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Abstract

In the present thesis, an attempt has been made to construct, apply, analyse and optimise higher-order

hybrid parameter-uniform finite difference methods for solving singular perturbation problems involving

a system of reaction-diffusion equations with shifts and integral boundary conditions. These problems

commonly arise in the different fields of applied mathematics, for example, edge layers in solid me-

chanics, aerodynamics, oceanography, rafted-gas dynamics, transition points in quantum mechanics,

shock and boundary layers in fluid dynamics, magnetohydrodynamics, drift-diffusion equations of semi-

conductor devices, plasma dynamics, skin layers in electrical applications, Stoke’s line in mathematics,

and rarefied-gas dynamics. These problems depend on a small perturbation parameter ε , which mul-

tiplies the highest-order derivative terms. When the value of the perturbation parameter is limited to

zero, the solutions to such problems approach a discontinuous limit and exhibit a multiscale charac-

ter. Often, these mathematical problems are extremely difficult (or even impossible) to solve exactly

and approximate solutions are necessary in certain circumstances. Asymptotic and numerical analy-

sis are two principal approaches to solving singular perturbation problems. Although asymptotic and

numerical methods offer valuable tools for tackling singularly perturbed systems of reaction-diffusion

equations, they also have limitations. Asymptotic methods struggle to provide accurate solutions in

regions where multiple lengths or time scales interact. Additionally, these methods often rely on an-

alytical approximations, which may not fully capture the system’s behaviour. Numerical methods also

have limitations when applied on uniform meshes. They require excessively fine meshes to capture

the solution behaviour within the boundary layers, leading to computationally expensive simulations.

The analysis and solution of these systems require specialised mathematical techniques tailored to

handle stiffness and boundary layer phenomena. The thesis provides higher-order hybrid numerical

methods over an adaptive mesh for solving different classes of reaction-diffusion problems. The thesis

consists of six chapters. A brief outline of the chapters is as follows:

Chapter 1 recalls an overview of the fundamentals of singular perturbation theory. It also presents

concepts and a historical assessment of the related literature. This chapter also provides a detailed

literature review of various state-of-the-art techniques developed in the recent past. In addition, the

chapter illustrates the purpose and objectives of the thesis.

Chapter 2 presents a higher-order adaptive hybrid difference method to solve a singularly perturbed

system of reaction-diffusion problems with Dirichlet boundary conditions. The numerical method com-

bines a Hermite difference method with the classical central difference method on a layer-adapted

ix



mesh. The equidistribution principle generates the mesh using a nonnegative monitor function. The

mesh generation procedure automatically detects the thickness and steepness of any boundary lay-

ers present in the solution and does not require prior information about its analytical behaviour. The

chapter presents a rigorous theoretical analysis and numerical results for model problems to support

theoretical findings. The method is almost fourth-order accurate, converges uniformly, and is uncon-

ditionally stable. Moreover, the convergence obtained is optimal, as the estimates are free from any

logarithmic term compared to the difference methods over the piecewise uniform Shishkin mesh.

Chapter 3 presents a higher-order hybrid approximation over an adaptive mesh designed to solve a

coupled system of singularly perturbed reaction-diffusion equations with a shift on an equidistributed

mesh. The difference method combines an exponential spline difference method for the outer layer

and a cubic spline difference method for the boundary layer on the adaptive mesh generated. The

mesh relies on the equidistribution principle, a nonnegative monitor function, and the second-order

derivatives of the layer components of the solution. The proposed numerical method improves the

accuracy of numerical solutions while maintaining computational efficiency. The proposed numerical

method is consistent, stable, and converges regardless of the size of the perturbation parameter. The

numerical results and illustrations support the theoretical findings.

Chapter 4 presents a semi-analytical approach to solving a system of singularly perturbed convection-

diffusion equations with shifts. A careful factorisation handles complex multiscale systems by splitting

them into two explicit parts: one capturing smooth solutions and the other addressing boundary layer

solutions. The strategy involves factoring a coupled system of equations into explicit systems of first-

order initial value problems and second-order boundary value problems. The solutions to the degener-

ate system correspond to the regular component. In contrast, those of the system of boundary value

problems represent the singular component. The process combines the regular and singular compo-

nents to obtain the complete solution. The q-stage Runge-Kutta method computes the outer solution,

and an analytical approach derives the inner solution. The proposed method is unconditionally stable

and converges independently of the perturbation parameters. Unlike numerical methods, the proposed

technique does not require adaptive mesh generation to sustain approximation and consequently has

lower computational complexity. The process is straightforward, and interdisciplinary researchers can

quickly adapt the method to solve problems related to chemical kinetics, mathematical physics, and

biology. The method is highly accurate, free from directional bias, and the estimates are free from

logarithmic terms. The results demonstrate that the numerical method outperforms many existing

methods.

Chapter 5 presents a highly efficient hybrid difference approximation for a time-dependent singularly

perturbed reaction-diffusion equation with shift and integral boundary conditions. The technique utilises

a modified backward difference discretisation in time on a uniform mesh and a suitable combination of

the exponential and cubic spline difference methods over a layer adaptive moving mesh in space. The

layer-adapted mesh in space is generated by equidistributing a nonnegative monitor function, and the

modified backward difference discretisation ensures alignment with the mesh at each subsequent time

level. The presented method demonstrates second-order spatial uniform convergence and first-order

temporal convergence. The method improves the accuracy of numerical solutions while maintaining

x



computational efficiency. The method is unconditionally stable and free from directional bias. The

numerical experiments validate the theoretical estimates.

Chapter 6 concludes the work done and provides insight into the author’s thoughts on the future

direction of the research.
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Chapter 1

Introduction

1.1 Perturbation Problems

Differential equations play a crucial role in mathematical modelling by providing a structured ap-

proach to describing and analysing dynamic systems. They capture the relationship between a function

and its derivatives, enabling the study of how quantities change over time or space. Ordinary differ-

ential equations (ODEs) model processes that depend on a single independent variable and are used

frequently in population dynamics, mechanical systems, and electrical circuits. Partial differential equa-

tions (PDEs) extend this course to functions of multiple independent variables, making them essential

for modelling heat conduction, fluid flow, and wave propagation. In contrast, systems of differential

equations further enhance modelling capabilities by representing interdependent processes, such as

in epidemiology, chemical reactions, and neural networks. The ability to derive, analyse, and solve

these equations analytically or numerically makes them indispensable tools for predicting real-world

behaviours in science, engineering, and economics. These equations offer a versatile mathematical

tool set for understanding and predicting complex phenomena.

Boundary/initial value problems involving ordinary and partial differential equations describe many

physical phenomena in biology, chemistry, engineering, and physics. Often, these models involve

small parameters that significantly influence the behaviour of the system, making it difficult to obtain

exact solutions. When solving a mathematical model, we aim to capture the essential elements by

retaining significant quantities and omitting negligible ones that involve small parameters. The model

that includes these small parameters is the perturbed model, while the simplified degenerate model

is the unperturbed or reduced model [1]. The mathematical problems associated with these models

are further classified as regular and singular perturbation problems, as will be defined later. Perturba-

tion techniques provide systematic approaches to finding approximate solutions by expanding them in

terms of small parameters. Regular perturbation problems allow solutions to be expanded in a straight-

forward power series of the small parameter, maintaining smooth behaviour throughout the domain [2].

In the case of singular perturbations, things get more complicated. They involve rapid variations, such

as boundary layers or multiple time scales, where standard expansions fail. The solution to the unper-

1
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turbed problem does not satisfy, in general, all the original boundary conditions and/or initial conditions,

as some of the derivatives may disappear by neglecting the small parameters [3, 4]. Thus, some dis-

crepancies may appear between the solution of the perturbed model and the corresponding reduced

model [5, 6].

Let Ω be an open bounded set with smooth boundary Γ and Ω̄ its closure. Consider the boundary

value problem [1]

Pε : Lεy := L0 + εL1 = g(x,ε); x ∈ Ω and y(Γ) is given. (1.1.1)

Here 0 < ε ≪ 1 is a small perturbation parameter, Lε denotes the differential operator, and g(x,ε) is a

given real-valued smooth function. We assume that the perturbation problem Pε possesses a unique

smooth solution y := yε(x) for each ε . Denote by P0 the corresponding degenerate problem obtained

by setting ε = 0 in (1.1.1) and by y0 a smooth solution of P0. The norm we use is the standard

maximum norm defined as

∥ f∥
Ω̄
= sup

{
| f (x)| : x ∈ Ω̄

}
.

Definition 1.1.1. The perturbation problem Pε is regularly perturbed with respect to some norm ∥ · ∥
if there exist a solution y0(x) of the reduced problem P0 such that ∥yε −y0∥→ 0 as ε → 0. Otherwise,
Pε is said to be singularly perturbed with respect to the same norm.

Example 1.1.1. Consider an initial value problem Pε :

y′(x) = 2y(x)−4εy2(x), x ∈ (0,1); y(0) = 1.

The exact solution of Pε reads

y(x) := yε(x) =
e2x

2ε(e2x −1)+1
, 0 ≤ x ≤ 1.

It is easy to follow that lim
ε→0

yε(x) = e2x := y0. Also, note that y0 is the solution to the reduced problem

P0, obtained by setting ε = 0. Therefore, Pε is a regular perturbation problem.

Example 1.1.2. Consider the two-point boundary value problem Pε :

ε
2 d2y(x)

dx2 − y(x) = 0, x ∈ (0,1); y(0) = A, y(1) = B, (1.1.2)

where ε is the small perturbation parameter. Then, corresponding to the large real roots ±1/ε of
the characteristic polynomial, the linearly independent solutions ex/ε and e−x/ε contribute to the exact
solution that reads

y(x) =
−Ae−1/ε +B
e1/ε − e−1/ε

ex/ε +
Ae1/ε −B

e1/ε − e−1/ε
e−x/ε

=
(2− e−1/ε)ex/ε +(e1/ε −2)e−x/ε

e1/ε − e−1/ε
for A=1 and B=2.
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Note that the solution y(x) := y1(x) is defined for all ε > 0. Moreover, for some fixed constant ρ ∈ (0,1)

lim
ε→0+

y1(x) = 0, x ∈ [ρ,1−ρ]. (1.1.3)

However, the solution y1(x) attains the limiting value 0 non-uniformly in the neighborhood of x = 0
and x = 1 in the sense that

lim
ε→0+

lim
x→0+

y1(x) = 1 ̸= 0 = lim
x→0+

lim
ε→0+

y1(x) and

lim
ε→0+

lim
x→1−

y1(x) = 2 ̸= 0 = lim
x→1−

lim
ε→0+

y1(x).

It is important to note that the limiting value 0 is a stable solution of the corresponding degenerate
equation. Let us next consider an example having the same boundary conditions and a similar reaction
term but with an opposite sign.

Example 1.1.3. Consider the two-point boundary value problem Pε :

ε
2 d2y(x)

dx2 + y(x) = 0, x ∈ (0,1); y(0) = A, y(1) = B, (1.1.4)

where ε is the small perturbation parameter. Then, corresponding to the large imaginary roots ±ι/ε of
the characteristic polynomial are the linearly independent solutions sinx/ε and cosx/ε , and the exact
solution of the problem reads

y(x) =
Asin(1− x)/ε +B

sin1/ε
= cosx/ε +

2− cos1/ε

sin1/ε
sinx/ε for A = 1 and B = 2.

It is apparent that the solution y(x) := y2(x) is defined only if ε ̸= 1/nπ; n = 1,2, . . .. The solution is
highly oscillatory for arbitrary small ε with period ε and bounded amplitude.

For Example 1.1.2, Figure 1.1 illustrates the solution for different values of perturbation parameters

and verifies that the solution exhibits a multiscale character. There are regions of small widths where

the solution changes rapidly and exhibits steep gradients. Note that the corresponding degenerate

problem cannot satisfy all the given boundary conditions. The problem is a singular perturbation prob-

lem, and the solution reveals layer behaviour. Whereas, for Example 1.1.3, it is immediate from Figure

1.2 that the solution to the problem is highly oscillatory and it cannot satisfy a limiting relation like

(1.1.3). The problem is a singular perturbation problem from a mathematical perspective.

Example 1.1.4. Consider an initial value problem Pε :

ε
dy
dx

− z = εg1(x), ε
dz
dx

+ y = εg2(x), 0 < x < 1; y(0) = 1, z(0) = 0,

where ε is the small perturbation parameter and g1(x), g2(x) ∈C[0,1]. It is easy to note that the given
problem is a singular perturbation problem but not of the boundary layer type. This conclusion is
trivial in the case g1(x) = g2(x) = 0 when the solution of the given problem reads y(x) = cosx/ε and
z(x) =−sinx/ε .



4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1.1: Numerical solution of Example 1.1.2 for differ-
ent values of ε .
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Fig. 1.2: Numerical solution of Example 1.1.3 for differ-
ent values of ε .

Example 1.1.5. Consider an initial boundary value problem Pε :
ε

∂y
∂ t

− ∂ 2y
∂x2 = t sinx, (x, t) ∈ (0,π)× (0,T ),

y(x,0) = sinx, x ∈ [0,π],

y(0, t) = 0 = y(π, t), t ∈ [0,T ],

where ε is the small perturbation parameter and T is the given positive integer. The exact solution of
the problem reads

y(x, t) := yε(x, t) = t sinx+ e−t/ε sinx+ ε

(
e−t/ε −1

)
sinx.

It follows that the solution yε converges uniformly to the function y0(x, t) = t sinx on every rectangle
Rδ = {(x, t) : 0 ≤ x ≤ π,δ ≤ t ≤ T}, 0 < δ < T , but not on the entire domain. However, y0 satisfies
the reduced problem

−∂ 2y
∂x2 = t sinx, y(0, t) = 0 = y(π, t), t ∈ [0,T ]

it fails to be a uniform approximation of yε in the strip Sδ = {(x, t) : 0≤ x ≤ π,0≤ t ≤ δ}. The problem
is a singular perturbation problem of boundary layer type.

1.2 The D’Alembert’s Paradox

In fluid dynamics, the d’Alembert paradox refers to the contradiction between theoretical predictions

and real-world observations regarding drag forces in inviscid steady flows. Jean le Rond d’Alembert,

an 18th-century mathematician and physicist, demonstrated that under the assumptions of ideal fluid

theory - which neglects viscosity - a body moving in a steady potential flow should experience zero

drag. However, everyday experience contradicts this result. When an object moves through a fluid,

such as air or water, it experiences drag, a resistive force that opposes motion. The failure of ideal-fluid

theory to predict this observed drag raised a fundamental question. Why does an object experience
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Fig. 1.3: Numerical Solution of Example 1.1.4 for ε =
2−4.
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Fig. 1.4: Numerical Solution of Example 1.1.5 for ε =
10−2.

resistance in a flow if classical hydrodynamics suggests otherwise?

This paradox was particularly puzzling because potential flow theory (which assumes an inviscid,

incompressible, and irrotational fluid) produced elegant mathematical solutions that failed to capture

the actual physics of fluid motion around solid bodies. The resolution of this paradox lies in recognising

the role of viscosity, which the classical ideal fluid theory had ignored. The property of fluids that causes

internal friction and the development of shear forces between layers of different velocities. Although

viscosity is often small in common fluids such as air and water, its effects can be profound in specific

flow regions [7, 8].

The impact of viscosity is best understood through the Reynolds number (Re), a dimensionless

quantity given by Re =
ρUL

µ
where ρ is the fluid density, U is the characteristic velocity of the flow, L

is the characteristic length (such as the diameter of a sphere or chord length of an aerofoil), and µ is

the dynamic viscosity of the fluid. The Reynolds number (Re) quantifies the ratio of inertial forces of a

fluid to its viscous forces. At high values of Re, which is typical in air and water flows around practical

objects such as aeroplanes, ships, or cars, the effects of viscosity may initially seem insignificant [9].

