory of univalent functions. In 1916, Bieberbach [44] pro-

posed a conjecture that remained an active area of research for over 69 years, inspiring

numerous related problems. The theory of univalent functions has an extensive and vast

variety of literature, which can be seen in books by Duren [33], Goodman [46, 47], Pom-

merenke [127], Graham and Kohr [48], Nehari [117], Hallenbeck and MacGregor [50],

Thomas et al. [167], Jenkins [58] and reviewed articles of Hayman [51] and Duren [32].

The books on complex analysis authored by Conway [28] and Silverman [158] covers

some topics on univalent function theory as well.

A single valued function f (z) which is analytic except for atmost one simple pole is said

to be univalent in a domain D if it is one-to-one in D , or equivalently if f (z1) = f (z2), then

z1 = z2, for z1,z2 ∈ D . The linear function az+b (with a ̸= 0) is the only univalent function in

the entire complex plane C. While an analytic univalent function requires f ′(z) ̸= 0, which

alone does not guarantee univalence; for instance, ebz, where b ̸= 0 has a non-vanishing

derivative, but not univalent in C, and univalent only in the disc |z| < π/|b|. Furthermore,

an analytic function is locally univalent in a neighborhood of a point in D if and only if its

derivative does not vanish at that point, as seen with ebz in C.

In 1851, Riemann enunciated the pivotal Riemann Mapping Theorem, which asserts

that every proper simply connected domain can be conformally mapped onto the open

unit disc D := {z : |z|< 1}. In view of the Riemann Mapping Theorem, the study of univalent

functions is restricted to the open unit disc D.

Let H represent the class of all analytic functions defined on D, and H [a,n] ⊂ H
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denote the class of analytic functions f (z) with a Taylor series expansion of the form

f (z) = a+ anzn + an+1zn+1 + · · · , where n is a positive integer and a ∈ C. Assume H0 :=

H [0,1] and H1 := H [1,1]. Additionally, let An ⊂ H denote the class of all functions

whose Taylor series is given by f (z) = z+ an+1zn+1 + an+2zn+2 + · · · . Let A denote the

class of all normalized analytic functions defined on D consisting of functions f (z), such

that f (0) = 0 and f ′(0) = 1, given by

f (z) = z+
∞

∑
n=2

anzn = z+a2z2 +a3z3 + · · · . (1.1.1)

Assume A := A1. Note that the importance of normalization is depicted by the existence

of solution to the coefficient related problems and its relationship to compactness of a

given function space, see [46, Chapter 4]. Let S ⊂ A represent the class of all univalent

functions. Examples in S includes functions such as, z/(1− z2), which maps D onto

the region C \ {w : | Imw| ≥ 1/2} and the Koebe function K(z) = z/(1− z)2, with image

domain as C\{w : Rew ≤−1/4}. The renowned Bieberbach’s Theorem, a foundation for

Bieberbach’s Conjecture, asserts that if f ∈ S , then |a2| ≤ 2, equality occurs if and only if f

is some rotation of the Koebe function. Infact an important consequence of the Bieberbach’s

inequality |a2| ≤ 2 is the Koebe distortion theorem, which provides sharp upper and lower

bounds for | f ′(z)|, where f ∈ S , stating that: for each f ∈ S ,

1− r
(1+ r)3 ≤

∣∣ f ′(z)∣∣≤ 1+ r
(1− r)3 , |z|= r < 1.

For each z ∈ D, z ̸= 0, equality occurs if and only if f is a suitable rotation of the Koebe function.

Analytic functions defined on D are categorized into various classes and subclasses

based on certain geometries of the image domain. In the following section, we highlight

several important classes that are relevant in this context.

1.2 Univalent Subfamilies of A

Between the formulation of Bieberbach’s conjecture in 1916 and its eventual proof in

1985, researchers identified and defined various classes of functions using specific ge-

ometrical conditions. These served as a tool to approach and analyze the conjecture

systematically over the decades. Some of the notable classes studied during that time

includes the class of starlike functions, convex functions and close-to-convex functions.

Various subclasses of S are defined by natural geometric conditions. Chief subclasses

of S are the classes of starlike and convex functions.
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Classes of Starlike and Convex functions

A domain is said to be starlike with respect to a point w0 if every point of domain is

visible from w0. If every point is visible from each point of a domain, then such a domain is

called convex domain. A function f ∈S is said to be starlike if and only if Rez f ′(z)/ f (z)> 0

and convex if and only if Re(1+ z f ′′(z)/ f ′(z))> 0, the corresponding classes are denoted

by S ∗ and C respectively. Let P denote the Carathéodory class, consisting of functions

p(z) satisfying Re p(z) > 0 and p(0) = 1. Thus f ∈ S ∗ if and only if z f ′(z)/ f (z) ∈ P and

f ∈ C if and only if 1+ z f ′′(z)/ f ′(z) ∈ P. In 1915, Alexander [3] established a two way

bridge between the classes S ∗ and C , by stating: a function f ∈ C if and only if z f ′ ∈ S ∗.

The concept of subordination helps in comparing and analyzing the geometric properties

of analytic functions, by providing insights into their behaviour and relationships. Subor-

dination, first introduced by Lindelöf [94] in 1909, was later formalized and expanded

by Littlewood [95, 96] and Rogosinski [143, 144]. Their work established a foundational

framework for analyzing relationships between analytic functions, making subordination

a pivotal concept in GFT.

Definition 1.2.1. Let f and g be analytic functions in D, then f is said to be subordinate (≺) to g

if there exists a Schwarz function ω(z) with |ω(z)|< 1 and ω(0) = 0 such that f (z) = g(ω(z)). In

case if g is univalent, then

f ≺ g ⇔ f (0) = g(0) and f (D)⊂ g(D).

In 1992, Ma and Minda [98] introduced a more generalized class of starlike and convex

functions, unifying various subclasses of starlike and convex functions, respectively, given

by

S ∗(φ) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ φ(z)
}

(1.2.2)

and

C (φ) :=
{

f ∈ A : 1+
z f ′′(z)
f ′(z)

≺ φ(z)
}
,

where φ(z) is an analytic function and possesses certain geometrical properties, listed

below:
φ is starlike with respect to φ(0) = 1,

φ is univalent in D,

φ is symmetric about the real-axis ,

φ ∈ P and φ ′(0)> 0.


(1.2.3)

For different choice of φ(z), the class S ∗(φ) and C (φ) reduce to various subclasses of S ∗

and C , respectively. Additionally, we also mention some important subclasses of S ∗ and
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C which are studied on various aspects in our subsequent chapters as well. For φ(z) =

(1+Az)/(1+Bz) =: φA,B(z), where −1 ≤ B < A ≤ 1, we get the class of Janowski starlike

and Janowski convex functions, introduced by Janwoski [55] and denoted by S ∗[A,B] :=

S ∗((1+Az)/(1+Bz)) and C [A,B] := C ((1+Az)/(1+Bz)), respectively. Especially, if A =

1−2β (0 ≤ β < 1) and B =−1, S ∗[A,B] reduces to the class of starlike functions of order

β , introduced by Robertson [140], defined as

S ∗(β ) := S ∗
(

1+(1−2β )z
1− z

)
=

{
f ∈ A : Re

z f ′(z)
f (z)

> β , 0 ≤ β < 1
}
, (1.2.4)

and C (β ) := C ((1+(1− 2β )z)/(1− z)) represents the class of convex functions of order

β (0 ≤ β < 1). The class S S ∗(β ) introduced by Stankiewicz [163], can be obtained

when φ(z) = ((1+ z)/(1− z))β , known as the class of strongly starlike functions of order β

(0 < β ≤ 1), where each f ∈ A is determined by the condition∣∣∣∣arg
(

z f ′(z)
f (z)

)∣∣∣∣< βπ

2
, z ∈ D.

Further another interesting class introduced independently by Ma-Minda [99] and Røn-

ning [147], involves a parabolic function representing the region

Ωp := {w ∈ C : Rew > |w−1|},

defined as

S ∗
P :=

{
f ∈ A :

z f ′(z)
f (z)

≺ φP(z) := 1+
2

π2

(
log
(

1+
√

z
1−√

z

))2
}
, (1.2.5)

where branch of
√

z is chosen such that Im
√

z ≥ 0. Table 1.1 enlists several notable sub-

classes of S ∗ obtained for specific choices of φ(z).

Other prominent classes of univalent functions includes the class of close-to-convex

functions. In 1952, Kaplan [66] introduced the class of close-to-convex functions, denoted

by K . A function f ∈ A lies in K if there exists a starlike function φ ∈ S ∗ and a real

number λ ∈ (−π/2,π/2) such that

Re
(

e−iλ z f ′(z)
φ(z)

)
> 0, z ∈ D. (1.2.6)

Geometrically, a function f (z) is Close-to-Convex if and only if Cr := f (|ξ | = r), where

0 < r < 1, has no large hairpin turns, i.e. no sections of the curve f (Cr) in which tangent

vector turns backward through an angle greater than or equal to π.

The problems addressed in (GFT) predominantly rely on subordination techniques. Key
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Table 1.1: Special subclasses of Ma-Minda starlike functions for specific choices of φ(z)

Class S ∗(φ) φ(z) φ(D) References

S ∗
e φe(z) := ez Ωe [106] Mendiratta and Nagpal

S ∗
℘ φ℘(z) := 1+ zez(z) Ω℘ [79] Kumar and Kamaljeet

S ∗
L φL(z) :=

√
1+ z ΩL [159] Sokół and Stankiewicz

S ∗
sin φsin(z) := 1+ sinz Ωsin [23] Cho et al.

S ∗
SG φSG(z) := 2/(1+ e−z) ΩSG [39] Goel and Kumar

S ∗
sinh φsinh(z) := 1+ sinh−1 z Ωsinh [11] Arora and Kumar

S ∗
% φ%(z) := z+

√
1+ z2 Ω% [133] Raina and Sokół

S ∗
Ne

φNe(z) := 1+ z− z3/3 ΩNe [173] Wani and Swaminathan

S ∗
c φc(z) := 1+(4/3)z+(2/3)z2 Ωc [156] Sharma et al.

S ∗
qκ

φqκ
(z) :=

√
1+κz, 0 < κ ≤ 1 Ωqκ

[10] Aouf et al.

S ∗
α,e φα,e(z) := α +(1−α)ez, 0 ≤ α < 1 Ωα,e [71] Khatter et al.

S L ∗(α) φα,L (z) := α +(1−α)
√

1+ z, 0 ≤ α < 1 Ωα,L [71] Khatter et al.

S ∗
L (s) φs(z) := (1+ sz)2, s ∈ [−1/

√
2,1/

√
2]\{0} Ωs [14] Bano and Raza

S ∗
RL φRL(z) :=

√
2− (

√
2−1)

√
(1− z)(1+2(

√
2−1)z) ΩRL [105] Mendiratta et al.

S ∗
R φR(z) := 1+(z/k)((k+ z)/(k− z)), k = 1+

√
2 ΩR [83] Kumar and Ravichandran

areas of focus in this field include the estimation of coefficient functional bounds, the

derivation of radius constants and establishing differential subordination implication re-

sults.

1.3 Some Problems in GFT

Coefficient Problems

In 1916, Bieberbach [45] gave a conjecture stating that: The coefficients of each function f ∈

S satisfies |an| ≤ n, for n = 2,3, · · · . Strict inequality holds for all n unless f is the Koebe function

or one of it rotations. This sparked a significant interest in the study of coefficient problems,

eventually leading to the development of new methods and advancing the literature still

further. These efforts not only led to the eventual proof by Louis De Branges in 1985

but also inspired the development of new techniques and results in GFT. Ever since,

abundant theory has evolved and it richly contributed to the literature, see [32, 33, 44,

57, 70, 162, 174]. For instance, the second coefficient bound for functions in class S
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leads to growth and distortion estimates. The coefficient problems includes: estimation

of bounds of initial coefficients, logarithmic coefficients, inverse coefficients, coefficient

functionals such as, Fekete-Szegö, Hankel determinant, Toeplitz determinant and others.

However, in the present work we focus on estimating bounds on initial coefficients, Fekete

Szegö functional and Hankel determinant. In 1933, Fekete and Szegö [36] introduced a

functional |a3 − µa2
2|, known as the Fekete-Szegö coefficient functional, and derived its

sharp bound for the class S ,

|a3 −µa2
2| ≤


4µ −3, µ ≥ 1,

1+ exp(−2µ/(1−µ)), 0 ≤ µ ≤ 1,

3−4µ, µ ≤ 0.

In 1960, coefficient functionals were first considered as determinants of the qth Hankel

matrices Hq,n( f ) defined as:

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.3.7)

where q,n ∈ N and f ∈ A . Hankel determinants are a sequence of determinants of ma-

trices formed from the coefficients of a power series expansion of an analytic function.

Hankel determinant of exponential polynomials was studied by Ehrenborg [35], and Hay-

man [53] examined some properties of Hankel transform of an integer sequence. The

main objective of solving coefficient problems is to determine sharp bounds for coeffi-

cient functionals and identify the corresponding extremal functions, offering insights into

optimal behavior and characterizing extremal cases under given constraints.

Radius Problems

Let f ,g ∈ H with series expansion of the form: f (z) = ∑
∞
n=1 anzn and g(z) = ∑

∞
n=1 bnzn, then

the convolution (or Hadamard) product of f and g, denoted by f ∗g, is given by

( f ∗g)(z) =
∞

∑
n=1

anbnzn.

Let G and H be two subclasses of A , then the G -radius of H , denoted by RG (H ) or

simply RG is the largest R ∈ (0,1) such that ρ−1 f (ρz) ∈ G , whenever 0 < ρ ≤ R, for all

f ∈ H . Using convolution we can express the condition f (ρz)/ρ = f (z) ∗ (z/(1 − ρz)).
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Note that for each positive number r ≤ 2−
√

3, every member of S maps the disc |z| ≤ r

f (R)

f()

-1.0 -0.5 0.5 1.0 1.5 2.0 2.5

-2

-1

1

2

Figure 1.1: Cardioid function f (z) = zez and R = (3−
√

5)/2 ≈ 0.381 · · · .

onto a convex domain. This is not true for r > 2−
√

3. Therefore, radius of convexity for

the class S is RC = 2−
√

3. Another example is f (z) = zez ∈ S ∗, which maps D onto

a cardioid domain, however, f lies in C , whenever z ∈ DR, where DR := {z : |z| < R ≤ 1}

and R = (3−
√

5)/2 ≈ 0.381 · · · , which is the radius of convexity for f (z) (see Figure 1.1).

The study of radius problems has garnered significant attention in context of various sub-

classes of A . Numerous researchers have investigated radius constants for starlike, con-

vex, and other geometrically defined subclasses, as well as their relationships with spe-

cific functions. Determining radius constants, such as the radii of starlikeness, convexity

and starlikeness of order β , is crucial for understanding the boundary behavior and inclu-

sion relationships of various subclasses in the broader framework of analytic functions.

Recently, sharp S ∗
sin−radii, S ∗

e −radii and S ∗
SG−radii were derived for various classes,

see [23,39,106]. The investigation of radius problems, provides new tools and results to

analyze the behavior of functions lying in certain classes of analytic functions. Despite

significant progress, many areas of radius problems remain unexplored, thereby making

it a vibrant and intriguing field of study. For more details in this direction, one may refer

to [46,47,167] and the references therein.

Differential Subordination

The theory of Differential Subordination traces its origin to a treatise entitled Differen-

tial subordinations and univalent functions [109] in 1981. Their extensive study of the
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theory and groundbreaking work laid the foundation for the field. Another key contrib-

utor to this field is Bulboacă [17], who contributed significantly by presenting new re-

sults that enhances its theoretical framework, by making it more robust and compre-

hensive. Subsequent extensions and generalizations can be seen in [108, 109]. The

foundational work on first-order differential subordination was pioneered by Goluzin [43]

and Robinson [142], laying the groundwork for further exploration in this field. This

powerful framework introduced novel approaches to analyzing and characterizing vari-

ous classes, sparking widespread interest among researchers. By leveraging differential

subordination techniques, mathematicians solved intricate problems related to univalent

functions. The versatility and effectiveness of these methods inspired numerous exten-

sions and applications across GFT and other areas of complex analysis. For instance,

see [9,12,13,16,22,34,39,63,64,69,106,155,161,173] and the references therein.

Interestingly, differential subordination is essentially an analogous extension of a differ-

ential inequality on the real line, adapted to the behavior of analytic functions in a more

general setting. Further, a differential inequality determines the range of the original func-

tion, for instance if f (0) = 1 and f ′(x)+ f (x) ≤ 1, then f (x) ≤ 1. Analogously, theory of

differential subordination, deals with the differential implications leading to certain char-

acterization of the function determined by conditions on differential expressions. For in-

stance, Noshiro-Warschawski Theorem states that: if f is analytic in D, then Re f ′(z)> 0 implies

f (z) is univalent in D. Geometrically, every convex function is starlike, then with K f (z) =

q f (z)+ zq′f (z)/q f (z), where q f (z) = z f ′(z)/ f (z), the implication: Re(q f (z)+ zq′f (z)/q f (z)) >

0 ⇒ Req f (z) > 0, holds true for each z ∈ D. This highly non-trivial observation made by

Miller and Mocanu, was a foundation stone for the development of the theory of differen-

tial subordination.

Let Ω and ∆ be any two sets in C, assume p(z) to be analytic in D with p(0) = a, and

ϑ(r,s, t;z) : C3 ×D→ C, then differential subordination involves generalizing the following

implication {
ϑ(p(z),zp′(z),z2 p′′(z);z)|z ∈ D

}
⊂ Ω ⇒ p(D)⊂ ∆.

Definition 1.3.1. [109] Let ϑ : C3 ×D → C and h be univalent in D. If p is analytic in D and

satisfies the second order differential subordination

ϑ(p(z),zp′(z),z2 p′′(z);z)≺ h(z), (1.3.8)

then p is called a solution of the differential subordination. Further, the univalent function q is

called a dominant of the solutions of (1.3.8), if p ≺ q for all p satisfying (1.3.8). Furthermore, if

q̃ ≺ q for all dominants q of (1.3.8), then q̃ is known as the best dominant of (1.3.8). Note that best
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dominant is unique up to a rotation of D.

1.4 Synopsis of the Thesis

Geometric Function Theory is a branch of Complex Analysis that deals with geometric

properties of analytic functions. Since the univalent functions, whose properties depends

on certain geometrical aspects, is classified under GFT. It has deep implications both in

pure mathematics and various applied disciplines. The contents of this thesis comprises

of six chapters involving radius results, coefficient problems and differential subordination

results, for several subclasses of analytic functions. An abstract at the beginning of every

chapter gives a brief outline of the work presented in it followed by some highlights for

the same. To progressively introduce the most important concepts leading up to the main

results, the reported work is organized as follows:

In chapter 2, bounds for the second Hankel determinant of logarithmic coefficients are

established for certain close-to-convex classes such as, S ∗
s and other classes formed us-

ing expressions, (1−z) f ′(z), (1−z2) f ′(z), (1−z+z2) f ′(z) and (1−z)2 f ′(z). This previously

unexplored area motivated us to investigate it further, drawing inspiration from the works

of Lecko [75] and Noor [122]. Additionally, motivated by the works of Ali and collabora-

tors [5,6], we establish bounds uptill fourth coefficient along with Fekete-Szegö bound for

a newly defined class which includes starlike and convex class as special cases. Some

of the contributions of this chapter are listed below:

1. Let f ∈ S k
γ,δ (φ) and φ(z) = 1+B1z+B2z2 + · · · ,

(i) For any µ ∈ C, we have

|a3 −µa2
2| ≤

|γ|B1

M1
max

{
1;
∣∣∣∣γB1(2µM1 −M2)

2(1+δ )2 − B2

B1

∣∣∣∣} ,

where

M1 = 1+ k(1+4α1)+2α2(1− k),

M2 = k((3− k)(1+α1)
2 − (1− k)(1+α2)(1+2α1 −α2)).

(ii) For H(q1,q2) as defined in [132, Lemma 2], where q1 = 2B2/B1,q2 = B3/B1 and

t = γB1J3/6J2(1+δ )2 −B2/B1,

|a4| ≤
|γ|B1

J1

(
H(q1,q2)+

|γJ2|B1

(1+δ )M1
max{1; |t|}

)
,
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with

J1 =1+ k(2+9α1)+3α2(1− k),

J2 =k
(
2α

2
1 (2k−5)+α1(6α2 −6α2k+ k−10)+α2(2α2 −1)(k−1)−3

)
,

J3 =− k(α1 +1)((α1 +1)2(k−7)(k−2)M1 +3(2α1 +1)(2k−5)M2)

+(k−1)k(k(1−α2 +3α1(α1 +1)+α
2
2 −3α1α2)+(1+α2)M1((3α1 +α2 +4)

× (α2 −3α1 −2))+3M2(α1(6α2 +5)−2α
2
2 +α2 +2)).

This is a sharp result.

2. For f ∈ A , let Ff be given by (2.1.3), then

(i) If f ∈ S ∗
s , then |H2,1(Ff )| ≤ 1/4. This bound is sharp.

(ii) If f ∈ F2 and a2 ≥ 0, then |H2,1(Ff )| ≤ 1/4.

In chapter 3, we consider a parabolic function in context of non-univalent functions, which

is completely different from the way Rønning, Ma-Minda and Kanas (see [63,64,99,147])

handled parabolic regions. Certain geometric aspects and sharp radius constants for this

class are established. Interestingly, the radius results are quite appealing, as the parabola

given by

ϕ(z) := 1− 2
π2

(
log
(

1+
√

z
1−√

z

))2

,

which maps D onto a domain that primarily lies in the left half-plane. Additionally, our

findings also built a connection with several Ma-Minda type classes. Some of the contri-

butions of this chapter are listed below:

1. Let z ∈ Dr, then for each 0 < r ≤ 1 and −π < t ≤ π, we have

ϕ0(r)≤ Reϕ0(reit)≤ ϕ0(−r).

2. If c< 3/2 and ζη0 = log(
√

η0/
√

1−η0) with η0 = (e−π
√

1−2c)/(1+e−π
√

1−2c), then ϕ(D)

satisfies D(c,rc) := {w ∈ C : |w− c|< rc} ⊂ Ωϕ := {w ∈ C : |1−w|< 2−Rew}, where

rc =


√√√√(c− 3

2
+

2ζ 2
η0

π2

)2

+
4ζ 2

η0

π2 , c ≤ 1
2
,

3
2
− c,

1
2
< c <

3
2
.

3. For f ∈ A , the sharp Fϕ−radii for the classes S ∗
p , S ∗

sin, S ∗
%, S ∗

sinh and S ∗
℘, are
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(i) RFϕ
(S ∗

p ) = tanh2(π/4),

(ii) RFϕ
(S ∗

sin) = π/6,

(iii) RFϕ
(S ∗

%) = 5/12,

(iv) RFϕ
(S ∗

sinh) = sinh(1/2),

(v) RFϕ
(S ∗

℘)≈ 0.3517 · · · ,

respectively.

4. Let 0≤α0 < 1, then sharp S ∗(1+α0z)− radius for the class Fϕ is the unique positive

root rα0 = tanh2(π
√

α0/2
√

2) of the equation 2(log((1+
√

r)/(1−
√

r)))2 −α0π2 = 0.

In chapter 4, radius constants for the class of starlike functions of order β , where 0≤ β < 1,

are determined, by employing a different technique. Further, we introduce a product class

Sλ ,β with −1 ≤ β ≤ 1, defined using functions lying in the tilted Carathéodory class Pλ ,

where Pλ := {p ∈ H1 : Re(eiλ p(z)) > 0,−π/2 < λ < π/2}. Thereby, determining sharp

radius constants for functions in the class Sλ ,β to lie in various subfamilies of S ∗. Some

of the contributions of this chapter are listed below:

1. If f ∈ S ∗(β ), where 0 ≤ β < 1, and 0 < s ≤ 1/
√

2, then

(i) RS ∗
SG
=

1
1+2(1−β )coth(1/2)

.

(ii) RS ∗
%

=
1

1+
√

2(1−β )
.

(iii) RS ∗
L (s) =

s(s+2)
2(1−β )+ s2 +2s

.

(iv) RS ∗
sin
=

sin1
sin1+2(1−β )

.

(v) RS ∗
sinh

=
sinh−1 1

sinh−1 1+2(1−β )
.

This result is sharp.

Based on the above result we deduce the following:

2. If f ∈ S ∗(1/2), then

(i) RS ∗
SG
=

1
1+ coth(1/2)

≈ 0.316 · · · .

(ii) RS ∗
%

=

√
2

1+
√

2
≈ 0.585 · · · .

(iii) RS ∗
L (1/

√
2) = 4

√
2−5 ≈ 0.656 · · · .

(iv) RS ∗
sin
=

sin1
1+ sin1

≈ 0.456 · · · .

(v) RS ∗
sinh

=
sinh−1 1

1+ sinh−1 1
≈ 0.468 · · · .

This result is sharp.

In chapter 5, we investigate a new subclass of A , denoted by S ∗
ρ ,

S ∗
ρ :=

{
f ∈ A :

z f ′(z)
f (z)

≺ cosh
√

z =: ρ(z), z ∈ D
}
,
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involving a hyperbolic cosine function cosh
√

z. We establish several key results, includ-

ing certain inclusion relations that describe the relationship between S ∗
ρ and other well-

known subclasses of analytic functions. A detailed analysis of geometric properties for

the class S ∗
ρ are studied, thereby establishing sharp radius results for the class under

study. The derived results not only enhance the understanding of the geometric prop-

erties of S ∗
ρ , but also contribute to the broader study of starlike and various Ma-Minda

subclasses. Some of the contributions of this chapter are listed below:

1. For Ωρ := ρ(D) = cosh
√

z, with l0 := cos1 and l1 := cosh1, then

(i) {w ∈ C : |w− c|< rc}= Ωρ , where

rc =

 c− l0, l0 < c ≤ (l1 + l0)/2

l1 − c, (l1 + l0)/2 ≤ c < l1.

(ii) {w : |w− (l0 + l1)/2|< (l1 − l0)/2} ⊂ Ωρ .

(iii) Ωρ ⊂ {w : |argw|< m} , where m ≈ 0.506053 ≈ (0.322163) π/2 ≈ 28.9947◦.

(iv) Ωρ ⊂ {w : l0 < Rew < l1} and Ωρ ⊂ {w : l0 < |w|< l1} .

(v) Ωρ ⊂
{

w : | Imw|< lρ
}

and Ωρ ⊂
{

w : |w− (l0 + l1)/2|< lρ
}
, where

l = | Im(cosh(eit0/2))| and t0 is the solution of the equation

l0 + l1 −2cos(sin(t/2))cosh(cos(t/2)) = 0.

2. For f ∈ S ∗
ρ with l0 := cos1 and l1 := cosh1, then following holds:

(i) S ∗
ρ ⊂ S ∗(β ), where β = l0.

(ii) S ∗
ρ ⊂ M (α), where α = l1.

(iii) S ∗
ρ ⊂ S S ∗(β ), where β ≈ 0.3222163.

(iv) S ∗
qκ

⊂ S ∗
ρ , whenever κ ≤ 1− l2

0 .

(v) k−S T ⊂ S ∗
ρ , whenever k ≥ l1/(l1 −1).

(vi) S ∗
ρ ⊂ S ∗

hpl(s̃), whenever − log l0/ log2 ≤ s̃ ≤ 1.

(vii) S ∗
ρ ⊂ S ∗

L (s), whenever 1−
√

l0 ≤ s ≤ 1√
2
.

(viii) S ∗
ρ ⊂ S T p(γ̂), whenever γ̂ ≥ γ̂0 ≈ 0.0654238.

This result is sharp.

3. If f ∈ S ∗
ρ , then

(i) f ∈ S ∗(β ) for |z| < rβ , where β ∈ [0,1) and rβ < 1 is the least positive root of

the equation: cos
√

r = β . This radius result is sharp.
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(ii) f ∈ C (β ) for |z| ≤ rβ , where β ∈ [0,1) and rβ ∈ (0,1) is the least positive root of

the equation: 2(1− r2)cos
√

r−
√

r tan
√

r = β .

Finally, chapter 6 deals with certain differential subordination implication results pertaining

to the class S ∗
ρ of starlike functions introduced in chapter 5. Briot-Bouquet type differential

subordination implication results are established for the class S ∗
ρ . Furthermore, results

involving admissibility conditions are deduced, which provide sufficient conditions for the

class under study. Listed below are some of the key contributions of this chapter:

1. Let η ,γ ∈ R such that γ ̸=−η , satisfy the following conditions:

η2 ≤ η ≤ η1 and η3 ≤ η ≤ η4,

where

η1 =− γ

cosh1
+

sinh1
(2cosh1(1+

√
2− cosh1))

, η2 =− γ

cosh1
,

η3 =− γ

cos1
− sin1

(2cos1(1+
√

2− cos1))
, η4 =− γ

cos1

and p(z) be an analytic function with p(0) = 1, satisfying:

p(z)+
zp′(z)

η p(z)+ γ
≺ z+

√
1+ z2,

then p(z)≺ cosh
√

z.

By taking p(z) = z f ′(z)/ f (z), we deduce the following result:

2. Let −cos1(1+(tan1)/(
√

2+1− cos1))≤ 2γ ≤−cos1, and f ∈ A satisfy

z f ′(z)
f (z)

1+
1+2

(
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
z f ′(z)
f (z)

+2γ

≺ z+
√

1+ z2,

then f ∈ S ∗
ρ .

3. Suppose A,B∈C, with A ̸=B and |B|< 1, η be such that |η | ≥ 2|A−B|/(1−|B|) tanh1.

Let p(z) be analytic in D with p(0) = 1, satisfying the subordination

1+η
zp′(z)
p(z)

≺ 1+Az
1+Bz

,

then p(z) ≺ cosh
√

z and cosh
√

z is the best dominant. When p(z) = z f ′(z)/ f (z), we

deduce the following:

4. If f ∈ A satisfies 1+η

(
1+

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
≺ 1+Az

1+Bz
, then f ∈ S ∗

ρ .



Chapter 2

Coefficient Problems for Certain

Classes of Analytic Functions

We introduce and examine a unified class of analytic functions, providing sharp estimates

for initial coefficients and Fekete-Szegö functional bounds. Further, we study more results

for a class defined through convolution. Additionally, we determine bounds for second

Hankel determinant of logarithmic coefficients of certain close-to-convex classes. Our

findings generalize many earlier known results, which are explicitly pointed out in our

study.

15
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2.1 Introduction

Coefficient problems began to surface in GFT in 1916, when a conjecture by Bieber-

bach [45] was floated. Estimating coefficients bounds are significant due to its wide range

of applications in engineering field such as machine learning, image and signal process-

ing [120]. In the past some researchers made an attempt to establish bounds on coef-

ficients pertaining to various subclasses of A , namely Loewner [97], Nevanlinna [118]

and Reade [138] proved the Bieberbach’s conjecture for classes S ∗, C and K , respec-

tively. Further, the bounds for the Fekete-Szegö functional for the classes K , S ∗ and C

were estimated by Keogh and Merkes [68]. Although determining the sharp nth coefficient

bounds for functions in subclass of A is quite challenging. So far sharp bounds for |an|

is known for classes S ∗(φ) and C (φ) for n = 2,3,4. Infact Ma and Minda [98] handled

the problem of estimating sharp Fekete-Szegö bound for the unified classes: S ∗(φ) and

C (φ). Many authors [2, 25, 87, 123, 134] obtained sharp bound for various subclasses of

S .

Previously, several authors found coefficient bounds for functions lying in classes de-

fined through subordination involving: z f ′(z)/ f (z) or f (z)/z or 1+ z f ′′(z)/ f ′(z) or f ′(z) or

their ratios or product of powers of these expressions or in terms of their weighted sum

or product (see [33,44,57,70,98,111,113–115,162,174]). In light of this, below we make

an attempt to unify all these analytic characterizing expressions into one, allowing various

cross combinations of the above mentioned expressions, thereby clubbing together many

well known classes and is given by:

(
z f ′(z)+α1z2 f ′′(z)

α1z f ′(z)+(1−α1) f (z)

)k(
α2 f ′(z)+(1−α2)

f (z)
z

)1−k

. (2.1.1)

For brevity, we shall assume Fm(z) :=mz f ′(z)+(1−m) f (z), so that the expression in (2.1.1)

becomes:
(
zF ′

α1
(z)/Fα1(z)

)k
(Fα2(z)/z)1−k . Choose δ =α1k+α2(1−k). Observe that α1 and

α2 vanish along with k and 1− k, when they reduce to zero, respectively. Now we define

a new class, which unifies several well known subclasses of A .

Definition 2.1.1. Let γ ∈ C\{0}, then f ∈ A is said to be in the class S k
γ,δ (φ), if:

1+
1
γ

((
zF ′

α1
(z)

Fα1(z)

)k(Fα2(z)
z

)1−k

−1

)
≺ φ(z), (2.1.2)

where Fm(z) := mz f ′(z)+(1−m) f (z), m = α1 or α2, δ = α1k+α2(1−k), with 0 ≤ α1,α2,k ≤ 1.

Define the class S k
γ,δ ,h(φ) := { f ∈ A : f ∗h ∈ S k

γ,δ (φ)}, where f ∗h represents the con-
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volution of f ,h ∈ A , with f of the form (1.1.1) and h(z) = z+∑n=2 hnzn, given by

( f ∗h)(z) = z+
∞

∑
n=2

anhnzn.

If h(z) = z/(1− z), the class S k
γ,δ ,h(φ) reduces to S k

γ,δ (φ). Observe that the class S k
γ,δ (φ),

reduces to several known classes for appropriate selection of k, α1, α2, γ and φ . We

illustrate some of the important subclasses studied in the past. For instance, if φ(z) =

(1 + Az)/(1 + Bz), where −1 ≤ B < A ≤ 1 with k = 1, we obtain the class S 1
γ,α1

(A,B) =

S 1
γ,α1

((1+Az)/(1+Bz)). For α1 = 0 and A =−B = 1, we get the class of starlike functions

of complex order γ (γ ∈ C\{0}), S ∗(γ)≡ S 1
γ,0(1,−1), introduced by Nasr and Aouf [115].

Similarly, for φ(z) = (1+Az)/(1+Bz), with A = −B = 1, and k = α1 = 1, we get the class

of convex functions of complex order γ ∈ C\{0}, introduced by Wiatrowski [174], denoted

by C (γ) ≡ S 1
γ,1(1,−1). Further, if k = 0 and α2 = 1, we get the class S 0

γ,1(φ) ≡ Rγ(φ),

containing functions that are closely related to the class of functions with positive real

part. Note that S 0
γ,1(A,B) = Rγ(A,B), introduced by Dixit et al. [31].

