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Abstract

Agriculture is the golden thread that fastens all the sustainable development goals
globally. Its profound relationship to the global economy, biodiversity, and human his-
tory is unquestionable. The increasing environmental concerns have transitioned agricul-
ture from conventional to sustainable practices. This transformation prioritizes ecological
balance, long-term agriculture productivity, and natural resource conservation. However,
plant stress and indiscriminate use of chemicals significantly threaten agricultural pro-
ductivity and quality, undermining the pillars of agricultural sustainability. In this con-
text, plant biosecurity becomes a crucial element of sustainable agriculture, focusing on
monitoring, preventing, and managing pests, diseases, and invasive species that endan-
ger crop health. Achieving plant biosecurity begins with identifying plant stress, which
requires continuous monitoring of the agricultural landscape. However, traditional tech-
niques and manual inspection are time-consuming and require domain expertise, mak-
ing automated monitoring solutions crucial for effectively identifying biotic stress and
strengthening crop protection and food security.

Digitalization, particularly deep learning, has emerged as a powerful tool for data
analysis in many areas, including agriculture. Researchers from various disciplines lever-
age deep learning for stress monitoring and propose innovative solutions to address plant
resilience, sustainability, and biosecurity issues. However, they face challenges in de-
ploying proposed solutions in real-world settings. To address this, a systematic literature
review was conducted to identify key research gaps. The identified challenges include the
lack of available datasets, an over-reliance on supervised learning, high costs associated
with data labelling, neglect of computational efficiency metrics, limited generalizability

of models, and regional disparities in research output.

Y



This work also comprehensively evaluates the strengths, weaknesses, opportunities,
and threats of employing deep learning in the field of monitoring plant biotic stress. By
examining internal and external factors influencing technology development and imple-
mentation, the analysis highlights advantages that can drive progress while addressing
challenges that may hinder adoption. Ultimately, this evaluation offers a balanced per-
spective on the potential impacts of deep learning applications on the future of plant
biosecurity, considering both opportunities and risks.

Considering the challenges identified through literature review and motivated by the
Digital Agriculture Mission, the authors propose a new framework using semi-supervised
and ensemble learning. This framework utilizes unlabelled data, reduces annotation costs
and efforts, and enhances classification and detection models for monitoring plant disease.
The proposed framework was rigorously validated with benchmark datasets, a crucial pro-
cess as it provides reassurance of the framework’s effectiveness and potential for practical
application. The testing process, which demonstrated significant performance improve-
ments in classifying plant diseases and outperforming existing methods, ensures that the
proposed framework is reliable and effective.

Additionally, this study explores the potential of integrating sustainable computing
with deep learning to maintain the ecological facet and balance the three pillars of sus-
tainable agriculture practices: social, economic and environmental. Consequently, the
Comprehensive Sustainable Smart Agriculture Framework is introduced to address the
often-neglected environmental aspect of agriculture sustainability. This framework incor-
porates two crucial facets of sustainable computing: software and deployment optimiza-
tion, aimed at improving model efficiency to reduce energy consumption and computa-
tional demands. To validate the Comprehensive Comprehensive Sustainable Smart Agri-
culture Framework, we propose and test a novel model, Sustainable Smart Agriculture
Model , specifically designed for plant disease classification in Indian crops. The Sus-
tainable Smart Agriculture Model surpasses existing state-of-the-art models, showcasing

outstanding performance while requiring fewer resources.



This research further advances plant biosecurity by exploring the feasibility of popu-
lar deep learning object detection models for accurately locating weeds in Indian cotton
farms. This approach addresses a major challenge encountered by cotton farmers in India,
who often struggle with the effective management of weeds. By providing accurate and
timely identification of weed species, the proposed model empowers farmers to imple-
ment targeted interventions.

This thesis presents deep learning models to enhance plant biosecurity for sustainable
agriculture, thereby supporting the three pillars of sustainability—social, economic, and
environmental—and fostering their synergistic interaction. This comprehensive contribu-
tion emphasizes the critical role of integrating advanced technologies to attain long-term

sustainable agricultural practices.
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Chapter 1
Introduction

Food is an essential component for survival and an integral part of life. Agriculture, the
principal food production sector, is crucial in meeting this essential need. It serves vital
nutrition to individuals and families, ensuring access to crucial vitamins and minerals.
Moreover, it is a foundation of employment, economic growth, and sustainability [1].
However, pests, diseases, and weeds threaten agriculture and sustainability by reducing
crop yields, lowering produce quality, and increasing production costs [2,13]. These biotic
stressors lead to widespread crop failures, disrupt food security, and mandate the overuse
of chemicals, which can be detrimental to the environment.Furthermore, their resistance
to control measures and climate-driven expansion into new areas worsen the problem,
making sustainable agriculture harder to maintain.

Given the above-mentioned challenges, plant biosecurity is crucial in safeguarding
agriculture from the disastrous impact of biotic stressors. By implementing stringent
measures for early detection, prevention, and control, plant biosecurity helps to mitigate
the risks to crop health and ensures the sustainability of agricultural practices [4, 15, 16]].
It is crucial for improving food security, lowering reliance on poisonous chemicals, and
advancing resilient farming practices against evolving biotic threats.

Recently, Deep Learning (DL) has emerged as a powerful tool for enhancing plant
biosecurity through precise and efficient monitoring of diseases, pests, and weeds. Through
advanced image recognition and pattern analysis, models can detect early signs of
biotic stress in crops with high precision, even in large-scale agricultural environments
(7,18, 9 10, 114 (12} 113 1144 1154 1164 |17, 118, [19]]. This allows for timely interventions, re-
ducing the spread of pathogens, pests weeds and minimizing crop losses. By automating
monitoring, D] supports proactive management, strengthening plant biosecurity and pro-
moting sustainable agriculture. It enhances decision-making by providing early, accurate

insights into plant health conditions.
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Building on the significant potential of in enhancing the plant biosecurity—by
enabling precise and efficient monitoring of diseases, pests, and weeds, this chapter offers
a comprehensive overview of the domain under study. It begins with a problem statement
identifying key issues and challenges in applying [DL]to automate biotic stress monitoring.
Further, this chapter outlines the research objectives guiding this investigation, detailing
the study’s goals and intended outcomes. Additionally, it delves into the significance
of the research, highlighting its relevance in advancing sustainable agricultural practices
and enhancing plant biosecurity measures. By addressing these critical areas, the chapter
lays the groundwork for the detailed exploration and analysis presented in subsequent

chapters.

1.1 Background

This section delves into the elementary concepts intrinsic to the research title, namely
sustainable agriculture, plant biosecurity, and deep learning. By analyzing these com-
ponents, the author aims to inaugurate a basic understanding of how plant biosecurity
measures can reinforce sustainable agriculture practices and how advancements in
technology are revolutionizing the monitoring of biotic stressors. This discussion sets the
stage for understanding the intersection of these fields and their collective importance in

promoting resilient agricultural systems.

1.1.1 Sustainable Agriculture

Sustainable agriculture refers to the farming practices that aim to fulfil society’s current
food and textile needs without endangering future generations to meet their needs [20,
21]]. Sustainable agriculture is grounded on three main pillars, as presented in Figure
environmental health, economic profitability, and social equity [22]. These pillars
ensures that agricultural practices are productive, environmentally friendly, and beneficial

to society. A comprehensive examination of each of these pillars is given below:

* Environmental Health: This pillar is dedicated to mitigating farming’s environ-
mental impact and bolstering agriculture’s reliance on natural resources. Its primary
components encompass soil management, water conservation, pest management,

and biodiversity preservation.

* Economic Profitability: This pillar affirms that agricultural systems must be eco-

nomically profitable for both small-scale farmers and large agribusinesses. The
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Environmental

Figure 1.1: Three Pillars of Sustainable Agriculture

main elements of this pillar include efficiency and productivity, market opportuni-

ties, cost and risk management.

* Social Equity: This pillar ensures that agriculture’s benefits are equitably dis-
tributed and that it contributes positively to the community. The primary com-
ponents of this pillar include fair labour practices, community engagement and de-
velopment, access to resources, gender equality, education and capacity building,

health and nutrition, and cultural respect.

1.1.2 Plant Biosecurity

Plant biosecurity comprises a set of actions intended to prevent the entry and transmis-
sion of harmful organisms, pests, diseases, and invasive species that pose serious risks to
agriculture, horticulture, and ecosystems [4, 23]. It is pivotal for ensuring food safety,
food security, trade, market access, and development, significantly influencing the prof-
itability and sustainability of the agriculture sector [6]]. Various biotic factors, including

pathogens, pests, and weeds, pose significant threats to plant security, as detailed below:

* Pathogens: Pathogens are biological organisms, such as fungi, bacteria, nematodes,
and viruses, that can cause plant disease symptoms. These organisms have the
potential to significantly reduce the productivity and quality of crops and, in severe
cases, can lead to the destruction of entire crops. Pathogens spread very quickly

and cause massive damage to plant health and agricultural systems [24]].
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* Pests: Pests interfere with crop production by feeding on various parts of plants,
including leaves, stems, fruits, and roots. Pests in agricultural fields can lead to
substantial losses in crop yield and quality. Pests can also act as vectors for dis-
eases, further exacerbating their detrimental effects on plant health. Effective pest
management is essential to mitigate these risks and protect agricultural productivity
[25].

* Weeds: Weeds are unwanted, persistent plants that compete with crops for essential
resources such as light, water, and nutrients. The presence of weeds in agricultural
fields can significantly impede the growth of crop plants, leading to reduced yields
and lower-quality produce. Weeds adaptability to burgeon in varied surroundings
and their defiance to control actions drive them as a perpetual challenge in plant

biosecurity [26].

Given the pervasive impact of these biotic threats on agricultural productivity, it is
imperative to develop effective strategies to combat them. Addressing the threats men-
tioned above requires comprehensive strategies, as illustrated in Figure[I.2] to ensure the

sustainability and profitability of plant industries, and explained below:

Prevention

Early Detection &

Response & & § :
: Surveillance

Management

Collaboration &
Cooperation

Research &
Innovation

Figure 1.2: Elements of Plant Biosecurity

* Prevention: This element focuses on averting the introduction of exotic diseases,
pests, and weeds into new regions. This can be achieved through stringent biose-
curity measures at borders and points of entry, ensuring that harmful organisms do
not infiltrate and establish themselves in non-native environments. By implement-
ing rigorous inspection protocols and quarantine regulations, the spread of invasive

species can be effectively minimized [27]].

4
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* Early detection and surveillance: This involves continuous monitoring and surveil-
lance activities to identify the presence of pests, diseases, and weeds at the earliest
possible stage. Advanced detection technologies and regular field inspections pro-
vide timely information that enables swift and effective responses to potential stress.

This helps curb the proliferation of threats before they become widespread [28].

* Response and management: This element includes different approaches to reg-
ulate and lessen the effects of identified threats. Various methods to manage and
reduce the impact of pathogens, pests and weeds include chemical treatments, bio-

logical control agents, and mechanical removal of stressors [29].

* Research and innovation: This pillar focuses on advancing the scientific under-
standing and technological capabilities for managing agricultural threats. It aims to
develop improved decision-making and risk analysis tools, enhancing the ability to
predict, prevent, and manage biological invasions. Continuous research contributes

to the innovation of more effective and sustainable management practices [29].

* Collaboration and cooperation: Effective biosecurity requires robust communica-
tion and coordination among various stakeholders, including government agencies,
research institutions, industry bodies, and the farming community. By fostering col-
laborative efforts and information sharing, it is possible to build a comprehensive
and unified approach to managing biosecurity risks, ensuring that socio-economic

drivers are aligned with environmental protection goals [29].

1.1.3 Deep Learning

[DLis a specialized branch of Machine Learning (MLJ) distinguished by its use of deep net-
works that learn from data in a manner akin to human brain functions. This advanced tech-
nology uses deep neural networks with many layers as illustrated in Figure leveraging
enhanced computing power and sophisticated training techniques to analyze complex pat-
terns in large data sets [30} [31]. models are particularly skilled at automatically and
adaptively learning rich, hierarchical data representations. This makes them exception-
ally suited for managing complex, unstructured inputs in tasks like image recognition
[32]], Natural Language Processing (NLP) [33]], audio synthesis [34]] and many more.

In contrast to traditional models, which are highly dependent on manual feature
engineering and domain expertise to select pertinent data features, models excel at
independently identifying and learning essential features for classification directly from
raw data. This inherent capability enhances their scalability as data volume and com-

plexity increase—areas where traditional models might falter—and boosts flexibility and

5



Motivation

performance [35][36]. [DLImodels can be readily adapted to new tasks with minimal archi-
tectural modifications, and they consistently outperform traditional models in complex,
high-dimensional tasks across various domains, such as speech recognition and image
classification [37, 138 (39]].
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Figure 1.3: Basic Neural Network

Among the leading techniques in plant biotic stress monitoring, Convolutional Neural
Network (CNN)) [40] stand out for their exceptional performance in image-based stress
monitoring, effectively identifying patterns and anomalies in plant health. Recurrent Neu-
ral Network (RNN)[41]] and Long Short-Term Memory (LSTM)) [42]] networks effectively
analyse time-series data, capturing temporal dependencies in environmental conditions af-
fecting plant health. Further, transformers [43]], initially developed for NLP} are powerful
for handling sequential data, enabling the model to focus on different parts of the sequence
for better prediction. Vision Transformers [44] extend the concept of transformers
to image analysis by dividing images into patches and processing them similarly to se-
quences of text, resulting in high accuracy and efficiency in visual tasks. Additionally,
Generative Adversarial Network (GAN) [45]] are increasingly used for data augmenta-

tion, creating synthetic images to enhance model training and robustness.

1.2 Motivation

The pressing challenges of ensuring food security are becoming more critical as global
demand continues to rise. The Food and Agriculture Organization (FAQ)) projects that
food production must increase by at least 50% to meet the needs of a population expected
to reach 9 billion by 2050, emphasizing the urgency for sustainable solutions [46]. Despite
this necessity, up to 40% of global crop yields are lost annually due to plant biotic stresses

such as pests, diseases, and weeds [47]. Additionally, the 96% increase in global pesticide
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usage from 1990 to 2021 has raised significant environmental and health concerns [48,
49,150]. These alarming statistics underscore the critical need for developing models
to enhance plant biosecurity. Such models can facilitate early detection and efficient
monitoring of biotic stressors. By doing so, they can reduce reliance on pesticides while
ensuring agricultural productivity and sustainability.

While global issues demand attention, addressing local challenges is equally critical
to bolstering food security and sustainability. In India, which has the world’s largest
cropland area at 168.91 million hectares, agricultural yields significantly trail behind those
of countries with smaller croplands [S1]. This disparity is reflected in India’s fluctuating
rank on the Global Food Security Index (GESI)—68th out of 113 countries in 2022—and
its ranking of 107th out of 121 on the Global Hunger Index in the “serious” category
[52! 53], underscores the urgency for effective interventions.

The introduction of Digital Agriculture Mission (DAM) is poised to revolutionize
agricultural practices by enhancing productivity, efficiency, and sustainability. This ini-
tiative aligns with the need for robust plant biosecurity measures in India, where agricul-
tural yields are underperforming, and food security remains a significant concern [54]].
By leveraging digital technologies, such as [DL] this mission offers a pathway to more
effective monitoring of plant biotic stress, reducing reliance on harmful chemicals and
enabling early detection and monitoring of pests, diseases, and weeds. Improving plant
biosecurity through digital innovations is essential for tackling local issues in India as
well as supporting global initiatives to promote sustainable farming practices and achieve
food security. Thus, to ensure agriculture sustainability on a local and global scale,

must be incorporated into plant biosecurity strategies.

1.3 Problem Statement

The growing threat posed by plant biotic stresses to agricultural sustainability and global
food security is a vital concern, yet prevailing models for plant biosecurity, specifi-
cally monitoring biotic stress have a number of unresolved issues.

Current[DL]models rely heavily on supervised learning, which requires large amounts
of labeled data that are often scarce, particularly in diverse environments. Moreover, most
studies focus predominantly on leaf datasets, neglecting other crucial plant parts such as
roots, stems, and fruits. While hybrid models show promise, they are frequently over-
looked, and many existing models struggle to generalize across varying conditions. Ad-
ditionally, the limited understanding and explainability of these models create trust issues

among practitioners, while computational inefficiency hampers large-scale applications.
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Furthermore, research often overlooks regional disparities and the simultaneous occur-
rence of abiotic and biotic stresses, such as nutrient deficiencies and diseases. Therefore,
to enhance plant biosecurity and advance sustainable agriculture, there is a critical need

for more reliable, scalable, and effective models.

1.4 Research Objectives

This thesis aims to leverage technology to advance plant biosecurity and sustainable
agriculture. It offers innovative solutions that improve agricultural yields, quality and
sustainability by filling critical research gaps founded by a systematic literature review.
The main objective is to align with the and promote digital tools in agriculture for
ecological balance, food security, and long-term sustainability. To achieve the above-

mentioned goals, this thesis is centred around three primary objectives:

* Research Objective 1: To seek the convergence of Deep Learning and Plant Biose-

curity as a step towards the Digital Agriculture Mission.

* Research Objective 2: To explore the existing data sources and bridge the gap of

limited datasets to train the plant disease identification models.

* Research Objective 3: To propose a novel model for Plant Biosecurity to strengthen

the pillars of sustainable agriculture.

The first research objective aims to comprehensively review the current literature on
the application of in plant biosecurity. This analysis will identify strengths, research
gaps, and opportunities to effectively apply in this field, contributing to sustainable
agriculture. The second objective focuses on developing a novel framework inspired by
semi-supervised learning and optimized through ensemble learning to address the chal-
lenge of limited labelled data in this domain. By utilizing labelled and unlabeled data,
this objective aims to address the problems like data scarcity and over-reliance on la-
belled data. The third research objective aims to design a lightweight model to overcome
the limitations of existing heavy and resource-intensive models, thus improving computa-
tional efficiency. This thesis seeks to bridge the gaps in current[DIl approaches to advance

plant biosecurity for sustainable agriculture by achieving these objectives.

1.5 Contributions of Thesis

Agriculture is the fundamental thread that intertwines all global sustainable development

goals. However, the rapid growth of the population and the degradation of ecosystems
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have placed significant stress on the pillars of sustainable agriculture, food security, and
crop protection. Inspired by the[DAM] this research explores the integration of [DLlin crop
protection, with a particular focus on plant biosecurity. Despite the potential of [DL, the
Systematic Literature Review (SLR]) revealed that existing automated solutions for moni-
toring biotic stresses in agriculture are insufficient. The identified critical challenges
in applying[DL]to biotic stress monitoring, leading to the developing and validating of two
novel frameworks for plant disease identification. These frameworks, validated through
innovative models, demonstrated high efficiency in aligning with the DAM's goals, pro-
moting plant biosecurity and agriculture sustainability by reducing excessive chemical
usage.

Additionally, the research proposed a model to enhance weed detection in Indian cot-
ton farms, contributing to improved crop yields and economic benefits while minimizing
the indiscriminate use of herbicides. This research introduces sustainable and innova-
tive solutions that contribute to preserving agricultural yields, improving crop quality,
and minimizing pesticide use through efficient resource management. These approaches
support sustainability by enhancing livelihoods and promoting safer farming practices.
Moreover, the study provides essential insights beneficial to diverse agricultural stake-
holders. Farmers can apply these insights to refine their cultivation and stress manage-
ment strategies. At the same time, researchers can use these findings to investigate further
novel solutions and methodologies, potentially catalyzing significant advancements in
plant pathology.

Table[I.]illustrates the mapping between the research objectives and the correspond-

ing research publications that fulfil each objective’s requirements.

1.6 Thesis Organization

This thesis is structured to provide an overview of work done during the Ph.D. Each
chapter is meticulously crafted to build upon the preceding sections, ensuring a logical

flow and coherence throughout the thesis. The organization of the thesis is as follows:

* Chapter I} Introduction

This chapter provides a comprehensive overview of the thesis, starting with the
problem statement and identifying the key issues and challenges in achieving plant
biosecurity and agricultural sustainability. It outlines the specific research objec-
tives that guide the investigation, detailing the study’s goals and intended outcomes.

Furthermore, the chapter delves into the significance of the research, explaining its
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Table 1.1: Mapping of Research Objectives with the Corresponding Publications

Research
Objective(s)

Publication(s)

RO1: To seek the
convergence of Deep
Learning and Plant
Biosecurity as a step
towards the Digital
Agriculture Mission

. Sharma, A., & Sharma, P. (2024, July). “Integration of deep

learning and plant biosecurity toward sustainable agriculture: A
SWOT analysis”. In AIP Conference Proceedings (Vol. 3168,
No. 1). AIP Publishing. Presented in International Conference
on Recent Advancements in Computing Technologies & Engi-
neering (RACTE 2023), India. https://doi.org/10.106
3/5.0219003|(Scopus Indexed Conference)

. Parul, S., & Abhilasha, S. (2025). “Deep learning to im-

prove plant biosecurity and agriculture sustainability: A system-
atic literature review”. CABI Reviews, 20(1), 0009. https:
//www.cabidigitallibrary.org/doi/abs/10.
1079/cabireviews.2025.0009 (Scopus Indexed Jour-
nal, CiteScore: 2.2, Publisher: Centre for Agriculture & Bio-
science International)

. Sharma, P., & Sharma, A. “HINDIPESTBERT: Sustaining Hu-

man Health and Agriculture Yields with NLP Driven Solu-
tion using Hindi Textual Data”, ACM Transactions on Asian
and Low-Resource Language Information Processing, Submit-
ted in August, 2024 (SCIE Journal, Impact Factor: 1.8, Pub-
lisher:Association for Computing Machinery)-Under Review

RO2: To explore the
existing data sources
and bridge the gap of
limited datasets to
train the plant
disease identification
models.

. Sharma, P., & Sharma, A. (2024). “A novel plant disease diag-

nosis framework by integrating semi-supervised and ensemble
learning”. Journal of Plant Diseases and Protection, 131(1),
177-198. https://doi.orqg/10.1007/s41348-023
-00803-y|(SCIE Journal, Impact Factor: 2.2, Publisher:
Springer)

RO3: To propose a
novel model for
Plant Biosecurity to
strengthen the pillars
of sustainable
agriculture

. Sharma, A., & Sharma, P. (2024). “S?AM: a sustainable smart

agriculture model for crop protection based on deep learning”.
Journal of Plant Diseases and Protection, 1-25. |https:
//doi.org/10.1007/s41348-024-00934-w (SCIE
Indexed Journal, Impact Factor: 2.2, Publisher: Springer)

. Sharma, A., & Sharma, P. (2024, July). “Weed Detection in

Indian Cotton Farms Using Deep Learning” International Con-
ference on Artificial Intelligence and Information Technologies
(ICAIIT 2023), India, pp 8-14. https://doi.org/10.1
201/9781032700502-2|(Scopus Indexed Conference)
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relevance and importance in advancing sustainable agricultural practices and en-
hancing plant biosecurity measures. By addressing these critical areas, the chapter

sets the stage for the detailed exploration and analysis in subsequent chapters.

Chapter 2} Systematic Literature Review

This chapter presents the current trends, gaps, and advancements in this area by
systematically reviewing the existing research. The synthesizes the knowledge
accumulated in these domains and establishes a solid foundation for the subsequent
research presented in this study. It highlights the significance of ongoing innova-
tion and progress in sustainable agriculture and plant biosecurity by providing the

required context and explanation for the selected research area.

Chapter [3} Integration of Deep Learning and Plant Biosecurity: Strengths,
Weaknesses, Opportunities, and Threats (SWOT)) Analysis

This chapter examines the strategic integration of [DI] with plant biosecurity to pro-
mote sustainable agriculture, using a SWOT (Strengths, Weaknesses, Opportuni-
ties, and Threats) analysis. This SWOT analysis provides a balanced overview of
the current landscape and the future potential of [DLIin enhancing plant biosecurity

and achieving sustainable agriculture.

Chapter 4 A Novel Plant Disease Diagnosis Framework to Overcome Data
Scarcity

This chapter addresses a significant gap in existing research on plant disease diag-
nosis, focusing on issues such as the unavailability of comprehensive datasets, high
annotation costs, and the non-conformity of existing models. A novel framework
utilizing semi-supervised and ensemble learning techniques has been proposed in

this chapter.

Chapter S2AM: A Model for Sustainable Crop Protection

This chapter introduces a novel model utilizing the potential of sustainable comput-
ing and to tackle critical agricultural challenges, reduce resource expenditure,
and promote sustainable agricultural practices. The chapter details the architecture
and functionality of the proposed model, explaining how it integrates various

techniques to achieve high accuracy in identifying and classifying plant diseases.

Chapter [0} Effective Weed Detection to Enhance Cotton Yield in India

This chapter examines various [DL algorithms to create a robust weed detection

model specifically designed for effective management in Indian cotton fields. The
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optimal model was identified and presented as the preferred solution for improving
weed control strategies through thorough experimentation and analysis.
* Chapter[7; Conclusion, Future Scope and Social Impact

This chapter presents a comprehensive summary of the research work done. Fur-
ther, the chapter discusses the research work’s future directions, how it will benefit

societal implications, and how it will assist the next scholars in the field.

1.7 Chapter Summary

This chapter outlines the foundation for this thesis. It explains the necessity and driving
forces behind the selected study subject and draws attention to the research gaps, problem

statement, and objectives. Additionally, the organization of the thesis is also presented.
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Chapter 2
Systematic Literature Review

This chapter presents a comprehensive overview of plant biotic stress identification using
deep learning, focusing on monitoring pests, diseases, and weeds. Since its emergence
in 2016, this field has seen remarkable growth, with deep learning demonstrating signif-
icant potential for plant stress monitoring and improving plant biosecurity. This promise
has drawn widespread attention from scholars and researchers globally, resulting in a vast
body of literature that explores diverse methodologies and approaches. Given this rapid
expansion, a thorough review is essential to showcase the advancements in the domain
while critically evaluating the trends and challenges. Thus, this chapter, a systematic lit-
erature review, is structured to provide a detailed analysis of plant stress identification
using deep learning. This chapter aims to offer a comprehensive state-of-the-art review,
identifying research gaps, emerging trends, and challenges in plant biotic stress monitor-

ing using deep learning-based solutions.

2.1 Plant Stress: A Brief Overview

Plant stress is a complex and multifaceted phenomenon that exerts a negative influence on
a plant’s overall health by interfering with its normal growth, development, and productiv-
ity. This stress disrupts vital physiological processes such as photosynthesis, respiration,
and nutrient uptake, ultimately leading to reduced yields, stunted growth, or even plant
death. Plant stress can be broadly categorized into two main types: biotic and abiotic
stress, as presented in Figure[2.1] each having distinct sources and impacts on plant health
and productivity [53)]. These categories encapsulate various stress factors that plants en-
counter during their life cycle, and understanding the distinction between them is crucial

for effective management and intervention strategies.
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2.1.1 Biotic Stress

Biotic stress refers to the challenges induced on plants by living organisms, including
pathogens, pests, and weeds. Pathogens, such as bacteria, fungi, viruses, and nematodes,
can invade plant tissues, leading to diseases that disrupt normal physiological processes.
Similarly, pests, ranging from insects to rodents, can inflict significant damage on plants
by feeding on leaves, stems, fruits, and roots. Additionally, weeds compete with the host
plants for nutrients, water, and sunlight, frequently leading to stunted development and
lower harvests [56]].

2.1.2 Abiotic Stress

The detrimental effects of non-living elements on plant growth and development, such as
severe temperatures, droughts, salt, and nutrient shortages, are called abiotic plant stress.
These stresses interfere with vital physiological functions, obstruct photosynthesis, and
lower crop yields and quality. The general health and production of plants can be seriously
compromised by such environmental stressors, which presents a significant obstacle to

sustainable agricultural practices and food security [57]].
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Figure 2.1: Classification of Plant Stress: Distinguishing Between Abiotic and Biotic
Stress Factors
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Despite the distinct origins of biotic and abiotic stress, their consequences intertwine,
exacerbating the challenges faced by plants and agricultural systems. Unlike abiotic
stress, where plants can sometimes adapt, biotic stress often requires immediate inter-
vention to prevent significant yield losses and economic damage. Furthermore, biotic
stress can result in long-term problems with the health of the soil and secondary diseases,

therefore prompt and efficient management is crucial for sustainable agriculture [58] .