However, Ludwig Prandtl demonstrated that viscosity cannot be completely overlooked, as it plays a

vital role in thin regions near solid surfaces known as boundary layers [8].

1.3 Prandtl’s Resolution Using Boundary Layer Theory

The resolution to the d’Alembert paradox came in 1904 when Ludwig Prandtl introduced the ground-

breaking boundary layer theory. Prandtl proposed that viscosity is confined to thin boundary layers

near the surface in flows with high Re. Outside this layer, the flow remains largely inviscid. When a fluid

flows past a solid body, the no-slip condition dictates that the velocity of the fluid at the surface must be

zero relative to that of the body. However, the velocity gradually increases away from the surface until

it matches the free-stream velocity. The region where this velocity transition occurs is the boundary

layer. Prandtl’s insight allowed for a two-region approach to fluid motion:

• The Outer Region (Potential Flow Region): Here, the viscosity is negligible, and the flow can be
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approximated using ideal-fluid equations (Euler’s equations).

• The Inner Region (Boundary Layer Region): Close to the solid surface, viscosity dominates,

leading to significant velocity gradients and the development of shear stresses.

Fig. 1.5: Boundary layer concept.

Prandtl’s theory provided a framework to explain how drag arises in real-world flows. In the case

of streamlined bodies like aerofoils, the boundary layer remains attached, minimising drag. For bluff

bodies, such as spheres and cylinders, the boundary layer tends to separate from the surface, creating

a turbulent wake and resulting in pressure drag, which was not considered in the d’Alembert analysis

[8]. This insight revolutionised fluid mechanics and laid the foundation for modern aerodynamics and

hydrodynamics, enabling accurate predictions of drag forces and optimising designs in aviation, naval

engineering, and other fluid-based applications. Beyond aerodynamics, boundary layer theory has

become fundamental in various fields, including meteorology, oceanography, and biofluid mechanics.

The concept of boundary layers has also led to the singular perturbation theory, which addresses

problems where small effects (such as viscosity) lead to significant consequences [7, 10, 3]. Singular

perturbation problems are widespread in nature and arise in the modelling of various complicated phe-

nomena such as in semiconductor devices [11], population dynamics [12], impulses and physiological

states of nerve membrane [13], water quality problems in river networks [14], groundwater flow [15],

theory of thin plates and shells [16], biochemical kinetics [17], electromagnetic field theory in moving

media [18], modelling of option pricing and corporate liabilities [19], neuronal variability [20], simulation

of oil extraction from underground reservoirs [21], Reissner-Mindlin plate theory [22], Fokker-Planck

equation [23] and many more [7, 9, 24, 25, 26, 27, 10]. They have been extensively studied and

applied, so it is pertinent to trace their historical developments.

1.4 Classification of Singular Perturbation Problems

De-Jager and Furu [28] classify singular perturbation problems as singular perturbations of the cu-

mulative type and singular perturbations of the boundary layer type.

1. Singular perturbation problems of cumulative type: The class of singular perturbations

of cumulative type concerns oscillating systems where the influence of the small parameter be-

comes observable only after a long time, for instance, after an interval of O(1/ε) [28]. In these
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problems, the effects of the small perturbation parameter accumulate gradually over the entire

domain. The solution changes slowly but significantly over the whole region rather than being

localised in a specific part of the domain. A typical example occurs in multiple-scale problems,

where a small perturbation affects long-term behaviour.

At the end of the 19th century, Lindstedt and Poincaré proposed the method of stretching the coor-

dinate to obtain an asymptotic approximation of the solution to this type of problem in connection

with their studies of perturbation problems in celestial mechanics [29, 30, 31]. The technique

was later elaborated, refined, and applied by several others [2, 32]. Lagrange [33] first used the

method of averaging and took an average of certain quantities that slowly varied over time. Gausz

also employed an averaging principle in his study of the mutual influence of planets during their

motion. He distributed each planet’s mass over its orbit in proportion to time and replaced the

planet’s attracting force with that of a ring. Similarly, van der Pol [34] applied an averaging prin-

ciple in his study of triode oscillations, neglecting terms with a zero average over the oscillation

period. The method of averaging is widely known as the approach developed by Krylov, Bogoli-

ubov, and Mitropolski [35], who proved the averaging principle and applied it to various problems.

For a comprehensive discussion, we refer the reader to the book by Bogoliubov and Mitropolski

[35], which includes numerous references to mathematicians and physicists who contributed to

the asymptotic theory of nonlinear oscillations.

2. Singular perturbation problems of boundary layer type: The class of singular perturba-

tions of boundary layer type involves systems where the presence of a small parameter leads to

rapid changes in the solution in a localised region, usually near boundaries. Outside this region,

the solution behaves more smoothly and is often approximated by a reduced problem. These

problems frequently arise in fluid dynamics (e.g., boundary layers in high Re-flows). The term

boundary layer, introduced by Prandtl, is in the context of fluid mechanics. They are also termed

shock waves in gas motion, skin layers in electric applications, and Stokes surfaces in quantum

mechanics and optics. In case the layers do not appear near the boundaries of the domain.

The layers are termed interior layers or free layers. The interior layers arise in singular perturba-

tion problems with turning points, nonsmooth coefficients, nonsmooth initial/boundary conditions,

nonlinearities, and incompatibility at the domain’s boundaries.

Further, we distinguish these problems into two types: singular perturbations of the convection-

diffusion type and reaction-diffusion type.

(a) Singularly Perturbed Convection-Diffusion Problems: These problems involve con-

vection (advection) and diffusion, where convection dominates certain regions. For example,

a problem of the form

−εy′′(x)+a(x)y′(x)+b(x)y(x) = g(x), x ∈ Ω = (0,1); y(0) = y0, y(1) = y1. (1.4.1)

The small parameter ε represents the diffusion coefficient, while the term a(x)y′(x) repre-

sents convection. When ε is small, the convection term dominates, leading to the formation

of boundary layers near the outflow boundaries.
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(b) Singularly Perturbed Reaction-Diffusion Problems: These problems involve both

reaction (source/sink terms) and diffusion, where reaction dominates in certain regions. For

example, a problem of the form

−εy′′(x)+b(x)y(x) = g(x), x ∈ Ω = (0,1); y(0) = y0, y(1) = y1.

The small parameter ε represents the diffusion coefficient, while the term b(x)y(x) repre-

sents reaction. When ε is small, the reaction term dominates, leading to the formation of

interior or boundary layers.

These problems model physical phenomena balancing three processes, namely, convection, reaction,

and diffusion. Convection refers to the movement of a quantity (such as heat, mass, or momentum)

owing to the bulk motion within a medium such as water or air. For example, in a river, pollutants

are carried downstream by moving water. The term diffusion refers to the process by which particles

spread from regions of high concentration to regions of low concentration. The reaction relates to

the interaction process through which the substance is generated or consumed. Several physical and

mathematical models of the convection-diffusion and reaction-diffusion problems have been mentioned

in the literature, as some authors have referred to [36, 37, 38, 39, 40].

Example 1.4.1. Consider the following convection-diffusion problem Pε [1]:

ε
d2y
dx2 +

dy
dx

= 2x, 0 < x < 1; y(0) = 0 = y(1),

where ε is the small perturbation parameter. The solution of the problem Pε reads

y(x) := yε(x) = x(x−2ε)+
2ε −1

1− e−1/ε

(
1− e−x/ε

)
= (x2 −1)+ e−x/ε +χε(x)

where lim
ε→0

χε(x) = 0. The corresponding degenerate equation is of order one, and we can impose only

one of the given boundary conditions. It is not immediately obvious which of the two possible boundary
conditions we can impose. Note that yε converges uniformly to the function y0 = (x2 − 1) on every
interval [δ ,1]; 0 < δ < 1, but not on the whole interval [0,1]. Clearly, y0 satisfies the corresponding
reduced problem P0 but ∥uε −u0∥C[0,1] ↛ 0 uniformly as ε → 0. For small δ , y0 is an approximation
of yε in [δ ,1], but it fails to be an approximation of yε in [0,δ ]. This small interval [0,δ ] is the boundary
layer region. In this region, yε exhibits a sharp change from its value yε(0) = 0 to values close to y0.
A uniform approximation for yε(x) is given by y0(x)+ e−x/ε . The function e−x/ε is called a boundary
layer function (correction). It fills the gap between yε and y0 in the boundary layer region [0,δ ]. This
behaviour of yε is called a boundary layer phenomenon, and the solution of the problem Pε is said to
have a boundary layer of the width O(ε) near x = 0 as shown in Figure 1.6.

Example 1.4.2. Consider the following reaction-diffusion problem Pε :

ε
d2y(x)

dx2 − y(x) = 0, x ∈ (0,1); y(0) = 1, y(1) = 2,
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where ε is the small perturbation parameter. The solution of the problem Pε reads

y(x) := yε(x) =
2− e−1/

√
ε

1− e−2/
√

ε
e−(1−x)/

√
ε +

1−2e−1/
√

ε

1− e−2/
√

ε
e−x/

√
ε .

The corresponding degenerate equation is of order zero, and we cannot impose any of the given nonzero
boundary conditions. A similar analysis as in the previous example suggests that the solution of the
problem Pε has two boundary layers of width O(

√
ε) near x = 0 and x = 1 as shown in Figure 1.7.

Moreover, e−x/
√

ε and e−(1−x)/
√

ε are the corresponding layer correction functions, respectively.
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Fig. 1.6: Solution of Example 1.4.1 for ε = 2−8 .
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Fig. 1.7: Solution of Example 1.4.2 for ε = 2−8 .

The characteristics of the layers, such as their strength, width, and location, depend on whether

the problem is of convection-diffusion or reaction-diffusion type. The coefficients and initial/boundary

conditions specified in the problem also influence these characteristics. Information about the strength

and location of the interior/boundary layers can be inferred from Table 1.1 and Table 1.2 for convection-

diffusion and reaction-diffusion problems, respectively.

Table 1.1: Strength and location of boundary and interior layers in convection-diffusion problems.

Smoothness of functions Value of the
function

Strength and location of

b(x) a(x) g(x) a(x) Boundary Layer Interior Layer
Smooth < 0,∀x ∈ Ω Strong, at x = 0 —
Smooth > 0,∀x ∈ Ω Strong, at x = 1 —

Smooth Discontinuous
at x = d ∈ Ω

< 0,∀x ∈ Ω Strong, at x = 0 Weak, on right side
of x = d

Smooth Discontinuous
at x = d ∈ Ω

> 0,∀x ∈ Ω Strong, at x = 1 Weak, on left side
of x = d

Smooth Discontinuous at x = d ∈ Ω < 0,∀x ∈ Ω Strong, at x = 0 Weak, on right side
of x = d

Smooth Discontinuous at x = d ∈ Ω > 0,∀x ∈ Ω Strong, at x = 1 Weak, on left side
of x = d

Smooth Discontinuous at x = d ∈ Ω > 0,x ∈ (0,d) and
< 0,x ∈ (d,1)

— Strong, on both
side of x = d

Smooth Discontinuous at x = d ∈ Ω < 0,x ∈ (0,d) and
> 0,x ∈ (d,1)

Solution is unbounded

— = 0 Problem is of reaction-diffusion type

This thesis aims to explore and address singular perturbation problems, specifically those of the
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Table 1.2: Strength and location of boundary and interior layers in reaction-diffusion problems.

Smoothness of functions Strength and location of
b(x) g(x) Boundary Layer Interior Layer

Smooth Strong, at both endpoints x = 0
and x = 1

—

Smooth Discontinuous at
x = d ∈ Ω

Strong, at both endpoints x = 0
and x = 1

Strong, on both sides of
x = d

boundary layer type.

1.5 Methods for Solving Singular Perturbation Problems

The theory of singular perturbations has been with us for more than a century. Prandtl started

research on boundary layers in 1904. However, this work remained confined mainly to his institute

in Göttingen for the first twenty years. It was not until his Wilbur Wright Memorial Lecture to the

Royal Aeronautical Society in 1927 that the research gained wider recognition. In the 19th century,

A.N. Tikhonov [41, 42, 43] began to systematically study singular perturbations, although there had

been some previous attempts in this direction [1, 28]. The name of H. Schlichting first appeared in

1930 with his doctoral thesis on wake flow. Shortly thereafter, Schlichting devoted significant effort to

the problem of the stability of laminar boundary layer flow. Subsequent research soon confirmed the

theory of stability described in the papers of Tollmien and Schlichting quantitatively and qualitatively

[7]. However, the aerodynamic boundary layer was first defined by Prandtl [8]. The term singular

perturbation was first used in the work of Friedrichs and Wasow [44], and the concept of the boundary

layer was given greater generality in the substantial work of Wasow [45].

Many studies have focused on the mathematical justification of boundary layer theory. Studies in-

dicate that this theory offers a first approximation within a broader framework intended for calculating

the asymptotic expansions of solutions to the complete equations of motion. The problem is effectively

transformed into a singular perturbation problem and solved using the method of matched asymptotic

expansions. M. Van Dyke has provided a comprehensive overview of perturbation techniques in fluid

mechanics [24]. In 1954, S. Kaplun studied the role of coordinate systems in boundary layer the-

ory [46]. In 1957, in a fundamental paper [47], M.I. Vishik and L.A. Lyusternik studied linear PDEs

with singular perturbations, introducing the famous method, which is today called the Vishik-Lyusternik

method. It became clear that the boundary layer theory developed heuristically by Prandtl was a classic

example of the solution of a singular perturbation problem. From then on, the entire literature has been

devoted to this subject [48, 49, 50, 51, 52].

Despite this long history, the subject is still in a state of vigorous development. Numerous methods

have been proposed to solve singular perturbation problems and are broadly classified into asymptotic

and numerical methods.
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1.5.1 Asymptotic Methods

Asymptotic methods for singular perturbation problems constitute a robust mathematical framework

for analysing and approximating solutions to differential equations in which small parameters signif-

icantly influence the behaviour of the system. Over the years, researchers have developed various

asymptotic techniques to systematically address these problems, facilitating the construction of uni-

formly valid approximations across different regions of the solution domain.

One of the most widely used methods is the method of matched asymptotic expansions, which par-

titions the domain into distinct regions, typically termed inner and outer regions. Asymptotic approxi-

mations are constructed within each region and matched to ensure a smooth transition between them.

The technique begins by dividing the problem domain into an outer region, where a regular perturbation

expansion (e.g. youter(x) = y0(x)+ εy1(x)+ . . .) captures the slowly varying behaviour, and an inner

region, where a rescaled coordinate (e.g. ξ = x/ε) magnifies the rapid transition, yielding an inner ex-

pansion (e.g. yinner(ξ ) =Y0(ξ )+εY1(ξ )+ . . .). These expansions are developed independently, often

solving simplified versions of the original equation tailored to each region. The critical step, match-

ing, ensures consistency by equating the inner and outer solutions in an intermediate region where

their domains overlap, using rules like van Dyke’s principle to determine constants or functions. This

method shines in applications like fluid dynamics, where it models boundary layers in flows with high

Re or in resolving sharp gradients near boundaries. However, it has limitations such as determining the

correct scaling for the inner region requires insight into the problem’s physics, matching can become

algebraically complex for higher-order terms, and the method assumes a clear separation of scales,

which may not hold in highly nonlinear or chaotic systems. Furthermore, it provides only asymptotic

(not exact) solutions, potentially missing subtle effects such as ε → 0, and may fail near singulari-

ties or turning points unless supplemented by other techniques. Despite these challenges, matched

asymptotic expansions remain a powerful tool for bridging multiscale phenomena with analytical clarity.