Now we discuss some special cases, when γ = 1. By taking k = 1 and α1 = 0, we obtain

Ma-Minda class S ∗(φ) = S 1
1,0(φ). Further, if φ(z) = (1+Az)/(1+Bz), we obtain the class

of Janowski starlike functions [98] and additionally, if A = 1−2β (0 ≤ β < 1) and B = −1,

we obtain the class S ∗(β ). Further, if β = 0 we have the class S ∗ = S 1
1,0(1,−1) [44]. If

k = α1 = 1, we obtain the Ma-Minda class C (φ) =S 1
1,1(φ). Particularly, for A =−B = 1, the

class S 1
1,1(A,B) ≡ C [44]. If k = 0 and α2 = 1, the class S 0

1,1(φ) coincides with R(φ), a

subclass of close-to-convex functions. Specifically, for φ(z) = (1+Az)/(1+Bz), the class

S 0
1,1(A,B) = R(A,B), studied by Goel and Mehrok [42]. MacGregor [101] systematically

studied the class R = { f ∈ A : Re f ′(z) > 0}. Note that S 0
1,1(1,−1) ≡ R, and S 0

1,1(1,0) ≡

R(1,0) = { f ∈ A : | f ′(z)−1|< 1} is a subclass of R.

Several authors have studied coefficient problems in the past, such as, bounds on

initial coefficients, Fekete-Szegö functional, Hankel determinant. Inspired by the works of

Kowalczyk and Lecko [75], Lee et al. [91] and Noonan et al. [121], in section 2.2 we study

the Fekete-Szegö and initial coefficient bounds. Apart from this, in section 2.3, we have

handled the well-known Hankel determinant, defined in (1.3.7), for certain subclasses of

A . Note that, the problem of calculating max f∈F |H2,2( f )| for various subfamilies F ⊂ A

was studied by Janteng et al. [57], Kowalczyk and Lecko [74] and Lee et al. [91]. Infact,

Noor [122] studied Hankel determinant for close-to-convex functions. Now, for f ∈ S , we

define F̃f (z) := 2Ff (z), where

Ff (z) = log
(

f (z)
z

)
= 2

∞

∑
n=1

γn( f )zn (z ∈ D\{0} , log1 := 0). (2.1.3)
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The coefficients γn := γn( f ) in (2.1.3) are known as logarithmic coefficients of f . Sharp

logarithmic coefficient estimates for the class S are already known for n = 1 and n = 2,

given by |γ1| ≤ 1 and |γ2| ≤ 1/2+ 1/e2. However, |γn| for n ≥ 3, is still an open problem.

Logarithmic coefficients played a crucial role in Milin’s conjecture [107], which states that

if f ∈ S , then
n

∑
m=1

m

∑
k=1

(
k|γk|2 −

1
k

)
≤ 0.

For q,n ∈ N and f ∈ A , qth Hankel determinant Hq,n(Ff ), with entries as logarithmic coef-

ficients is defined as:

Hq,n(Ff ) =

∣∣∣∣∣∣∣∣∣∣∣∣

γn γn+1 · · · γn+q−1

γn+1 γn+2 · · · γn+q
...

...
...

...

γn+q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Kowalczyk et al. [75] pioneered the study of the Hankel determinant with entries defined

by logarithmic coefficients. In this context, we study second Hankel determinant Hq,n(Ff )

for some special subclasses of K . We obtain the following subclasses of close-to-convex

functions, F ′
i s (i = 1, . . . ,4), by choosing φ(z) to be 1/(1− z),1/(1− z2),1/(1− z+ z2) and

1/(1− z)2 respectively, when λ = 0 in (1.2.6):

F1 :=
{

f ∈ A : Re(1− z) f ′(z)> 0
}
,

F2 :=
{

f ∈ A : Re(1− z2) f ′(z)> 0
}
,

F3 :=
{

f ∈ A : Re(1− z+ z2) f ′(z)> 0
}
,

F4 :=
{

f ∈ A : Re(1− z)2 f ′(z)> 0
}
,

(2.1.4)

where z ∈ D. A function f ∈ S ∗
s if for any r < 1 sufficiently close to 1, and any γ lying

on the circle |z| = r, the angular velocity of f (z) about the point f (−γ) is positive at γ as

z traverses the circle |z| = r in the positive direction, i.e. Re(2z f ′(z)/( f (z)− f (−γ))) > 0

for |z| = r at z = γ. In 1959, Sakaguchi [149] introduced and examined the class S ∗
s ,

consisting of functions starlike with respect to symmetric points, characterized by

Re
(

2z f ′(z)
f (z)− f (−z)

)
> 0 (z ∈ D). (2.1.5)

Observe that S ∗
s ⊂K . Notably, the classes defined in (2.1.4) and (2.1.5) have been exten-

sively studied on different aspects earlier. The classes F2 and F4 have nice geometrical

interpretations, as each member of F2 is convex in the direction of imaginary axis and

every f ∈ F4 is convex in the positive direction of real axis. A variety of results have been

established for these classes by several authors (see [18,20]). The bounds of γn for func-
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tions in K were examined in [167, p. 116], [166]. In 2018, Kumar and Vasudevrao [85]

obtained bounds on early logarithmic coefficients for the subclasses F1,F2,F3 of K .

Further, Kumar and Kumar [80] examined bounds on the third order Hermitian-Toeplitz

determinants for the class S ∗
s . Recently, many authors derived bounds for various coeffi-

cient functionals for certain subclasses of close-to-convex functions, see [27, 76, 77, 80].

For more work in this direction refer to [8,27,41,76,77,80,89,124].

Motivated by the above works, we chiefly study the coefficient related problems. Sec-

tion 2.2, deals with estimation of sharp bounds of initial coefficients and Fekete-Szegö

functional for the class S k
γ,δ (φ) and section 2.3 focuses on deriving bounds on |H2,1(Ff )|,

for f (z) lying in classes: F1,F2,F3,F4 and S ∗
s . Several special cases of our results are

also pointed out.

2.2 Estimation of Initial Coefficient Bounds

In this section, sharp bounds on initial coefficients for functions in the class S k
γ,δ (φ) are

determined. Further, sharp bound on the Fekete-Szegö functional |a3−µa2
2|, for the class

S k
γ,δ (φ) is derived and various special cases are also pointed out. To begin with, consider

functions of the form ω(z) = ∑
∞
n=1 ωnzn such that |ω(z)| < 1 for each z ∈ D. Let B denote

the collection of all such functions, referred to as the class of bounded analytic functions.

We now present a few lemmas that will be essential for proving the results in this section.

Lemma 2.2.1. [6] If ω ∈ B, then

|ω2 − tω2
1 | ≤


−t, if t ≤−1,

1, if −1 ≤ t ≤ 1,

t, if t ≥ 1.

(2.2.6)

When t <−1 or t > 1, equality holds if and only if ω(z) = z or one of its rotations. If −1 < t < 1,

then equality holds if and only if ω(z) = z2 or one of its rotations. When t =−1 then equality holds

if and only if ω(z) = z(λ + z)/(1+λ z),(0 ≤ λ ≤ 1) or one of its rotations. For t = 1, equality

holds if and only if ω(z) =−z(λ + z)/(1+λ z)(0 ≤ λ ≤ 1) or one of its rotations. Also the above

sharp upper bound can be improved as follows, when −1 < t < 1 :

|ω2 − tω2
1 |+(1+ t)|ω1|2 ≤ 1 (−1 < t ≤ 0),

|ω2 − tω2
1 |+(1− t)|ω1|2 ≤ 1 (0 < t ≤ 1).

Lemma 2.2.2. [68] If ω ∈ B, then for any complex number t,

|ω2 − tω2
1 | ≤ max{1; |t|}.
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This result is sharp for the functions ω(z) = z2 or ω(z) = z.

Coefficient Estimates for the Class S k
γ,δ (φ)

Using Lemma 2.2.1 and [132, Lemma 2], we establish the following bounds for functions

in the class S k
γ,δ (φ).

Theorem 2.2.1. Let f be in the class S k
γ,δ (φ) and φ(z) = 1+B1z+B2z2 + · · · . Then, for any

µ ∈ C, we have

|a3 −µa2
2| ≤

|γ|B1

M1
max

{
1;
∣∣∣∣γB1(2µM1 −M2)

2(1+δ )2 − B2

B1

∣∣∣∣} , (2.2.7)

where

M1 = 1+ k(1+4α1)+2α2(1− k) (2.2.8)

and

M2 = k((3− k)(1+α1)
2 − (1− k)(1+α2)(1+2α1 −α2)). (2.2.9)

Further,

|a2| ≤
|γ|B1

1+δ
and |a3| ≤

|γ|B1

M1
max

{
1;
∣∣∣∣B2

B1
+

γB1M2

2(1+δ )2

∣∣∣∣} .

These estimates are sharp.

Proof. Since f is in Sk
γ,δ (φ), then there exists a Schwarz function ω ∈ B, such that

1+
1
γ

((
zF ′

α1
(z)

Fα1(z)

)k(Fα2(z)
z

)1−k

−1

)
= φ(ω(z)). (2.2.10)

Upon expressing Fα1 , Fα2 in terms of f , and using power series expansion of f , we obtain:

(
zF ′

α1
(z)

Fα1(z)

)k(Fα2(z)
z

)1−k

=

(
z f ′(z)+α1z2 f ′′(z)

α1z f ′(z)+(1−α1) f (z)

)k(
α2 f ′(z)+(1−α2)

f (z)
z

)1−k

(2.2.11)

= 1+(1+δ )a2z+
1
2
(a2

2M2 +2a3M1)z2 + · · · .

Also,

φ(ω(z)) = 1+B1ω1z+(B2ω
2
1 +B1ω2)z2 + · · · .

Therefore, using (2.2.10), we obtain the coefficients a2 and a3 as follows:

a2 =
γB1ω1

1+δ
and a3 = γ

(
B2

M1
+

γB2
1M2

2(1+δ )2M1

)
ω

2
1 +

γB1

M1
ω2.
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On substituting these values in the Fekete-Szegö coefficient functional, it reduces to:

|a3 −µa2
2| ≤

|γ|B1

M1

∣∣∣∣ω2 −
(

γB1(2µM1 −M2)

2(1+δ )2 − B2

B1

)
ω

2
1

∣∣∣∣ . (2.2.12)

Now, the desired result follows at once by applying Lemma 2.2.2. Sharp bounds for the first two

coefficients a2 and a3 can be obtained directly from inequality (2.2.7). Following functions play

the role of extremal functions:

f1(z) = z+
γB1

1+δ
z2 +

γB1

M1

(
B2

B1
+

γM2B1

2(1+δ )2

)
z3,

f2(z) = z+
γB1

M1
z3,

and can be obtained by substituting ω(z) = z and z2, respectively, in Eq. (2.2.10). Equality in

(2.2.12) and for bound on |a2|, occurs when f (z) = f1(z). Further, a function g(z) given by

g(z) =

 f1(z), if |2(1+δ )2B2 + γB2
1M2|> 2B1(1+δ )2,

f2(z), if |2(1+δ )2B2 + γB2
1M2| ≤ 2B1(1+δ )2,

serves as the extremal for the bound on |a3|.

Remark 2.2.1. By taking k = 0 and α2 = 1, in the above theorem, inequality in (2.2.7) reduces to

an inequality given in [6, Theorem 3(for p = 1)]. Further, with φ(z) = (1+Az)/(1+Bz), Theorem

2.2.1 reduces to [31, Theorem 4]. Also note that with γ = k = 1 and α1 = 0, inequality (2.2.7)

reduces to give the inequality in [6, Theorem 1 (for p = 1)].

It is presumed that, M1 and M2 carry their expressions as stated in Eqs. (2.2.8) and

(2.2.9), respectively. By choosing suitable values of α1,α2 and k, in Theorem 2.2.1 we

obtain the following corollary for the class:

Corollary 2.2.1. Let f belongs to the class S 1
γ,α1

(φ), then for µ ∈ C,

(i) If k = 1, then |a3 −µa2
2| ≤

|γ|B1

2(1+2α1)
max

{
1;
∣∣∣∣γB1

(
2µ(1+2α1)

(1+α1)2 −1
)
− B2

B1

∣∣∣∣} .

(ii) If k = 0, then |a3 −µa2
2| ≤

|γ|B1

(1+2α2)
max

{
1;
∣∣∣∣µγB1(1+2α2)

(1+α2)2 − B2

B1

∣∣∣∣} .

Additionally, for γ = 1 and α1 = 1, Theorem 2.2.1 reduces to give sharp bound for the class

S ∗(φ).

This result is sharp.

Remark 2.2.2. For any µ ∈ R, if γ = α1 = 1, Corollary 2.2.1(ii) coincides to give a result derived

by Ma and Minda in [98, Theorem 3]. Further by choosing φ(z) = (1 + z)/(1 − z), we have

|a3 − µa2
2| ≤ max{1/3, |µ − 1|}, obtained for any µ ∈ C, a sharp estimate derived by Keogh et
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al. [68, Corollary 1]. The results obtained by Ali et al. [6, Theorem 7 and 8, pg 44, pg 45 (for

p = 1 with α1 = 1 and α1 = 0, respectively)], were in fact not sharp. The corrected version of the

sharp result has been illustrated in Corollary 2.2.1.

Theorem 2.2.2. Let f be in the class S k
γ,δ (φ) and φ(z) = 1+B1z+B2z2 + · · · . Then, we have

|a4| ≤
|γ|B1

J1

(
H(q1,q2)+

|γJ2|B1

(1+δ )M1
max{1; |t|}

)
,

where H(q1,q2) is as defined in [132, Lemma 2], with

q1 =
2B2

B1
, q2 =

B3

B1
and t =

γB1J3

6J2(1+δ )2 −
B2

B1
,

where

J1 =1+ k(2+9α1)+3α2(1− k),

J2 =k
(
2α

2
1 (2k−5)+α1(6α2 −6α2k+ k−10)+α2(2α2 −1)(k−1)−3

)
,

J3 =− k(α1 +1)((α1 +1)2(k−7)(k−2)M1 +3(2α1 +1)(2k−5)M2)

+(k−1)k(k(1−α2 +3α1(α1 +1)+α
2
2 −3α1α2)+(1+α2)M1((3α1 +α2 +4)

× (α2 −3α1 −2))+3M2(α1(6α2 +5)−2α
2
2 +α2 +2)).

Proof. Using equation (2.2.11), the fourth coefficient is given by

a4 =
γB1

J1

((
ω3 +

2B2

B1
ω1ω2 +

B3

B1
ω

3
1

)
− γB1J2ω1

(1+δ )M1
(ω2 −νω

2
1 )
)
.

Now by applying Lemma 2.2.2 to the above expression together with [132, Lemma 2], bound on

the fourth coefficient can be established.

Remark 2.2.3. For k = 0 and β2 = 1, inequality in Theorem 2.2.2 reduces to give the inequality

in [6, Theorem 3 (for p = 1)].

We now derive the following result for functions in the class S k
1,δ (φ) = S k

δ
(φ).

Theorem 2.2.3. If f be in the class S k
δ
(φ) and φ(z) = 1+B1z+B2z2 + · · · . Then

|a3 −µa2
2| ≤



−B1t
M1

, when µ ≤ σ1,

B1

M1
, when σ1 ≤ µ ≤ σ2,

B1t
M1

, when µ ≥ σ2,

(2.2.13)
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where

t =
B1(2µM1 −M2)

2(1+δ )2 − B2

B1
.

Further if σ1 ≤ µ ≤ σ3, then

|a3 −µa2
2|+

(1+δ )2

B1M1

{
1− B2

B1
+

B1(2µM1 −M2)

2(1+δ )2

}
|a2|2 ≤

B1

M1
.

If σ3 ≤ µ ≤ σ2, then

|a3 −µa2
2|+

(1+δ )2

B1M1

{
1− B2

B1
− B1(2µM1 −M2)

2(1+δ )2

}
|a2|2 ≤

B1

M1
. (2.2.14)

where

σ1 =
(1+δ )2

B1M1

(
B2

B1
−1
)
+

M2

2M1
, σ2 =

(1+δ )2

B1M1

(
B2

B1
+1
)
+

M2

2M1
, σ3 =

M2

2M1
+

(1+δ )2B2

B2
1M1

.

Further,

|a2| ≤
B1

1+δ

and

|a3| ≤



B2

M1
+

B2
1M2

2M1(1+δ )2 , when 2(B1 −B2)(1+δ )2 ≤ B2
1M2,

B1

M1
, when 2(B1 −B2)(1+δ )2 ≥ B2

1M2 or

−2(B1 +B2)(1+δ )2 ≤ B2
1M2,

− B2

M1
− B2

1M2

2M1(1+δ )2 , when −2(B1 +B2)(1+δ )2 ≥ B2
1M2.

These estimates are sharp.

Proof. Proceeding as in Theorem 2.2.1, the bound in (2.2.13)-(2.2.16) can be established by ap-
plying Lemma 2.2.1. For sharpness, we define the functions Kφn :D→C (n= 2,3, . . .), satisfying:

1+
1
γ

( zK′
φn
(z)+α1z2K′′

φn
(z)

α1zK′
φn
(z)+(1−α1)Kφn(z)

)k(
α2K′

φn
(z)+(1−α2)

Kφn(z)
z

)1−k

−1

= φ(zn−1).

with Kφn(0) = 0,K′
φn
(0) = 1, Hλ and Gλ (0 ≤ λ ≤ 1) with Hλ (0) = 0,H ′

λ
(0) = 1 and Gλ (0) = 0,

G′
λ
(0) = 1, respectively, satisfying the following:

1+
1
γ

( zH ′
λ
(z)+α1z2H ′′

λ
(z)

α1zH ′
λ
(z)+(1−α1)Hλ (z)

)k(
α2H ′

λ
(z)+(1−α2)

Hλ (z)
z

)1−k
−1

= φ

(
z(λ + z)
1+λ z

)
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and

1+
1
γ

( zG′
λ
(z)+α1z2G′′

λ
(z)

α1zG′
λ
(z)+(1−α1)Gλ (z)

)k(
α2G′

λ
(z)+(1−α2)

Gλ (z)
z

)1−k
−1

= φ

(
−z(λ + z)

1+λ z

)
.

Clearly, functions Kφn , Hλ , Gλ ∈ S k
δ
(φ). For µ < σ1 or µ > σ2 extremal function for inequality

(2.2.13) is Kφ = Kφ2 or one of its rotations. Extremal function for σ1 < µ < σ2 is Kφ3 or any of its

rotations. When µ = σ1, Hλ or any of its rotations works as the extremal function. For µ = σ2,

extremal function is Gλ or any of its rotations. Bounds for a2 and a3 can be directly obtained from

inequality (2.2.13).

Next result can be derived by applying Lemma 2.2.2.

Theorem 2.2.4. Let f be in the class S k
δ
(φ) and φ(z) = 1+B1z+B2z2+ · · · . Then for any µ ∈C,

we have

|a3 −µa2
2| ≤

B1

M1
max

{
1;
∣∣∣∣B1(2µM1 −M2)

2(1+δ )2 − B2

B1

∣∣∣∣} .

The result is sharp.

Remark 2.2.4. Let µ be a real number. When k = α1 = 1, Theorem 2.2.3 reduces to [98, Theorem

3]. When α2 = 1 and α1 = 0, Theorem 2.2.3 coincides with [70, Theorem 2.11]. For α1 = α2 = 1,

Theorem 2.2.3 reduces to a result in [70, Theorem 2.15]. If α1 = α2 = 0 and α1 = 1, α2 = 0,

Theorem 2.2.3 reduces to [70, Theorem 2.19] and [70, Theorem 2.23] respectively. Further, all the

special cases referred therein also become particular cases of our result.

Theorem 2.2.5. Let f be in the class S k
δ
(φ) and φ(z) = 1+B1z+B2z2 + · · · . Then, we have

|a4| ≤
B1

J1
H(q1,q2), (2.2.15)

where H(q1,q2) is as defined in [132, Lemma 2], with

q1 =
2B2

B1
− B1J2

(1+δ )M1
and q2 =

B3

B1
− B2J2

M1(1+δ )
+

B2
1J3

6M1(1+δ )3 ,

where J1, J2 and J3 are as defined in Theorem 2.2.2. This result is sharp.

Proof. Using (2.2.11) with suitable rearrangement of terms, we obtain the following expression

for the fourth coefficient:

a4 =
B1

J1

(
ω3 +

(
2B2

B1
− B1J2

(1+δ )M1

)
ω1ω2 +

(
B3

B1
− B2J2

M1(1+δ )
+

B2
1J3

6M1(1+δ )3

)
ω

3
1

)
.

Now by an application of [132, Lemma 2], we arrive at the bound of the fourth coefficient as

stated above.
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Remark 2.2.5. When k = 1 and α1 = 0, inequality in (2.2.15) reduces to give the inequality [6,

Theorem 1(for p = 1)]. For k = 0 and α2 = 1, inequality (2.2.15) of Theorem 2.2.10 reduces to

give the inequality [6, Theorem 3(for p = 1)]. Infact, if k = α1 = 1, we obtain a sharp bound on

a4 for functions in the class S 1
1,1(φ), given by:

|a4| ≤
B1

12
H(q1,q2), where q1 =

4B2 +3B2
1

2B1
, q2 =

2B3 +3B2B1 +B3
1

2B1
.

Further, if φ(z) = (1+ z)/(1− z), then |a4| ≤ 1 [44], which is a sharp estimate for the class C .

Coefficient Estimates for the Class S k
γ,δ ,h(φ)

Proceeding as in the previous results we now state the following results for the class

S k
γ,δ ,h(φ) without proofs.

Theorem 2.2.6. Let f be in the class S k
γ,δ ,h(φ) and φ(z) = 1+B1z+B2z2 + · · · . Then, for any

µ ∈ C, we have

|a3 −µa2
2| ≤

|γ|B1

h3M1
max

{
1;
∣∣∣∣γB1(2µh3M1 −h2

2M2)

2h2
2(1+δ )2 − B2

B1

∣∣∣∣} .

Further,

|a2| ≤
|γ|B1

h2(1+δ )
and |a3| ≤

|γ|B1

h3M1
max

{
1;
∣∣∣∣B2

B1
+

γh2
2B1M2

2h2
2(1+δ )2

∣∣∣∣} .

These estimates are sharp.

Theorem 2.2.7. Let f be in the class S k
γ,δ ,h(φ) and φ(z) = 1+B1z+B2z2 + · · · . Then, we have

|a4| ≤
|γ|B1

h4J1

(
H(q1,q2)+

|γJ2|B1

M1(1+δ )
max{1; |t|}

)
,

where q1,q2,H(q1,q1),J1 and J1 are as defined in Theorem 2.2.2.

We state the following results, with the assumption that S k
1,δ ,h(φ) =: S k

δ ,h(φ).

Theorem 2.2.8. Let f be in the class S k
δ ,h(φ) and φ(z) = 1+B1z+B2z2 + · · · . Then

|a3 −µa2
2| ≤



−B1t
h3M1

, when µ ≤ σ1,

B1

h3M1
, when σ1 ≤ µ ≤ σ2,

B1t
h3M1

, when µ ≥ σ2,
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where

t =
B1(2µh3M1 −h2

2M2)

2h2
2(1+δ )2 − B2

B1
.

Further, if σ1 ≤ µ ≤ σ3, then

|a3 −µa2
2|+

(1+δ )2h2
2

h3B1M1

{
1− B2

B1
+

B1(2µh3M1 −h2
2M2)

2h2
2(1+δ )2

}
|a2|2 ≤

B1

h3M1
.

If σ3 ≤ µ ≤ σ2, then

|a3 −µa2
2|+

(1+δ )2h2
2

h3B1M1

{
1+

B2

B1
− B1(2µh3M1 −h2

2M2)

2(h2
2(1+δ )2

}
|a2|2 ≤

B1

h3M1
. (2.2.16)

where

σ1 =
h2

2(1+δ )2

h3B1M1

(
B2

B1
−1
)
+

h2
2M2

2h3M1
, σ2 =

h2
2(1+δ )2

h3B1M1

(
B2

B1
+1
)
+

M2

2M1
(2.2.17)

and

σ3 =
h2

2M2

2h3M1
+

h2
2(1+δ )2B2

h3B2
1M1

. (2.2.18)

Further,

|a2| ≤
B1

h2(1+δ )

and

|a3| ≤



B2

h3M1
+

h2
2B2

1M2

2h2
2h3(1+δ )2M1

, when 2h2
2(B1 −B2)(1+δ )2 ≤ h2

2B2
1M2,

B1

h3M1
, when 2h2

2(B1 −B2)(1+δ )2 ≥ B2
1M2 or

−2h2
2(B1 +B2)(1+δ )2 ≤ B2

1M2,

− B2

h3M1
− h2

2B2
1M2

2h2
2h3M1(1+δ )2 , when −2h2

2(B1 +B2)(1+δ )2 ≥ h2
2B2

1M2.

Theorem 2.2.9. Let f be in the class S k
δ ,h(φ) and φ(z) = 1+B1z+B2z2 + · · · . Then, for µ ∈ C,

we have

|a3 −µa2
2| ≤

B1

h3M1
max

{
1;
∣∣∣∣B1(2µh3M1 −h2

2M2)

2h2
2(1+δ )2 − B2

B1

∣∣∣∣} .

The result is sharp.

Theorem 2.2.10. Let f be in the class S k
δ ,h(φ) and φ(z) = 1+B1z+B2z2 + · · · . Then, we have

|a4| ≤
B1

h4J1
H(q1,q2), (2.2.19)



27

where q1, q2, J1 and H(q1,q2) are as defined in Theorem 2.2.10. This result is sharp.

2.3 Bounds on Hankel Determinant

In this section, we made an attempt to study the problem of establishing bound on

|H2,1(Ff )| = |γ1γ3 − γ2
2 |, where H2,1(Ff ) has a striking resemblance to H2,1( f ) = a2a4 − a2

3,

for f lying in specific subclass of A . Further, from (2.1.3) logarithmic coefficients of f ∈S ,

can be expressed as

γ1 =
1
2

a2, γ2 =
1
2

(
a3 −

1
2

a2
2

)
, γ3 =

1
2

(
a4 −a2a3 +

1
3

a3
2

)
.

Then for f ∈ S , the expression H2,1(Ff ), becomes

H2,1(Ff ) := γ1γ3 − γ
2
2 =

1
4

(
a2a4 −a2

3 +
1

12
a4

2

)
.

Note that the functional |H2,1(Ff )| is rotationally invariant. However, the classes Fi
′s (i =

1, . . . ,4) are not rotationally invariant. Listed below are some Lemmas that serve as a

prerequisite for deriving our subsequent results in this section.

Lemma 2.3.1. [92,93,127] If p ∈ P of the form p(z) = 1+ c1z+ c2z2 + c3z3 + . . . , with c1 ≥ 0,

then

c1 = 2ζ1, (2.3.20)

c2 = 2ζ
2
1 +2(1−ζ

2
1 )ζ2, (2.3.21)

c3 = 2ζ
3
1 +4(1−ζ

2
1 )ζ1ζ2 −2(1−ζ

2
1 )ζ1ζ

2
2 +2(1−ζ

2
1 )(1−|ζ2|2)ζ3, (2.3.22)

for some ζ1 ∈ [0,1] and ζ2,ζ3 ∈D := {z ∈ C : |z|< 1} . For ζ1 ∈D and ζ2 ∈ T= {z ∈C : |z|= 1},

there is a unique function p ∈ P with c1 and c2 as in (2.3.20)-(2.3.22), namely

p(z) =
1+(ζ1ζ2 +ζ1)z+ζ2z2

1+(ζ1ζ2 −ζ1)z−ζ2z2
(z ∈ D). (2.3.23)

For ζ1,ζ2 ∈ D and ζ3 ∈ T, there exists a unique p ∈ P with c1,c2 and c3 as in (2.3.20)-(2.3.22),

namely,

1+(ζ1ζ2 +ζ2ζ3 +ζ1)z+(ζ1ζ3 +ζ1ζ2ζ3 +ζ2)z2 +ζ3z3

1+(ζ1ζ2 +ζ2ζ3 −ζ1)z+(ζ1ζ3 −ζ1ζ2ζ3 −ζ2)z2 −ζ3z3
(z ∈ D). (2.3.24)

Lemma 2.3.2. [26] For A1,A2,A3 ∈ R, let

Y (A1,A2,A3) := max
{
|A1 +A2z+A3z2|+1−|z|2 : z ∈ D

}
.
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1. If A1A3 ≥ 0, then

Y (A1,A2,A3) =


|A1|+ |A2|+ |A3|, |A2| ≥ 2(1−|A3|),

1+ |A1|+
A2

2
4(1−|A3|)

, |A2|< 2(1−|A3|).

2. If A1A3 < 0, then

Y (A1,A2,A3) =



1−|A1|+
A2

2
4(1−|A3|)

, −4A1A3(A−2
3 −1)≤ A2

2 ∧|A2|< 2(1−|A3|),

1+ |A1|+
A2

2
4(1+ |A3|)

, A2
2 < min{4(1+ |A3|)2,−4A1A3(A−2

3 −1)},

R(A1,A2,A3), otherwise,

where

R(A1,A2,A3) =



|A1|+ |A2|− |A3|, |A3|(|A2|+4|A1|)≤ |A1A2|,

−|A1|+ |A2|+ |A3|, |A1A2| ≤ |A3|(|A2|−4|A1|),

(|A3|+ |A1|)

√
1− A2

2
4A1A3

, otherwise.

Hankel Determinant of Logarithmic Coefficients

The results stated by Cho et al. [20] highlight the importance of functions given in

(2.3.23) and (2.3.24). Based on the definition of each class in (2.1.4) and (2.1.5), functions

in these classes can be represented in terms of Carathéodory class P. For the purpose

of computing the bounds for H2,1(Ff ), we use the coefficient formula given in (2.3.20) for

c1 given in [19], for c2 [127, pg. 166] and the formula for coefficient c3 due to Libera and

Złotkiewicz [92,93]. We begin by determining sharp bound of H2,1(Ff ) for f ∈ S ∗
s .

Theorem 2.3.1. Let Ff be given by (2.1.3). If f ∈ S ∗
s , then sharp bound on Hankel determinant

for Ff is given by

|H2,1(Ff )| ≤
1
4
. (2.3.25)

Above inequality is sharp due to the function

f̃ (z) =
∫ z

0
(1+ t2)/(1− t2)2dt. (2.3.26)

Proof. Suppose f ∈ A of the form f (z) = z+a2z2 +a3z3 +a4z4 + · · · satisfy

2z f ′(z)
f (z)− f (−z)

= p(z), (2.3.27)



29

where p ∈ P. It is a well-known fact that, class P is invariant under rotation, we assume c1 ∈

[0,2]. From equation (2.3.27) we express coefficients of f (z), ai
′s (i = 2,3,4) in terms of ci

′s

(i = 1,2,3) as follows

a2 =
1
2

c1, a3 =
1
2

c2, a4 =
1
8
(c1c2 −2c3) .

Lemma 2.3.1 yields the following expression in terms of ζi
′s, where ζi ∈ D (i = 1,2,3).

L := γ1γ3 − γ
2
2 =

1
4

(
a4a2 −a2

3 +
1

12
a4

2

)
=

1
768

(c4
1 +12c2c2

1 −24c3c1 −48c2
2)

=
1
48

(6ζ
2
2 (5ζ

2
1 −3ζ

4
1 −2)−11ζ

4
1 −6ζ1(1−ζ

2
1 )ζ3(1−|ζ2|2)

−30ζ2ζ
2
1 (1−ζ

2
1 )). (2.3.28)

As |ζ2| ≤ 1, then the expression in (2.3.28) leads to,

|L | ≤

 1/4, ζ1 = 0,

11/48, ζ1 = 1.

For ζ1 ∈ (0,1) and due to inequality |ζ3| ≤ 1, the expression in (2.3.28) together with Lemma 2.3.1

results in the following inequality

|L | ≤ 1
8

ζ1(1−ζ
2
1 )Y (A1,A2,A3) (2.3.29)

where

Y (A1,A2,A3) := |A1 +A2ζ2 +A3ζ
2
2 |+1−|ζ2|2

with

A1 =−
11ζ 3

1

6
(
1−ζ 2

1

) , A2 =−5ζ1, A3 = 3ζ1 −
2
ζ1

. (2.3.30)

In view of Lemma B, we now examine the following cases based on the expressions of A1,A2 and

A3 given in (3.1.3).

I. Let ζ1 ∈ X = (0,ζ ∗], where ζ ∗ =
√

2/3. It is easy to verify that A1A3 ≥ 0. Since |A2|− 2(1−

|A3|) = (4−ζ1(2+ζ1))/ζ1 is an increasing function on X , then |A2|−2(1−|A3|)≥ 5ζ ∗−2 > 0.

Thus on applying Lemma 2.3.1 to inequality (2.3.29), we have

|L | ≤ 1
8

ζ1(1−ζ
2
1 )(|A1|+ |A2|+ |A3|) =

1
4
− ζ 4

1
48

≤ 1
4
.

II. Assume X∗ = Xc ∩ (0,1). Observe that A1A3 < 0 for each ζ1 ∈ X∗. This case demands the
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following subcases.

A. Simple calculation reveals that, for each ζ1 in X∗, we have
T1(ζ1) := |A2|−2(1−|A3|) =

1
ζ1

(11ζ 2
1 −2ζ1 −4)> 0,

T2(ζ1) :=−4A1A3

(
1

A2
3
−1
)
−A2

2 =
27ζ 2

1 −62
ζ 2

1 (6−9ζ 2
1 )

< 0.

From above we conclude that the set T1(X∗)∩T2(X∗) is empty. Thus according to Lemma B, this

case fails to exist for any ζ1 ∈ X∗.

B. For ζ1 ∈ X∗, the expressions 4(1+ |A3|)2 and −4A1A3(A−2
3 −1) become

4 T3(ζ1) := 4(1+ |A3|)2 and T4(ζ1) :=−4A1A3

(
1

A2
3
−1
)
=

22ζ 2
1 (9ζ 2

1 −4)
3(3ζ 2

1 −2)
,

respectively, where T3(x) := (3x2 +x−2)2/x2. It is easy to observe that T ′
3(x) is non-vanishing on

X∗. Infact T ′
3(1) = 20, therefore T3(x)< 4. Since ζ ∗ > ζ ∗2, this yields that T4(x) is positive on X∗.

Thus inequality below is false for any ζ1 ∈ X∗,

A2
2 = 25ζ

2
1 < min{4 T3(x),T4(x)}= 4 T3(x).

C. The inequality below holds for ζ1 ∈ X∗,

|A3|(|A2|+4|A1|)−|A1A2|=−13ζ 4
1 −62ζ 2

1 +60
6
(
1−ζ 2

1

) ≤ 0

if and only if 13ζ 4
1 −62ζ 2

1 +60 ≥ 0. Due to Lemma 2.3.1 and equations (2.3.28)-(2.3.29),

|L | ≤ 1
8

ζ1(1−ζ
2
1 )(|A1|+ |A2|− |A3|) =

1
4
− ζ 4

1
48

≤ 1
4
.