2.2 Key Operations for Plant Biotic Stress Monitoring
Using Deep Learning

[DI}based plant biotic stress monitoring is a cutting-edge approach that leverages ad-
vanced Artificial Intelligence (All) techniques to improve the identification and manage-
ment of biotic stressors affecting plants. This methodology encompasses several sophis-
ticated processes, including classification, segmentation, and detection, each playing a
critical role in effectively monitoring plant health [59]. These operations significantly
enhance the accuracy and efficiency of monitoring pests, disease, and weeds. These key
operations are elaborated upon below and visually presented in Figure [2.2]

Classification assigns a categorical label to an input based on its inherent features by
training a model to identify and recognize underlying patterns. In comparison Detection
identifies and locates objects within an image or video frame by predicting their bounding
boxes and associated class labels. Whereas Segmentation partition an image into distinct

regions or segments, typically by classifying each pixel into a specific category, to under-

stand the image’s detailed structure and content comprehensively.
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Figure 2.2: Core Operations for Plant Biotic Stress Monitoring Using Deep Learning
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2.3 Systematic Mapping Methodology

In this systematic investigation, the authors carefully review [DLl-based primary studies re-
lying on textual and/or image data to monitor plant biotic stress. These data modalities are
generally less computationally and storage-intensive than others, making them advanta-
geous for deployment in real-world agricultural settings. This analysis includes an exten-
sive exploration of operations tailored to segment, classify, and detect diseases, pests,
and weeds. Adopting the systematic review framework outlined in the literature [60], this
methodological approach is structured around three fundamental phases: planning, exe-
cution, and summarization. In the planning phase, detailed protocols are established for
formulating research questions, gathering relevant literature, and defining selection crite-
ria. In the execution phase, articles are carefully selected using keyword searches across
prominent scholarly publication platforms. Finally, the summarization phase critically
evaluates existing methodologies and elucidates their strengths, limitations, and potential

implications.

2.3.1 Research Questions

The primary objective of this study is to elucidate the current advancements and chal-
lenges in[DI]based plant biotic stress monitoring, thereby constructing an extensive body
of knowledge. This research is centred around the questions formulated and presented

below:

* RQ1: What patterns have emerged in applying deep learning to address biotic

stresses in plants since 20167

* RQ2: Which primary biotic stresses in plants have been addressed using deep learn-

ing technology?
* RQ3: How is deep learning revolutionizing in-situ biotic stress recognition?

* RQ4: Which deep learning algorithms are employed for monitoring biotic stress,

and how are they revolutionizing biotic stress monitoring?
* RQS5: To what extent has deep learning been implemented in proposed solutions?

* RQ6: What are the key characteristics of the datasets used for training and evalu-

ating deep learning models in plant stress monitoring?

* RQ7: What performance metrics are employed to evaluate the effectiveness of deep

learning models in monitoring biotic stress?
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* RQ8: To what extent are the explainability and interpretability of deep learning
models considered in plant biotic stress monitoring?

2.3.2 Search Strategy

In the next step, the search strategy for this was scrupulously crafted to answer
the specified research questions framed, ensuring a comprehensive coverage of relevant
literature. To frame the search strategy, the following steps were performed following

well-known guidelines in the literature.

A. Keyword Identification

After selecting the databases, relevant keywords were identified based on the research
questions, objectives, and existing studies in the field. Synonyms and related terms are
also considered to ensure comprehensive coverage. The specific terms used in the search
strategy are listed in Table [2.1]

Table 2.1: Comprehensive Overview of Keywords and Synonyms Considered in the Sys-
tematic Literature Review

Tl:;:::stlc Keywords
Biotic Disease / Pest / Insect/ Weed / Biotic / Stress / Pathology /
Stress Infection / Contamination/ Phenotyping / Pathogen
Deep Learning / DL / Convolutional Neural Network / CNN /
Technology Vision Transformer / ViT / Transformer / Computer Vision /
DNN
Operation IdgnFiﬁcation / Clgssiﬁcation / .I.)etection / Localization '
/Prediction / Monitoring / Recognition / Count / Segmentation
Domain Agriculture / Crop / Plant / Leaf / Vegetable/ Fruit

B. Search Query Formulation

The identified keywords were carefully combined in a complicated search query. This ap-
proach minimized extraneous results while ensuring a comprehensive and accurate search
that included all pertinent studies. The search string was created using the boolean opera-
tors AND and OR: the boolean operator “OR” was used to combine synonyms, while the
boolean operator “AND” was used to connect significant phrases. The resulting search

string is presented as follows:
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(Disease* OR pest* OR Insect* OR weed* OR Biotic OR stress* OR Patholog* OR
Infection® OR Contamination OR phenotyp* OR pathogen*) AND (”Deep Learning” OR
DL OR ”Convolutional neural network” OR CNN OR ”Vision Transformer” OR ViT OR
Transformer OR ”Computer Vision” OR DNN) AND (ldentification OR Classification OR
Detection OR Localization OR Prediction OR Monitoring OR Recognition OR Count* OR
Segmentation) AND (Agriculture OR Crop* OR Plant* OR leaf OR Vegetable* OR Fruit*)

It is essential to mention that the search string was slightly modified for the IEEE

Xplore database, as it does not support many keywords.

C. Inclusion and Exclusion Criteria

In the subsequent step, rigorous inclusion and exclusion criteria were applied to ensure
the relevance and quality of the literature incorporated in the These criteria were
meticulously designed to filter studies based on their focus, publication type, date, and
language, ensuring the selection of high-quality and pertinent research articles. The se-

lection process was conducted according to the study selection criteria presented in Table
2

Table 2.2: Inclusion and Exclusion Criteria for Selected Studies in the Systematic Liter-
arure Review

Inclusion Criteria (IC) Exclusion Criteria (EC)

[EClL: The title, abstract, or content

[ICll: Empirical studies published in were closely related to our search
quartile 1 journals string but lacked any meaningful

semantic connection.

[ECR: Studies published in

[ICR:: Articles published in conferences, book chapters, review
peer-reviewed journals articles, thesis, short surveys, and
patents
ICB: Studies published from [ECB: Studies without full-text
January 2016 until 9 April 2024 availability
[ICH: Studies written, published, or | [ECH: Duplicate publications from
disseminated in English multiple sources
[IC5: Studies strictly based on RGB | [EC5: Studies exclusively related to
images, text data, video, or any gas, acoustic, and environmental
combination thereof data.

[EC6: Studies based on grey
literature or perspective papers.
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2.3.3 Data Extraction

The data extraction process in the follows a structured approach, illustrated step by
step in the Preferred Reporting Items for Systematic reviews and Meta-Analyses
flow diagram in Figure 2.3 Initially (July 13, 2023), records were identified from six
databases: Scopus (2,347 records), Engineering Village (1,484 records), Institute of Elec-
trical and Electronics Engineers (IEEE) Xplore (157 records), Springer Link (3,807 records),
Wiley (175 records), and Association for Computing Machinery (ACM)) (15 records), ac-
cumulating a total of 7,985 records. It is important to note that SpringerLink initially
yielded 32,853 articles. To narrow this down, authors filtered for content relevant to the
computer science discipline, resulting in 3,807 articles. This set includes surveys and may
contain conference papers, book chapters, etc., which need to be manually excluded, as
there is no way to select journal articles only in Springer Link. Table presents the
various fields for selecting primary studies from the respective databases.

In the screening phase, 996 duplicate records were removed, resulting in 6,479 unique
records. These records underwent title and abstract screening, leading to the exclusion of
5,003 records. During the eligibility phase, 1,476 records were assessed through full-text
evaluation based on predefined inclusion and exclusion criteria. This assessment resulted
in the exclusion of 919 full-text articles due to reasons such as being outside of quartile
1, exclusively related to gas, acoustic, and environmental data, focusing solely on [ML]
Computer Vision (CV)), fuzzy logic, or image processing, not being fully accessible, be-
ing retracted, or not utilizing Ultimately, 557 articles met the inclusion criteria and
were incorporated into the systematic review. Further, 188 new studies were included
through snowballing and performing the search again to account for new articles pub-
lished between July 14, 2023, and April 9, 2024. A complete and reliable study of the
pertinent literature was ensured by the 745 papers that made up the final evaluation as a

result of this exhaustive procedure.

2.4 Results and Discussions

In this section, the author precisely synthesize the data from 745 primary studies, a testa-
ment to the thoroughness and rigour of the research process. This level of detail and care
supports formulating answers to the eight research questions, instilling confidence in the

reliability of this study’s findings.
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. [ Scopus [ Engineering Village ] [ 1EEE Xplore ] Springer Link [ Wiley ] [ ACM ]
=l 2,347 1,484 157 807 175 15
: I
=
= :
§ |
o

Duplicates Removed

N =996
Articles removed after the
title and abstract screening
N=5003
> + Full-text articles excluded with reason
= Full-text articles assessed Articles Outside of Quartile 1; Articles exclusively related to gas,
= based on inclusion & | acoustic, and environmental data; Articles exclusively related to ML,
én exclusion criteria Computer vision, Fuzzy logic, or Image processing: Articles not
= N=557 Fully Accessible; Retracted Articles; Articles not utilizing Deep
L | Leaming (DL)
N=919

g = New Studies included in the review
B Number of studies included in through snowballing and to cover
i) the systematic literature review new articles between 14 July 2023
= N=745 109 April 2024

N=188

Figure 2.3: PRISMA Flow Diagram Detailing the Selection Process of 745 Studies In-
cluded in the Systematic Literature Review

24.1 RQ1: What Patterns Have Emerged in Applying Deep Learn-

ing to Address Biotic Stresses in Plants Over the Last Few Years?

Research Question (RQ))1 seeks to examine the emerging trends in applying [DI] to mon-
itor biotic stresses in plants over recent years. To address this inquiry comprehensively,
this[RQJis subdivided into the following components: Year-wise trend of publications and

venues/sources of publications.

A. The Year-Wise Trend of Publications

Upon examining the primary studies, the author identified significant trends in using [DL
technology to monitor biotic stresses in plants, specifically in pests, weeds, and diseases,
spanning 2016 to 2024. Figure [2.4] shows a consistent increase in research publications
over the years, indicating a growing interest and investment in applying[DIto plant health
monitoring. This upward trend reflects technological advancements and the recognition
of the potential of [DL]to solve complex agricultural problems. From 2016 to 2019, publi-
cations on[DL applications for biotic stresses in plants remained relatively low and stable,
indicating an initial exploration phase. However, from 2020 to 2022, there was a no-
ticeable upward trend, with a steady increase in publications each year, suggesting early
explorations were promising and spurred further research and development. The year

2023 saw a dramatic spike in research activity across all categories, particularly in disease
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monitoring, likely due to technological advancements, increased funding, and successful
applications of [DL] models. Although 2024 shows a decline in publications, this is likely
because the data only includes articles up to April, and the entire year’s trend may be

higher once all publications are accounted for.
Trend of Employing Deep Learning By Type of Stress

250
200
150
100

? %
0

2016 2017 2018 2019 2020 2021 2022 2023 2024

Number of Articles

—Disease 2 4 3 24 39 55 130 214 63

—Pest 1 1 2 6 12 19 32 56 13

—Weed 3 7 9 14 25 36 12
Year

Note**: Although 745 articles have been included in this review, the figure represents 781 articles to
account for those addressing multiple stresses.

Figure 2.4: Year-wise Trend in Employing Deep Learning by The Type of Biotic Stress

B. Venues of Publications

Figure [2.5] and Table presents the number of articles published in various academic
journals Quartile 1 (QT)), highlighting the venues where research on applying [DLIto mon-
itor biotic stresses in plants has been disseminated.“Frontiers in Plant Science” leads with
157 articles, indicating its prominence in this research area. Other significant sources in-
clude “IEEE Access” with 119 articles, and “Multimedia Tools and Applications” with
82 articles. Several journals, such as “Agronomy,” “Remote Sensing,” and “Plants,” have
also contributed a substantial number of publications. Additionally, numerous journals
with fewer articles reflect a broad interest across various scientific fields. This distri-
bution showcases the interdisciplinary nature of the research, encompassing fields like

agriculture, computer science, and environmental studies.

21



Results and Discussions

Article Frequency by Source Journal
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Figure 2.5: Distribution of Primary Studies Considered in the Systematic Literature Re-
view Across Various Sources

2.4.2 RQ2: Which Primary Biotic Stresses in Plants Have Been Ad-
dressed Using Deep Learning Technology?

investigates which biotic stress in plants has been most frequently targeted using
To answer this, Figure 2.6 presents a chart that analyzes the data collected from the
primary studies, as detailed in Appendix [Il The data indicates that disease has been the
most frequently targeted biotic stress, with a significant number of 484 articles dedicated
to this area. This highlights the critical impact of plant diseases on agricultural productiv-
ity and the extensive research efforts to mitigate this stress using advanced computational
methods. The prominence of disease-related studies underscored the importance of un-
derstanding and controlling plant diseases through

Weeds represent the second most addressed biotic stressors following diseases, with
104 articles. Because weeds can negatively impact crop development and productivity,
weed control is an important topic for research. Furthermore, the volume of research
on pest monitoring—103 articles—reflects the seriousness of pest infestations on crops
and the interest in using to develop efficient pest monitoring solutions. Maintaining
crop health and avoiding significant production losses require this effort. Furthermore, 14

publications devoted to research on combined biotic and abiotic stresses have shown that
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Distribution of Articles by Type of Stress
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Figure 2.6: Distribution of Primary Studies Considered in the Systematic Literature Re-
view by Type of Stress

the combination of disease & nutritional deficiency stands out. This shows increasing
interest in learning how biotic and abiotic (nutritional deficit) elements interact and affect
plant health.

Additionally, the ability to address multiple stresses simultaneously is essential for
developing comprehensive biotic stress monitoring solutions, considering this disease &
pest category have been explored in 30 articles, showing efforts to tackle more complex
scenarios where plants are affected by multiple biotic stressors. However, other combina-
tions, such as pests & weeds, and disease, weed & nutritional deficiency, have received
minimal attention, with only one article each. This suggests potential gaps in research and
opportunities for further exploration in these areas. The combined stressor of disease, pest
& nutritional deficiency has been addressed in 8 articles, reflecting an emerging interest in
studying the multifaceted nature of plant stress and developing integrated solutions using

DL
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2.4.3 RQ3: How is Deep Learning Revolutionizing in-situ Biotic Stress
Recognition?

Figure provides a comprehensive analysis of the operational approaches adopted in
primary studies to examine innovations in plant biotic stress monitoring using The
chart’s X-axis categorizes different operations/tasks performed, such as classification, de-
tection, segmentation, and their combinations, while the Y-axis indicates the number of
articles for each operation.

The figure reveals that classification is the most frequently documented task, with 458
articles as presented in Appendix |[| (D2; D3; D4; D&P1; DS5; P3; D6; D7; P4; DS8; D9;
W6; P5; D&P3; D12; D13; P7; P8; D16; D17; D18; D19; D22; D23; D24; D25; W7,
P13; D&P4; P15; D29; D30; W9; D32; D33; P17; D39; D41; D42; D44; D46; P20;
D48; D49; D50; D53; D55; D57; D59; D60; D61; D63; W18; D66; D67; D68; D69;
D71; W22; D73; D74; D76; D77; D79; D82; D84; D85; D86; D88; D89; D90; DI1;
P28; W26; D94; D&P7; D96; D99; D100; D101; D,P&ND2; W28; D103; D105; D106;
D107; D108; D109; D111; D112; D116; D&ND3; D117; P37; D118; W30; D120; W32;
D121; D122; D123; D124; D125; D126; D127; D128; D129; W33; D,P&ND3; D130;
P40; D131; D132; D133; D134; D135; P41; D136; D137; D138; D139; D140; D&P10;
D141; D142; D143; D144; W34; D145; D146; D147; D&P12; D148; D149; D150;
D152; D156; P42; D157; D158; W37; D&P13; D159; D160; D161; D163; P45; D164;
D167; W40; W41; P48; D168; W43; D&P14; D171; D172; D173; D175; D176; P49;
P50; D179; W44; W46; D182; D&P15; D183; D184; D186; D187; D,W&ND1; W50;
D190; D191; D192; D193; P53; D194; D195; D196; D197; D199; D201; W54; WS55;
W57;D202; D&P16; D203; D204; D&ND6; D&P18; D207; D208; D211; D,P&ND6;
D213; D214; D215; D216; D217; D221; D223; D224; D225; D226; W59; D228; D229;
D230; D231; D235; D236; D&NDS; W62; D237; D238; D,P&NDS; D&P19; D239;
D240; D241; P65; P66; D243; D244; P61D247; P68; D248; D249; D250; W67; P69;
D251; D252; D253; D255; D257; D258; D259; D260; D261; D262; D263; D264; D265;
D267; D268; D270; D271; D272; D273; D274; D276; D277; D278; D279; D280; D281;
D283; D285; D&P20; D287; D288; D289; D290; D291; D292; D293; D296; D297,
D298; D300; D301; D302; D303; D304; D305; D306; P70; P71; D307; D308; D309;
D310; D311; D313; D314; D315; D316; D317; D318; D319; D320; D321; D322; W71;
D323; D325; D326; D327; W72; P74; D328; D329; D331; D333; W73; D334; D335;
D336; D337; D338; D339; D340; D341; D343; D345; D346; D348; D349; D350; D351;
D352; D353; P77; W78; D&P22; W79; D355; D357; D358; D359; P78; D360; W&2;
W84; D362; D363; D364; D365; D366; D367; D&P23; D368; D369; D371; D373;
D374; P80; D376; D377; D378; D379; D380; D381; D382; D383; D&P24; P84; D385;
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D386; D&P25; D388; D390; D391; D392; D393; D394; D395; D&NDY; D396; D398;
P86; D401; D402; D403; D405; D406; D&P26; D&P27; D407; D408; D409; D410;
P88; D411; D412; D413; D414; D416; D418; D419; D420; D&ND10; D&P28; D423;
D&NDI11; D425; D426; D427; D431; D432; P89; D433; D&P29; D435; D436; P102;
D437; D438; D439; D440; P92; D442; D443; D444; D445; D446; D447; D448; D449;
D450; D451; WO97; P96; W98; D452; D453; D454; D455; D456; D457; D460; D462;
D463; W100; D464; D466; P100; P103; D467; D468; D469; D472; D473; D474; D475;
D476; D477; D&P30; D479; D480; D&ND14; D482; D483; D484) emphasizing its im-
portance in categorizing plant health conditions. This task involves assigning predefined
labels to the images/text, making it fundamental in biotic stress recognition. Defection,
the second most common task with 162 articles (P1; D1; P2; P6; D& D20; P2; D10;
W5; P9; D&NDI1; P11; WS; P14; D28; P16; D31; D34; P18; D38; D40; D45; W10;
W11; W13; D&P5; D&P6; D&ND2; D&NDI12; P21; D52; D54; D56; W15; D,P&NDI1;
W17; P23; D62; D64; D70; D75; W20; W21; P24; W23; D81; D83; W24; P26; D87;
P27; D93; D95; P30; D97; P31; D98; W27; P32; D110; D104; D&P9; P33; W29; P34;
P35; D115; P36; P38; P39; D&P11; D,P&ND4; D,P&NDS5; D,P&ND7; D151; W36;
D162; W38; P43; P44; D165; P46; P47; D169; D174; D181; P51; D185; W45; W49,
P52; D198; P54; D200; W56; D205; D&P17; P56; D206; P58; P59; D212; P60; D220;
D222; D227; W35; D232; D242; D245; W65; P67; D254; W68; D256; D269; D295;
D299; P72; D324; P73; D&P21; P75; W74; D347; P76; W77; P&W1; D356; W81;
W83; D370;D372; P79; D375; W86; P81; P82; P83;D389; P85; W88; D404; P87; D421;
D422; W92; W93; P90; P91; W95; P94; P95; P97; D458; W99; P98; P99; P101; W102;
W103; W104; D471), focuses on identifying and localizing specific instances of biotic
stress, such as pests, weeds, or plant disease spots. This task is crucial for precise in-
tervention and management. Segmentation in 60 articles (D36; D37; D51; P22; W16;
W19; D72; P25; W25; D119; W31; P61; D153; D154; D155; D166; D177; D180; W48;
W52; W53; D209; D219; W58; W60; W61; P63; D233; D234; P64; W63; W64; W66,
D282; D294; D312; W70; D330; D332; W76; D344; D354; D361; W85; W87; D397,
D399; W89; D415; W90; W91; D424; D429; D434; W94; D441; W96; D459; W101;
D482) involves partitioning an image into segments to isolate regions affected by biotic
stress. This task provides detailed spatial information on the extent and distribution of
stress, facilitating targeted treatment. Several tasks combine multiple operations to en-
hance the accuracy and comprehensiveness of biotic stress monitoring. Segmentation &
classification, performed in 17 articles (W4; D11; D14; D15; D21; P10; D47; D58; D78;
D80; P29; D178; D218; D284; W80; D428; D479), combines segmenting the image to
identify stress regions and classifying these regions to determine the type of stress. Data

generation/augmentation & classification, implemented in 11 articles (D35; P19; D114;
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D170; D188; D189; P55; D&ND7; D210; D387; D472), generates synthetic data to aug-
ment datasets and improve classification models’ robustness. Other notable combinations
include tasks integrating dataset curation, segmentation, classification, & detection. Seg-
mentation & detection, undertaken in 10 articles (W1; W2; W3; P12; D26; D&P8; D102;
W39; W69; D286), for identifying different plant parts and stress signs, allowing precise
targeting of affected areas. Data generation/augmentation & detection, performed in 3
articles (W14; P62; D384), enhances detection models by generating synthetic data to
simulate stress conditions. Similarly, improving resolution & classification (P57; D246;
D275), also executed in 3 articles, improves image clarity for accurate stress type classifi-
cation. Segmentation, classification & detection (D92; D462), implemented in 2 articles,
integrates these operations for a holistic monitoring approach. Data augmentation com-
bined with these techniques, also executed in 2 articles (D&ND4; W75), to train models
on diverse data.

The other category addresses specific stress monitoring operations, showcasing how
revolutionize in-situ biotic stress recognition. It includes the following tasks, each
documented in one article: 1) Classification, segmentation & remedy suggestion (D266):
This operation involves classifying the biotic stress, segmenting the affected areas within
the plant, and suggesting appropriate remedies. It provides a comprehensive approach
that identifies and localizes stress and offers actionable solutions for the detected issues.
2) Not applicable (D&ND13): This study represents a task that does not fit into conven-
tional categories or is irrelevant to the context, as the study only proposed data without
performing any operation. 3) Detection and tracking of insects’ behaviour, movement,
size, and habits (P93): This specialized task involves detecting insects and tracking their
behaviour, movement, size, and habits. It is crucial for understanding pest dynamics, de-
veloping effective pest management strategies, and providing detailed information about
pest activity for targeted interventions. 4) Classification and caption generation (D430):
This task combines the classification of biotic stress with generating descriptive captions.
It enhances interpretability by providing detailed descriptions of the identified stress con-
ditions, facilitating better understanding and communication of the findings. 5) Data gen-
eration/augmentation (D417): This task involves generating synthetic data to augment
existing datasets, which helps improve the robustness and accuracy of models. This
approach reduces issues related to limited or imbalanced datasets by creating additional
training data. 6) Classification, detection, and caption generation (D400): An integrated
approach that includes classifying stress types, detecting specific stress factors within the
plant, and generating descriptive captions. This combination provides a comprehensive
biotic stress analysis, offering detailed identification and explanatory context. 7) Detec-

tion and spread distance (D342): This task detects biotic stress and estimates the spread
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distance within the affected area. Understanding the spatial extent of the stress is vital for
effective management and containment strategies. 8) Segmentation, classification, and
plant survival (D43): This combined task involves segmenting and classifying stress ar-
eas while assessing the plant’s survival chances. It provides insights into the impact of
stress on plant health and potential outcomes, guiding more informed decision-making.
9) Data generation/augmentation and segmentation (D65): This approach uses data gen-
eration/augmentation techniques to enhance segmentation models, improving their per-
formance in identifying and isolating stress regions within the plant. 10) Classification
and localization (D27): This task combines classifying the type of biotic stress with lo-
calizing it within the plant. It is essential for targeted intervention, as precise localization
allows for more effective treatment applications. 11) Classification and biomass estima-
tion (W12): This combined task classifies biotic stress and estimates the biomass of the
affected plants. It provides a measure of the impact of stress on plant growth, which is
crucial for evaluating the overall health and productivity of the crops. 12) Segmentation
& weed density estimation (W47): This task involves segmenting the image to identify
weeds and estimating their density. It is essential for weed management, as understand-
ing weed density helps plan and execute effective control measures. 13) Classification
and economic loss estimation (D&NDS): This approach classifies biotic stress and esti-
mates its potential economic loss. Assessing the financial impact of stress helps prioritize
management efforts and allocate resources effectively. 14) Detection and fresh weight
prediction (W42): This task detects biotic stress and predicts the fresh weight of the
plants. Providing an estimate of the yield impact helps in understanding the severity of
the stress and its potential effects on crop productivity. 15) Detection and biomass esti-
mation (W51): This task focuses on detecting biotic stress and estimating the biomass. It
highlights the importance of quantifying the impact of stress on plant growth and health.
16) Detection and crop loss estimation (D113): This approach detects biotic stress and
estimates crop loss. Understanding the potential yield loss is essential for planning miti-
gation strategies and ensuring food security. 17) Segmentation, improving resolution, and
classification (D466): The task includes image segmentation, improving its resolution,
and classifying the type of biotic stress. Enhancing the resolution improves the accuracy
and detail of stress recognition, facilitating more precise management actions. Classifi-
cation, detection, and segmentation tasks are common, which emphasizes their essential
roles in efficient in-situ biotic stress recognition. Combined tasks demonstrate how vari-
ous procedures can be integrated into a single task, highlighting the growing intricacy and
sophistication of DLl models. More precise and thorough stress recognition, necessary for

efficient plant health monitoring, can be obtained from these advanced activities.

27



Results and Discussions

Distribution of Articles by Task
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Figure 2.7: Breakdown of Deep Learning Tasks/Operations Employed in Primary Studies
Considered in the Systematic Literature Review

2.4.4 RQ4: Which Deep Learning Algorithms are Employed for Mon-
itoring Biotic Stress, and How are They Revolutionizing Biotic

Stress Monitoring?