During the 1950s, this method was refined and applied to numerous physical problems [53, 54, 46, 55,

56, 57, 47]. For a detailed overview, the reader can refer to the books [24, 58, 59].

The method of multiple scales is another powerful asymptotic technique to analyse problems where

different time or spatial scales coexist. It is particularly useful for handling singular perturbation prob-

lems in dynamical systems, wave propagation, nonlinear oscillations, and fluid mechanics. The method-

ology begins by recognising that the solution operates on distinct time or spatial scales, typically

a fast scale that captures rapid oscillations or transitions, and a slow scale that describes gradual

evolution. To apply the method, multiple independent variables are introduced, such as t (fast time)

and τ = εt (slow time). The dependent variable is then expanded as an asymptotic series, e.g.,

y(t,ε) = y0(t,τ)+ εy1(t,τ)+ ε2y2(t,τ)+ · · · , and substituted into the original equation. By treating

the scales as independent, the partial derivatives transform

(
e.g.

d
dt

=
∂

∂ t
+ ε

∂

∂τ

)
, and the equation

is separated into a hierarchy of problems by equating coefficients of similar powers of ε . Secular terms,

unbounded growth that invalidates the perturbation expansion, are eliminated by imposing solvability

conditions, yielding equations that govern slow-scale behaviour. The benefits of this approach include
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its ability to capture multiscale phenomena, provide uniformly valid approximations over long intervals,

and avoid the breakdown of naive perturbation methods. However, it requires careful identification of

the relevant scales, can become computationally intensive for higher-order terms, and may fail if the

scales are not well separated or if the problem lacks a clear asymptotic structure [60], necessitating

alternative techniques such as matched asymptotic expansions. The method has been used to solve

numerous singular perturbation problems in [61, 62, 63, 64, 65, 66, 67, 68].

The Wentzel-Kramers-Brillouin method is a semiclassical approximation technique widely used to

solve singular perturbation problems, particularly in linear differential equations with a small param-

eter, such as those arising in quantum mechanics, wave propagation, and optics. The methodology

assumes that the solution takes an exponential form, y(x) = A(x)exp
(

1
ε

S(x)
)

, where ε is the small

parameter, S(x) is the phase (or action), and A(x) is the amplitude, both of which vary slowly com-

pared to the rapid oscillations driven by
1
ε

. Substituting this ansatz into the differential equation, the

terms are collected by powers of ε , leading to the eikonal equation for S(x) (zeroth order) and a trans-

port equation for A(x) (first order). For example, in y′′+
1
ε2 q(x)y = 0, the eikonal equation becomes

(S′)2 = q(x), so S(x) =
∫ √

q(x)dx, and the amplitude is adjusted to conserve energy or probability

flux. The method excels in providing approximate solutions in regions where q(x) varies slowly, offer-

ing physical insight into wave behaviour and being computationally simpler than numerical methods

for high-frequency problems. The method provides critical insights into the behaviour of solutions in

different regions, distinguishing between oscillatory and exponentially decaying solutions depending on

whether the potential function is positive or negative. However, limitations arise near turning points and

Stokes lines, causing the approximation to break down due to singularities in A(x), requiring connection

formulas (e.g. Airy functions) to bridge regions. Furthermore, the method assumes that the solution

varies rapidly compared to the problem’s characteristic scale, making it less effective for problems with

slow variations. Despite these challenges, the method remains a cornerstone of asymptotic analysis

for singular perturbation problems. The method was first used in the 1920s to approximate solutions

to the Schrödinger equation. Its historical development is documented in [69], while a comprehensive

discussion of its mathematical foundations can be found in [70]. Applications of the method in quantum

mechanics and solid mechanics are presented in [71] and [72], respectively. For a detailed overview,

the reader may refer to [73, 74, 75].

Other significant asymptotic techniques include the homogenisation method, which addresses prob-

lems involving multiple spatial scales, such as composite materials and periodic structures [76, 77].

The Lindstedt-Poincaré method eliminates secular terms in perturbative expansions for periodic so-

lutions in dynamical systems [78, 79, 80, 81, 82, 83]. In contrast, the renormalisation group method

provides a robust framework to analyse scaling behaviours and self-similarity in singular perturba-

tion problems [84]. The method of strained coordinates improves the perturbation approximations by

modifying independent variables [85]. The Brillouin-Kramers-Wentzel method, a variant of the Wentzel-

Kramers-Brillouin approach, is particularly effective in wave phenomena. The exponential asymptotic

approach extends traditional asymptotic series to capture exponentially minor effects that standard

asymptotic expansions often overlook. In addition, modern approaches include geometric singular
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perturbation theory [86, 87, 88], which offers a geometric framework for analysing slow-fast dynamical

systems, and hyperasymptotics, which refines conventional asymptotic series by incorporating higher-

order corrections for exponentially small terms. Additional techniques, such as boundary function and

stretched coordinate methods, further improve asymptotic approximations for problems characterised

by sharp transitions [89, 90, 91]. For a comprehensive overview of the advances in the asymptotic

theory of singular perturbations, see [92, 93, 60, 3].

The primary advantage of asymptotic methods is their ability to provide analytical insight into complex

multiscale phenomena. They reveal the dominant physical mechanisms and their dependence on the

small perturbation parameter, often yielding simpler expressions that guide further analysis or compu-

tation. However, challenges include determining the correct scaling for inner regions, ensuring proper

matching, and handling higher-order terms, which can become algebraically intensive. Additionally,

these methods may not capture all nonlinear effects or singularities in highly complex systems.

1.5.2 Numerical Methods

Numerical methods for differential equations are computational techniques used to approximate so-

lutions to problems when analytical solutions are difficult or impossible to obtain. During the past few

decades, many numerical methods have been developed to solve singular perturbation problems [3,

5, 4, 51]. We distinguish numerical methods into finite difference, finite element, and finite volume

methods.

Finite difference methods (FDMs) are numerical techniques for solving differential equations by ap-

proximating derivatives with finite differences on a discrete grid [94, 95, 96]. By approximating deriva-

tives using discrete differences, FDM transforms complex differential equations into algebraic systems

that can be solved computationally. FDM offers several benefits, including simplicity of implementation,

ease of handling various boundary conditions, and flexibility in adapting to different types of ordinary

and partial differential equations. Furthermore, FDM allows for efficient computational solutions, espe-

cially when combined with modern techniques and computing power. At the same time, finite element

methods (FEMs) are also versatile and widely used numerical techniques to solve differential equa-

tions [97, 98, 99]. The core idea of FEM involves dividing the problem domain into smaller, simpler

subdomains called finite elements (such as triangles or quadrilaterals in 2D), over which local ba-

sis functions approximate the solution. These local approximations are then assembled into a global

system of equations that models the entire problem [100, 101, 102, 103]. The method is especially

powerful for handling complex geometries, irregular domains, and boundary conditions. It is significant

for its flexibility, accuracy, and adaptability. It allows for mesh refinement in regions where the solution

exhibits rapid changes, such as boundary layers or singularities, making it particularly useful for sin-

gularly perturbed problems. Compared to FDM, FEM offers greater flexibility in mesh design and can

handle more easily irregular geometries and variable coefficients. Although FDM is often simpler to im-

plement and computationally faster for problems on regular grids, FEM provides higher accuracy and

better convergence properties for complex real-world problems. Finite volume methods (FVMs) are

also widely used for solving differential equations, especially those governing conservation laws [104,
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105, 106]. The FVM builds on the conservation principle as its core idea. The idea of FVM involves di-

viding the domain into a finite number of control volumes and integrating the governing equations over

each volume. The divergence theorem converts volume integrals into surface integrals and ensures

that the method accurately accounts for the fluxes entering and leaving each control volume. This local

conservation property makes FVM particularly suitable for problems in computational fluid dynamics.

It is significant for its ability to naturally enforce conservation laws, handle complex geometries, and

provide stable and accurate solutions, even on unstructured meshes. Compared to FDM, FVM offers

better conservation and can handle irregular geometries more effectively. In contrast to FEM, which

is based on variational principles and is highly effective for problems involving complex geometries

and material properties, FVM is more naturally suited to conservation-based problems. FEM typically

provides higher-order accuracy and is preferred in structural and solid mechanics, whereas FVM is the

method of choice in fluid dynamics and related fields.

Standard numerical methods on a uniform mesh fail to approximate the solution of singularly per-

turbed problems accurately. These methods require the mesh size and perturbation parameter to be

of the same order of magnitude to maintain the approximation. However, such a fine mesh would

unexpectedly increase the mesh points and the associated computational cost. The stable upwind

difference scheme on a uniform mesh is only first-order uniformly convergent in the discrete maximum

norm. The formally second-order convergent central difference scheme oscillates in domains where

the perturbation parameter is small compared to the local step size [4]. In fact, for problems with

a strongly asymmetric differential operator, the usual discretisations are either unstable, inaccurate,

or direction-dependent. For example, the higher-order accurate differences based on Petrov-Galerkin

weighting are strongly direction-dependent because they depend on the equation’s flow direction. Sym-

metric schemes, such as the FDM or the usual Galerkin methods with symmetric weighting functions,

are unstable or only first-order accurate [4, 1]. Researchers propose many ways to overcome these

difficulties. However, if we are looking for a reliable and direction-independent discretisation, none of

the available methods seems appropriate. An essential challenge in the numerical solution of the sin-

gular perturbation problem is the different approximations required in the smooth part of the solution

and the boundary and/or interior layers.

This discrepancy has encouraged researchers to develop parameter-uniform numerical methods in

which the discretisation error and the order of convergence are independent of the perturbation pa-

rameter. In addition, layer-adapted meshes appear promising in the discretisation of such equations

[5], leading to a growing interest in adaptive mesh refinement techniques. Adaptive mesh refinement

techniques automatically increase the mesh resolution in regions where it is needed most, such as

near steep gradients or boundary layers, while maintaining coarser grids in smoother areas [1, 5]. The

adaptive approach not only enhances the accuracy of the solution, but also reduces computational

costs by concentrating computational resources where they are most needed. As a result, adaptive

meshes enable more efficient and accurate simulations of singularly perturbed systems, making them

indispensable tools for researchers and practitioners studying these complex phenomena [5, 1]. Re-

searchers often classify these meshes into a priori meshes and posterior meshes. A priori mesh refine-

ment typically relies on analytical considerations or prior knowledge of the problem’s characteristics,
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such as the location and width of the layers. These meshes are particularly useful when the problem’s

features are well understood or when computational resources are limited. A posteriori mesh refine-

ment, on the other hand, involves dynamically adjusting the mesh resolution during or after the solution

process based on error estimates or solution properties. Initially proposed by Bakhvalov [107], these

meshes have since been extensively studied, particularly in the context of convection-diffusion prob-

lems. Notable contributions include Shishkin’s piecewise equidistant meshes [5], meshes employing

the equidistribution principle [108, 109, 110], Gartland-type meshes [111], Bakhvalov-Shishkin meshes

[111], and Vulanović improved Shishkin meshes [112]. Further advances have led to the develop-

ment of layer-adapted meshes through recursive formulations, such as Gartland-Shishkin meshes and

graded meshes analysed in various studies [113, 114, 115, 116, 117, 118, 119, 120] and references

therein.

In 1968, Pearson [121] was the first to develop a three-point difference scheme on a uniform mesh

for one-dimensional singularly perturbed boundary value problems (SPBVPs). The approach involved

identifying mesh locations where the difference between the computed solution and its neighbouring

value exceeded a predetermined threshold value. An iterative procedure was used to increase the

concentration of mesh points at these locations and smoothing was applied to prevent loss of accuracy

due to abrupt changes in mesh spacing. The Gauss elimination method was applied to solve the linear

algebraic equations formed by the difference scheme. The numerical results obtained indicate that the

computed solution converges to the exact solution. Later, this method was extended to solve a class

of nonlinear problems [122]. In this case, the algebraic equations formed by the difference scheme

were solved using the Newton-Raphson iterative method. These methods require strict constraints

on the spacing of the mesh to maintain stability when the perturbation parameter is very small [123].

The authors in [124] introduced an upwind scheme to overcome this stability issue. In this scheme,

the first derivative is replaced by a one-sided difference (forward or backward) instead of the central

difference. The choice of forward or backward difference depends on the sign of the coefficients of the

convection term at a particular mesh point. This scheme is known as the Il’in-Allen-Southwell scheme

[125]. The upwind scheme provides stability and exhibits better convergence compared to the central

difference scheme. The scheme under consideration is widely recognised as the first fitted operator

scheme. However, it is important to note that it exhibits only a first-order uniform convergence in the

outer region.

In [126], a class of singularly perturbed problems is solved using an upwind FDM. The author com-

pared the asymptotic behaviour of the solution obtained from the difference scheme with the exact

solution. Later, the authors extended this method to solve second-order ODEs [127]. They obtained

elementary estimates for the solution and its derivatives using the maximum principle [128]. In [129],

the upwind method is further refined and used to solve a singularly perturbed system of equations.

In this method, a parameter was introduced in the difference equation, and it was chosen in such a

way that an accurate approximation for the reduced problem is obtained in the interior region as well.

Later, this method was extended to solve singular perturbation problems with internal turning points

[130]. The author in [131] applied three-point difference schemes to singular perturbation problems

without turning points. They used three finite difference operators L1
h, L2

h, and L3
h on a uniform mesh to
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approximate the solution [132, 130, 124]. The operator L1
h achieves first-order accuracy with an error of

order h. The error bounds for L2
h and L3

h include a term
h2

(h+ ε)
. This term shows that the convergence

order drops by one as ε approaches zero. These methods show second-order convergence in the

outer region, but only first-order convergence in the layer region.

In [133], the exponential box scheme was introduced to solve singularly perturbed convection-

diffusion problems. This scheme combined the exponential difference operator with the Keller box

scheme [134] to achieve a stable and second-order accurate approximation of the solution. In [135],

the authors proved that applying the exponential difference scheme [133] on a uniform mesh yields uni-

form second-order accurate results for convection-diffusion problems. Their findings demonstrated that

the exponential box scheme maintains consistent second-order accuracy across the entire domain. In

[136], the authors modified the upwind scheme to enhance its precision for convection-dominated diffu-

sion problems. This modified scheme achieved second-order accuracy, similar to the central difference

scheme, while preserving the stability properties of the upwind scheme. This modification improved

the accuracy of the solution and provided better convergence properties.

In [137], the author introduced a scheme based on the integral interpolation method [138] to solve

singular perturbation problems involving ordinary and parabolic differential equations. He developed

the scheme on a mesh similar to the Bakhvalov mesh. He demonstrated third-order pointwise con-

vergence for ODEs and first-order convergence for parabolic PDEs. In the same year, in [139], the

authors extended the Bakhvalov mesh for the discretisation of one-dimensional nonlinear singularly

perturbed reaction-diffusion problems. His generalisation enabled the mesh to handle nonlinear prob-

lems effectively and achieved uniform second-order convergence, thereby improving the accuracy of

the numerical solution. In [140], the author developed a family of uniformly accurate FDMs for sin-

gularly perturbed convection-diffusion problems using high-order differences within the identity expan-

sion framework proposed in [141] and [142]. Their error analysis relies on the stability results of an

earlier study [143]. Theoretical analysis demonstrates that uniform convergence of any order could be

achieved, depending on the smoothness of the input data. However, the numerical results showed a

fourth-order uniform convergence. It is important to note that achieving such higher-order convergence

requires additional evaluations of the problem data.