D. Finally the expression below is true for each ζ1 ∈ X∗,

|A1A2|− |A3|(|A2|−4|A1|) =
277ζ 4

1 −238ζ 2
1 +60

6(1−ζ 2
1 )

> 0.

Summarizing I and II inequality (2.3.1) follows. In Lemma 2.3.1, on replacing ζ1 = 0,ζ2 = ζ3 = 1

in (2.3.24) we get p̃(z) = (1+ z2)/(1− z2) ∈ P. The function f̃ ∈ A given in (2.3.26) satisfies

2z f̃ ′(z)/( f̃ (z)− f̃ (−z)) = (1+ z2)/(1− z2). Hence the result is sharp.

Theorem 2.3.2. Let Ff be given by (2.1.3). If f ∈ F2 and a2 ≥ 0, then

|H2,1(Ff )| ≤
1
4
.
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Proof. Since f ∈ F2, then there exists an analytic function p ∈ P such that

(1− z2) f ′(z) = p(z). (2.3.31)

Then from (2.3.31) we obtain first three coefficients of f (z) in terms of ci
′s (i = 1,2,3) as follows:

a2 =
1
2

c1, a3 =
1
3
(1+ c2) , a4 =

1
4
(c1 + c3) .

Using Lemma 2.3.1, we express γ1γ3 − γ2
2 in terms of ζ ′

i s by replacing ci
′s with ζi

′s (i = 1,2,3),

M := γ1γ3 − γ
2
2 =

1
144

(
ζ

4
1 (5−4ζ2 +2ζ

2
2 )+2ζ

2
1 (1+10ζ2 +7ζ

2
2 )−4(1+2ζ2)

2

+18ζ1ζ3(1−ζ
2
1 )(1−|ζ2|2)

)
. (2.3.32)

Due to the fact that |ζ2| ≤ 1, inequality (2.3.32) gives

|M | ≤

 (1/144)(11+32|ζ2|+32|ζ2|2)≤ 1/48, ζ1 = 1,

(1/36)(1+2|ζ2|)2 ≤ 1/4, ζ1 = 0.

Since |ζ3| ≤ 1, then for ζ1 ∈ (0,1), we have

|M | ≤ 1
8

ζ1(1−ζ
2
1 )Y (A1,A2,A3), (2.3.33)

where

Y (A1,A2,A3) := |A1 +A2ζ2 +A3ζ
2
2 |+1−|ζ2|2

with

A1 =
5ζ 4

1 +2ζ 2
1 −4

18ζ1
(
1−ζ 2

1

) , A2 =− 2
9ζ1

(4−ζ
2
1 ), A3 =− 1

9ζ1
(8+ζ

2
1 ). (2.3.34)

In light of Theorem B and the expressions of A1,A2 and A3 given in (3.2.1), we divide our result

in two cases based on the value of A1A3.

I. Observe that A1A3 is non-negative over the interval Y = (0,ζ ∗], where ζ ∗ = (1/5)
√√

21−1.

Since |A2|−2(1−|A3|) = 8
3ζ1

−2 ≥ 0, for each ζ1 ∈Y, therefore by applying Lemma B to (2.3.33)

yields the following inequality:

|M | ≤ 1
8

ζ1(1−ζ
2
1 )(|A1|+ |A2|+ |A3|) =

1
48

(12−12ζ
2
1 −ζ

4
1 ) := S1(ζ1).

It is clearly evident that S1(x) is a decreasing function of x, so S1(x)→ 1/4 whenever x → 0. Thus

for this case |M | ≤ 1/4.

II. Let Y ∗ = Y c ∩ [0,1). Clearly, A1A3 < 0 for each ζ1 ∈ Y ∗. For our suitability, we divide the

computations in five subcases.
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A. The expression in (2.3.35) is true for each ζ1 ∈ Y ∗,

S1(x) :=−4A1A3

(
1

A2
3
−1
)
−A2

2 =
2(ζ 4

1 −106ζ 2
1 −12)

27(8+ζ 2
1 )

≤ 0. (2.3.35)

provided ζ 4
1 −106ζ 2

1 −12 ≤ 0. Additionally, from Case I we have |A2|−2(1−|A3|) =: S2(x)≥ 0.

Thus we conclude that S1(Y ∗)∩S2(Y ∗) is an empty set.

B. Moreover for ζ1 ∈ Y ∗, it is easy to verify that
S3(ζ1) := 4(1+ |A3|)2 =

4
81ζ 2

1
(ζ 2

1 +9ζ1 +8)2 > 0,

S4(ζ1) :=−4A1A3

(
1

A2
3
−1
)
=

2(ζ 2
1 −64)(5ζ 4

1 +2ζ 2
1 −4)

81ζ 2
1 (8+ζ 2

1 )
≤ 0.

Therefore, A2
2 = 2(ζ 2

1 −4)/9ζ1 > min{S3(ζ1),S4(ζ1)}= S4(ζ1). This leads us to the next case.

C. Consider the following expression

|A3|(|A2|+4|A1|− |A1A2|) =
S5(ζ1)

81ζ 3
1 (1−ζ 2

1 )
,

where S5(x) := 2x8 +10x7 +11x6 +84x5 −90x4 +24x3 +52x2 −64x+16. Observe that for each

x ∈ Y ∗, the polynomial S5(x)≤ 0 is true if and only if x2(2x6 +21x4 +76)≤ 6(8+ x4). Infact

min
x∈Y ∗

(x2(2x6 +21x4 +76)) =
36
625

(329
√

21−419)≥ max
x∈Y ∗

(6(8+ x4)) = 54.

Thus for each x ∈ Y ∗, S5(x) must be positive.

D. Finally the following inequality

|A1A2|− |A3|(|A2|−4|A1|) =− 1
81ζ 3

1 (1−ζ 2
1 )

(2ζ
8
1 −10ζ

7
1 −5ζ

6
1 −68ζ

5
1 −10ζ

4
1 −104ζ

3
1

−12ζ
2
1 +128ζ1 +16)≤ 0,

is equivalent to ζ 2
1 (10ζ 5

1 +5ζ 4
1 +68ζ 3

1 +10ζ 2
1 +104ζ1+12)≤ 2(ζ 8

1 +64ζ1+8), provided ζ1 sat-

isfies ζ ∗ < ζ1 ≤
√√

249−15. Note that the function R(x) defined below is a decreasing function

of x
(

ζ ∗ < x ≤
√√

249−15
)
. Thus Lemma B together with (2.3.33), gives

|M | ≤ 1
8

ζ1(1−ζ
2
1 )(−|A1|+ |A2|+ |A3|)

=
2ζ 5

1 −5ζ 4
1 −34ζ 3

1 −2ζ 2
1 +32ζ1 +4

144ζ1
=: R(ζ1)

≤ 1
600

(169−29
√

21)≈ 0.0601755.
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E. Further for
√√

249−15 < ζ1 < 1, inequality (2.3.33) and Lemma B, yields

|M | ≤ 1
8

ζ1(1−ζ
2
1 )

(|A1|+ |A3|)

√
1−

A2
2

4A1A3


=

1
16
√

3
(2−ζ

2
1 )

2

√
ζ 2

1

(
ζ 4

1 +20ζ 2
1 −12

)
5ζ 6

1 +42ζ 4
1 +12ζ 2

1 −32

≤ 1
8
(3
√

249−47)≈ 0.0424002.

Based on all the above cases, we arrive at the required bound.

Theorem 2.3.3. Suppose X(x) = −48x4 − 96x3 − 392x2 + 24x+ 357 and Ff be given by (2.1.3).

If f ∈ F1 and a2 ≥ 0, then

|H2,1(Ff )| ≤ X(x0)/2304,

where x0 ≈ 0.0302 is the unique real root of the equation X ′(x) = 0.

Proof. For each f ∈F1, there exists a function p ∈P satisfying (1− z) f ′(z) = p(z). On compar-

ing coefficients of like power terms, we obtain

a2 =
1
2
(1+ c1) , a3 =

1
3
(1+ c1 + c2) , a4 =

1
4
(1+ c1 + c2 + c3) .

With the assumption that c1 ∈ [0,2], and applying Lemma 2.3.1, we obtain,

|N | := |γ1γ3 − γ
2
2 |=

1
2304

|72(1+2ζ1)(1+2ζ3(1−|ζ2|2)+2ζ1(1+2ζ2 −ζ
2
2 )+2ζ2

+2ζ
3
1 (1−ζ2)

2 −2ζ
2
1 (ζ3(1−|ζ2|2)+ζ2 −1))+3(1+2ζ1)

4

−64(1+2(ζ1 +ζ2)+2ζ
2
1 (1−ζ2))

2|. (2.3.36)

I. In equation (2.3.36), on substituting ζ1 = 1, we get |N |= 155/2304 ≈ 0.067274.

II. Since |ζ3| ≤ 1, then for ζ1 ∈ [0,1), we obtain

|N | ≤ 1
16

(1+2ζ1)(1−ζ
2
1 )Y (A1,A2,A3), (2.3.37)

where

Y (A1,A2,A3) := |A1 +A2ζ2 +A3ζ
2
2 |+1−|ζ2|2

with

A1 :=
11+56ζ1 −8ζ 2

1 +16ζ 3
1 +80ζ 4

1

144(1+2ζ1)
(
1−ζ 2

1

) , A2 :=
4ζ 2

1 +4ζ1 −7
9(1+2ζ1)
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and

A3 :=−2ζ 2
1 +9ζ1 +16
9(1+2ζ1)

.

Based on the range of ζ1 and the values of A1,A2 and A3 defined above, we find that A1A3 < 0.

Further as a consequence of Lemma B, we split our discussions into the following subcases.

A. For ζ1 ∈ [0,1), consider the expression,

V1 :=−4A1A3

(
1

A2
3
−1
)
−A2

2 =
T (ζ1)

108(1+2ζ1)
(
2ζ 2

1 +9ζ1 +16
) ,

where T (x)= 32x5+3364−27203+856x2+846x−1687. It is easy to verify that maxx∈[0,1) T (x)=

−1687, thus T (x)≤ 0. Suppose ζ ∗ = (1/2)(2
√

2−1), then for ζ1 ∈W1∪W ∗
1 , where W1 := [0,ζ ∗]

and W ∗
1 :=W c

1 ∩ [0,1), define

V2 := |A2|−2(1−|A3|) =



21−22ζ1

18ζ1 +9
, ζ1 ∈W1,

8ζ 2
1 −14ζ1 +7
18ζ1 +9

, ζ1 ∈W ∗
1 .

From the expression of V2, one can observe that, if ζ1 ∈W1, then V2 ≤ 0 leads to ζ1 ≥ 21/22, this

is not true. Clearly for ζ1 ∈ W ∗
1 , it is easy to verify that V2 > 0. Thus V1 ∩V2 is an empty set.

Therefore according to Lemma B, this case fails to hold for any value of ζ1 ∈ [0,1).

B. For ζ1 ∈ [0,1), simple computations reveal that

V3 := 4(1+ |A3|)2 =
4(2ζ 2

1 +27ζ1 +25)2

81(1+2ζ1)2 > 0

and

V4 :=−4A1A3

(
1

A2
3
−1
)
=

(4ζ 2
1 +36ζ1 −175)(80ζ 4

1 +16ζ 3
1 −8ζ 2

1 +56ζ1 +11)
324(2ζ1 +1)2(2ζ 2

1 +9ζ1 +16)
< 0.

Above inequalities yield,

A2
2 =

(7−4ζ1 −4ζ 2
1 )

2

81(2ζ1 +1) 2 > min{V3,V4}= V4.

C. Furthermore for ζ1 ∈W1 ∪W ∗
1 , we have the following expression

V5 := |A3|(|A2|+4 |A1|)−|A1A2|=



Q1(ζ1)

1296(1+2ζ1)
2 (1−ζ 2

1

) , ζ1 ∈W1,

Q2(ζ1)

1296(1+2ζ1)
2 (1−ζ 2

1

) , ζ1 ∈W ∗
1 ∪{ζ ∗},
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where

Q1(x) := 1088x6 +4096x5 +6352x4 +576x3 −1252x2 +3616x+2419

and

Q2(x) := 192x6 +1920x5 +4912x4 +1792x3 +4436x2 +4344x−1011.

A computation reveals that Q′
1(x) is never zero on W1 and Q′

1(0) = 3616, thus we deduce that

V5 ≥ Q1(0)/1296 > 0. Similarly when ζ1 ∈W ∗
1 , then V5 → Q2(ζ

∗)/(8
√

2−10)> 0 as ζ1 → ζ ∗.

Therefore in view of Lemma B, this case fails to hold any ζ1 ∈ [0,1).

D. Consider the expression

V6 := |A1A2|− |A3|(|A2|−4|A1|) =
Q2(ζ1)

1296(1+2ζ1) 2
(
1−ζ 2

1

) .
It can be easily verified that Q′

2(x) is non-vanishing over the range [0,1). Infact Q2(0)=−1011 and

Q2(1/2) = 2864, thus by intermediate value property their exists γ ∈ (0,1/2) such that Q2(γ) = 0.

Infact Q2(γ) = 0, provided γ ≈ 0.190991. Thus Q2(x) ≤ 0 for each x ∈ [0,γ], this leads to V6 ≤

Q2(γ)/(1296(1+2γ)2(1− γ2)) = 0. Consequently, on applying Lemma B to inequality (2.3.37),

we have

|N | ≤ 1
16

(1+2ζ1)(1−ζ
2
1 )(|A2|+ |A3|− |A1|)≤ T1(x0) (x0 ≈ 0.0302689),

where

T1(x) :=
X(x)
2304

=
−48x4 −96x3 −392x2 +24x+357

2304
0 ≤ x ≤ γ.

Observe that for 0 ≤ x ≤ γ,

T ′
1(x) =

−192x3 −288x2 −784x+24
2304

= 0,

holds true only if x = x0 < γ, also T ′′
1 (x0)< 0. Consequently, this leads us to the inequality T1(x)≤

T1(x0)≈ 0.155106.

E. Furthermore, for γ < ζ1 < 1, from (2.3.37) and Lemma B, it follows that

|N | ≤ 1
16

(1+2ζ1)(1−ζ
2
1 )(|A1|+ |A3|)

√
1−

A2
2

4A1A3
≤ T2(γ) (γ ≈ 0.190991),

where

T2(x) :=
1

768
(48x4 −128x3 −232x2 +200x+267)

×

√
32x6 +208x5 +544x4 +216x3 +14x2 +257x+124

480x6 +2256x5 +4224x4 +888x3 +1194x2 +2985x+528
.
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As T ′
2(x) = 0 has no solution in (γ,1), also T ′

2(x) → −(3079/15552) < 0 when x → 1. Thus

T2(x) is a decreasing function and hence T2(x) ≤ T2(γ) ≈ 0.150413. This leads us to the required

bound.

Theorem 2.3.4. Suppose X(x)=−176x4−224x3−264x2+328x+469. Let Ff be given by (2.1.3).

If f ∈ F3 and a2 ≥ 0, then

|H2,1(Ff )| ≤ X(x0)/2304,

where x0 ≈ 0.3737 is the unique real root of the equation X ′(x) = 0.

Proof. Suppose f ∈ A such that (1− z+ z2) f ′(z) = p(z), where p ∈ P. Proceeding in a similar

approach, we have

a2 =
1
2
(1+ c1), a3 =

1
3
(c1 + c2), a4 =

1
4
(c2 + c3 −1).

The expression γ1γ3 − γ2
2 in terms of ζ ′

i s (i = 1,2,3), becomes

G := γ1γ3 − γ
2
2 =

1
32

(1+2ζ1)(2ζ
3
1 (1−ζ2)

2 +2ζ1ζ2(2−ζ2)+2(ζ2 +ζ3)−1

+2ζ
2
1 (1−ζ2 −ζ3(1−|ζ2|2))−2ζ3|ζ2|2)+

1
768

(1+2ζ1)
4

− 1
9
(ζ1 +ζ2 +(1−ζ2)ζ

2
1 )

2. (2.3.38)

I. In expression (2.3.38) put ζ1 = 1, then |G |= 133/2304 ≈ 0.0577257.

II. If ζ1 ∈ [0,1), then from (2.3.38) together with |ζ3| ≤ 1, gives

|G | ≤ 1
16

(1+2ζ1)(1−ζ
2
1 )Y (A1,A2,A3), (2.3.39)

where

Y (A1,A2,A3) := |A1 +A2ζ2 +A3ζ
2
2 |+1−|ζ2|2

with

A1 :=
80ζ 4

1 +16ζ 3
1 −40ζ 2

1 −120ζ1 −69
144(1+2ζ1)

(
1−ζ 2

1

) , A2 :=
4ζ 2

1 +4ζ1 +9
9(1+2ζ1)

and

A3 :=−2ζ 2
1 +9ζ1 +16
9(1+2ζ1)

.

The expressions of A1,A2 and A3 defined above leads to A1A3 > 0. Now the inequality

|A2|−2(1−|A3|) =
8ζ 2

1 −14ζ1 +23
9(1+2ζ1)

< 0, (2.3.40)

is equivalent to 8ζ 2
1 −14ζ1+23 < 0. Since minζ1∈[0,1) 8ζ 2

1 −14ζ1+23 = 135/8 > 0, then inequal-

ity (3.2.3) is false for each ζ1 ∈ [0,1). Therefore, |A2|− 2(1−|A3|) ≥ 0 for each 0 ≤ ζ1 < 1. An
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application of Lemma B to inequality (2.3.39), gives

|G | ≤ 1
16

(1+2ζ1)(1−ζ
2
1 )(|A1|+ |A2|+ |A3|)≤ S(x0) (x0 ≈ 0.373776), (2.3.41)

where

S(x) :=
X(x)
2304

=
−176x4 −224x3 −264x2 +328x+469

2304
. (2.3.42)

Note that S′(x) vanishes at x = x0 and S′′(x0) < 0, where x0 ≈ 0.373776 is the only critical point

of S(x) in [0,1). Hence (2.3.41) determines the desired bound.

Theorem 2.3.5. Suppose 48(17+x)X(x) = (1+x)(x4+20x3−114x2+4x+125). Let Ff be given

by (2.1.3). If f ∈ F4 and a2 ≥ 0, then

|H2,1(Ff )| ≤ X(x0),

where x0 ≈ 0.381 is the unique real root of the equation X ′(x) = 0.

Proof. Let f ∈ A satisfy (1− z+ z2) f ′(z) = p(z), where p ∈ P. Following the same procedure

as before, we have

a2 =
1
2
(c1 +2) , a3 =

1
3
(2c1 + c2 +3) , a4 =

1
4
(3c1 +2c2 + c3 +4) .

Due to Lemma 2.3.1, the expression γ1γ3 − γ2
2 in terms of ζ ′

i s (i = 1,2,3), becomes

H := γ1γ3 − γ
2
2 =

1
144

(18(1+ζ1)
2(ζ 2

1 (1−ζ2)
2 −ζ1(ζ

2
2 −1+ζ3(1−|ζ2|2))

−ζ3|ζ2|2 +2ζ2 +ζ3 +2)+3(1+ζ1)
4 −4(3+4ζ1 +2ζ2

−2ζ
2
1 (ζ2 −1))2). (2.3.43)

I: Substitute ζ1 = 1 in (3.1.2), then |H |= 1/12.

II: Since |ζ3| ∈ D, then for ζ1 ∈ [0,1), we have

|H | ≤ 1
8
(1−ζ1)(1+ζ1)

2Y (A1,A2,A3), (2.3.44)

where Y (A1,A2,A3) := |A1 +A2ζ2 +A3ζ 2
2 |+1−|ζ2|2, with

A1 :=
5ζ 4

1 +2ζ 3
1 −4ζ 2

1 +6ζ1 +3
18(1−ζ1)(1+ζ1) 2 , A2 :=−2(1−ζ1)(3+ζ1)

9(1+ζ1)
, A3 :=−1

9
(8+ζ1) .

The expressions of A1,A2 and A3 defined above, demonstrates that A1A3 < 0. Moreover, based on

the conditions in Lemma B, we now look into the following subcases.
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A. Note that the inequality

|A2|−2(1−|A3|) =
4(1−ζ1)

9(1+ζ1)
≤ 0

is valid if ζ1 ≥ 1. This is false as ζ1 < 1. Infact

−4A1A3

(
1

A2
3
−1
)
−A2

2 =
2(ζ 5

1 +21ζ 4
1 −10ζ 3

1 −2ζ 2
1 +93ζ1 −31)

27(1+ζ1)2(8+ζ1)
≤ 0,

provided ζ1 ∈ [0,ζ ∗], where ζ ∗ ≈ 0.336931. Consequently, due to Lemma B this case does not

hold for each ζ1 ∈ [0,1).

B. Note that the following inequalities

J1 := 4(1+ |A3|)2 =
4
81

(17+ζ1)
2 > 0

and

J2 :=−4A1A3

(
1

A2
3
−1
)
=

2(17+ζ1)(5ζ 4
1 +2ζ 3

1 −4ζ 2
1 +6ζ1 +3)

81(1+ζ1)2(8+ζ1)
> 0,

hold simultaneously if ζ1 > ζ ∗. Thus

A2
2 =

4(1−ζ1)
2 (3+ζ1)

2

81(1+ζ1) 2 < min{J1,J2}= J2.

Therefore in view of Lemma B, inequality (2.3.44), gives

|H | ≤ 1
8
(1−ζ1)(1+ζ1)

2
(

1+ |A1|+
A2

2
4(1+ |A3|)

)
≤ X(x0) (x0 ≈ 0.381423),

where

X(x) =
(1+ x)(x4 +20x3 −114x2 +4x+125)

48(17+ x)
.

Since x= x0 > ζ ∗ is a unique real root of X ′(x)= 0 in (ζ ∗,1) and X ′′(x0)< 0, where x0 ≈ 0.381423.

Then X attains its maximum at x = x0.

C. Further for 0 ≤ ζ1 ≤ ζ ∗, simple computations reveal that

|A3|(|A2|+4|A1|)−|A1A2|=
17ζ 6

1 +128ζ 5
1 +137ζ 4

1 −80ζ 3
1 −17ζ 2

1 +160ζ1 +87
81(1−ζ1)(1+ζ1) 3 ≥ m0 > 0,

where m0 ≈ 1.05323. Similarly, |A1A2|− |A3|(|A2|− 4 |A1|) > 0. Thus, Lemma B, together with

(2.3.44), leads to |H | ≤ M(ζ1)≤ n0, where

M(ζ1) =
1
48

(3ζ
4
1 −16ζ

3
1 −18ζ

2
1 +24ζ1 +19)

√
ζ 5

1 +12ζ 4
1 +8ζ 3

1 −2ζ 2
1 +3ζ1 +14

15ζ 5
1 +126ζ 4

1 +36ζ 3
1 −78ζ 2

1 +153ζ1 +72

and n0 ≈ 0.183792. By summarizing all the above cases, the desired bound can be obtained.
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Untill now we focused on investigating coefficient problems for some close-to-convex

classes and a newly defined class of analytic functions. However, our study is not re-

stricted to the study of coefficient problems. In the upcoming chapter, we proceed to

establish certain radius results pertaining to a class of analytic functions containing non-

univalent functions involving a parabolic function.

Highlights of the Chapter

In this chapter, we establish bounds on the Hankel determinant involving logarithmic

coefficients for specific subclasses of close-to-convex functions with integer coefficients.

We derive sharp bounds on the initial coefficients and the Fekete-Szegö functional for

the newly defined class of analytic functions, S k
γ,δ (φ). Our findings demonstrate that

this class generalizes various other classes, leading to results that encompass many

previously known theorems, thereby highlighting the significance of our work.

The contents of this chapter is based on the findings presented in the following papers:

• Mridula Mundalia and Shanmugam Sivaprasad Kumar: Coefficient bounds for a unified

class of holomorphic functions, In Mathematical analysis I: Approximation theory, ICRA-

PAM 2018, Springer Proceedings in Mathematics & Statistics, vol. 306, 197–210 (2020),

Springer, Singapore. https: // doi. org/ 10. 1007/ 978-981-15-1153-0_ 17

• Mridula Mundalia and S. Sivaprasad Kumar: Coefficient Problems for Certain Close-to-

Convex Functions, Bulletin of the Iranian Mathematical Society, 49(1), Article 5, pp. 1–19

(2023). https: // doi. org/ 10. 1007/ s41980-023-00751-1

https://doi.org/10.1007/978-981-15-1153-0_17
https://doi.org/10.1007/s41980-023-00751-1




Chapter 3

On a Class of Analytic Functions

Associated with a Parabolic Region

In this chapter, we study a class of analytic functions associated with a parabolic region.

Since the parabolic domain extends leftward from the right side of the imaginary axis, the

class includes both univalent and non-univalent functions. We establish various radius

constants, including the radius of univalence and the radius of starlikeness. Additionally,

we derive radius results for this class in context of other well-known subclasses of A .

To enhance understanding, pictorial illustrations of selected radius results are provided.

Furthermore, we obtain sufficient conditions for functions belonging to the class under

consideration.

41
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3.1 Introduction

A differential inequality involving a real-valued function can provide important insights

into the nature of the function. For instance, the condition f ′(x) > 0 characterizes f as

an increasing function. Similarly, in the theory of complex-valued functions, various dif-

ferential conditions serve to characterize the behavior of a function. A classic result is the

Noshiro-Warschawski Theorem, which states that if f is analytic in the unit disc D and

satisfies Re( f ′(z))> 0 for all z ∈ D, then f is univalent in D.

A differential subordination in the complex plane serves as a generalization of a differen-

tial inequality on the real line. Consequently, many characterizations of complex-valued

functions are expressed through differential subordinations. In fact, nearly all classes

in the theory of univalent functions are defined by such subordinations. For example,

functions belonging to various subclasses of univalent functions, such as starlike, con-

vex, strongly starlike, and others, as discussed in the introductory chapter of this the-

sis, are characterized by the condition ω(z) ≺ φ(z). Here, ω(z) often takes forms like

ω(z) = z f ′(z)/ f (z), 1 + z f ′′(z)/ f ′(z), their ratios, powers of these expressions, or vari-

ants such as 1+αz f ′′(z)/ f ′(z), where α is a constant. The function φ(z) is typically a

Carathéodory function or a Ma-Minda function in most of the cases, depending on the

specific class of functions being studied.

It is important to note that when the condition Re(φ(z))> 0 is relaxed or compromised,

the corresponding function f may no longer be univalent. Based on this observation, we

encounter several classes that include non-univalent functions, which are listed below:

In 1994, Uralegaddi [168] introduced the class M (α), by taking ω(z) = z f ′(z)/ f (z) and

φ(z) = (1+(2α −1)z)/(1+ z), defined by

M (α) :=
{

f ∈ A : Re
(

z f ′(z)
f (z)

)
< α or

z f ′(z)
f (z)

≺ 1+(2α −1)z
1+ z

, α > 1
}
.

Note that M (α)⊈ S ∗. Infact, Kargar et al. [67] studied the following class by considering

ω(z) = (z f ′(z)/ f (z))−1 and φ(z)−1 = ψ(z) = z/(1−αz2),

BS (α) :=
{

f ∈ A :
z f ′(z)
f (z)

−1 ≺ z
1−αz2 , 0 < α ≤ 1

}
.

Motivated by the above classes, Kumar and Gangania [78] made a systematic study of

the class F (ψ), defined as

F (ψ) :=
{

f ∈ A :
z f ′(z)
f (z)

−1 ≺ ψ(z)
}
,
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where ψ is analytic, univalent and starlike with respect to 0 and ψ(0)= 0. In general, F (ψ)

is not necessarily a subset of S ∗. Further if φ(z) = 1+ψ(z) ≺ (1+ z)/(1− z), then F (ψ)

reduces to S ∗(1 +ψ). By choosing different ψ(z), the class F (ψ) reduces to certain

known classes, which are listed below:

Table 3.1: The class F (ψ) for specific choices of ψ(z)

S. No. F (ψ) ψ(z) References
1. BS (α) z(1−αz2)−1 Cho et al. [22]
2. Scs(β ) z(1− z)−1(1+β z)−1 Masih et al. [103]
3. F (A,B) (A−B)−1 log((1+Az)/(1+Bz)) Kumar and Yadav [86]

Where the range of various constants used in Table 3.1 are:

1. 0 < α < 1;

2. 0 ≤ β < 1;

3. A = αeiτ , B = αe−iτ with τ ∈ (0,π/2] and 0 < α ≤ 1.

Note that the classes BS (α) and F (A,B) contains non-univalent functions. Moreover,

1+ z(1− z)−1(1+ β z)−1 ⊀ (1+ z)/(1− z) for β > 1/2, therefore Scs(β ) ⊈ S ∗ and infact

Scs(β ) is a Ma-Minda subclass for β ∈ [0,1/2].

Motivated essentially by the above classes, where φ(z) = 1+

ψ(z)⊀ (1+ z)/(1− z), we consider the following function

ϕ(z) := 1+ϕ0(z), (3.1.1)

where

ϕ0(z) :=− 2
π2

(
log
(

1+
√

z
1−√

z

))2

,

which maps D onto a parabolic region, symmetric about the

real axis and ϕ(z) ⊀ (1+ z)/(1− z) (see Figure 3.1), to define

our class Fϕ , as follows:

Fϕ :=
{

f ∈ A :
z f ′(z)
f (z)

≺ ϕ(z)
}
. (3.1.2)

1.5

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
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1

2

Figure 3.1: Image of ϕ(D).

Since ϕ(z)⊀ (1+ z)/(1− z), all functions in the class Fϕ need not be univalent, therefore,

Fϕ ⊈ S ∗. Thus, Fϕ includes non-univalent functions also. Moreover, if f0 ∈ Fϕ , then it

can be expressed as

f0(z) = z
(

exp
∫ z

0

ϕ0(t)
t

dt
)
, (3.1.3)
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which acts as an extremal function for many radius results. Given that the parabolic

region ϕ(D) spreads across both sides of the imaginary axis, it is intriguing to determine

the optimal radius of the domain disc that ensures its complete mapping into the right

half-plane. Taking this observation into account, we derive radius constants such as the

radius of starlikeness for the class Fϕ . Furthermore, we establish radius results, along

with illustrative examples of special cases.

In Section 3.2, we explore certain geometric properties of ϕ(z). Additionally, we inves-

tigate radius results related to the class Fϕ , as well as the classes S ∗(φ) and F (ψ) for

specific choices of φ(z) and ψ(z), as outlined in Tables 1.1 and 3.1, respectively. Lastly,

we provide sufficient conditions for the class under study.

3.2 Radius Problems for the Class Fϕ

We begin by establishing geometric properties of the function ϕ(z), which serve as a

foundation for our subsequent analysis. Following this, we derive sharp radius results for

the function class Fϕ . In the next lemma, we determine explicit upper and lower bounds

for the real part of ϕ(z), which play a crucial role in our radius computations.

Lemma 3.2.1. Let z ∈ Dr, then for each 0 < r ≤ 1 and −π < t ≤ π, we have

ϕ0(r)≤ Reϕ0(reit)≤ ϕ0(−r).

Proof. Suppose z = reit , where −π < t ≤ π, then for |z|= r < 1,

Re(ϕ0(z)) =− 2
π2

{
Re
(

log
(

1+
√

z
1−√

z

))2
}

=− 2
π2

(
log

(√
µ1(r,ct)

µ2(r,ct)

))2

+
2

π2

(
tan−1

(
2
√

1− c2
t
√

r
1− r

))2

=: G (r,ct),

where ct := cos(t/2) and

µi(r,ct) :=

 1+ r+2ct
√

r, i = 1,

1+ r−2ct
√

r, i = 2.

Observe that ct ∈ [−1,1], infact it is easy to check that ∂G (r,ct)/∂ct = 0 if and only if ct = 0.

Further, at ct = 0, we have ∂ 2G (r,0)/∂c2
t < 0 leads to

max
ct∈[−1,1]

G (r,ct) = G (r,0) = ϕ0(−r) =
2

π2

(
tan−1

(
2
√

r
1− r

))2

. (3.2.4)
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Moreover, for each R ≤ r < 1, equation (3.2.4) leads to G (r,0) ≥ ϕ0(r) = G (r,1). Since G (r,0)

is an increasing function, whereas G (r,1) is a decreasing function of r, this leads to the inequality

G (r,1)< G (r,0), for each r < 1. Hence the required bound is achieved.

As a consequence of Lemma 3.2.1 and [78, Theorem 2.1 & Corollary 2.2], we obtain

the Growth and Covering Theorems for the class Fϕ , stated below:

Theorem 3.2.1. Let f ∈ Fϕ , then the following holds:

I. (Growth Theorem) For |z|= r < 1, let

max
|z|=r

Reϕ0(z) = ϕ0(−r) and min
|z|=r

Reϕ0(z) = ϕ0(r),

then for |z|= r < 1 the following sharp inequality holds

r exp
(∫ r

0

ϕ0(t)
t

dt
)
≤ | f (z)| ≤ r exp

(∫ r

0

ϕ0(−t)
t

dt
)
.

II. (Covering Theorem) Suppose min|z|=r Reϕ0(z) = ϕ0(r) and f ∈ Fϕ . Let f0 be given by (3.1.3), then

f (z) is a rotation of f0 or {w ∈ D : |w| ≤ − f0(−1)} ⊂ f (D), where − f0(−1) = limr→1− f0(−1).

It may be noted that the boundary of the region ϕ(D) represents a parabola y2 = 3−2x

with focus (1,0), where

ϕ(D) = Ωϕ := {w ∈ C : (Imw)2 < 3−2Rew or |1−w|< 2−Rew}. (3.2.5)

Remark 3.2.1. In view of Lemma 3.2.1, if z ∈ Dr, then for each 0 < r ≤ 1, we have ϕ(r) ≤

Reϕ(z)≤ ϕ(−r) and infact max|z|≤r |ϕ(z)|= |ϕ(r)|.

It is important to note that, Ravichandran et al. [136] computed the radius of starlikeness

for the class M (α). Cho et al. [22] dealt with certain sharp radius problems for the class

BS (α). Infact Masih et al. [103] studied the class Scs(β ), where 0 ≤ β < 1, discussed

the growth theorem and established sharp estimates of logarithmic coefficients for 0 ≤

β ≤ 1/2. In 2022, Kumar and Yadav [86] introduced the class F (A,B) and established

several radius results. In view of this, based on the definition of the class Fϕ and pictorial

representation of ϕ(D) (see Figure 3.1), we conclude that

max
|z|≤1

Re(ϕ(z)) = ϕ(−1) = 3/2.

