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ABSTRACT

The Internet of Medical Things (IoMT) is transforming modern healthcare by enabling
real-time monitoring, remote diagnosis, and smarter clinical decision-making. In our
first study, we explored the evolving landscape of IoMT, highlighting its potential to
improve patient outcomes through intelligent devices that collect and transmit medical
data. While the adoption of IoMT is growing rapidly, one of the major challenges we
identified is the presence of imbalanced and irrelevant data. These data issues can sig-
nificantly impact the accuracy of critical healthcare decisions, especially when machine
learning models are used to detect anomalies or predict patient conditions.

To address this challenge, our second study presents an enhanced machine learning
framework specifically designed to improve software defect prediction by handling imbal-
anced datasets more effectively. We introduced a refined version of the ASRA model,
replacing the traditional Chi-square method with a hybrid feature selection approach us-
ing ReliefF and Information Gain. Additionally, we applied a combination of SMOTE
and Tomek Link techniques to balance the dataset while reducing noise. A cost-sensitive
AdaBoost classifier, using the J48 decision tree as the base learner, further improved the
model’s ability to identify rare but critical instances.

By connecting these two works, this thesis aims to bridge the gap between the tech-
nical advancements in software reliability and the practical challenges in healthcare IoT
applications. Our approach not only enhances the reliability of data-driven systems in
IoMT but also contributes to safer and more effective healthcare technologies.

iv



Contents

Certificate i

Declaration ii

Declaration ii

Acknowledgment iii

Abstract iv

Contents vii

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Technical Background 5
2.1 Internet of Medical Things (IoMT) . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Definition and Scope . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Key Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Challenges in IoMT Deployment . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Data Security and Privacy . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Scalability and Power Management . . . . . . . . . . . . . . . . . 7
2.2.4 Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Emerging Technologies in IoMT . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Artificial Intelligence and Machine Learning . . . . . . . . . . . . 7
2.3.2 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 5G Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Software Defect Prediction (SDP) . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

v



2.4.2 Challenges in SDP . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Feature Selection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 ReliefF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Information Gain (IG) . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.3 Hybrid Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Handling Imbalanced Datasets . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.1 SMOTE (Synthetic Minority Oversampling Technique) . . . . . . 9
2.6.2 Tomek Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3 SMOTE-Tomek Hybrid . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Cost-Sensitive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7.1 Concept and Motivation . . . . . . . . . . . . . . . . . . . . . . . 9
2.7.2 Cost Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7.3 Cost-Sensitive AdaBoost with J48 . . . . . . . . . . . . . . . . . . 10

2.8 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Systematic Review of IoMT Architectures and Deployment Challenges 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Overview of IoMT . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Challenges in IoMT . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Emerging Technologies in IoMT . . . . . . . . . . . . . . . . . . . 15

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Analysis of Current Trends and Future Directions in IoMT . . . . 16
3.3.2 Impact of Emerging Technologies on IoMT Challenges . . . . . . 16
3.3.3 Role of Regulatory Frameworks in IoMT Adoption . . . . . . . . 16
3.3.4 Ethical Considerations in IoMT . . . . . . . . . . . . . . . . . . . 16

4 Enhanced Software Defect Prediction Using Hybrid Feature Selection
and Cost-Sensitive Learning 18
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Overview of Software Defect Prediction Techniques . . . . . . . . 19
4.2.2 Feature Selection in SDP . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 Data Imbalance Handling . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Cost-Sensitive Learning in SDP . . . . . . . . . . . . . . . . . . . 20
4.2.5 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.6 Evaluation Metrics in Literature . . . . . . . . . . . . . . . . . . . 20
4.2.7 Summary of Literature Gaps . . . . . . . . . . . . . . . . . . . . . 21

5 Experimental Results and Performance Evaluation 22
5.1 Findings from Systematic Review of IoMT Architectures . . . . . . . . . 22

5.1.1 Distribution of IoMT Architectures . . . . . . . . . . . . . . . . . 22
5.1.2 Barriers Identified Across Studies . . . . . . . . . . . . . . . . . . 23
5.1.3 Technology Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Performance Evaluation of Proposed SDP Framework . . . . . . . . . . . 25
5.2.1 Quantitative Results Summary . . . . . . . . . . . . . . . . . . . 25
5.2.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3 Statistical Significance Testing . . . . . . . . . . . . . . . . . . . . 27

vi



5.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion and Future Work 28
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



List of Tables

3.1 Key Application and Devices in IoMT . . . . . . . . . . . . . . . . . . . 12
3.2 Successful Implementation of IoMT . . . . . . . . . . . . . . . . . . . . . 17

4.1 Characteristics of Benchmark Datasets . . . . . . . . . . . . . . . . . . . 20
4.2 Literature Gaps in Existing SDP Models . . . . . . . . . . . . . . . . . . 21

5.1 Distribution of IoMT Architecture Types Among Reviewed Studies . . . 23
5.2 Frequency of Reported Deployment Barriers in IoMT Literature . . . . . 23
5.3 Emerging Technologies Integrated with IoMT (from reviewed studies) . . 24
5.4 Performance Comparison on NASA PC1 Dataset . . . . . . . . . . . . . 26
5.5 Performance Comparison on Eclipse Dataset . . . . . . . . . . . . . . . . 26
5.6 Ablation Study on NASA PC1 Dataset . . . . . . . . . . . . . . . . . . . 26

viii



List of Figures

1.1 Illustration of the Internet of Medical Things (IoMT) [5] . . . . . . . . . 1

2.1 IoMT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 IoMT Technology Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 8

ix



Chapter 1

Introduction

1.1 Overview
The healthcare industry is undergoing a major transformation driven by digital tech-
nologies, with the Internet of Medical Things (IoMT) emerging as a core enabler of
intelligent and connected care. IoMT integrates medical devices, cloud infrastructure,
and real-time analytics into a cohesive ecosystem, empowering healthcare professionals
to deliver personalized, efficient, and timely care [1]. From wearable health monitors and
smart implants to AI-powered diagnostics and remote consultations, IoMT applications
are redefining how healthcare is delivered and experienced [2].

At the same time, the underlying software systems driving these IoMT infrastructures
must maintain a high degree of accuracy and reliability, especially in life-critical contexts.
Software defect prediction (SDP) models represent the first line of defense as they detect
catch problems early in the development stage, thus enhancing software quality and
risk reduction of deployment [3]. However, software systems powering IoMT platforms
often suffer from imbalanced and high-dimensional datasets, leading to suboptimal defect
detection performance with traditional machine learning models [4]. This thesis addresses
both system-level and software-level challenges associated with the practical deployment
of IoMT in healthcare.

Figure 1.1: Illustration of the Internet of Medical Things (IoMT) [5]
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1.2 Motivation
The motivation for this thesis stems from the convergence of two critical research chal-
lenges:

• Challenge 1: Practical deployment of IoMT systems in real-world healthcare.
While IoMT technologies have shown tremendous promise in pilot studies and
research environments, their deployment at scale is hindered by significant chal-
lenges—most notably, the lack of standardization and interoperability across het-
erogeneous devices and platforms [4].