In [144], the author demonstrated that, for convection-diffusion problems, a fitted finite-difference

operator is necessary only in the layer region. The standard fitted operator accurately approximates

the solution in the outer region, improving computational efficiency by reducing the cost outside the

layer. In [145], the author investigated a variety of FDMs to derive sufficient conditions for uniform

convergence. These conditions are satisfied not only by uniformly convergent schemes but also by

a more general class of upwind schemes. In [111], an exponentially graded mesh was employed for

singularly perturbed two-point boundary value problems. The mesh divides the computational domain

into three regions: an inner region with a highly refined mesh, a transition region where the mesh

grading transitions from fine to coarse, and an outer region with a uniform mesh. The number of mesh

points in the inner region was significantly greater than in the outer region. However, the construction

of such graded meshes proved complex, making it difficult to extend them to higher dimensions. To
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address this limitation, Shishkin [146] proposed a simpler and more adaptable mesh, now known as

the Shishkin mesh. For convection-diffusion problems, he introduced a piecewise uniform mesh with a

transition point τ defined as τ = min(1/2,ετ0 lnN), where τ0 ≥ p/α and p characterise the order of

convergence of the numerical scheme. The mesh Ω̄N = {xi}N
i=0 is constructed by dividing the domain

into two subintervals, [0,τ] and [τ,1], each with N/2 equally spaced points, assuming a boundary

layer near the left endpoint. If ετ0 lnN > 1/2 (that is, for sufficiently large N relative to 1/ε), the

mesh becomes uniform. Similarly, if the boundary layer occurs near the right endpoint, we divide the

domain into two subintervals [0,1− τ] and [1− τ,1], each with equally spaced points N/2, yielding

a uniform mesh in parts. For reaction-diffusion problems, the transition parameter τ is defined as

τ = min(1/4,
√

ετ0 lnN), where τ0 ≥ p/β . In this case, the domain Ω̄ = [0,1] is divided into three

subintervals [0,τ], [τ,1− τ], and [1− τ,1], with mesh points N/4, N/2, and N/4, respectively. It is

important to note that a key limitation of the Shishkin mesh is its reliance on prior knowledge of the

location and width of the boundary layers. In [147], the author analysed a defect correction method for

one-dimensional convection-diffusion problems without turning points and demonstrated that the kth

approximation converges uniformly at a rate of O((ε0−ε)k +h2), where ε0 =O(h) in the outer region,

although the error deteriorates to O(1) in the inner layers.

In [148], the authors introduced a spline difference scheme on a nonuniform mesh for singularly

perturbed self-adjoint reaction-diffusion problems. The scheme offers flexibility and accuracy through

spline interpolation for problems with unknown or complex layer structures. In [149], the authors pro-

posed a two-level nonlinear difference scheme to solve semilinear parabolic problems with parabolic

boundary layers. Using a specially designed nonuniform mesh, they achieved uniform convergence

across the entire domain. In [150], the authors developed an exponentially fitted difference scheme

for singularly perturbed fourth-order elliptic boundary value problems. In [151], the authors applied

quadratic splines on a piecewise Shishkin-type mesh to discretise reaction-diffusion problems and

achieved near-second-order accuracy in the discrete maximum norm. In [152], the authors addressed

stability issues in singular perturbation problems by employing a Bakhvalov-type nonuniform mesh

with a cubic spline difference scheme. They achieve second-order uniform convergence with results

superior to those obtained using the Shishkin mesh. The same year, the author in [153] developed a

second-order optimal spline difference scheme using exponential cubic splines for two-point self-adjoint

SPBVPs. In [154], a nonlinear problem is the subject of investigation. The authors employed a quasi-

linearisation technique to linearise the nonlinear equation. They used a cubic spline difference scheme

on a variable mesh to approximate the linear equations. Continuing their work, the authors in [155]

developed an exponentially fitted difference scheme using a compression spline to solve singularly

perturbed two-point boundary value problems.

In [156], the authors proposed an improved numerical method for singularly perturbed two-point

boundary value problems with Neumann boundary conditions by incorporating asymptotic approxi-

mations into a finite-difference framework. They have provided uniform error estimates accompanied

by rigorous theoretical analysis. In [157], they extended their work to singularly perturbed turning

point problems with twin boundary layers. They combined exponentially fitted difference schemes with

classical numerical methods to improve computational efficiency and accuracy. In [158], the author
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introduced an a posteriori mesh that does not require prior information on the width or location of the

solution layers. The method first computes an approximate solution on an arbitrary mesh. Then, it

uses an error estimate based on the derivatives of this solution to determine a monitoring function.

This monitor function facilitates mesh equidistribution. The authors in [159] proposed a monitor func-

tion that combines a constant term with a suitable power of the second-order derivative of the singular

component of the solution. An arc-length monitor function is used in [160, 161] to achieve mesh

equidistribution for convection-diffusion problems. In [162], the author presented numerical methods

based on exponential finite difference approximations with h4 accuracy for one-dimensional and two-

dimensional convection-diffusion problems. In [163], the author presented a survey on layer-adapted

meshes for convection-diffusion problems, emphasising the importance of using appropriate grids to

achieve uniform convergence.

In [164], the authors considered a one-dimensional steady-state convection-diffusion problem with

Robin boundary conditions. To discretise the problem, they use standard upwind finite-difference op-

erators on Shishkin meshes. Furthermore, the authors in [165] developed an FDM to solve a one-

dimensional time-dependent convection-diffusion problem with initial boundary conditions. They em-

ployed the classical Euler implicit method for time discretisation and the simple upwind scheme on a

Shishkin mesh for spatial discretisation. In [166], the authors present an adaptive FDM to solve sin-

gularly perturbed convection-diffusion problems. The authors combined a first-order upwind scheme

with a second-order central difference scheme to achieve higher-order convergence. In [167], the au-

thor discretised a singularly perturbed convection-diffusion problem using a simple first-order upwind

difference scheme on general meshes. He derived an expression of the error of the scheme, which

enables uniform error bounds concerning the perturbation parameter in the discrete maximum norm

for both defect correction methods and the Richardson extrapolation technique. In [168], the authors

considered a class of singularly perturbed self-adjoint two-point boundary value problems. They em-

ploy a fitted FDM on a Shishkin mesh to solve the problem by reducing it to a normal form. The authors

in [169] proposed a nonstandard FDM to solve self-adjoint SPBVPs using Micken’s FDM. In [170], the

authors combine a simple upwind scheme and the central difference scheme on a Shishkin mesh. The

proposed scheme exhibited higher-order convergence compared to the simple upwind scheme alone.

In [171], the authors used a compression spline to generate second-order and fourth-order uniformly

convergent numerical techniques for SPBVP. To deal with Robin-type boundary conditions, the authors

in [172] applied the central difference method on the regular region and cubic splines in the layer re-

gion. In [173], the authors investigated the effect of Richardson extrapolation on two fitted operator

FDM, namely FOFDM-I [168] and FOFDM-II [169]. They found that FOFDM-I achieved fourth-order

accuracy for moderate values of the perturbation parameter, while it is second-order accurate for small

values of the perturbation parameter. Further, it was observed that Richardson extrapolation did not im-

prove the order of convergence for FOFDM-I. However, for FOFDM-II, which is uniformly second-order

convergent, one can enhance the order of convergence to the order of four. In [174], the author pro-

posed a compact fourth-order FDM for singularly perturbed reaction-diffusion problems on a Shishkin

mesh. The authors in [175] applied exponential splines to generate an almost second-order uniformly

convergent difference scheme on a Shishkin mesh for semi-linear reaction-diffusion problems. The
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method exhibits a uniform convergence of almost second order in the discrete maximum norm. Later,

they devised an exponential spline difference method on a piecewise uniform Shishkin mesh [176].

In [177], the authors proposed a numerical method to solve singularly perturbed time-dependent

convection-diffusion problems in one spatial dimension. They employed a semi-discretisation tech-

nique followed by the backward Euler method in the temporal direction. To discretise the resulting set

of ODEs, they utilised the midpoint upwind FDM on a nonuniform mesh of Shishkin type in the spatial

direction. In [178], the authors proposed a method that combines domain decomposition with higher-

order difference discretisation to solve singularly perturbed two-point convection-diffusion problems. In

[179], the authors used the same scheme combination as in [172] on an equidistributed grid. Their

approximation scheme uses cubic splines for the mixed-boundary conditions and the classical central

scheme elsewhere. In [180], the authors considered a singularly perturbed reaction-diffusion problem

dependent on time. They employ the classical backward Euler method to discretise the problem in time

and a fitted operator FDM in space. In [181], the authors proposed a classical upwind FDM on layer-

adapted nonuniform meshes to solve the singularly perturbed parabolic convection-diffusion problem.

In [182], the authors proposed a uniformly convergent FDM for a coupled system of singularly per-

turbed problems. The proposed discrete operator satisfies the stability property in the maximum norm.

In [183], the authors proposed an adaptive FDM using the central difference scheme on a layer-adapted

mesh for a linear second-order SPBVP. The proposed method has fourth-order convergence. In [184],

the authors considered singularly perturbed degenerate parabolic convection-diffusion problems in two

dimensions. They used an alternating-direction implicit FDM to discretise the time derivative and an

upwind FDM to discretise the spatial derivative.

In [185], the authors introduced a hybrid difference scheme to solve singularly perturbed convection-

diffusion problems. Their scheme combined the upwind scheme on the coarse part of the Shishkin

mesh with the central difference method on the fine part. In [186], the authors considered a singularly

perturbed fourth-order differential equation with a turning point. A classical FDM on an appropriate

piecewise uniform Shishkin mesh is used to solve the problem. In [187], the authors proposed a

second-order uniformly convergent numerical method for a singularly perturbed parabolic convection-

diffusion problem in two dimensions. They used a fractional step method in the time direction, while

FDM was used in the spatial direction. In [188], a higher-order Richardson extrapolation scheme

is presented to solve a singularly perturbed system of parabolic convection-diffusion problems. In

[189], the authors proposed a uniformly convergent FDM to solve singularly perturbed time-dependent

convection-diffusion problems. The method uses FOFDM to discretise the spatial derivatives, followed

by the Crank–Nicolson method for the time derivative. Moreover, Richardson extrapolation is per-

formed in space to improve the accuracy of the method. In [190], a linear singularly perturbed parabolic

reaction-diffusion problem with incompatible initial and boundary data is considered. The method com-

bines the computational solution of a classical finite-difference operator on a tensor product of two

piecewise-uniform Shishkin meshes with an analytical function that captures the local nature of the

incompatibility. In [191], the authors proposed a parameter-uniform numerical method for the viscous

Burgers equation. To find a numerical approximation, they linearised the equation to obtain a sequence

of linear PDEs. The linear PDES are then solved using FDM, which involves a backward FDM for the
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time derivative and the upwind FDM for the spatial derivatives. In [192], the authors considered a sys-

tem of singularly perturbed reaction-diffusion problems. In [193], the authors deal with linear parabolic

singularly perturbed systems of convection-diffusion type in two dimensions. The numerical method

combined two main techniques. It used the upwind FDM to discretise the problem in space. For time

discretisation, the fractional implicit Euler method was applied. Furthermore, the method employed

a split approach by direction and component of the reaction-convection-diffusion operator to improve

efficiency and accuracy.

In [194], a hybrid higher-order FDM is presented for a class of singularly perturbed linear convection-

diffusion problems in one dimension. However, in [195], the authors presented a hybrid scheme to

solve singularly perturbed parabolic problems with Robin-type boundary conditions. The scheme is a

combination of the FOFDM in space and the backward Euler method in time. They also proposed FDM

to solve the Volterra integro-differential equation with a small parameter. The proposed scheme used

a nonstandard FDM to solve the differential part and Simpson’s rule to solve the integral part. The

Richardson extrapolation is used to increase the order of convergence to two. In [196], the authors

proposed a second-order FDM to solve a singularly perturbed Volterra integro-differential equation. In

[108], the author proposes a higher-order numerical scheme to solve singularly perturbed reaction-

diffusion problems. The proposed scheme is a combination of a fourth-order numerical difference

method and a classical central difference method. In [197], the authors presented a parameter-uniform

numerical method on equidistributed meshes for solving singularly perturbed parabolic problems with

Robin boundary conditions. The discretisation consists of a modified Euler scheme in time, a central

difference scheme in space, and a special FDM for the Robin boundary conditions.

In [198], the authors presented a second-order robust method for the singularly perturbed Burg-

ers equation. A singularly perturbed parabolic convection-diffusion problem is the subject matter of

[199]. The problem was discretised using the backward Euler scheme in the temporal direction and

the upwind scheme on a harmonic mesh in the spatial direction. In [200], the authors introduced

a high-order convergent numerical method for singularly perturbed time-dependent problems using

mesh equidistribution. The discretisation relies on the backward Euler scheme in time and a high-

order nonmonotone scheme in space. In [201], numerical approximations are computed for the so-

lution of a system of two reaction-convection-diffusion equations using FDM on a fitted mesh. In

[202], the authors investigated an initial boundary value problem for a singularly perturbed system

comprising two convection-diffusion equations. They proposed a numerical method that integrates a

spline-based scheme and uses a Shishkin mesh. The spline-based scheme offers a robust approach

to approximating the solution. Through convergence analysis, the authors demonstrated that the pro-

posed numerical technique achieves nearly second-order uniform convergence. In a separate study

[203], the authors introduced a uniformly convergent numerical method for a singularly perturbed time-

dependent system of two reaction-diffusion equations. The technique employs the Crank–Nicolson

scheme on a uniform mesh for temporal discretisation and a quadratic B-spline collocation technique

on an exponentially graded mesh for spatial discretisation. In [204], the authors addressed singu-

larly perturbed convection-diffusion equations in two dimensions. They applied an upwind difference

scheme on a modified exponentially graded Bakhvalov mesh for discretisation. The authors in [205]
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analysed a higher-order numerical method for a class of two-dimensional parabolic singularly perturbed

convection-diffusion problems, specifically for cases where the convection coefficient vanishes within

the domain. They used the Peaceman-Rachford scheme for time discretisation on a uniform mesh

and a hybrid scheme on a Bakhvalov-Shishkin mesh for spatial discretisation. In [206], the authors

studied singularly perturbed one-dimensional parabolic systems involving convection-diffusion equa-

tions, where a small positive parameter of different magnitudes influences the diffusion term of each

equation.

In [207], the authors proposed a parameter-uniform numerical method to address singularly per-

turbed Robin-type parabolic convection-diffusion problems characterised by boundary turning points.

The authors employed the implicit Euler method for temporal discretisation and used a nonstandard

FDM on a uniform mesh for spatial discretisation. Furthermore, the Robin boundary conditions were

approximated using the nonstandard scheme to maintain consistency and accuracy. In [208], the au-

thor surveyed nonstandard FDMs. In [209], the authors investigated a singularly perturbed convection-

diffusion problem in two dimensions with steady-state perturbations subject to Robin boundary con-

ditions. Their study contributed to the broader understanding of boundary layer behaviour in such

systems. In a related contribution [210], the authors developed a domain decomposition method for a

class of singularly perturbed parabolic reaction-diffusion problems, also incorporating Robin boundary

conditions. The technique involved partitioning the computational domain into three subdomains- two

employing fine meshes and one employing a coarse mesh. The governing equations were discre-

tised within each subdomain using standard FDMs. In addition, they employed a specially constructed

FDM to accurately approximate Robin boundary conditions. In [211], the author examined a class of

time-fractional singularly perturbed convection-diffusion problems. The authors applied the classical

L1 FDM for the temporal component on a graded mesh to discretise the fractional derivative of time. In

[212], the authors solved a second-order Volterra integro-differential equation using FDM on a Shishkin

mesh adapted to the layer, demonstrating the convergence and reliability of the approach. In a sep-

arate work [213], the author presented a fitted mesh FDM to solve a singularly perturbed Fredholm

integro-differential equation, further contributing to the development of robust numerical techniques in

this domain.