Thus if f ∈Fϕ , we have Rez f ′(z)/ f (z)< 3/2 and f (z) can be non-univalent. Therefore, we

find the largest radius r0 < 1 such that each f ∈ Fϕ is starlike in |z|< r0. Here below, we

provide a lemma that yields a maximal disc that can be subscribed within the parabolic

region Ωϕ .
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Lemma 3.2.2. Suppose c < 3/2, and assume that ζη0 is defined as follows:

ζη0 := log
( √

η0√
1−η0

)
with η0 =

e−π
√

1−2c

1+ e−π
√

1−2c
,

then ϕ(D) satisfies the following inclusion

D(c,rc) := {w ∈ C : |w− c|< rc} ⊂ Ωϕ ,

where Ωϕ is given by (3.2.5) and

rc =


√√√√(c− 3

2
+

2ζ 2
η0

π2

)2

+
4ζ 2

η0

π2 , c ≤ 1
2
,

3
2
− c,

1
2
< c <

3
2
.

(3.2.6)

Proof. We obtain a maximal disc centered at (c,0), where c < 3/2, that can be inscribed inside

Ωϕ . The distance from center (c,0) to the boundary f (∂ (D)) is given by square root of

Dc(X) :=

c+
2

π2

(
log

( √
X2

√
1−X2

))2

− 3
2

2

+
4

π2

(
log

( √
X2

√
1−X2

))2

,

where X = cos t. Now the critical points of Dc(X) are

X0 :=


± e

1
2 π

√
1−2c√

1+ eπ
√

1−2c
,± e−

1
2 π

√
1−2c√

1+ e−π
√

1−2c
, if c <

1
2
,

±1
2
, if

1
2
≤ c <

3
2
.

It can be verified that D ′′
c (X) > 0 at X = X0, whenever c < 3/2. Therefore, X = X0 is the point

of minima for Dc(X), which leads to the optimal disc centered at c with radius rc, as given in

(3.2.6).

In the next result, we determine sharp Fϕ−radii for several Ma-Minda classes.

Theorem 3.2.2. Suppose 0 ≤ α < 1 and −1 < B < A ≤ 1. Then, for f ∈ A , the sharp Fϕ−radii

for the classes S ∗
p , S

∗
sin, S

∗
%, S ∗

sinh, S
∗

℘, BS (α), S ∗
α,e and S ∗[A,B] (see Table 1.1), are given

by

(i) RFϕ
(S ∗

p ) = tanh2(π/4).

(ii) RFϕ
(S ∗

sin) = π/6.

(iii) RFϕ
(S ∗

%) = 5/12.

(iv) RFϕ
(S ∗

sinh) = sinh(1/2).

(v) RFϕ
(S ∗

℘)≈ 0.3517 · · · .
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(vi) For 0 ≤ α < 1, RFϕ
(BS (α)) = RBS , where

RBS =

 1/2, α = 0,

(
√

1+α −1)/α, 0 < α < 1.

(vii) For 0 ≤ α < 1, RFϕ
(S ∗

α,e) = Rα,e, where

Rα,e =

 log(1−1/2(α −1)), 0 ≤ α < 1−1/2(e−1),

1, 1−1/2(e−1)≤ α < 1,

and in particular, RFϕ
(S ∗

e ) = log(3/2).

(viii) For −1 < B < A ≤ 1, RFϕ
(S ∗[A,B]) = RA,B, where

RA,B =



1/(2A−3B), when ((−1 < B ≤ (2A−1)/3)∧ (−1 < A < 0))

∨((−1 < B < (2A−1)/3)∧ (0 ≤ A ≤ 1)),

1, when ((2A−1)/3 < B < A ≤ 1)∧ (−1 < A < 0))

∨(((2A−1)/3 ≤ B < A ≤ 1)∧ (0 ≤ A ≤ 1)).

Proof. For part (i), as f ∈ S ∗
P , then due to the geometry of the parabolic function

φP(z) = 1+
2

π2

(
log
(

1+
√

z
1−√

z

))2

,

given in (1.2.5), it can be observed that for |z|< r ≤ 1,

max
|z|≤r

Re(φP(z)) = φP(r).

Now for f (z) to lie in the class Fϕ , we must have

φP(r) = 1+
2

π2

(
log
(

1+
√

r
1−

√
r

))2

≤ 3
2
,

which holds provided r ≤ RFϕ
(S ∗

P ). Clearly, z f̃ ′(z)/ f̃ (z) = φP(z) at z = RFϕ
(S ∗

P ), therefore,

f̃ (z) is an extremal function. Further observe that, if p ∈ P[A,B], where

P[A,B] :=
{

p ∈ H1 : p(z) = 1+ c1z+ c2z2 . . .≺ 1+Az
1+Bz

,−1 ≤ B < A ≤ 1
}
,

then for |z|= r < 1, it is a known fact that∣∣∣∣p(z)− 1−ABr2

1−B2r2

∣∣∣∣< |A−B|r
1−B2r2 . (3.2.7)
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Now, in view of (3.2.7), for part (viii) f ∈ S ∗[A,B], where f (z) satisfies p(z) = z f ′(z)/ f (z), lies

in Fϕ , if
(A−B)r+1−ABr2

1−B2r2 ≤ 3
2
.

Equivalently, we can say that (1−Br)((2A− 3B)r − 1) ≤ 0, provided r ≤ RFϕ
(S ∗[A,B]). Ex-

tremal function in this case is f̂ ∈ A as z f̂ ′(z)/ f̂ (z) = (1+Az)/(1+Bz) at z = RA,B. Further, we

know that max|z|≤r Re(1+sinz) = 1+sinr, then for part (ii) it is enough to find an r < 1 satisfying

the equation sinr = 1/2, thus r =RFϕ
(S ∗

sin) = π/6. Sharpness holds for the function fsin(z) given

by z f ′sin(z)/ fsin(z) = 1+ sinz. In all the subsequent parts, the proofs follow along the same lines,

therefore they are omitted.

Let P(β ) consist of functions of the form p(z) = 1+c1z+c2z2+ . . . , satisfying Re p(z)> β

for 0 ≤ β < 1, then we say p(z) is a Carathéodory function of order β . Clearly, P(0) =: P,

Further, assume Pϕ to be the class of functions of the form p(z) = 1+c1z+c2z2+ . . . , such

that p(z)≺ ϕ(z).

Theorem 3.2.3. Let 0 ≤ β < 1 and 0 < r ≤ rβ , where rβ = tanh2(π
√

1−β/2
√

2). If p ∈ Pϕ ,

then p ∈ P(β ) for |z|< rβ . This result is sharp.

Proof. Since p ∈ Pϕ , then by definition of subordination and Schwarz Lemma, there exists an

analytic function ω(z) with |ω(z)| ≤ |z| < 1 and ω(0) = 0, such that p(z) = ϕ(ω(z)). Suppose

ω(z) = Reiθ (−π < θ ≤ π), then |ω(z)| = R ≤ |z| = r < 1. In view of Remark 3.2.1, for each

p ∈ Pϕ , we have Re p(z) ≥ ϕ(r), consequently, p ∈ Pϕ lies in P(β ), if ϕ(r) ≥ β , provided

r ≤ rβ = tanh2(π
√

1−β/2
√

2), where 0 ≤ β < 1. Thus f0(z) given by (3.1.3) is the extremal

function.

Upon replacing p(z) with z f ′(z)/ f (z) in Theorem 3.2.3, we deduce the next result.

Corollary 3.2.1. Let 0 ≤ β < 1 and 0 < r ≤ rβ , where rβ is as given in Theorem 3.2.3. If f ∈Fϕ ,

then f ∈ S ∗(β ) for |z|< rβ . This result is sharp.

Remark 3.2.2. Put β = 0 in Theorem 3.2.3, we get a sharp P− radius for the class Pϕ . Infact

for the class Fϕ , Corollary 3.2.1 gives sharp radius of starlikeness r0 = tanh2(π/2
√

2). Moreover,

r = r0 < 1 serves as the sharp radius of univalence for the class Fϕ .

Theorem 3.2.4. Assume 0 < α0 ≤ 1, then the sharp S ∗(1+α0z)− radius for the class Fϕ is the

smallest positive root rα0 = tanh2(π
√

α0/2
√

2) of the equation

2
(
log((1+

√
r)/(1−

√
r))
)2 −α0π

2 = 0.
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Proof. In view of Remark 3.2.1, for |z| ≤ r < 1, we have

max
|z|≤r<1

|ϕ(z)|= 1− 2
π2

(
log
(

1+
√

r
1−

√
r

))2

= ϕ(r),

which is a decreasing function. Infact ϕ(r) = 0 if and only if r = tanh2(π/2
√

2)≈ 0.6469 · · · . As

f ∈ Fϕ , then there exists a Schwarz’s function ω(z) with ω(0) = 0, so that

z f ′(z)
f (z)

= ϕ(ω(z)).

Assume ω(z)=Reiθ , where R≤ r < 1, then for 0<α0 ≤ 1, and using the fact that max|z|≤r |ϕ0(z)|=

|ϕ0(r)| is an increasing function of r, then we have

|ϕ(ω(z))−1| ≤ |ϕ(R)−1| ≤ |ϕ0(R)| ≤ |ϕ0(r)|< α0,

provided r ≤ tanh2(π
√

α0/2
√

2) = rα0 . Further, at z0 = rα0 , the function f0(z) (defined in (3.1.3))

works as the extremal function.

Following a similar approach as in Theorem 3.2.4, sharp S ∗(1+α0z)− radii for several

well known Ma-Minda subclasses of starlike functions, namely, S ∗
e , S ∗

sin, S ∗
℘, S ∗

sinh, S ∗
SG

and S ∗
Ne

(see Table 1.1) are stated in Corollary 3.2.2.

Corollary 3.2.2. Let f ∈ Fϕ , then the following radii are sharp for the class Fϕ (see Figure 3.2):

(i) The S ∗
e −radius is r1 = tanh2(λπ), where λ = (1/2)

√
(e−1)/2e.

(ii) The S ∗
sin−radius is r2 = tanh2(π/λ ), where λ = 2

√
2csc1.

(iii) The S ∗
℘−radius is r3 = tanh2(π/2

√
2e).

(iv) The S ∗
sinh−radius is r4 = tanh2(π

√
λ/2), where λ = (1/2)sinh−1 1.

(v) The S ∗
SG−radius is r5 = tanh2(λπ/2

√
2), where λ =

√
(e−1)/(e+1).

(vi) The S ∗
Ne
−radius is r6 = tanh2(π/2

√
3).
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Figure 3.2: Images depicting sharpness of radii listed in Corollary 3.2.2.

Corollary 3.2.3. Let f ∈ Fϕ , then the following holds:

(i) f ∈ S ∗
L in |z|< tanh2

(
π

√√
2−1

2
√

2

)
≈ 0.376 · · · .

(ii) f ∈ S ∗
RL in |z|< tanh2

π

4

√√
2(
√

2−1)
(

1−
√

2(
√

2−1)
)

2
√

2

≈ 0.283 · · · .

We now define the following class constructed with the help of ratios of two analytic func-

tions f ,g ∈ A , defined as

FA :=
{

f ∈ A : Re
f (z)
g(z)

> 0 & Re
(1− z)1+Ag(z)

z
> 0,−1 ≤ A ≤ 1

}
.

The class FA reduces to the following classes, if we choose A =−1 and A = 1 respectively,

F−1 :=
{

f ∈ A : Re
f (z)
g(z)

> 0 & Re
g(z)

z
> 0
}

and

F1 :=
{

f ∈ A : Re
f (z)
g(z)

> 0 & Re
(
(1− z)2g(z)

z

)
> 0
}
.
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For proving the next theorem, we require the following lemma given by Ravichandran et

al. [135] for the classes defined below:

Pn[A,B] :=
{

p ∈ H [1,n] : p(z)≺ 1+Az
1+Bz

,−1 ≤ B < A ≤ 1
}
, (3.2.8)

and particularly, for A = 1−2β , where 0 ≤ β < 1 and B =−1,

Pn(β ) :=
{

p ∈ H [1,n] : p(z)≺ 1+(1−2β )z
1− z

,0 ≤ β < 1
}
. (3.2.9)

Lemma 3.2.3. [135] If p ∈ Pn[A,B], then for |z|= r∣∣∣∣p(z)− 1−ABr2n

1−B2r2n

∣∣∣∣≤ |A−B|rn

1−B2r2n .

Particularly, if p ∈ Pn(β ), then∣∣∣∣p(z)− 1+(1−2β )r2n

1− r2n

∣∣∣∣≤ 2(1−β )rn

1− r2n .

Theorem 3.2.5. Let −1 ≤ A ≤ 1, and suppose f ∈ Fϕ , then the sharp FA−radius is given by

RFA(Fϕ) =
1

2A+3

(√
A2 +12A+28− (5+A)

)
=: RFA .

Proof. Since f ∈FA, then by definition of class FA, we have f (z)= p1(z)g(z) and g(z)= zp2(z)(1−

z)−(1+A), where for each i = 1,2, pi : D → C are analytic functions such that pi(0) = 1 and

Re pi(z) > 0. This leads to f (z) = zp1(z)p2(z)(1− z)−(1+A), and as a consequence of logarith-

mic differentiation, we obtain

z f ′(z)
f (z)

=
1+Az
1− z

+
zp′1(z)
p1(z)

+
zp′2(z)
p2(z)

.

For each −1 ≤ A ≤ 1, Lemma 3.2.3 leads to,∣∣∣∣z f ′(z)
f (z)

− 1+Ar2

1− r2

∣∣∣∣≤ (5+A)r
1− r2 = R. (3.2.10)

Further, for each |z|= r ≤ RFA , one can observe that

1
2
≤ 1 ≤ c =

1+Ar2

1− r2 ≤
1+AR2

FA

1−R2
FA

<
3
2
. (3.2.11)

Infact inequalities (3.2.10) and (3.2.11) yields the inequality,

(5+A)r
1− r2 ≤ 3

2
− 1+Ar2

1− r2 ,
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provided r ≤ RFA . Due to Lemma 3.2.2, it is clear that the disc |w− c|< R lies in Ωϕ and

fFA(z) =
z(1+ z)2

(1− z)3+A

acts as the extremal function.

Corollary 3.2.4. Let f ∈Fϕ , then sharp F−1− radius and F1− radius for the class Fϕ are respec-

tively, given as

(i) RF−1(Fϕ) =
√

17−4 ≈ 0.123 · · · .

(ii) RF1(Fϕ) = (
√

41−6)/5 ≈ 0.080 · · · .

Theorem 3.2.6. Let 1 < α < 3/2, and suppose f ∈ Fϕ , then M (α)− radius is

rα = 1+2
(

cot
(

π
√

α −1√
2

))2

−2

∣∣∣∣∣sec
(

π
√

α −1√
2

)(
tan
(

π
√

α −1√
2

))−2
∣∣∣∣∣ .

Proof. From Remark 3.2.1, it can be viewed that

Reϕ(z)≤ ϕ(−r) = 1− 2
π2

(
log
(

1+ i
√

r
1− i

√
r

))2

= 1+
2

π2

(
tan−1

(
2
√

r
1− r

))2

.

As f ∈ Fϕ , then assume that z f ′(z)/ f (z) = p(z). Due to the above inequality Re p(z) ≤ ϕ(−r).

Moreover, ϕ(−r)≤ α provided r ≤ rα , where rα is the root of the equation

(1−α)π2 +2
(

tan−1
(

2
√

r
1− r

))2

= 0

for 1 < α < 3/2. Equality here occurs for the function f0 ∈ A , given by (3.1.3).

In 2017, Peng and Zhong [125], introduced the class Ω0 := { f ∈ A : |z f ′(z)− f (z)|< 1/2} .

In the next theorem, we determine sharp Ω0−radius for the class Fϕ .

Theorem 3.2.7. Let f ∈ Fϕ , then f ∈ Ω0 for |z| < rL ≈ 0.522 . . . , where rL is the smallest

positive root of

4 f0(r)(log((1+
√

r)/(1−
√

r)))2 = π
2

and

g0(z) = z
(

exp
∫ z

0

ϕ0(−t)
t

dt
)
= z+

8
π2 z2 − 8

3π4 (π
2 −12)z3 +

8
135π6 (1440

−360π
2 +23π

4)z4 −·· · . (3.2.12)

This is a sharp estimate.
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Proof. Since f ∈ Fϕ , then as a consequence of Remark 3.2.1 for |z|= r < 1, we have∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣< |ϕ(r)−1|= |ϕ0(r)|.

Due to the Growth theorem as mentioned in [78, Theorem 1] and Theorem 3.2.1, we observe that

| f (z)| ≤ g0(r), where g0(r) is given by (3.2.12). Further,

|z f ′(z)− f (z)|= | f (z)|
∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣≤ g0(r)|ϕ0(r)|.

Eventually, g0(r)|ϕ0(r)| ≤ 1/2 provided |z| < rL ≈ 0.522864. Hence the result is sharp for the

function f0(z).

Sufficient Conditions for Functions to be in Fϕ

We now establish some sufficient conditions for functions to be in the class Fϕ , for

which we need the following Lemma given by Jack [54]:

Lemma 3.2.4. [54, Lemma 1, p.470] Let ν(z) be a non-constant analytic function in D, such that

ν(0) = 0. If |ν(z)| attains its maximum value on the circle |z| = r at a point z0, then z0ν ′(z0) =

kν(z0), where k is real and k ≥ 1.

Theorem 3.2.8. Suppose 0 ≤ µ ≤ 1 and let f ∈ A satisfy the following differential inequality∣∣∣∣µ(1+
z f ′′(z)
f ′(z)

)
+(1−µ)

z f ′(z)
f (z)

−1
∣∣∣∣< 1

6
(3+2µ), z ∈ D, (3.2.13)

then f ∈ Fϕ .

Proof. Consider an analytic function ν(z) with ν(0) = 0. Assume f ∈ A such that

z f ′(z)
f (z)

−1 =
1
2

ν(z),

then we show that |ν(z)| < 1 in D. Suppose on the contrary |ν(z)| ≥ 1, then by an application of

Lemma 3.2.4, there exists z0 ∈D such that for k ≥ 1, |ν(z0)|= 1 and z0ν ′(z0) = kν(z0). Substitut-

ing ν(z0) = eit , −π < t ≤ π leads to∣∣∣∣µ(1+
z f ′′(z)
f ′(z)

)
+(1−µ)

z f ′(z)
f (z)

−1
∣∣∣∣

=

∣∣∣∣µ(1+
ν(z0)

2
+

kν(z0)

2+ν(z0)

)
+(1−µ)

(
1+

ν(z0)

2

)
−1
∣∣∣∣

=

∣∣∣∣ µkeit

2+ eit +
eit

2

∣∣∣∣≥ 1
6
(3+2µ).

This is a contradiction to the assumption given in (3.2.13). Thus |ν(z)| < 1, which means that



54

z f ′(z)/ f (z) lies in the disc |(z f ′(z)/ f (z))−1|< 1/2. Hence in view of Lemma 3.2.2, (with c = 1)

required result is achieved.

For µ = 1/2, µ = 0 and µ = 1 in Theorem 3.2.8, we obtain the following corollary:

Corollary 3.2.5. If f ∈ A satisfy any of the following differential inequalities:

(i)
∣∣∣∣z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

−1
∣∣∣∣< 4

3
,

(ii)
∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣< 1

2
,

(iii)
∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣< 5
6
,

then f ∈ Fϕ .

Till now we have studied radius problems for a special type of class that includes non-

univalent analytic functions. In the forthcoming chapter, we provide more radius results for

the classes: S ∗(β ) and a product class defined using funtions lying in tilted Carathéodory

class Pλ , where Pλ := {p ∈ H1 : Re(eiλ p(z))> 0,−π/2 < λ < π/2}.

Highlights of the Chapter

This chapter introduces a novel class of functions associated with a parabolic region—a

topic that has been scarcely explored in the realm of non-univalent functions. We derived

significant radius results, including the radius of univalence and starlikeness for the class

Fϕ , contextualizing our findings within the framework of Ma-Minda and several other

related classes. Our results, which are accompanied by illustrative examples and figures

as special cases, are shown to be sharp, underscoring the precision and depth of our

analysis.

The contents of this chapter is based on the findings presented in the paper:

S. Sivaprasad Kumar and Mridula Mundalia: On a Class of Non-Univalent functions Associated

with a Parabolic Region, (2023), (Under review).



Chapter 4

Radius Problems for the Class S ∗(β )

and a Product Function

We determine various radius constants for the class S ∗(β ) of starlike functions of order

β . We define Sλ ,β to be the class of normalised analytic functions f satisfying

Re(eiλ (1− z)1+β f (z)/z)> 0, z ∈ D,

and introduce a product function G(z) := (1− z)1+β g1(z)g2(z)/z, with g1,g2 ∈ Sλ ,β , to find

radius constants for G(z) to be in certain desired classes. Notably, earlier known results

are identified herein as special cases of our findings and all the results obtained are sharp.
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4.1 Introduction

Radius problems hold significant importance in GFT and are widely studied due to their

fundamental role in understanding the behavior of analytic functions. Determining sharp

radius estimates has become a common pursuit among researchers in this field, as it

offers insights into various geometric properties of functions in different classes. In the

past, many authors (see [11, 24, 65, 90, 153]) have contributed to this area, exploring

radius-related results through new and innovative approaches. Numerous advancements

continue to emerge as this topic remains an active area of investigation. In this chapter,

we draw inspiration from the works of Ravichandran et al., see [24, 153], utilizing their

ideas to derive sharp and more refined findings in context of some subclasses of starlike

functions.

In 1992, Ma-Minda dealt with Growth, distortion, covering and coefficient problems for

the class S ∗(φ). The class S ∗(φ) has been extensively studied by various authors for

different choices of φ(z), see [11, 23, 39, 59, 79, 81, 83, 104, 106, 139, 154, 156] and the

references therein. Some of the popularly known choices of φ(z) that are needed for our

study are listed in Table 1.1.

Let G and H be two subclasses of A , then the G -radius of H , denoted by RG (H )

or simply RG is the largest R ∈ (0,1) such that ρ−1 f (ρz) ∈ G , whenever 0 < ρ ≤ R, for

all f ∈ H . For example, consider H = S ∗(β ), the class of starlike functions of order β ,

where 0 ≤ β < 1, defined in (1.2.4) and G = S ∗(φ), where S ∗(φ) is defined by (1.2.2). To

find the largest R ∈ (0,1), suppose f ∈ S ∗(β ), then we have

z f ′(z)
f (z)

≺ 1+(1−2β )z
1− z

=: φβ (z).

Define fρ : D→ C by fρ(z) := f (ρz)/ρ. Consequently, we obtain

z f ′ρ(z)
fρ(z)

≺ 1+(1−2β )ρz
1−ρz

= φβ (ρz). (4.1.1)

If RS ∗(φ) is the largest R such that φβ (ρz) ≺ φ(z), whenever 0 < ρ ≤ R, then it follows

from (4.1.1) that fρ ∈S ∗(φ). Thus, we can determine the desired radius through RS ∗(φ) =

min
|z|=1

|φ−1
β

◦φ(z)|. Since φβ (z) is univalent, we have

φ
−1
β

(w) =
w−1

w+1−2β
.
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Therefore, the S ∗(φ)−radius of S ∗(β ) will become

RS ∗(φ) = min
|z|=1

∣∣∣∣ φ(z)−1
φ(z)+1−2β

∣∣∣∣
=

(
max
|z|=1

|Φ(z)|
)−1

, (4.1.2)

where

Φ(z) := 1+
2(1−β )

φ(z)−1
.

Note that the expression in (4.1.2), aids in determining RS ∗(φ) < 1 such that φβ (ρz)≺ φ(z),

for each 0 < ρ ≤ R. Now recall the generalized Koebe function f̃ (z), given by

f̃ (z) =
z

(1− z)2(1−β )
, 0 ≤ β < 1. (4.1.3)

In fact, f̃ (z) serves as the extremal function for all the sharp results derived in this section.

In Section 4.2, we focus on determining various radius constants for the class S ∗(β ),

which involves the Ma-Minda subclasses of starlike functions. Additionally, we employ

a well-established technique that illustrates an effective approach to tackle radius prob-

lems through subordination, yielding sharp results. Further, in Section 4.3, we determine

certain radius results for a product function belonging to a class of tilted Carathéodory

functions Pλ , where Pλ is given by (4.3.14). Furthermore, corrected versions of some

known results, are pointed out here, as a special case of our main theorem.

4.2 Radius Results for S ∗(β )

We proceed to estimate RS ∗(φ), the S ∗(φ)−radius of S ∗(β ), for various choices of φ(z),

as outlined below:

Theorem 4.2.1. If f ∈ S ∗(β ), where 0 ≤ β < 1, and 0 < s ≤ 1/
√

2, then the following radius

constants are sharp:

(i) RS ∗
SG
=

1
1+2(1−β )coth(1/2)

.

(ii) RS ∗
%

=
1

1+
√

2(1−β )
.

(iii) RS ∗
L (s) =

s(s+2)
2(1−β )+ s2 +2s

.

(iv) RS ∗
sin
=

sin1
sin1+2(1−β )

.

(v) RS ∗
sinh

=
sinh−1 1

sinh−1 1+2(1−β )
.

Proof. Since f ∈ S ∗(β ), then in view of (4.1.1), we have

z f ′(z)
f (z)

≺ φβ (z) =
1+(1−2β )z

1− z
.
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(i) To find RS ∗
SG

, the S ∗
SG− radius of S ∗(β ), consider φ(z) = 2/(1+ e−z), then from (4.1.2), we

have

Φ(z) = 1+
λ

2/(1+ e−z)−1
, (4.2.4)

where λ = 2(1−β ), 0 < λ ≤ 2. Now to find maximum of |Φ(z)| on the boundary of D, consider

∣∣Φ(eit)
∣∣2 = ∣∣∣∣∣1+λ +(λ −1)e−eit

1− e−eit

∣∣∣∣∣
2

=
(1+λ )2 +(λ −1)2e−2cos t +2(λ 2 −1)e−cos t cos(sin t)

1+ e−2cos t −2e−cos t cos(sin t)

=
(1+λ )2 +(λ −1)2e−2x +2(λ 2 −1)e−x cos(

√
1− x2)

1+ e−2x −2e−x cos(
√

1− x2)

=
p(x,λ )
p(x,0)

=: q(x), (4.2.5)

where x = cos t, −π < t ≤ π, and

p(x,k) = (1+ k)2 +(k−1)2e−2x +2(k2 −1)e−x cos(
√

1− x2). (4.2.6)

Now to find the maximum of q(x) in [−1,1], consider the function ϒ(x), defined as below, in the

given range of x and λ :

ϒ(x) = p(x,λ )p(1,0)− p(x,0)p(1,λ )

= 2e−2(2λ
(
λ −1+ e2(1+λ )

)
)e−x cos(

√
1− x2)−4λ (λ + e−1)e−(2x+1)

−4e−2
λ (e(1+λ )−1)

= υ(x)−υ(1),

where υ(x) = (2e−2(2λ
(
λ −1+ e2(1+λ )

)
)e−x cos(

√
1− x2)− 4λ (λ + e− 1)e−(2x+1). A com-

putation reveals that υ(x) is increasing in [−1,1], therefore we have υ(x)≤ υ(1), for −1 ≤ x ≤ 1,

which implies ϒ(x) ≤ 0 and hence q(x) ≤ q(1). Therefore, the maximum of q(x) is attained at

x = 1. Thus, from (4.2.5) we conclude that

|Φ(eit)| ≤ |Φ(1)|. (4.2.7)

Finally, by the definition of RS ∗(φ) and Φ(z), given by (4.1.2) and (4.2.4), respectively and (4.2.7),

we have

RS ∗
SG
=

(
max
|z|=1

|Φ(z)|
)−1

=

∣∣∣∣1+ 2(1−β )

2/(1+ e−1)−1

∣∣∣∣−1

.



59

At z = RS ∗
SG
, the function f̃ (z), given by (4.1.3), satisfies the equality

∣∣∣∣log
(

z f̃ ′(z)/ f̃ (z)
2− z f̃ ′(z)/ f̃ (z)

)∣∣∣∣= ∣∣∣∣log
(

1+(1−2β )z
1− (3−2β )z

)∣∣∣∣= 1

and hence the result is sharp. For the diagrammatic validation of sharpness of the result when

β = 1/2, see Figure 4.2(a).

(ii) To find RS ∗
%

, take φ(z) = z+
√

1+ z2 and λ = 2(1−β ) with 0 < λ ≤ 2. From (4.1.2), we

have

Φ(z) = 1+
λ

z−1+
√

z2 +1
. (4.2.8)

Since maximum of |Φ(z)| is obtained on the boundary of D, choose z = eit and x = cos(t/2)

(−π < t ≤ π), then (4.2.8) reduces to

∣∣Φ(eit)
∣∣2 = ∣∣∣∣∣eit +

√
1+ e2it +λ −1

eit +
√

1+ e2it −1

∣∣∣∣∣
2

=
1+(λ −1)2 +2

√
2λ cos(t/2) 4

√
cos2 t +2(λ −1)cos t +2

√
cos2 t

2+2(
√

cos2 t − cos t)

=
1+(λ −1)2 +2

√
2λx 4

√
(1−2x2)2 +2(λ −1)

(
2x2 −1

)
+2
√

(2x2 −1)2

4−4x2 +2
√
(2x2 −1)2

=
p(x,λ )
p(x,0)

= q(x),

where

p(x,k) = 1+(k−1)2 +2
√

2kx 4
√
(1−2x2)2 +2(k−1)(2x2 −1)+2

√
(2x2 −1)2.

To find maximum of q(x), we now define ϒ(x) on [0,1] as:

ϒ(x) = p(x,λ )p(1,0)− p(x,0)p(1,λ )

= 4
√

2λx 4
√

(1−2x2)2 +4((λ +1+2
√

2)(λ −1)+2(λ +
√

2)+1)x2

+2(2− ((λ −1)(λ +2
√

2+1)+2
√

2+3))
√

(2x2 −1)2 −2λ (λ +4(1+
√

2))

= υ(x)−υ(1),

where

υ(x) = 4
√

2λx 4
√

(1−2x2)2 +4((λ +1+2
√

2)(λ −1)+2(λ +
√

2)+1)x2

+2(2− ((λ −1)(λ +2
√

2+1)+2
√

2+3))
√

(2x2 −1)2.
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Figure 4.1 depicts the graph of υ(x), when λ = 0.2. How-

ever, for each λ ∈ (0,2] the graph retains its same character.

From the graph of υ(x), we observe that the function υ(x)

steadily increases in the intervals (0,1/
√

2) and (1/
√

2,1)

and has a vertical cusp at x = 1/
√

2, where the curve of

υ(x) slightly dips and peaks in a small neighborhood of

x = 1/
√

2 with υ(1/
√

2)< υ(1) and υ(x)≤ υ(1) in [0,1].

0.2 0.4 0.6 0.8 1.0

-1

1

2

3

4

Figure 4.1: Graph of υ(x), with
λ = 0.2

Thus, ϒ(x) ≤ 0, which implies p(x,λ )/p(x,0) ≤ p(1,λ )/p(1,0) and hence q(x) ≤ q(1). Con-

sequently, we have

|Φ(eit)| ≤ |Φ(1)|. (4.2.9)

Now from (4.1.2), (4.2.8) and (4.2.9), we conclude that

RS ∗
%

=

(
max
|z|=1

|Φ(z)|
)−1

=
1

1+
√

2(1−β )
.

Further, for the function f̃ (z) given by (4.1.3), we have

∣∣∣∣∣
(

z f̃ ′(z)
f̃ (z)

)2

−1

∣∣∣∣∣= 2
∣∣∣∣z f̃ ′(z)

f̃ (z)

∣∣∣∣
at z = RS ∗

%
and hence the result is sharp. Sharpness of this result can be observed in Figure 4.2(c),

for β = 1/2.

(iii) To find RS ∗
L (s), we choose φ(z) = (1+ sz)2 and λ = 2(1−β ) with 0 < λ ≤ 2, then (4.1.2)

gives Φ(z) as

Φ(z) = 1+
λ

(1+ sz)2 −1
. (4.2.10)

Now to find the maximum of |Φ(z)| on ∂D, we take z = eit , x = cos t, where −π < t ≤ π, then for

each 0 < s ≤ 1/
√

2, (4.2.10) leads to

|Φ(eit)|2 =
∣∣∣∣λ −1+(1+ seit)2

(1+ seit)2 −1

∣∣∣∣2
=

λ 2 + s4 +2λ s2 cos2t +4s(λ + s2)cos t +4s2

s2 (s2 +4scos t +4)

=
λ 2 + s4 +4s3x+ s2(λ

(
4x2 −2

)
+4)+4λ sx

s2(s2 +4sx+4)

=
ps(x,λ )
ps(x,0)

= qs(x),

where

ps(x,k) = k2 + s4 +4s3x+ s2 (k(4x2 −2
)
+4)+4ksx.
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To find optimal value of qs(x), we now consider a function ϒs(x) given as:

ϒs(x) = ps(x,λ )ps(1,0)− ps(1,λ )ps(x,0)

= 4λ s4x2 (s+2)2 −4λ s3x
(
λ + s2 −4

)
+4λ s3 (

λ − s3 −3s2 −4s−4
)

= υs(x)−υs(1), (4.2.11)

where υs(x) = 4λ s4x2 (s+2)2 − 4λ s3x
(
λ + s2 −4

)
, where −1 ≤ x ≤ 1. Observe that υ ′

s(x) = 0

if and only if x = (λ + s2 −4)/(2s(s+2)2). Moreover, υ ′′
s (x) = 8λ s4(s+2)2 > 0, which implies

x = (λ + s2−4)/2s(s+2)2 is the point of local minima, thus maximum exists at x =±1. For each

s ∈ (0,1/
√

2], one can notice that υs(−1)< υs(1). Hence

max
x∈[−1,1]

υs(x) = υs(1), (4.2.12)

Finally, from (4.2.11) and (4.2.12), we conclude that ϒs(x)≤ 0 in [−1,1]. Thus we have

ps(x,λ )
ps(x,0)

≤ ps(1,λ )
ps(1,0)

,

which gives qs(x)≤ qs(1) and

|Φ(eit)| ≤ |Φ(1)|. (4.2.13)

Hence (4.1.2), (4.2.10) and (4.2.13), yields,

RS ∗
L (s) =

(
max
|z|=1

|Φ(z)|
)−1

=
s(s+2)

2(1−β )+ s2 +2s
.

Hence, the function f̃ (z) given by (4.1.3) serves as the extremal function in this result as well. For

sharpness, see Figure 4.2(d).

(iv) To find RS ∗
sin
, we take φ(z) = 1+ sinz and λ = 2(1−β ), with 0 < λ ≤ 2, then from (4.1.2)

we have

Φ(z) = 1+
λ

sinz
.