A comprehensive overview of the various algorithms used for monitoring biotic stress
and their transformative impact on recognition methods is presented in Figure to ad-
dress research question 4. The authors of this study classify the different algorithms
employed in 745 primary studies into 12 categories, indicating the number of articles
documenting their application in biotic stress monitoring 1) CNNs dominate the
list with 635 articles (P1; W1; D1; D2; D3; P2; D&P1; D6; D7; P4; D8; D&P2; D9; W3;
W4; D10; W5; W6; P5; D11; D13; D14; P7; D15; P8; P9; D16; D17; D&ND1; D20; P10;
D22; D23; P11; P12; D25; W7; W8; D26; D&P4; D27; P14; P15; D28; P16; D30; D31;
D33; P17; D34; P18; P19; D37; D38; W10; D39; D40; W11; D41; W12; D42; D43;
D44; D45; D46; W13; D&P5; D47; P20; D48; D49; W14; D50; D51; D52; D&ND2;
P21; D53; P22; D54; D56; D58; W15; D59; D60; D, P&ND1; D61; W17; P23; D62;
D63; W18; D64; W19; D66; D67; W20; W21; D68; P24; D69; D70; D71; D72; W22;
D73; W23; D74; D75; D76; D77; D79; D80; D81; D82; P25; D83; D84; W24; P26; W25;
D86; D87; D88; D90; P27; D91; P28; P29; D92; W26; D93; D94; D95; D&P7; D96;
P30; D97; P31; D&PS; D99; D100; W27; D101; P32; D102; W28; D103; D&P9; P33;
D107; D108; W29; D109; D110; D111; D112; P35; D113; D115; D116; P36; D&ND3;
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D117; P37; D118; D119; D&ND4; W31; D120; P38; W32; D121; D122; D123; D124;
D125;D126; D127; P39; W33; D, P&ND3; D130; P40; D131; D132; D133; D134; D135;
P41; D136; D137; D138; D139; D140; D&P10; D141; D142; D143; D144; W34; D145;
D146; D147; D&P11; W35; D,P&ND4; D,P&NDS5; D148; D149; D150; D151; W36;
D152; D&P12; D153; D154; D155; D156; P42; D157, D158; W37, D&P13; D159;
D160; D161; D162; W38; P43; P44; D163; P45; D164; D165; W39; D166; D167; W40;
P46; P47; W41; P48; D168; D169; W42; D&NDS5; D&P14; D170; D171; D172; D173;
D174; D175; D176; P49; P50; D178; D179; W44, D180; W45; W46; D181; P51; D182;
D&P15; D183; D184; D185; W47; D186; D187; D,W&NDI1; W48; W49; P52; W50;
D190; W51; D192; D193; P53; D194; D195; W52; D196; D197; D198; P54; D199;
P55; D200; W53; D201; W54; W55; D202; W56; D&P16; D203; D204; D205; D&ND6;
D&P17; D&P18; D206; D207; P58; D208; D209; P59; D,P&ND6; D212; D214; D215;
D216; D217; W57; P60; D219; W58; D220; D221; D222; D223; D224; D225; P61;
D226; W59; W60; D227; D228; W61; D229; P62; P63; D230; D231; D232; D233;
D234; D235; P64; D236; D&NDS; W62; W63; D237; D238; D,P&NDS; W64; D&P19;
D239; D240; D241; P65; P66; D242; D243; D245; W65; P67; D247; P68; D248; W66,
D249; D250; W67; P69; D251; D252; D253; D254; W68; D255; D256; D257; W69;
D258; D260; D262; D263; D264; D266; D267; D268; D269; D270; D271; P70; D272;
D273; D274; D276; D277; D278; D279; D280; D281; D282; D283; D284; D285; D286;
D&P20; D287; D288; D289; D290; D291; D292; D293; D294; D295; D296; D297;
D299; D300; D301; D303; D304; D305; D306; P71; D307; D309; D310; D311; D313;
D314; D315; D316; D318; D319; D321; D322; W71; D323; P72; D324; P73; D325;
W72; P75; D329; D330; D331; D332; D333; D334; W74; D335; W75; D336; W76;
D338; D339; D340; D341; D342; D343; D344; D346; P76; D349; D350; D351; D352;
W77, D353; P77; W78; D354; D&P22; P&W1; W79; D355; D356; D357; D358; D359;
W381; P78; D360; W82; D362; D363; W83; D365; W84; D366; D367; D&P23; W&5;
D368; D369; D370; D371; D372; P79; D373; D374; P80; D375; W86; D376; D377,
P81; P82; D378; D379; D380; D381; P83; W87; D382; D383; D&P24; D386; D&P25;
D388; D389; D390; D391; D392; D393; D395; D&NDO9; D396; D397; P85; D398; W88;
P86; D401; D402; D404; P87; D405; D406; D&P26; D&P27; D407; D408; D409; D410;
P88; D411; D412; D413; D415; D416; D418; D420; D421; D&P28; D&NDI11; D424,
D425; D427; D429; D431; D432; P89; W92; D433; W93; P90; D&P29; D435; D436;
W104; D437; W94; D438; D439; D440; P91; P92; D442; D&ND12; D443; P93; D445;
D446; W95; W96; D449; D450; D451; P94; P95; P96; D452; D455; D457; D458; D459;
D460; D461; W99; D462; P98; D463; W100; P99; D464; D466; P100; P101; P102;
P103; D467; D468; D469; D470; D472; D474; D476; D477, D&P30; D478; W101;
D479; D480; W102; D&ND14; D481; D482; W103; D483; D484), highlighting their
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widespread use in biotic stress recognition. are particularly effective in image-based
tasks, making them highly suitable for detecting visual symptoms of biotic stress, such
as diseases, pests, and weeds. Their ability to automatically extract and learn features
from images has significantly transformed plant stress recognition methods by enhancing
accuracy and efficiency. 2) & [GAN: This combination has been employed in 23
articles (D18; D32; D35; D104; D114; W43; D188; D189; P57; D&ND7; D210; D211;
D213; D218; D246; D261; D275; D384; D387; W97; D466; D472; D417) to leverages
the strengths of both and newly proposed [GAN] generate synthetic data to
augment datasets, thereby improving the robustness and accuracy of This approach
addresses data scarcity issues and enhances the training models, particularly in sce-
narios with limited annotated data. It is important to note that only studies specifically
proposing a new for biotic stress monitoring are considered here; studies using ex-
isting (for general purposes) solely for data augmentation are not included in these
23 articles. 3) & Transformer: Integrating with transformers combines the
feature extraction capabilities of with the transformer model’s advanced sequence
modelling and attention mechanisms. This hybrid approach has been applied to 30 ar-
ticles (P6; D12; D24; D29; D36; D57; W16; D89; D, P&ND2; D244; D337; D347,
D361; W89; D403; D422; D430; D434; D448; D456; W2; D&P6; D105; D317; D326;
W73; D345; W80; D428; D441), enhances the ability to capture complex patterns and
dependencies in the data, improving biotic stress monitoring. It is important to note that
the authors omitted in the transformer categories and considered them an indepen-
dent identity because [ViTlis specifically designed for image processing tasks, leveraging
self-attention mechanisms to handle the spatial structure of images. This distinct focus on
visual data processing differentiates them from traditional transformers originally devel-
oped for[NLP|tasks. Therefore, their unique application and design rationale justify treat-
ing as a separate category. 4)[ViT: Vision Transformers apply transformer models
directly to image data. They are known for their powerful attention mechanisms, which
helps to understand the global context in images. This algorithm has shown promise in
improving the accuracy of recognition of biotic stresses and has been employed in 13
articles (D55; W30; D320; D327; P74; P84; D423; D444; D447, D453; D454; D474,
D476.). 5)[CNN & [RNN: The combination of with [RNN has been exercised in 12
articles (D19; D21; P56; D,P&ND7; D298; D302; D308; D328; D348; D364; D394;
D400) to leverage the strengths of both architectures: [CNN] for spatial feature extraction
and RNN] for temporal sequence modelling. This combination is beneficial for monitor-
ing the progression of biotic stress over the time. 6)Transformer: Transformers, known
for their superior sequence modelling capabilities, have been used in 17 articles (W9;
D65; D78; D106; P34; D129; D399; D419; D426; W98; P97; D98; D259; W70; W90;
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Distribution of Articles by Deep Learning Algorithm
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Figure 2.8: Distribution of Various Deep Learning Algorithms Used in the Primary Stud-
ies Examined in the Systematic Literature Review

WO1; D177), capturing the complex dependencies and patterns in the data. They are par-
ticularly effective in scenarios where understanding the temporal progression of stress is
crucial; 7) & [VITI' This combination uses for initial feature extraction and [VIT|
for capturing global context in images, enhancing the overall recognition performance in
plant biotic stress identification, six articles (D5; P3; P13; D85; D128; D&P21) have been
implemented using this combination. 8) [RNN RNN]are effective for sequential data pro-
cessing, making them suitable for monitoring temporal changes in biotic stress, and have
been utilized in 3 articles (D191; D265; D385). They help in understanding the progres-
sion and dynamics of plant stress over time. 9) Artificial neural network (ANN): [ANN]are
foundational neural network models for various tasks and applied to 2 articles (D4; D312)
for basic classification and detection tasks in biotic stress monitoring 10) Not mentioned.:
This entry indicates an algorithm not specified in the documentation, suggesting the need
for clarity in reporting methodologies (D&ND10). 11) RNN & Transformer: Combin-
ing and Transformers in 2 articles (D&P3; D414) leverages the temporal sequence
modelling capabilities of RNN] with the powerful attention mechanisms of Transform-
ers, providing a robust approach for monitoring biotic stress. 12) Not applicable: This
entry indicates a non-standard or irrelevant approach that does not fit the conventional
categories listed (D&ND13).
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2.4.5 RQS5: To What Extent Has Deep Learning Been Implemented

in Proposed Solutions?

RQJ aims to analyze the contributions of primary studies in terms of their proposed solu-
tions. The authors of the have classified these contributions into the following cat-
egories: algorithm, data acquisition system/dataset, framework, method, metric, model,
and tool/application. Figure [2.9] illustrates the correlation between plant stress and the
proposed [DI]solution in the 745 primary studies considered in this This correlation
reveals that[Dllmodels are the most extensively proposed solution, with 432 articles (D2;
D3; D4; D5; D6; D7; D8; D9; D10; D12; D13; D14; D15; D16; D17; D18; D19; D20;
D21; D22; D23; D24; D25; D27; D28; D29; D30; D31; D32; D34; D36; D37; D39;
D40; D41; D43; D44; D45; D46; D47; D48; D49; D50; D51; D52; D53; D54; D55; D56;
D57; D58; D59; D60; D61; D62; D63; D64; D66; D67; D68; D69; D70; D71; D72; D73;
D74; D76; D77; D78; D79; D80; D81; D82; D83; D84; D86; D87; D88; D89; D90; DI1;
D92; D93; D94; D95; D96; D97; D98; D99; D100; D101; D102; D103; D105; D106;
D107; D108; D109; D111; D115; D116; D117; D118; D119; D120; D121; D122; D123;
D124; D125; D126; D127; D128; D129; D130; D131; D132; D133; D134; D135; D136;
D137; D138; D139; D140; D141; D142; D143; D144; D145; D146; D147; D148; D149;
D151; D153; D154; D155; D156; D157; D158; D159; D160; D161; D162; D164; D165;
D166; D168; D169; D171; D172; D173; D174; D175; D176; D177; D178; D179; D180;
D181;D182; D183; D184; D185; D186; D187; D190; D191; D192; D193; D194; D195;
D196; D197; D198; D199; D200; D201; D202; D203; D204; D205; D206; D207; D208;
D209; D211; D212; D213; D214; D215; D216; D217; D218; D219; D220; D221; D222;
D223; D224; D225; D226; D227; D228; D229; D231; D232; D233; D234; D236; D237,
D238; D239; D240; D241; D242; D243; D244; D245; D247; D248; D249; D251; D252;
D253; D254; D255; D256; D258; D259; D260; D261; D262; D263; D264; D265; D266;
D267; D268; D269; D270; D271; D272; D273; D274; D276; D277; D278; D279; D280;
D282; D283; D284; D285; D286; D287; D288; D289; D290; D291; D292; D293; D294,
D295; D296; D297; D298; D299; D300; D301; D302; D303; D304; D305; D306; D307;
D308; D309; D310; D311; D312; D313; D314; D315; D316; D317; D318; D319; D321;
D322; D323; D324; D325; D328; D329; D330; D331; D332; D333; D334; D335; D336;
D337; D338; D339; D340; D341; D342; D344; D346; D347; D348; D349; D350; D351;
D353; D354; D355; D356; D357; D358; D359; D360; D361; D362; D363; D364; D365;
D366; D367; D369; D371; D372; D373; D374; D375; D376; D377; D379; D380; D381;
D382; D383; D385; D386; D389; D390; D391; D392; D393; D394; D395; D396; D397;
D398; D399; D400; D401; D402; D403; D404; D405; D406; D408; D411; D412; D413;
D414; D415; D416; D418; D419; D421; D422; D423) D424; D425; D426; D427; D428;
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D429; D430; D431; D432; D433; D434; D435; D436; D437; D438; D439; D440; D441;
D444; D445; D446; D448; D449; D450; D451; D452; D453; D454; D455; D456; D457,
D458; D459; D460; D461; D462; D463; D464; D465; D467; D468; D469; D470; D472;
DA473; D474; D475; D476; D477; D478; D479; D480; D481; D482; D483; D484) ded-
icated to developing models for disease monitoring. Additionally, 29 articles (D1; D11;
D26; D33; D38; D42; D85; D104; D110; D113; D152; D163; D230; D250; D257; D281;
D327; D343; D368; D370; D378; D388; D407; D409; D410; D442; D443; D447; D467)
focused on developing practical tools and applications, strongly emphasizing translating
research into deployable solutions for real-world use. Further, 21 articles (D35; D65;
D75; D114; D150; D170; D188; D189; D210; D235; D246; D275; D320; D326; D345;
D352; D384; D387; D417; D420; D472) proposed new methods, highlighting the diverse
approaches to tackling plant diseases. Framework (D112) and algorithm (D167) were
proposed in 1 article each. Further, no articles for data acquisition systems/datasets and
metrics are listed, suggesting potential gaps or less emphasis in these areas. The signif-
icant focus on models and practical applications underscores the importance of accurate
prediction and management techniques in combating plant diseases, reflecting [DLI's crit-
ical role in enhancing agricultural productivity and health. This detailed categorization
provides insights into the current state of research and highlights areas for future explo-
ration to fully leverage in monitoring plant disease.

Pest monitoring also received considerable attention, with 80 articles (P1; P2; P3; P4;
P6; P10; P11; P13; P14; P15; P16; P17; P18; P20; P21; P22; P23; P24; P26; P27; P30;
P31; P32; P33; P34; P35; P36; P37; P39; P40; P42; P44; P46; P47; P49; P50; P51; P52;
P53; P56; P58; P59; P60; P61; P63; P64; P65; P66; P67; P69; P70; P71; P72; P73; P74,
P75; P76; P77; P78; P79; P80; P81; P82; P83; P84; P86; P87; P90; P91; P92; P94; P95;
P96; P97; P98; P99; P100; P101; P102; P103) dedicated to creating models for pest
monitoring. Additionally, 18 articles (P5; P7; P8; P9; P12; P25; P28; P29; P38; P41; P43;
P45; P54; P68; P8S; P88; P89; P93) on practical tools and applications highlight efforts
to translate these models into actionable solutions. 5 articles (P19; P48; P55; P57; P62)
focused on methods, reflecting the diverse explored approaches. However, no articles for
algorithms, data acquisition systems/datasets, frameworks, and metrics indicate potential
areas for future research and development.

Weeds monitoring has been addressed in 90 articles(W1; W2; W3; W4; W6; W7;
W8; WO, W10; W12; W13; W14; W15; W16; W17; W18; W19; W21; W22; W23; W24,
W25; W26; W27; W29; W30; W31; W32; W33; W34; W36; W37; W38; W39; W40;
W41; W42; W43; W44, W45; W46; W47, W48; W50; W51; W52; W53; W54; W55;
W56; W57; W58; W59; W60; W61; W62; W63; Wb4d; W65; W66, W67; W69; W70,
W71; W72; W73; W74; W76; WT77; W78; W79; W80; W81; W82; W84; W85; W&6;
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W87; W88; W89; WIO0; WI1; WO3; W94; WO5; W96; WO8; W100; W101, W104) ded-
icated to creating models for weed monitoring. This highlights the significant effort
to use advanced computational techniques to address weed-related issues in agriculture.
Additionally, 11 articles (W5; W11; W20; W28; W35; W49; W68; W83; W99; W102;
W103) proposed practical tools/applications that indicate efforts to implement models
into actionable solutions. Additionally, 2 articles (W75; W97) focus on methods, while
one addresses metrics (W92) reflecting the diverse approaches being explored. Notably,
no articles on algorithms, data acquisition systems/datasets, and frameworks suggest ar-
eas for potential future research. This distribution underscores the critical role of model
development and practical applications in enhancing weed management strategies through
deep learning.

It has been investigated that combined stress is less frequently addressed; the primary
focus for combined stress appears to be on model development, with the most significant
attention given to the disease & pest category, which includes 25 articles (D&P1; D&P2;
D&P3; D&P4; D&PS; D&P9; D&P10; D&P11; D&P12; D&P13; D&P14; D&P16;
D&P17; D&P18; D&P19; D&P21; D&P22; D&P23; D&P24; D&P25; D&P26; D&P27,;
D&P28; D&P29; D&P30) on models and 3 articles (D&P5; D&P15; D&P20) on prac-
tical tools and applications. This highlights the effort to utilize to manage com-
plex interactions between diseases & pests. Additionally, 2 articles (D&P6; D&P6) on
frameworks indicate some groundwork in supporting models. For the combined stressor
of disease & nutritional deficiency, 9 articles (D&NDI1; D&ND3; D&NDS5; D&ND6;
D&NDS; D&ND9; D&NDI11; D&NDI12; D&ND14) focused on models and 3 on meth-
ods (D&ND4; D&ND7; D&NDI10), reflecting the minor efforts to address the nutri-
tional aspects alongside disease management. Further, 1 article for each tool/application
(D&ND?2) and dataset/data acquisition system (D&ND13) identified in this category. The
combined stressor of disease, pest & nutritional deficiency was addressed in 6 articles
(D,P&ND2; D,P&ND3; D,P&ND4; D,P&NDS5; D,P&ND6; D,P&NDS) that proposed
models and 1 on data acquisition systems (D,P&ND1) and tools/applications (D,PND7)
each, suggesting initial steps in integrating multiple stress factors into a cohesive mon-
itoring strategy. Pests & weeds (P&WI) and disease, weed & nutritional deficiency
(D,W&NDI ) stressors have minimal focus, with only 1 article for the model indicating
limited research and development in these areas. The absence of articles in categories
such as algorithms, data acquisition systems (except for one in disease, pest & nutri-
tional deficiency), metrics, and tools/applications across most combined stressors points

to significant gaps and potential areas for future research.
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Figure 2.9: Heatmap [llustrating the Distribution of Solutions Proposed in Primary Stud-
ies Considered in the Systematic Literature Review

2.4.6 RQ6: What are the Key Characteristics of the Datasets Used
for Training and Evaluating Deep Learning Models in Plant

Stress Monitoring?

To address[RQp, the authors examined several critical facets, including the modality of the
data, dataset accessibility, predominant datasets, crop diversity considered in the primary
studies, dataset environment, dataset capturing device, and dataset geographical distribu-

tion.

A. Dataset Modality

Figure [2.10] highlights the distribution of research articles based on the data modalities
used. The predominant modality is the image utilized in 720 articles, indicating a firm
reliance on visual data. Video and text are significantly less common, with only 4 (W34;
W43; W55; D265) and 2 (D&P3; D414) articles, respectively, further image & video
(P11; P12; D81; D&P11; D226; P75) and image & text (D19; D89; D116; D&NDI11;
D430; DP30) are used in 6 articles each. A slightly higher number of articles, 7 (D129;
D136; D&P13; P56; D339; D357; D390), use image & meteorological/environmental
data, suggesting an integrated approach that combines visual data with environmental
information. This distribution underscores the importance of image data in research while
indicating potential areas for expanding the use of other data modalities and combinations

to enrich research outcomes.
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Figure 2.10: Pie Chart Illustrating the Distribution of Various Data Modalities Within the
Primary Studies Assessed in the Systematic Literature Review

B. Dataset Accessibility

Figure 2.11] presents a distribution of primary studies according to the dataset availabil-
ity. 335 articles consider self-gathered data to be kept confidential, indicating that many
researchers prefer to collect their data to ensure its relevance and accuracy for their spe-
cific studies while maintaining confidentiality. Additionally, 258 primary studies refer to
datasets from previous studies, suggesting a reliance on existing research to build upon
and validate findings. There are 47 articles where datasets are adapted and enhanced from
existing ones, showing efforts to improve and expand on available data. In another 85 arti-
cles, datasets were collected personally and released publicly, reflecting a commitment to
sharing data with the wider research community. Further, 19 primary studies have no de-
tails about their source datasets, raising concerns about transparency and reproducibility.
Only one primary study refers to the dataset that is self-gathered and partially released,
indicating minimal partial data sharing among researchers.

This data reveals a diverse approach to dataset handling, while many researchers pre-
fer to keep their data confidential, there is also a significant effort to share data publicly
by releasing collected data or using and enhancing existing datasets. The reliance on pre-
vious studies indicates the importance of building on established research. However, the
lack of detail about some datasets’ sources suggests a need for greater transparency and

data sharing to enhance reproducibility and collaborative efforts in the field.

36



Results and Discussions

Distribution of Articles by Dataset Availability

335
g
) 258
=
=
«
St
=]
g
= 85
£ 47
Z 19 .
] C
Self-Gathered &  Derived from Adapted & Collected Details Not  Self-Gathered &
Confidential ~ Previous Studies Improved from  Personally & Shared Partially Released
& used inthe  Existing Datasets Relaesed Publicly
Primary Study
Data Availability

Figure 2.11: Distribution of Primary Studies Considered in the Systematic Literature Re-
view According to the Dataset Availability

C. Predominant Datasets

A detailed breakdown of the named datasets used in biotic stress monitoring, alongside
the number of articles utilizing each dataset, is presented in Figure The “PlantVil-
lage” dataset is the most extensively used, cited in 114 articles, indicating its prominence
and reliability in the research community. The “Al Challenger” dataset follows, with 12
articles referencing it, highlighting its significant role. Other datasets, such as “IP102”
and “Kaggle,” are used in 6 and 4 articles, respectively, showing moderate usage in this
domain. The DeepWeeds, BoniRob, and Rice Leaf Disease Image Samples are each cited
in 3 articles, suggesting a niche but vital role in specific research areas. Additionally, the
adapted PlantVillage dataset is used in 7 articles, reflecting efforts to enhance and modify
existing datasets for more specific research needs. The “Others” category includes 589 ar-
ticles, with 194 datasets uniquely named and each used in one or two articles, as detailed
in Table The remaining 395 articles use unnamed datasets, this indicates a diverse
range of less commonly used datasets, highlighting the extensive breadth of data sources
within the field.
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Article Frequency Based on Dataset Usage
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Figure 2.12: Distribution of Primary Studies Included in the Systematic Literature Review
Based on the Dataset Utilized

D. Crop Diversity in the Dataset

Figure [2.13]illustrates the distribution of articles based on their crop specificity. The ma-
jority, comprising 533 articles, focus on single-crop datasets, indicating a strong prefer-
ence for specific crops. Multi-crop datasets, used in 145 articles, reflect efforts to develop
models applicable to multiple crops, enhancing the versatility of the research. Finally,
67 articles utilize datasets that are either not crop-specific or where the crop information
is not mentioned, suggesting a smaller yet significant portion of research focusing on

unspecified data sources.

Article Frequency Based on Number of Crops

m Single ®m Multi Crop = Not Crop Specific/ Not Mentioned

Figure 2.13: Distribution of Primary Studies Referred by the Systematic Literature Re-
view by Crop Diversity
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E. Dataset Environment

Figure [2.14| illustrates the various environmental settings of the datasets and the corre-
sponding number of articles associated with each set. Hereafter, “Real/In-field” refers to
data collected from farms, fields, and the internet. “Laboratory” indicates data collected
in laboratory settings. “Controlled environment” denotes data collected in agricultural
institutions or after applying controlled settings, such as data collected against a plain
background.

It is evident from the figure that the real/in-field environment has the highest number
of articles, totalling 410 (P1; W1; D1; W2; P2; D&P1; D5; P3; D6; P4; D&P2; W3;
W4; D10; W5; W6; D&P3; P6; D13; D14; D15; P8; D19; D20; P10; D22; D25; W7,
P13; W8; D26; D&P4; D27; P14; P15; P16; D30; W9; D32; P17; D34; D35; P19;
WI10; W11; D41; W12; D42; D46; W13; D&P5; P20; W14; D&ND2; P21; D53; P22;
D54; D57; W16; D60; D61; W17; D62; W18; D64; W19; D66; W20; W21; P24; D72;
D73; W23; D76; D78; D82; D&P6; P25; D83; W24; D85; P26; W25; D86; D87; D8S;
D89; D90; P27; P29; D92; W26; D93; D94; D&P7; P30; D97; D&P8; D98; D99;
W27; D101; P32; W28; D104; D&P9; P33; W29; D109; P34; D111; P35; D113; D114,
D116; P36; D&ND3; D117; P37; D118; W30; D&ND4; W31; W32; D125; D129; P39;
P40; D134; D135; P41; D136; D138; D142; D145; D,P&ND4; D148; D151; W36;
D152; W31; D156; D157; W37; D160; D161; D162; W38; P43; P44; D163; P45; D165;
W39; W40; P46; P47; W41; P48; W42; W43; D&NDS; D&P14; D171; D172; D173;
D175; P49; P50; D177; D178; W44; D180; W45; W46; D181; P51; D&P15; D183;
D185; W47, D186; D187; W48; W49; P52; W50; W51; D195; W52; D196; D198;
P54; P55; W53; W54; W55; W56; D&P16; D204; D205; D&ND6; D&P17; P56; D207;
P57; D&ND7; D209; P59; D212; D215; W57; P60; D219; D,P&ND7; WS58; D220;
D222; D224; D225; P61; W59; W60; D227; W61; P62; P63; D230; D231; D&NDS;
W62; W63; D237; D238; W64; D&P19; D240; P65; D244; D245; W65; P67; D247,
P68; W66; D249; D250; W67; P69; D252; D253; D254; W68; D256; D257; W69;
D259; D265; D269; P70; D273; D285; D286; D291; D293; D294; D295; D296; D298;
D303; D304; P71; D307; D315; D316; D317; W70; D319; D320; D321; W71; D324,
P73; D325; W72; P74; D&P21; D328; P75; D329; D330; W73; D334; D335; W75;
D336; W76; D341; D342; D343; D346; D347; D348; P76; D349; D352; W77; P77,
W78; D354; D&P22; P&W1; W79; W80; D355; D357; W81; P78; D361; W82; D364,
W83; D365; W84; D&P23; W85; D371; D372; D375; W86; D377; P81; P82; D380;
P83; W&7; P84; D384; D385; D&P25; D390; D391; D394; D&ND9; D396; P85; W&S;
D399; P86; W89; D405; D406; D&P26; P88; D411; D413;D414; W90; WI1; D&ND10;
D&P28; D422; D423; D424; D426; D430; P89; W92; W93; D434; P102; W94; D438;
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D440; P91; P92; D&ND12; D443; D444; D447; W95; W96; D450; D451; P95; W97,
P96; WO8; D456; P97; D457; D458; D460; W99; D463; P98; D464; P99; D467; P103;
D468; D470; D476; D478; D&P30; W101; W102; D484; D485). This is followed by
the laboratory environment with 164 articles (D7; D8; D9; P5; D11; D12; D21; D23;
P11; D24; D28; D29; D31; D37; D40; D43; D44; D49; D50; D52; D55; D58; D59; D68;
D70; D71; D74; D75; D77; D80; D84; D91; D103; D105; D112; D115; D119; D120;
D123; D126; D130; D131; D132; D133; D137; D139; D143; D144; D146; D150; D159;
D164; D167; D169; D176; D179; D184; D,W&ND1; D188; D189; D190; D191; D192;
D193; D194; D199; D200; D201; D&P18; D206; D208; D210; D211; D213; D214;
D217; D218; D228; D233; D234; D235; P64; D239; D241; D243; D246; D251; D258;
D260; D261; D262; D263; D266; D268; D270; D272; D274; D275; D276; D277; D278;
D282; D287; D289; D297; D300; D301; D302; D305; D306; D309; D310; D311; D313;
D314; D331; D340; D344; D345; D350; D358; D359; D362; D363; D367; D368; P79;
D373; D381; D382; D387; D389; D393; D395; D398; D403; D410; D412; D417; D419;
D427; D429; D431; D432; D433; D435; D436;D437; D439; D441; P93; D448; D452;
D455; D459; D460; D464; D465; D468; D470; D479; D480; D&ND14; D481; D482)
and the controlled environment with 41 articles (D33; D81; D121; D128; D,P&ND3;
D140; D141; W34; P42; D166; P53; D216; D226; P66; D283; D288; D290; D292;
D318; D323; D326; D327; D333; W74; D337; D338; D366; D379; D386; D392; D402;
D407; D418; D425; D&ND13; D453; D472; D473; D474; D475; D479). Other notable
entries include greenhouse, with 28 articles (D18; D&NDI1; D45; D47; D56; W22; D79;
P31; D110; P38; W33; D&P11; D&P12; D153; D155; D168; D232; D, P&NDS; D264;
D279; D332; P80; D400; D415; D421; P90; D454; W100) and laboratory & real/in-
field, with 53 (D3; P9; P12; D48; W15; P23; D63; D69; P28; D95; D,P&ND2; D102;
D106; D127; D147; D149; D154; D158; D182; D197; D202; D203; D,P&ND6; D221;
D229; D236; D255; D271; D281; D&P20; D308; D322; D339; D369; D374; D&P24;
D388; D397; D401; D404; P87; D&P27; D409; D416; D420; D428; D&P29; D442;
D445; D446; D477) articles. There are also several entries with specific combinations
of environments, such as greenhouse & real/in-field with 10 articles (D2; D17; D51;
D96; D100; D,P&NDS5; D174; D248; D267; D356), real/in-field & controlled with 6
articles (D65; D107; D170; D284; D383; W104), and real/in-field, controlled, laboratory
& greenhouse with 2 articles (D462; W103). Some less common environments, like
aquaponics (D370), hydroponics (D38), and reference books & real/in-field (D408), each
have only 1 article. Additionally, there are 25 articles where the environment was not

explicitly mentioned.
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Proportion of Articles by Dataset Environment
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Figure 2.14: Distribution of Primary Studies Included in the Systematic Literature Review
Based Dataset Capturing Environment