In [214], the authors developed a collocation method that used polynomials and tension splines to

solve a singularly perturbed two-point boundary value problem. Their findings indicated that tension

splines offered better approximations in boundary layers, while polynomials were more accurate in

outer regions. The authors of [215] explored adaptive splines for singularly perturbed initial and bound-

ary value problems. Subsequently, in [216], the authors implemented a spline collocation method.

They demonstrated that an appropriate choice of the fitting factor maintains convergence and sta-

bility. In [217], the author proposed a technique employing tension splines for singularly perturbed

self-adjoint boundary value problems, achieving second-order convergence between grid points and

O(hmin(h,
√

ε)) at grid points. In [218], the author addressed similar problems using exponential

splines. The method reduces to a quadratic spline collocation technique in the limiting case. The

method is computationally more efficient than other exponential-type methods.

In [219], the author used cubic spline collocation on nonuniform meshes with minimal defect to
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approximate solutions for singular perturbation problems. Two years later, the authors of [220] in-

troduced a spline-in-tension collocation method that exhibited linear convergence with suitable ten-

sion parameters. In [221], the authors improved the cubic spline collocation method by transitioning

the collocation points from a Shishkin mesh to Gauss–Legendre points. B-spline collocation meth-

ods were proposed for problems involving twin boundary layers and a turning point, as well as self-

adjoint problems and two-parameter problems [222, 223, 224, 225]. In [226], the author presented a

quadratic spline collocation method for problems involving two small parameters using error analysis

based on barrier functions. In [227, 228], the authors addressed nonlinear SPBVPs using B-spline

collocation methods. In [229], the authors presented a quadratic spline collocation method for a con-

vection–diffusion–reaction problem with two small parameters, establishing error bounds and showing

convergence of O(N−2 ln2 N) in the boundary layer and second order elsewhere. In [230], the au-

thors introduced artificial viscosity in a B-spline collocation method to capture exponential features on

a uniform mesh. In [231], the authors developed a FEM that integrates cubic B-spline collocation on a

nonuniform Shishkin mesh, achieving fourth-order convergence using Newton’s method. In [232], the

authors examined a semi-linear singularly perturbed problem using exponential splines on a Shishkin

mesh. A numerical scheme that uses Bessel collocation for singularly perturbed two-point problems

can be found in [233], and a generalised scheme using non-polynomial sextic splines in [234]. The B-

spline method for fourth-order problems without order reduction achieved second-order convergence

[235]. They extended this approach to linear and nonlinear problems on a Shishkin mesh and obtained

fourth-order convergence [236].

In [237], the authors recognised the need for special approaches to address singular perturbation

problems using finite element analysis. They developed a FEM approach analogous to the upwind

scheme by incorporating upwinding into the test function. Contributions, such as [238, 239, 240], high-

lighted the limitations of standard Galerkin methods in handling dominant convective effects and laid the

foundation for Petrov–Galerkin formulations that improved stability and accuracy. In [241], the author

proposed a FEM using piecewise polynomials of degrees less than or equal to k. He used an irregular

mesh and obtained uniform error estimates of order O(hk+1), for k ≥ 2. In a series of papers [242, 243,

244], the authors introduced the concept of symmetrisation and established general error bounds for a

Petrov-Galerkin method. They investigated choices of test space which either exactly or approximately

symmetrise the associated bilinear form and retain the optimal character of the approximate solution.

Choosing an appropriate test space is crucial to achieve high accuracy, superconvergence, and optimal

recovery techniques. In [245], the author combined FEM and FDM with the method of characteristics

to treat a parabolic problem. Optimal order error estimates in L2 and W 1,2 are derived for the finite el-

ement procedure. These schemes have significantly smaller time-truncation errors compared to those

of standard methods. In [246], the author introduced a piecewise linear hybrid finite element incor-

porating characteristics and perturbation techniques. Subsequent work [247, 248, 249] advanced the

FEM theory on layer-adapted meshes, achieving uniform convergence regarding the perturbation pa-

rameter. In [249], the authors proved that, on an equidistant mesh, polynomial schemes cannot reach

a high order of convergence, which is uniform in the perturbation parameter. Then, they constructed a

piecewise polynomial Galerkin finite-element method on a Shishkin mesh. The past two decades have
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seen significant progress in superconvergence [250, 251, 252] and adaptive mesh refinement [116,

253, 254, 117] and references therein, while novel methods like weak Galerkin FEM [255, 256, 257,

258, 259, 260] and dual FEM [261] have emerged to address problems with multiple small parameters

or discontinuous coefficients. In [262], the author constructed a FVM on a Shishkin mesh to solve

a singularly perturbed reaction-diffusion problem. The stability of the method was established in the

energy norm. In [263], the author developed a nonsymmetric discontinuous Galerkin FEM with interior

penalties for singularly perturbed convection-diffusion problems featuring a turning point. A standard

Shishkin mesh was employed to handle boundary layers, while a generalised Shishkin-type mesh was

used to address interior layers of the cusp type. Uniform error estimates were obtained in the L2-norm

and the DG-norm. For a complete overview of recent advances, see [99, 98, 264] and references

therein.

1.6 Plan of the Thesis

In this thesis, we study, analyse and develop adaptive numerical schemes to solve singularly per-

turbed boundary and initial boundary value problems of varying complexity. The adaptive discretisation

techniques we present can handle problems with diverse physical and dynamic characteristics by ad-

justing the resolution, order, and type of discretisation. The techniques are used in conjunction with

adaptive numerical methods to balance the accuracy of the solution with the associated computational

cost. Choosing an appropriate numerical method and a suitable discretisation strategy is essential to

solving the problem and improving convergence. With this in mind, the thesis presents several numer-

ical methods designed to address SPBVPs of varying levels of complexity.

The thesis is organised as follows: Chapter 1 provides an overview of the fundamentals of singular

perturbation theory, key concepts, and a historical overview of the related literature. It also includes

a detailed review of various state-of-the-art techniques developed in the past. In addition, the chapter

outlines the aims and objectives of the present work.

Chapter 2 presents a higher-order adaptive hybrid difference scheme to solve a system of singularly

perturbed reaction-diffusion problems with Dirichlet boundary conditions given asLy(x) := −εy′′(x)+By(x) = g(x), x ∈ Ω = (0,1),

y(0) = φφφ , y(1) =ψψψ,
(1.6.1)

where 0 < ε ≪ 1 is the perturbation parameter, y(x) = (y1(x),y2(x))T and B = (bm j(x))2×2 is an

L0-matrix. The source vector g(x) = (g1(x),g2(x))T and the given data bm j(·) are sufficiently smooth

functions defined in Ω̄. Besides, for every m and j

bmm > 0,
2

∑
j=1
j ̸=m

∥∥∥∥ bm j(x)
bmm(x)

∥∥∥∥< 1 and bm j ≤ 0 ∀ m ̸= j, m, j = 1,2.

where ||.|| represents the maximum norm in Ω. The proposed scheme integrates a nonmonotone
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fourth-order Hermite difference method with the classical central difference method on a layer-adapted

equidistributed grid. The adaptive grid is constructed by equidistributing a nonnegative monitor func-

tion. This monitor function automatically detects the thickness and steepness of boundary layers in the

solution, eliminating the need for prior knowledge of the analytical behaviour of the solution. Numerical

experiments support the theoretical error analysis of the proposed hybrid difference discretisation and

demonstrate parameter-uniform fourth-order convergence on the layer-adapted grid.

Chapter 3 presents a uniformly accurate difference approximation for solving a system of singularly

perturbed reaction-diffusion equations with a small delay. The problem readsLy(x) := −εy′′(x)+Ay(x)+By(x−δ ) = g(x), x ∈ Ω = (0,1),

y(x) = ρρρ(x), x ∈ [−δ ,0], y(1) = l,
(1.6.2)

where 0 < ε ≪ 1 is the perturbation parameter and δ denotes the small shift of order o(ε). Here,

y(x) = (y1(x),y2(x))T , A = (am j(x))2×2 is an L0-matrix, B = diag(b1(x),b2(x)) is a diagonal matrix.

The source vector g(x) = (g1(x),g2(x))T and the given data am j(·), bm(·) and ρρρ(x) = (ρ1(x),ρ2(x))T

are sufficiently smooth functions defined on Ω̄. Besides, for every m and j

amm > 0, bm > 0, min
{∥∥∥ am j

amm +bm

∥∥∥,∥∥∥ am j

δbm

∥∥∥}< 1 and am j ≤ 0 ∀ m ̸= j, m, j = 1,2.

The proposed method uses an appropriate combination of exponential and cubic spline difference

schemes. It employs grid equidistribution to address the challenges posed by the multiscale nature

of these systems, which often feature sharp gradients and boundary layers. The grid is generated

based on the equidistribution of a positive monitor function, a linear combination of a constant floor

and a power of the second derivative of the solution. Using adaptive mesh generation and a spline

difference method, the approach enhances the accuracy of numerical solutions while maintaining com-

putational efficiency. Numerical experiments validate the uniform convergence and theoretical findings,

demonstrating the method’s robustness irrespective of the perturbation parameter size.

Chapter 4 presents a semi-analytical approach to solving a coupled system of singularly perturbed

differential equations with mixed shifts. The problem we consider reads
Lỹ := εεε ỹ′′+Bỹ′+ςςς ỹ(x− τ)+Aỹ+ρρρ ỹ(x+µ) = g̃(x), x ∈ Ω = (0,1)

ỹ(x) = φφφ(x), x ∈ [−τ,0]

ỹ(x) =ψψψ(x), x ∈ [1,1+µ]

(1.6.3)

where 0 < εi ≪ 1 for i = 1,2, ...m denotes the perturbation parameters, εεε = diag(ε1,ε2, ...εm), ρρρ =

diag(ρ1,ρ2, ...,ρm), ςςς = diag(ς1,ς2, ...,ςm), ỹ = (ỹ1, ỹ2, ...ỹm)
T ∈ (C(Ω)∩ (C2(Ω))m and τ and µ rep-

resents small shifts of o(ε), respectively. Moreover, let us assume that B = diag(b1,b2, ...bm) the

convection matrix, A = (ai j)m×m the coupling matrix, g̃ = (g̃1, g̃2, ...g̃m)
T the source vector, and the

given data φφφ(x) = (φ1,φ2, . . . ,φm)
T , ψψψ(x) = (ψ1,ψ2, . . . ,ψm)

T are sufficiently smooth on Ω̄. Besides,

for every i and j, bi − τςi + µρi > 0, ςi + aii +ρi ≤ 0 and ai j ≥ 0 ∀ i ̸= j. The solution to the problem
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manifests a distinctive multiscale nature, characterised by localised narrow regions where the solution

undergoes exponential changes. Beyond these regions, the solutions exhibit smooth variations. We

employ a factorisation approach to address intricate multiscale characteristics, splitting the given cou-

pled system into two explicit systems. The first, a degenerate system, captures the smooth solution

outside the boundary layers through initial value problems. The second, addressing solutions within

boundary layers, uses stretching transformations to form a set of boundary value problems. Even

though this factorisation seems straightforward, the solutions obtained from these simplified systems

capture the essential characteristics of the given system. The Runge–Kutta method is employed to

solve the degenerate system of initial value problems, while the system of boundary value problems is

solved analytically using asymptotic expansions. We establish the stability and consistency of the pro-

posed method. The method converges uniformly with higher-order accuracy. The proposed method

is easy to implement and does not require an adaptive mesh generation procedure. The numerical

results and illustrations underscore the effectiveness and potential of the approach.

Chapter 5 presents a novel hybrid difference approximation for time-dependent reaction-diffusion

equations with shifts and integral boundary conditions. The model problem reads

Ly(x, t) = yt(x, t)− εyxx(x, t)+a(x, t)y(x, t)+b(x, t)y(x−δ , t) = g(x, t), (x, t) ∈D,

y(x,0) = φ0(x) on Γ0 := {(x,0) : x ∈ Ω̄},

κ1y(x, t) = y(x, t)− ε

∫ 1

0
f1(x, t)y(x, t)dx = φl(x, t) on Γl := {(x, t) : −δ ≤ x ≤ 0, t ∈ Λ},

κ2y(x, t) = y(1, t)− ε

∫ 1

0
f2(x, t)y(x, t)dx = φr(1, t) on Γr := {(1, t) : t ∈ Λ},

(1.6.4)

where 0 < ε ≪ 1 and δ = o(ε) denotes the perturbation parameter and shift, respectively. The given

functions a(x, t), b(x, t), g(x, t), φ0(x,0), φl(x, t), and φr(1, t) are sufficiently smooth and a(x, t)≥ η >

0, b(x, t) ≤ ρ < 0 and a(x, t)+ b(x, t) ≥ ρ > 0 for all (x, t) ∈ D̄. The problem is singularly perturbed

from a mathematical perspective and exhibits multiscale behaviour. The proposed approach employs

a backward difference discretisation in time on a uniform temporal mesh. A key component of the

method is the construction of an adaptive moving mesh in the spatial direction. The mesh we gener-

ate relies on the equidistribution principle. The numerical scheme comprises a cubic spline difference

method within the boundary layer region and an exponential spline difference method outside the layer

region. This strategy improves the accuracy of the numerical solution while maintaining computational

efficiency. The chapter presents a comprehensive theoretical analysis, numerical results, and illustra-

tions for model problems. The numerical experiments demonstrate parameter-uniform convergence

and corroborate the theoretical findings.

Chapter 6 concludes the work with a summary that highlights its significant contributions. It provides

insight into the author’s thoughts on the future direction of the research and the challenging steps

towards analysing more complicated problems.





Chapter 2

System of Reaction-Diffusion Equations

2.1 Introduction

Singularly perturbed systems of reaction-diffusion equations frequently arise in modelling complex

phenomena involving multiple interacting components that diffuse and react over space or time. Such

systems appear in a wide range of scientific and engineering applications. For example, in chemical

kinetics, they model the rapid spread of substances and their interaction [10]; in ecology, they describe

the spatial distribution of competing species[265, 266]; in physiology, they are used to study nerve

impulse propagation [267, 27]; and in materials science, they help to understand phase transitions and

pattern formation [268]. These systems feature small perturbation parameters that multiply the highest-

order derivatives, resulting in sharp gradients or boundary layers within the solution. The coupling

between equations further increases complexity, as the dynamics of one variable directly affect others,

producing intricate solution behaviours.

The numerical analysis of such systems is particularly challenging due to their inherent stiffness

and multiscale features. Standard numerical methods often fail to resolve steep gradients in the layer

regions and require extremely fine meshes to maintain accuracy [3, 4]. This requirement leads to high

computational costs and numerical instability near boundary layers. This limitation leads to the devel-

opment of specialised numerical techniques based on adaptive mesh refinement to give stable and

accurate results for all values of the perturbation parameter [5]. The articles [50, 51, 269, 52] present

a systematic survey of earlier developments in numerical methods for a wide range of problems.

In recent years, adaptive mesh generation has become an essential tool for the numerical solution

of singular perturbation problems [192, 270]. In [271], the authors conducted a comprehensive nu-

merical study using FEMs for such systems. The study aimed to identify higher-order methods that

converge exponentially, independent of perturbation parameters, even when boundary layers overlap.

In [272], the authors introduced a nonsymmetric discontinuous Galerkin method with interior penalties

(NIPG) on a Shishkin mesh. They proved uniform convergence in the (ε − µ)-weighted discontin-

uous Galerkin norm and demonstrated the method’s effectiveness through numerical experiments.