Since for each z ∈ D, we have |sinz| ≥ sin1, then∣∣∣∣1+ λ

sinz

∣∣∣∣≤ 1+
λ

sin1
.

Therefore,

RS ∗
sin
=

(
max
|z|=1

|Φ(z)|
)−1

=

∣∣∣∣1+ 2(1−β )

sin1

∣∣∣∣−1

.

The function f̃ (z), as given in (4.1.3), is the extremal for this result. Infact the sharpness of this

result for a specific case: β = 1/2, can be noticed in Figure 4.2(e). The proof of part (v) is much
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akin to that of part (iv), therefore it is skipped here.

Let −1 ≤ B < A ≤ 1, the Janowski class of starlike functions S ∗[A,B] is given by

S ∗[A,B] = { f ∈ A : z f ′(z)/ f (z)≺ (1+Az)/(1+Bz)}.

In fact S ∗[1−2β ,−1] =S ∗(β ), the class of starlike functions of order β . In the past, many

radius results were established for the more general class S ∗[A,B], often excluding the

cases where A = 0 or β = 1/2, due to limitations of their approach. However, we have

overcomed this limitation in our findings for the class S ∗(β ).

Remark 4.2.1. Below, we enumerate earlier results achieved through alternative approaches that

align with our findings:

(i) Goel and Kumar [40, Corollary 2.4] established S ∗
SG−radius for the class S ∗(α), coincid-

ing precisely with the result obtained in Theorem 4.2.1 (i).

(ii) For A = 1−2β (β ∈ [0,1)\{1/2}), B =−1 and n = 1, the S ∗
L (s)−radius, S ∗

sin−radius and

S ∗
sinh−radius, for the class S ∗(β ) in [14, Theorem 3.6] [23, Theorem 3.7] and [11, Theorem

4.8] matches with the results obtained in Theorem 4.2.1 (ii)-(v), respectively.

(iii) When s = 1/
√

2, Theorem 4.2.1 (iii) reduces to a result of Bano and Raza [14, Theorem

3.6] for A = 1−2β and B =−1.

(iv) Theorem 4.2.1 (ii) is the corrected version of Gandhi and Ravichandran [37, Theorem 2.2]

result, for the case when A = 1−2β and B =−1.

(v) Theorem 4.2.1 (iv) and (v), addresses the case β = 1/2, however, it was excluded in the

respective findings of the results [23, Theorem 3.7] and [11, Theorem 4.8], when A = 1−2β

and B =−1.

When β = 1/2, we obtain the following result from Theorem 4.2.1 (see Figure 4.2).

Corollary 4.2.1. Let f ∈ S ∗(1/2), then the following radius constants are sharp:

(i) RS ∗
SG
=

1
1+ coth(1/2)

≈ 0.316 · · · .

(ii) RS ∗
%

=

√
2

1+
√

2
≈ 0.585 · · · .

(iii) RS ∗
L (1/

√
2) = 4

√
2−5 ≈ 0.656 · · · .

(iv) RS ∗
sin
=

sin1
1+ sin1

≈ 0.456 · · · .

(v) RS ∗
sinh

=
sinh−1 1

1+ sinh−1 1
≈ 0.468 · · · .

The figures presented above depict images of the unit disc D and DR under the mappings

φ(z) and φβ (z), respectively. Here, φβ (z) remains fixed while φ(z) varies among different

functions. These figures represent the outcomes outlined in Theorem 4.2.1, specifically
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Figure 4.2: (a) φSG(z) = 2/(1+e−z) and R ≈ 0.316 . . . (b) φsinh(z) = 1+sinh−1 z and R ≈ 0.468 . . .
(c) φ%(z) = z+

√
1+ z2 and R ≈ 0.585 . . . (d) φL1/

√
2
(z) = (1+(1/

√
2)z)2 and R ≈ 0.656 . . . (e)

φsin(z) = 1+ sinz and R ≈ 0.456 · · · .

for the case when β = 1/2. Notably, the boundaries of φ(D) and φβ (DR) touch in each

figure, clearly validating the sharpness of the results.

4.3 Radius Estimates for a Product Function Class

In 2010, Wang [171] studied the class of tilted Carathéodory functions Pλ , defined as

Pλ := {p ∈ H1 : Re(eiλ p(z))> 0}, (4.3.14)

where −π/2 < λ < π/2. While investigating this class, certain authors limit their focus to

the specific case where λ = 0, due to a intrinsic challenge involved in the study of Pλ .

Note that P0 is the well known Carathéodory class. For more properties of the class Pλ ,

one may refer to a short survey by Wang in [172]. The function pλ (z) = (1+e−2iλ z)/(1− z)

maps D univalently onto the tilted right-half plane Hλ = {w ∈ C : Re(eiλ w) > 0}, which

serves as the extremal function for several problems. For a function p ∈ Pλ , Wang [171]

determined the bound on n-th coefficient, sharp bounds on |zp′(z)/p(z)| and |p′(z)|. Even-

tually these bounds are useful in establishing different radius problems. MacGregor [100]

studied radius results for functions f ∈ A satisfying Re f (z)/z > 0. Further, Cho et al. [24]

studied the class Sλ for λ ∈ (−π/2,π/2), defined by Sλ := { f ∈ A : f (z)/z ∈ Pλ}. Moti-
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vated by the aforementioned work, here below we define a class Sλ ,β , which generalizes

Sλ :

Sλ ,β :=

{
f ∈ A :

(1− z)1+β f (z)
z

∈ Pλ

}
,

where β ∈ [−1,1]. We now determine sharp radius of starlikeness in context of various

subclasses of starlike functions, for a product function

G(z) :=
(1− z)1+β g1(z)g2(z)

z
,

where g1(z) and g2(z) are chosen from the class Sλ ,β . To prove our results, we require

the following lemmas:

Lemma 4.3.1. [172, Theorem 6, p. 678] Let p ∈ Pλ , λ ∈ (−π/2,π/2). Then∣∣∣∣zp′(z)
p(z)

∣∣∣∣≤ M(λ , |z|),

where

M(λ ,r) :=


2r cosλ

1+ r2 −2r|sinλ |
, r < | tan(λ/2)|,

2r
1− r2 , r ≥ | tan(λ/2)|.

(4.3.15)

The equality holds for some point z0 = reiθ , 0 < r < 1, if and only if p(z) = pλ (xz), where x =

ei(τ0−θ) with τ0 satisfying



τ0 = λ +
π

2
, r <− tan(λ/2),

τ0 = λ − π

2
, r < tan(λ/2),

sin(τ0 −λ ) =

(
1+ r2

r2 −1

)
sinλ , r ≥ | tan(λ/2)|,

(4.3.16)

where Pλ is given by (4.3.14).

In the following Lemma, we combine all the inclusion results stated in [39, Lemma

2.2], [11, Lemma 2.1], [4, Lemma 2.2] and [79, Lemma 2.2], respectively:
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Lemma 4.3.2. Let m1 < c < m2 and ∆c := {w ∈ C : |w− c|< r∗c}, then

∆c ⊂



φSG(D), for m1 = 2/(1+ e), m2 = 2e/(1+ e), r∗c = (e−1)/(e+1)−|c−1|, (4.3.17)

φsinh(D), for m1 = 1− sinh−1 1, m2 = 1+ sinh−1 1,

r∗c =

 c− (1− sinh−1 1), m1 < c ≤ 1,

(1− sinh−1 1)− c, 1 ≤ c < m2,
(4.3.18)

φL(D), for m1 = 0, m2 =
√

2,

r∗c =

 (
√

1− c2 − (1− c2))1/2, m1 < c ≤ 2
√

2/3,
√

2− c, 2
√

2/3 ≤ c < m2,
(4.3.19)

φ℘(D), for m1 = 1− e−1, m2 = 1+ e,

r∗c =

 (c−1)+ e−1, m1 < c ≤ 1+(e− e−1)/2,

e− (c−1), 1+(e− e−1)/2 ≤ c < m2,
(4.3.20)

φR(D), for m1 = 2(
√

2−1), m2 = 2,

r∗c =

 c−2(
√

2−1), m1 < c ≤
√

2,

2− c,
√

2 ≤ c < m2,
(4.3.21)

where φSG(z) := 2/(1+ e−z), φsinh(z) := 1+ sinh−1 z, φL(z) :=
√

1+ z, φ℘(z) := 1+ zez and φR(z) :=

1+(z/k)((k+ z)/(k− z)), where k =
√

2+1.

We begin with the following radii result:

Theorem 4.3.1. Let β ∈ [−1,1], λ ∈ (−π/2,π/2) and G(z)= (1−z)1+β g1(z)g2(z)/z with g1,g2 ∈

Sλ ,β . Then G ∈ F, whenever |z|= r < min{r0(β ),R}, where R is given by

R =

 r1(β ), r < | tan(λ/2)|,

r2(β ), r ≥ | tan(λ/2)|,
(4.3.22)

with r1(β ) being the smallest positive root of the equation Mλ ,β (r) = 0. The result holds for the

following cases:

(i) If F= S ∗
L , we find

Mλ ,β (r) = (
√

2− (β +
√

2)r−1)(1+ r2 −2r |sinλ |)−4r(1− r)cosλ , (4.3.23)

r0(β ) =

√√
2−1√
2+β

and r2(β ) =
−(β +5)+

√
β (β +4

√
2+6)−4

√
2+33

2(β +
√

2)
.

(ii) If F= S ∗
sinh, we find

Mλ ,β (r) =
(
sinh−1 1− r

(
1+β + sinh−1 1

))
(1+ r2 −2r |sinλ |)−4r(1− r)cosλ ,

(4.3.24)
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r0(β ) =

√
sinh−1 1

1+β + sinh−1 1

and

r2(β ) =
−(5+β )+

√
β 2 +10β +4(1+β + sinh−1 1)sinh−1 1+25

2(1+β + sin−1 1)
.

(iii) If F= S ∗
SG, we find

Mλ ,β (r) = (e(1− (β +2)r)−1−β r)(1+ r2 −2r |sinλ |)−4(1+ e)(1− r)r cosλ ,

r0(β ) =

√
e−1

β + e(β +2)

and

r2(β ) =
−(1+ e)(β +5)+

√
(1+ e)2β 2 +2(3+10e+7e2)β +33e2 +42e+25

2(β (e+1)+2e)
.

(iv) If F= S ∗
p , we find

Mλ ,β (r) = ((1+ r2)(1− (1+2β )r)−2r(1− r(1+2β )) |sinλ |−8r(1+ r)cosλ ),

r0(β ) =

√
1

2β +3

and

r2(β ) =



5+β

1+2β
+

√
β 2 +8β +24
|1+2β |

, −1 ≤ β <−1/2

1
9
, β =−1/2,

1
1+2β

(
5+β −

√
β 2 +8β +24

)
, −1/2 < β ≤ 1.

(v) If F= S ∗
sin, we find

Mλ ,β (r) = (sin1− r(1+β + sin1))(1+ r2 −2r |sinλ |)−4r(1− r)cosλ ,

r0(β ) =

√
sin1

1+β + sin1

and

r2(β ) =
−(β +5)+

√
β 2 +10β +4(1+β + sin1)sin1+25

2(1+β + sin1)
.
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The result is sharp.

Proof. Since g1,g2 ∈ Sλ ,β , we can find p1, p2 ∈ Pλ such that p1(z) = (1− z)1+β g1(z)/z and

p2(z) = (1− z)1+β g2(z)/z. Thus, we have G(z) = z(1− z)−(1+β )p1(z)p2(z) and

zG′(z)
G(z)

=
1+β z
1− z

+
zp′1(z)
p1(z)

+
zp′2(z)
p2(z)

.

Now for |z|= r < 1 and from Lemma 4.3.1, we have∣∣∣∣zG′(z)
G(z)

− 1+β r2

1− r2

∣∣∣∣≤ (1+β )r
1− r2 +2M(λ ,r), (4.3.25)

where M(λ ,r) is given by (4.3.15). Since −1 ≤ β ≤ 1, we have

1+β r2

1− r2 ≥ 1. (4.3.26)

(i) From inclusion (4.3.19) of Lemma 4.3.2 and (4.3.26), we have ∆c = {w : |w− c| < r∗c} ⊂

{w : |w2 − 1| < 1} = φL(D), whenever r∗c =
√

2− c for 2
√

2/3 ≤ c <
√

2. Therefore, if

w := zG′(z)/G(z) ∈ ∆c, then zG′(z)/G(z) ≺ φL(z) iff G ∈ S ∗
L . Now in view of (4.3.25),

w ∈ ∆c, provided
1+β r2

1− r2 ≤
√

2 (4.3.27)

and
(1+β )r

1− r2 +2M(λ ,r)≤
√

2− 1+β r2

1− r2 . (4.3.28)

Now on substituting (4.3.15) in (4.3.28), yields the following inequalities:

(
√

2− (β +
√

2)r−1)(1+ r2 −2r |sinλ |) for r < | tan(λ/2)|,

−4r(1− r)cosλ ≥ 0,

(β +
√

2)r2 +(β +5)r−
√

2+1 ≤ 0, for r ≥ | tan(λ/2)|.

(4.3.29)

Observe that each coefficient of the cubic equation Mλ ,β (r) = 0, where Mλ ,β (r) is given by

(4.3.23), are real, therefore it has atleast one real root. Finally, one can conclude that the

desired result follows from (4.3.27) and (4.3.29).

(ii) Due to inclusion (4.3.18) of Lemma 4.3.2 and (4.3.26), we have ∆c = {w : |w− c| < r∗c} ⊂

{w : |sinh(w−1)|< 1} = φρ(D), whenever r∗c = 1+ sinh−1 1− c for 1 ≤ c < 1+ sinh−1 1.

Thus if w := zG′(z)/G(z) ∈ ∆c, then zG′(z)/G(z) ≺ φρ(z) iff G ∈ S ∗
sinh. Now in view of

(4.3.25), w ∈ ∆c, provided
1+β r2

1− r2 ≤ 1+ sinh−1 1 (4.3.30)
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and
(1+β )r

1− r2 +2M(λ ,r)≤ 1+ sinh−1 1− 1+β r2

1− r2 . (4.3.31)

Upon using, (4.3.15) in (4.3.31), we have the following inequalities:



(
sinh−1 1− r

(
1+β + sinh−1 1

))
(1+ r2 −2r |sinλ |) for r < | tan(λ/2)|,

−4r(1− r)cosλ ≥ 0,

r2
(
1+β + sinh−1 1

)
+(5+β )r− sinh−1 1 ≤ 0, for r ≥ | tan(λ/2)|.

(4.3.32)

Hence the desired result now follows at once from (4.3.30) and (4.3.32).

(iii) In view of inclusion (4.3.17) of Lemma 4.3.2 and (4.3.26), we have ∆c = {w : |w− c| <

r∗c} ⊂ {w : | log(w/(2−w))| < 1} = φSG(D), whenever r∗c = (e− 1)/(e+ 1)− |c− 1| for

1 ≤ c ≤ 2e/(1+e). Thus if w := zG′(z)/G(z) ∈ ∆c, then zG′(z)/G(z)≺ φSG(z) iff G ∈S ∗
SG.

Now in view of (4.3.25), w ∈ ∆c, provided

1+β r2

1− r2 ≤ 2e
1+ e

(4.3.33)

and
(1+β )r

1− r2 +2M(λ ,r)≤ e−1
e+1

− 1+β r2

1− r2 +1. (4.3.34)

Now in view of (4.3.15), the inequality (4.3.34), simplifies to the following set of inequali-

ties:



(e(1− (β +2)r)−1−β r)(1+ r2 −2r |sinλ |) for r < | tan(λ/2)|,

−4(1+ e)(1− r)r cosλ ≥ 0,

(β + e(β +2))r2 +(β + e(β +5)+5)r− e+1 ≤ 0, for r ≥ | tan(λ/2)|

(4.3.35)

Hence, due to a similar argument as in part (i) of this theorem and from the inequalities

outlined in (4.3.33) and (4.3.35), we promptly infer the desired result.

The proofs of (iv) and (v) are much akin to the proof of part (i), follows by an application of

inclusions in [154, Pg 321] and [23, Lemma 3.3], respectively. Thus we omit the proofs of these

parts. For the sake of sharpness of the result, let us consider the function

G0(z) =
(1− z)1+β g1(z)g2(z)

z
, (4.3.36)
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where g1(z) and g2(z) are defined as:

g1(z) = g2(z) =
z(1− z)−(1+β )(1+ e−2iλ xz)

1− xz
. (4.3.37)

We can observe that (1− z)1+β g1(z)/z = p1(xz) ∈ Pλ and (1− z)1+β g2(z)/z = p2(xz) ∈ Pλ .

Therefore, according to Lemma 4.3.1, the equality in the result occurs in case for the functions

G0(z) = (1− z)1+β g1(z)g2(z)/z at some point z0 = reiθ , where 0 < r < 1, and x = ei(τ0−θ), with

τ0 as given in (4.3.16).

In the next theorem, we study another set of radius results in context of these classes:

S ∗
℘, S ∗

R , S ∗
c , S ∗

q and S ∗
e .

Theorem 4.3.2. Let β ∈ [−1,1], λ ∈ (−π/2,π/2) and G(z)= (1−z)1+β g1(z)g2(z)/z with g1,g2 ∈

Sλ ,β . Then G∈F whenever |z|= r <min{r0(β ),R} where R is given by (4.3.22), with r1(β ) being

the smallest positive root of the equation Mλ ,β (r) = 0. The result applies for the following cases:

(i) (a) If F= S ∗
℘ and r0(β ) =

√
e2 −1

2e(1+β )+ e2 −1
, we obtain

Mλ ,β (r) = (r+1)
(
1+ r2 −2r |sinλ |

)
− er((1+β )

(
1+ r2 −2r |sinλ |

)
+4(1+ r)cosλ )

and

r2(β ) =



1
2

(
e(β +5)

e(β +1)−1
+

√
e2(β +5)2 −4e(β +1)+4

|e(β +1)−1|

)
, −1 ≤ β < (1− e)/e,

1
1+4e

, β = (1− e)/e,

1
2(e(β +1)−1)

(
e(β +5)−

√
e2(β +5)2 −4e(β +1)+4

)
, (1− e)/e < β ≤ 1.

(b) If F = S ∗
℘ and

√
e2 −1

2e(β +1)+ e2 −1
≤ r0(β ) <

√
e

β + e+1
, with −1 < β ≤ 1, we

obtain

Mλ ,β (r) = 4(r−1)r cosλ − ((β +1)r+ e(r−1))
(
1+ r2 −2r |sinλ |

)
and

r2(β ) =
−(5+β )+

√
(β +5)2 +4e(β +1)+4e2

2(1+ e+β )
.
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(ii) (a) If F= S ∗
R and r0(β ) =

√√
2−1

β +
√

2
, we obtain

Mλ ,β (r) = (3− (β +2
√

2−2)r−2
√

2)(1+ r2 −2r |sinλ |)−4r(1+ r)cosλ

and

r2(β ) =



1
2

 β +5
β +2

√
2−2

+

√
β 2 +(8

√
2−2)β −40

√
2+81

|β +2
√

2−2|

 , −1 ≤ β < 2(1−
√

2),

3−2
√

2
7−2

√
2
, β = 2(1−

√
2),

1
2(β +2

√
2−2)

(
β +5−

√
β 2 +(8

√
2−2)β −40

√
2+81

)
, 2(1−

√
2)< β ≤ 1.

(b) If F= S ∗
R and

√√
2−1

β +
√

2
≤ r0(β )<

√
1

β +2
, with −1 < β ≤ 1, we obtain

Mλ ,β (r) = (1− (β +2)r)(1+ r2 −2r |sinλ |)−4r(1− r)cosλ

and

r2(β ) =
−(β +5)+

√
β 2 +14β +33

2(β +2)
.

(iii) (a) If F= S ∗
c and r0(β ) =

√
2

3β +5
, we obtain

Mλ ,β (r) = (2− (1+3β )r)
(
1+ r2 −2r |sinλ |

)
−12r(1+ r)cosλ

and

r2(β ) =



1
2

(
3(β +5)
1+3β

+

√
9β 2 +66β +217

|1+3β |

)
, −1 ≤ β <−1/3,

1
7
, β =−1/3,

1
2(1+3β )

(
3(β +5)−

√
9β 2 +66β +217

)
, −1/3 < β ≤ 1.

(b) If F= S ∗
c and

√
2

3β +5
≤ r0(β )<

√
2

β +3
, with −1 < β ≤ 1, we obtain

Mλ ,β (r) = (2− (3+β )r)
(
1+ r2 −2r |sinλ |

)
−4r(1− r)cosλ
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and

r2(β ) =
−(5+β )+

√
β 2 +18β +49

2(3+β )
.

(iv) (a) If F= S ∗
q and r0(β ) =

√√
2−1

β +
√

2
, we obtain

Mλ ,β (r) = ((2+ r(1−β ))−
√

2(1+ r))(1+ r2 −2r |sinλ |)−4r(1+ r)cosλ

and

r2(β ) =



1
2

 β +5
β +

√
2−1

+

√
β 2 +2β (1+2

√
2)−12

√
2+41

|β +
√

2−1|

 , −1 ≤ β < 1−
√

2,

√
2−1

3
√

2−1
, β = 1−

√
2,

1

2
(

β +
√

2−1
) (β +5−

√
β 2 +2β (1+2

√
2)−12

√
2+41

)
, 1−

√
2 < β ≤ 1.

(b) If F= S ∗
q and

√√
2−1

β +
√

2
≤ r0(β )<

√ √
2

β +
√

2+1
, with −1 < β ≤ 1, we obtain

Mλ ,β (r) = (
√

2− (1+β +
√

2)r)(1+ r2 −2r |sinλ |)−4r(1− r)cosλ

and
−(β +5)+

√
β 2 +2(2

√
2+5)β +4

√
2+33

2(β +
√

2+1)
.

(v) (a) If F= S ∗
e and r0(β ) =

√
e−1

2eβ + e2 +1
, we obtain

Mλ ,β (r) = (e(1−Ar)− (1+ r))(1+ r2 −2r |sinλ |)−4er(1+ r)cosλ )

and

r2(β ) =



1
2

 e(β +5)
1+ eβ

+

√
e2
(
β 2 +6β +25

)
+4e(β −1)+4

|1+ eβ |

 , −1 ≤ β <−1/e,

e−1
5e−1

, β =−1/e,

1
2(1+ eβ )

(
e(β +5)−

√
e2
(
β 2 +6β +25

)
+4e(β −1)+4

)
, −1/e < β ≤ 1.

(b) If F= S ∗
e and

√
e−1

2eβ + e2 +1
≤ r0(β )<

√
e−1
β + e

, with −1 < β ≤ 1, we obtain

Mλ ,β (r) = (e(1− r)−β r−1)(1+ r2 −2r |sinλ |)−4r(1− r)cosλ
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and

r2(β ) =
−(β +5)+

√
β 2 +(6+4e)β +4e2 −4e+25

2(β + e)
.

The result is sharp.

Proof. (i) From inclusion (4.3.20) of Lemma 4.3.2 and (4.3.26), we have ∆c = {w : |w− c| <

r∗c} ⊂ φ℘(D), whenever

r∗c =

 (c−1)+ e−1, 1− e−1 < c ≤ 1+(e− e−1)/2,

e− (c−1), 1+(e− e−1)/2 ≤ c < 1+ e.

Therefore, if w := zG′(z)/G(z) ∈ ∆c, then zG′(z)/G(z) ≺ φ℘(z) iff G ∈ S ∗
℘. Subsequently,

Lemma 4.3.1 and inequality (4.3.25) lead to w ∈ ∆c, provided

1+β r2

1− r2 ≤ 1+
e− e−1

2

and
(1+β )r

1− r2 +2M(λ ,r)≤ 1+β r2

1− r2 −1+
1
e

(4.3.38)

or

1+
e− e−1

2
≤ 1+β r2

1− r2 < 1+ e

and
(1+β )r

1− r2 +2M(λ ,r)≤ 1+ e− 1+β r2

1− r2 . (4.3.39)

On substituting (4.3.15) in (4.3.38) and (4.3.39), we get the following inequalities:

(I). If 1 ≤ a = (1+β r2)/(1− r2)≤ 1+(e− e−1)/2, then

(
1+ r2 −2r |sinλ |

)
(1+ r− er(1+β )) for r < | tan(λ/2)|,

−4er(1+ r)cosλ ≥ 0,

r(e(β +5− (β +1)r)+ r)−1 ≤ 0, for r ≥ | tan(λ/2)|.

(4.3.40)

(II). If 1+(e− e−1)/2 ≤ a = (1+β r2)/(1− r2)≤ 1+ e, then, we have

−((β +1)r2 + e(r−1))
(
1+ r2 −2r |sinλ |

)
for r < | tan(λ/2)|,

4(r−1)r cosλ ≥ 0,

r(β (r+1)+ r+5)+ er2 − e ≤ 0, for r ≥ | tan(λ/2)|.

(4.3.41)
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Thus, inequalities (4.3.40)-(4.3.41) leads to the required radius and G0(z) given by (4.3.36),

serves as the extremal function.

From inclusion (4.3.21) of Lemma 4.3.2 and (4.3.26), we have ∆c = {w : |w− c| < r∗c} ⊂ φR(D),

whenever

r∗c =

 c−2(
√

2−1), 2(
√

2−1)< c ≤
√

2,

2− c,
√

2 ≤ c < 2.

Therefore, if w := zG′(z)/G(z)∈ ∆c, then zG′(z)/G(z)≺ φR(z) iff G ∈S ∗
R . Consequently, Lemma

4.3.1 and inequality (4.3.25) imply that w ∈ ∆c, if

1+β r2

1− r2 ≤
√

2 (4.3.42)

and
(1+β )r

1− r2 +2M(λ ,r)≤ 1+β r2

1− r2 −2(
√

2−1) (4.3.43)

or
√

2 ≤ 1+β r2

1− r2 < 2

and
(1+β )r

1− r2 +2M(λ ,r)≤ 2− 1+β r2

1− r2 (4.3.44)

holds. In view of (4.3.15), inequalities (4.3.43) and (4.3.44) leads us to the following cases:

(I). If 1 ≤ a = (1+β r2)/(1− r2)≤
√

2, then we have

(3−2
√

2− (β +2
√

2−2)r)
(
1+ r2 −2r|sinλ |

)
for r < | tan(λ/2)|,

−4r(1+ r)cosλ ≥ 0,

(β +2
√

2−2)r2 − (β +5)r−2
√

2+3 ≥ 0, for r ≥ | tan(λ/2)|.

(4.3.45)

(II). If
√

2 ≤ a = (1+β r2)/(1− r2)< 2, then
(1− (2+β )r)

(
1+ r2 −2r|sinλ |

)
−4r(1− r)cosλ ≥ 0, for r < | tan(λ/2)|,

(β +2)r2 +(β +5)r−1 ≤ 0, for r ≥ | tan(λ/2)|.

(4.3.46)

Thus the inequalities obtained in (4.3.45) and(4.3.46) yields the required radius. Further, the proof

of parts (iii)-(v) are similar to that of part (i) and hence follow by the inclusions given in [156,

Lemma 2.5] [37, Lemma 2.1] and [106, Lemma 2.2], respectively, therefore, it is omitted here.
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Finally, equality here holds for the functions g1(z) and g2(z) given by (4.3.37) such that G0(z) =

(1− z)1+β g1(z)g2(z)/z.

Remark 4.3.1. We establish the corrected versions of the findings presented in [24, Theorem 3,

6, 11, 7, 9, 8 and 10] as special case to Theorem 4.3.1(i), (iv), (v) and Theorem 4.3.2 (ii)-(v),

respectively, all articulated in Corollary 4.3.1 and Corollary 4.3.2.

Note that Theorem 4.3.1 and Theorem 4.3.2, holds good for different values of β in the

range [−1,1]. In particular, when β = −1, center of the disc, given in (4.3.25) becomes 1,

which implies r0(−1) = 1. Since r < 1, the equation Mλ ,−1(r) = 0 simplifies to a quadratic

equation in r, whose root is r1(−1)= r1, and r2(−1)= r2, resulting in the following corollary:

Corollary 4.3.1. Let λ ∈ (−π/2,π/2) and G(z) = g1(z)g2(z)/z with g1,g2 ∈ Sλ . Then G ∈ F,

whenever |z|= r < R, where R is given by (4.3.22). The result holds for the following cases:

(i) If F= S ∗
L , then

r1 = |sinλ |+2(1+
√

2)cosλ −
√

cosλ (4(1+
√

2) |sinλ |+(8
√

2+11)cosλ )

and r2 = (1+
√

2)(
√

7−2
√

2−2)≈ 0.102 · · · .

(ii) If F= S ∗
sinh, then

r1 = |sinλ |+2(sinh−1 1)−1 cosλ −
√(

|sinλ |+2(sinh−1 1)−1 cosλ
)2 −1

and r2 =−2(sinh−1 1)−1 +
√

1+4(sinh−1 1)−2 ≈ 0.210 · · · .

(iii) If F= S ∗
SG, then

r1 = |sinλ |+2(e−1)−1(e+1)cosλ −
√

(|sinλ |+2(e+1)(e−1)−1 cosλ )2 −1

and r2 =−2(1+ e)(e−1)−1 +(e−1)−1
√

e(6+5e)+5 ≈ 0.114 · · · .

(iv) If F= S ∗
p , then r1 = 4cosλ + |sinλ |−

√
15cos2 λ +8cosλ |sinλ |

and r2 =
√

17−4 ≈ 0.123 · · · .

(v) If F= S ∗
sin, then

r1 = |sinλ |+2(sin1)−1 cosλ −
√

cos2 λ (4(sin1)−2 −1)+4cosλ |sinλ |(sin1)−1

and r2 =
√

1+4csc2 1−2csc1 ≈ 0.201 · · · .

The result is sharp.
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Corollary 4.3.2. Let λ ∈ (−π/2,π/2) and G(z) = g1(z)g2(z)/z with g1,g2 ∈ Sλ . Then G ∈ F,

whenever |z|= r < R, where R is given by (4.3.22). The result holds for the following cases:

(i) If F= S ∗
℘, then r1 = |sinλ |+2ecosλ −

√
cosλ (4e|sinλ |+(4e2 −1)cosλ )

and r2 =−2e+
√

4e2 +1 ≈ 0.091 · · · .

(ii) If F= S ∗
R , then

r1 = |sinλ |+2(3+2
√

2)cosλ −
√

cosλ (4(3+2
√

2)|sinλ |+(67+48
√

2)cosλ )

and r2 = (2
√

2+3)
(√

3(7−4
√

2)−2
)
≈ 0.042 · · · .

(iii) If F= S ∗
c , then r1 = |sinλ |+3cosλ −

√
cosλ (6 |sinλ |+8cosλ )

and r2 =
√

10−3 ≈ 0.162 · · · .

(iv) If F= S ∗
q , then

r1 = |sinλ |+(
√

2+2)cosλ −
√
((5+4

√
2)cosλ +2

√
2(1+

√
2)|sinλ |)cosλ

and r2 =
√

4
√

2+7−2−
√

2 ≈ 0.143 · · · .

(v) If F= S ∗
e , then r1 = |sinλ |+2e(e−1)−1 cosλ −

√
(|sinλ |+2e(e−1)−1 cosλ )2 −1

and r2 = (
√

1+ e(5e−2)−2e)/(e−1)≈ 0.154 · · · .

The result is sharp.

Theorem 4.3.3. For 0 ≤ α < 1 and −1 ≤ β ≤ 1 assume

κα,β (x) :=
β +5

2(α +β )
+

x
2

√
4α2 +4αβ −4α +β 2 +6β +25

(α +β )2 , α ̸=−β .

Let λ ∈ (−π/2,π/2) and G(z) = (1− z)1+β g1(z)g2(z)/z with g1,g2 ∈ Sλ ,β . Then G ∈ S ∗(α),

whenever |z|= r < R, where R is given by

R =

 r1(α,β ), r < | tan(λ/2)|,

r2(α,β ), r ≥ | tan(λ/2)|,
(4.3.47)

with r1(α,β ) being the smallest positive root of the equation

((1−β r)−α(1+ r))(1+ r2 −2r |sinλ |)−4r(1+ r)cosλ = 0
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and

r2(α,β ) =



κα,−1(−1), if β =−1,


κα,β (1), 0 ≤ α <−β ,

(1−α)(β +5)−1, α =−β ,

κα,β (−1), −β < α < 1,

if −1 < β ≤ 0,

κα,β (−1), if 0 < β ≤ 1.

The result is sharp.

Proof. From Lemma 4.3.1 and inequality (4.3.25), we have

Re
(

zG′(z)
G(z)

)
>

1−β r
1+ r

−2M(λ ,r).

Now G ∈ S ∗(α) provided

M(λ ,r)≤ 1
2

(
1−β r
1+ r

−α

)
,

holds, for |z|= r < 1. Now by application of Lemma 4.3.1, we arrive at the following two cases: ((1−β r)−α(1+ r))(1+ r2 −2r |sinλ |)−4r(1+ r)cosλ ≥ 0, for r < | tan(λ/2)|,

r2(α +β )− (β +5)r+1−α ≥ 0, for r ≥ | tan(λ/2)|.

(4.3.48)

Finally, the result follows at once due to inequalities in (4.3.48). The sharpness of the result is

confirmed by the function G0(z) given by (4.3.36), where g1(z) and g2(z) are given by (4.3.37).

The corrected version of the result [24, Theorem 5], obtained by substituting β =−1 in

Theorem 4.3.3, is stated in the following corollary:

Corollary 4.3.3. Let α ∈ [0,1), λ ∈ (−π/2,π/2) and G(z) = g1(z)g2(z)/z with g1,g2 ∈Sλ . Then

G ∈ S ∗(α), whenever |z|= r < R, where R is given by

R =

 r1(α), r < | tan(λ/2)|,

r2(α), r ≥ | tan(λ/2)|,
(4.3.49)

with

r1(α) =
2cosλ +(1−α) |sinλ |−

√
(3−α2 +2α)cos2 λ +4(1−α)cosλ |sinλ |

1−α
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and

r2(α) =

√
α2 −2α +5−2

1−α
.

The result is sharp.

Here we have determined sharp radius constants for various subclasses of A . Build-

ing upon these findings, the subsequent chapter studies a Ma–Minda class of functions

associated with the Hyperbolic cosine function. We focus on deriving radius constants

and establishing inclusion results for this class, thereby extending our study for various

starlike subclasses.

Highlights of the Chapter

In this chapter, we present a comprehensive derivation of various radius results, em-

phasizing the intricate calculations involved. To enhance comprehension, key findings are

supplemented with diagrammatic representations, providing visual clarity. Additionally, we

extend previously known results, showcasing them as special cases within our broader

framework. Employing differential subordination techniques, we introduce an elegant and

systematic approach to deriving radius results. Through procedural enhancements, we

develop new methodologies that yield simplified and sharp radius estimations.