F. Dataset Capturing Device

Figure [2.15] presents the distribution of research articles based on the dataset-capturing
devices used. The most frequently used device is the camera, with 274 articles (P1; W2;
D3; D&P1; D5; D9; W4; D10; P5; D11; D12; D13; D15; P8; D18; D21; P10; D23; D24;
W7; W8; D28; D29; D32; D35; D37; D40; D43; D44; W13; D47; D49; D50; D52; D55;
D58; D59; D61; W17; W18; D64; W20; D68; D70; D71; D74; D75; D77; D79; D80;
D81; D82; D&P6; D88; D91; D92; D93; D97; P31; D105; D108; D110; D112; D115;
D117; D123; D126; D127; W33; D130; D132; D133; D137; D139; D143; D144; D146;
D147; D,P&ND4; D148; D150; D151; D152; D157; W37; W38; P45; D166; D167; P47;
W41; P48; D169; D175; D176; P49; P50; D177; D180; W45; W46; D181; D182; D184,
D187; W48; W49; D188; W50; D191; D192; D193; P53; D194; D198; D199; D200;
W53; D201; W55; D&P16; D204; D&ND6; D207; P57; D210; D211; D,P&ND6; D213;
D214; D215; D217; W57; D218; P60; W58; D225; W35; D226; W60; D228; D229;
D235; P64; D237; D, P&NDS; D&P19; D239; D241; D243; D247; D248; D250; W67,
D251; D253; W68; D258; D260; D261; D262; D263; D264; D266; D267; D268; D269;
D270; D272; D275; D276; D277; D278; D281; D282; D287; D288; D289; D296; D297;
D300; D301; D302; D304; D305; D309; D310; D311; D313; D314; D317; W70; D318;
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D322; D323; D324; D326; D327; P75; D329; D331; D332; W75; D336; D337; W76;
D338; D340; D344; D345; P76; D349; D350; W77; W79; D358; D359; W82; D362;
D363; D372; D373; D375; W86; P81; P82; D379; D382; D383; D384; D388; D393;
D395; D396; D398; D403; D410; P88; D412; D413; D415; D417; D419; D427; D429;
D431; D432; D435; D436; D439; D441; D442; D&ND12; P93; D444; D448; W95;
D&ND13; D450; D452; D459; D460; D462; D463; D465; W104; D468; D470; D474;
D476; D477; D480; D481; D482; D484) followed by not mentioned, which accounts for
150 articles, indicating a significant number of studies where the capturing device was
not specified. Smartphones are also commonly used, with 61 articles (D1; D&ND1; D20;
D26; D27; D30; D33; D34; D51; P21; P22; D56; W16; D60; D62; D65; D83; D&PS;
D101; P34; P35; D118; P38; D,P&ND3; D141; W34; D145; P61; D159; D163; D174;
D178; D185; D186; D196; P54; D232; D244; D245; D255; D265; P70; D303; P73;
D346; D347; D361; W84; P84; D389; D394; D397; W89; D405; W90; D&ND10; D428;
D453; D454; D467; D472), and Unmanned Aerial Vehicles (UAV) (W6; P16; W9; W10;
W12; D54; W19; D76; W24; D&P7; W28; W29; D119; W30; D125; D138; W36; D160;
W39; W40; W43; W44; P52; W51; W54; D209; D219; D224; P63; W62; W63; W64,
W65; D249; D254; D274; W71; P72; D333; D341; D342; D&P22; W80; W85; D368;
D377; D380; D381; W87; W88; WI8) in 51 articles. Further, camera & smartphones
(D17; D25; P19; D41; &ND2; W15; D66; D69; W22; D84; D85; D86; D87; D94; D96;
D,P&ND2; D&P9; D106; W31; D120; D142; D,P&NDS; D153; D158; D183; D195;
D&P17; D223; D227; W61; D291; P71; D315; D325; D330; D334; D343; D356; D369;
D374; D&P24; D&NDY; D399; D404; D406; D&P27; D445; D449; W97; P96; D468;
D476; D&ND14) appear in 53 articles . Internet was used in 33 articles (P2; P3; P6; P13;
P14; P17; D46; P27; D104; D&ND3; P37; P39; P43; D222; D231; D240; P65; P69;
D273; D286; D320; P74; D335; P77; P86; D423; P89; P91; P92; D451; D456; P103;
D&P30), an automated system was used in 24 articles (P11; P12; D38; W11; D,P&ND1;
P24; D72; P25; P26; P28; P33; P36; D155; P44; P46; P59; P62; D234; P67, W72; W74,
P90; P98; W100), and Robots (W1; D45; W14; W25; W32; W47; W52; W59; W66;
W69; W73; WI1; D421; W93; W103) and Camera & Internet (D14; D19; D&P5; P20;
D111; P40; D149; D236; P68; D271; D319; D401; D409; D455) in 15 and 14 articles,
respectively. There are smaller counts for combinations of devices such as Internet & not
mentioned (P18; D109; D165; D&P20; D&P26; D408; D&ND11; D430; D446), Internet
& smartphones (P51; P85; D&P28; D443; P97; D484), and loT Sensors (P9; P29; D98;
D168; P66), each contributing a few articles. Less common combinations like cameras,
internet & smartphones (D205; P80; D416; D462), and smartphones & UAVs (D&P2;
W3; D&P4; D&P21; P102) each appear in 4 and 5 articles respectively, while various

other combinations and specific devices like microscopes (D233; D367; P79) and camera
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& meteorological sensors (D129) are mentioned sporadically, reflecting a diverse range of
capturing technologies employed in research. This diversity highlights researchers’ multi-
faceted approaches to collecting data, with a significant reliance on cameras and a mix of
traditional and modern technologies. The other category includes the following each used
in one article: surveys & simulated sensor; automated system & not mentione; imaging
sensors, loT sensors & smartphones; smartphones & not mentioned; electronic devices;
camera & automated system; hand-held devices & UAV; mobile application, environmen-
tal sensors & UAV; internet & surveys; light trapping device; mobile application; camera,
IoT sensors & smartphones; books & internet, camera, internet & not mentioned; cam-
era & automated system; meteorological sensors & smartphones; plant protection experts
& smartphones; video capturing device;, camera, monitoring equipment & smartphone;
camera, loT sensors & smartphone. Overall, this SLR highlights cameras’ dominance as
the primary device for dataset capturing in research while also showcasing the diversity
of other devices used, albeit to a lesser extent. This information underscores the need for
diversification in capturing technologies to enhance the richness and variety of research
data.

Article Frequency Based on Capturing Device Used
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Figure 2.15: Distribution of Primary Studies Included in the Systematic Literature Review
Based Dataset Capturing Environment
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G. Dataset Geographical Distribution

Figure[2.16)illustrates the global distribution of article frequencies, with countries colour-
coded according to the number of research articles that utilized data originating from each
location. The United States leads with over 200 articles, highlighting its dominant role
in global research. China follows with 151-199 articles, indicating its indicating its ro-
bust research output. Countries like Russia, India, and Australia contribute moderately,
with 41-50 articles each. However, many regions, particularly in Africa, Central Asia,
and parts of South America and Southeast Asia, show low research output, with fewer
than ten articles. This disparity underscores the need for increased investment in research
infrastructure and collaboration in underrepresented regions. Future implications include
the potential for growth in these areas through international partnerships, funding initia-

tives, and capacity-building efforts to foster a more balanced global research landscape.
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Figure 2.16: Global Distribution of Research Articles by Dataset Capturing Country, In-
dicating the Frequency of Publications Across Different Regions
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2.4.7 RQ7: What Performance Metrics are Employed to Evaluate
the Effectiveness of Deep Learning Models in Monitoring Bi-

otic Stress?

Figure [2.17] reveals the performance metrics used to evaluate [DL}-based solutions for bi-
otic stress monitoring and the number of primary studies considered in employing
each metric. The most frequently used metric is accuracy, appearing in 532 articles, fol-
lowed by precision (458 articles) and recall (426 articles). FI-score, a balanced measure
considering precision and recall, is used in 376 articles. mean Average Precision (mAP)
appears in 165 articles, and Receiver Operating Characteristic is utilized in 78 articles.
Metrics like Number of Parameters (137 articles), Inference Speed (168 articles), and Size
(79 articles) are also considered, while Memory Requirements (12 articles) and Floating-
point operations (ELOPs)) (58 articles) are less commonly used. The heavy reliance on
traditional metrics like accuracy, precision, recall, and F1-score may overlook other im-

portant aspects of model performance, such as computational efficiency and scalability.

Performance Metrics and their Article Proportion
H Accuracy
M Precision
m Recall
mF1-Score
EmAP
m Number of Parameters/Size

® Flops

B Inference Speed/Latency

Figure 2.17: Distribution of Primary Studies Considered in the Systematic Literature Re-
view by Performance Metrics Used to Evaluate Deep Learning-Based Solutions

2.4.8 RQS8: To What Extent Are the Explainability and Interpretabil-
ity of Deep Learning Models Considered in Plant Biotic Stress
Monitoring?

The explainability of the model is vital for multiple reasons. It fosters trust and trans-

parency among users by clarifying model predictions, which is essential for widespread

adoption. Explainable models enable better validation, debugging, and refinement, that
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leads to more robust and accurate outcomes. They provide actionable insights for tar-
geted interventions, optimize resource use, and support ethical accountability by tracing
decision pathways. Explainability also promotes scientific discovery and secures support
from policymakers and funding agencies. Despite its importance, only 114 out of 745
primary studies in this article address explainability. Figure [2.1§]illustrates the various
explainability techniques used in models for biotic stress monitoring and the num-
ber of research articles employing each technique. Heat maps are the most frequently
used, appearing in 34 articles, followed by Grad-CAM (34) and activation visualization
(20). Techniques like Grad CAM++ (6 articles), CAM (13 articles), and LIME (3 arti-
cles) are also utilized. At the same time, more specialized methods such as Occlusion
sensitivity, Score-CAM, AblationCAM, HiResCAM, Guided propagation and deconvo-
lution, XGradCAM, SmoothGrad, Vanilla back-propagation, Reference-Based Visualiza-
tion, DeepLIFT, ECLF-CS, and SHAP are less common, each appearing in 1 or 2 articles.

Further, two articles did not explicitly mention the technique.

Explainability Technique and their Article Proportions

Name not mentioned explicitly . 2
SHAP =
ECLF-CS m
DeepLIFT m
Reference-Based Visualization
Vanilla back-propagation m
SmoothGrad m
XGradCAM m
Heat s s —— 34
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CAM 13
Grad-CAM
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Figure 2.18: Distribution of Primary Studies Assesed in the Systematic Litearture Review
by Various Explainability Techniques
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2.5 Additional Discussions

The analysis of plant organ consideration for stress monitoring reveals a strong emphasis
on leaves, with 451 studies focusing on them due to their early stress response, while
broader assessments, covering the canopy, crown, or entire fields, were addressed in only
14 studies, emphasizing their utility in monitoring overall plant health. A holistic ap-
proach was adopted by six studies examining multiple plant parts to provide comprehen-
sive insights into stress interactions, whereas seven studies targeted the entire plant, and
40 focused on fruits and vegetables, highlighting an interest in harvest quality. Stems
and flowers were the subject of 14 studies, and a diverse array of other plant parts was
explored in 22 articles. Notably, 260 studies did not specify the plant organ, impacting
reproducibility and applicability.

In the context of stress severity and fine-grained identification, only 53 of the 745 stud-
ies evaluated stress severity, indicating a significant research gap in precision agriculture.
Multiclass consideration is also underrepresented, with only 74 studies accounting for
multiple stressors, pointing to a need for more comprehensive plant pathology research.
Augmentation techniques were employed in 334 studies, predominantly using traditional
methods, while only a few utilized or proposed novel approaches, revealing a re-
liance on conventional methods. Generalizability was addressed in 169 studies, 89 of
which validated their findings in real-world settings, but 576 studies lacked this crucial
aspect, highlighting the necessity of broader applicability. Finally, supervised learning
dominated the field, used in 98% of the studies, whereas semi-supervised, weakly su-
pervised, and self-supervised methods were notably underutilized, suggesting an overre-
liance on labelled data and a missed opportunity to leverage unlabelled data in plant stress

research.

2.6 Research Gaps and Open Issues

Deep learning has shown significant potential in plant stress monitoring and enhancing
plant biosecurity. Despite the tremendous progress, the highlights several research
gaps limiting the effectiveness and applicability of current models. Thus, research gaps

which have been identified are as follows:

* Over-reliance on supervised learning techniques: Current models demand large
amounts of labelled data, which are often scarce, especially in diverse agricultural

environments.

* Focus on leaf data: Most studies focus primarily on leaf datasets, neglecting other
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plant organs such as roots, stems, and fruits, which can also show early signs of

biotic stress.

* Underestimation of hybrid models: Hybrid approaches combine various[DLImod-

els and are often overlooked despite their potential to offer more robust solutions.

* Model generalization issues: Existing models struggle to generalize across differ-
ent conditions, particularly under covariate shifts, resulting in reduced performance

when applied to real-world, unseen data.

* Limited understanding and explainability: There is a lack of transparency in
model behaviour, leading to challenges in trust and the wider adoption of solu-

tions in agriculture.

* Inadequate attention to computational efficiency: Many models are computa-
tionally intensive, making them impractical for large-scale, real-time applications

in agriculture.

* Regional disparities in research output: It has been identified that some regions

receiving less attention despite being highly vulnerable to biotic stress.

* Neglect of concurrent abiotic and biotic stress: A significant portion of the re-
search overlooks the coexistence of multiple stresses, such as nutritional deficiency

combined with diseases.

2.7 Chapter Summary

This chapter offers a comprehensive overview of the application of in plant biotic
stress monitoring. This article expounds on significant trends and advancements from
2016 to 2024, highlighting the dominance of [CNN] and the emergence of hybrid mod-
els. Despite the tremendous progress, this study highlights important gaps, such as the
need for various data sources, data scarcity, and dependence on high-quality, annotated
datasets. The analysis emphasizes integrating multiple tasks and enhancing model gener-
alization to improve practical applications. Additionally, the study highlights the under-
utilization of efficiency metrics and the limited focus on explainability and interpretability,
which are essential for trust and usability in real-world applications. Overall, the findings
shed light on the landscape of [DLl breakthroughs in biotic stress monitoring, highlighting
key challenges and suggesting practical solutions. The study emphasizes the importance
of addressing limitations posed by the research gaps and exploring new modes to improve

DIl model’s performance in biotic stress monitoring.
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Chapter 3

Integration of Deep Learning and Plant
Biosecurity : SWOT Analysis

This chapter comprehensively reviews significant research efforts integrating deep learn-
ing with plant biosecurity. In addition to summarizing critical advancements in the field,
it offers a detailed analysis. This analytical framework thoroughly evaluates the
inherent strengths, weaknesses, opportunities, and threats associated with [DL}driven so-
lutions, particularly in their role as facilitators or barriers to achieving robust plant biose-
curity. By exploring these aspects, the analysis delves into the internal and external factors
that shape the development and implementation of digital technology for crop protection.
It highlights the advantages that can propel progress while addressing potential challenges
that impede adoption. Ultimately, this evaluation provides a balanced perspective on how
applications could impact the future of plant biosecurity, considering both the positive

potentials and the risks involved.

3.1 SWOT Matrix- An Overview

stands for Strengths, Weaknesses, Opportunities, and Threats. A SWOT matrix
is a structured planning tool presented in Figure [3.1] to assess an area’s strengths, weak-
nesses, opportunities, and threats [61]]. This analytical technique forms the basis for eval-
uating the internal capabilities and limitations, as well as the potential opportunities and
threats stemming from the external environment. It considers all the positive and nega-
tive factors that impact the growth and scope of a particular field. The analysis
encompasses the following scenarios: internal strengths & weaknesses and opportunities

& threats in the external environment.
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STRENGTHS 3 WEAKNESSES

In what way the area is ‘ What could be improved?
performing best?

OPPORTUNITIES

What trends offer new 3 What are the trends that may
opportunities? 1 lead to the risks?

Internal
Factors

External
Factors

Figure 3.1: Generic SWOT Matrix

3.2 SWOT Analysis for the Integration of Deep Learning
& Plant Biosecurity to Achieve Agriculture Sustain-
ability

This section provides a structured SWOT] analysis of [DI}-driven trends that can play an
essential role in achieving plant biosecurity to strengthen agriculture sustainability. The
[SWOT matrix, as illustrated in Figure [3.2] highlights the potential contributions, opportu-
nities, weaknesses, and threats toward the applicability of [DLlto ensure plant biosecurity.
It recommends the researchers for an aligned use of [DLIfor plant biosecurity. The follow-
ing subsections expound on the details of four aspects of

3.2.1 Strengths
A. Early Outbreak Warning

In recent years, the need for fast and accurate solutions for pest, disease, and weed control
has increased for better, more reliable, and precise decision-making. Early warning sys-
tems play a crucial role in plant protection, offering valuable tools that provide farmers
with timely forecasts. Due to advances in and[DIL] the identification of crop disorders
has shifted from conventional techniques to optical identification (use of digital images).
[DIL}driven solutions provide accurate and swift detection methods and hold outstanding
potential that enables timely treatment. This can significantly mitigate total crop loss

failure, reducing financial setbacks and ensuring food security [14].
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B. Improves Crop Yield and Lowers Production Costs

Traditionally, monitoring crop abnormalities relied on human experts, which was expen-
sive and time-consuming. [DI]resolves this issue and is employed to provide solutions for
automated crop abnormalities detection without expert scouting. It improves productivity
and lowers the cost incurred in traditional scouting techniques and blanket spraying of

costly chemicals on plants [17].

C. Healthier Food Quality

Crop abnormalities affect crop yield and their nutritious value. The rise in plant diseases,
pests, and weed outbreaks threatens food safety in various regions worldwide. Simultane-
ously, a global pandemic is endangering the health and well-being of millions of people on
our planet. Further, this situation is worsened by farmers’ blanket spraying of chemicals,
pesticides, herbicides, and other chemicals without precise knowledge about these abnor-
malities. This has a significant impact on consumers’, producer’s health and ecology. The
[DI}based automated solutions contribute towards maintaining nutritious food values by
timely identifying phenotypic changes in plants and suggesting the exact abnormality and
its possible solution [62].

D. Economic Benefits to Farmers, Consumers, and Country

Monitoring plants’ health and diagnosing disorders is crucial for promoting sustainable
agriculture and enhancing trade. Automated [DI}based early diagnosis solutions have
emerged as valuable tools in disease, pest and weeds monitoring, aiding in selecting ap-
propriate control techniques to improve productivity. Ultimately, this improvement bene-

fits farmers, consumers, and the overall economy of nations[63]].

E. Low Environmental Impacts

Agricultural practices and ecology are interconnected. Pests, diseases, and weeds are
often controlled with artificial chemicals, which are harmful to producers, consumers,
and ecology if not used in the correct amount. Hence to strengthen ecology, agricultural
activities need to be redesigned. The introduction of in agricultural production is
revolutionizing the farming sector. This advancement optimized inputs such as fertilizers,
pesticides, herbicides, and other chemicals in a notable 21% reduction in Greenhouse
Gas (GHG)) through the more efficient use of chemicals [64]].
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3.2.2 Weaknesses
A. High Upfront Cost

has great potential for stress monitoring in plants. However, the adoption of this tech-
nology in plant biosecurity has been relatively slow due to various factors. These include
the high initial investment, limited technical expertise, and growing data privacy concerns.
As applications tend to be computationally intensive, the requirement for substantial
processing power is one of the major weaknesses. Additionally, [DI}grounded solutions
heavily rely on large amounts of data leading to significant costs associated with data
processing. Overcoming these challenges is crucial for the widespread adoption of [DLlin
plant health monitoring. By addressing the above-mentioned issues, plant biosecurity can
fully leverage the potential of [DLIto meet the growing food demand effectively [64].

B. Low Awareness Among Farmers

Researchers are proposing automated solutions for plant abnormalities monitoring. How-
ever, low awareness among producers (farmers) about these tools and solutions is another
hurdle. Easy comprehension, understanding, low access, and operational costs of radio
broadcasts make them affordable for farmers seeking valuable insights regarding crop
health. The automated solutions are being accessed by educated farmers only; less
educated farmers are not exploiting these solutions because they need to gain basic knowl-
edge about the usage of these solutions. Additionally, low-income farmers with small land

areas have low interest in using these automated solutions [635]].

C. Slow Adoption Rate in Developing Countries

Numerous automated solutions based on have been proposed by researchers for mon-
itoring pests, diseases, and weeds that hinder crop quality and quantity. However, only
a few examples showcase positive impacts on rural livelihoods; these successes have yet
to reach the expected scale. Inadequate infrastructure and resources, unreliable internet
connections, and a need for more skilled professionals in the field are significant limita-
tions. Overcoming these barriers is crucial for promoting the widespread adoption of
in plant phenotyping. Efforts should focus on raising awareness, improving infrastructure,
expanding resources, strengthening internet connectivity, and fostering the development
of skilled professionals to maximize the potential benefits of for rural communities
[65]].
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D. Non-Availability of in-Field Dataset

As identified in Chapter [2] majority of existing [DIlbased solutions to identify pests, dis-
eases, and weeds are built using datasets captured in controlled conditions or considered
only specific crops or diseases/pests/weeds. However, any technique used in practice must
be prepared to deal with different environmental circumstances, diverse crops, pests, dis-
eases, and weeds. Further, most self-collected datasets have yet to be released to be fully
exploited for further research [[13} 18, 66].

E. Heavy Models

[DI}based solutions typically demand significant computational power and resources,
making them less suitable to deploy on lightweight devices like mobiles and the Internet
of Things (IoT). However, training these models can be exceedingly expensive due to
the data models’ complexity. Furthermore, the requirement for costly Graphics Process-
ing Unit (GPU]) adds to the overall cost for developers and users. Additionally, effi-
cient tuning of hyperparameters is necessary for optimizing the performance of these
models|[13} [18, [66]].

F. Low Generalizability of Automated Solutions

As discussed above, most existing solutions are trained on laboratory-based datasets.
Hence, their accuracy drops when these models are utilized for inference in field con-
ditions. Further, researchers considered some specific crops or specific abnormalities,
but in actual field conditions, varieties of crops and abnormalities exist. Hence a model/

solution developed for a particular crop is not generalizable to other crops[13, 18, 166].

3.2.3 Opportunities
A. Awareness Among Farmers

To fully exploit the potential of [DLI for plant biosecurity, it would be beneficial if the
government could circulate the various policies, websites, and apps for plant phenotyping
through media. Digital literacy programs should be conducted for farmers. Further, farm-
ers should also be encouraged to employ [DL -based solutions to save their crops from
pests, diseases, and weeds and make precise control decisions. Additionally, infrastruc-

ture (smartphones) should be made available to low-income farmers.
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* Early outbreak warning * High upfront cost
* Improves crop yield and lowers production cost * Low awareness among farmers
* Healthier food quality * Slow adoption rate in developing countries
* Economic benefits to farmers, consumers, and * Non-availability of in-field datasets
country * Heavy models
* Low environmental impacts * Low Generalizability of automated solutions
OPPORTUNITIES THREATS
+ Awareness among farmers * False prediction
* Crowdsourcing for data collection * Over dependency on digital systems
« Exploit lightweight and energy-efficient solutions * Response to seasonal conditions by pests, weeds
* Inclusion of multiple modalities and disease
* Collaboration between technologies * Introduction of exotic diseases, pests and weeds
* Unsupervised and Reinforcement Learning * Climate change
+ Efficient domain adaptation * Agroterrorism

Figure 3.2: SWOT Matrix for Deep Learning in Plant Biosecurity

B. Crowdsourcing for Data Collection

A significant area for improvement in this field is the unavailability of standard datasets
for . To make a model generalizable, it is required that researchers have datasets
that are collected from diverse graphical conditions with varying weather conditions, il-
lumination conditions, diversity of pests, diseases & weeds, and many more. Researchers
alone cannot collect this data; hence crowdsourcing can generate many training data of

good quality through social media or any other medium [67].

C. Exploit Lightweight and Energy-Efficient Solutions

As discussed above, heavy models cannot be deployed on embedded devices and mo-
bile phones to be further utilized by farmers as a decision-making tool. Heavy models
consume substantial energy resources that hinder the ecology facet. Considering these
weaknesses, developing lightweight and energy-efficient models opens various oppor-
tunities for [DL] models to be fully utilized for plant biosecurity to improve agriculture
sustainability [13} |18} 166].

D. Inclusion of Multiple Modalities

Multimodal learning is where models are trained to process and analyze multiple forms

of input data, such as text, images, audio, video and many others. Most existing models
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primarily focus on visual information in embodiments for plant biosecurity, neglecting
the potential insights from other modalities. However, incorporating multiple modalities
holds immense potential for enhancing the monitoring of pests, diseases, and weeds [14,
17,162,163

E. Collaboration Between Technologies:

To fully leverage the benefits of in plant biosecurity, collaboration among various
technologies is essential. While [DL] has the potential to revolutionize this field, it is still
evolving, and costs can be high. Therefore, ensuring widespread adoption will necessitate
collaboration among different technologies. Integrating approaches with can
facilitate the development of advanced intelligent solutions. Further, cloud computing can
be integrated with[DI]to handle resource-intensive models, while edge computing can be
combined with to reduce latency during inference. These are just a few examples of
potential collaborations that can be explored to enhance the effectiveness and efficiency
of plant biosecurity efforts [[14} 117,162, 63].

F. Unsupervised and Reinforcement Learning

Existing solutions for plant biosecurity are based on supervised learning. However,
the potential of unsupervised and reinforcement learning still needs to be addressed. To
overcome the barriers of requiring large amounts of annotated data and building a heavy
model for extensive labelled data exploring the solutions based on unsupervised and rein-
forcement learning is the need of the hour [14, 17,162, 163]].

G. Efficient Domain Adaptation

Domain adaptation is a field that aims to train a neural network on a source dataset
and achieve high accuracy on a target dataset that significantly differs from the source
dataset. The purpose of domain adaptation is to enable a pre-trained model to perform
optimally on new data without retraining on a different dataset. Rather than starting from
scratch with each new dataset, domain adaptation allows the adaptation of existing models
to the target dataset, thereby saving time and resources. This approach facilitates the
transfer of knowledge and learning from the source to the target dataset, enabling the
model to perform well even in significantly different data domains. By leveraging domain
adaptation, advancements can be made in strengthening plant biosecurity measures and
addressing specific challenges related to detecting and preventing pests, diseases, and
other weaknesses for plant health [[14, 17, 162, 63].
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3.2.4 Threats
A. False Prediction

A model trained on a poorly annotated dataset may lead to inaccurate predictions when
tested in natural field conditions. However, farmers may adopt control measures as per
these false predictions, which may lead to complete crop loss failure and challenges to
food security. Further, the inputs (pesticides, herbicides, fertilizers, and other chemicals)

utilized as control measures will have poor impacts on ecology and causes economic loss.

B. Over-Dependency to Digital Systems

-based solutions can be employed with the help of digital devices only, like comput-
ers & smartphones; this increases farmers’ dependency on these digital devices to make
decisions. However, these digital gadgets may lead to emissions, and the model

deployed may cause high energy requirements.

C. Response to Weather Conditions by Pests, Weeds, And Diseases

A pest, disease, or weed may respond differently in different weather and geographic
conditions. Considering all weather and geographic locations in a single dataset is almost

impossible. This may cause a prediction bias and lead to poor results [2].

D. Introduction of Exotic Pests, Diseases, and Weeds

Exotic organisms refer to organisms introduced into an area beyond their natural range
and become pests in the new environment. They are also known as alien, non-native, or
introduced organisms. The entry of such exotic organisms poses a significant threat to
plant security, as existing models may fail to recognize them, leading to wrong forecasts.
This can result in financial losses, environmental damage, food production disruptions,

and adverse effects on agriculture industries [68].

E. Climate Change

Climate change has complex and global impacts on agricultural ecosystems. This creates
favourable conditions for the proliferation of pests and diseases, particularly in temper-
ate zones. The effects of climate change have led to economically essential crop pests
becoming more destructive, posing an increasing threat to food security and the environ-
ment. With the anticipated drastic changes in climate in the future, this situation may

worsen [12]].
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F. Agroterrorism

Agroterrorism involves deliberate attacks on the food supply chain, targeting livestock
and crops during various stages, including production, harvesting, storage, or transport.
Agroterrorism poses a significant threat to achieving plant biosecurity and ultimately chal-
lenges the sustainability of agriculture. Terrorist actions to disrupt the food supply can
have far-reaching consequences on economic stability and public health. These factors
highlight the critical importance of addressing measures to counter agroterrorism to safe-
guard plant biosecurity and ensure the sustainability of agriculture [69].