In [273], researchers considered a system of coupled singularly perturbed reaction-diffusion equa-

27
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tions. They discretised the problem using a weak Galerkin FEM (WG-FEM) on Shishkin mesh. In

[274], the authors employed a FEM using piecewise quadratic splines to solve a system of linear cou-

pled reaction-diffusion equations. Numerical methods based on adaptive mesh generation using the

equidistribution principle have been effectively used to solve singular perturbation problems [275, 276,

277, 278]. In [279], the authors proposed a hybrid FDM of higher order for nonlinear systems with

distinct perturbation parameters. They proposed a hybrid FDM over a layer adaptive mesh, for which

they derived an a posteriori error estimate in the maximum norm. The layer-adapted meshes use the

equidistribution principle. In a similar study, the authors in [280] provide optimal error estimates using

the mesh equidistribution technique for a class of singularly perturbed systems of reaction-diffusion

equations. An analysis of the robust uniformly convergent method for a singularly perturbed linear sys-

tem of reaction-diffusion equations having nonsmooth data was presented in [281]. A classical FDM

is combined with Shishkin and graded Bakhvalov meshes. Their method accounted for interior layers

near discontinuities, resulting in second-order uniform convergence. While [282] presents a uniformly

convergent method on a piecewise uniform Shishkin mesh for boundary value problems involving a

system of two singularly perturbed coupled reaction-diffusion equations. In [283], the authors consider

a similar system with discontinuous source terms. In another study [284], the authors developed a

hybrid numerical method combining cubic spline methods in fine mesh regions and central difference

methods in coarse mesh regions. They achieved uniform stability and second-order convergence.

These studies demonstrate that careful selection of discretisation and mesh adaptation strategies

leads to robust numerical methods capable of accurately solving systems of singularly perturbed

reaction-diffusion equations. Many articles focus on singularly perturbed boundary value problems. In

contrast, the results for boundary value problems involving a system of singularly perturbed reaction-

diffusion equations are limited and require further study. This chapter presents a higher-order hybrid

difference method to solve a coupled system of singularly perturbed reaction-diffusion equations on an

equidistributed mesh. The hybrid method effectively captures the multiscale behaviour of the solution

and improves the accuracy of the numerical results while preserving computational efficiency. Further-

more, the chapter provides a rigorous theoretical error analysis and presents numerical experiments

for some model problems to validate the theoretical estimates.

2.2 Continous Problem

Consider the system of singularly perturbed reaction-diffusion equations given belowLy(x) := −εy′′(x)+By(x) = g(x), x ∈ Ω = (0,1)

y(0) = φφφ , y(1) =ψψψ

(2.2.1)

where 0 < ε ≪ 1 is the perturbation parameter, y(x) = (y1(x),y2(x))T and B = (bm j(x))2×2 is an

L0-matrix. The source vector g(x) = (g1(x),g2(x))T and the given data bm j(·) are sufficiently smooth



29

functions defined in Ω̄. Besides, for every m and j

bmm > 0,
2

∑
j=1
j ̸=m

∥∥∥∥ bm j(x)
bmm(x)

∥∥∥∥< 1 and bm j ≤ 0 ∀ m ̸= j, m, j = 1,2. (2.2.2)

where ||.|| represents the maximum norm on Ω. The above hypotheses ensure that (2.2.1) admits a

unique solution y = (y1,y2)
T ∈

(
C2(Ω)∩C(Ω̄)

)
[5].

2.3 Properties of the Solution

In this section, we begin our analysis by studying some analytical properties of the solution y that

can be derived from the maximum principle and establish the stability of the differential operator [128].

The differential operator L = (L1,L2)
T satisfies the maximum principle [285].

Lemma 2.3.1. If Ly ≥ 0 on Ω and y(0)≥ 0, y(1)≥ 0. Then y(x)≥ 0 on Ω̄.

Proof. Let p,q ∈ Ω be such that y1(p) = min
x∈Ω̄

{y1(x)} and y2(q) = min
x∈Ω̄

{y2(x)}. Without loss of gen-

erality, assume that y1(p) ≤ y2(q) and let y1(p) < 0. Clearly p ̸= {0,1}, y′1(p) = 0, and y′′1(p) ≥ 0.
Then

L1y(p)≡−εy′′1(p)+b11y1(p)+b12y2(p)

=−εy′′1(p)+(b11 +b12)y1(p)+b12(y2(p)− y1(p))< 0.

A contradiction to the assumption, and hence it follows that y(x)≥ 0, ∀ x ∈ Ω̄.

We can directly derive the following estimate as an immediate consequence of the maximum princi-

ple.

Lemma 2.3.2. Let y(x) be any smooth function. Then

∥y(x)∥ ≤ max{∥y(0)∥,∥y(1)∥,max
x∈Ω̄

∥L1y∥,max
x∈Ω̄

∥L2y∥}, ∀ x ∈ Ω̄. (2.3.1)

Using the stability property of the scalar differential operator, we now estimate the stability of the

operator L in the next lemma.

Lemma 2.3.3. Let y be the solution of (2.2.1) and (2.2.2) hold on Ω̄. Then y satisfies the following
stability estimate:

∥ym∥ ≤
2

∑
j=1

(Υ−1)m j

∥∥∥ g j

b j j

∥∥∥, m = 1,2

where Υ :=Υ(B)= (γm j)2×2 such that γmm = 1 and γm j =−
∥∥∥ bm j

bmm

∥∥∥ for m ̸= j.

Proof. Let y := u+v where the components u and v satisfy

−εu′′m +bmmum = gm on Ω, um(0) = ym(0), um(1) = ym(1) and
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−εv′′m +bmmvm =−
2

∑
j=1
j ̸=m

bm jy j on Ω, vm(0) = 0,vm(1) = 0.

Lemma 2.3.2 and the triangle inequality lead to

∥um∥ ≤
∥∥∥∥ gm

bmm

∥∥∥∥ , and

∥vm∥ ≤
2

∑
j=1
j ̸=m

∥∥∥ bm j

bmm

∥∥∥∥y j∥, for m = 1,2.

Since, ∥ym∥ ≤ ∥um∥+∥vm∥, we get

∥ym∥−
2

∑
j=1
j ̸=m

∥∥∥ bm j

bmm

∥∥∥∥y j∥ ≤
∥∥∥ gm

bmm

∥∥∥, m = 1,2.

Since, matrix B satisfies (2.2.2), the matrix Υ =Υ(B) is a diagonally dominant L0-matrix. Hence,
Υ is inverse monotone and

∥ym∥ ≤
2

∑
j=1

(Υ−1)m j

∥∥∥ g j

b j j

∥∥∥, m = 1,2.

The stability of the differential operator L established in Lemma 2.3.3, coupled with the standard

maximum principle in Lemma 2.3.1, guarantees the existence of a unique solution y ∈ C4(Ω̄)2. To

facilitate the analysis of the numerical discretisation of (2.2.1), we establish a priori bounds on the

derivatives of the solution yyy as follows.

Lemma 2.3.4. Let y be the solution of (2.2.1) and ω ∈ (0,1)⊂R be such that
2

∑
j=1
j ̸=m

∥∥∥∥ bm j

bmm

∥∥∥∥< ω < 1 for

m = 1,2. Then, for k = 0, . . . ,4

|y(k)m (x)| ≤C
(

1+ ε
− k

2

(
e

(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

)))
, ∀ x ∈ Ω̄, (2.3.2)

where ρ = ρ(ω) := (1−ω) min
m=1,2

min
x∈[0,1]

(bmm(x))> 0.

Proof. We establish (2.3.2) by induction on k, the case k = 0 being immediate from Lemma 2.3.3. For
k > 1, differentiate (2.2.1) k-times to get

−εy(k+2)+By(k) = g(k)−
k−1

∑
s=0

(
k
s

)
B(k−s)y(s) = fk,

where fk = ( fk,1, fk,2)
T . Let |y(s)m (x)| ≤C

(
1+ ε

− k
2

(
e

(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

)))
:= B̂k for all s ≤

k−1. Consequently, | fk,m(x)| ≤CB̂k−1(x) for m= 1,2. For x∈ Ω̄, define ŷ(x) := y(k)(x)
B̂k(x)

. Using Lemma
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2.3.2 along with the M-matrix criterion [286], we obtain ∥ŷ∥ ≤ C. Hence, from the definition of ŷ, it
follows that

|y(k)m (x)| ≤C

(
1+ ε

− k
2

(
e

(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

)))
, ∀ x ∈ Ω̄.

2.4 Solution Decomposition

The standard decomposition of the solution plays a crucial role in the convergence analysis of nu-

merical methods for singularly perturbed problems. Therefore, we decompose the solution of (2.2.1)

into smooth and layer parts as y = u+v. where the smooth component u = (u1,u2)
T satisfy

Lu(x) = g(x), x ∈ Ω; u(0) = B(0)−1g(0), u(1) = B(1)−1g(1), (2.4.1)

and the layer part v = (v1,v2)
T satisfies

Lv(x) = 0, x ∈ Ω; v(0) = y(0)−u(0), v(1) = y(1)−u(1). (2.4.2)

Following this, we use a proposition from [107] stated below and a standard factorisation to estimate

precise bounds on the components and their derivatives.

Proposition 2.4.1. Let µ > 0 and I = [χ,χ +µ] be an arbitrary interval. If 𭟋 ∈C2(I), then

∥∥𭟋′∥∥
I ≤

2
µ

∥∥𭟋∥∥I +
µ

2

∥∥𭟋′′∥∥
I.

Lemma 2.4.1. Let y = u+ v be the solution of (2.2.1) where u and v satisfy (2.4.1) and (2.4.2),
respectively. Then, the smooth part u = (u1,u2)

T satisfies∥∥∥u(k)m

∥∥∥≤C
(

1+ ε
(2−k)

2

)
, k = 0, . . . ,4, m = 1,2,

and the layer component v = (v1,v2)
T satisfies

∥∥∥v(k)m

∥∥∥≤Cε
− k

2

(
e
(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

))
, k = 0, . . . ,4, m = 1,2, and x ∈ Ω.

Proof. Writing u(x) as an asymptotic series expansion that reads

u(x) = u0(x)+ εu1(x)+ ε
2u∗

2(x) =
(
u0,1(x)+ εu1,1(x)+ ε

2u∗2,1(x),u0,2(x)+ εu1,2(x)+ ε
2u∗2,2(x)

)T
.
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Substituting u(x) in (2.2.1) and equating coefficients of like powers of ε , we get

B(x)u0(x) = g(x)⇒

{
b11(x)u0,1(x)+b12(x)u0,2(x) = g1(x),

b21(x)u0,1(x)+b22(x)u0,2(x) = g2(x),

B(x)u1(x) = u′′
0(x),

Lu∗
2(x) = u′′

1(x), u∗
2(0) = 0, u∗

2(1) = 0.

Then, from Lemma 2.3.3, it follows∥∥∥u(k)m

∥∥∥≤C, k = 0,1,2, m = 1,2.

Next, differentiate Lu = g twice to obtain
∥∥∥u(iv)m

∥∥∥ ≤ Cε−1, m = 1,2. Then, for I ⊆ [0,1], Proposition

2.4.1 with 𭟋= u′′m and µ = ε
1
2 yields ∥u′′′m∥ ≤Cε−

1
2 , m = 1,2.

Now, to obtain bounds on the layer part v, it is further decomposed as v(x) = v−(x)+v+(x) where
the left layer part v−(x) = (v−1 (x),v

−
2 (x))

T satisfy

Lv−(x) = 0, x ∈ Ω, v−(0) = v(0), v−(1) = 0, (2.4.3)

and the right layer part v+(x) = (v+1 (x),v
+
2 (x))

T satisfy

Lv+(x) = 0, x ∈ Ω; v+(0) = 0, v+(1) = v(1). (2.4.4)

Using the method of asymptotic expansions, we get

v−m(x) =
2p+1

∑
s=0

ε
s
2 v−s,m(x)+ ε

p+1v∗−2(p+1),m, m = 1,2, and (2.4.5)

v+m(x) =
2p+1

∑
s=0

ε
s
2 v+s,m(x)+ ε

p+1v∗+2(p+1),m, m = 1,2. (2.4.6)

For the left boundary layer v−, stretch the variable using the coordinate transformation ξ =
x√
ε

and

using Taylor series expansion of B(
√

εξ ) to define L̂ =− d2

dξ 2 +B(0)I. Then, from (2.4.3)

L̂v−0 (ξ ) = 0, v−0 (0) =−u−
0 (0) and lim

ξ→∞

v−0 (ξ ) = 0,

L̂v−s (ξ ) =−∑
s
j=1

ξ j

j! B j(0)v−s− j(ξ ),

v−s =−u−
s (0), lim

ξ→∞

v−s (ξ ) = 0, s = 1, ...,2k+1

and  Lv∗−2p+2(x) =−ε−(p+1)L
(

v−0 + · · ·+ ε
(2p+1)

2 v−2p+1

)
(x),

v∗−2p+2(0) = 0, v∗−2p+2(1) =−ε−(p+1)
(

v−0 + · · ·+ ε
(2p+1)

2 v−2p+1

)
(1).
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Thus, from Lemma 2.3.3, it follows that v−m satisfies

∣∣v−m(0)∣∣<C,
∣∣v−m(1)∣∣<Ce

(
−
√

ρ

ε

)
, and

∣∣∣(v−m)(k)(x)∣∣∣≤Cε
− k

2 e
(
−
√

ρ

ε
x
)
, m = 1,2.

Similarly, we can establish the derivative bounds for the right layer part v+m to complete the proof.

2.5 Mesh Structure

The development of the adaptive numerical method relies on an adaptive mesh generation algorithm

that automatically identifies the basic characteristics of the boundary layers through an equidistribution

principle. Following [276, 277], we consider a positive monitor function

M = β +
∣∣v′′1∣∣ 1

4 +
∣∣v′′2∣∣ 1

4 , (2.5.1)

where v1 and v2 are the layer parts of the solution y = (y1,y2)
T and β is a positive constant. Earlier

work [110, 119, 278, 287] shows that one should choose the least value of the monitor function with

caution to improve convergence. By choosing an appropriate floor value β , the mesh prevents the

clustering of points within the layers and ensures the proper distribution of the mesh points outside the

layers.

Using the derivative bound of v(x) in Lemma 2.4.1 yields an approximation of v′′m(x), m = 1,2 given

by

v′′m(x)≈


α0

ε
e
(
−x
√

ρ

ε

)
, x ∈

[
0, 1

2

]
,

α1

ε
e
(
−(1−x)

√
ρ

ε

)
, x ∈

(1
2 ,1
]
,

where α0 and α1 are constants. Imitating the analysis from [277, 287, 278], we have

∫ 1

0

(∣∣v′′1(x)∣∣ 1
2 +
∣∣v′′2(x)∣∣ 1

2

)
dx ≡ Ψ ≈ 4

4
√

ρ

(
|α0|

1
4 + |α1|

1
4

)
. (2.5.2)

Now using (2.5.1) to obtain a map

β

Ψ
x(ξ )+µ0

(
1− e

(
− x(ξ )

4

√
ρ

ε

))
= ξ

(
β

Ψ
+1
)
, x(ξ )≤ 1

2
, (2.5.3)

and
β

Ψ
(1− x(ξ ))+µ1

(
1− e

(
− (1−x(ξ ))

4

√
ρ

ε

))
= (1−ξ )

(
β

Ψ
+1
)
, x(ξ )>

1
2
,

where µ0 =
|α0|

1
4

|α0|
1
4 + |α1|

1
4

and µ1 =
|α1|

1
4

|α0|
1
4 + |α1|

1
4
= 1−µ0.