The contents of this chapter is based on the findings presented in the paper:

S. Sivaprasad Kumar and Mridula Mundalia: On Sharp Radius estimates for S ∗(β ) and a product

function, Mathematica Slovaca, 75(2), 281-300 (2025).





Chapter 5

On a Class of Starlike Functions

Associated with Hyperbolic Cosine

Function

In this Chapter, we introduce and study a new Ma-Minda subclass of starlike functions

S ∗
ρ , defined as

S ∗
ρ :=

{
f ∈ A :

z f ′(z)
f (z)

≺ cosh
√

z =: ρ(z),z ∈ D
}
,

associated with an analytic univalent function cosh
√

z, where we choose the branch of the

square root function so that cosh
√

z = 1+ z/2!+ z2/4!+ · · · . We establish certain inclusion

relations for S ∗
ρ and deduce sharp S ∗

ρ −radii for certain subclasses of analytic functions.

79
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5.1 Introduction

Ma and Minda’s pioneering work established a unified framework for the starlike class

S ∗ and its subclasses, marking a significant advancement in GFT. They introduced the

class S ∗(φ) given by (1.2.2). This generalization encompassed many previously studied

subclasses, fostering extensive research into specific choices of φ(z) and deepening the

understanding of the geometric properties of analytic and univalent functions.

Motivated by the works of [10, 56, 104, 106, 150] (see also Table 1.1), we introduce

and study a new Ma-Minda subclass of starlike functions associated with the function

coshb
√

z. In this chapter, we investigate the properties of coshb
√

z, focusing on its geom-

etry when restricted to the principal branch of the square root function. This function can

be expressed as:

coshb
√

z =
∞

∑
k=0

(b2z)k

(2k)!
= 1+

b2z
2!

+
b4z2

4!
+ · · · , where b ∈ [−π/2,π/2]\{0}. (5.1.1)

This formulation sets the stage for our investigation into the associated starlike subclass

and its geometric properties.

Assume ρb(z) = coshb
√

z, then the conformal mapping ρb : D→C, maps the unit disc D

onto the region

Ωρb := {w ∈ C : | log(w+
√

w2 −1)|2 < b2} (b ∈ [−π/2,π/2]−{0}),

defined on the principle branch of logarithmic and square root functions. When b1 ≤ b2,

we observe that ρb1(D)⊂ ρb2(D). Moreover, for each circle |z|= r < 1,


min
|z|=r

Reρb(z) = min
|z|=r

|ρb(z)|= ρb(
√
−r)

max
|z|=r

Reρb(z) = max
|z|=r

|ρb(z)|= ρb(
√

r).
(5.1.2)

Assume ρ1(z) =: ρ(z). Observe that ρb(z) is an analytic and univalent function, satisfying

Re(ρb(z))> 0, and it maps the unit disc D onto a convex region. Additionally, it is symmet-

ric with respect to the real axis, since ρb(z) = ρb(z), and it is typically real as it satisfies

ρ ′
b(0) = b2/2 > 0. Therefore, ρb(z) is a Ma-Minda function.

In the recent past, Raza and Hussain [9, 13] have investigated the cosine and cosine

hyperbolic functions. However, these functions are non-univalent and therefore, they are

no more Ma-Minda functions. Several Ma-Minda classes have been studied in the past,

including S ∗
e ,S

∗
L (s), S

∗(qκ), S ∗[A,B] and S S ∗(β ) [10,56,104,106,150]. The geometric

and analytical properties of these classes have motivated us to introduce the following
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new class.

Definition 5.1.1. Let S ∗
ρb

be the class of normalized starlike functions, given by

S ∗
ρb

:=
{

f ∈ A :
z f ′(z)
f (z)

≺ ρb(z) := coshb
√

z, z ∈ D, b ∈ [−π/2,π/2]−{0}
}
,

where we choose the branch of the square root function so that

coshb
√

z = 1+
b2z
2!

+
b4z2

4!
+

b6z3

6!
+ · · · .

In addition to S ∗
ρb
, we also study the class S ∗

ρ1
=: S ∗

ρ , to derive radius constants along

with several inclusion relations. The integral representation for f ∈ S ∗
ρ is given by

f (z) = zexp
(∫ z

0

ρ̂(t)−1
t

dt
)
, (5.1.3)

where ρ̂(z) ≺ ρ(z). Note that if ψρ̂(z) = 1+ z/3+ z2/18 and φρ̂(z) = 1+ sin(z/3) , then evi-

dently ψρ̂(z) and φρ̂(z) are subordinate to ρ(z), so the corresponding functions

f1(z) = zexp
(

z
3
+

z2

36

)
and f2(z) = zeSi(z), where Si(z) =

∫ z

0

sin t
t

dt

lie in S ∗
ρ . Now using the representation in (5.1.3), we obtain different functions, which work

as extremal functions for various results. For instance, ϕρn ∈A (n = 2,3,4, . . .), defined as

ϕρn(z) = zexp
(∫ z

0

ρ(tn−1)−1
t

dt
)
= z+

zn

2(n−1)
+

z2n−1

48(n−1)
+ · · · , (5.1.4)

belongs to S ∗
ρ . We denote ϕρ := ϕρ2 . For completeness of our class S ∗

ρ , we give below a

remark.

Remark 5.1.1. For f ∈ S ∗
ρ and ϕρ(z) be as defined in (5.1.4), then for |z|= r0 < 1, we have

(i) −ϕρ(−r0)≤ | f (z)| ≤ ϕρ(r0) (Growth Theorem).

(ii) ϕ ′
ρ(−r0)≤ | f ′(z)| ≤ ϕ ′

ρ(r0) (Distortion Theorem).

(iii) |arg( f (z)/z)| ≤ max
|z|=r0

arg
(
ϕρ(z)/z

)
(Rotation Theorem) .

Equality for (i)-(iii) holds for some z0 ̸= 0 if and only if f (z) is a rotation of ϕρ(z). Infact if f ∈S ∗
ρ

then either f is a rotation of ϕρ(z) or f (D)⊃ {w : |w| ≤ −ϕρ(−1)≈ 0.619 . . .}.

Remark 5.1.2. For f ∈ S ∗
ρ , the sharp bounds on initial coefficients, a2,a3,a4 and Fekete-Szegö

functional, obtained using Theorems 2.2.3 and 2.2.10, are listed below:
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(i) |a2| ≤ 1/2, (ii) |a3| ≤ 1/4, (iii) |a4| ≤ 1/6,

(iv) For any complex constant µ, |a3 −µa2
2| ≤

1
4

max
{

1,
∣∣∣∣µ − 7

12

∣∣∣∣} .

Equality in (i) holds for the function ϕρ(z), given by (5.1.4), and f̃ (z) = z+ z3/4 is an extremal

function for (ii) and (iv).

In section 5.2, we discuss geometric properties of cosh
√

z, thereby deducing various

inclusion results involving, S ∗(β ), M (α) and others. Diagrammatic interpretation of the

inclusions are also provided, depicting the sharpness of our findings. In section 5.3,

sharp radius results are derived in connection to various other Ma-Minda classes such

as: S ∗(β ), C (β ), S ∗[A,B] and other classes defined through ratio of analytic expression

f (z)/g(z) or g(z)/z, where f and g lie in some suitable class of analytic functions.

5.2 Properties of Hyperbolic Cosine Function

Motivated by the works of Aouf et al. [10], Janowski [56], Masih and Kanas [104] and

others [106, 150], we study inclusion results for the class S ∗
ρ . We begin with a Lemma

which demonstrates a maximal disc centered at point (c,0) on the real line, that can be

subscribed within ρb(D).

Lemma 5.2.1. Suppose b ̸= 0, then ρb(z) satisfies the following inclusion

{w ∈ C : |w− c|< rbc} ⊂ ρb(D) =: Ωρb (−π/2 ≤ b ≤ π/2),

where

rbc =

 c− cosb, cosb < c ≤ (coshb+ cosb)/2,

coshb− c, (coshb+ cosb)/2 ≤ c < coshb.

Proof. Let Γ := ρb(eit), −π ≤ t ≤ π be the boundary curve of the function ρb(z). Due to sym-

metricity of the curve Γ about real-axis, it is enough to consider 0 ≤ t ≤ π. Define a function

Gc(τ) as follows:

Gc(τ) := (c− cosh(b(cosτ))cos(b(sinτ)))2 + sinh2 (b(cosτ))sin2 (b(sinτ)) ,

where τ = t/2. Observe that Gc(τ) (see Fig. 5.1 for different values of c) is the square of the

distance from point (c,0) to Γ. Now we study the following cases:

Case 1: For cosb < c ≤ 1, Gc(τ) is monotonically decreasing on [0,π/2], then

rbc = min
τ∈[0,π/2]

√
Gc(τ) =

√
Gc(π/2) = c− cosb.
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Figure 5.1: Graphs of G0.6(τ) = d1, G1.5(τ) = d2, G1.04(τ) = d3, G1.042(τ) = d4, (with b = 1)

Case 2: When 1 ≤ c ≤ b0, where b0 < (coshb + cosb)/2 is a point at which Gc(τ) changes

its character i.e. Gc(τ) is monotonically decreasing for 1 ≤ c ≤ b0 and has three critical points

{0,τc̃,π/2} for b0 < c ≤ (coshb+ cosb)/2, where τc̃ ∈ (0,π/2) is the only root of the equation

2c tanτ cos(bsinτ)sinh(bcosτ)+2csin(bsinτ)cosh(bcosτ)

= sin(2bsinτ)+ tanτ sinh(2bcosτ). (5.2.5)

Note that τc < τc̃ whenever c < c̃. Further,

Gc(0)−Gc(π/2) = (coshb− cosb)(cosb+ coshb−2c)≥ 0,

yields

rbc = min
τ∈[0,π/2]

{√
Gc(0),

√
Gc(τc̃),

√
Gc(π/2)

}
=
√

Gc(π/2) = c− cosb.

Case 3: For (coshb+ cosb)/2 ≤ c ≤ b1, where b1 < coshb is a point at which Gc(τ) changes its

character i.e. Gc(τ) has three critical points {0,τĉ,π/2}, where τĉ ∈ (0,π/2) is the only root of

equation (5.2.5) and Gc(τ) is an increasing function for b1 < b < coshb. Infact Gc(0)≤ Gc(π/2).

Therefore

rbc = min
τ∈[0,π/2]

{√
Gc(0),

√
Gc(τĉ),

√
Gc(π/2)

}
=
√

Gc(0) = coshb− c.

Hence the result follows.

Inclusion results in Lemma 5.2.2, follows from equation (5.1.2) and Lemma 5.2.1.

Lemma 5.2.2. For the region Ωρb := ρb(D), following inclusion relations hold:

(i) {w : |w− (coshb+ cosb)/2|< (coshb− cosb)/2} ⊂ Ωρb .

(ii) Ωρb ⊂ {w : cosb < Rew < coshb} and Ωρb ⊂ {w : cosb < |w|< coshb} .

(iii) Ωρb ⊂ {w : | Imw|< l} and Ωρb ⊂ {w : |w− (coshb+ cosb)/2|< l} ,
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where l = | Im(cosh(beit0/2))|, and t0 is the root of the equation

cosb+ coshb−2cos(bsin(t/2))cosh(bcos(t/2)) = 0.

For b = 1, Lemma 5.2.1 leads to the following result for the region Ωρ1 =: Ωρ .

Theorem 5.2.1. Let region ρ(D) = Ωρ := {w ∈ C : | log(w+
√

w2 −1)|2 < 1}, then

Ωρ ⊃ {w ∈ C : |w− c|< rc}

where

rc =

 c− cos1, cos1 < c ≤ (cosh1+ cos1)/2

cosh1− c, (cosh1+ cos1)/2 ≤ c < cosh1.
(5.2.6)

Remark 5.2.1. Theorem 5.2.1 ensures that Dc := |w− c| < rc, is the maximal disc subscribed in

ρ(D), when c = (cosh1+ cos1)/2 and rc = (cosh1− cos1)/2. Thus Dc ⊂ ρ(D).

For all the subsequent results, we shall assume l0 := cos1 and l1 := cosh1.

Lemma 5.2.3. For the region Ωρ := ρ(D), we have the following inclusion relations:

(i) {w : |w− (l0 + l1)/2|< (l1 − l0)/2} ⊂ Ωρ .

(ii) Ωρ ⊂ {w : |argw|< m} , where m ≈ 0.506053 ≈ (0.322163) π/2 ≈ 28.9947◦.

(iii) Ωρ ⊂ {w : l0 < Rew < l1} and Ωρ ⊂ {w : l0 < |w|< l1} .

(iv) Ωρ ⊂
{

w : | Imw|< lρ
}

and Ωρ ⊂
{

w : |w− (l0 + l1)/2|< lρ
}
, where lρ = | Im(cosh(eit0/2))|

and t0 is the solution of the equation

l0 + l1 −2cos(sin(t/2))cosh(cos(t/2)) = 0.

Proof. We can obtain (i), (iii)-(iv) from equations in (5.1.2), Remark 5.2.1 and Lemma 5.2.2 (for

b = 1). For part (ii) let Γ := ∂ (ρ(z)) = ρ(eit),−π ≤ t ≤ π, represents the boundary curve of ρ(z).

Assume that

Reρ(eit) = cos(sin(t/2))cosh(cos(t/2)) =: X(t)

and

Imρ(eit) = sin(sin(t/2))sinh(cos(t/2)) =: Y (t).
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Now consider

|argρ(z)|< max
|z|=1

|argρ(z)|= max
t∈[−π,π]

|argρ(eit)|= max
t∈[−π,π]

tan−1(Y (t)/X(t))

= max
t∈[−π,π]

tan−1(tan(sin(t/2)) tanh(cos(t/2))) =: m(t).

Observe that tan−1 x is a monotonically increasing real valued function, therefore, it is enough to

obtain the maximum of m(t). The roots of

m′(t) = 0.5(cos(t/2) tanh(cos(t/2))sec2(sin(t/2))

− sin(t/2) tan(sin(t/2))sech2(cos(t/2))) = 0

are t1 ≈ −1.91672 and t2 ≈ 1.91672. As t1 < t2, therefore maximum of m(t) is attained at t = t2.

Hence the inclusion in (ii) follows.

In Theorem 5.2.2 and Corollary 5.2.1, we derive inclusion results pertaining to the class

S ∗
ρ involving various other classes such as S T p(γ̂), S ∗

hpl(s̃) and k−S T [7,59,62], which

are given by:

S T p(γ̂) :=
{

f ∈ A : Re
z f ′(z)
f (z)

+ γ̂ >

∣∣∣∣z f ′(z)
f (z)

− γ̂

∣∣∣∣ , γ̂ > 0
}
,

S ∗
hpl(s̃) :=

{
f ∈ A :

z f ′(z)
f (z)

≺ 1
(1− z)s̃ ,0 < s̃ ≤ 1

}
,

k−S T :=
{

f ∈ A : Re
z f ′(z)
f (z)

> k
∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣ ,k ≥ 0

}
.

Theorem 5.2.2. Let f ∈ S ∗
ρb
, then for each b ∈ [−π/2,π/2]−{0}, following inclusions hold:

(i) S ∗
ρb
⊂ S ∗(β ), where β = cosb.

(ii) S ∗
ρb
⊂ M (α), where α = coshb.

(iii) S ∗
qκ

⊂ S ∗
ρb
, whenever κ ≤ 1− cos2 b.

(iv) k−S T ⊂ S ∗
ρb
, whenever k ≥ coshb/(coshb−1).

(v) S ∗
ρb

⊂ S ∗
hpl(s̃), whenever log(secb)/ log2 ≤ s̃ ≤ 1, b ∈ [−π/3,π/3]−{0}.

(vi) S ∗
ρb
⊂ S ∗

L (s), whenever 1−
√

cosb ≤ s ≤ 1√
2
.

Proof. Observe that, in equation (5.1.2), when r tends to 1−, sharp bounds on real part and modu-

lus of ρb(z) are obtained. Consequently, due to Lemma 5.2.2 the inclusions in (i) and (ii) are true

for the class S ∗
ρb
. We know that qκ(z) =

√
1+κz where 0 < κ ≤ 1, is associated with the region

|w2 − 1| < κ. Therefore part (iii) can be easily established as qκ(D) lies in Ωρb , if and only if,
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√
1−κ ≥ cosb, which implies κ ≤ 1− cos2 b. For part (iv), let Γk = {w ∈ C : Rew > k|w−1|} ,

then for k > 1, the set Γk represents the interior of an ellipse,

γk :=

{
(x,y) ∈ R×R :

(x− x1)
2

a2
0

+
y2

b2
0
= 1

}
,

where x1 = k2/(k2 − 1), a0 = k/(k2 − 1) and b0 = 1/
√

k2 −1. For γk to lie in Ωρb we must have

x1+a0 ≤ coshb, which gives a sufficient condition for γk to lie in Ωρb , this leads us to the required

condition. From [59] we know that Re(1− z)−s̃ > 2−s̃. Therefore for (v) to hold true 2−s̃ ≤ cosb,

which gives log(secb)/ log2 ≤ s̃ ≤ 1, provided −π/3 ≤ b ≤ π/3. Furthermore, it was demon-

strated in [104], that

Ωs = φs(D) = {x+ iy ∈ C : ((x−1)2 + y2 − s4)2 < 4s2((x−1+ s2)2 + y2)}

⊃ {w : |w−1|< 1− (1− s)2},

where 0 < s ≤ 1/
√

2. Thus for (vi) to hold true we must have 1− (1− s)2 ≥ 1− cosb. Thus

S ∗
ρb
⊂ S ∗

L (s) for each s ≥ 1−
√

cosb.

In the following Corollary we prove inclusion results for the class S ∗
ρ .

Corollary 5.2.1. For each function f ∈ S ∗
ρ the following inclusions hold:

(i) S ∗
ρ ⊂ S ∗(β ), where β = l0.

(ii) S ∗
ρ ⊂ M (α), where α = l1.

(iii) S ∗
ρ ⊂ S S ∗(β ), where β ≈ 0.3222163.

(iv) S ∗
qκ

⊂ S ∗
ρ , whenever κ ≤ 1− l2

0 .

(v) k−S T ⊂ S ∗
ρ , whenever k ≥ l1/(l1 −1).

(vi) S ∗
ρ ⊂ S ∗

hpl(s̃), whenever − log l0/ log2 ≤ s̃ ≤ 1.

(vii) S ∗
ρ ⊂ S ∗

L (s), whenever 1−
√

l0 ≤ s ≤ 1√
2
.

(viii) S ∗
ρ ⊂ S T p(γ̂), whenever γ̂ ≥ γ̂0 ≈ 0.0654238.

Proof. Clearly parts (i)− (ii) and (iv)− (vii) can be obtained as a result of Theorem 5.2.2 for

b = 1. Part (iii) is true due to Lemma 5.2.3, for the class S ∗
ρ (see Fig. 5.2). For (viii) in order

to show S ∗
ρ ⊂ S T p(γ̂), we must have |w− γ̂|−Reu < γ̂, where u(z) = cosh

√
z. For z = eit we

have

H(τ) :=
sin2(sinτ)sinh2(cosτ)

4cos(sinτ)cosh(cosτ)
< γ̂,
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g1 : ρ(∂D),ρ(z) = cosh

√
z

g2 : Rew = l0
g3 : |argw|= βπ/2

β ≈ 0.322163

g4 : Rew = l1
g5 : |w2 −1|= 1− l2

0

g6 : Rew = l1
l1−1 |w−1|

g7 :
(

Rew− l0+l1
2

l1−l0
2

)2

+
( Imw

0.65

)2
= 1

g8 : Rew+ γ̂ = |w− γ̂|,
γ̂ = γ̂0 ≈ 0.0654238

g9 : g9(∂D),g9(z) = 1
(1−z)s̃0

,

s̃0 =
log l−1

0
log2

Figure 5.2: Graph depicting the boundary curves of various dominants and subordinants of ρ(∂D)
as deduced in Corollary 5.2.1.

where τ = t/2. Clearly, H ′(τ) vanishes on {0, τ̃,π/2}, with τ = τ̃ ≈ 0.832934 as the only root of

the equation

tan(sinτ) tanh(cosτ)((cosτ(cos(2sinτ)+3)sinh(cosτ)sec(sinτ))

− sinτ sin(sinτ)(cosh(2cosτ)+3)sech(cosτ)) = 0

in (0,π/2). Therefore,

max
τ∈[0,π/2]

H(τ) = H(τ̃)≈ 0.0654238.

Observe that S T p(γ̂1)⊂ S T p(γ̂2), whenever γ̂1 < γ̂2. This leads to the required inclusion rela-

tion.

Remark 5.2.2. Fig. 5.2 displays various inclusion relations related to the region Ωρ := Ωρ1 . A

vertical ellipse enclosing the region Ωρ is

(
x− l0 + l1

2

)
(

l1 − l0
2

)2

2

+
y2

b2
2
= 1,

where b2 ≥ maxImρ(z). For visual purposes we illustrate this ellipse (g7) for b2 = 0.65. Fig. 5.2
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depicts the sharpness of inclusion results given in Corollary 5.2.1.

We now state a Lemma needed to prove the next result.

Lemma 5.2.4. [152] If p ∈ Pn(β ), then for |z|= r∣∣∣∣zp′(z)
p(z)

∣∣∣∣≤ 2(1−β )nrn

(1− rn)(1+(1−2β )rn)
.

Theorem 5.2.3. Let p(z) = (1+Az)/(1+Bz), where −1 < B < A ≤ 1, then p(z) ≺ cosh
√

z, if

and only if

A ≤

 1− (1−B)l0, if 2(1−AB)≤ (l0 + l1)(1−B2),

(1+B)l1 −1, if 2(1−AB)≥ (l0 + l1)(1−B2).
(5.2.7)

Proof. Lemma 3.2.3 shows that the p(z) = (1+Az)/(1+Bz), maps D onto the disc∣∣∣∣p(z)− 1−AB
1−B2

∣∣∣∣≤ A−B
1−B2 , −1 < B < A ≤ 1.

By Theorem 5.2.1, p(z) ≺ cosh
√

z if and only if the above disc lies within Ωρ . Conditions in

(5.2.7) gives (1+A)≤ (1+B)l1, provided 2(1−AB)≥ (l0+ l1)(1−B2) holds. Infact (A−B)/(1−

B2) ≤ l1 − (1−AB)/(1−B2) leads to (A−B)/(1−B2) ≤ l1 − c provided 2c ≥ l0 + l1 where c =

(1−AB)/(1−B2). Also from (5.2.7), (1−A)≥ (1−B)l0 whenever 2(1−AB)≤ (l0+ l1)(1−B2).

Equivalently, (A−B)/(1−B2)≤ c− l0 whenever 2c ≤ l0+ l1. Thus p(z) lies in |w−c|< rc, where

rc is given by (5.2.6).

Theorem 5.2.3 leads to the following result:

Corollary 5.2.2. Let conditions on A and B be as given in Theorem 5.2.3, then S ∗[A,B]⊂ S ∗
ρ .

5.3 Radius Problems and Certain Estimates for the Class S ∗
ρ

Radius problems have been an active area of research in GFT. Some of the pioneering

works in this direction have been discussed by several authors, see [10, 106, 135, 150].

Motivated by these work, we derive radius results for S ∗
ρ involving the following classes:

S ∗
n (ρ) =

{
f ∈ An :

z f ′(z)
f (z)

≺ cosh
√

z =: ρ(z)
}
,

S ∗
n [A,B] =

{
f ∈ An :

z f ′(z)
f (z)

≺ 1+Az
1+Bz

}
and

Mn(α) =

{
f ∈ An :

z f ′(z)
f (z)

≺ 1+(1−2α)z
1− z

,α > 1
}
.
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We apply lemmas stated in Section 5.2, to obtain sharp S ∗
n (ρ)−radius, S ∗

n [A,B]− ra-

dius and Mn(α)−radius for the class S ∗
ρ . The proof of the following theorem can be

obtained from Lemma 5.2.3 and equations in (5.1.2), so it is skipped here.

Theorem 5.3.1. Let f ∈ S ∗
ρ , then f ∈ M (α) for |z|< rα , where

rα =

 r(α), 1 < α < l1,

1, α ≥ l1.

and r(α) ∈ (0,1) is the smallest root of the equation: cosh
√

r = α. Equality holds when f (z) =

ϕρ(z).

Theorem 5.3.2. Let f ∈S ∗
ρ , then f ∈S ∗(β ) for |z|< rβ , where β ∈ [0,1) and rβ < 1 is the least

positive root of the equation: cos
√

r = β . This radius result is sharp.

Proof. As f ∈ S ∗
ρ , then we have z f ′(z) = f (z)cosh

√
ω(z), where ω(z) is a Schwarz function

with ω(0) = 0 such that for −π ≤ t ≤ π, ω(z) = Reit . For each R = |ω(z)| ≤ |z|= r < 1, we have

cos
√

R ≥ cos
√

r, and as a result of equations in (5.1.2)

Re
z f ′(z)
f (z)

≥ min
|z|=r

Reρ(ω(z)) = cos
√

r ≥ β .

If s(r,β ) := cos
√

r−β , then there exist rβ0 < rβ1 such that s(rβ0 ,β )> 0 and s(rβ1 ,β )< 0, holds.

Thus a least positive root rβ for the equation s(r,β ) = 0, will serve the purpose. In particular, at

z0 = −r, we have Re(z0 f̃ ′(z0)/ f̃ (z0)) = cos
√

r = β , then function f̃ (z) = ϕρ(z) is the extremal

function.

In Theorem 5.3.3, we establish radius of convexity of order β for the class S ∗
ρ .

Theorem 5.3.3. Let f ∈ S ∗
ρ , then f ∈ C (β ) for |z| ≤ rβ , where β ∈ [0,1) and rβ ∈ (0,1) is the

least positive root of the equation

2(1− r2)cos
√

r−
√

r tan
√

r = β .

Proof. As f ∈ S ∗
ρ , there exists a Schwarz function ω(z) such that ω(0) = 0 and

z f ′(z)
f (z)

= cosh
√

ω(z). (5.3.8)
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On logarithmically differentiating (5.3.8) and applying triangle inequality, we deduce

Re
(

1+
z f ′′(z)
f ′(z)

)
= Re

z f ′(z)
f (z)

+Re

(
zω ′(z) tanh

√
ω(z)

2
√

ω(z)

)

≥ cos
√

r−|z||ω ′(z)|

∣∣∣∣∣ tanh
√

ω(z)

2
√

ω(z)

∣∣∣∣∣ (|z|= r < 1). (5.3.9)

Further as ω(z) is a Schwarz function, then due to Schwarz Pick Lemma, we have

|ω ′(z)| ≤ 1−|ω(z)|2

1−|z|2
. (5.3.10)

Now in view of (5.3.10), we have

−|z||ω ′(z)|

∣∣∣∣∣ tanh
√

ω(z)√
ω(z)

∣∣∣∣∣≥−|z|1−|ω(z)|2

1−|z|2

∣∣∣∣∣ tanh
√

ω(z)√
ω(z)

∣∣∣∣∣ . (5.3.11)

Assume ω(z) = Reit , t ∈ [−π,π], where R ≤ r < 1, then inequality (5.3.11) yields

Re

(
zω ′(z) tanh

√
ω(z)

2
√

ω(z)

)
≤

√
r tan

√
r

2(1− r2)
. (5.3.12)

Thus from inequalities (5.3.9) and (5.3.12) we conclude that

Re
(

1+
z f ′′(z)

f (z)

)
≥ cos

√
r−

√
r tan

√
r

2(1− r2)
.

Hence the least positive root of the equation of 2(1− r2)cos
√

r −
√

r tan
√

r = β will serve the

purpose.

Theorem 5.3.4. For −1 ≤ B < A ≤ 1, suppose f ∈ S ∗
n [A,B], then the sharp S ∗

n (ρ)−radius is

given by

(i) RS ∗
n (ρ)

(S ∗
n [A,B]) = min{1;((1− l0)/(A−Bl0)1/n}=: R0, where 0 ≤ B < A ≤ 1.

(ii) RS ∗
n (ρ)

(S ∗
n [A,B]) =

 R0, R0 ≤ R1,

R2, R0 > R1,
where −1 ≤ B < 0 < A ≤ 1.

where

R1 :=
(

l0 −2
B(l0B−2A)

)1/2n

, R2 := min

{
1;
(

l1 −1
A−Bl1

)1/n
}
.

Proof. As f ∈ S ∗
n [A,B], then p(z) = z f ′(z)/ f (z) lies in the disc |p(z)− c|< R, where

c =
1−ABr2n

1−B2r2n and R =
(A−B)rn

1−B2r2n .
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If B ≥ 0, then c ≤ 1. For f (z) to lie in S ∗
n (ρ), Theorem 5.2.1 and Lemma 3.2.3 yields

(A−B)rn

1−B2r2n ≤ 1−ABr2n

1−B2r2n − l0.

The above inequality gives r ≤ R0. Equality here holds for f̃ (z) of the form

f̃ (z) =

 z(1+Bzn)(A−B)/nB, B ̸= 0

zexp(Azn/n), B = 0.
(5.3.13)

Further, if −1 ≤ B < 0 < A ≤ 1 and R0 ≤R1, then c ≤ (l0+ l1)/2 if and only if r ≤R1. Therefore,

for 0 < r ≤ R0, we deduce that c ≤ (l0 + l1)/2. Infact due to Theorem 5.2.1 for each f ∈ S ∗
n (ρ),

we have (A−B)rn/(1−B2r2n)≤ c− l0, equivalently r ≤ R0. Furthermore assume that R0 > R1.

Then c ≥ (l0 + l1)/2 if and only if r ≥ R1. In particular for r ≥ R0, we have c ≥ (l0 + l1)/2. Thus

by Theorem 5.2.1, for each f ∈S ∗
n (ρ), the inequality (A−B)rn/(1−B2r2n)≥ l1−c is equivalent

to r ≤ R2. The function f̃ (z) given in (5.3.13) works as the extremal function.

Theorem 5.3.5. Let α > 1, then the sharp S ∗
n (ρ)−radius for the class Mn(α), is given by

RS ∗
n (ρ)

(Mn(α)) =

(
1− l0

2α − (1+ l0)

)1/n

.

Proof. As f ∈ Mn(α), then z f ′(z)/ f (z)≺ (1+(1−2α)z)/(1− z). Clearly, for each α > 1, (1+

(1−2α)r2n)/(1− r2n)≤ 1. Further by Lemma 3.2.3, we get∣∣∣∣z f ′(z)
f (z)

− 1+(1−2α)r2n

1− r2n

∣∣∣∣≤ 2(α −1)rn

1− r2n .

On applying Theorem 5.2.1, we have

2(α −1)rn

1− r2n ≤ 1+(1−2α)r2n

1− r2n − l0

or equivalently r2n((1− 2α)+ l0)− 2(α − 1)rn + 1− l0 ≥ 0, which gives r ≤ RS ∗
n (ρ)

(Mn(α)).

The required extremal function is f̃ (z) = z/(1− zn)2(1−α)/n.

In view of certain properties of the class Fϕ , where Fϕ is as defined in (3.1.2), with ϕ

given by (3.1.1), we establish the following theorem.

Theorem 5.3.6. Suppose 0 ≤ α < 1, then for f ∈ A , the sharp Fϕ−radii for the class S ∗
ρ is

given by

RFϕ
(S ∗

ρ ) =

(
cosh−1

(
3
2

))2

.
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Proof. As f ∈ S ∗
ρ , then f lies in Fϕ , if we have

max
|z|=r

Recosh
√

z = cosh
√

r ≤ max
|z|<1

Reϕ(z) =
3
2
,

provided r ≤ RFϕ
(S ∗

ρ ). Sharpness holds for the function fρ ∈ A defined as z f ′ρ(z)/ fρ(z) =

cosh
√

z.

As a consequence of Theorem 5.3.6, S ∗(1+α0z)− radii for the class S ∗
ρ , is stated in

Corollary 5.3.1.

Corollary 5.3.1. Let f ∈Fϕ , then the sharp S ∗
ρ −radius for the class Fϕ , is given by tanh2(πλ/2),

where λ = sin(1/2).

Recently, Lecko et al. [88] investigated the expressions Re(1− z2) f (z)/z > 0 and Re(1−

z)2 f (z)/z > 0, involving the starlike functions z/(1− z2) and z/(1− z)2. In 2019, Cho et

al. [23] estimated radii constants for classes characterized by the ratio of two analytic

functions f (z) and g(z) with certain conditions on g(z), namely Reg(z)/z > α for α = 0 or

1/2, such that Re f (z)/g(z) > 0. Motivated by these classes, here below we define some

subclasses of An,

F1(β ) :=
{

f ∈ An :
∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1 and Re

g(z)
z

> β ,g ∈ An

}
(β ∈ {0,1/2})

and

F2 :=
{

f ∈ An :
∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1 and g ∈ An is convex

}
.

Definition 5.3.1. Let −1 ≤ A ≤ 1 and g ∈ An, then for each n = 1,2, . . . , F3 ⊂ An, be defined as:

F3 :=

{
f ∈ An : Re

f (z)
g(z)

> 0 and Re
(1− zn)(1+A)/ng(z)

z
> 0

}
.

Remark 5.3.1. The functions f̃ (z) = z(1 + (1 − 2β )zn) and g̃(z) = z(1 + (1 − 2β̂ )zn)/(1 − zn)

defined on D satisfy |( f̃ (z)/g̃(z))−1|= |z|n < 1 and Re g̃(z)/z=Re(1+(1−2β )zn)/(1−zn)> β .

Therefore f̃ ∈ F1(β ), where β ∈ {0,1/2} . If f̃ (z) = z(1 + zn)/(1 − zn)1/n and g̃(z) = z/(1 −

zn)1/n, then f̃ ∈ F2. Similarly, when f̃ (z) = z(1+ zn)2/(1− zn)2+(1+A)/n and g̃(z) = z(1+ zn)/(1−

zn)1+(1+A)/n, then f̃ ∈ F3. Therefore the class F3 is non-empty.

Theorem 5.3.7. The sharp S ∗
n (ρ)− radii for the classes F1(0),F1(1/2) and F2, are respectively

given by

(i) RS ∗
n (ρ)

(F1(0)) =

(√
9n2 −4(l0 −1)(1+n− l0)−3n

2(1+n− l0)

)1/n

.

(ii) RS ∗
n (ρ)

(F1(1/2)) =
(

1− l0
2n− (l0 −1)

)1/n

.
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(iii) RS ∗
n (ρ)

(F2) =

(√
1+n(n+6)+4l0(l0 − (1+n))− (1+n)

2(n− l0)

)1/n

.

Proof. Assume f (z)/g(z) = p1(z) and g(z)/z = p2(z), where f (z) and g(z) are analytic functions

in D.