3.3 Chapter Summary

In this chapter, a analysis was conducted, revealing key strengths, weaknesses,
opportunities, and threats in the application of for plant biosecurity. Based on the
findings, the author emphasize the need for researchers to leverage the strengths and op-
portunities of [DL] while addressing its weaknesses and threats through targeted solutions.
Additionally, governments are encouraged to implement digital literacy programs, pro-
vide infrastructure support for low-income farmers, and promote policies, websites, and
apps focused on plant phenotyping. Lastly, fostering collaboration between and other
digital technologies is critical to further enhancing plant biosecurity and achieving sus-

tainable agriculture.
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Chapter 4

A Novel Plant Disease Diagnosis

Framework to Overcome Data Scarcity

Plant disease monitoring is a critical research area for plant biosecurity and agriculture
sustainability. are the pre-eminent [DI -based algorithm used to automate plant
disease diagnosis that has proven decisive on various datasets in the last decade. How-
ever, a substantial part of the research lacks adequate attention to specific issues like
over-reliance on supervised learning, underestimation of hybrid models, unavailability of
labelled datasets, high annotation costs and non-conformity of the models. In response to
these limitations and to fill the research gaps, this chapter presents a novel framework for
classifying plant diseases. The proposed framework, which integrates semi-supervised
and ensemble learning, is crucial because its semi-supervised nature effectively utilizes
both labelled and unlabelled data, enabling the solutions to learn from a broader
dataset without the heavy reliance on costly labelled samples. Furthermore, by incorporat-
ing ensemble learning, the framework enhances accuracy by combining the strengths of
multiple models, thereby reducing bias and improving overall performance. Ultimately,
this method provides a scalable, cost-effective solution for plant disease classification,
offering greater adaptability and effectiveness in real-world agricultural challenges. The
proposed framework is further validated using an innovative classification model applied
to benchmark datasets such as PlantDoc and PlantVillage.

Additionally, to improve the accuracy of identifying the precise locations of plant
diseases and minimize the widespread use of indiscriminate chemical spraying, this chap-
ter implements You Only Look Once (YOLO)v5 object detection algorithm. [YOLOW5
offers real-time, high-performance detection by efficiently localizing and classifying dis-
eases within images. This targeted approach not only enhances the precision of disease

identification but also promotes sustainable agricultural practices by enabling site-specific
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interventions, thereby reducing the excessive application of pesticides and ensuring more

environmentally conscious plant protection strategies.

4.1 Introduction

The literature review has highlighted that integrating semi-supervised learning with en-
semble learning is an underexplored yet highly promising area. Despite its potential to
significantly enhance model performance, limited research has delved into this combina-
tion for plant disease identification. Hence, to fully exploit the potential of this underes-
timated approach and to address the gaps (over-reliance on supervised learning, the un-
derutilization of hybrid models, the limited availability of labelled datasets, the high costs
associated with data annotation, and the lack of conformity in existing models) identified
in Chapter 2] this work proposed a novel framework.

Further, this study has investigated two key ROk, as mentioned below, to evaluate the

effectiveness and potential of the proposed framework for plant disease classification.

* [RQJl: Does the integration of semi-supervised and ensemble learning improves the

performance for plant disease classification?

* RQR: How does the performance of the proposed framework is susceptible to the

amount of unannotated/unlabelled data?

By investigating these questions, the research aims to assess whether the combined
use of semi-supervised and ensemble learning can offer measurable improvements in ac-
curacy and reliability for plant disease diagnosis compared to traditional methods that rely
solely on labelled data. Furthermore, it seeks to understand the framework’s adaptability
to varying labelled and unlabelled data levels. It is critical for practical application in
real-world agricultural settings where labelled data is often scarce. Ultimately, this study
aspires to advance the field of plant disease diagnosis by demonstrating how leveraging

labelled and unlabelled data can optimize classification outcomes.

4.2 Dataset and Methodology

This section provides a comprehensive explanation of the dataset utilized in this study, de-
tailing its characteristics, and relevance to the task at hand. Additionally, it elaborates on

the techniques employed to achieve optimal performance in the proposed framework.
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4.2.1 Dataset Exploration

This study employed two publicly available repositories: PlantDoc [70] and PlantVil-
lage [[71]]. The PlantDoc repository was collected in natural-field conditions consisting of
2569 images across 27 classes (17 diseased and 10 healthy) in 13 crop species, whereas
PlantVillage, introduced by “Penn State University,” consists of 54,305 images for 14 crop
species, divided into 38 categories(26 diseases and 12 healthy). A significant limitation
of the PlantVillage repository is that the images were not taken in a natural environ-
ment; instead, they were collected in a laboratory setup-only plant leaf images on a plain
background. As depicted in Figure .1} PlantDoc consists of diseased plant images with
different types of surroundings, multiple leaves, fruits and varying lighting and illumina-
tion conditions. However, in PlantVillage, images are captured with clear backgrounds,
homogeneous capture, and lighting conditions. Another critical aspect of the datasets
considered is that the distribution of images in each class is highly imbalanced. To get

more insights, the PlantVillage and PlantDoc statistics are presented in Figure [.2] and

Figure [4.3] respectively.
Apple Bell Pepper Blueberry Cherry Comn Grape Potato
Black Rot Bacterial

Healthy ~ Powdery Mildew ~ Gray Spots  Black Rot  Early Blight

1
T

Figure 4.1: Sample Images from PlantVillage and PlantDoc Repositories

i

PlantVillage Dataset

PlantDoc Dataset

4.2.2 Transfer Learning

The training of the [DL] model is a resource-demanding and time-consuming operation.
Powerful computing resources and millions of training examples are required for the
model training and optimization. Tranfer Learning (TL)[72] is a widely used technique
that overcomes the isolated learning paradigm—where the models must be reconstructed
from scratch whenever the feature-space distribution changes and limited annotated data

are available. [Tl facilitates a model developed for a specific problem that is reutilized and
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Figure 4.3: Statistics of PlantDoc Dataset

applied to a different but analogous problem; here, transfer means that training is not re-
quired to be restarted from scratch for every new task. This allows researchers to develop
powerful models that can perform better with limited data, less computing power and less
time[[73]]. With encouraging results, image classification problems are being addressed
using [Tl A model can be built upon existing knowledge and use the weights & biases

learned from previously trained models to solve a new task.

4.2.3 Semi-Supervised Learning

Semi-supervised learning is a hybrid technique between supervised learning (only
labelled training data) and unsupervised learning (only unlabelled training data). This the
technique is motivated by the problem domains where unlabelled data are abundant, and

obtaining labelled data is costly and tedious. This technique enables training of an initial
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model on a limited labelled sample and then iteratively applies it to the pool of unlabelled
data. This technique exploits the knowledge in the unlabelled data to train an improved
model that could be trained with only supervised data.

Mathematically, semi-supervised learning assumes a dataset of labelled and unlabelled
examples that can be presented as Eq. .1 and [4.2], respectively. where S;, represents
labelled dataset; Sy denotes unlabelled dataset; x; represents a sample from dataset; y;
denotes the corresponding label for the sample from Sy, ; N, and Ny denotes the number

of labelled and unlabelled samples in the whole dataset, usually Ny >> Ny, .

S = {zs yi} i (4.1)

Sy = {z; N (4.2)

Semi-supervised learning integrates the knowledge from unlabelled samples to surpass
the classification performance that can be obtained either by discarding the pool of unla-
belled data and performing supervised learning or neglecting the limited labels and per-
forming unsupervised learning. Therefore, semi-supervised learning is an attractive and
promising technique to subdue challenges like over-reliance on supervised learning, un-
availability of labelled datasets, high annotation costs and non-conformity of the models

to automate plant disease monitoring with limited labelled samples.

4.2.4 Ensemble Learning

Ensemble learning is an approach that integrates the insights from various base models
(weak learners) to build a better and optimum predictive model (ensemble model). The
inspiration is that an ensemble model conquers the issue of high variance when the base
models are intuitive regarding input values, noise, and feature bias. This approach com-
bines multiple weak models to create a more robust predictive model. Each weak model
is trained on the dataset and provides its predictions. However, the final prediction is
determined by aggregating the individual models’ accuracy and resilience, leading to im-
proved overall performance. While numerous ensemble methods can be applied to any
predictive task, the most prominent techniques in ensemble learning are bagging, boost-
ing, and stacking [75]].

An ensemble model can be represented as Eq. 4.3|where E represents the ensemble learn-
ing process, which integrates multiple weak learners to improve predictive accuracy. The
term S refers to the ensemble modelling strategy, which could include bagging, boost-

ing, or stacking. These strategies are crucial as they determine how the weak learners are
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combined to form a stronger, unified model.

D is the dataset that serves as the input for individual weak learners and the overall en-
semble. The weak learners are denoted by M, where each M, refers to an individual weak
learner within the ensemble. These models, often, may perform moderately well but are
combined to achieve better results. The total number of weak learners is represented by
n, which accounts for each learner contributing to the ensemble.

The variable R stands for the results or outputs generated by the weak learners, and A
represents the analysis process, where the results from the learners are evaluated or pro-
cessed further. This analysis helps produce the ensemble model’s final prediction or out-
come. Finally, / represents the individual learning process, which combines the dataset
D, the n — th weak learner M, the results R, and the analysis A, to generate a model’s
predictions.

This equation succinctly captures the essence of ensemble learning, where multiple weak
models are trained on the same dataset, and their outputs are aggregated using a defined

strategy to produce superior results.

N
E(S,D,M,R,A) =S (Z I(D, M,, R, A)) (4.3)

n=1

4.3 Proposed Framework and Model Selection

In this section, the author proposes a novel framework to classify plant leaf diseases using
limited labelled samples and many unlabelled samples. A classifier based on this frame-
work will try to understand the features of the diseased plant images and, in more detail,
the relationship of the pixels and classify the disease into a particular class.

First, an ensemble classifier, referred as M1, is integrated into the proposed framework.
This ensemble classifier leverages four models, where each model generates a set
of predictions based on bootstrapping techniques. These individual predictions, or likeli-
hoods, are combined to produce the final classification result.

The deatiled functional flow of the proposed framework is illustrated in Figure
while the specific steps involved are outlined in the pseudo-code presented in Algorithm
In this approach, a portion of the test set is utilized as unlabelled data/images, and the
following steps are performed to achieve the final result: In step-1, The original labelled
data is split into two parts, namely training data and test data. The training data trains
the ensemble classification model M1 created using four pre-trained models. In step-2,
the test data is splitted into two parts: labelled and unlabelled. Further, the unlabelled
proportion of the data is tested on the M1 model, which predicts labels for the unlabelled
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data. The labels received in this step are named “annotated pseudo-labels.” It is important
to mention here that the authors have generated annotated pseudo-labels only once since
the single semi-supervised learning results in lower computational power requirement
and almost equivalent performance to iterative semi-supervised learning, unlike literature
[76]]. Further, in step-3) (3A), Combine “annotated pseudo-labels” obtained in Step 2 with
the original training data in Step 1, eventually increasing the count of training samples in
the training set. (3B) Train the model M1’ (here M1’ is the same ensembled model as M1,
but for the sake of readers’ understanding, it is represented as another model M1’) with
a new training set (original training set plus annotated pseudo-samples). (3C) Finally,

evaluate the model M1’ for the endure portion of the test set.

STEP 1: SUPERVISED ENSEMBLE CLASSIFICATION ! S _ o ____
| STEP 3: EVALUATE MODEL |
|

Supervised Learning

Prediction Model Trained on Original Labelled
Data and Annotated Pseudo-Labels

Ensemble of four
Predictors M1’

Prediction Model

]

1

1

1

Predictor 2 Ensemble of four 1
Predictors M1 1

1

1

1

=
=

1 Annotated Pseudo-
I Labels

Figure 4.4: Proposed Framework Workflow for Classification of Plant Disease

4.3.1 Model Selection

Different algorithms have specific purposes and have been employed to classify plant
diseases. Currently, however, no standard model/framework uses semi-supervised and
ensemble learning, a preliminary study is executed to choose four representative
models to experiment with the proposed framework in the previous section. Considering
the medium size of the disease dataset, Visual Geometry Group (VGG)-16 is selected
to represent the series. Xception [78]], inspired by the Inception model, is selected
as a candidate for its profound depth. Inception-ResNet-v2 [[79] is a candidate for the

ResNet [80] series, derived by fusion of the Inception model and the residual connection.
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Algorithm 1 Pseudo-code for the Proposed Framework
Input: Dataset D = {(z1,v1), (x2,%2), - - ., (Tn, yn)}, Ensemble model M1

Process:
1. Splitting the dataset and train model M1
L. Split D into Syai, and Sieg
II. Train M1 using Siain
2. Split test set and obtain pseudo-labels for unlabelled test samples
L. Split Sies INt0 Sy o5t and Sy _est, Where
Spest = { (i, yi) Y2y and Sy et = {xi}le
II. Test Sy On trained M 1 and get corresponding y; for each x; in Sy ey
(only
when confidence score is greater than 95%) and name this set as
Sannotated pseudo-labels
3. Retrain model M1 with increased training data and evaluate
I. Combine Strain and Sannotated pseudo-labels
II. Train M1 on the combined dataset and name this model M1’
III. Test M1’ with St _es

Output: Accuracy, Precision, Recall, F1 score values

The motivation to use residual connections is to avoid degradation problems in deep net-
works and to reduce training time. Additionally, MobileNetv2 [81]], representative of the
lightweight model in application development for mobile devices, is also selected for its
fantastic performance and a lesser number of parameters. The process of model selection

for the ensemble model is visually illustrated in Figure d.3]

4.4 Experiments

This section is dedicated to the performance metrics and experimental settings to assess

the proposed framework.

4.4.1 Evaluation Metrics

Four standard classification performance metrics are used to validate the proposed frame-
work’s performance: Accuracy, Precision, Recall and F1 score. Accuracy can be mea-
sured as the proportion of correctly predicted samples to the total no. of samples in the
dataset. The higher the value the model achieves, the better its performance. Precision

refers to the proportion of the true positives out of total positive predictions. Recall refers
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Figure 4.5: Ensemble Model using Four Weak Learners

to the count of the true positives found. FI score is the harmonic mean between precision

and recall.

4.4.2 Experimental Setup and Training Strategy

The proposed framework is trained and tested on a Windows workstation. Essential soft-
ware and hardware configuration are listed in Table 4.1} The authors used TensorFlow
with Keras to implement this work, and Python is utilized as the programming language.
Images are resized into 224 x 224, followed by a normalization pre-process step convert-
ing the pixels to a range of [0, 1]. The dataset is split into 80% for training and 20% for
testing. The test set is split in half; one is used to predict the annotated pseudo-labels, and
the other is used to evaluate the final model. The author freezes each model on the last
layer, using the initial weights provided by Keras from the Imagenet dataset. The fully
connected layer is adjusted to predict the number of classes in the dataset. Moreover, the
authors used a dropout of 0.1, an Adam optimizer with categorical cross-entropy, and a
learning rate of 0.001 for the loss function with batch sizes 32 and 50 epochs. An early
stop was made to prevent overfitting of the model, with patience equal to 10. Table 4.2]

summarizes hyperparameters and their value used to implement the proposed framework.
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Table 4.1: Summary of Software and Hardware Requirements to Implement the Proposed
Framework

Configuration Values
Graphics Processor Unit | Nvidia-smi, Tesla V100-PCIE

Operating System Windows 10
DL Framework TensorFlow 2.8.0

Compiler Spyder 5.2.1

Programming Language Python 3.8.0

Table 4.2: Summary of Hyperparameters and Their Values Used to Implement the Pro-
posed Framework

Hyperparameter Values
Optimizer Adam
Loss Function Categorical Cross-Entropy
Learning Rate 0.001
Batch Size 32
Dropout 0.1

4.5 Results

This section presents the results obtained through extensive experiments to evaluate the
proposed framework potential using benchmark datasets, namely PlantDoc and PlantVil-

lage, for plant disease classification.

4.5.1 Experiment 1: Performance Evaluation of the Proposed Frame-

work on PlantDoc and PlantVillage Datasets

To address RQJl, the proposed framework was implemented with four weak learners as
illustrated in section[4.3.T|for plant disease classification, utilizing the two aforementioned
datasets. The resulting performance metrics are summarized in Table #.3|and Table 4.4
A detailed comparison of the proposed technique with the traditional supervised tech-
nique is also presented in Figure on the PlantDoc dataset. For the presentation pur-
pose, the author refer supervised learning as S, semi-supervised learning as SS, supervised
learning integrated with ensemble learning as H/ and semi-supervised integrated with en-

semble learning as H2 hereafter. It is worth to mention here that for S and SS, the authors
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consider MobileNetv2 because it is lightweight and performs better than the other three
models considered in this work.
Further, the confusion matrix presented in Figure summarizes the detailed results

of the classification model on the PlantDoc dataset.

Table 4.3: Performance of the Proposed Framework on the PlantDoc Dataset

Class Index Plant Class A P | R | F1
0 Apple Healthy 65 70 | 78 | 74

1 Apple Rust 58 | 57|50 53

2 Apple Scab 53 50 | 33 | 40

3 Bell pepper 20 0[01| O

4 Bell pepper Spot 38 33 | 43 | 38

5 Blueberry Healthy 60 60 | 55 | 57

6 Cherry Healthy 47 50 | 40 | 44

7 Corn Gray spot 41 50 | 29 | 36

8 Corn Blight 62 | 58| 82| 68

9 Corn Rust 77 |75 82| 78

10 Grape Healthy 46 | 44 | 67 | 53

11 Grape Black rot 31 29 | 33 | 31

12 Peach Healthy 84 80 | 73 | 76

13 Potato Early blight 52 60 | 27 | 37

14 Potato Late blight 22 | 23|50 | 31

15 Raspberry Healthy 49 47 | 67 | 55

16 Soybean Healthy 45 43 | 50 | 46

17 Squash Powdery mildew | 95 | 90 | 69 | 78

18 Strawberry Healthy 70 | 71 | 56 | 63

19 Tomato Early blight 26 20 | 12 | 15
20 Tomato Healthy 52 50 | 33 | 40

21 Tomato Bacterial spot 29 25109 | 13

22 Tomato Late blight 33 27 | 27 | 27

23 Tomato Mosaic virus 20 01010

24 Tomato Yellow virus 44 43 | 43 | 43
25 Tomato Mold 20 | 222222

26 Tomato Septoria 25 35 | 57| 43
Macro Average 4776 | 45 | 44 | 43
Weighted Average 49 48 | 48 | 46

Note**: A: Accuracy; P: Precision; R: Recall; F1: FI score
Note **: Numeric values for A, P, R, and F1 are percentage values
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Table 4.4: Proposed Framework Performance on Test Data using PlantVillage

Class Index Plant Class A P R F1
0 Apple Scab 88 88 192 91
1 Apple Black Rot 86 86 92 92
2 Apple Cedar Rust 94 92 193 | 91
3 Apple Healthy 95 93 199 | 88
4 Blueberry Healthy 93 92 97| 91
5 Cherry Healthy 94 9% |98 | 91
6 Cherry Powdery mildew 93 90 |96 | 92
7 Corn Gray leaf spot 94 94 99 94
8 Corn Common rust 93 91 92 91
9 Corn Healthy 94 93 92 | 91
10 Corn Northern leaf blight 95 90 | 92 91
11 Grape Black rot 88 87 192 91
12 Grape Black measles 87 8 192 90
13 Grape Leaf blight 85 90 |92 | 91
14 Grape Healthy 95 96 84 | 93
15 Orange Huanglongbing 93 87 86 | 92
16 Peach Bacterial Spot 9 84 95 94
17 Peach Healthy 94 90 92 90
18 Bell pepper Bacterial spot 93 94 97 87
19 Bell pepper Healthy 95 92 96 86
20 Potato Early blight 96 91 92 | 84
21 Potato Healthy 92 89 | 90| 86
22 Potato Late blight 89 88 97 92
23 Raspberry Healthy 96 92 92 | 91
24 Soybean Healthy 97 93 9 | 93
25 Squash Powdery mildew 87 94 97 96
26 Strawberry Healthy 92 95 92 95
27 Strawberry Leaf scorch 93 83 85 96
28 Tomato Bacterial spot 92 9% 92| 91
29 Tomato Early blight 98 88 | 97| 86
30 Tomato Late blight 97 92 96 87
31 Tomato Leaf mold 95 94 92| 98
32 Tomato Septoria leaf spot 88 92 90 88
33 Tomato Two spotted spider mite 92 89 97 91
34 Tomato Target spot 92 87 92 96
35 Tomato Mosaic virus 94 9 |9 | 91
36 Tomato Yellow leaf curl virus 97 91 97 94
37 Tomato Healthy 84 9% 92| 92
Macro Average 92.48 | 90.24 | 93 | 91.22
Weighted Average 92 92 92 | 91

Note**: A: Accuracy; P: Precision; R: Recall; F1: FI score
Note **: Numeric values for A, P, R, and FI are percentage values
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Figure 4.6: Distribution of F1-Score on 27 Crop Species of the PlantDoc Dataset
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Figure 4.7: Confusion Matrix for the PlantDoc Dataset

14

4.5.2 Experiment 2: Comparative Analysis of Results with Different

Proportions of Unlabelled Data

To answer the RQR, and to ensure that achieved results are not just consequences of a

choice of only 10% as unlabelled data, the author further performed experiments expand-
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ing the proportion of unlabelled data. As presented in Tabled.5]an increase in the propor-
tion of unlabelled data does not degrade the performance of the proposed framework (till
the specific value). As long as we increase the proportion of unlabelled data from 10% to
30%, the classifier performance keeps improving for both datasets. This indicates that the
proposed framework can assign pseudo-labels to unannotated data correctly and is taking
benefit from the unlabelled data in an expected manner. Further, increase in unlabelled
data reduces the performance in the PlantDoc dataset; this might be because if we increase
the unlabelled samples beyond 30%, the proposed model produces wrong pseudo-labels
due to the diversity of images and morphology similarities, and consequently, perfor-
mance drops. Surprisingly, in the case of PlantVillage, the results are improving as we
increase the proportion of unlabelled data up to 50%. A valid conclusion is, the PlantVil-
lage samples are collected in controlled conditions since the background is simple, light
conditions are homogeneous, and there is comparatively low noise in PlantVillage, hence
proposed model is producing comparatively less wrong pseudo-labels for unannotated
data and does not lead to a drop in performance till 50% samples are labelled. This exper-
iment concludes that the proposed framework’s performance is susceptible to the amount
of unannotated data and the diversity of images. Background, noise, lightning conditions,
illumination conditions, and occlusion are the essential factors for the proposed approach

and play an important role while selecting the unlabelled proportion.

Table 4.5: Classification Results of the Proposed Framework Demonstrating the Impact
of Unlabelled Data Variations

Unlabelled Data (%) PlantDoc PlantVillage
A(%) | P(%) | R(%) | FI(%) | A(%) | P(%) | R(%) | F1(%)
10 47.76 45 44 43 92.48 | 90.24 93 91.22
20 49.86 | 48.75 | 50.02 | 49.38 | 93.36 | 92.25 | 93.88 | 93.06
30 50.36 | 51.22 | 50.88 | 51.05 | 9552 | 94.86 | 95.61 95.23
40 49.32 | 50.36 | 49.96 | 50.16 | 96.42 | 95.86 | 96.36 | 96.10
50 46.28 | 47.51 | 4832 | 4791 96.31 | 96.11 | 96.89 | 96.50

Note**: A: Accuracy; P: Precision; R: Recall; F1: F1 score

4.5.3 Experiment 3: Evaluation of the Proposed Framework’s Gen-
eralizability in Real-World Field Conditions

To further test the generalizability of the proposed framework in the real-world scenario,
the framework is validated on an in-field dataset, namely DiaMOS Plant dataset [82]

consisting of 3505 samples for pear leaf and fruit. The author has attained the performance
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results as tabulated in Table[4.6] A comparative analysis of the results from implementing
the proposed framework on this dataset demonstrates its generalizability across leaf and
fruit. This work performs well because the the author managed to take advantage of the

unannotated samples using semi-supervised and ensemble learning.

Table 4.6: Performance Comparison Results Evaluating the Generalizability of the Pro-
posed Framework on DiaMOS Dataset

Precision (%) | Recall (%) | F1-Score (%)
[182] 75.25 77.75 74.5
Proposed Approach 74.83 78.63 73.8

4.5.4 Experiment 4: Evaluating the Proposed Framework Against

Recent Research Findings

This section compares the proposed framework results with state-of-the-art work. As pre-
sented in Table attained results outperform the results reported by work [70] on the
PlantDoc repository. Literature [70] employed [TT]on VGG 6 and reported accuracy and
F1 score of 29.73% and 28%, respectively. This concludes that the proposed approach
outperforms state-of-the-art with an improvement in accuracy and F1 score of 18.03%
and 15%, respectively, for classification. It is important to mention here that the proposed
work might not outperform some of the work on the PlantDoc dataset because, in those
works, network training was done only for a few epochs, less than five, or they utilized
very heavy [CNNFDenseNet architecture without feature optimization techniques that re-

quire very high computational power and redundant features may cause overfitting.

Table 4.7: Comparison with Latest Work Reported in the Literature on the PlantDoc
Dataset

Reference Accuracy (%) | F1 Score (%)
(701 29.73 28
Proposed approach 47.76 43

4.5.5 Experiment 5: Evaluation of Detection Outcomes

In addition to the classification, this work seeks to accurately detect the locations of in-
fections within the PlantDoc dataset to make precise chemical spraying. Considering
the high inference speed and better performance, the YOLOWS algorithm trained on the
Microsoft Common Objects in Context (MS COCQ)) repository [83]] is employed to locate
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the disease. The[YOLO! “You Only Look Once,” splits images into a grid structure where

each grid cell is accountable for localizing objects. A detailed [YOLOWS architecture is
presented in Figure {.8]
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Figure 4.8: Yolov5 Architecture

Detection results using YOLOWN5 and comparison with existing work on the PlantDoc

are shown in Table 4.8 and Figures 4.9 & This work outperformed previous works
for precisely locating diseases in the PlantDoc dataset and achieved of 52.25%,
validation box loss of 0.027592 and validation object loss of 0.010462.

Table 4.8: Disease Detection Results in the Proposed Work

Model Pre-trained Dataset | mAP (at 50% IoU)
SSD COCO 38.3
FSSD COCO 37.6
RefineDet COCO 35.9
EfficientDet [84]] COCO 39.7
YOLOV3 [84] COCO 39.5
YOLOv4 [84] COCO 38.1
YOLOVS5 [84] COCO 41.7
Transvolution Detection Network [[84]] COCO 50.3
YOLOVYVS (Proposed Work) COoCO 52.25
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Figure 4.9: Disease Detection Results with Bounding Boxes Indicating Class Labels Us-
ing YOLOvVS
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74



Discussions

4.6 Discussions

Supervised learning (S) only employs labelled data for training, whereas semi-supervised
learning (SS) benefits from the plentiful unlabelled data and labelled data. In the case
of SS, the additional data (unlabelled data) contributes to its performance improvement.
Further, the improved results of H1 over S are explanatory; four weak learners in H1
built up a robust ensembled classifier responsible for its improvement over S. However,
H1’s performance is lower than SS because the former uses only labelled data, and in-
formation from unlabelled data is completely ignored. Additionally, one could easily
argue that the overall performance of SS is better than H2 (proposed technique), so it is
worth mentioning here that in the case of SS, only some classes get the benefit of unla-
belled data and are dominating the overall results. However, classes with high diversity
and noise cannot utilize the benefit of unlabelled samples. This motivates us to combine
semi-supervised learning with ensemble learning to overcome the bias of a single model
towards the dataset.

The confusion matrix presented in Figure 4.7|demonstrates that the framework classi-
fies apple healthy leaf, corn leaf blight, corn rust leaf, peach healthy leaf, squash powdery
mildew leaf and strawberry healthy leaf with an F1 score of more than 60%. Bell pep-
per healthy class is misclassified as bell pepper spot, peach healthy, soybean healthy and
tomato diseases. It was also noted that tomato leaf mosaic virus is misclassified as rasp-
berry healthy, squash powdery mildew and tomato yellow virus. To further explore the
reason for misclassifications, misclassified images were analysed again, through analysis
we conclude that in bell peppers, most misclassifications were due to the background sim-
ilarity, some diseased lesions in healthy leaves, morphology similarities, and interference
with another leaf. At the same time, tomato leaf mosaic virus is misclassified due to the
morphology similarities of leaves and the least number of training samples. Hence, it can
be concluded that data imbalance and diversity of images are the two influencing factors
for the proposed framework.