Given the relation between uniform mesh

{
ξi =

i
N

}N

i=0
and adaptive mesh {xi}N

i=0, the required
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nonuniform mesh is given by

β

Ψ
xi +µ0

(
1− e

(
− xi

4

√
ρ

ε

))
=

i
N

(
β

Ψ
+1
)
, xi ≤

1
2
, (2.5.4)

and
β

Ψ
(1− xi)+µ1

(
1− e

(
− (1−xi)

4

√
ρ

ε

))
=

(
1− i

N

)(
β

Ψ
+1
)
, xi >

1
2
. (2.5.5)

Next, for an appropriate β , we examine the structure of the generated mesh and illustrate its distribu-

tion.

Lemma 2.5.1. Let β = Ψ. Then

xkl < 4
√

ε

ρ
logN < xkl+1 , and xkr−1 < 1−4

√
ε

ρ
logN < xkr ,

where

kl =

[
µ0

2
(N −1)+2

√
ε

ρ
N logN

]
,

kr =

[
N −

(
µ1

2
(N −1)+2

√
ε

ρ
N logN

)]
+1,

Here, [·] represents the integral part of the term. Furthermore,

e
(
− xi

4

√
ρ

ε

)
≤CN−1, i ≥ kl −1, xi ≤

1
2
,

e
(
− (1−xi)

4

√
ρ

ε

)
≤CN−1, i ≤ kr, xi >

1
2
.

Proof. Substitute xi = 4
√

ε

ρ
log N in (2.5.4) and solve for i to find kl . Using (2.5.5) we can similarly

compute kr.

Setting β = Ψ aligns the equidistributed mesh with some features of a priori mesh. However, ex-

ponential stretching within layers reduces discretisation error, enhancing accuracy [288, 277]. Next,

we obtain bounds on the mesh width in the layer region
(
{xi}kl−1

i=0 and{xi}N
i=kr+1

)
and the outer region

({xi}kr
i=kl

).

Lemma 2.5.2. For i = 1, . . . ,kl ∪ i = kr +1, . . . ,N, the mesh width in the boundary layer part satisfies

hi < 4C
√

ε

ρ
. Furthermore

∣∣hi+1 −hi
∣∣≤{Ch2

i ,

Ch2
i+1,

i = 1, . . . ,kl −1,

i = kr +1, . . . ,N −1.

Proof. We prove the result for the left layer region. The result for the right layer region follows analo-
gously. Imitating the steps from [ [278], Lemma 3.2] we use (2.5.4) to xi > xi such that

e
(
− xi

4

√
ρ

ε

)
= 1− 2i

µ0N
.
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A rearrangement of terms yields

xi < xi =−4
√

ε

ρ
log
(

1− 2i
µ0N

)
.

Using xi into (2.5.4) to compute

xi > xi =−4
√

ε

ρ
log
(

1− 1
µ0

(
2i
N

+4
√

ε

ρ
log
(

1− 2i
µ0N

)))
.

Thus, for i = 1, . . . ,kl

hi = xi − xi−1 < xi − xi−1 = 4
√

ε

ρ
log

1+
2+4

√
ε

ρ
N log

(
µ0N

µ0N−2(t−1)

)
µ0N −2t

< 4C
√

ε

ρ
.

Moreover, note that

|hi+1 −hi|
h2

i
≤

2
∣∣∣xξ ξ

(
θ
(1)
i

)∣∣∣(
xξ

(
θ
(2)
i

))2 , where θ
(1)
i ∈ (ξi−1,ξi+1) and θ

(2)
i ∈ (ξi−1,ξi) .

Then, from (2.5.3) and β = Ψ, we obtain

xξ (θ) =
8
√

ε

ρ

4
√

ε

ρ
+µ0e

(
− x(θ)

4

√
ρ

ε

) , and xξ ξ (θ) =
16µ0

√
ε

ρ
e
(
− x(θ)

4

√
ρ

ε

)
(

4
√

ε

ρ
+µ0e

(
− x(θ)

4

√
ρ

ε

))3 .

This implies that

|hi+1 −hi|
h2

i
≤

µ0

√
ρ

ε

(
4
√

ρ

ε
+µ0e

(
− xi−1

4

√
ρ

ε

))2

4
(

4
√

ρ

ε
+µ0e

(
− xi+1

4

√
ρ

ε

))3 ≤C.

The following lemma generalises the bounds on hi across the entire domain.

Lemma 2.5.3. For i = 1, . . . ,N, the width of the adaptive mesh satisfies hi ≤CN−1.

Proof. Use (2.5.1) and (2.5.2) with β = Ψ to obtain
∫ 1

0
M(x,y(x))dx ≤Cβ . Finally, the equidistribu-

tion principle yields βhi ≤
∫ xi

xi−1

M(x,y(x))dx =
1
N

∫ 1

0
M(x,y(x))dx ≤CβN−1.

2.6 The Difference Method

We now describe the difference approximation of (2.2.1) on the adaptive mesh Ω̄N
E ≡ {0 = x0 < x1 <

· · · < xN = 1}. We employ the fourth-order Hermite difference method for discretising the boundary

layer region of the mesh and the central difference method for the outer layer region. Then, the discrete



36

problem corresponding to (2.2.1) takes the following form.

[
LNY

]
i ≡− ε

[
δ

2
x Y
]

i +[Γ(BY)]i = [Γg]i , i = 1, ...,N −1,

Y0 = φφφ , YN =ψψψ

where, [
δ

2
x f
]
=

2
hi +hi+1

(
fi+1 − fi

hi+1
− fi − fi−1

hi

)
, and

[Γf] = q−i fi−1 +qc
i ft +q+i fi+1.

By rearranging the terms, the tri-diagonal form of the hybrid difference approximation is as follows

[
LNY

]
i = [Γg]i

⇔



[
LN

1 Y
]

i ≡ r−1,iY1,i−1 + rc
1,iY1,i + r+1,iY1,i+1 +q−i b12,i−1Y2,i−1+

qc
i b12,iY2,i +q+i b12,i+1Y2,i+1 = q−i g1,i−1 +qc

i g1,i +q+i g1,i+1,[
LN

2 Y
]

i ≡ r−2,iY2,i−1 + rc
2,iY2,i + r+2,iY2,i+1 +q−i b21,i−1Y1,i−1+

qc
i b21,iY1,i +q+i b21,i+1Y1,i+1 = q−i g2,i−1 +qc

i g2,i +q+i g2,i+1,

for i = 1, . . . ,N −1,

Y1,0 = φ1, Y1,N = ψ1, Y2,0 = φ2, Y2,N = ψ2,

(2.6.1)

where LN = (L1,L2)
N , Y = (Y1,Y2)

T , gi = (g1,i,g2,i)
T and [Γ(gm)]i = q−i gm,i−1 + qc

i gm,i + q+i gm,i+1.

The coefficients r∗m,i, m = 1,2, i = 1, . . . ,N −1, ∗=−,c,+ are given by


r−m,i =

−2ε

hi (hi+1 +hi)
+q−i bmm (xi−1) , rc

m,i =
2ε

hi+1hi
+qc

i bmm (xi) ,

r+m,i =
−2ε

hi+1 (hi+1 +hi)
+q+i bmm (xi+1) ,

(2.6.2)

The coefficients of the fourth-order Hermite difference method satisfy the normalisation condition q−i +

qc
i +q+i = 1 to ensure that the method is exact for polynomials up to degree four. Thus, based on the

location of the mesh points xi which partition the domain [0,1], the coefficients q∗i , i = 1, . . . ,N − 1,

∗=−,c,+ are given as follows:

1. In boundary layer region of the mesh, the coefficients q∗i , ∗ = −,c,+, i = {1, . . . ,kl − 1} and

i = {kr +1, . . . ,N −1} are given by

q−i =
h2

i +hihi+1 −h2
i+1

6hi (hi+1 +hi)
, qc

i =
h2

i +3hihi+1 +h2
i+1

6hihi+1
, q+i =

h2
i+1 +hihi+1 −h2

i

6hi+1 (hi+1 +hi)
. (2.6.3)

2. In the outer layer region of the mesh, the coefficients q∗i , ∗=−,c,+, i = {kl, . . . ,kr} depend on

the relation between hmax and ε , such that for a positive constant k independent of N and ε , we

have

• If kh2
max∥bmm∥∞ > ε , the central difference method is used and the coefficients q∗i , ∗ =
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−,c,+, i = {kl, . . . ,kr} are given by

q−i = 0, qc
i = 1, q+i = 0. (2.6.4)

• If kh2
max∥bmm∥∞ ≤ ε , the fourth-order Hermite difference method is used and the coefficients

q∗i , ∗=−,c,+, i = {kl, . . . ,kr} are given by the relation (2.6.3).

The following lemma establishes that the associated coefficient matrix of the discrete hybrid operator

LN satisfies the M-matrix criteria.

Lemma 2.6.1. Let N0 be the smallest positive integer such that

8∥bmm∥∞

ρ
< 3(ζ N0)

2 , (2.6.5)

where ζ = min
{

µ0,µ1
}

. Then, for every N ≥ N0, the coefficients of the discrete hybrid operator LN

in (2.6.1) satisfy

rc
m,i > 0, r−m,i < 0, r+m,i < 0, rc

m,i + r−m,i + r+m,i > 0, i = 1, . . . ,N −1, m = 1,2.

Proof. 1. In the boundary layer part
(
{xi}kl−1

i=1 and {xi}N−1
i=kr+1

)
, the coefficients of the fourth-order

Hermite difference method are given by (2.6.2)–(2.6.3). Using Lemma 2.5.2 and (2.6.5), we have

rc
m,i =

2ε

hihi+1
+

h2
i +3hihi+1 +h2

i+1

6hihi+1
bmm(xi)> 0,

r−m,i =
−2ε

hi (hi +hi+1)
+

h2
i +hihi+1 −h2

i+1

6hi (hi +hi+1)
bmm(xi−1)

=
1

hi (hi +hi+1)

(
−2ε +

h2
i +hihi+1 −h2

i+1

6
bmm(xi−1)

)
<

1
hi (hi +hi+1)

(
−2ε +

16C2

6

(
ε

ρ

)
∥bmm∥∞

)
<

1
hi (hi +hi+1)

(
−2ε +C2

ε (ζ N0)
2
)
< 0.

Similarly, r+m,i < 0. Moreover, under the influence of assumption bmm ≥ ρ > 0, for m = 1,2, the
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row sum is given as

rc
m,i + r−m,i + r+m,i =

h2
i +hihi+1 −h2

i+1

6hi (hi+1 +hi)
bmm(xi−1)+

h2
i +3hihi+1 +h2

i+1

6hihi+1
bmm(xi)

+
h2

i+1 +hihi+1 −h2
i

6hi+1 (hi+1 +hi)
bmm(xi+1)

≥
h2

i +3hihi+1 +h2
i+1

6hihi+1
ρ

+
ρ

6(hi +hi+1)

(
h2

i hi+1 +hih2
i+1 −h3

i+1 +hih2
i+1 +h2

i hi+1 −h3
i

hihi+1

)

=
h2

i +3hihi+1 +h2
i+1

6hihi+1
ρ +

ρ

3
−

h2
i −hihi+1 +h2

i+1

6hihi+1
ρ

=
4hihi+1

6hihi+1
ρ +

ρ

3
=

2ρ

3
+

ρ

3
= ρ > 0.

2. In the outer layer
(
{xi}kr

i=kl

)
, the coefficients of hybrid difference discretisation are defined on the

basis of a relation between hmax and ε such that

• If kh2
max∥bmm∥∞ > ε , then the coefficients of central difference approximation given by 2.6.2

and 2.6.4 satisfy
rc

m,i > 0, r−m,i < 0, and r+m,i < 0.

Also,

r−m,i + rc
m,i + r+m,i =

−2ε

hi (hi+1 +hi)
+

2ε

hi+1hi
+bmm (xi)+

−2ε

hi+1 (hi+1 +hi)

= bmm(xi)≥ ρ > 0.

• If kh2
max∥bmm∥∞ ≤ ε , the application of fourth-order Hermite method whose coefficients are

given by 2.6.2 and 2.6.3, we have

r−m,i =
−2ε

hi (hi +hi+1)
+

h2
i +hihi+1 −h2

i+1

6hi (hi +hi+1)
bmm(xi−1)

=
1

hi (hi +hi+1)

(
−2ε +

h2
i +hihi+1 −h2

i+1

6
bmm(xi−1)

)
.

Using hi ≤ hmax, hi+1 ≤ hmax and bmm(xi−1)≤ ∥bmm∥∞, we get

r−m,i <
1

hi (hi +hi+1)

(
−2ε +

h2
max∥bmm∥∞

6

)
<

1
hi (hi +hi+1)

(−2ε + ε)< 0.

Similarly, rc
m,i < 0, r+m,i < 0 and r−m,i + rc

m,i + r+m,i ≥ ρ > 0.

As a result, we conclude that the coefficient matrix associated with the hybrid difference discretisation
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(2.6.1) satisfies the M-matrix criterion. Consequently, the hybrid difference operator LN satisfies the

discrete maximum principle as follows.

Lemma 2.6.2. Assume that the mesh function J = (J1,J2)
T satisfies J(x0) ≥ 0 and J(xN) ≥ 0. If

LNJ(xi)≥ 0, ∀ i = 1, . . . ,N −1 then J(xi)≥ 0, ∀ i = 0, . . . ,N.

Proof. Let min
m=1,2

{
Jm(xk)

}
= min

m=1,2

(
min

k

{
Jm(xk)

})
< 0 for some k. Without loss of generality, assume

that J1(xk)≤ J2(xk). Certainly, k /∈ {0,N}. Subsequently, r−1,k < 0,r+1,k < 0 and q−k > 0,qc
k > 0,q+k > 0,

hence
LN

1 J(xk)≡ r−1,kJ1,k−1 + rc
1,kJ1,k + r+1,kJ1,k+1 +q−k b12(xk−1)J2,k−1+

qc
kb12(xk)J2,k +q+k b12(xk+1)J2,k+1 < 0,

A contradiction to the assumption, and hence it follows that J(xi)≥ 0,0 ≤ i ≤ N.

Next, we verify the stability of the discrete hybrid operator LN using the discrete maximum principle.

Lemma 2.6.3. Assume that the mesh function J = (J1,J2)
T satisfies J0 = JN = 0. Then

∥J∥
Ω

N
E
≤C

∥∥LNJ
∥∥

Ω
N
E
.

Proof. Set C1 =C
∥∥LNJ

∥∥
Ω

N
E

to obtain the barrier functions J±i =
(

J±1,i,J
±
2,i

)T
defined as J±m,i =C1±Jm,i

∀ i = 0, . . . ,N, m = 1,2. Then, for i = 1, . . . ,N −1, J±0 ≥ 0, J±N ≥ 0 and

LNJ±i = LN
(

C1 ± J1,i

C1 ± J2,i

)
=C1

(
b11 +b12

b21 +b22

)
±LN

(
J1i

J2i

)
≥C

(
b11 +b12

b21 +b22

)∥∥LNJ
∥∥

Ω
N
E
−
∣∣LNJi

∣∣≥ 0.

Then, for i = 1, . . . ,N −1, J±i ≥ 0.

2.7 Error Analysis

In this section, we investigate the order of accuracy of the proposed hybrid difference discretisation

of (2.2.1) on the adaptive generated mesh. As in Section 2.4, we decompose the discrete approximate

solution Y of (2.2.1) into smooth and layer part as Y=U+V, where the smooth component U satisfies

[
LNU

]
i = [Γg]i , i = 1, . . . ,N −1, where U0 = u(0), and UN = u(1),

while the layer part V satisfies

[
LNV

]
i = 0, i = 1, . . . ,N −1, where V0 = v(0), and VN = v(1).