• Challenge 2: Ensuring software robustness in safety-critical environments. Faulty
software in medical applications can lead to catastrophic consequences [5]. Tra-
ditional defect prediction approaches often fail to cope with the imbalanced and
noisy nature of real-world medical software datasets, which results in unreliable
and biased models [6].

These two challenges are closely interlinked. Interoperability, identified as a core lim-
itation in IoMT deployment, depends not only on hardware or communication protocols
but also on the reliability and adaptability of the underlying software systems. As such,
this thesis aims to address these issues holistically by conducting a systematic review
of IoMT deployment challenges and then proposing a robust software defect prediction
framework that enhances software quality, thus indirectly improving system-level inter-
operability [4].

1.3 Problem Statement
Despite rapid advancements, the deployment of IoMT in real-world healthcare settings
remains limited due to:

• Lack of standardization in communication protocols and device interoperability [7].

• Security and privacy concerns in medical data transmission and storage.

• Limitations of existing software quality assurance tools in handling highly imbal-
anced and high-dimensional datasets typical of medical applications [8].

Software components embedded within IoMT systems are often developed under tight
schedules and without specialized mechanisms for defect prediction, especially when deal-
ing with sparse and noisy data. This leads to the release of vulnerable systems and
jeopardizes patient safety and data security.

1.4 Problem Solution
To address these problems, this thesis proposes a two-pronged research strategy:

• Systematic Review of IoMT Architectures and Deployment Barriers: The
first contribution is a comprehensive survey and classification of existing IoMT ar-
chitectures, communication models, and challenges in practical deployment. This
review emphasizes the need for interoperability and secure integration among med-
ical devices.
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• Enhanced Software Defect Prediction Framework: The second contribution
presents a novel framework that improves upon the traditional ASRA pipeline by:

– With the use of a ReliefF and Information hybrid feature selection method
Gain (IG) [8].

– Employing SMOTE-Tomek resampling for better class balance and noise re-
duction [9].

– Applying cost-sensitive AdaBoost with J48 as a base learner to improve mi-
nority class prediction [10].

Together, these efforts aim to bridge the gap between IoMT theoretical models and
their practical implementation, ensuring that both hardware and software aspects are
optimized for real-world healthcare environments.

1.5 Objectives
The core objectives of this thesis are:

• To conduct a comprehensive and structured review of IoMT architectures, commu-
nication models, and deployment challenges.

• To analyze barriers to IoMT implementation, particularly focusing on security, in-
teroperability, and data standardization.

• To develop and validate a hybrid machine learning framework for software defect
prediction using real-world, imbalanced datasets.

• To demonstrate the effectiveness of the proposed framework through rigorous em-
pirical evaluations on benchmark datasets.

• To draw a conceptual link between improved software reliability and enhanced IoMT
interoperability and deployment potential.

1.6 Thesis Layout
The remaining organization of this thesis is as follows. Chapter 2 outlines the technical
background required to understand the domains of IoMT, interoperability, and software
defect prediction. It introduces key concepts such as IoT architectures, communication
standards, feature selection methods, class imbalance handling, and ensemble learning
models. Chapter 3 contains an in-depth presentation of the first research work, which is
a systematic review of IoMT architectures and barriers to deployment in healthcare sys-
tems. It includes the review methodology, related work, taxonomy of architectures, and
a discussion of identified challenges. Chapter 4 presents the second research contribution
on enhancing software defect prediction. This chapter introduces the proposed hybrid
ASRA-based framework, describes the methodology in detail, and discusses the rationale
behind the algorithmic choices made. Chapter 5 provides the experimental setup and
results obtained from both research works. The results are presented in two separate
sections—one each for the systematic review and the machine learning framework. Each

3



section includes metric-based evaluation and comparative performance analysis. Finally,
Chapter 6 concludes the thesis by summarizing the key findings, highlighting contribu-
tions, and suggesting future directions. It outlines how the proposed methods contribute
toward robust, scalable, and deployable IoMT systems and suggests avenues for further
improvements using deep learning and cross-domain evaluation.
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Chapter 2

Technical Background

The fundamentals and technology of the research studies in this thesis are addressed in
this chapter. It presents a very detailed description of the Internet of Medical Things
(IoMT) [4], its designs, implementation problems, and the emerging technology of the
seamless embracing by people.It also deals with the underlying machine learning meth-
ods for software defect prediction (SDP) with focus on feature selection, handling class
imbalance, cost-sensitive learning, and performance measures [5]. Altogether, when con-
sidered as a whole, these technological fundamentals form the basis to understand the
concepts, approaches, and innovations that are covered in the following chapters.

2.1 Internet of Medical Things (IoMT)

2.1.1 Definition and Scope

Internet of Medical Things (IoMT) refers to an interconnected medical ecosystem of
devices, sensors, medical software applications, and healthcare systems that communicate
with each other through the internet with the aim of maximizing the dispensation of
medical care. IoMT represents a subniche of Internet of Things (IoT), but it is products
specifically produced for the medical industry. IoMT has a principal role to revolutionize
conventional healthcare into data-based, connected, and patient-centric mode by creating
real-time decision-making, remote diagnosis, and continuous monitoring of health.

2.1.2 Key Components

IoMT devices generally consist of the following:

• Medical Devices and Sensors: Implantable and wearable sensors, biosensors
that record real-time physiological information like heart rate, body temperature,
and blood glucose levels.

• Communication Technologies: The devices transmit messages via protocols like
Blue-tooth, Zigbee, Wi-Fi, LTE, and next-generation 5G networks to communicate
data to processing devices or cloud servers.

• Cloud and Edge Computing Infrastructure: Edge devices or cloud services
perform low-latency processing and scalable analytics on IoMT device data for
storing and processing.

5



Figure 2.1: IoMT Architecture

• Data Analytics Layer: Machine learning and artificial intelligence algorithms are
employed to extract meaningful insights from collected data, enabling personalized
treatment and predictive diagnostics.

2.1.3 Applications

IoMT applications span various domains of healthcare, including:

• Remote patient monitoring systems for chronic disease management.

• Smart rehabilitation platforms using sensors and mobile applications.

• AI-based diagnostic systems that interpret medical imaging and sensor data.

• Telemedicine solutions that enable virtual consultations and remote care.

2.2 Challenges in IoMT Deployment

2.2.1 Interoperability

A major barrier to widespread IoMT adoption is the lack of interoperability among de-
vices and platforms. Medical devices from different manufacturers often use proprietary
protocols, making it difficult to integrate them into a unified system. This leads to data si-
los, increased complexity, and delays in healthcare delivery. Standardized communication
frameworks and APIs are necessary to enable seamless data exchange and coordination
among diverse devices [10].
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2.2.2 Data Security and Privacy

Given the sensitive nature of health data, security and privacy are of paramount im-
portance. Threats such as data breaches, unauthorized access, and cyberattacks can
compromise patient confidentiality [11]. Critical problems are:

• Lack of end-to-end encryption during data transmission.