(i) As f ∈ F1(0), then p2 ∈ Pn(0). We know that |p1(z)−1| < 1 holds if Re(1/p1(z)) > 1/2

and vice-versa. Assume f (z) = zp1(z)p2(z). Now using the expressions of p1(z), p2(z) and

by applying Theorem 5.2.1 and Lemma 5.2.4 we have∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣= ∣∣∣∣zp′2(z)

p2(z)
− zp′1(z)

p1(z)

∣∣∣∣≤ (3+ rn)nrn

1− r2n ≤ 1− l0.

The above inequality leads to r2n(n+1−l0)+3nrn−1+l0 ≤ 0, provided r ≤RS ∗
n (ρ)

(F1(0)).

The functions f̃ (z)= z(1+zn)/(1−zn)2 and g̃(z)= z(1+zn)/(1−zn) at z0 =RS ∗
n (ρ

(F1(0))eiπ/n

gives
z0 f̃ ′(z0)

f̃ (z0)
−1 =

(3+ zn
0)nzn

0

1− z2n
0

= 1− l0.

Thus f̃ is the extremal function.

(ii) As f ∈ RS ∗
n (ρ)

(F1(1/2)), then 1/p1, p2 ∈ Pn(1/2). Proceeding as in (i), on applying The-

orem 5.2.1 and Lemma 5.2.4 we get∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣≤ 2nrn

1− rn ≤ 1− l0.

This holds true whenever r ≤RS ∗
n (ρ)

(F1(1/2)). For sharpness, consider f̃ (z) = z and g̃(z) =

z/(1− zn), then at z0 = RS ∗
n (ρ)

(F1(1/2))eiπ/n, we get

z0 f̃ ′(z0)

f̃ (z0)
−1 =

2nzn
0

1− zn
0
= 1− l0.

(iii) Let f (z)/g(z) = p(z) be a function defined in D. As f ∈ F2, then |1/p(z)−1|< 1 if and only

if Re p(z)> 1/2. As g∈An is convex, then due to Marx-Strohhäcker theorem, g∈S ∗
n (1/2),

(S ∗
n (1/2) = { f ∈ An : Rez f ′(z)/ f (z)> 1/2}). Therefore, due to Lemma 3.2.3,∣∣∣∣zg′(z)

g(z)
− 1

1− r2n

∣∣∣∣≤ rn

1− r2n .

On logarithmically differentiating f (z) and applying Theorem 5.2.1, we get∣∣∣∣z f ′(z)
f (z)

− 1
1− r2n

∣∣∣∣= ∣∣∣∣zg′(z)
g(z)

− zp′(z)
p(z)

− 1
1− r2n

∣∣∣∣
≤ nr2n +(1+n)rn

1− r2n ≤ 1
1− r2n − l0,
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which leads to r2n(n− l0) + rn(1+ n)− 1+ l0 ≤ 0, provided r ≤ RS ∗
n (ρ)

(F2). The func-

tions f̃ (z) = z(1+ zn)/(1− zn)1/n and g̃(z) = z/(1− zn)1/n at z0 = RS ∗
n (ρ)

(F2)eiπ/n gives

|z0 f̃ ′(z0)/ f̃ (z0)|= l0.

Hence the result is sharp.

Theorem 5.3.8. Let −1 ≤ A ≤ 1 and r ∈ [0,1), then for n = 1,2, . . . , the sharp S ∗
n (ρ)−radius for

the class F3 is given by

RS ∗
n (ρ)

(F3) =

 R0, r ≤ R0,

R1, r ≥ R0,

where

R0 =



(
1+A+4n+

√
(1+A+4n)2 −4(1− l0)(A+ l0)

2(A+ l0)

)1/n

, if −1 ≤ A <−l0,

(
1− l0

1+4n− l0

)1/n

, if A =−l0,

(
1+A+4n−

√
(1+A+4n)2 −4(1− l0)(A+ l0)

2(A+ l0)

)1/n

, if − l0 < A ≤ 1

and

R1 =

(√
(1+A+4n)2 +4(A+ l1)(l1 −1)− (1+A+4n)

2(A+ l1)

)1/n

.

Proof. Let f ∈F3, then Re f (z)/g(z)> 0 and Re((1−zn)(1+A)/ng(z)/z)> 0, where g∈An. Define

g(z)/ f (z) = p1(z) and (1− zn)(1+A)/ng(z)/z = p2(z), where p1(z) and p2(z) are analytic in D.

Since A < 1, then for |z| = r < 1, the inequality (1+ Ar2n) ≥ 1− r2n, holds true. Further on

logarithmically differentiating zp1(z)p2(z)(1− zn)−(1+A)/n = f (z), we get

z f ′(z)
f (z)

=
1+Azn

1− zn +
zp′1(z)
p1(z)

+
zp′2(z)
p2(z)

.

Due to Lemma 3.2.3 and Lemma 5.2.4, for |z|= r, we infer

∣∣∣∣z f ′(z)
f (z)

− 1+Ar2n

1− r2n

∣∣∣∣≤ 4nrn

1− r2n +
(1+A)rn

1− r2n . (5.3.14)

Assume c = (1 + Ar2n)/(1 − r2n). Then c ≤ (l0 + l1)/2 leads to r ≤ R and vice-versa, where

R = ((l0 −2)/(2A+ l0))
1/2n . Algebraically, for each n = 1,2,3, . . . , it can be observed that, for

the given range of A, we have R0 <R1 <R. In particular, if r ≤R0, then c ≤ (l0+ l1)/2. Further
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due to Theorem 5.2.1, inequality (5.3.14) gives

4nrn

1− r2n +
(1+A)rn

1− r2n ≤ 1+Ar2n

1− r2n − l0,

whenever r ≤ R0. Moreover if c ≥ (l0 + l1)/2, then r ≥ R0. Infact, when r ≥ R0, then we have

c ≥ (l0 + l1)/2. Now inequality (5.3.14) together with Theorem 5.2.1 yields

4nrn

1− r2n +
(1+A)rn

1− r2n ≤ l1 −
1+Ar2n

1− r2n ,

provided r ≤ R1. Thus the following functions, mentioned in Remark 5.3.1

f̃ (z) =
z(1+ zn)2

(1− zn)2+(1+A)/n
and g̃(z) =

z(1+ zn)

(1− zn)1+(1+A)/n
,

serve as the extremal function for both the cases.

We now determine certain sufficient conditions for the class S ∗
ρ .

Theorem 5.3.9. Let f ∈ A , then f ∈ S ∗
ρ if and only if

1
z

(
f (z)∗ z− kz2

(1− z)2

)
̸= 0 (5.3.15)

where k = cosheit/2/(cosheit/2 −1) for t ∈ [−π,π]. Moreover, f ∈ S ∗
ρ if and only if

1−
∞

∑
n=2

(n− cosheit/2)an

cosheit/2 −1
zn−1 ̸= 0. (5.3.16)

Proof. Since f ∈ S ∗
ρ , then z f ′(z)/ f (z) = cosh

√
ω(z), where ω(z) is a Schwarz function with

ω(0) = 0. Equivalently for ω(z) = eit , −π ≤ t ≤ π, we have

z f ′(z)
f (z)

̸= cosheit/2 ⇔ z f ′(z)− (cosheit/2) f (z) ̸= 0 for t ∈ [−π,π],

Eventually it leads to z f ′(z)− k(z f ′(z)− f (z)) ̸= 0. Thus through simple computations (5.3.15)

can be established, and condition in (5.3.16) can be deduced using (5.3.15).

Corollary 5.3.2. Let f ∈ A satisfy the following:

∞

∑
n=2

∣∣∣∣∣n− cosheit/2

cosheit/2 −1

∣∣∣∣∣ |an|< 1, (5.3.17)

then f ∈ S ∗
ρ .
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Proof. Consider the following inequality with k = cosheit/2/(cosheit/2 −1),∣∣∣∣∣1− ∞

∑
n=2

(n(k−1)− k)anzn−1

∣∣∣∣∣≥ 1−
∞

∑
n=2

|n(k−1)− k||an|.

Thus from (5.3.17) we establish∣∣∣∣∣1− ∞

∑
n=2

(n(k−1)− k)anzn−1

∣∣∣∣∣> 0,

Hence due to Theorem 5.3.9, we conclude that f ∈ S ∗
ρ .

Theorem 5.3.10. Let f ∈ S ∗
ρ , then the following inequality holds:

l2
1 −1 ≥

∞

∑
k=2

(k2 − l12)|ak|2.

Proof. Since f ∈ S ∗
ρ , then z f ′(z) = cosh(

√
ω(z)) f (z), for a Schwarz function ω(z) with ω(0) =

0. For 0 < |z|= r < 1, we get the following

2π

∞

∑
k=1

k2|ak|2r2k =
∫ 2π

0

∣∣reiθ f ′(reiθ )
∣∣2 dθ

=
∫ 2π

0

∣∣∣∣cosh
(√

ω(reiθ )

)
f (reiθ )

∣∣∣∣2 dθ

≤
∫ 2π

0
cosh2

(√
|ω(reiθ )|

)
| f (reiθ )|2dθ

≤
∫ 2π

0
(cosh2 r)| f (reiθ )|2dθ

= 2π(cosh2 r)
∞

∑
k=1

|ak|2r2k. (5.3.18)

Thus when r tends to 1−, we at once obtain the required inequality.

Example 1. Let f ∈ A , then following functions are members of S ∗
ρ :

(i) f (z) = z+anzn ∈ S ∗
ρ , provided |an| ≤ (1− l0)/(n− l0), n ∈ N−{1}.

(ii) f (z) = z/(1−Az)2 ∈ S ∗
ρ , provided |A| ≤ (l1 −1)/(l1 +1).

(iii) f (z) = z/(1−Az) ∈ S ∗
ρ , provided |A| ≤ (l1 −1)/l1.

(iv) f (z) = zeAz ∈ S ∗
ρ , provided |A| ≤ 1− l0.

Proof. For part (i) we require that z f ′(z)/ f (z) = (1+ nanzn−1)/(1+ anzn−1) must lie in the disc

{w : |w− c|< rc} ⊂ ρ(D), centered at c, where rc is defined in (5.2.6). It is a known fact that the

function f (z)= z+anzn is univalent if and only if |an| ≤ 1/n. Thus c=(1−n|an|2)/(1−|an|2)≤ 1.
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If w=(1+nanzn−1)/(1+anzn−1) and rc =(1−n|an|2)/(1−|an|2)− l0, then due to Theorem 5.2.1,

(n−1)|an|
1−|an|2

≤ 1−n|an|2

1−|an|2
− l0.

The proofs of (ii)-(iv) are much akin to (i), therefore it is skipped.

So far, we have thoroughly examined the radius and inclusion properties of the class

S ∗
ρ , providing significant insights into its geometric characteristics. Building upon these

findings, the subsequent chapter investigates into the differential subordination aspects

of S ∗
ρ , offering a detailed exploration of its analytical properties.

Highlights of the Chapter

In this chapter, we introduce a new class of Ma-Minda starlike functions defined using

the Hyperbolic cosine function. We derive a structural formula for the class, denoted as

S ∗
ρ , and provide illustrative examples. Utilizing this formula, we establish the Growth, Dis-

tortion, and Rotation theorems pertinent to this class. Furthermore, we explore inclusion

relations between S ∗
ρ and existing classes such as S ∗(β ), M (α), S S ∗(β ), S ∗

qk
, k-S T ,

S ∗
hpl(s̃), S ∗

L (s) and S T p(γ). We also provide diagrammatic representations for the inclu-

sion relations for the class under study, depicting sharpness of our findings. Additionally,

we determine the sharp S ∗
ρ −radius for classes such as S ∗

n [A,B], Mn(α), and various

subclasses characterized by the ratio of analytic functions. This comprehensive study not

only enhances the understanding of starlike classes but also offers valuable insights for

future research in GFT.

The contents of this chapter is based on the findings presented in the paper:

Mridula Mundalia and S. Sivaprasad Kumar: On a subfamily of starlike functions related to hy-

perbolic cosine function, The Journal of Analysis, 31(3), 2043-2062, (2023). https: // doi.

org/ 10. 1007/ s41478-023-00550-1

https://doi.org/10.1007/s41478-023-00550-1
https://doi.org/10.1007/s41478-023-00550-1




Chapter 6

Sufficient Conditions for Functions to

be in S ∗
cosh

√
z

In this chapter, we use Briot-Bouquet differential subordination and similar techniques to

establish sufficient conditions for functions to belong to the class S ∗
ρ , which consists of

starlike functions associated with cosh
√

z. Additionally, by applying admissibility condi-

tions, we derive several differential subordination results for the class S ∗
ρ .

99
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6.1 Introduction

Differential subordination has long been a classical method in complex analysis. The

foundational work by Miller and Mocanu [110] has significantly advanced this theory, along

with contributions from others [16,34,39,69,110,137,155,157]. Numerous authors have

established conditions on η , ensuring that the subordination 1+ηzp′(z)/pn(z)≺ φ1(z) (n =

0,1,2) implies p(z) ≺ φ2(z). These conditions vary based on the selection of φ1(z) and

φ2(z), which include: 2/(1+ e−z),
√

1+ z, (1+Az)/(1+Bz) (−1 ≤ B < A ≤ 1) and ez, as

noted by [39,56,81,106]. Further, numerous studies have extensively explored the Briot-

Bouquet differential subordination, given by

p(z)+
zp′(z)

η p(z)+ γ
≺ h(z), (6.1.1)

with contributions from various authors over time. For comprehensive insights, refer to

[16, 29, 69, 110]. Specifically, one can refer to the works of Ravichandran et al. [155]

and Singh et al. [157] for notable contributions to Briot-Bouquet differential subordination

results. This unique form of differential subordination holds significant importance in UFT

and has a wide range of applications. Additionally, it is common to analyze the implication

results related to (6.1.1) with the assumption that h(z) is a convex function and Re(ηh(z)+

γ) > 0. Previously, sufficient conditions for the classes S ∗
L , S ∗[A,B], S ∗

s , S ∗
e and S ∗

%
(see Table 1.1) are studied.

In this chapter, we obtain sufficient conditions for functions to be in S ∗
ρ , the class of

starlike functions associated with cosh
√

z, given by Definition 5.1.1, using Briot-Bouquet

differential subordination and similar differential subordination techniques. We list below

the image regions of D, corresponding to the functions ez, z+
√

1+ z2, (1+Az)/(1+Bz)

and (1+ sz)2, respectively, required for our further investigations

Ωe : = {w ∈ C : | logw|< 1},

Ω% : = {w ∈ C : |w2 −1|< 2|w|}

= {w ∈ C : |w−1|<
√

2}∩{w ∈ C : |w+1|>
√

2}= ∆1 ∩∆2, (6.1.2)

ΩA,B : = {w ∈ C : |w−1|< |A−Bw|}

Ωs : = {x+ iy : ((x−1)2 + y2 − s4)2 < 4s2((x−1+ s2)2 + y2)}

⊂ {w ∈ C : |w−1|< |s|(|s|+2)}. (6.1.3)

From Figure 6.1, we see that the crescent domain in (6.1.2) is given by Ω% = ∆1 ∩∆2,

where ∆1 = {w : |w− 1| <
√

2} and ∆2 = {w : |w+ 1| >
√

2}. Generally, while dealing with



101

the crescent domain, we conclude that if x /∈ ∆i, then x /∈ Ω%, as Ω% ⊂ ∆i, where i = 1,2.

Δ2

Δ1

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 6.1: Ω% = ∆1 ∩∆2.

In section 6.2, we derive sufficient conditions for functions to be in S ∗
ρ , by estab-

lishing Briot-Bouquet differential subordination implications with dominants such as ez,

(1+Az)/(1+Bz), z+
√

1+ z2 and (1+sz)2. Additionally, in section 6.3, we study some first-

order differential subordination results for S ∗
ρ and diagrammatically validate the sharp-

ness of our findings. Finally, we deduce certain admissibility results for S ∗
ρ , accompanied

by some applications and illustrations of our findings.

6.2 Briot-Bouquet Differential Subordination Results

To proceed, we require the following lemma, which will be instrumental in establishing

some of our main results in this section.

Lemma 6.2.1. [148, Lemma 1.3, p.28] Let ω be a meromorphic function in D, ω(0) = 0. If for

some z0 ∈ D, max
|z|≤|z0|

|ω(z)|= |ω(z0)|, then it follows that z0ω ′(z0)/ω(z0)≥ 1.

Now we begin with the following theorem:

Theorem 6.2.1. Let η ,γ ∈ R such that γ ̸=−η , satisfy any of the following conditions:

(i) For φ(z) = z+
√

1+ z2, we have

η2 ≤ η ≤ η1 and η3 ≤ η ≤ η4, (6.2.4)

where

η1 =− γ

cosh1
+

sinh1
(2cosh1(1+

√
2− cosh1))

, η2 =− γ

cosh1
,

η3 =− γ

cos1
− sin1

(2cos1(1+
√

2− cos1))
, η4 =− γ

cos1
.
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(ii) For φ(z) = (1+ sz)2 and 0 < s ≤ 1/
√

2, we have

η4 +η3 ≤ η ≤ η3 and
η ≥ η1 if 0 < s ≤−1+

√
cosh1,

η1 ≤ η ≤ η1 +η2 if −1+
√

cosh1 < s ≤ 1/
√

2,

 (6.2.5)

where

η1 =− γ

cosh1
, η2 =

sinh1
2cosh1((1+ s)2 − cosh1)

,

η3 =− γ

cos1
, η4 =− sin1

2cos1((1+ s)2 − cos1)
.

(iii) For φ(z) = ez, we have

η2 < η ≤ η1 and η3 ≤ η < η4, (6.2.6)

where

η1 =− γ

cosh1
+

sinh1
2cosh1(e− cosh1)

, η3 =− γ

cos1
− sin1

2cos1(e− cos1)
,

η2 and η4 are as given in (i).

If p(z) is an analytic function, such that p(0) = 1 and satisfies

p(z)+
zp′(z)

η p(z)+ γ
≺ φ(z), (6.2.7)

then p(z)≺ cosh
√

z.

Proof. Let B(z) and ω(z) be as given below:

B(z) := p(z)+
zp′(z)

η p(z)+ γ
and ω(z) = (cosh−1 p(z))2, (6.2.8)

then we have p(z) = cosh
√

ω(z). It is evident that ω(z) is a well-defined analytic function, with

ω(0) = 0. Now to prove p(z)≺ cosh
√

z, we need to show that |ω(z)|< 1 in D. For if, there exists

z0 ∈D such that max|z|≤|z0| |ω(z)|= |ω(z0)|= 1, then by Lemma 6.2.1, we have z0ω ′(z0)= kω(z0),

where k ≥ 1. Let ω(z0) = e2it , where −π/2 ≤ t ≤ π/2.

-

(i) Let φ(z) = z+
√

1+ z2, then from (6.1.2), we have φ(D)⊂{w : |w−1|<
√

2}. Now we deduce

a contradiction by arriving at |B(z0)− 1|2 ≥ 2. To do this, we expand the following expression
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using (6.2.8):

|B(z0)−1|2 =

∣∣∣∣∣cosh
√

ω(z0)−1+
z0ω ′(z0)sinh

√
ω(z0)

2
√

ω(z0)(η cosh
√

ω(z0)+ γ)

∣∣∣∣∣
2

=

∣∣∣∣cosheit −1+
keit sinheit

2(η cosheit + γ)

∣∣∣∣2 (6.2.9)

=:
N(t)
D(t)

, (6.2.10)

where

N(t) = (sinh(cos t)(2γk sin t cos(sin t)+2(2γ
2 −η

2)sin(sin t)+η
2 sin(3sin t))

+2γ sin(sin t)cosh(cos t)(k cos t +4η cos(sin t)sinh(cos t))+ηk(sin(2sin t)cos t

+ sin t sinh(2cos t))+η
2 sin(sin t)sinh3(cos t)+3η

2 sin(sin t)sinh(cos t)cosh2(cos t))2

+4(cosh(cos t)(ηk cos t sinh(cos t)− γk sin t sin(sin t)+2γ(γ −2η)cos(sin t)

+2η
2 sin2(sin t)cos(sin t)sinh2(cos t))−η cos(sin t)cosh2(cos t)(k sin t sin(sin t)

+2(η −2γ)cos(sin t))+ γk cos t cos(sin t)sinh(cos t)+2η
2 cos3(sin t)cosh3(cos t)

+η sin(sin t)sinh2(cos t)(k sin t cos(sin t)−2η sin(sin t))−2γ
2)2 (6.2.11)

and

D(t) = 16((γ +η cos(sin t)cosh(cos t))2 +η
2 sin2(sin t)sinh2(cos t))2. (6.2.12)

Define a function F(t) on the interval [−π/2,π/2], as

F(t) = N(t)−2D(t).

Since F(t) is an even function, it is sufficient to show that F(t) is non-negative in [0,π/2] or

minimum of F(t) is non-negative in [0,π/2]. A computation reveals that the minimum of F(t) is

obtained either at t = 0 or t = π/2. Now we see that

F(0) = (k(η sinh2+2γ sinh1)−4(1− cosh1)(γ +η cosh1)2)2 −32(γ +η cosh1)4

and

F
(

π

2

)
= (k(η sin2+2γ sin1)−4(cos1−1)(γ +η cos1)2)2 −32(γ +η cos1)4.

Since k ≥ 1, we have F(0) ≥ (4(cosh1− 1)(γ +η cosh1)2 + (η sinh2+ 2γ sinh1)2)2 − 32(γ +
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η cosh1)4 =: X(η). But X(η) ≥ 0, whenever η2 ≤ η ≤ η1, which implies F(0) ≥ 0. Infact, for

k ≥ 1, we have F(π/2)≥ ((η sin2+2γ sin1)−4(cos1−1)(γ +η cos1)2)2 −32(γ +η cos1)4 =:

Y (η). Since,

(η sin2+2γ sin1)−4(cos1−1)(γ +η cos1)2 ≥ 4
√

2(γ +η cos1)2 ,

whenever η3 ≤ η ≤ η4, therefore, Y (η) ≥ 0, which implies F(π/2) ≥ 0. Thus |B(z0)−1|2 ≥ 2,

which contradicts (6.2.7), hence the result follows at once.

-

(ii) Let φ(z) = (1+ sz)2, then from (6.1.3), we have φ(D) ⊂ {w : |w− 1| < s(s+ 2)}. Now we

shall show that |B(z0)− 1| ≥ s(s+ 2), which leads to the desired contradiction. To achieve this,

we use the expansion of |B(z0)−1|2, as given in (6.2.9), with N(t) and D(t) given by (6.2.11) and

(6.2.12), respectively. Now for each 0 < s ≤ 1/
√

2, define

Fs(t) = N(t)− s2(s+2)2D(t), where −π/2 ≤ t ≤ π/2.

We observe that F(t) is an even function, consequently, it is suffices to prove that F(t) ≥ 0 for

t ∈ [0,π/2]. Furthermore, it is observed that F(t) attains its minimum at either t = 0 or π/2. Now

for k ≥ 1, we have

Fs(0) = (4(cosh1−1)(γ +η cosh1)2 + k(η sinh2+2γ sinh1))2

−16s2(s+2)2(γ +η cosh1)4

and

Fs

(
π

2

)
= (4(cos1−1)(γ +η cos1)2 − k(η sin2+2γ sin1))2

−16s2(s+2)2(γ +η cos1)4.

For each k ≥ 1, it can be easily verified that Fs(0) is a monotonically increasing function of k,

provided η ≥ η1, this implies Fs(0) ≥ (4(cosh1− 1)(γ +η cosh1)2 +(η sinh2+ 2γ sinh1))2 −

16s2(s+2)2(γ +η cosh1)4 =: Xs(η). Now Xs(η) can be written as

Xs(η) = (Xs1(η)−Xs2(η))(Xs1(η)+Xs2(η)),

where Xs1(η) := 4(cosh1−1)(γ+η cosh1)2+(η sinh2+2γ sinh1)−4s(s+2)(γ+η cosh1)2 and

Xs2(η) := 4(cosh1−1)(γ +η cosh1)2+(η sinh2+2γ sinh1)+4s(s+2)(γ +η cosh1)2. Now, for

each 0 < s ≤ 1/
√

2, we need to show that Xs(η) ≥ 0. Observe that, for each 0 < s ≤
√

cosh1−

1, Xs(η) ≥ 0 if and only if Xs1(η) ≥ Xs2(η), i.e. η sinh2+ 2γ sinh1+ 4(cosh1− (s+ 1)2)(γ +
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η cosh1)2 ≥ 0, which happens, whenever η ≥ η1, thus Xs(η)≥ 0. Infact, for each
√

cosh1−1 <

s ≤ 1/
√

2, Xs(η)≥ 0 if and only if the inequality 4((s+1)2 − cosh1)(η cosh1+ γ)2 ≤ η sinh2+

2γ sinh1 holds, which is possible whenever η1 ≤η ≤η1+η2, which means Xs(η)≥ 0. Eventually,

for each k ≥ 1 and 0 < s ≤ 1/
√

2, we have Fs(0)≥ 0. Next, for η ≤ η3, it can be seen that Fs(π/2)

is a monotonically increasing function of k and Fs(π/2)≥ (4(cos1−1)(γ +η cos1)2 − (η sin2+

2γ sin1))2 − 16s2(s+ 2)2(γ +η cos1)4 =: Ys(η). In addition, for each 0 < s ≤ 1/
√

2, we have

Ys(η)≥ 0, whenever η3 +η4 ≤ η ≤ η3. Therefore, for each k ≥ 1 and 0 < s ≤ 1/
√

2, we deduce

that Fs(π/2)≥ 0. Thus |B(z0)−1|2 ≥ s2(s+2)2. Hence, we get a contradiction to the hypothesis,

given in (6.2.7), which completes the proof.

-

(iii) Choose φ(z) = ez. We prove this result by the method of contradiction, similar to (i) and (ii).

To proceed, it is suffices to show that

| logB(z0)|2 ≥ 1, (6.2.13)

where log denotes the principle branch of logarithmic function. Consider,

B(z0) = cosheit +
keit sinheit

2(η cosheit + γ)
=: U(t)+ iV (t), (6.2.14)

where

U(t) := κ
−1
t (cosh(cos t)(γ(2γ cos(sin t)− k sin t sin(sin t))+ηk cos t sinh(cos t)

+2η
2 sin2(sin t)cos(sin t)sinh2(cos t))+ k cos(sin t)sinh(cos t)(γ cos t

+η sin t sin(sin t)sinh(cos t))+η cos(sin t)cosh2(cos t)(4γ cos(sin t)

+2η
2 cos3(sin t)cosh3(cos t)− k sin t sin(sin t)))

and

V (t) := κ
−1
t (sinh(cos t)(2γk sin t cos(sin t)+2(2γ

2 −η
2)sin(sin t)+η

2 sin(3sin t))

+ηk(sin(2sin t)cos t + sin t sinh(2cos t))+η
2 sin(sin t)sinh3(cos t)

+3η
2 sin(sin t)sinh(cos t)cosh2(cos t))+2γ sin(sin t)cosh(cos t)(k cos t

+4η cos(sin t)sinh(cos t)),

with κt := 2((γ +η cos(sin t)cosh(cos t))2 +η2 sin2(sin t)sinh2(cos t)).

Assume F(t) = 4| logB(z0)|2 −4. To prove (6.2.13), in view of (6.2.14), it is enough to show that

F(t) = log2(U2(t)+V 2(t))+4
(

tan−1 V (t)
U(t)

)2

−4 ≥ 0.
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Since F(−t) = F(t), for each t ∈ [−π/2,π/2], so we confine our findings to the interval [0,π/2].

It can be easily verified that F(t) attains its minimum at t = 0 or π/2. Now for k ≥ 1, we have

F(0) =

(
log
(

cosh1+
k(η sinh2+2γ sinh1)

4(γ +η cosh1)2

)2
)2

−4

and

F
(

π

2

)
=

(
log
(

cos1− k(η sin2+2γ sin1)
4(γ +η cos1)2

)2
)2

−4.

As logx is a monotonically increasing function, it is suffices to determine the minimum of h1(k) :=

cosh1+k(η sinh2+2γ sinh1)/4(γ +η cosh1)2. Observe that h′1(k) = (2γ sinh1+η sinh2)/4(γ +

η cosh1)2 > 0, whenever η > η2, i.e. h1(k) is an increasing function of k, whenever η > η2.

Further, as a consequence of the inequality: η2 < η ≤ η1, we have h1(k) ≥ cosh1+(2γ sinh1+

η sinh2)/4(γ +η cosh1)2 = h1(1) ≥ e, which gives (log(h2
1(k)))

2 ≥ (loge2)2 = 4, thus F(0) ≥

0. Moreover, for each k ≥ 1, we have h2(k) := cos1− k(η sin2+ 2γ sin1)/(4(γ +η cos1)2) ≥

cos1− (η sin2+ 2γ sin1)/(4(γ +η cos1)2) = h2(1) ≥ e, whenever η3 ≤ η < η4, which implies

(log(h2
2(k)))

2 ≥ (loge2)2 = 4, thus F(π/2) ≥ 0. Hence | logB(z0)|2 ≥ 1, which contradicts the

hypothesis given in (6.2.7), this completes the proof.

Below, we derive some special cases of Theorem (6.2.1) by appropriately choosing the

value of η so that the conditions of the hypothesis are not violated. Next result is obtained

by substituting p(z) = z f ′(z)/ f (z), and take η = 1/2, in Theorem 6.2.1(i) and (iii).

Corollary 6.2.1. Let γ ∈ R\{−1/2}, and if f ∈ A satisfies the following

z f ′(z)
f (z)

1+
1+2

(
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
z f ′(z)
f (z)

+2γ

≺ φ(z),

(i) for φ(z) = z+
√

1+ z2, with

−cos1
2

(
1+

tan1√
2+1− cos1

)
≤ γ ≤−cos1

2
,

(ii) for φ(z) = ez, with

−cos1
2

(
1+

tan1
e− cos1

)
≤ γ ≤−cosh1

2

(
1− tanh1

e− cosh1

)
,

then f ∈ S ∗
ρ .

On substituting p(z) = z f ′(z)/ f (z) with s = 0.2 and η = 1 in Theorem 6.2.1(ii), we obtain
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the next corollary:

Corollary 6.2.2. Let γ ∈R\{−1} such that −(sin1)/(2((1.2)2−cos1))≤ γ ≤−cos1. If f ∈A

satisfies the following

z f ′(z)
f (z)

1+
1+

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

z f ′(z)
f (z)

+ γ

≺ (1+(0.2)z)2,

then f ∈ S ∗
ρ .

We obtain the following examples as a byproduct of Lemma [110, Theorem 3.2d, p.86]

and Theorem 6.2.1, for a suitable selection of different parameters. Choose γ =−3/5 and

s = 1/2, then from Theorem 6.2.1(ii) we have

3
5cos1

− 2sin1
cos1(9−4cos1)

≤ η ≤ 3
5cosh1

+
2sinh1

cosh1(9−4cosh1)
. (6.2.15)

Substitute a= 1= n, β = η , γ =−3/5 and h(z) = (1+(1/2)z)2 in [110, Theorem 3.2d, p.86],

then the open door function, which is univalent in D, reduces to

Rη−3/5,1(z) = (η −3/5)(1+ z)/(1− z)+2z/(1− z2). (6.2.16)

Example 2. Let η be given by (6.2.15), Re(η)> 3/5 and Rη−3/5,1(z) be given by (6.2.16). If

η(1+(1/2)z)2 ≺ Rη−3/5,1(z)+3/5,

then

p(z) =
(

η

∫ 1

0
tη−8/5e(t−1)(zη(z(1+t)+8))/8dt

)−1

+
3

5η

is analytic in D, and it is a solution of the differential equation p(z)+ zp′(z)/(η p(z)− 3/5) =

(1+(1/2)z)2 and satisfies Re(η p(z))> 3/5. Furthermore, p(z)≺ cosh
√

z.

By taking η = 1/2, in Theorem 6.2.1(iii), we deduce that

−1
2

(
cos1+

sin1
e− cos1

)
≤ γ ≤−1

2

(
cosh1− sinh1

e− cosh1

)
. (6.2.17)

Choose n = a = 1,β = η = 1/2 and h(z) = ez in [110, Theorem 3.2d, p.86], then the open

door function, which is univalent in D, becomes

Rγ+1/2,1(z) = (γ +1/2)(1+ z)/(1− z)+2z/(1− z2). (6.2.18)
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Example 3. Let γ be given by (6.2.17), Reγ >−1/2 and Rγ+1/2,1(z) be given by (6.2.18). If

γ + ez/2 ≺ Rγ+1/2,1(z),

then

p(z) =
(

1
2

∫ 1

0
tγ−1

(
eChi(tz)−Chi(z)+Shi(tz)−Shi(z)

)1/2
dt
)−1

−2γ,

is an analytic solution of the differential equation p(z)+2zp′(z)/(p(z)+2γ) = ez, where Chi(z) :=

ξ +logz+
∫ z

0
(cosh t −1)/t dt and Shi(z)=

∫ z

0
sinh t/t dt, with ξ ≈ 0.577216 (the Euler–Mascheroni

constant), and satisfies Re p(z)>−2γ. Then p(z)≺ cosh
√

z.

Theorem 6.2.2. Let −1 ≤ B < A ≤ 1 and η ,γ ∈ R such that γ ̸=−η , satisfy the following condi-

tions:

(i) (1−B2)sinh1+2(γ +η cosh1)(cosh1−1+B(A−Bcosh1))≥ 0,

(ii) (sinh1+2(cosh1−1)(γ +η cosh1))2 ≥ (Bsinh1−2(A−Bcosh1)(γ +η cosh1))2,

(iii) (1−B2)sin1+2(γ +η cos1)(1− cos1−B(A−Bcos1))≥ 0,

(iv) (sin1+2(cos1−1)(γ +η cos1))2 ≥ (Bsin1+2(A−Bcos1)(γ +η cos1))2.

Let p(z) be an analytic function, such that p(0) = 1 and satisfies

p(z)+
zp′(z)

η p(z)+ γ
≺ 1+Az

1+Bz
,

then p(z)≺ cosh
√

z.

The proof of Theorem 6.2.2 is much akin to the previous results, so it is omitted.

The following corollaries illustrate specific outcomes of Theorem 6.2.2, derived by sub-

stituting p(z) = z f ′(z)/ f (z) and setting the parameters as follows: A = 1, B = 0, γ = 0; and

A = 0, B =−1/2, η = 1, respectively.

Corollary 6.2.3. Let η ∈ R \ {0} such that −(tanh1sech1)/2 ≤ η ≤ (tanh1)/(4− 2cosh1). If

f ∈ A satisfies

1+
z f ′′(z)

(1−η) f ′(z)
− z f ′(z)

f (z)
≺ ηz

1−η
, (6.2.19)

then f ∈ S ∗
ρ .