In the PlantVillage dataset, 28 classes achieve an F1 score above 90%, and 10 classes
report an F1 score 84% to 90%. Most of the classification in the PlantVillage dataset is
due to the morphology similarity of different diseases or leaves and, in some cases, due
to data imbalance, as discussed.

The difference in performance between PlantVillage and PlantDoc is justifiable; the
PlantVillage repository has more than 1000 images for most of the classes. Moreover, the
repository is collected in the laboratory with a plain background. In contrast, the Plant-
Doc repository exhibits natural field conditions with messy backgrounds, multiple leaves

in images, illumination and lighting conditions. In addition, the authors can argue that
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the PlantDoc repository is relatively small, which is responsible for performance differ-
ences. Finally, to answer [RQJl, we can state that, yes, integration of semi-supervised and
ensemble learning improves the performance of the classifier for disease classification.
However, small-sized datasets will benefit more from this approach. Motivated by the
results presented in section [4.5.2] [ROR can be answered that the performance of the pro-
posed framework is susceptible to the amount of unannotated data and the diversity of

images.

4.7 Chapter Summary

This chapter addresses issues like over-reliance on supervised learning, underestimation
of hybrid models, unavailability of labelled datasets, high annotation costs and non-
conformity of the models in automated plant disease diagnosis using [DIl The motiva-
tion behind this work is to use the pool of unlabelled data, reduce the costs and efforts
involved in the annotation of that data and improve classification and detection mod-
els/frameworks. A new framework has been proposed and validated to address the afore-
mentioned challenges. The results of this study indicate that the proposed framework
outperforms state-of-the-art methods by 18.03% in accuracy and 15% in F1 score. Addi-
tionally, a 13.25% improvement in detection performance was achieved using [YOLOWVS.
This research contributes to sustainable agriculture by developing models that en-
hance plant biosecurity, ensuring early and accurate disease detection. Safeguarding crops
from biotic stressors promotes higher crop productivity and quality, supporting long-term
food security. Ultimately, this work aids in meeting the demands of future generations for

reliable, sustainable food production systems.
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Chapter 5

S“AM: A Model for Sustainable Crop

Protection

Agriculture serves as the cornerstone that weaves together all the Sustainable Develop-
ment Goals (SDGs), underpinning global efforts toward sustainability. However, the
massive population explosion and ecosystem degradation have pressurized various com-
ponents of agriculture, primarily food security, plant biosecurity and crop protection. Al-
though the penetration of digital technologies brings new opportunities to modern agri-
culture, the environmental facet has been neglected. Given this, the potential of sustain-
able computing and is investigated to handle critical agricultural technology imped-
iments, lower resource expenditure, and propel sustainable agrarian developments. This
chapter analyzes the relationship between smart agriculture and sustainable computing
to balance the three pillars of sustainable agriculture practices—socio-economic—and en-
vironmental. Motivated by the analysis, this chapter presents a [DI}based lightweight,
computation-efficient, performance-optimized, and explainable crop protection model to
classify mango crop diseases. The proposed [DLImodel offers a sustainable and innovative
solution for improving plant biosecurity, enhancing agricultural yields, reducing pesticide
usage, and promoting environmental preservation through energy-efficient resource uti-
lization. To ensure its broader applicability, the model has been validated on multiple crop
types, demonstrating its effectiveness in safeguarding diverse agricultural systems while

supporting sustainable practices.

5.1 Introduction

With the emergence of digital technologies and the industrial revolution, the agriculture

era has changed from conventional to sustainable agriculture [85]. The transformation
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Figure 5.1: Agricultural Revolution Timeline

of agricultural trends and technologies is represented in Figure [5.1] The four agricul-
tural revolutions bring remarkable changes in the development of agriculture history [86]].
However, due to rapid population expansion and finite natural resources, ensuring global
food security has become vital in agriculture, demanding meticulous focus to meet the
universal requirement for effective food supply chain management [87]]. Food production
or availability is decreasing to keep up with the level of crop harvests in various regions
of the world, negatively impacting crop yields and quality. Therefore, plant biosecurity,
specifically monitoring biotic stress, is a significant area that requires the utmost attention
to save crops from various threatening parameters like diseases, weeds, pests, and many
others.

According to estimates from the “Food and Agriculture Organization of the United
Nations,” plant diseases cost about $220 [88]]. Farmers spend significant effort and money
trying to prevent plant diseases. However, symptoms of diseases are hard to perceive
through human sight. To this extent, Agriculture 3.0 has come into existence to automate
plant disease identification. Numerous innovative agricultural solutions have been de-
ployed to classify and detect plant diseases using intelligent techniques such as 0T,
cloud computing, ML DL or hybrid versions [89].

From 2016 to the present, numerous based solutions have been proposed by re-
searchers to automate plant disease diagnosis. These solutions provide a foundation for
developing automatic screening tools for plant disease monitoring. However, their signif-
icant limitations identified in the literature [9} cannot be neglected:
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* High computational power is required to train a model that eventually increases the
expenditure on hardware resources and amplifies the strain on ecology and sustain-

ability.
* The unavailability/limited availability of natural field datasets.

* The real-time application of the model is troublesome and relatively slow due to the

low inference speed or high latency.

* Heavy models cannot be deployed on end devices for in-situ usage by farmers.

Driven by the above-stated challenges, this work proposes a novel, fast, sustainable,
explainable, and improved plant disease classification model- Sustainable Smart Agricul-
ture Model (IS2AM)) that considers the hypothesized impact of the proposed Comprehen-
sive Comprehensive Sustainable Smart Agriculture Framework on enhancements in
plant disease identification performance. [S2AM]propounds a[DL}based solution that adds
two S elements in agriculture, giving it a Sustainable Smart dimension. The proposed
model is based on a technique that assimilates the [CNN] and adapted encoders from
the to optimize the model performance, computation requirements, and latency.

The term ‘Sustainable Smart’ manifests the two fundamental pillars of the framework.
Smart refers to the diffusion of digital technology in agriculture, specifically DIl Sustain-
able concerns about the ecological aspect of the framework and, more specifically, Sus-
tainable Computing refers to the introduction of resource-saving intelligent models from
the perspectives of the environment and has emerged as a new research area to address the
technological bottlenecks in smart agriculture [90]. Consequently, integrating the three
key terminologies, namely, Smart Agriculture, Sustainable Agriculture, and Sustainable
Computing, has come with the term Sustainable Smart Agriculture as represented in Fig-
ure

The designated RQk under investigation within this study are outlined as follows:

* [RQJl: Does the integration of and [ViT] effectively mitigate the inherent limi-
tations of individual architectures, yielding a lightweight and computationally effi-
cient model suitable for deployment on embedded devices for in-situ plant disease

classification?

* [RQR: Can the proposed model be effectively generalized to classify diseases in
other crops, and what challenges may arise in achieving this cross-crop generaliz-
ability?

* [RQB: How successful is the use of StyleGAN3 in producing synthetic images to

augment the diversity of the gathered dataset to classify plant diseases?
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Figure 5.2: Sustainable Smart Agriculture—A Crossway

5.2 Proposed Framework

The world’s population will reach nearly 10 billion by 2050 [88]]. Thus, there is a sub-
stantial need to produce 60% more food to feed 10 billion mouths soon without exploiting
natural resources. Hence, the transition towards an innovative and sustainable agricul-
ture system is indispensable to increase crop yields in an environmentally safe manner.
However, sustainability researchers, digital technologists, and agronomic experts have
been researching it in separate tanks. Recently, some researchers have taken their current
knowledge towards the unison of sustainable and intelligent agriculture with innovative
computing practices. But, an allied conceptual framework has yet to be proposed. Hence,
given this requirement, this research analyses the relationship between three major do-
mains: Smart Agriculture [91, [92], Sustainable Agriculture [21], and Sustainable Com-
puting [8, 193, 94]]. As a result, a Collaborative Sustainable Smart Agriculture framework
is introduced and presented in Figure [5.3] consolidating the three critical aspects of agri-
culture. To address the negative environmental impacts of agricultural digitalization, the
proposed Sustainable Smart Agriculture framework offers a favourable solution and can
be integrated into smart agriculture solutions.

With this goal in mind, a Comprehensive Sustainable Smart Agriculture Framework
(S2A), as depicted in Figure has been developed. The proposed [S?Al represents and
emphasizes the respective subdomains of the three participating entities of the Collabo-
rative Sustainable Smart Agriculture framework, Smart Agriculture, Sustainable Agricul-
ture, and Sustainable Computing.

In agriculture, a variety of abiotic (water, drought, heat stress, cold stress, soil prop-
erties, and metals) and biotic (disease, pests, and weeds) factors cause crop yield loss.

Thus, with the motive of Crop Protection (subdomain of Smart Agriculture) from biotic
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stress, specifically plant diseases, the author aspires to build a technically competent and
environmentally sustainable agricultural solution that will classify plant diseases using
Simultaneously, to balance the most neglected aspect of sustainability, i.e., the en-
vironment, the two crucial sustainable computing facets, namely Software & Deployment
Optimization; to improve the proposed model’s efficiency, and Power & Energy manage-

ment; to reduce energy usage and computations involved, have been incorporated into the

[S2Al

Intelligent Irrigation
= Automated irrigation
* Irrigation Recommendations I

Climate Monitoring
* Temperature

Digital Soil Analysis I * Humidity
* Soil Texture Intelligent v :;If‘;‘;l d
+ Soil pH Irrigation s i
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= Cation Exchange Capacity (CEC)

* Organic Matter
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* Soil Temperature
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= Utility Platforms

- . ing Pruning, ding,
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= hic Information Sy (GIS)

Crop Protection
* Disease Detection
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Digital Market Intelligence I * Weeds Detection
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Figure 5.3: Collaborative Framework for Sustainable Smart Agriculture
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5.3 Dataset and Methodology

This section offers an in-depth overview of the dataset used in this study. Furthermore, it
discusses the [DI] techniques to ensure optimal performance within the proposed frame-

work.

5.3.1 Dataset Exploration

Mango (Mangifera) is deep-rooted in Indian culture and tradition. Although India is the
top mango producer and contributes 51% of the world’s total production, little research
has been conducted on this crop due to a lack of standardized datasets [95]. However, dis-
eases are among the highly problematic constraints in mango cultivation. Mango diseases
affect tree endurance, fruit quality, yield, consumer health, and trade [96]]. Consequently,
early detection is crucial to disease management, containment, and prevention. Hence,
to address the critical need for reliable and timely disease diagnosis, a dataset has been
collected to support the development of effective diagnostic models. A collective dataset
of 555 images for multiple organs of mango (leaves, stems, fruits, panicles, and flowers)
has been acquired for five categories, namely- anthracnose, powdery mildew, bacterial
black spots, nutrient deficiencies, and healthy from the multiple geographical locations of
India mainly from Uttar Pradesh, Andhra Pradesh, Maharashtra, Gujarat, and Karnataka,
and internet sources. These images were captured using smartphones, avoiding multi-
ple diseases in a single picture. Afterwards, diseases were annotated in each image by a
human expert. Figure [5.5] demonstrates the representative images from the dataset. As
the number of acquired images was inadequate for model training and data was highly
imbalanced, more images were generated using StyleGAN3 [97]. The collective (raw &

augmented data) mango disease dataset’s statistics have been enumerated in Table [5.1]

Anthracnose Bacterial Black Spots Powdery Mildew Nutritional Deficiency Healthy

Figure 5.5: Sample Images from Mango Disease Dataset
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Table 5.1: Description of the Dataset

L No. of No. of
Scientific Name .
Class N Causing Agent Symptoms Samples | Samples
of Disease
(RD) (AD)
. Small, dark, irregularly shaped lesions;
Colletotrichum L . .
Anthracnose . Fungus fruit staining; leaf spotting; blossom 224 10000
gleosporioides i
blight and eventually rot.
Angular, water-logged lesions on
leaves; black cankerous lesions on
Bacterial Black Xanthomonas . stems that crack and release a gummy
. Bacterium . 117 10000
Spot campestris substance; irregular black spots on
fruits and fruits that drop from the
plant.
Calcium,
Manganese,
Nitrogen, .
. . white, yellow, orange, or brown
Nutritional Potassium, Iron, . . . .
. - chlorotic spots; fruit cracking, cutting 49 10000
Deficiency Phosphorus,
. of leaves, flower drop.
Magnesium,
Sulphur, Boron,
Copper, Zinc
Gray-white chalky fungal production
. Odium on leaves, a panicle stem, flowers, and
Powdery Mildew . Fungus . . . . 110 10000
Mangifera fruits; frizzle, disfigured shoots; fruit
aborted and dropped from a tree.
Green, healthy leaves, flowers, stems,
Healthy - - X . 55 10000
panicles, and fruits

Note**: RD: Raw Dataset; AD: Augmented Dataset

5.3.2 Deep Learning Methodologies used in S’ AM

This section provides an overview of prominent [DL]algorithms used in this work, namely

[CNNl and [VITL.

A: Convolutional Neural Network

[CNN]is a popular DI algorithm inspired by the visual cortex of the living creatures [98]].
It is a feed-forward neural network that processes data with a grid pattern, like images. It
is designed to learn features of an input image automatically and adaptively, from low to
high-level features. It comprises three basic building blocks: convolution layers, pooling
layers, and fully connected layers. A series of convolution and pooling operations are per-
formed for feature extraction, followed by fully connected layers that maps the extracted
activation maps (features) into the final output class. A convolutional layer is the core
building block of [CNN} a digital image is given as input to a convolutional layer in which

a small kernel performs the mathematical operation at each image position. While one
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layer feeds its output feature maps into the subsequent layer, extracted feature maps can
hierarchically and progressively become more and more complex. The process of opti-
mizing the hyperparameters such as kernels is called model training. A [CNN model is
recursively trained using backpropagation to minimize the difference between the actual
and predicted output. The architecture used for classification is presented in Figure
5.0

Flatten Fully connected

Convolution Pooling Convolution Pooling _ j.

= ‘ =5 % ‘\1\"- 'E Anthracnose
| s e — N,
T me— Se— N,

JHL % g\.g Powdery Mildew
I s s -] . X
; % ! ’ ’———0'07 Healthy
Input \j ‘ o

Feature Extraction

Classification

Figure 5.6: Convolutional Neural Network Architecture: CNN Comprises an Input
Layer, a Stack of Alternating Convolutions and -Pooling Layers, a Fully-Connected
Layer, and One Classification Layer

B: Vision Transformer

The Transformer model was introduced in the “Attention is all you need” study [99],
incorporating an embedding layer, an encoder, and a decoder. Motivated by the achieve-
ments of transformers in [NLP| problems, [100] was introduced. The essential com-
ponents of ViT include linear projection, positional embeddings, and encoder. The net-
work architecture of the original is presented in Figure where an input image is
initially partitioned into small patches; these small patches are then fed into a trainable
linear projection layer. The role of the embedding layer in a transformer is played by
this linear projection layer that outputs fixed-sized vectors for the patches. Further, po-
sitional information for each patch is added to these vectors; the positional information
is employed to keep the positional details of patches in context to the initial input image.
Afterwards, the output obtained is fed to transformer encoder blocks. The fundamental
building blocks of the transformer encoder comprise Multi-Head Self-Attention (MHSA)
and Multi-Layer Perceptrons (MLP); both have a normalization layer in front of them and
a residual connection at the end. The organization of and [MLP is shown in the
transformer encoder block. expands self-attention, wherein numerous attention
operations called “heads” are performed parallelly. The layer concatenates the
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Transformer Encoder
— Multi-head self attention

m (MHSA/ MHA)
- Self attention

( D

MatMul

Self Attention

, [ [NORM ]
TL.nearuJTT.mme i
— \é 5 @ 5

|

Split Into Patches

Linear projection of flatten patches

Input Image

Figure 5.7: Vision Transformer Architecture: An image is split into fixed-size patches,
and then patches are embedded to linear projection to output fixed-size vectors. After-
wards, positional embeddings are added to the output received from the previous layer
and feed the resulting sequence of vectors to a standard transformer encoder to perform
classification

output of these parallel operations linearly to produce the final attention score; Eqgs. [5.1]
[5.2] and [5.3] represents the mechanism for MHSAl Initially, a linear transformation is
applied to the input matrices (), K, and V/, and then attention is performed as given in eq.

[5.1)and eq. [5.2]

KT
Attention(Q, K, V') = Softmax (\Q/M + b) Vv (5.1)

Wherein trainable weight matrices:

Wz'Q e R4 WK e R Y g R

W,y € R>de g, = d, = %

h; = Attention(QWZ, KWK vivY) (5.2)

The multi-head attention derives h distinct depiction of (), K, and V, calculates self-

attention for each depiction, and concatenates them. This can be expressed in eq. [5.3|
MultiHead(Q, K, V') = Concat[hy, ha, ..., h,|Wj (5.3)
IMHS Al gives the transformer encoder great power to encode multiple relationships and
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nuances for each patch. The output of the MHSA| block in can be computed using
eq. 5.4} In the encoder block, is applied after the MHSAI layer. comprises
artificial neural network layers along with a Gaussian error linear unit (GELU) activation

function.

MHSApyput = MHSA(NORM (z)) + x (5.4)

x 1s the input fed into the transformer encoder block; NORM is the normalization
layer, and M H S A is multi-head self-attention and MHSA gy is the output of

The final output of the transformer encoder block can be computed using eq. [5.5]

TfEHCOutput — MLP(NORM (MHSAOUtpUt) ) + MHSAOutput (5 5)

Wherein M LP is the multilayer perceptron block and TfEncoypy is the output of the

transformer encoder block.

5.4 Proposed Model

In recent years,[CNN|emerged as a breakthrough in image processing. It surpasses human
experts in various tasks. Since 2016, numerous applications have been proposed for
automatic plant disease identification using Recently, [ViT has attracted significant
attention and emerged as a competitive alternative to [CNN};, however, it must be more ma-
turely exploited for plant pathology applications. The complementary characteristics of
and [VITI [101]] encourage us to build a hybrid model for plant disease identification.
In this work, the author has combined the two architectures mentioned above [CNN]|
and consequently, an improved and explainable plant disease classification model
has been proposed. MobileNetv2 [81]] and EfficientNetv2 [102] motivated us to
address the shortcomings of [ViT] (high inference time, a large number of parameters, and
a heavy model) by replacing traditional encoders in with adapted Fused-MBConv.
The block-wise architecture of is delineated in Figure expects a
color input image of size 224x224x3. The convolutional stem unsheathes the local fea-
tures in an image, and extracted feature maps are then fed to the stack of adapted Fused-
MBConv to fetch global features. Embeddings enrich the representation of features before
we reduce their spatial resolution. Finally, the classification task was performed by MLPL

The output equation can be derived as eq.

Y = H Adapted Fused-MBConv(PatchEmbedding(z)) (5.6)

=1
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STEM Conv
Fused- MBCony

?

Pooling

Figure 5.8: Block-wise architecture of proposed S’ AM: An image is fed as an input
to the convolutional stem, output from the convolution stem is fed to a stack of adapted
Fused-MBConv for rich feature extraction. Finally, classification is performed by the
MLP

where z is the input image batch, Y is the desired output, and m is the count of adapted
Fused-MBConv.

The following sub-sections illustrate the critical components of the model.

5.4.1 Convolutional Block

Numerous studies have proven the complementarity between and [VIT] [103].
possess inherent inductive bias; therefore, a convolutional stem was prefixed to adapt[ViT]
blocks for enhanced feature extraction. The convolutional stem comprised three standard
convolution layers, each with a convolutional kernel size of 3x3, a stride of 2, and padding
of 1. The number of kernels in each convolution layer was 24. The initial two convolu-
tions were followed by batch normalization and Rectified linear unit (Re[LU) activation

operations to facilitate easy and fast training.

5.4.2 Adapted Fused-MBConv

For lightweight and easier deployment on end devices for real-time usage, the Fused-
MBConv block was adopted from MobileNetv2. entailed two adapted versions of
the Fused-MBConv, code-named Pooling Fused-MBConv and Fused-MBConv,
as illustrated in Figure @ Furthermore, one MBConv was deficient in extracting dense
features; hence, a stack of adapted Fused-MBConv was employed. Three Pooling Fused-
MBConv were introduced after the convolution stems to extract dense features and a

residual connection was provided to minimize the loss of information. [MHSAI in the
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Fused-MBConv block was introduced to inherit the property. The primary purpose
of the was to embed attentive features globally across the overall image and help
the model learn spatial features. Furthermore, the attention blocks were only beneficial
after extracting dense features; thus, two Fused-MBConv were applied after [CNN]
blocks only. Multiple patch embeddings were adopted to extract the deep spatial features

from the input image and enhance performance.

o

I Fused Fused

MBCONWV MBCONV
Conv 1*1
Y A

ry

Conv 3%3 | Pooling I MHSA

Fy Y

a. Fused-MBConv b. Pooling FusedMBConv c. MHSA FusedMBConv

Figure 5.9: (a) Original Fused-MBConv; (b) Pooling Fused-MBConv; and (c) MHSA
Fused-MBConv

5.4.3 MLP Head

[MLPlis a multi-layered linear block that contains non-linearity to fix the overfitting prob-
lem. To ensure the lightweight of fully connected layers were replaced with a 1x1
convolution layer. Ultimately, the network’s output was normalized using the softmax

activation function to a probability distribution across the anticipated output class.

5.5 Experiments

This section highlights the various performance measures used to evaluate the efficacy of
the proposed model. Further, the experimental settings and the training strategy are also

specified to ensure the reproducibility of the results.

5.5.1 Evaluation Metrics

Seven performance metrics have been used to validate the classifiers’ performance, in-

cluding accuracy, precision, recall, F1-score, FLOPs, number of trainable parameters, and
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inference latency. Accuracy is quantified as the ratio of correctly predicted samples to the
total number of samples within the dataset. A higher value attained by the classifier indi-
cates superior performance. Precision refers to the proportion of the true positives out of
total positive predictions. Recall signifies the count of the true positives found. F1-score

is the harmonic mean between precision and recall. The mathematical representation of

these metrics is presented in egs. and

TP+ TN
A = 5.7
Y = TP FP+ TN+ FN -7)
TP
Precision = ———— 5.8
recision TP+ FP (5.8)
TP

Recall = ——— 5.

AT TPTFEN (5-9)

F1 Score — 2. (Precision - Recall)

5.10
Precision + Recall ( )

Where TP, T'N, FP and F'N are the counts of true positive, true negative, false posi-
tive, and false negative, respectively. The number of trainable parameters expresses the
model’s size. The lesser the parameters count, the more lightweight the model is, and
it will need less hardware to run. FLOPs imply the number of floating-point operations
executed for a single forward pass. The fewer the FLOPs, the shorter the execution time
and computation power the model requires. Latency is an essential metric concerned with
real-time systems. It can be described as the time the model/system takes to process one

image. Less latency is desirable.

5.5.2 [Experimental Setup and Training Strategy

To pacify data insufficiency and improve [SZAMFs performance, StyleGAN3T, a variation
of StyleGAN3, was used to generate synthetic data. The original images were resized to
512x512 to generate high-resolution images. For StyleGAN3T training, authors used two
Nvidia V100 with gamma ten and a total iteration of 5K. Ten thousand images for
each class with 0 to 10000 seeds were generated. The output images had a resolution of
512x512. “the PyTorch deep learning framework™ was utilized to train the model. Nvidia
CUDA accelerated platform, PyTorch 1.11 with CUDA 11.3, and cuDNN version 8.2
were adopted to expedite the training process. The dataset underwent division, with 80%
allocated for training and 20% for testing purposes. The optimizer employed was ADAM,

configured with a weight decay of 1 x 10™* and a maximum learning rate of 3 x 1075,
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This weight decay was explicitly applied to all layers except the bias and Norm layers.
The epsilon value for ADAM was set to 1 x 107, A warm-up phase encompassing 10%
of the total training steps was integrated, during which the learning rate progressively
increased linearly. Subsequently, post-warm-up, the learning rate gradually decreased
with a minimal slope. Each classifier was trained with a batch size of 64 and for a total
of 100 epochs. The training was implemented using two Nvidia Tesla V100 GPUs, each
equipped with 32GB memory and utilizing FP16.

5.6 Results

This section presents the results of the comprehensive experiments conducted to evalu-
ate the proposed model. Key performance metrics have been used to assess the classi-
fiers’ effectiveness, including accuracy, precision, recall, F1-score, [FLOPS, the number of
trainable parameters, and inference latency. It is important to mention here that for the
visualization of tensor board plots, a technical name- AttentionEfficientNet, is given to
the proposed model and used in place of [SZAM]

5.6.1 Experiment 1: Comparative Performance Analysis of S’AM
and State-of-the-Art Models

The comparative performance of six classifiers, namely, AlexNet [104], VGG6 [77],
ResNet50 [80], Inceptionv3 [105], MobileNetv2 and (AttentionEfficientNet) is

showcased in Figures [5.10] [5.11] [5.12] [5.13] [5.14] and [5.15] respectively. Furthermore,

Table presents that the proposed model achieved impressive metrics with accuracy,

precision, recall, and F1 score reaching 99.4%, 99.4%, 99.5%, and 99.6% respectively,
surpassing other state-of-the-art models. Additionally, to assess the impact of data aug-
mentation, an ablation study is conducted in which is trained and tested solely on
the raw dataset. The results of the ablation study are also presented in Table (with
entries for augmented and raw datasets highlighted in green and red, respectively). Fur-

thermore, the impact of each class on the overall performance across all six classifiers is

presented in Tables 5.5/ /5.6 and while detailed insights can be gleaned

by examining confusion matrices depicted in Figures [5.16] [5.17] [5.18] [5.19] [5.20| and
.21
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Figure 5.10: Analysis of Loss Metrics for Test Data Across Models
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Figure 5.11: Analysis of Loss Metrics for Test Data Across Models
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Figure 5.12: Accuracy Comparison of Various Classifiers Applied in This Study
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Figure 5.15: Fl1-score Comparison of Various Classifiers Applied in This Study

Table 5.2: Comparison Indicators with State-of-the-art Models

Model Type (With AD*
vs RD##)

Accuracy (%)

Precision (%)

Recall (%)

F1-Score (%)

AlexNet

ResNet50

VGG16

MobileNetV2

InceptionV3

S2AM

86.12

83.53

87.83

85.42

*AD - Augmented Data (Highlighted in Green Colour)

**RD - Raw Data (Highlighted in red Colour)

Table 5.3: Classwisw Performance for AlexNet Model

Metric Anth (%) | BBS (%) | Healthy (%) | ND (%) | PM (%)
Accuracy 91.80 77.02 75.83 80.39 92.62

Recl
Fiseor

Note**:Anth: Anthracnose; BBS: Bacterial black spots; PM: Powdery Mildew; ND: Nutritional Deficiency
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Table 5.4: Classwise Performance for ResNet50 Model

Metric Anth (%) | BBS (%) | Healthy (%) | ND (%) | PM (%)
Accuracy 78.68 71.17 71.66 64.70 86.63

Note**:Anth: Anthracnose; BBS: Bacterial black spots; PM: Powdery Mildew; ND: Nutritional Deficiency

Table 5.5: Classwise Performance for VGG16 Model

Metric Anth (%) | BBS (%) | Healthy (%) | ND (%) | PM (%)
Accuracy 87.35 83.40 87.39 72.27 88.53
Reca

Note**:Anth: Anthracnose; BBS: Bacterial black spots; PM: Powdery Mildew; ND: Nutritional Deficiency

Table 5.6: Classwise Performance for InceptionV3 Model

Metric Anth (%) | BBS (%) | Healthy (%) | ND (%) | PM (%)
Accuracy 74.23 51.58 37.50 15.53 71.42
Recl

Note**:Anth: Anthracnose; BBS: Bacterial black spots; PM: Powdery Mildew; ND: Nutritional Deficiency
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Table 5.7: Classwise Performance for S2AM Model

Metric Anth (%) | BBS (%) | Healthy (%) | ND (%) | PM (%)
Accuracy 99.53 98.20 100.00 99.01 100.00

Note**:Anth: Anthracnose; BBS: Bacterial black spots; PM: Powdery Mildew; ND: Nutritional Deficiency

Table 5.8: Classwise Performance for MobileNetv2 Model

Metric Anth (%) | BBS (%) | Healthy (%) | ND (%) | PM (%)
Accuracy 74.52 43.04 42.50 17.47 68.80