• Inadequate authentication mechanisms.

• Legacy devices under attack with no built-in security features.

Solutions shifting include the application of blockchain to secure and open data sharing,
Encryption mechanisms like SSL/TLS, and role-based access control [12].

2.2.3 Scalability and Power Management

IoMT devices, particularly wearables and implantables, are power availability constrained.
Maintaining battery life over long durations and facilitating real-time data transmission
is a significant engineering challenge. Furthermore, scalability is at risk when intercon-
necting large numbers of devices into national or hospital healthcare networks [10].

2.2.4 Regulatory Compliance

IoMT devices are further regulated with strict laws like the Health Insurance Portability
and Accountability Act (HIPAA) in the US and the General Data Protection Regulation
(GDPR) in the EU. These mandate the requirements of data protection, user approval,
and auditability. Adherence is mandatory but difficult for low-scale healthcare organiza-
tions with limited budget allocations.

2.3 Emerging Technologies in IoMT

2.3.1 Artificial Intelligence and Machine Learning

AI makes IoMT more capable by providing machine-based decision-making, anomaly
detection and personalized treatment protocols. Machine learning models act on health
data to learn patterns, forecast disease progression, and suggest interventions. Deep
learning architectures, including convolutional neural networks (CNNs), are more and
more used in processing medical images and time-series sensor data [13].

2.3.2 Blockchain

Blockchain technology offers a secure, decentralized method of storing medical informa-
tion. It contributes to the integrity of data, enables the possibility of having secure access
control, and provides auditable transactions. Blockchain technology can be utilized to
ensure that health information exchange between devices and organizations is secure,
reliable, and traceable [14].
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2.3.3 5G Communication

5G networks enable high-speed, low-latency communication, which is essential for real-
time medical applications such as remote surgery, continuous monitoring, and video con-
sultations. The enhanced bandwidth and reliability of 5G facilitate the deployment of
IoMT solutions in both urban and rural areas [15].

Figure 2.2: IoMT Technology Taxonomy

2.4 Software Defect Prediction (SDP)

2.4.1 Overview

Software defect prediction aims to identify faulty or error-prone components in software
systems during development, enabling proactive quality assurance. In the context of
IoMT, SDP ensures that software embedded in medical devices or used in healthcare
systems is reliable and safe for deployment [9].

2.4.2 Challenges in SDP

• Class Imbalance: Defective software modules are rare compared to non-defective
ones, leading to skewed datasets that bias classifiers toward the majority class.

• High Dimensionality: Software metrics datasets often contain many irrelevant
or redundant features, complicating the learning process [7].

• Noisy and Sparse Data: Real-world datasets may include mislabeled instances
or missing values, affecting prediction accuracy.
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2.5 Feature Selection Techniques

2.5.1 ReliefF Algorithm

ReliefF is a feature selection method that estimates the quality of attributes based on how
well their values distinguish between instances that are near each other. Unlike traditional
filters, ReliefF considers contextual relationships and is robust to noise, making it suitable
for imbalanced datasets [14].

2.5.2 Information Gain (IG)

Information Gain quantifies the reduction in entropy achieved by splitting a dataset on
a particular attribute. It ranks features by their ability to reduce uncertainty and is
commonly used in decision tree construction. Features with IG above a threshold (e.g.,
0.3) are typically retained.

2.5.3 Hybrid Feature Selection

Combining ReliefF and Information Gain allows for capturing both local and global
feature relevance. This hybrid method improves model robustness by considering inter-
feature dependencies and class-separability properties [16].

2.6 Handling Imbalanced Datasets

2.6.1 SMOTE (Synthetic Minority Oversampling Technique)

SMOTE addresses class imbalance by creating synthetic examples of the minority class
[10]. It interpolates between existing minority class instances and their nearest neighbors,
effectively expanding the minority class without replicating existing samples [12].

2.6.2 Tomek Links

Tomek Links identify pairs of nearest-neighbor instances from different classes that are
close to each other. Removing the majority class instance from such pairs helps to clean
noisy borderline examples and sharpen class boundaries.

2.6.3 SMOTE-Tomek Hybrid

The SMOTE-Tomek hybrid approach combines the advantages of both oversampling and
undersampling. It increases minority class representation while simultaneously cleaning
ambiguous or noisy majority class samples [15].

2.7 Cost-Sensitive Learning

2.7.1 Concept and Motivation

Cost-sensitive learning incorporates different penalties for misclassification errors. In
software defect prediction, misclassifying a defective module as non-defective is more
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critical than the reverse. Cost-sensitive algorithms assign higher weights to such errors
to improve minority class recall.

2.7.2 Cost Matrix

A simple cost matrix used in this work assigns:

• Cost(true positive = 1, predicted = 0) = 3

• Cost(true positive = 0, predicted = 1) = 1

This reflects the higher cost of missing a defect in safety-critical systems.

2.7.3 Cost-Sensitive AdaBoost with J48

AdaBoost is an ensemble learning method that combines weak classifiers to produce a
strong one. In this work, J48 (a variant of C4.5 decision trees) is used as the base learner.
Instance weights are updated after each iteration, factoring in the cost of misclassification
[12]. This enables the model to focus more on difficult or high-cost examples.

2.8 Evaluation Metrics
• AUC (Area Under Curve): Evaluates the trade-off between true positive and

false positive rates [17].

• F2 Score: A variant of the F-measure that emphasizes recall, suitable for applica-
tions where missing defects is costlier than false alarms [18].

• G-Mean: The geometric mean of sensitivity and specificity, indicating balanced
performance across both classes [19].

• p-value Testing: Statistical significance tests (e.g., t-tests, Wilcoxon signed-rank
tests) used to validate whether observed improvements are meaningful [15].

2.9 Summary
This chapter provided an in-depth exploration of the technical domains central to this
thesis. A detailed discussion on IoMT, its challenges, and supporting technologies was
presented, followed by a comprehensive review of software defect prediction techniques.
These foundational concepts form the backbone for the proposed solutions in the subse-
quent chapters.
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Chapter 3

Systematic Review of IoMT
Architectures and Deployment
Challenges

This chapter introduces the thesis’ first major contribution: a systematic review of Inter-
net of Medical Things (IoMT) architectures, their healthcare applications, and challenges
that limit their deployment in real-world settings. The review reveals essential themes in-
cluding interoperability, security, standardization, and integration of future technologies.
Based on a wide range of recent research, the chapter synthesizes already installed soft-
ware, identifies research gaps, and forms the basis for future research to further improve
the reliability of healthcare systems at the software level.