Corollary 6.2.4. Let γ ∈ R \ {−1} such that (sin1 + 4cos1 − cos2 − 1)/(2cos1 − 4) ≤ γ ≤

(4cosh1− sinh1−2cosh2 1)(2cosh1−4). If f ∈ A satisfies

z f ′(z)
f (z)

1+
1+

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

z f ′(z)
f (z)

+ γ

≺ 2
2− z

,
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then f ∈ S ∗
ρ .

Note that (6.2.19) in Corollary 6.2.3 is equivalent to:∣∣∣∣1+ z f ′′(z)
(1−η) f ′(z)

− z f ′(z)
f (z)

∣∣∣∣< ∣∣∣∣ η

1−η

∣∣∣∣ .
It is observed that for g ∈ A , the Briot-Bouquet differential equation is closely related to

the Bernardi integral operator [110], given by

G(z) :=
η + γ

zγ

∫ z

0
gη(t)tγ−1dt. (6.2.20)

If p(z) = zG′(z)/G(z), then we have the following Briot-Bouquet differential equation:

p(z)+
zp′(z)

η p(z)+ γ
=

zg′(z)
g(z)

. (6.2.21)

Using this fact, we now derive the following corollary, as a consequence of Theorem 6.2.1

and Theorem 6.2.2:

Corollary 6.2.5. Let −1 ≤ B < A ≤ 1 and η ,γ ∈ R such that γ ̸= −η . Assume the conditions

as outlined in Theorem 6.2.1 (6.2.4)-(6.2.6) and Theorem 6.2.2(i)-(iv) holds. If g ∈ S ∗(φ), then

G ∈ S ∗
ρ for the choices of φ(z) : z+

√
1+ z2, (1+ sz)2, ez and (1+Az)/(1+Bz) respectively.

Proof. Let us first prove the result for the case when φ(z) = z+
√

1+ z2, and other cases will

follow in the similar fashion. Assume that p(z) = zG′(z)/G(z), where G(z) is given by (6.2.20).

Since g ∈ S ∗(φ), then from (6.2.21), we have

p(z)+
zp′(z)

η p(z)+ γ
=

zg′(z)
g(z)

≺ z+
√

1+ z2.

Now the result follows at once by an application of Theorem 6.2.1(i).

6.3 First Order Differential Subordination Results

In this section, we study certain differential subordination implication results involving

the expressions: 1+ηzp′(z)/p(z), 1+ηzp′(z) and η p(z)+ zp′(z)/p(z). We require the fol-

lowing Lemma by Miller and Mocanu to derive our results.

Lemma B. [110] Let q be analytic in D and let ϖ be analytic in domain D containing q(D) with

ϖ(w) ̸= 0 when w ∈ q(D). Set Q(z) := zq′(z)ϖ(q(z)) and h(z) := ν(q(z))+Q(z). Suppose

(i) either h is convex, or Q is starlike univalent in D and

(ii) Re(zh′(z)/Q(z))> 0 for z ∈ D.
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If p is analytic in D, with p(0) = q(0), p(D)⊂ D and

ν(p(z))+ zp′(z)ϖ(p(z))≺ ν(q(z))+ zq′(z)ϖ(q(z)),

then p(z)≺ q(z), and q is the best dominant.

We begin with the following result.

Theorem 6.3.1. Suppose A,B ∈ C, with A ̸= B and |B|< 1, η be such that

|η | ≥ 2|A−B|
(1−|B|) tanh1

.

Let p(z) be analytic in D with p(0) = 1, satisfying the subordination

1+η
zp′(z)
p(z)

≺ 1+Az
1+Bz

,

then p(z)≺ cosh
√

z and cosh
√

z is the best dominant.

Proof. Let q(z)= cosh
√

z, ν(w)= 1 and ϖ(w)=η/w, then Q(z)=ηzq′(z)/q(z) =η(
√

z tanh
√

z)/2,

which implies RezQ′(z)/Q(z) > 0 for each z ∈ D. Hence Q(z) is starlike in D. Since h(z) =

ν(ρ(z))+Q(z), we have

Re
(

zh′(z)
Q(z)

)
=

1
2
+Re

√
zcsch2

√
z >

1
2
+ csch2 > 0.

Assume φA,B(z)= (1+Az)/(1+Bz), then from the representation of φA,B(z), we can write φ
−1
A,B(w)=

(w−1)/(A−Bw). If we choose

T (z) = 1+
η

2
√

z tanh(
√

z),

then it suffices to show that φA,B(z)≺ T (z), for each z ∈ D or D⊂ φ
−1
A,B(T (D)) or equivalently,

|φ−1
A,B(T (e

it))| ≥ 1 (−π ≤ t ≤ π).

As | tanh(eit/2)| attains its minimum at t = 0, for |η | ≥ 2|A−B|/(1−|B|) tanh1 on ∂D, we have

|φ−1
A,B(T (e

it))| ≥ |η || tanh(eit/2)|
2|A−B|+ |ηB tanh(eit/2)|

≥ |η | tanh1
2|A−B|+ |ηB| tanh1

≥ 1.

Now the result follows at once by an application of Lemma B.
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By taking p(z) = z f ′(z)/ f (z) in Theorem 6.3.1, we obtain the following corollary.

Corollary 6.3.1. Assume η , A and B as given in Theorem 6.3.1. Let f ∈ A such that

1+η

(
1+

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
≺ 1+Az

1+Bz
,

then f ∈ S ∗
ρ .

In the next result, we establish sharp lower bound on η , for which the following implica-

tion holds:

1+ηzp′(z)≺ cosh
√

z ⇒ p(z)≺ φ(z),

where we choose φ(z) to be any of φe(z),φL(z),φ%(z),φA,B(z) and φs(z), given in Table 1.1.

Theorem 6.3.2. Let ξ ≈ 0.577216, the Euler–Mascheroni constant and assume that

κ0 :=
Chi(1)+Ci(1)−2ξ

Chi(1)−Ci(1)
, (6.3.22)

with

Chi(1) = ξ +
∫ 1

0
(cosh

√
t −1)/t dt and Ci(1) = ξ +

∫ 1

0
(cos

√
t −1)/t dt. (6.3.23)

Let η ∈ R and p(z) be analytic in D satisfying 1+ηzp′(z)≺ cosh
√

z, then

(i) p(z)≺ ez and (e−1)η ≥ 2e(ξ −Ci(1)).

(ii) p(z)≺
√

1+ z and (
√

2−1)η ≥ 2(Ci(1)−ξ ).

(iii) p(z)≺ z+
√

1+ z2 and (
√

2−1)η ≥
√

2(ξ −Ci(1)).

(iv) p(z)≺ 1+Az
1+Bz

and η ≥ ηA,B, where −1 < B < A ≤ 1 and

ηA,B =



2
A−B

(1−B)(ξ −Ci(1)), if −1 < B ≤−κ0,

−2
A−B

(1+B)(ξ −Chi(1)), if −κ0 < B < 1.

(6.3.24)

(v) p(z)≺ (1+ sz)2 and η ≥ ηs, where

ηs =



2
s(s+2)

(Chi(1)−ξ ), if 0 < s ≤ 2κ0,

2
s(s−2)

(Ci(1)−ξ ), if 2κ0 < s ≤ 1/
√

2.

(6.3.25)
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All bounds on η are sharp.

Proof. The differential equation 1+ηzφ ′
η(z) = cosh

√
z, has a solution φη(z) : D→ C, given by

φη(z) = 1+
1
η

(
2Chi

√
z− logz−2ξ

)
,

where ξ ≈ 0.577216 is the Euler–Mascheroni constant. Let ν(w) = 1 and ϖ(w) = η . Define an

analytic function Q : D→ C by

Q(z) = zφ
′
η(z)ϖ(φη(z)) =−1+ cosh

√
z.

Since RezQ′(z)/Q(z) > (1/2)cot(1/2) > 0, thus Q(z) is starlike in D. Let h(z) = ν(φη(z))+

Q(z), then we have

Re
(

zh′(z)
Q(z)

)
= Re

(
1
2
√

zcoth
(√

z
2

))
> 0.

By an application of Lemma B, we obtain 1+ηzp′(z)≺ 1+ηzφ ′
η(z), which implies p(z)≺ φη(z).

Now we need to show that φη(z)≺ φ(z), where φ(z) is any of these functions: φe(z), φL(z),φ%(z),

φA,B(z) and φs(z). If φη(z)≺ φ(z), then

φ(−1)≤ φη(−1)< φη(1)≤ φ(1). (6.3.26)

Now, for each choice of φ(z), by solving equation (6.3.26), we obtain sharp bounds on η . The

graphical observations presented in Figure 6.2 demonstrate that the condition in (6.3.26) is not

only necessary but also sufficient for the chosen choice of φ(z).

(i) When φ(z) = φe(z), then (6.3.26) reduces to the following

e−1 ≤ 1+
2(Ci(1)−ξ )

η
< 1+

2(Chi(1)−ξ )

η
≤ e. (6.3.27)

Now from (6.3.27) we get

e−1 ≤ 1+
2(Ci(1)−ξ )

η
, which implies η ≥ 2e(ξ −Ci(1))

e−1
= ηe ≈ 0.758753

and

1+
2(Chi(1)−ξ )

η
≤ e, which implies η ≥ 2(Chi(1)−ξ )

e−1
= xe ≈ 0.303386.

It can be observed that η ≥ max{ηe,xe}. Therefore, φη(z) ≺ φ(z) for each η ≥ ηe, conse-

quently, due to transitivity the result follows at once.
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Figure 6.2: Images of ∂D and D under the mappings, (a) φe(z) and φηe(z), (b) φ%(z) and φη%(z),
(c) φL(z) and φηL(z), (d) φ1,1/2(z) and φη1,1/2(z) & (e) φ1/

√
2(z) and φη1/

√
2
(z), respectively.

(ii) If φ(z) = φL(z), then inequalities (6.3.26) leads to

0 ≤ 2(Ci(1)−ξ )

η
+1 <

2(Chi(1)−ξ )

η
+1 ≤

√
2,

which is true, provided η ≥ ηL, where

ηL =

√
2(ξ −Ci(1))√

2−1
≈ 1.25854.

Thus for each η ≥ ηL, we have p(z)≺ φL(z).



114

(iii) For φ(z) = φ%(z), the expression in (6.3.26), gives

√
2−1 ≤ 1+

2(Ci(1)−ξ )

η
< 1+

2(Chi(1)−ξ )

η
≤
√

2+1, (6.3.28)

which holds for each η ≥ η%, where

η% =

√
2(ξ −Ci(1))√

2−1
≈ 0.818769.

Therefore, for each η ≥ η%, we have φη(z)≺ φ%(z). Accordingly we conclude that p(z)≺

φ%(z).

The cases (iv) and (v) will follow similar to the above cases. Sharpness of the result is depicted in

Figure 6.2, for the above choices of φ(z). We choose A = 1,B = 1/2 and s = 1/
√

2, in parts (iv)

and (v), respectively for graphical representation of the case, consequently, we obtain η ≥ η1/
√

2 ≈

0.52463 and η ≥ η1,1/2 ≈ 1.56391, respectively, from (6.3.24) and (6.3.25).

Corollary 6.3.2. Let κ0, Chi(1) and Ci(1) be as given in Theorem (6.3.2). For f ∈ A , if

Φη(z) := 1+η
z f ′(z)
f (z)

(
1− z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
,

then f ∈ S ∗
ρ implies the following:

(i) Φη(z)≺ ez, whenever (e−1)η ≥ 2e(ξ −Ci(1)).

(ii) Φη(z)≺
√

1+ z, whenever (
√

2−1)η ≥ 2(Ci(1)−ξ ).

(iii) Φη(z)≺ z+
√

1+ z2, whenever (
√

2−1)η ≥
√

2(ξ −Ci(1)).

(iv) Φη(z) ≺
1+Az
1+Bz

, whenever η ≥ ηA,B, whereηA,B is given in Theorem 6.3.2 and −1 < B <

A ≤ 1.

(v) Φη(z)≺ (1+ sz)2, whenever η ≥ ηs, where ηs is given in Theorem 6.3.2.

All the bounds obtained on η are sharp.

Theorem 6.3.3. Let −1 < B < A ≤ 1, µ = (cosh1− 1)/(1− cos1), and B0 be the root of the

equation (1+B)(1−B)µ = 1. If p(z) is an analytic function in D that satisfies

1+ηzp′(z)≺ 1+Az
1+Bz

,
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then p(z)≺ cosh
√

z, provided η satisfies the following sharp inequalities:

ηB(cosh1−1)≤ (A−B) log(1+B), if −1 < B ≤ B0,

ηB(cos1−1)≥ (A−B) log(1−B), if B0 < B < 0,

ηB(cos1−1)≤ (A−B) log(1−B), if 0 < B < 1,

2η ≥ Acsc2(1/2), if B = 0.


(6.3.29)

Proof. The analytic function φη : D→ C defined as :

φη(z) = 1+
A−B
ηB

log(1+Bz),

is a solution of the differential equation 1+ηzφ ′
η(z) = (1+Az)/(1+Bz). We shall prove the result

by using Lemma B, accordingly we assume ν(u) = 1, ϖ(u) = η and define an analytic function

Q : D→ C as

Q(z) = zφ
′
η(z)ϖ(φη(z)) =

(A−B)z
1+Bz

.

Clearly, for the given choice of A and B, Q(z) is a starlike function in D. Note that if h(z) =

ν(φη(z)) +Q(z), then zh′(z)/Q(z) = 1/(1+Bz), thus Rezh′(z)/Q(z) > 1/(1+ |B|) > 0. Fur-

ther, in view of Lemma B, we conclude that p(z) ≺ φη(z). Now we need to show that φη(z) ≺

cosh
√

z =: ρ(z). We know that the following condition is necessary:

ρ(−1)≤ φη(−1)< φη(1)≤ ρ(1), (6.3.30)

for φη(z) ≺ ρ(z). However, a graphical observation presented in Figure 6.3 for the value of η

satisfying (6.3.30) shows that (6.3.30) is not only necessary but also sufficient. For B ̸= 0, we have

from (6.3.30):

cos1 ≤ 1+
A−B
ηB

log(1−B)< 1+
A−B
ηB

log(1+B)≤ cosh1, (6.3.31)

ϱ(∂)

ϕηϱ()

0.5 1.0 1.5

-0.4

-0.2

0.2

0.4

Figure 6.3: Images of ∂D and D under the mappings ρ(z) = cosh
√

z and φηρ
(z) respectively.
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then from (6.3.31), we conclude that φη(z) ≺ ρ(z), provided η satisfies (6.3.29). Furthermore, if

B = 0, the function

mη(z) := 1+
A
η

z

is a solution of the differential equation: 1+ηzm′
η(z) = 1+Az. Now in view of (6.3.30), we have

the following inequality

cos1 ≤ mη(−1)< mη(1)≤ cosh1, (6.3.32)

which holds, whenever A ≤ 2ηsin2(1/2). Therefore, for B = 0 we have φη(z)≺ ρ(z), provided η

satisfies (6.3.32). Hence the result follows at once.

Note that Figure 6.3, illustrates sharpness on η for the case when A = 1/2, B = −1/2

and η = ηρ := (log4)/(cosh1−1)≈ 2.5526 in Theorem 6.3.3, where the extremal function

is φηρ
(z) := 1− (2/ηρ) log(1− (z/2)).

In Theorem 6.3.3, choose p(z) = z f ′(z)/ f (z), then we deduce the next result:

Corollary 6.3.3. Assume A,B and µ as given in Theorem 6.3.3 and for f ∈ A ,

Φη(z) := 1+η
z f ′(z)
f (z)

(
1− z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
.

If Φη(z)≺ (1+Az)/(1+Bz), then f ∈ S ∗
ρ , provided η satisfies (6.3.29). All the bounds attained

on η are sharp.

In the next result, we apply Lemma B and derive its corresponding corollaries.

Theorem 6.3.4. Let p(z) be a non-vanishing analytic function in D with p(0) = 1, such that

η p(z)+
zp′(z)
p(z)

≺ η cosh
√

z+
√

z
2

tanh
√

z,

where η ≥ η1 with

η1 =−
(

1
2
+ csch2

)
sech1 ≈−0.502 · · · . (6.3.33)

Then p(z)≺ cosh
√

z, and cosh
√

z is the best dominant.

Proof. Let q(z) = cosh
√

z and ϖ(w) = 1/w. Clearly, q(z) is a convex univalent function with

q(0) = 1 and

Q(z) = zq′(z)ϖ(q(z)) =
zq′(z)
q(z)

=

√
z

2
tanh

√
z.

Now, it can be easily verified that

Re
zQ′(z)
Q(z)

= Re
(

1
2
+
√

zcsch2
√

z
)
>

1
2
+ csch2 > 0,
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then Q(z) is starlike in D. Further, ϖ(z) is analytic in C \ {0} containing q(D) with ϖ(w) ̸= 0,

where w ∈ q(D). Now set

ν(w) = ηw and h(z) = ν(q(z))+Q(z) = ηq(z)+
zq′(z)
q(z)

= η cosh
√

z+
√

z
2

tanh
√

z.

For η ≥ η1, where η1 is given by (6.3.33), it can be verified that

Re
(
η cosh

√
z+

√
zcsch2

√
z
)
>−1

2
,

therefore, Re(zh′(z)/Q(z))> 0 for each η ≥ η1. Finally, by applying Lemma B we conclude that

p(z)≺ cosh
√

z.

On taking η = 0 in Theorem 6.3.4, we deduce the following corollary.

Corollary 6.3.4. Suppose p(z) is analytic in D with p(z) ̸= 0 in D and p(0) = 1 such that

zp′(z)
p(z)

≺
√

z
2

tanh
√

z,

then p(z)≺ cosh
√

z, and cosh
√

z is the best dominant.

On substituting p(z) = z f ′(z)/ f (z) in Theorem 6.3.4, we state the next corollary.

Corollary 6.3.5. Let f ∈ A and η ≥ η1, where η1 is given by (6.3.33), such that

1+
z f ′′(z)
f ′(z)

− (1−η)
z f ′(z)
f (z)

≺ η cosh
√

z+
√

z
2

tanh
√

z,

then f ∈ S ∗
ρ .

Some More Results Using Admissibility Conditions

We begin by giving the following definition given by Miller and Mocanu [109]:

Definition 6.3.1. Let Q be the set of functions q that are analytic and injective on D\E(q), where

E(q) =
{

ε ∈ ∂D : lim
z→ε

q(z) = ∞

}
,

such that q′(ε) ̸= 0 for ε ∈ ∂D\E(q).

For Ω ⊂ C, q ∈ Q and n ∈ N, let the class Ψn[Ω,q] consist of functions ϑ : C3 ×D→ C
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that meet the admissibility conditions:

ϑ(r,s, t;z) /∈ Ω, whenever (r,s, t;z) ∈ C3 ×D,

r = q(ε), s = mεq′(ε), Re
(

1+
t
s

)
≥ mRe

(
1+

εq′′(ε)
q′(ε)

)
,

for z ∈ D,ε ∈ ∂D\E(q) and m ≥ n. Denote Ψ1[Ω,q] by Ψ[Ω,q].

Theorem 6.3.5. [110, Theorem 2.3b] Let ϑ ∈ Ψn[Ω,q] with q(0) = a. If p ∈ H [a,n] satisfies

ϑ(p(z),zp′(z),z2 p′′(z);z) ∈ Ω,

then p(z)≺ q(z).

If Ω ⊊C is a simply connected domain, then there exists a conformal mapping h(z) from

D onto Ω = h(D). Symbolically, let Ψn[h(D),q] represent Ψn[Ω,q]. Further, if the function

ϑ(p(z),zp′(z),z2 p′′(z);z) is analytic in D, then ϑ(p(z),zp′(z),z2 p′′(z);z) ∈ Ω can be rewritten

in terms of subordination:

ϑ(p(z),zp′(z),z2 p′′(z);z)≺ h(z).

Consider Ω ⊊ C and q ∈ H1 be given by q(z) := cosh
√

z. As q(z) is univalent in D\E(q),

where E(q) = /0, also q(0) = 1 and q(D) =Ωρ , where Ωρ = {w∈C : | log(w+
√

w2 −1)|2 < 1}.

Below we study the class of admissible functions Ψn[Ω,q].

Note that for |ε|= 1,

q(ε) ∈ q(∂D) = ∂Ωρ =
{

ω ∈ C : | log(ω +
√

ω2 −1)|2 = 1
}
.

Infact if ε = eiθ , −π < θ ≤ π, then

εq′(ε) =
√

ε

2
sinh

√
ε, q′′(ε) =

1
4ε

(
cosh

√
ε − sinh

√
ε√

ε

)
and

1+
εq′′(ε)
q′(ε)

=
1
2
(
1+

√
ε coth

√
ε
)
.

Further, it can be verified that the minimum value of Re(
√

ε coth
√

ε) is attained at ε =−1.

Now in view of the above observation, in the following definition, we give the admissibility

conditions for q(z) = cosh
√

z.

Definition 6.3.2. Let Ω ⊊ C and n ≥ 1, then for q(z) = cosh
√

z, the admissibility conditions are
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given as follows:

ϑ(r,s, t;z) /∈ Ω whenever



r = q(ε) = cosh
√

ε,

s = mεq′(ε) =
m
2
√

ε sinh
√

ε,

Re
(

1+
t
s

)
≥ m

2
(1+ cot1),

(6.3.34)

where z ∈ D,ε ∈ ∂D\E(q) and m ≥ 1. We denote this class of admissible functions by Ψ(qρ).

In view of Theorem 6.3.5 and Definition 6.3.2, we directly establish the next result:

Theorem 6.3.6. Let p ∈ H1.

(i) If ϑ ∈ Ψ(qρ), then ϑ(p(z),zp′(z),z2 p′′(z);z) ∈ Ω ⇒ p(z)≺ cosh
√

z.

(ii) If ϑ ∈ Ψ(qρ), with Ω = Ωρ , then ϑ(p(z),zp′(z),z2 p′′(z);z)≺ cosh
√

z ⇒ p(z)≺ cosh
√

z.

Recently insightful work is carried out in establishing several first and second order differ-

ential subordination implication results, using the concept of admissibility. For instance,

many authors have studied the class of admissible functions associated with different

analytic functions, such as: modified sigmoid function, lemniscate of Bernoulli, expo-

nential function, petal shaped function, see [82, 102, 116, 170]. Further, Kumar and

Goel [82], modified the existing third order differential subordination results of Antonino

and Miller [12], in context of some special type of classes of starlike functions. In the

following results, we present a few applications to Theorem 6.3.6.

Theorem 6.3.7. Let p ∈ H1, such that

|zp′(z)−1|< sin1
2

≈ 0.420 . . . ,

then p(z)≺ cosh
√

z.

Proof. Suppose Ω = {w : |w−1|< (sin1)/2}. Let ϑ(p(z),zp′(z),z2 p′′(z);z) be a function defined

on C3×D, given by ϑ(r,s, t;z) = 1+s. We need to show that for (r,s, t)∈C3 satisfies admissibility

conditions given in (6.3.34). For m ≥ 1, consider

|ϑ(r,s, t;z)−1|= |s|=
∣∣∣m

2
√

ε sinh
√

ε

∣∣∣ ,
then for ε = eiθ , where −π < θ ≤ π, we have

|ϑ(r,s, t;z)−1|= m
2

∣∣∣sinheiθ/2
∣∣∣≥ 1

2
sin1.
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This means ϑ(r,s, t;z) /∈ Ω for each r,s, t satisfying (6.3.34) and therefore, ϑ ∈ Ψ[Ω,q]. Finally,

Theorem 6.3.6 leads to the required conclusion.

Theorem 6.3.8. Let p ∈ H1, such that∣∣∣∣zp′(z)
p(z)

∣∣∣∣< tanh1
2

≈ 0.380 . . . ,

then p(z)≺ cosh
√

z.

Proof. Let Ω = {w : |w| < (tanh1)/2} and ϑ(p(z),zp′(z),z2 p′′(z);z) be a function defined on

C3 ×D, given by ϑ(r,s, t;z) = s/r. We need to show that for (r,s, t) ∈ C3 satisfying conditions

(6.3.34) leads to ϑ(r,s, t;z) /∈ Ω. Consider,

|ϑ(r,s, t;z)|=
∣∣∣ s
r

∣∣∣= ∣∣∣m
2
√

ε tanh
√

ε

∣∣∣≥ m
2

tanh1.

Thus for m ≥ 1, we conclude that ϑ(r,s, t;z) /∈ Ω for each r,s and t satisfying (6.3.34). Thus

ϑ ∈ Ψ(Ω,q) and Theorem 6.3.6 gives that p(z)≺ cosh
√

z.

Theorem 6.3.9. Let p ∈ H1, such that∣∣∣∣zp′(z)
p2(z)

−1
∣∣∣∣< 1

2
sech1tanh1 ≈ 0.246 . . . ,

then p(z)≺ cosh
√

z.

Proof. Suppose Ω = {w : |w−1|< (sech1tanh1)/2}. Let ϑ(p(z),zp′(z),z2 p′′(z);z) be a function

defined on C3 ×D, given by ϑ(r,s, t;z) = 1+ s/r2, then for m ≥ 1, we have

|ϑ(r,s, t;z)−1|=
∣∣∣ s
r2

∣∣∣= m
2

∣∣∣∣ sinh
√

ε

cosh2√
ε

∣∣∣∣≥ sinh1
2cosh2 1

.

This gives that ϑ(r,s, t;z) /∈ Ω for each r,s and t satisfying (6.3.34), therefore, ϑ ∈ Ψ(Ω,q). Thus

Theorem 6.3.6 leads to the required conclusion.

On substituting p(z) = z f ′(z)/ f (z) in Theorem 6.3.7-Theorem 6.3.9, we deduce the fol-

lowing:

Corollary 6.3.6. If f ∈ A satisfies any of the following inequalities:

(i)

∣∣∣∣∣z2 f ′′(z)
f (z)

+
z f ′(z)
f (z)

− z2
(

f ′(z)
f (z)

)2

−1

∣∣∣∣∣< sin1
2

or

(ii)
∣∣∣∣1+ z f ′′(z)

f ′(z)
− z f ′(z)

f (z)

∣∣∣∣< tanh1
2

or
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(iii)

∣∣∣∣∣
(

1+
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)(
z f ′(z)
f (z)

)−1

−1

∣∣∣∣∣< 1
2

sech1tanh1,

then f ∈ S ∗
ρ .

Highlights of the Chapter

In this chapter, we employ Briot–Bouquet differential subordination techniques to estab-

lish sufficient conditions for functions to belong to the class S ∗
ρ . By applying admissibility

conditions, we will derive several differential subordination results, thereby expanding the

understanding of the geometric and analytical properties of the class S ∗
ρ . To enhance

clarity, diagrammatic validations of our sharp findings are also provided.

The contents of this chapter is mostly based on the findings presented in the paper:

Mridula Mundalia and S. Sivaprasad Kumar: Sufficient conditions for starlikeness related to a

Hyperbolic Cosine function, Ukrainian Mathematical Journal, 77(2), (2025).





Conclusion, Future Scope & Social

Impact

This thesis introduces the class S k
γ,δ (φ), unifying and extending existing analytic func-

tion classes, including S ∗
ρ , Fϕ , S ∗(β ), S ∗

e , and S ∗
sin. It rigorously analyzes geometric

properties such as radius problems and inclusion relations, establishing sharp results. A

distinctive feature is the diagrammatic illustration of sharpness of results, offering deeper

insights into geometric behaviors. This work advances geometric function theory, intro-

duces innovative methodologies, and provides a strong foundation for future research.

The current work establishes radius results for the classes S ∗
ρ , Fϕ , and S ∗(β ) using

well-established techniques. Future research could focus on extending these findings by

deriving coefficient bounds such as |an| for n≥ 5 and exploring additional radius results for

related and generalized classes. Further, one may explore second and higher-order Han-

kel and Toeplitz determinants for S k
γ,δ (φ), Fϕ , and S ∗

ρ , offering deeper insights into their

geometric properties. There is also scope to extend first-order differential subordination

results for S ∗
ρ to higher orders using advanced admissibility conditions. These directions,

along with multidimensional settings and alternative convolution operators, hold promise

for advancing the understanding and applications of analytic function classes in complex

analysis.

The practical relevance of this work is evident in its connections to physical models and

applications in engineering and mathematical physics. For instance, hyperbolic cosine

functions, central to this research, are widely used in signal processing, structural me-

chanics, vibration analysis, and differential equations. Moreover, concepts from geomet-

ric function theory (GFT) have applications in digital image processing. As demonstrated

in studies like [1,112,119,120], convolution techniques enhance image quality by improv-

ing clarity and efficiency, showcasing the broader societal benefits of advancements in

this field.
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Abstract In the present paper, sharp initial coefficient bounds have been estimated
for functions in the newly defined classesSk

γ,δ(!) andSk
γ,δ,h(!), which in fact, unifies

many earlier known classes. Further, sharp bounds of the Fekete–Szegö coefficient
functional for functions in the classes introduced here are obtained and special cases
of our results are also pointed out.
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1 Introduction and Preliminaries

Let A be the class all of functions f that are holomorphic in the open unit disk
D = {z ∈ C : |z| < 1}, possessing the series expansion of the form

f (z) = z +
∞∑

n=2

anzn. (1.1)

Let S be the subclass of A consisting of univalent functions. Let h and g be
holomorphic functions defined in D, h is said to be subordinate to g, denoted by
h ≺ g, if there exists a Schwarz function v : D → Dwith v(0) = 0 such that h(z) =
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Abstract
We introduce and study a new Ma–Minda subclass of starlike functions S!

.; defined
as

S!
. :¼ f 2 A :

zf 0ðzÞ
f ðzÞ % cosh

ffiffi
z

p
¼: .ðzÞ; z 2 D

" #
;

associated with an analytic univalent function cosh
ffiffi
z

p
; where we choose the branch

of the square root function so that cosh
ffiffi
z

p
¼ 1þ z=2!þ z2=4!þ ' ' ' : We establish

certain inclusion relations for S!
. and deduce sharp S!

.-radii for certain subclasses of
analytic functions.

Keywords Univalent functions · Starlike functions · Radius problems · Hyperbolic
Cosine function · Subordination

Mathematics Subject Classification 30C45 · 30C80

1 Introduction

Let An be the class of all analytic functions defined on the open unit disc D :¼
z 2 C : jzj\1f g; with Taylor series representation of the form f ðzÞ ¼ zþ

anþ1znþ1 þ anþ2znþ2 þ ' ' ' : Let A :¼ A1: Assume S ( A as the class of univalent
functions. If f(z) and g(z) are analytic functions in D; then f(z) is said to be
subordinate to g(z) ðf % gÞ; if there exists a self-map w(z) on D such that wð0Þ ¼ 0
and f ðzÞ ¼ gðwðzÞÞ: For instance, if g(z) is a univalent function in D, then f % g if
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Abstract
In this paper, bounds are established for the second Hankel determinant of logarithmic
coefficients for normalised analytic functions satisfying certain differential inequality.

Keywords Univalent functions · Close-to-convex functions · Hankel determinant ·
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1 Introduction

LetA be the class of all analytic functions defined on the open unit discD := {z ∈ C :
|z| < 1}with the Taylor series expansion of the form f (z) = z+∑∞

n=2 anz
n .Assume

S ⊂ A to be the class of univalent functions defined on D. A function f ∈ S, lies in
S∗ if the domain f (D) is starlike w.r.t origin. A function f ∈ A belongs to the class of
close-to-convex functionsK [14], if there exists g ∈ S∗ such that Re(z f ′(z)/g(z)) > 0
for z ∈ D. Note that S∗ ⊂ K ⊂ S. Moreover, for specific choices of g(z), namely
g(z) = 1/(1− z), 1/(1− z2), 1/(1− z+ z2) and 1/(1− z)2, we obtain some special
subclasses of close-to-convex functions Fi (i = 1, . . . , 4), defined as
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ON SHARP RADIUS ESTIMATES FOR S⇤(�)

AND A PRODUCT FUNCTION

S. Sivaprasad Kumar — Mridula Mundalia c

(Communicated by Stanis lawa Kanas )

ABSTRACT. In the present investigation, we determine various radius constants for the class S⇤(�) of
starlike functions of order �. We define S�,� to be the class of normalised analytic functions f satisfying
Re(ei�(1 � z)1+�f(z)/z) > 0 and introduce a product function G(z) := (1 � z)1+�g1(z)g2(z)/z with
g1, g2 2 S�,� , to find radius constants for G(z) to be in certain desired classes. Notably, earlier known
results are identified herein as special cases of our findings and all the results obtained are sharp.

c�2025
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

Let Dr be the open disk {z 2 C : |z| < r}, where 0 < r  1 and D := D1. Let A be the class
of all analytic functions defined on D with the normalisation f(0) = 0 and f

0(0) = 1 and S be
the subclass of A consisting of univalent functions. Let A0 be the class of analytic functions f(z)
defined on D with the normalisation f(0) = 1. Let f(z) and g(z) be analytic functions in D, if
there exists a Schwarz function w : D ! D satisfying |w(z)|  |z|, such that f(z) = g(w(z)), then
f(z) is subordinate to g(z), denoted by f � g. Further, if g(z) is a univalent function in D, then
f � g if and only if f(0) = g(0) and f(D) ⇢ g(D). The class of Carathéodory functions denoted by
P, consists of p 2 A0 such that Re p(z) > 0 and S⇤ denote the class of starlike functions satisfying
zf

0(z)/f(z) 2 P. Ma and Minda [15] unified all subclasses of starlike functions by defining the
following class:

S⇤(�) =
n
f 2 A :

zf
0(z)

f(z)
� �(z), z 2 D

o
, (1.1)

where � 2 P is a univalent function, which is symmetric about the real line and starlike with
respect to �(0) = 1 with �

0(0) > 0. Further they dealt with growth, distortion, covering and
coe�cient problems for the class S⇤(�). The class S⇤(�) has been extensively studied by various
authors for di↵erent choices of �(z), see [2, 4, 8, 9, 11–13, 17–20, 22, 23] and the references therein.
Some of the popularly known choices of �(z) are: cosh

p
z, 2/(1 + e�z), 1 + sinh�1

z, 1 + sin z,
z+

p
1 + z2, 1+zez, ez, 1+(4/3)z+(2/3)z2, 1+(2/⇡2)(log((1+

p
z)/(1�

p
z)))2, (1+sz)2, where

s 2 [�1/
p
2, 1/

p
2] \ {0} and 1 + (z/k)((k + z)/(k � z)), where k = 1 +

p
2, the corresponding

classes are denoted by S⇤
% , S⇤

SG, S⇤
s , S⇤

sin, S⇤%, S⇤
}, S⇤

e , S⇤
c , S⇤

p , S⇤
L(s) and S⇤

R, respectively. Further,
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