Recal

Note**:Anth: Anthracnose; BBS: Bacterial black spots; PM: Powdery Mildew; ND: Nutritional Deficiency
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Figure 5.16: Confusion Matrix for AlexNet Model
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Figure 5.18: Confusion Matrix for ResNet50 Model
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Figure 5.20: Confusion Matrix for Inceptionv3 Model
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Figure 5.21: Confusion Matrix of S’AM

5.6.2 Experiment 2: Performance Comparison for FLOPs and Num-

ber of Parameters

A detailed comparison between and state-of-the-art models for [FLOPs and no. of
trainable parameters is listed in Table[5.9] It is evident from the table that the proposed
[SZAMlimproved the F1-score by 15%, using 6.29x fewer trainable parameters and 1.88x

fewer [FLOPsl

Table 5.9: Comparison of Number of FLOPs and Trainable Parameters for Various Mod-
els

Model Type | F1-Score (%) | FLOPs | Parameters
AlexNet 85.42 0.727B 61.1M
ResNet50 75.54 4B 25.6M
VGG16 84.40 16B 138.4M
MobileNetV2 51.66 0.3B 3.5M
InceptionV3 51.85 6B 27.2M
S’AM 99.58 8.8B 22M

5.6.3 Experiment 3: Performance Comparison for Latency

This section presents the latency comparison of the models on Central Processing Unit
(CPU)), Nvidia Tesla T4, and Nvidia Tesla A100. The latency was calculated in both the

training and inference phases. The single-batch and four-batch latency is calculated and

tabulated in Tables[5.10}[5.11][5.12] and[5.13]
The above-stated tables show that the latency of is close to MobileNetV2 with

48% better performance.
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Table 5.10: Inference Latency of Models with One Batch

Model CPU Latency (ms) | Nvidia Tesla T4 (ms) | Nvidia Tesla A100 (ms)
AlexNet 14.26 2.54 1.13
ResNet50 61.93 15.90 10.96
VGG16 176.97 9.42 5.31
MobileNetV2 18.64 11.43 7.32
InceptionV3 65.95 28.80 16.47
S’AM 32.51 9.90 3.89

Table 5.11: Inference Latency for Models with Four Batches

Model CPU Latency (ms) | Nvidia Tesla T4 (ms) | Nvidia Tesla A100 (ms)
AlexNet 45.96 2.48 1.84
ResNet50 212.95 16.17 15.52
VGG16 695.73 29.66 4.58
MobileNetV2 48.05 11.39 8.32
InceptionV3 186.62 29.33 20.43
S’AM 92.39 14.62 10.44

Table 5.12: Training Latency for Models with One Batch

Model CPU Latency (ms) | Nvidia Tesla T4 (ms) | Nvidia Tesla A100 (ms)
AlexNet 12.82 2.72 1.49
ResNet50 69.92 18.43 14.30
VGG16 145.16 9.98 5.67
MobileNetV2 26.82 15.67 11.28
InceptionV3 68.22 36.83 21.71
S’AM 42.38 16.63 12.59

Table 5.13: Training Latency for Models with Four Batches

Model CPU Latency (ms) | Nvidia Tesla T4 (ms) | Nvidia Tesla A100 (ms)
AlexNet 38.48 2.63 3.67
ResNet50 209.97 20.65 14.76
VGG16 560.51 29.48 591
MobileNetV2 67.83 17.39 11.93
InceptionV3 170.00 37.47 25.15
S’AM 117.49 17.88 13.20
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5.6.4 Experiment 4: Evaluation of S’AM Performance in Compari-

son to Prior Mango Crop Research

This section analyses [S2AMP's performance in mango crop disease classification against
existing models and architectures. As previously discussed, this study represents the ini-
tial endeavor to discern diseases affecting all conceivable plant organs. Conversely, prior
studies solely focused on leaf diseases. Moreover, this work addresses the potential for
misclassification resulting from similarities in disease symptoms attributable to pathogens
and nutritional deficiencies. The model stands out with high precision, recall, and
F1-score across multiple organs and classes, demonstrating its superior performance com-
pared with previous research on mango crop to other models in terms of various perfor-

mance metrics tabulated in Table[5.14]

5.6.5 Experiment5: Assessing the Generalizability of S>’AM on Other
Crops

To assess the applicability of the across diverse crops, the proposed model was
tested on two distinct datasets, namely the Tomato disease dataset (Datasetl) and the
Almond disease dataset (Dataset2). Datasetl was sourced from the publicly available
PlantDoc repository [70], real fields, and agriculture websites, while Dataset2 was com-
piled from online sources. Each dataset comprises 50 images within every class. Sample
images for the above-mentioned datasets are presented in Figure [5.22] It is imperative to
emphasize that the selection of these two datasets was deliberate for the following rea-
sons: (1) The PlantDoc dataset has emerged as a benchmark, explicitly addressing the
disease of interest. Further, no other datasets have adequately tackled this ailment or have
done so under uniform background conditions. (2) The inclusion of the Indian almond
crop as Dataset 2 was motivated by its morphological similarity to the mango leaves.
This choice allowed the author to explore whether disease symptoms alone are decisive
in disease classification or if other factors contribute significantly. Table[5.15|presents the
model’s performance on Dataset]l and Dataset2.

Subsequently, Dataset 2 is combined with randomly selected samples from the mango
disease dataset to create Dataset 3. Upon implementing on this combined dataset,
a discernible decline in accuracy by 5 to 6% is observed, as presented in Table
This decline in accuracy suggests that combining crops with similar morphology may
introduce variability in non-disease-related features, affecting the model’s performance.
It highlights the need for careful consideration of dataset composition when addressing

cross-crop disease classification.
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Table 5.14: Comparison of the Proposed Model with State-of-the-art Models for Mango
Disease Classification

A P R F1
Model Dataset | Nol Organ Classes (%) (%) (%) (%) NoP | FLOPs | Latency
. Anthracnose,
| ANNwith g Gall Midge,
1106] Feature . 450 Leaf . 85.45 82.5 81.5 82 - - -
Selection built Powdery mildew,
Healthy
. Customized Self- .
1107] AlexNet built 2200 Leaf Anthracnose 97.13 - - - - - -
CROLFD- Anthracnose,
fog) | OPtmized | Self ) agy | pepp | Bacterial black gy 59956 | 0503 | 9567 | - - -
Mo- built spots, Sooty
bileNetV2 mold, Healthy
Bacterial black
. AlexNet Self- spots, Healthy,
1109] Transfer . 1216 Leaf . 89 89.5 90.5 90 - - -
Learnin built Powdery mildew,
& Scab
Anthracnose, leaf
] Self- gall, Alternaria
1110} CNN Model . 1200 Leaf leaf spot, leaf 96.67 - - - - - -
built
webber, healthy
leaf burn
Customized Self- 2s to
[111] VGG16 built 46500 | Leaf 16 Pests classes 76 - - - - - 2995
[z | FrCNnet [ Sell ) gegy | peqp | Anthracnoseand | ge g gy | - - -
Segmentation built apical-necrosis
] Leaf Self- Healthy,
1131 vein-seg built 135 Leaf Powdery mildew, 95.5 - - - - - -
approach Sooty mold
- CS.UBW . Diseased or
[114] optimized Kaggle 435 Leaf healthy 91.2 0.94 - 0.92 - - -
CNN
Powdery mildew,
Anthracnose,
Dieback, Phoma
{IT5] | CNNModel | Others - Leaf | Blight, Bacterial | 98.12 | - - - - - -
Dataset
Canker, Red
Rust, Healthy,
Golmachi
Powdery mildew,
Anthracnose,
Dieback, Phoma
fﬁi Blight, Bacterial
[116] ESDNN . 2000 | Leaf Canker, Red 98.57 | 98.57 | 98.57 | 98.57 - - -
(Plain
BG) Rust, Sooty
Mold, Mango
Malformation,
Healthy
Leaf,
Stem, Anthracnose,
Attention Self- Fruit, | Powdery mildew,
ZaM] o : 50000 | Pani- | Bacterial black | 99.35 | 99.35 | 99.46 | 99.58 | 22M | 8.8B | 3.89ms
EfficientNet built
cles, spots, ND,
Flow- Healthy
ers

Table 5.15: Performance of S2AM on Tomato and Almond Disease Dataset

Dataset Accuracy (%) | F1-Score (%)
Tomato Disease Dataset (Dataset 1) 95.03 96
Almond Disease Dataset (Dataset 2) 98.7 99
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Anthracnose Bacterial Black Spots Powdery Mildew Nutritional Deficiency Healthy

Mango Disease
Dataset

Almond Disease
Dataset

Tomato Disease
Dataset

Figure 5.22: Sample Images of the Three Datasets Tested for Generalizability of the
S’AM

Table 5.16: Performance of S2AM on Combined Dataset

Dataset Accuracy (%) | F1-Score (%)
Combined Mango disease dataset & Almond disease dataset (Dataset 3) 90.3 91

5.6.6 Experiment 6: Explainability of S?2AM

Despite the contribution of classifiers in numerous [CV] tasks such as image detection
and image classification, the prevalent weakness of [DLJ] models is that the end-to-end
model remains a “black box” for users. Therefore, unpacking the intrinsic logic of
models is significant. It helps to understand the models’ behaviour better. Hence, an
understandable explanation of the model makes its predictions convincing. In this work,
the authors used the Class Activation Map (CAM)), which makes the proposed model
transparent by visualizing the image regions supreme for the predictions. Figure [5.23]
presents the weighted activation maps generated by these weighted activations
were responsible for classifying diseases into a particular category. Note that the samples
in the upper row in Figure [5.23] are the raw images, and the bottom row samples are the
positioning images exhibited by the visual technology of These plots conclude that

the proposed model only focuses on the critical diseased part.
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Figure 5.23: Class Activation Mapping: (a) Anthracnose (b) Bacterial Black Spot (c)
Nutritional Deficiency (d) Powdery Mildew. The Upper Row Represents the Input Image
While the Bottom Row Highlights the Class-Specific Discriminative Regions

5.7 Discussions

The results obtained through extensive experimentation with the SZAM] model shed light
on several critical aspects of the effectiveness and applicability of the proposed approach.
In this section, the author discusses how these findings address the posed in this
chapter.

* [RQll: Does the integration of Convolutional Neural Networks and Vision Trans-
former effectively mitigate the inherent limitations of individual architectures, yield-
ing a lightweight and computationally efficient model suitable for deployment on

embedded devices for in-situ plant disease classification?

The integration of and [VIT] within the [S?AM] model proved highly effective
in mitigating the limitations inherent in individual architectures. By combining the
strengths of both architectures, achieved superior performance in terms of
accuracy, precision, recall, and F1-score while also demonstrating faster conver-
gence during training and testing. As presented in Figure and Figure [5.11]
the [S2AM]testing and training loss converged faster than other classifiers, implying
that required significantly fewer epochs to achieve maximum performance.
Further, Figures[5.12}[5.13] [5.14]and [5.15|demonstrated that accuracy, precision, re-
call, and Fl-score converged to 97% in less than 20 epochs for [SZAM] while other

classifiers took more than 80 epochs to converge. Eventually, after 100 epochs,
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achieved outstanding performance (close to 100%). At the same time, other
state-of-the-art classifiers were not even closer to 85%, which proclaimed [SZAM] as
the best classifier among all in standard performance metrics. Further, Table
demonstrated that the model exhibited a lightweight and computationally
efficient architecture as it improved the F1-score by 15%, using 6.29x fewer train-
able parameters and 1.88 x fewer [FLOPs| making it well-suited for deployment on

embedded devices.

[RQR: Can the proposed model be effectively generalized to classify diseases in
other crops, and what challenges may arise in achieving this cross-crop generaliz-
ability?

The findings suggested that the proposed model held promise for effective
generalization to classify diseases in other crops beyond mangoes. The robust per-
formance of across multiple disease classes indicated its potential applica-
bility to diverse agricultural contexts. As delineated in Table the proposed
model demonstrated robust generalizability across two crops, namely tomato and
almond. However, a marginal decrease in accuracy was noted in the case of the
Tomato Disease Dataset (Dataset 1). This diminution could be attributed to the
dataset’s inherently cluttered environment, exacerbated by the distinct morphol-
ogy of tomato leaves, which significantly differed from the mango disease dataset.
Noteworthy was the observation that in the Almond Disease Dataset (Dataset 2),
the morphology and vein patterns of leaves closely resembled those in the train-
ing dataset. Consequently, this dataset exhibited higher accuracy than Dataset 1,
approaching results comparable to the mango disease dataset. Further results pre-
sented in Table represented a discernible decline in accuracy by 5% to 6% on
the Combined Mango disease dataset & Almond disease dataset (Dataset 3).

To delve deeper into the causes of misclassifications and the ensuing accuracy drop,
a meticulous analysis of misclassified images was undertaken. It was deduced that
most misclassifications arose from background similarity, morphological similar-
ities of leaves, and interference with adjacent leaves. Hence, to answer [RQp, it
could be deduced that the proposed held promise for effective generalization
to classify diseases in other crops beyond mangoes. However, challenges might
have arisen in achieving cross-crop generalizability due to variations in disease
manifestations, the morphology of leaves, vein patterns, image quality, and envi-
ronmental conditions among different crops. Further research and validation across

a broader range of crop types were warranted to assess the model’s generalizability
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comprehensively and to address any potential challenges that might have arisen.

* [RQB: How successful is the use of StyleGAN3 in producing synthetic images to
augment the diversity of the gathered dataset for the classification of plant diseases?

Using StyleGAN3 for generating the synthetic images proved successful in aug-
menting the diversity and variety of the dataset for plant disease classification.
The augmented dataset facilitated improved model training by providing a more
comprehensive representation of disease manifestations and variations. As demon-
strated in Table trained on the augmented dataset achieved superior per-
formance compared to models trained solely on the raw dataset. Whereas, training
the on the raw dataset resulted in a drop in accuracy, precision, recall, and
F1-score by 18.59%, 14.54%, 20.44%, and 18.39%, respectively. This highlighted
the importance of data augmentation techniques, such as StyleGAN3, in enhancing

the robustness and effectiveness of [DLI models for plant disease classification.

In summary, the results obtained with the provided valuable insights into
the efficacy and applicability of the proposed approach. By addressing the research
questions posed in this study, the authors’ findings contributed to advancing the
field of agricultural digitalization and plant disease monitoring through innovative
techniques. The proposed work encompassed all pertinent metrics deemed ap-
propriate for a lightweight, resource-efficient, and performance-optimized model.
This study underscored that the proposed approach stood as the pioneering effort
in developing a transformer-based model for mango disease classification across

multiple organs while achieving an inference speed akin to MobileNetv?2.

5.8 Chapter Summary

Smart agriculture rests on improving farm productivity using digital technologies. The
enduring impacts of smart agricultural innovations have been gauzed concerning produc-
tivity, farm wages, employment, and trade. Nevertheless, the potential of digital tech-
nologies to realize integrated agriculture sustainability goals will only be fruitful if the
power of digitalization is exploited considering all three aspects of sustainability- eco-
nomic, environmental, and social. Considering the negative impacts of digitalization on
the environment, incorporating sustainability in smart agriculture is the need of the hour.
In this view, this chapter proposed a [SA| to shape a sustainable and smart agriculture

model for crop protection using intelligent learning. The efficacy of the proposed frame-
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work was demonstrated through a lightweight and resource-optimized proposed
for plant disease classification. The proposed model was validated with real-time im-
ages collected from the farms and analysed to predict the disease in multiple organs of
the mango plant. A comparative analysis of the classifiers was presented, and the pro-
posed model outperformed state-of-the-art models. Additionally, the model demonstrated
strong generalizability across different crops. This capability underscores its potential for
broader applications in cross-crop disease detection. The ability to adapt to diverse plant
species enhances its practical value in agricultural diagnostics. This work will benefit
sustainable crop cultivation by improving crop yields, productivity, and quality for future

generations.
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Chapter 6

Effective Weed Detection to Enhance
Cotton Yield in India

Weed infestation presents a formidable obstacle to cotton farming, resulting in diminished
yields and escalated operational expenditures. Recent advancements in [DL] algorithms
have facilitated the automation of weed identification, providing farmers with valuable
insights for judicious herbicide utilization. Despite these substantial strides, developing
a robust weed detection solution tailored to Indian cotton farms remains an unaddressed
challenge. In light of this, this chapter explored various algorithms to develop a robust
weed detection model tailored for effective weed monitoring in Indian cotton fields. The
most optimal model was identified and presented as the preferred solution for enhancing

weed control strategies through comprehensive experimentation and analysis.

6.1 Introduction

Agriculture is central to human civilization and is the foundation of modern society. It
is vital for food production, employment, economic growth, and sustainability [1]. As
the most prominent industry on a global scale, it is the source of employment for over
1.3 billion people worldwide. In India, agriculture accounts for about 15% of Gross do-
mestic product (GDP). It is a significant source of employment, with over 400 million
people working in the agricultural sector. Agriculture also contributes billions of dollars
to the Indian economy through exports. However, weeds are a major problem in Indian
agriculture, causing significant yield losses, poor product quality, and loss of economy
[117)]. According to an estimate by the National Research Council of India (NRCWS)),
weeds cause annual losses of up to rupees 1050 billion ($14 billion) in India. Cotton crops

take up about 2.5% of all arable land on earth, and the world’s second-largest producer
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country is India, following China. India constitutes approximately 26% of the total fibre
in the fashion and textiles industry [118]. Cotton cultivation in India has helped lift 100
million people out of poverty since 1990. From 2020 to 21, India exported 6.3 billion
worth of cotton. However, India’s cotton productivity per hectare is comparatively lower
than that of other significant cotton-producing nations. Many factors, such as climate
change, pests, diseases, and weeds, affect cotton production and its growth [119]. Among
the various challenges in cotton production, weed management remains one of the most
significant yet overlooked issues. Weed infestation persists in Indian cotton fields, espe-
cially in rainfed and resource-limited regions, where it can cause yield losses of 30—-60%
if not effectively controlled. Traditional weeding practices are labor-intensive and time-
consuming, and with rising labor costs and shortages during peak farming seasons, there
is a growing need for automated weed management solutions.

Additionally, weeds can harbor pests and diseases, making effective control crucial
for protecting cotton yield. Genetically modified herbicide-resistant crops have made
herbicide use the dominant weed management strategy. However, widespread and indis-
criminate use has led to herbicide-resistant weeds, environmental harm, and rising costs,
emphasizing the need for sustainable monitoring techniques to reduce herbicide reliance.
With innovative agricultural technologies such as [AlL wireless sensors, robots, location
systems, and traditional agriculture has shifted towards sustainable practices [86].
solutions have emerged in the past decade to automate agricultural processes. al-
gorithms have enabled automatic weed diagnosis and assisted farmers in making informed
decisions regarding herbicide applications. However, despite significant advancements in
this field, a robust weed detection system is a pressing need because of unstructured field
conditions and the substantial biological variance in weeds. Furthermore, no studies have
addressed weed detection in Indian cotton farms [18]. This motivates us to analyze the
performance of [DL}based object detectors in Indian cotton farms, aiming to enhance the
quantity and quality of cotton while maintaining ecological balance to strengthen agricul-

ture sustainability. In this view, the main objectives of the research are as follows:

* To assess various [DI}based object detectors for weed detection in Indian cotton
fields

* To find the optimal model for effective weed control monitoring.

6.2 Dataset and Methodology

The present section presents a preface about the dataset and various deep learning based

object detectors employed in this work.
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6.2.1 Dataset Exploration

An open-source cotton-weed dataset [120] is employed in the study that consists of 570
images with 766 annotated bounding boxes, with an average of 1.4 bounding box per im-
age. The dataset consists of two classes, namely weeds and cotton, where 518 and 248
bounding boxes represent weeds and cotton, respectively. The images in this dataset vary
in size, with a Median Image Ratio of 617x617; all images are in Joint Photographic Ex-
perts Group (JPEG]) format collected through smartphones in varying lighting conditions

and captured from different angles. Sample Images from this dataset are represented in

Figure[6.1]

Figure 6.1: Sample Images From the Cotton-Weed Dataset

6.2.2 Overview of Object Detectors Utilized in This Study

Object detection is a fundamental task in the field of where the goal is to automat-
ically identify and locate objects within digital images or video streams. This process
involves two key components: predicting bounding boxes around objects of interest and
assigning classification labels describing each object. Bounding boxes are rectangular

coordinates that define the spatial extent of an object within an image. At the same time,
apple,”

9% ¢

classification labels indicate the type or category of the object, such as “mango,
or “orange’.

The significance of object detection lies in its ability to mimic human visual percep-
tion, allowing machines to understand and interact with visual data meaningfully. This

capability is essential for various real-world applications, including autonomous driving,
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surveillance systems, robotics, and medical imaging, where accurate identification and
localization of objects are critical.

In [DI}based object detection, there are two primary categories of detectors: single-
stage and two-stage. Single-stage detectors, such as Single Shot Detector and
are designed to predict object bounding boxes and classification labels in one pass
through the network. These models directly predict object locations and their respective
categories by dividing the input image into a grid or using anchor points to estimate object
boundaries. Each grid cell or anchor point is responsible for predicting the presence of
objects within a specific region. Because of this streamlined approach, single-stage detec-
tors are generally faster and more efficient, making them ideal for real-time applications
such as autonomous driving and video surveillance [84].

However, the simplicity of single-stage detectors comes with trade-offs. While they
are computationally efficient, the precision of their bounding boxes is often lower than that
of more complex models. Single-stage models tend to struggle with small object detection
and can be sensitive to overlapping objects in dense scenes. Despite these limitations, they
remain popular for tasks where speed is more critical than achieving the highest possible
accuracy.

Two-stage detectors, such as Faster R-CNN[121], employ a more intricate approach
to object detection. The first stage of the model generates region proposals, which are po-
tential areas where objects might be located within the image. Once these proposals are
generated, the second stage of the detector refines the bounding box predictions and clas-
sifies each proposed region to identify the object type. This two-step process allows for
more accurate predictions, especially in complex scenarios with multiple or overlapping
objects.

While two-stage detectors often outperform single-stage models in terms of accuracy,
they are typically slower due to the additional computational steps involved. Moreover,
their performance relies heavily on carefully engineered components, such as the anchor
box generation process, which determines the initial object regions, and non-maximum
suppression, which reduces overlapping bounding boxes. The dependence on these com-
ponents makes two-stage detectors more challenging to optimize for different applications
[122].

A new alternative to address the limitations of traditional object detectors, transformer-
based models [123] have emerged as a promising alternative. Unlike [SSDI and Faster
R-CNN, transformer-based detectors do not rely on handcrafted components like anchor
boxes or non-maximum suppression. Instead, they utilize attention mechanisms, which
allow the model to focus on different parts of the image and capture complex relationships

between objects and their surroundings.
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Transformers offer a more flexible and scalable solution for object detection, as they
can adapt to various input conditions without the need for manual tuning. These models
have shown great potential in achieving robust performance trade-offs, providing compet-
itive accuracy while maintaining reasonable inference speeds. As a result, transformers
are increasingly viewed as a new generic framework for object detection, capable of over-
coming the traditional bottlenecks associated with both single- and two-stage detectors.

Drawing upon recent advancements in the literature [62,63]], this study adopts a com-
prehensive approach by utilizing state-of-the-art object detectors across three key cate-
gories: one-stage, two-stage, and transformer-based models. Specifically, the one-stage
detectors used in this study include Yolov5 [[124] and RetinaNet [[125], both of which are
well-established for their balance between speed and accuracy in real-time object detec-
tion tasks.

In the two-stage detector category, Fast R-CNN [126] and Faster R-CNN were se-
lected as representative models. These detectors are widely recognized for their high
detection accuracy, leveraging region proposal methods to enhance object localization
and classification.

Additionally, the study incorporates DEtection TRansformer (DETR]) as a promising
model from the transformer-based family of detectors. [DETR]stands out for its innovative
use of attention mechanisms, offering an alternative to traditional detection frameworks
by eliminating the need for components like region proposals and non-maximum suppres-
sion. This diverse selection of detectors ensures a comprehensive evaluation of the latest

techniques across different object detection paradigms.

6.3 Experimental Setup

This section presents the performance metrics to assess the object detectors employed in
this study. Further, the experimental settings to train and validate the detectors will be

discussed.

6.3.1 Evaluation Metrics

Three standard object detection performance metrics are exploited to validate the selected
model’s performance: mAP] the number of trainable parameters/model size, and inference
speed. is calculated by averaging the precision scores at different recall levels. A
higher [mAP] score indicates better detector performance. A standard threshold for good
performance is Intersection over Union (IoU)= 0.5. The number of trainable parameters

in a neural network is the number of weights and biases the network learns during training.
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The number of parameters can be a good indicator of the complexity of the network and
the amount of data it will need to be trained on. Inference speed is the time for a

model to predict a new piece of data.

6.3.2 Experimental Setup and Training Strategy

The dataset was split into a 70:15:15 ratio for training, validation, and testing, respec-
tively. The model was trained on the training set, validated using the validation set, and
its final performance was evaluated on the testing set. The training used transfer learn-
ing, where detectors were pre-trained on the dataset. Trained is performed for
300 epochs with a batch size 16, and early stopping was used to prevent overfitting. The
other hyperparameters were set to the default values in the official implementations. The
ImageDataGenerator tool under the Keras framework is realized for real-time data ampli-
fication. This study employs traditional augmentation techniques like a blur, brightness
contrast, crop, gauss noise, horizontal flip, hue saturation, random rotation, random scale,
random translate, random shear, colour jitter, random erasing, and cutout to increase the

size of the training set to 543 images.

6.4 Results and Discussions

The performance of five [DL}based detectors were investigated for weed detection in In-
dian cotton farms. [YOLOWV5 outperformed other detectors significantly, showcasing its
potential to revolutionize weed management practices in Indian cotton farming. The mAPI
of the[YOLOW5 model surpassed the RetinaNet, Fast Region-based Convolutional Neural
Network (R-CNN)), Faster R-CNN| and by a margin of 8% to 20%, highlighting
the superiority of YOLON5 for weed detection in complex agricultural scenarios. Table
and Table[6.2] present the results exhibited by [YOLOWS5 on the original and augmented
datasets, respectively. Additionally, Figure presents the performance of on
training and validation sets.

As tabulated in Table[6.1} YOLOWS5 initially achieved amAP of 40.3% on the original
cotton weed dataset. To enhance the model’s performance and mitigate the risk of over-
fitting, the dataset underwent augmentation. The results, detailed in Table @ reveal a
significant improvement, with the [mAP|increasing by 8% on the augmented dataset. Ad-
ditionally, the visualization results generated by YOLOW5 on this enhanced cotton weed
dataset are illustrated in Figure[6.3]
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Figure 6.2: Performance of YOLOVS5 on Training and Validation Sets

Table 6.1: YOLOVS Results on the Raw Dataset

Precision(%) | Recall | mAP@0.5 | mAP@0.5:0.95
All 0.474 0.441 0.403 0.198
Cotton 0.292 0.560 0.469 0.283
Weeds 0.655 0.321 0.337 0.113
Table 6.2: YOLOVS Results on the Augmented Dataset
Precision | Recall | mAP@0.5 | mAP@0.5:0.95
All 0.609 0.479 0.483 0.271
Cotton 0.535 0.600 0.547 0.340
Weeds 0.684 0.357 0.419 0.203

**No. of Parameters: 7,249,215
**GFLOPs: 16.7

**Inference Time: 2.77 seconds/image
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Figure 6.3: YOLOVS Visualization Outcomes on the Augmented Cotton Weed Dataset

6.5 Chapter Summary

Automatic weed detection using represents a significant advancement in smart agri-
culture. This research has investigated the feasibility of five popular object detectors,
RetinaNet, YOLOW5, Fast RCNN, Faster RCNN, and [DETR] to accurately locate weeds
in cotton farms, addressing a critical challenge that cotton farmers face in India. The
empirical results of this study underscore the potential of YOLOWS5 to revolutionize tra-
ditional weed identification practices. The empirical findings underscore the model’s ef-
fectiveness, as it attains precision, recall, and mAP scores of 60.9%, 47.9%, and 48.3%,
respectively. These results are reasonable considering the complexity of the problem, as
weeds can often resemble cotton plants, making accurate identification challenging. The
model’s ability to effectively identify and classify weeds among cotton crops not only aids
in optimizing crop yield but also significantly reduces reliance on harmful herbicides, con-
tributing to more sustainable and environmentally friendly agricultural practices. Further-
more, the YOLOW5 architecture offers considerable potential for future experimentation
and fine-tuning, which could lead to even better detection results and enhanced accuracy

in weed management.
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Conclusion, Future Scope and Social

Impact

Plant biosecurity holds immense significance for every nation as it plays a crucial role
in protecting crops, ensuring food security, and safeguarding ecology and the livelihoods
of individuals. In this regard, plant biosecurity constitutes a vital component of sustain-
able agriculture progress. Digitalization is the new go-to strategy to address agriculture’s
productivity, sustainability, and resilience challenges. In recent years, has been ap-
plied in every agricultural practice. Researchers from multidisciplinary areas strive to use
these technologies and propose novel solutions to expedite the in-field workflow. How-
ever, they struggle to put their solutions into production, deliver tangible results, and ob-
tain favourable outcomes with limited in-field datasets. In this view, this thesis presents
groundbreaking research by integrating with plant biosecurity, aligning with the goals
of the Digital Agriculture Mission.