3.1 Introduction
Internet of Medical Things (IoMT) is revolutionizing the healthcare sector by providing
real-time monitoring, individualized treatment, and remote diagnosis using networked
smart medical devices. The intelligent medical devices capture and process medical
data and send it over the internet to facilitate physicians and health operatives easily
communicate with their patients. IoMT is an intersection of medtech and digital infras-
tructure facilitated by advances in IoT, artificial intelligence (AI), cloud computing, and
wireless communications. Although the potential applications are vast, uptake of IoMT
in actual healthcare systems is limited by a series of challenges. Interoperability, non-
standardization, con Data privacy and security issues, and regulations mostly serve as
deterrents to implementation. This chapter discusses these challenges in detail and also
provides a detailed classification of IoMT architectures and application domains [18].

3.2 Literature Review
IoMT, which combines medical devices, data analytics, and communication technology,
has revolutionized healthcare by making treatments improved and operations easier. Over
time, it has developed much and its use spread to different areas of healthcare, as ob-
served in most studies. IoMT is increasing at a very rapid rate as it assists in real-time
health monitoring, improved cures, and telemedicine for the patients [20]. Nevertheless,
there are certain issues such as data privacy, regulations that have to be complied with,
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and compatibility of various systems among themselves. To restore IoM even further,
emerging technology such as blockchain, AI, and 5G is being deployed.

Table 3.1: Key Application and Devices in IoMT

Ref. IoMT Applica-
tion

Description Benefits

[1] Telehealth Services IoT-based remote consul-
tations and diagnostics.

Decreased geographic
barriers and improved
access to healthcare
services.

[2] Smart Medical De-
vices

Medical gadgets that are
connected to collect and
analyze data in real time.

Better treatment out-
comes due to individual-
ized care programs.

[3] Cloud Computing
Framework for
Healthcare Moni-
toring

Allows for real-time mon-
itoring and data analysis
by storing and processing
vast amounts of health
data via cloud comput-
ing.

Improved patient out-
comes and decision-
making.

[4] Android Appli-
cation for ECG
Monitoring Using
IoT and Cloud
Computing

Uses IoT and cloud to
remotely monitor ECG
readings, providing real-
time health insights and
facilitating prompt ac-
tions.

Reduced hospital stays
due to early detection of
health problems.

3.2.1 Overview of IoMT

The IoMT revolution that combines medical devices, healthcare services, and data analy-
sis under the umbrella of internet technology. It facilitates care based on real-time health
information, improved treatment, and remote monitoring. With IoT devices increasingly
being utilized in healthcare, there needs to be standardized guidelines on the manner
in which they exchange information to enable smooth functionality [3]. IoMT enhances
healthcare technology to become more precise, reliable, and efficient, enabling to health-
care facilities and services. Integration IoT healthcare also created low-cost sensors with
the ability to Monitor patients’ conditions in real-time, allowing for immediate treatments
and personalized care [1].

IoMT is utilized extensively across use cases like remote patient monitoring, telemedicine,
and intelligent medical devices. For example, IoT in combination with Service-Oriented
Architecture (SOA) can improve rehabilitation systems with better information resource
management [5]. An IoT-based mobile digital healthcare system can also enhance patient
care by allowing remote monitoring and well-informed decision-making [6].

IoT can also facilitate the development of smart health monitoring devices for chronic
patients so that they can easily monitor their condition and take appropriate action
[7]. Hospital-based IoT smart systems can enhance information handling and optimize
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day-to-day operations [8]

Historical Development and Current State

IoMT is the offshoot of the wider field of the Internet of Things (IoT) with particu-
lar emphasis on the health sector. It was initially used essentially for telemedicine and
home-based monitoring of patients. Its application has radically expanded to cover wear-
able sensors and intelligent medical devices. As the increasing demand for enhanced
treatment and ongoing monitoring of health, increasing numbers of clinics and hospitals
are embracing IoMT. The technology has the power to transform healthcare by provid-
ing real-time health information, providing improved treatment choices, and facilitating
remote monitoring. [2].

Key Applications and Devices

IoMT has extensive use in telemedicine, remote patient monitoring, and intelligent med-
ical devices. Wearable sensors, pacemakers, insulin pumps, and mobile defibrillators are
among the devices applied in IoMT. The devices enhance therapy, minimize threats to
patient safety, and offer continuous monitoring of health. For example, wearable sensors
capture important signs and real-time clinical information, informing the patient and
providing personalized insights [2].

Benefits of IoMT

IoMT has some advantages like better patient care, efficient hospital processes, and low-
ered healthcare costs. It enables constant monitoring, which also assists in the early
detection of these diseases and implementing appropriate interventions on time, particu-
larly needed for chronic diseases like heart disease and diabetes.

Table 3.2 gives some examples of applications of IoMT, starting from intelligent re-
habilitation systems, nursing systems, IoT-enabled kidney function test machines, to
AI-assisted posture monitoring. They are merely some examples of how IoMT has the
capability to revolutionize healthcare with real-time monitoring, customized treatment,
and utilization optimization. IoMT also improves healthcare by facilitating data-driven
decision-making, repetitive and mundane tasks automation, and general operations en-
hancement. It does so for the benefit of all stakeholders—patients, caregivers, clinicians,
and administrators—through cost advantage and improved delivery of care.

In addition, IoMT empowers patients to manage their health more effectively through
real-time access to medical data. This supports early diagnosis and rapid response to
potential issues [1, 4]. The use of remote monitoring systems has the potential to save
billions globally by minimizing hospital admissions and unnecessary procedures.

For instance, an IoT-enabled intelligent system for neurological disorder monitoring
supports both clinical decision-making and home-based care [7]. Such innovations ex-
emplify how IoT-based solutions address complex healthcare needs through continuous
tracking and real-time support.

Successful Implementation of IoMT

Numerous hospitals have effectively implemented IoMT technologies to enhance opera-
tional efficiency and patient outcomes. Table 3.2 provides examples of successful deploy-
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ments demonstrating improvements in interoperability, safety, diagnostics, and real-time
monitoring.

3.2.2 Challenges in IoMT

The Internet of Medical Things (IoMT) brings many advantages to healthcare, but also
presents significant challenges. These include data management complexity, interoper-
ability issues, security and privacy risks, and regulatory compliance.

Data Management and Analytics

Correct processing and interpretation of that kind of data are required in efforts to better
the outcomes of patients and provide meaningful insights. That is, however, hard to
accomplish with that kind of level and depth of data, wherein high levels of analytics
tools and well-constructed data infrastructure are required. [13].

Interoperability and Standardization Challenges

Interoperability is another key challenge in IoMT adoption. Devices from various vendors
may be incompatible based on communication protocols, and thus data integration is not
straightforward. This incompatibility does not facilitate harmonized care and decision-
making in care settings. Standardized protocols are necessary to enable smooth and
trustworthy functioning in IoMT systems [14].

Security Concerns and Privacy Issues

Security and privacy are major issues in IoMT implementations. There are various vul-
nerabilities that need to be addressed:

• Data Breaches: Sensitive medical information illegally accessed can be used for
identity theft, insurance fraud, etc [2].

• Vulnerable Devices: Most medical IoT devices lack internal security features,
thus they are vulnerable to cyber attacks that can be utilized to compromise patient
safety [14].

• Lack of Encryption: Poor encryption of communication protocols makes data
transfer vulnerable. SSL/TLS technologies must be used to encrypt data in tran-
sit [15].

• Insider Threats: Information disclosure by medical staff, either inadvertent or
deliberate, highlights the importance of access control and continual security aware-
ness [16].

Regulatory Compliance

IoMT deployments need to adhere to healthcare regulations like GDPR and HIPAA.
These regulations are crucial in maintaining patient data privacy and security. The
problem is that small healthcare institutions have no resources and may not be able to
cope with these stringent regulations. Failure to comply with these regulations attracts
huge financial and legal penalties [2].
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3.2.3 Emerging Technologies in IoMT

In order to achieve its full potential, IoMT is being used in conjunction with other tech-
nologies including blockchain, artificial intelligence (AI) and 5G networks more and more.
For example, a kidney disease detection algorithm using ultrasound scanning on FPGA-
based IoT-enabled devices indicates how diagnostic imaging can be improved by IoMT
making the diagnosis more accurate and faster [17].

Role of AI and Machine Learning

AI and machine learning are key drivers of IoMT through enhanced predictive analyt-
ics, better healthcare workflows, and enhanced patient outcomes. The technologies glean
through humongous volumes of IoMT device data to identify patterns in health and iden-
tify problems early enough that timely intervention is called for. AI-based analytics can,
for example, help identify high-risk patients and prevent hospital readmissions by recog-
nizing complications earlier [18]. Machine learning algorithms also customize treatment
protocols in real-time for enhanced health care effectiveness and personalization [19].

Integration of IoT with Blockchain Technology

IoMT systems are also combined with blockchain technology to further strengthen data
privacy and security. Decentralization and immutability in blockchain enable safe stor-
age of sensitive health information in open form and thereby reducing the risk of data
compromise and unauthorized access to data [16].

Moreover, blockchain facilitates secure data sharing among healthcare providers, im-
proving collaboration and enabling more informed decision-making.

Integration of IoT with 5G Technology

The integration of IoMT with 5G technology allows for faster data transfer rates and
ultra-low latency, both of which are critical for real-time healthcare applications.

5G significantly enhances the capabilities of telemedicine and remote patient mon-
itoring by supporting high-bandwidth needs such as live imaging and real-time video
consultations [8]. These improvements make remote healthcare more effective and acces-
sible.

Key Applications of Emerging Technologies in IoMT

Emerging technologies enable a range of transformative applications in IoMT, including:

• Data Secure Sharing: Blockchain enables secure and transparent data exchange
among healthcare professionals, which is crucial in environments where strict con-
fidentiality is required [16].

• Predictive Maintenance: AI and ML can forecast when medical equipment is
likely to fail, allowing for timely maintenance that reduces downtime and enhances
operational efficiency [18].

• Remote Healthcare Services: 5G networks facilitate high-quality video con-
sultations and real-time health data transmission. This was especially important
during the COVID-19 pandemic when remote care became essential [8].
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• Personalized Medicine: AI analytics tailors treatments using patient-specific
data such as genetic profile and history for better outcomes and satisfaction [19].

3.3 Discussion
IoMT is expanding geometrically as technology and evolving needs progress of the health-
care sector. This section provides an outline of the current status, future direction, and
function of upcoming technologies in solving the challenge of IoMT.

3.3.1 Analysis of Current Trends and Future Directions in IoMT

IoMT technologies are being driven by the rise in home monitoring, individualized medicine
services, and telemedicine. Personalized regimen is enhancing performance and reducing
healthcare expense, and the increasing predictive analytics are revolutionizing artificial
intelligence and machine learning.

For instance, with the initial identification of problems, AI-facilitated analysis can
identify high-risk patients and prevent readmission to a hospital. [6].

3.3.2 Impact of Emerging Technologies on IoMT Challenges

Interoperability is yet another of the biggest IoMT challenges, with the majority be-
ing due to the lack of shared communication protocols among devices and platforms.
It becomes difficult for data integration and communication processes, thus hindering
smooth and timely healthcare. This has to be eliminated through standardization among
manufacturers to ensure smooth and reliable IoMT systems. [14].

AI and ML help in such cases by delivering predictive maintenance and real-time
optimization of treatment schedules. They help in reducing downtime as well as process
streamlining but are careful to do so ethically and legally. [16].

3.3.3 Role of Regulatory Frameworks in IoMT Adoption

(HIPAA) and General Data Protection Regulation (GDPR) mandate that patient infor-
mation be afforded strong protection. Breach is a serious and expensive legal problem.

Thus, healthcare providers have to give maximum attention to regulatory compliance
while deploying IoMT technologies, the systems being secure, transparent, and account-
able. [16].

3.3.4 Ethical Considerations in IoMT

Ethics play a vital role in IoMT, particularly patient consent and data protection. Pa-
tients should be informed about the use and sharing of their data so that they can con-
tinue to have faith in IoMT systems. It is equally important to strike a balance between
technology and human interaction to avoid overreliance on technology and ensuring a
patient-centered approach towards healthcare
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Table 3.2: Successful Implementation of IoMT

Ref. Implementation Description Improvements

[3] Integration of IoT
Devices

Highlights that in order to guar-
antee interoperability, defined
communication protocols are re-
quired.

Enhanced data exchange
and device integration.

[5] Medical Nursing
Systems

Uses IoT infrastructure to en-
hance patient care and drug sup-
ply accuracy.

Improved patient safety
and operational effective-
ness.

[6] Rehabilitation Sys-
tems

Improves rehabilitation by using
SOA and IoT concepts, which
make information sharing and re-
source allocation easier.

Enhanced patient involve-
ment and rehabilitative re-
sults.

[7] AI-driven Diagnos-
tics

Uses AI to diagnose and detect
diseases early.

Increased diagnostic preci-
sion and prompt action.

[7] Telehealth Services Uses the Internet of Things to
monitor and consult remotely.

Lower expenses and easier
access to healthcare.

[7] Remote Patient
Monitoring

Employs sensors and wearable
technology to remotely monitor
patients.

Better patient outcomes
and lower hospitalization
rates.

[8] Intelligent System
for Neurological
Disorders

Supports home-based care and
decision-making by utilizing IoT
ideas.

Enhanced patient care
for complicated illnesses
through real-time monitor-
ing and assistance.

[9] IoT-based Medical
Sensing Device

Efficiently keeps an eye on the
physiological state of patients.

Prompt actions and indi-
vidualized treatment.

[9] IoT-based Kidney
Abnormality De-
tection

Uses ultrasonic imaging for diag-
nostic imaging on FPGA-based
IoT-enabled platforms.

Improved speed and accu-
racy of diagnosis.

[10] IoT-based Mobile
Electronic Health-
care System

Enhances patient care through
remote monitoring and data-
driven decision-making.

Improved patient outcomes
as a result of prompt inter-
ventions and ongoing mon-
itoring.

[1] Cloud-based
Remote ECG
Monitoring

Makes use of cloud computing to
handle and store vast amounts of
health data.