By leveraging the advanced capabilities of [DL] the research addresses critical chal-
lenges in monitoring and safeguarding plant health. This integration enhances the classi-
fication and detection of plant diseases, pests and weeds, contributing to more effective
biosecurity measures. The findings push the boundaries of plant protection strategies and
set the foundation for future innovations in sustainable agriculture, supporting the Dig-
ital Agriculture Mission’s vision of modernizing agriculture through technology-driven
solutions.

The key contributions of this thesis, which delve into the innovative intersections be-
tween and plant biosecurity, are presented in the following section. These contribu-
tions reflect a significant leap forward in harnessing [DL] within the agricultural domain by

addressing complex challenges related to plant biotic stress identification.
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7.1 Research Contributions and Social Impact

7.1.1 Research Contribution 1: Biotic Stress Monitoring in Plants Us-

ing Deep Learning: A Systematic Literature Review

The thesis began with an introductory overview highlighting the importance of biotic
stress monitoring and the growing interest in utilizing techniques to improve classifi-
cation accuracy. Further, it conducts a to identify the advancements in the domain
while critically evaluating the trends and challenges in biotic stress monitoring. The re-
view identifies critical research gaps that have hindered progress in applying to plant
biosecurity. The crucial issues include the limited availability of high-quality datasets, an
over-reliance on supervised learning techniques, the high costs associated with data la-
belling, and the general lack of focus on computational efficiency metrics. Additionally,
the review points to the poor generalizability of existing models and significant regional
disparities in research output. By identifying these gaps, this research paves the way for
targeted solutions that can enhance[DL]applications in agriculture, ultimately contributing

to more effective and sustainable plant biosecurity practices.

7.1.2 Research Contribution 2: Integration of Deep Learning and
Plant Biosecurity Toward Sustainable Agriculture: A SWOT
Analysis

This work thoroughly explores the integration of within the domain of plant biose-
curity. Beyond summarizing significant research advancements, it conducts a detailed
analysis to assess the feasibility and impact of DL}driven solutions on sustainable
agriculture. The analysis offers a balanced evaluation of this technology’s inter-
nal strengths and weaknesses, such as its ability to enhance early disease detection and
improve classification accuracy, alongside external opportunities and threats, including
scalability challenges and potential barriers to widespread adoption.

By examining both the facilitators and obstacles to the successful implementation of
in plant biosecurity, this contribution sheds light on how these innovations can shape
the future of agricultural practices. It highlights key areas where [DLIholds transformative
potential while also addressing the critical risks and challenges that must be managed to

achieve sustainable, resilient agricultural systems.
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7.1.3 Research Contribution 3: A Novel Plant Disease Diagnosis Frame-

work by Integrating Semi-supervised and Ensemble Learning

In this research, the author addresses the specific challenges identified in research contribution-
1 while leveraging the opportunities outlined in research contribution-2. The work tackles
critical issues such as the over-reliance on supervised learning, the underutilization of hy-
brid models, the scarcity of labelled datasets, the high costs associated with data annota-
tion, and the lack of model standardization in automated plant disease. Building upon the
identified opportunities—such as developing hybrid models, utilizing unlabelled data, re-
ducing annotation costs and efforts, and improving classification and detection solutions
—this research proposes a novel framework for classifying plant diseases.

The proposed framework integrates semi-supervised learning and ensemble learn-
ing to overcome these challenges. The semi-supervised approach effectively harnesses
labelled and unlabelled data, enabling solutions to learn from a broader dataset with-
out heavily relying on costly labelled samples. By incorporating ensemble learning, the
framework further enhances classification accuracy by combining the strengths of mul-
tiple models, thereby reducing bias and improving overall performance. This scalable
and cost-effective solution offers greater adaptability and effectiveness in addressing real-
world agricultural challenges. The framework is rigorously validated using benchmark
datasets such as PlantDoc and PlantVillage, demonstrating its practical applicability and
robustness. Additionally, this research utilizes the YOLOWS5 object detection algorithm
for real-time, accurate localization of plant diseases, enabling targeted interventions and
reducing excessive harmful chemical usage.

From a social impact perspective, this research holds significant potential to revolu-
tionize agricultural practices. Providing more accessible and affordable disease diagnosis
tools can empower small-scale and resource-limited farmers to protect their crops more
effectively. This, in turn, contributes to food security, reduces economic losses from crop
failures, and supports sustainable farming practices, ultimately benefiting communities

and the agricultural industry at large.

7.1.4 Research Contribution 4: S>’AM: A Sustainable Smart Agricul-

ture Model for Crop Protection Based on Deep Learning
In this work, the author addresses the specific challenges identified in research contribution-
1, while capitalizing on the opportunities outlined in research contribution-2. As digital

technologies penetrates the modern agriculture, they present several new opportunities,

but the environmental aspect has often been overlooked. To address this gap, the potential
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of sustainable computing and deep learning is explored to overcome critical technolog-
ical barriers in agriculture, reduce resource consumption, and drive sustainable agricul-
tural development. This research examines the relationship between smart agriculture
and sustainable computing, focusing on balancing the three pillars of sustainable agricul-
ture—social, economic, and environmental.

Building on this analysis, this research proposed a[DL}based, lightweight, computation-
efficient, performance-optimized, and explainable crop protection model, designed
to classify diseases in mango crops. The proposed model provides an innovative and
sustainable solution by improving plant biosecurity, increasing agricultural yields, reduc-
ing reliance on poisonous chemicals, and promoting environmental conservation through
energy-efficient resource use. To ensure its widespread applicability, the model has been
validated on multiple crop types, proving its effectiveness in protecting diverse agricul-
tural systems and advancing sustainable farming practices.

From a social impact perspective, this research empowers farmers by providing ac-
cessible and efficient tools for disease monitoring, leading to improved crop health and
yields. Furthermore, it contributes to environmental preservation by minimizing chem-
ical use and promoting energy-efficient agricultural technologies. Moreover, it supports
socio-economic growth by reducing resource wastage, ensuring long-term sustainability

for both farming communities and ecosystems.

7.1.5 Research Contribution 5: Weed Detection in Indian Cotton Farms

Using Deep Learning

This research addresses the critical challenge of weed infestation in cotton farms, partic-
ularly in India. This work explored the feasibility of five popular object detection mod-
els—RetinaNet, [YOLOW5, Fast RCNN, Faster RCNN, and DETRl—to accurately detect
and classify weeds in cotton fields. Among these,[YOLOWS5 emerged as the most effective
to revolutionize traditional weed identification practices by overcoming the complexities
of distinguishing weeds from cotton plants, which often exhibit similar features. By accu-
rately identifying and localizing weeds, the model improves crop management and yields
and minimizes the need for harmful herbicides, fostering more sustainable and environ-
mentally responsible agricultural practices.

From the social impact perspective, the introduction of automated weed detection has
far-reaching economic benefits for India, a major cotton producer and exporter. By in-
creasing cotton yields and reducing the reliance on chemical herbicides, this research
supports more efficient farming practices, lowering operational costs for farmers and

boosting productivity. This increases cotton output, enhancing India’s agricultural trade
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potential and contributing to growth. As the model promotes sustainable farming,
it improves the global competitiveness of Indian cotton in international markets, where
there is a growing demand for eco-friendly and sustainable agricultural products. By
modernizing cotton farming practices, this research not only benefits individual farmers
but also strengthens India’s position in global agricultural trade, driving economic growth

and contributing to rural development.

7.2 Future Work

The framework and models developed in this thesis mark a noteworthy advancement in
DIl and sustainable agriculture, especially concerning biotic stress monitoring in real en-
vironments. Nonetheless, as with any research initiative, numerous opportunities remain

for further exploration and improvement. Below are several key avenues for future work.

* Future research should prioritize collecting and curating diverse datasets encom-
passing various crop types, geographical regions, and environmental conditions to
enhance the generalizability and robustness of models in agricultural applica-
tions. By including a wide range of crop types, researchers can ensure that models
accurately learn the specific stress responses associated with each crop while incor-
porating data from different geographical areas exposes models to varying climate

and soil factors, thereby improving their adaptability.

* Incorporating multi-modal data sources, such as remote sensing, soil health indi-
cators, and climatic data, can provide a more holistic view of plant health. Future
work should explore the fusion of these data types with models to improve

accuracy in biotic stress monitoring.

* The development of a mobile-based application is recommended to provide farmers
with real-time, rapid, and accurate identification of plant stress. Such an applica-
tion would empower farmers to make timely decisions regarding the application of

chemicals, enhancing their ability to manage plant health effectively.

* Further exploration into optimizing model architectures and employing techniques
such as model pruning or quantization can enhance computational efficiency and
accuracy. This is particularly important for deployment in resource-limited envi-

ronments, ensuring accessibility and usability of the technologies developed.

* Future work on the weed detection model should focus on extending its capabilities

to enable species-level classification, allowing the differentiation between harmful
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and beneficial weeds. This enhancement would promote more targeted and eco-
logically sound weed management strategies. Furthermore, integrating Large Lan-
guage Models (LLMs) can transform the weed detection framework into an interac-
tive, multilingual advisory system that interprets detection results, answers farmer
queries, and provides region- and crop-specific recommendations. Such advance-
ments would significantly broaden the model’s utility, making it a comprehensive
and intelligent decision-support tool for sustainable weed management in diverse

agricultural settings.
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Appendix II: Supplementary Tables for
Thesis Insights

Table II.1: Search Fields Utilized in Various Academic Databases

Database Database Search Fields
Scopus Title, Abstract, Keyword
ACM Abstract
IEEE Xplore Metadata
Wiley Abstract
Engineering Village Subject, Title, Abstract
Springer Link Full text

Table I1.2: Distribution of Articles Across Various Sources

Venue/Source NoA Venue/Source NoA
IEEE Journal of Selected Topics in
Frontiers in Plant Science 157 Applied Earth Observations and 2
Remote Sensing
IEEE Access 119 Horticulturae 2
Multimedia Tools and Applications 82 Precision Agriculture 2
Agronomy 59 Applied Sciences 2
Remote Sensing 33 | IEEE Robotics and Automation Letters | 2
Plants 27 Knowledge-Based Systems 2
Computers and Electronics in . . .
. 27 Biosystems Engineering 2
Agriculture
Scientific Reports 27 NeoBiota
PLoS ONE 16 Biology
Artificial Intelligence in Agriculture 15 Weed Science 2
Computational Intelligence and .
. 14 Internet of Things (Netherlands) 2
Neuroscience
Information Processing in Agriculture 14 Geocarto International 1
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Venue/Source NoA Venue/Source NoA
Journal of Agriculture and Food
11 Foods 2
Research
Sustainability (Switzerland) 11 ACM Computing Surveys 1
Insects 7 Plant Pathology 2
Journal of Wireless Mobile Networks,
Plant Methods 8 Ubiquitous Computing, and 1
Dependable Applications
. . . International Journal of Molecular
Alexandria Engineering Journal 7 . 1
Sciences
. Environmental Research
Plant Phenomics 6 o 1
Communications
Forests 5 Technologies 1
. L Egyptian Journal of Remote Sensing
Expert Systems with Applications 4 . 1
and Space Science
Ecological Informatics 5 Biosensors and Bioelectronics: X 1
Journal of King Saud University -
. . 4 Array 1
Computer and Information Sciences
Intelligent Systems with Applications Journal of Pest Science 1
Journal of Integrative Agriculture Computers and Electrical Engineering 1
Multimedia Systems The Visual Computer 1
Engineering Science and Technology,
Phytopathology 2 . 1
an International Journal
Artificial Intelligence Review 2 Emerging Science Journal 1
Plant Phenome Journal 2 Journal of Environmental Informatics 1
Neural Computing and Applications Frontiers in Earth Science 1
. Journal of Computing Sciences in
Heliyon 2 1
Colleges/not found
Scientific Data 1 BMC Plant Biology 1
MDPI 1 Computers in Industry 1
ACM Transactions on Intelligent
ICT Express 1 1
Systems and Technology
. . L L Proceedings of the National Academy
Engineering Applications of Artificial . .
. 1 of Sciences of the United States of 1
Intelligence .
America
ACM Transactions on Sensor
Ecosphere 1 1
Networks
Eurasip Journal on Wireless i )
L . 1 Journal of Field Robotics 1
Communications and Networking
Remote Sensing in Ecology and
Agronomy Journal 1 . 1
Conservation
IEEE Transactions on Industrial .
1 Plant and Soil 1

Informatics
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Venue/Source NoA Venue/Source NoA
IEEE Journal on Emerging and
Selected Topics in Circuits and 1 PLoS Biology 1
Systems
Pervasive and Mobile Computing 1 Journal of Cloud Computing 1
Frontiers in Ecology and Evolution 1 The Journal of Supercomputing 1
International Journal of Applied Earth .
. . . 1 Journal of Big Data 1
Observation and Geoinformation
Methods in Ecology and Evolution 1 Applications in Plant Sciences 1
o ) IEEE Transactions on Automation
Scientific African 1 ] ] ) 1
Science and Engineering

Note**: NoA represents the number of articles corresponding to each journal.

Table I1.3: Datasets Used in Primary Studies Assessed in the Systematic Literature Re-
view for Plant Stress Monitoring

Dataset Name Count Dataset Name Count
Rice Leaf 2 Vine Leaf Disease 1
DiaMOS 2 Wang 1
HQIP102 2 Weed25 1
DO 5 WeedAlI “2022—WA Sandplain and {
Narrow-leafed lupin
Cottonweed 2 Weeds Growing Point (WGP) 1
Apple Leaf 2 Wheat 1
CottonDisease Wheat 2014-2016 1
Leaf 5 Wheat Disease Database 2017 1
(WDD2017)
RoColLe 2 Wheat Rust Classification 1
Pest 2 Wheat Fungi Diseases (WFD2020) 1
Rice Leaf Diseases 2 SLD10k 1
Plant Pathology 2020-FGVC7 2 FieldPlant 1
Rice Pest and Disease Image 1 Wheat-stripe-rust 1
RPW 1 YangLing 1
R pedestris 1 Yellow-Rust-19 1
Rice-weed 1 Yellow-sticky-traps 1
Rice 1 Cassava Leaf Dis.ease and Wheat Leaf 1
Disease
Corn or Maize Leaf Disease 1 CASTIPest 1
Rice Leaf Diseases Data Set 1 Cauliflower Field Images (CWF-788) 1
PlantDoc 1 Crop Diseases and Pests Corpus 1
Plantix Smartphone Application 1 Early Crop Weed 1
Pest ID 1 Merged Tomato and Cottons 1

182




Appendix 11: Supplementary Tables for Thesis Insights

Dataset Name Count Dataset Name Count
NZDLPIlantDisease-v2 1 V2 Plant Seedlings 1
New Plantvillage 1 UCI Machine Learning Repository 1
OD 1 TomatoWeeds 1
SugarBeets 1 Tomato Plant Disease 1
PLD 1 SLSD 1
PLDD 1 Multi-class Pests 2018 (MPD2018) 1
Paddy Line Segmentation:
PNS-Cyst 1 i . 1
Paddy—Millet Detection
Pepper 1 Small Cotton Wilt Disease 1
Pepper Leaf 1 Soybean Field Weed 1
Pest24 1 Soybean Stress 1
. Strawberry Common Diseases Image
PlantifyDr 1 1
(SCDID)
PestImgData Strawberry Disease Detection
PestNet-AS Strawberry Disease
Plant Pathology 2021 Strawberry Segmentation
Plant Seedlings Sugar Beet 2020
Plant Disease Diagnosis Sugar Beet
PlantCLEF Sunflower
PlantDiseaseCL TAMU Nutsedge
PlantDoc PlantVillage TDSD
SPVD TLm & GBIFm
RumexWeeds TTALDD-4

Wheat Disease Images (Small)

Tea Disease

VQA Tea Sickness
Crop Weed Field Image (CWFID) Date Palm Data — Kaggle
DSIS iNaturalist
The Tiger Beetle ADCG-18
Tobacco Aerial CWFID
Tomato Leaf Diseases Cardamom 2021

NZDLPlantDisease-v1

Cassava Disease

— = === === == =] =] === == === =] =] =] ==

MSALDD Cassava Disease Classification
Moving Fields Weed (MFWD) Forest Pest
ALDID GLDP12k
APHID-4K Gpest14
ASDID Grape Leaf Disease
ATLDS IF
AgriPest INSECT10K7C640_SAT

— = == === === =] =] === == === =] =] =] ==

Apple Leaf Disease Object Detection

Image Database for Agricultural

(ALDOD) Diseases and Pests (IDADP)
Apple Diseases 1 In-Field Pest in Food Crop (IPFC) 1
BPLD 1 Instance Segmentation: TJ-Tomato 1
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Dataset Name Count Dataset Name Count
BRACOL 1 Jasmine Leaf 1
Bean Leaf 1 Kaggle 1
Black Pepper Leaf Disease 1 Kaggle Plant Pathology 2020- FGVC7 1
Bonn 1 LLPD-26 1
CASTIPest 1 MCCN 1
CD&S Corn Disease with Removed
1 MDSD 1
Backgrounds
CDTS 1 MPD2021 1
CIAT Banana Image Library 1 Strawberry _wilt 1
CLDD 1 Maize 1
CNN_Olive 1 Maize Leaf Disease 1
CWF-788 1 Maize Plant Leaf Image 1
APD-229 1 MangoleafBD 1
Field-based Wheat Diseases Images
ALDD 1 1
(FWDI)
Mini Plant Disease 1 FSIP52 1
. FGVC-Plant-Pathology-2020-
Al Studio 1 1
challenge
MWFI (Maize/Weed Field Image) 1 Deng’s crop dataset 1
Tomato Plant Anomalies Description 1 Rice blast disease dataset 1
Tomato Microscopic Images 1 Cassava Leaf Disease Classification 1
. Rice Leaf Disease with Segmentation
UAVWeedSegmentation 1 1
Labels
Wheat-Crop-Weeds 1 Chatzivariti’s Vineyard 1
AppleLeaf 9 1 Chicory Plant 1
. Cotton-weed, Soybean-weed,
Citrus Leaves Images 1 1
Corn-weed
CottonDisease (SCDD) 1 Citrus Diseases and Pests 1
FGVC7 1 Citrus Fruits and Leaves 1
Baidu AI Studio 1 Citrus Image 1
Large Wheat Disease Classification
1 RealPestImage 1
(LWDCD2020)
Lincoln Beet (LB) 1 PDDD 1
OLID 1 Corn Disease & Severity (CD&S) 1
PFD 1 Enhanced Rice Leaf Disease 1
Pest24 1 Cotton 1
Tomato Disease and Pest 1 DIV2K 1
Crop Pest and Disease Detection 1 Xiel 1
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Abstract

Plant disease diagnosis is one of the latest critical research areas of sustainable agriculture. The evolution of computer
vision-based systems in order to identify, classify and localize diseases has automated the process of plant disease identifica-
tion. CNNs are the pre-eminent deep learning-based algorithms used to automate plant disease recognition that has proven
decisive on various benchmarks. However, a substantial part of the research lacks adequate attention to specific issues like
the unavailability of dat:
exploit the latest trends and technologies in this area to solve the above-mentioned problems. As a step ahead in this direc-
tion, a new framework has been proposed using semi-supervised & ensemble learning. The proposed framework is validated
through a series of experiments on benchmark datasets. The results reported a significant performance improvement in clas-
sifying plant diseases, outperforming existing works with an improvement of 18.03% and 15% regarding the accuracy and

sets, high annotation costs and non-conformity of the models. Therefore, there is a pressing need to

F1 score, respectively. The mean average precision for detection is improved by 13.35%. Findings from this research will be
beneficial for farmers, plant pathologists and researchers, which in turn will strengthen the sustainable facet of agriculture.

Keywords Plant disease diagnosis -
learning - Transfer learning

Introduction

Opver the last decades, various factors have compromised
food security, including pollinator degeneration, environ-
mental changes and plant illnesses. Plant illness threat-
ens food security and quality, which eventually affects a
country's economy and consumers' health. In developing
countries, farmers are not much aware due to which they
unknowingly have been applying considerable amounts of
herbicides, pesticides, fertilizers and other chemical sub-
stances to control plant diseases and intensify crop produc-
tion, negatively impacting the ecology. Diseases on plants
cost approximately US $220, as it is suggested by the "Food
and Agriculture Organization of the United Nations (FAO)"
(FAO 2019) and further stated (Arunnehru et al. 2020), more
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Convolutional neural networks (CNNs) - Semi-supervised learning - Ensemble

than 50% of agriculture production is destroyed by plant
infections. At the same time, more than 90% of individu-
als depend on agriculture directly or indirectly (Mukti and
Biswas 2019), while the Indian population's dependency
on agriculture reaches 75% (Himani 2014). Diseases can
easily lead to crop failures, seriously influence agricultural
products' nature and cause food safety problems. Therefore,
on-time identification of plant diseases is critical.

Farmers are investing plenty of money and time in prevent-
ing crop diseases. However, for most diseases, the symptoms
are visible only in the late stages after the manifestation, which
often leads to the failure of entire crops. For this reason, many
investigations have turned their attention to traditional machine
learning (ML) applications to automate plant disease diagnosis
(Sarker 2021a, b). However, the great efforts in feature engi-
neering have been the primary barrier to applying conventional
ML algorithms for plant disease diagnosis.

Deep learning (DL) (Sarker 2021a, b), especially convolu-
tional neural networks (CNNs) (Indolia et al. 2018), because
of inherent automatic feature extraction abilities, has recently
stimulated an explosion of image recognition research.
Numerous CNN-grounded plant disease classification
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Abstract

Agriculture is the golden thread that fastens all the sustainable development goals globally. However, the massive popula-
tion explosion and ecosystem degradation have pressurized various auxiliaries of agriculture, primarily food security, crop
protection, and disease identification. Although the penetration of digital technologies brings new opportunities to modern
agriculture, the environmental facet has been neglected. Given this, the potential of sustainable computing and deep learning
is investigated to handle critical agricultural technology impediments, lower resource expenditure, and propel sustainable
agrarian developments. This research analyzes the relationship between Smart Agriculture and Sustainable Computing to
balance the three pillars of Sustainable Agriculture practices—socio-economic—environment. Motivated by the analysis,
the proposed work presents a deep learning-based lightweight, computation-efficient, performance-optimized, and explain-
able crop protection model to classify plant diseases. The proposed model reports accuracy, precision, recall, and F1-score
0£99.4%, 99.4%, 99.5%, and 99.6%, respectively, outperforming state-of-the-art models. Further, the F1-score is improved
by 15%, using 6.29 X fewer trainable parameters and 1.88 x fewer FLOPs that facilitate seamless deployment of the model
on embedded devices, particularly for automated in situ plant disease classification. Moreover, to confirm the applicability
of the proposed model across various crops, validation is conducted on additional crops, showcasing the model’s efficacy.
The proposed model serves as a sustainable and innovative technological solution, aiding in the preservation of agricultural
yields, enhancement of quality, and reduction of pesticide usage to safeguard the environment, achieved through energy-
efficient resource utilization.

Keywords Sustainable agriculture - Sustainable computing - Crop protection - Plant disease - Deep learning - Computation-
efficient

Introduction

Food is a fundamental need for survival and is an integral
part of life. The evolution of human beings gradually pushed
off the mode of food management from hunter-gatherers to
conventional agriculture. The consistent growth and con-
tinuous development of the agriculture sector are crucial
and essential for social welfare as a step toward achieving
a more equitable society. It plays a vital role in supporting
livelihoods, producing raw materials, improving the national
economy, enhancing agri-business, conserving the environ-
ment, providing food security, and many more (Eastwood
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etal. 2017). With the advent of digital technologies and the
industrial revolution, the agriculture era has changed from
conventional to sustainable agriculture (Rolandi et al. 2021).
The four agricultural revolutions bring remarkable changes
in the development of agriculture history (Liu et al. 2021).
The transformation of agricultural trends and technologies
is presented in Fig. 1.

Due to rapid population expansion and finite natural
resources, ensuring global food security has become a vital
aspect of agriculture, demanding meticulous focus to meet
the universal requirement for effective food supply chain
management (Kakaei et al. 2022). Food production or availa-
bility is decreasing to keep up with the level of crop harvests
in various regions of the world, negatively impacting crop
yields and quality. Therefore, crop protection is a significant
area that requires the utmost attention to save crops from
various threatening parameters such as diseases, weeds,
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Abstract

Plant stress significantly threatens agricultural productivity and quality, necessitating advanced solutions for effective plant biosecurity.
Manual inspection is time-consuming and requires expert knowledge, making automated monitoring crucial for crop protection and food
security. While deep learning has shown significant potential in plant stress monitoring and improving plant biosecurity, the existing
literature remains unsystematic and highlights numerous challenges that hinder its real-time application. Therefore, a systematic literature
review is essential to consolidate current knowledge, offer a comprehensive overview of deep learning-based plant biotic stress monitoring,
and identify research gaps, trends, and challenges. In this view, this article employs the PRISMA framework to analyze 745 articles from
six recognized electronic databases published between 2016 and April 2024, addressing eight research questions. Findings from this
study indicate that convolutional neural networks dominate the field, appearing in 85.23% of articles, with limited consideration for hybrid
models. Further, the reliance on supervised learning and high-quality annotated datasets highlights significant challenges related to data
availability, diversity, and model generalization. Besides, the limited focus on efficiency metrics for model evaluation further compounds
these issues, hindering accurate assessment of model performance in real-world applications. Additionally, only 8.19% of the articles
offered directly applicable solutions to farmers, highlighting the necessity for practical and scalable applications. Moreover, while 63.42%
of studies originated from the USA and China, research output from Africa, Central Asia, South America, and Southeast Asia remains
low. These findings highlight the need for equitable research and localized solutions to address challenges in underrepresented regions.
Future research should explore unsupervised and semi-supervised learning to reduce reliance on annotated datasets, integrate loT, edge
computing, and cloud-computing for real-time deployment, and incorporate efficiency metrics to ensure robust real-world performance.
This review offers a comprehensive overview of the latest advancements and outlines potential future directions for computer science,
agriculture, and ecology.

Keywords: agriculture, biotic stress, deep learning, plant biosecurity, sustainable agriculture

solution for automating the monitoring of biotic stress, reducing
chemical dependence, and enhancing long-term agroecosystem

Introduction
Agriculture is central to the global economy, food security, and

sustainable development. However, challenges like population
growth, escalating food demand, climate change, and plant stress
are pressuring its ability to meet future needs (Eastwood et al., 2019;
Kakaei et al., 2022; Lin et al., 2023). Among the most significant
stressors, biotic stress—caused by pests, diseases, and weeds—
threatens global food production, leading to an estimated loss of 20
to 40% of crop yields, valued at billions of dollars annually (FAO,
2019; Lal et al,, 2023; Manghwar and Zaman, 2024). Traditional
methods for monitoring plant biotic stress, such as manual field
inspections, are limited by issues of accuracy, scalability, and
timeliness (Kashyap and Kumar, 2021), while excessive chemical
use to combat these stresses harms the environment and public
health (Vasileiou et al., 2024). With the rise of digital agriculture
and artificial intelligence (Al), deep learning (DL) offers a promising

*Corresponding Author: Sharma Parul. Email: sharma0O5oct@gmail.com

health (Erisman et al., 2016; Singh et al., 2018; Klerkx and Rose,
2020; Noon et al., 2020; Singh et al., 2021; Devi et al., 2022;
Houetohossou et al.,, 2023). This systematic literature review
(SLR), based on 6479 articles from multiple databases, explores
the potential of DL in biotic stress monitoring. It aims to provide
valuable insights and identify gaps in current research, guiding
future developments in sustainable agriculture.

ORGANIZATION OF THIS REVIEW

The rest of the paper is organized as follows. Section “Background”
provides a brief background required for the present study.
Section “Related surveys and rationale of this systematic literature
review” summarizes the need for the present systematic review.
Section “Review methodology” details the review process, research
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