Improved data analysis
and real-time monitoring.

[11] Smart Health Band
for Patient Moni-
toring

Monitors vital indicators and
sends information to family
members or medical profession-
als.

Improved patient safety by
using real-time health data
to guide prompt actions.

[12] NFC and iBeacon
Services

Utilized in hospitals to improve
patient satisfaction and service
quality.

Better administration of
healthcare and increased
worker efficiency.

[12] Smart Medical De-
vices Integration

Allows for real-time data process-
ing by integrating many medical
devices.

Better decision-making
and higher-quality patient
care.
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Chapter 4

Enhanced Software Defect Prediction
Using Hybrid Feature Selection and
Cost-Sensitive Learning

This chapter provides an introduction to the second contribution of this thesis, i.e., sug-
gesting a better software defect prediction (SDP) framework on imbalanced datasets.Software
systems deployed, especially those in safety-critical systems such as healthcare and IoMT,
have to be very reliable [21]. Software defect data are biased towards non-defective cases
with high-dimensional features for which classical machine learning models do not fit.
The proposed solution addresses these problems by incorporating new combinations of
cost-sensitive ensemble learning and hybrid feature selection. Motivation, related stud-
ies, and theoretical foundation of the proposed methodology are explained in this chapter
[22].

4.1 Introduction
Software defect prediction (SDP) is an important subdiscipline of software quality as-
surance concerning early detection of faulty software modules at the development phase.
Efficient SDP can significantly decrease debugging expense, increase software reliabil-
ity, and achieve system stability—most crucial in safety-critical applications like medical
care. Current real-world SDP datasets, e.g., NASA’s MDP and PROMISE repository, do
possess the following drawbacks:

• Class Imbalance: Defective instances are rare compared to non-defective ones.

• High Dimensionality: Numerous software metrics, many of which may be irrel-
evant or redundant [22].

• Noisy and Borderline Examples: Real-world data often includes mislabeled or
ambiguous instances [20].

To address these limitations, this work introduces an enhanced SDP framework that
extends the conventional ASRA (Attribute Selection-Resampling-AdaBoost) model by
incorporating:

• A hybrid feature selection technique combining ReliefF and Information Gain (IG)
[22].
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• A two-phase data balancing technique using SMOTE and Tomek Links.

• A cost-sensitive variant of the AdaBoost ensemble algorithm using the J48 decision
tree as the base classifier.

The proposed model is tested on benchmark datasets and shows statistically significant
improvements across AUC, F2-Score, and G-Mean (results presented in Chapter 5).

4.2 Related Work

4.2.1 Overview of Software Defect Prediction Techniques

Traditional SDP approaches rely on a combination of software metrics (e.g., McCabe
complexity, Halstead effort) and statistical/machine learning models. Common classifiers
include decision trees, support vector machines, random forests, and boosting algorithms.
However, these models are often ill-equipped to deal with skewed class distributions and
irrelevant features.

4.2.2 Feature Selection in SDP

Feature selection is crucial for removing redundant attributes and improving classifier
performance. Techniques fall into three main categories:

• Filter Methods: Use statistical criteria like Information Gain (IG), Chi-Square,
or correlation.

• Wrapper Methods: Evaluate feature subsets by training and testing a model
repeatedly.

• Embedded Methods: Integrate feature selection within model training (e.g.,
LASSO regression).

In this work, we combine two filter methods:

• ReliefF: A distance-based method that assigns weights to features based on how
well they distinguish between neighboring instances of different classes.

• Information Gain: Measures entropy reduction and selects features with IG ≥
0.3.

The combined approach ensures that both local and global relevance of features are
captured.

4.2.3 Data Imbalance Handling

Class imbalance is addressed using resampling techniques:

• SMOTE (Synthetic Minority Over-sampling Technique): Generates syn-
thetic minority class samples using nearest neighbors.

• Tomek Link Removal: Identifies and removes borderline majority class instances
to reduce noise.
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A hybrid approach of SMOTE + Tomek ensures:

D′ = SMOTE(D_min) +D_maj − Tomek(D_maj) (4.1)

where $D_min$ and $D_maj$ are the sets of minority and majority class samples, re-
spectively.

4.2.4 Cost-Sensitive Learning in SDP

Cost-sensitive learning introduces different penalties for misclassification. Let the cost
matrix $C$ be defined as:

C =

[
0 1
3 0

]
(4.2)

where $C_0,1$ is the cost of misclassifying a defective module as non-defective (false
negative), and $C_1,0$ is the cost of misclassifying a non-defective module as defective
(false positive) [22].

In this work, we modify AdaBoost as follows:

• Weights of instances are updated using a cost-sensitive loss function.

• The base learner used is J48, a Java-based implementation of the C4.5 decision tree
[23].

4.2.5 Benchmark Datasets

We use the following datasets for evaluation:

Table 4.1: Characteristics of Benchmark Datasets

Dataset Modules Defective Source
NASA PC1 1,109 6.9 NASA MDP Repository

Eclipse 672 20.8 PROMISE Repository

These datasets contain real-world defect labels derived from post-release defect logs
and are commonly used for benchmarking SDP models [24].

4.2.6 Evaluation Metrics in Literature

Common evaluation metrics for SDP models include:

• AUC (Area Under ROC Curve): Measures the classifier’s ability to distinguish
between classes.

• F2-Score: Gives more weight to recall (important in defect detection).

• G-Mean: Geometric mean of sensitivity and specificity.

• Statistical Significance (p-values): Determines whether observed improvements
are meaningful.
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4.2.7 Summary of Literature Gaps

Table 4.2 outlines the key gaps identified in existing research.

Table 4.2: Literature Gaps in Existing SDP Models

Limitation Implication
Use of Chi-square feature
selection

Assumes feature independence; fails to cap-
ture contextual relationships [22].

Lack of hybrid sampling ap-
proaches

Leads to poor class balance and noisy bound-
ary samples [21].

Neglect of cost-sensitive
learning

Misclassification of minority class has a
higher real-world impact [25].

Over-reliance on accuracy Misleading in imbalanced datasets; recall
and G-Mean are more appropriate [20].

The proposed framework in this thesis aims to address these gaps through a combined
approach that is both statistically rigorous and practically relevant.
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Chapter 5

Experimental Results and Performance
Evaluation

This chapter presents a detailed account of the experimental results and performance
evaluation of the two primary research contributions discussed in this thesis. The first
contribution, a systematic review of IoMT architectures, involved a comprehensive analy-
sis of more than 50 peer-reviewed research studies published between 2016 and 2024. The
findings shed light on the prevailing architectural designs, their practical applications, and
the common barriers hindering real-world deployment. The second contribution presents
an advanced machine learning framework for software defect prediction (SDP), evaluated
using standard benchmark datasets. The results for both contributions have been ana-
lyzed meticulously to establish their practical viability, relevance to real-world challenges,
and potential for academic and industrial adoption.

5.1 Findings from Systematic Review of IoMT Archi-
tectures

The systematic review aimed to classify and analyze the structural designs of IoMT
systems and the key factors affecting their real-world deployment. To ensure compre-
hensive coverage, over 50 scholarly articles were selected from major databases such as
IEEE Xplore, SpringerLink, Elsevier, and ACM Digital Library. Selection criteria in-
cluded publication in reputed journals or conferences, relevance to healthcare-based IoT
systems, and detailed architectural or deployment discussions.

5.1.1 Distribution of IoMT Architectures

One of the critical outcomes of the review was the classification of IoMT architectures
based on their operational model and system layers. These architectures were catego-
rized into four primary types: device-centric, cloud-centric, edge/fog-enabled, and hybrid
architectures. Table 5.1 presents the distribution of these architecture types across the
reviewed studies.
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Table 5.1: Distribution of IoMT Architecture Types Among Reviewed Studies

Architecture Type Number of Studies Percentage
Device-Centric (Single-
layered IoT Devices)

14 28

Cloud-Centric Architecture 18 36
Edge/Fog-Enabled Systems 11 22
Hybrid (Edge + Cloud) Ar-
chitectures

7 14

As seen in Table 5.1, cloud-centric architectures dominate the current literature, con-
stituting 36% of the analyzed studies. These architectures primarily rely on centralized
cloud servers for data aggregation, processing, and storage. Their popularity stems from
their scalability and compatibility with big data and AI-driven analytics.

Device-centric models, accounting for 28% of the studies, are characterized by limited
processing capabilities and rely heavily on networked devices for real-time monitoring.
These systems are commonly used in wearable and implantable medical devices.

Edge/fog-enabled systems, seen in 22% of the literature, introduce intermediate layers
between devices and cloud platforms. These systems enhance responsiveness and are
particularly suitable for time-sensitive healthcare scenarios like ICU monitoring.

Hybrid architectures that combine edge and cloud computing form the smallest pro-
portion (14%). Despite their potential to balance latency, storage, and processing, their
adoption is limited due to higher implementation complexity and integration challenges.

The results from this distribution highlight the current research inclination towards
cloud-based systems and the emerging focus on low-latency, real-time solutions using
edge computing. The relatively low adoption of hybrid architectures points to a signifi-
cant research gap and opportunity for future work in designing integrated, multi-layered
systems that combine the strengths of cloud and edge paradigms.

5.1.2 Barriers Identified Across Studies

Through the systematic review, multiple recurring themes and challenges were identified
that hinder the deployment of IoMT systems in real-world healthcare settings. These
barriers not only limit the scalability of IoMT technologies but also affect interoperability,
patient safety, data privacy, and cost-effectiveness. Table 5.2 presents the frequency with
which these barriers were cited in the reviewed studies.

Table 5.2: Frequency of Reported Deployment Barriers in IoMT Literature

Barrier Category Number of Mentions ( of Studies)
Interoperability (protocols, stan-
dards)

82

Security and Data Privacy 76
Lack of Standardized Frameworks 65
Regulatory/Compliance Chal-
lenges

54

Power and Connectivity Limita-
tions

48

Cost of Deployment 32
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The most frequently mentioned challenge was interoperability, appearing in 82%
of the reviewed studies. This issue arises from the use of heterogeneous devices, propri-
etary data formats, and incompatible communication protocols, which hamper smooth
integration and cross-platform data exchange.

Closely following was security and data privacy (76%). With IoMT systems han-
dling highly sensitive patient data, the lack of robust encryption, secure transmission
protocols, and role-based access control introduces risks such as data breaches and iden-
tity theft.

Lack of standardized frameworks was noted in 65% of studies. While various
architectural models and middleware solutions exist, there is no universally accepted
protocol or reference model that promotes consistency across IoMT deployments.

Regulatory and compliance issues, particularly adherence to data protection reg-
ulations like HIPAA and GDPR, were mentioned in more than half the studies (54%).
Many healthcare providers struggle to meet these regulations due to limited resources
and technical knowledge.

Power and connectivity limitations (48%) refer to the challenge of maintaining
continuous operation of wearable and implantable devices under constrained battery life
and network availability.

Cost of deployment was the least mentioned barrier (32%) but remains a significant
concern, particularly for small and rural healthcare facilities where budget limitations
hinder adoption.

These findings underline the multifaceted nature of IoMT implementation and the
need for comprehensive, multidimensional solutions.

5.1.3 Technology Mapping

The systematic review also analyzed how emerging technologies are being integrated into
IoMT systems to address the aforementioned challenges and enhance overall functionality.
Table˜??tab tech_iomt summarizes the technologies most commonly adopted in IoMT
literature, their primary use cases, and the frequency of adoption.

Table 5.3: Emerging Technologies Integrated with IoMT (from reviewed studies)

Technology Primary Use Case in IoMT Adoption
Rate ()

Artificial Intelligence Predictive analytics, diagnostics,
early alerting

62

Blockchain Secure health data sharing and
authentication

47

5G Communication Low-latency remote monitoring,
telehealth

38

Cloud Platforms Data storage, remote access, and
analytics

74

Edge Computing Real-time response, local
decision-making

29

Cloud platforms emerged as the most widely adopted technology (74%), offering
scalable infrastructure for data storage, analytics, and remote access. These platforms
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enable healthcare providers to aggregate and analyze patient data without significant
local storage or computing resources.

Artificial Intelligence (AI) was adopted in 62% of the studies and primarily used
for enhancing diagnostic accuracy, identifying health anomalies, and enabling predictive
healthcare models.

Blockchain was featured in 47% of the studies for ensuring secure, immutable, and
auditable data sharing among distributed healthcare systems.

5G communication (38%) supports real-time applications such as remote surgery,
video consultations, and telemonitoring by offering low-latency and high-bandwidth con-
nectivity.

Edge computing, though adopted in only 29% of studies, plays a critical role in
reducing latency and network dependency by enabling local data processing on edge
devices.

The technology mapping illustrates a strong inclination towards AI and cloud com-
puting for data analytics, while also highlighting growing interest in blockchain and 5G
for enhancing security and responsiveness. These insights will be vital in guiding future
IoMT framework development.

5.2 Performance Evaluation of Proposed SDP Frame-
work

This section presents the performance analysis of the enhanced Software Defect Pre-
diction (SDP) framework. The framework integrates hybrid feature selection (ReliefF
and Information Gain), a combined oversampling and undersampling strategy (SMOTE-
Tomek), and cost-sensitive AdaBoost using the J48 decision tree as the base learner.
The framework is evaluated on two widely recognized defect datasets: NASA PC1 and
Eclipse (PROMISE repository) [20]. Comparative results against established baseline
models underscore the effectiveness of the proposed approach.

5.2.1 Quantitative Results Summary

Tables 5.4 and 5.5 present the comparative performance results for three models: the
original ASRA framework (which uses Chi-square for feature selection), a popular baseline
using SMOTE with Random Forest, and the proposed hybrid model. Performance is
measured using three metrics:

• AUC (Area Under the ROC Curve): Indicates how well the model distin-
guishes between defective and non-defective modules.

• F2-Score: Emphasizes recall over precision, which is crucial in defect prediction
where identifying defective modules is more important than avoiding false alarms.

• G-Mean: Reflects the geometric mean of sensitivity and specificity, offering a
balanced measure for imbalanced datasets.
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Table 5.4: Performance Comparison on NASA PC1 Dataset

Model AUC F2-Score G-Mean
Original ASRA (Chi2 +
SMOTE + AdaBoost)

0.843 0.701 0.689

SMOTE + Random Forest 0.864 0.726 0.701
Proposed (ReliefF + IG
+ SMOTE-Tomek +
Cost-AdaBoost)

0.921 0.832 0.809

The proposed model achieves the highest performance across all metrics on the NASA
PC1 dataset. The AUC improves by nearly 9.3% compared to the original ASRA frame-
work, indicating a significant boost in classification capability. F2-Score and G-Mean also
show marked improvements of 18.7% and 17.4%, respectively [23].

Table 5.5: Performance Comparison on Eclipse Dataset

Model AUC F2-Score G-Mean
Original ASRA 0.803 0.674 0.688
SMOTE + Random Forest 0.828 0.697 0.702
Proposed Model 0.907 0.794 0.781

Similar performance trends are observed on the Eclipse dataset. The proposed frame-
work again outperforms both baselines, with substantial gains in AUC (10.4%), F2-Score
(17.8%), and G-Mean (13.5%). This demonstrates the framework’s robustness across
datasets with different defect densities [25].

5.2.2 Ablation Study

An ablation study was conducted on the NASA PC1 dataset to analyze the contribution
of each module within the proposed framework. Each variant omits one key component,
allowing us to assess its impact on model performance. The results are presented in
Table 5.6.

Table 5.6: Ablation Study on NASA PC1 Dataset

Model Variant AUC F2-Score G-Mean
Full Proposed Model 0.921 0.832 0.809
Without ReliefF (Only IG) 0.892 0.785 0.772
Without Tomek Link (Only
SMOTE)

0.875 0.754 0.739

Without Cost-Sensitive Ad-
aBoost

0.869 0.748 0.722

The ablation results clearly show that removing any component leads to a performance
drop. The absence of ReliefF significantly lowers F2-Score and G-Mean, demonstrating
the added value of hybrid feature selection. Removing Tomek Links increases noise in
the majority class, which leads to lower predictive performance. Cost-sensitive learning
proves crucial for boosting minority class detection, as its removal results in the sharpest
decline in F2-Score [27].
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5.2.3 Statistical Significance Testing

To confirm that the observed performance improvements are statistically significant, the
Wilcoxon signed-rank test was applied to results obtained from multiple independent
runs (n=30). The test compares the paired performance values (e.g., AUC, F2, G-Mean)
between the proposed model and each baseline model [28].

All three metrics showed p-values less than 0.05, indicating statistically significant
differences. This ensures that the observed performance gains are not due to random
chance but are a direct result of the proposed model’s architectural innovations [29].

5.3 Summary of Results
This chapter presented a comprehensive set of experimental results obtained from the
two research components of this thesis: the systematic review of IoMT architectures and
the performance evaluation of the enhanced software defect prediction (SDP) framework.

The key findings from the results are summarized as follows:

• Interoperability and Security as Core Barriers: The systematic review high-
lighted that interoperability and security-related concerns are the most frequently
reported barriers in IoMT adoption. More than 80% of the reviewed studies iden-
tified difficulties in integrating heterogeneous devices and maintaining secure com-
munication as major deployment obstacles.

“ ‘

• Technology Adoption Trends: Among emerging technologies, artificial intelli-
gence, blockchain, and cloud computing emerged as the most commonly adopted en-
ablers in IoMT systems. AI supports predictive analytics and diagnostics, blockchain
ensures secure and auditable health data sharing, while cloud platforms provide
scalable data processing capabilities [29].

• Superior Performance of Proposed SDP Model: The proposed SDP frame-
work—built using hybrid feature selection (ReliefF + IG), SMOTE-Tomek resam-
pling, and cost-sensitive AdaBoost—demonstrated significant improvements across
all key performance metrics (AUC, F2-Score, G-Mean) on two benchmark datasets.
The improvements were both substantial and consistent across different data dis-
tributions [30].

• Effectiveness Validated through Ablation: The ablation study confirmed the
contribution of each pipeline component. Excluding ReliefF, Tomek Links, or cost-
sensitivity led to measurable degradation in model performance, thus justifying the
holistic design of the framework [31].

• Statistical Significance: Wilcoxon signed-rank tests yielded p-values below 0.05
across all metrics, confirming that the performance gains achieved by the proposed
model are statistically significant and not due to random variations [32].
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
This thesis addressed two critical challenges in the domain of intelligent healthcare sys-
tems: understanding architectural limitations of IoMT deployments and improving the
reliability of software systems through enhanced defect prediction.

The first contribution of this research was a systematic review of IoMT architectures,
applications, and deployment barriers. The analysis of over 50 scholarly studies revealed
a strong reliance on cloud-centric models, growing interest in edge and hybrid architec-
tures, and widespread challenges related to interoperability, security, standardization,
and compliance. These findings provide a valuable knowledge base for researchers and
practitioners aiming to design scalable and interoperable IoMT systems.

The second contribution introduced a novel software defect prediction (SDP) frame-
work to address real-world issues such as class imbalance and high-dimensional software
metrics. The proposed model integrates:

• A hybrid feature selection strategy (ReliefF + Information Gain),

• SMOTE-Tomek hybrid sampling for noise-resilient balancing,

• A cost-sensitive ensemble learning algorithm (AdaBoost with J48).

Empirical results from benchmark datasets demonstrated that the proposed model
significantly outperforms traditional techniques in terms of AUC, F2-Score, and G-Mean.
Statistical testing and ablation analysis further validated the robustness and practicality
of the approach, especially for fault-prone components in critical systems like those found
in IoMT.

6.2 Future Work
While the current work provides substantial insights and practical contributions, several
directions remain open for future exploration:

• Integration with Real-Time IoMT Systems: Future work may involve em-
bedding the proposed SDP framework directly into real-time IoMT environments
for proactive monitoring and fault prediction.
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• Cross-Project Defect Prediction: Extending the model to perform effectively
across different software projects and domains would enhance its generalizability.

• Incorporation of Deep Learning Models: Investigating the impact of using
deep neural networks such as LSTM or CNN for SDP, especially in time-series or
sequential logs, can offer more sophisticated feature abstraction.

• Dynamic Feature Selection: Implementing adaptive or real-time feature selec-
tion mechanisms that evolve with software changes could enhance model longevity
and accuracy.

• Benchmark Expansion: Expanding the evaluation to include more datasets from
diverse repositories, including cross-lingual or multi-language codebases, can further
validate the framework’s robustness.
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