Then, at each xi, the error associated Yi satisfies

∥∥Yi −y(xi)
∥∥≤ ∥∥Ui −u(xi)

∥∥+∥∥Vi −v(xi)
∥∥. (2.7.1)
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Thus, the consistency error estimation of the numerical solution can be done by estimating the errors

associated with the smooth and layer parts. We begin the analysis with the smooth part.

Lemma 2.7.1. The smooth component u of the solution y and its discrete approximation U satisfies

∥∥LN (U−u)(xi)
∥∥≤CN−4, i = 1, . . . ,N −1.

Proof. 1. When i = {1, . . . ,kl − 1} and i = {kr + 1, . . . ,N − 1}, for m = 1,2, the hybrid difference
approximation is obtained using the fourth-order Hermite difference method. Then, the Taylor
expansion yields∥∥LN

m (U−u)(xi)
∥∥= ∣∣(Lm −LN

m
)

u(xi)
∣∣ , m = 1,2,

≤Cε |hi+1 −hi|(hi +hi+1)
2
∥∥∥u(v)m (x)

∥∥∥
[xi−1,xi+1]

+Cε
(
h4

i +h4
i+1
)∥∥∥u(vi)

m (x)
∥∥∥
[xi−1,xi+1]

≤Cε
1/2|hi+1 −hi|(hi +hi+1)

2 +C
(
h4

i +h4
i+1
)
.

Using the bounds of Lemmas 2.4.1, 2.5.2 and 2.5.3 with the assumption that
√

ε ≪ N−1 , we get

∥∥LN
m (U−u)(xi)

∥∥≤CN−4, m = 1,2.

2. When i = {kl, . . . ,kr}, the hybrid difference approximation depends on a relation between hmax

and the parameter ε such that

• When kh2
max∥bmm∥∞ > ε , using the central difference method to approximate the solution,

the Taylor expansion with integral remainder yields

∥∥LN
m (U−u)(xi)

∥∥= ∣∣(Lm −LN
m
)

u(xi)
∣∣≤Cεh2

i

∥∥∥u(iv)m (x)
∥∥∥
[xi−1, xi+1]

, m = 1,2.

Using Lemmas 2.4.1 and 2.5.3 and the assumption that
√

ε ≪ N−1, we obtain

∥∥LN (U−u)(xi)
∥∥≤CN−4, m = 1,2, i = kl, . . . ,kr.

• When kh2
max∥bmm∥∞ ≤ ε , using fourth-order Hermite difference method to approximate the

solution. Then, the Taylor expansion combined with the bounds of Lemma 2.4.1 and Lemma
2.5.3 yields

∥∥LN
m (U−u)(xi)

∥∥= ∣∣(Lm −LN
m
)

u(xi)
∣∣≤Cεh2

i

∥∥∥u(iv)m (x)
∥∥∥
[xi−1, xi+1]

≤CN−4.

Lemma 2.7.2. The layer component v of the solution y and its discrete approximation V satisfies

∥∥LN (V−v)(xi)
∥∥≤CN−4, i = 1, . . . ,N −1.

Proof. 1. When i = {1, . . . ,kl −1} and i = {kr +1, . . . ,N −1}, for the left segment of the boundary
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layer region, Taylor expansions yield∥∥LN
m (V−v)

∥∥= ∣∣(Lm −LN
m
)

v(xi)
∣∣

≤Cε |hi+1 −hi|(hi +hi+1)
2
∥∥∥v(v)m (x)

∥∥∥
[xi−1,xi+1]

+Cε
(
h4

i +h4
i+1
)∥∥∥v(vi)

m (x)
∥∥∥
[xi−1,xi+1]

≤Cεh4
i

∥∥∥v(v)m (x)
∥∥∥
[xi−1,xi+1]

+Cεh4
i

∥∥∥v(vi)
m (x)

∥∥∥
[xi−1,xi+1]

Now, using Lemma 2.4.1, Lemma 2.5.2, we get

∣∣LN
m (V−v)(xi)

∣∣≤Cε
− 3

2 h4
i e
(
−xi

√
ρ

ε

)
+Cε

−2h4
i e
(
−xi

√
ρ

ε

)
≤Cε

−1/2
Ψ

4N4 +C−1
ε
−1

Ψ
4N−4 ≤CN−4.

Similarly, we can estimate the result for the right segment of the boundary layer region, and the
desired result follows immediately.

2. When i = {kl, . . . ,kr}, the hybrid difference method depends on a relation between hmax and the
perturbation parameter ε such that

• When kh2
max∥bmm∥∞ > ε , Taylor expansion with integral remainder yield

∥∥LN
m (V−v)(xi)

∥∥= ∣∣(Lm −LN
m
)

v(xi)
∣∣≤Cε

∥∥v′′m(x)
∥∥
[xi−1, xi+1]

, m = 1,2.

Now the derivative bounds derived in Lemma 2.4.1 yield

∥∥LN (V−v)(xi)
∥∥≤C

e
(
−xi−1

√
ρ

ε

)
,

e
(
−(1−xi+1)

√
ρ

ε

)
,

xi ≤
1
2
,

xi >
1
2
.

For i ≥ kl −1 and xi ≤ 1
2 , Lemma 2.5.1 suggests

∥∥LN (V−v)(xi)
∥∥≤Ce

(
−xkl−1

√
ρ

ε

)

=C
(

e
(
−

xkl−1
4

√
ρ

ε

))2

≤CN−4.

• When kh2
max∥bmm∥∞ ≤ ε , Taylor expansion with the bounds of Lemma 2.4.1 and Lemma

2.5.3 yields∥∥LN
m (V−v)(xi)

∥∥= ∣∣(Lm −LN
m
)

v(xi)
∣∣≤Cε

∥∥v′′m(x)
∥∥
[xi−1,xi+1]

≤CN−4.

Similarly, the bounds for i ≤ kr and xi >
1
2 can be established. Thus, combining the various

estimates completes the proof.

We now summarise all the previously derived error estimates to present the main convergence result.
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The proof follows directly from Lemma 2.7.1, Lemma 2.7.2 and the triangle inequality (2.7.1).

Theorem 2.7.1. Let y be the solution of the problem (2.2.1) and Y be the solution of the problem
(2.6.1). Then, there exists a positive constant C independent of N and ε such that

∥∥y−Y
∥∥

Ω
N
E
≤CN−4.

2.8 Numerical Experiments

In this section, we examine the performance of the method using three model problems and present

numerical findings. When an exact solution to the problem is not available, we estimate the error EN
m,ε

using the double mesh principle [5], given by:

EN
m,ε = max

0≤i≤N
|Y N

m (xi)− Ŷ 2N
m (x̂2i)|, m = 1,2.

However, if the exact solution is available, we evaluate the maximum pointwise errors using the formula:

EN
m,ε = max

0≤i≤N
|Y N

m (xi)− ym(xi)|, m = 1,2.

Here, ym(xi) represents the exact solution, and Y N
m (xi) denotes the numerical solution obtained at the

mesh points xi of the adaptive mesh with N number of intervals. Moreover, we estimate the uniform

errors using EN
m =max

ε∈K
EN

m,ε where K= {ε|ε = 20,2−2, ...,2−40} and compute the order of convergence

and parameter-uniform orders of convergence using

pN
m,ε = log2

(
EN

m,ε

E2N
m,ε

)
, and pN

m = log2

(
EN

m

E2N
m

)
.

In the adaptive mesh generation process, we choose Q = 1.3. Tables 2.1 and 2.2 compares the

uniform errors and corresponding orders of convergence for the solution component Y1 and Y2, respec-

tively, obtained using the hybrid fourth-order compact difference method on the equidistributed mesh

where the test results clearly indicate that the nodal errors converge uniformly at the rate of O(N−4)

with the solution on piecewise uniform Shishkin mesh where the errors have almost third-order uniform

convergence. This further demonstrates the suitability of the equidistributed mesh in comparison to

the piecewise uniform Shishkin mesh. Utilising the transition parameter to construct the Shishkin mesh

by dividing Ω̄ = [0,1] into into three segments: [0,σ ], [σ ,1−σ ] and [1−σ ,1]. The segments [0,σ ]

and [1−σ ,1] are each subdivided into N
4 mesh intervals, while the segment [σ ,1−σ ] contains N

2

mesh intervals. In Examples 2.8.1 and 2.8.2, we set ρ = 0.9 for the Shishkin mesh construction. For

Example 2.8.2, Table 2.3 compares the maximum pointwise error and order of convergence using the

proposed method and methods in [289, 290]. Similarly, for Example 2.8.3, Table 2.4 compares the

maximum pointwise error and order of convergence using the proposed method and methods in [289,

291].

Figures 2.1 and 2.5 illustrate the numerical solution of a system of second-order reaction-diffusion
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Table 2.1: Comparison of errors EN
m and orders of convergence pN

m in approximations Ym for Example 2.8.1 with
ε = 2−32 on the equidistributed mesh and shishkin mesh.

Mesh N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
Equidistributed EN

1 1.065e−03 6.512e−05 3.919e−06 2.358e−07 1.349e−08 7.511e−10
Mesh pN

1 4.03 4.05 4.05 4.12 4.16
EN

2 8.761e−04 5.232e−05 3.104e−06 1.784e−07 1.003e−08 5.395e−10
pN

2 4.06 4.07 4.12 4.15 4.21
Shishkin EN

1 8.184e−03 1.051e−03 1.295e−04 1.554e−05 1.832e−06 2.017e−10
Mesh pN

1 2.96 3.02 3.05 3.08 3.18
EN

2 4.030e−03 5.108e−04 6.201e−05 7.479e−06 8.623e−07 9.400e−10
pN

2 2.97 3.04 3.05 3.11 3.19

equations for Example 2.8.1 with N = 128 and for Example 2.8.2 with N = 160, computed using the

proposed hybrid compact difference method. The plot shows the behaviour of the numerical solution

across the domain. The boundary layer effect is evident, highlighting the method’s ability to capture

steep gradients near the boundary. Figures 2.2 and 2.6 depict a log-log plot of the maximum point-

wise errors against the number of mesh intervals for Example 2.8.1 and 2.8.2, respectively. The plot

illustrates the error convergence rates for the two components of the solution. The linear behaviour in

the log-log plot indicates fourth-order convergence, validating the theoretical error estimates provided

in the paper.

Example 2.8.1. Consider the following system of second-order reaction diffusion equation for x∈Ω=

(0,1)

−εy′′(x)+

(
10+ e−x −6x2

−x4|x| 7+2x3

)
y(x) =

(
6+5x2

5+ x3

)
,

where y(0) = (−e/2,0) and y(1) = (0,−0.2).

Example 2.8.2. Consider the following system of second-order reaction diffusion equation for x∈Ω=

(0,1)

−εy′′(x)+

(
2(x+1)2 −(1+ x3)

−2cos
(

πx
4

)
(1+

√
2)e1−x

)
y(x) =

(
2ex

10x+1

)
,

where y(0) = 0 and y(1) = 0.

Example 2.8.3. Consider the following system of second-order reaction diffusion equation for x∈Ω=

(0,1)

−εy′′(x)+

(
1 −0.5
−2 4

)
y(x) = g(x),

where y(0) = (3,0) and y(1) = (3,0). Here, the function g(x) = (g1(x),g2(x))T is choosen such that
the exact solution of the problem reads

y1(x) =
e−

x√
ε + e−

(1−x)√
ε

1+ e−
1√
ε

+
e−

2x√
ε + e−

2(1−x)√
ε

1+ e−
2√
ε

− x+ x2 + cos2(πx),

y2(x) =
e−

x√
ε + e−

(1−x)√
ε

1+ e−
1√
ε

− e−
2x√

ε + e−
2(1−x)√

ε

1+ e−
2√
ε

+ sin(πx).
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Table 2.2: Comparison of errors EN
m and orders of convergence pN

m in approximations Ym for Example 2.8.2 with
ε = 2−32 on the equidistributed mesh and shishkin mesh.

Mesh N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
Equidistributed EN

1 8.412e−04 5.067e−05 3.015e−06 1.742e−07 1.005e−08 5.632e−10
Mesh pN

1 4.05 4.07 4.11 4.11 4.15
EN

2 7.212e−04 4.291e−05 2.489e−06 1.415e−07 7.860e−09 4.253e−10
pN

2 4.07 4.10 4.13 4.17 4.20
Shishkin EN

1 8.239e−03 1.215e−04 1.513e−05 1.859e−06 2.241e−07 2.659e−08
Mesh pN

1 2.76 3.00 3.02 3.05 3.07
EN

2 4.382e−03 6.168e−04 7.709e−05 9.493e−06 1.145e−06 1.357e−07
pN

2 2.82 3.00 3.02 3.05 3.07

Table 2.3: Comparison of errors EN
m and orders of convergence pN

m for the proposed method with [289], [290] for
Example 2.8.2 with ε = 2−32.

Method N = 64 N = 128 N = 256 N = 512 N = 1024
Proposed EN

1 8.412e−04 5.067e−05 3.015e−06 1.742e−07 1.005e−08
Method pN

1 4.05 4.07 4.11 4.11
Method EN

ε 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06
in [289] pN

ε 3.03 3.12 3.24 3.34
Method EN

ε 2.43e-01 9.88e-02 3.63e-02 1.28e-02 4.18e-03
in [290] pN

ε 1.30 1.44 1.50 1.62

Table 2.4: Comparison of errors EN
m and orders of convergence pN

m for Example 2.8.3 for the proposed method
with [291], [289] with ε = 2−12 .

Method N = 64 N = 128 N = 256 N = 512 N = 1024
Proposed EN

1 1.397e-05 1.077e-06 7.195e-08 4.575e-09 2.874e-10
Method pN

1 3.69 3.90 3.97 3.99
EN

2 4.681e-06 3.284e-07 2.123e-08 1.338e-09 8.376e-11
pN

2 3.83 3.95 3.98 3.99
Method EN

1 1.201e-1 3.127e-2 1.263e-2 3.427e-3 7.212e-4
in [291] pN

1 1.942 1.308 1.882 2.248
EN

2 2.300e-1 6.308e-2 2.540e-2 6.938e-3 1.489e-3
pN

2 1.867 1.312 1.872 2.220
Method EN

ε 7.20e-03 8.81e-04 8.82e-05 5.55e-06 3.47e-07
in [289] pN

ε 3.03 3.32 3.99 4.00
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Fig. 2.1: Numerical solution for Example 2.8.1 with N = 128 and ε = 2−36.
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Fig. 2.2: Loglog plot of maximum pointwise errors for Example 2.8.1.
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Fig. 2.3: Numerical solution for Example 2.8.2 with N = 160 and ε = 10−12.
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Fig. 2.4: Loglog plot of maximum pointwise errors for Example 2.8.2.



47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 2.5: Numerical and exact solution for Example 2.8.3 with N = 96 and ε = 10−12.
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Fig. 2.6: Loglog plot of maximum pointwise errors for Example 2.8.3.
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2.9 Conclusion

A singularly perturbed system of reaction-diffusion equations with Dirichlet boundary conditions is

solved numerically using a higher-order hybrid method over an equidistributed mesh. The proposed

method combines a fourth-order Hermite difference method with the classical central difference method

over a layer-adapted mesh. The adaptive mesh is constructed by equidistributing a nonnegative moni-

tor function that takes advantage of the derivatives of the singular component of the solution. The mesh

generation procedure does not require a priori information about the analytical behaviour of the solu-

tion. The theoretical and numerical analysis of the method confirms parameter-uniform convergence

of almost fourth order while maintaining unconditional stability. The comparative study of numerical re-

sults further suggests that the method is superior to many adaptive methods available in the literature.



Chapter 3

System of Reaction-Diffusion Equations

with Shifts

3.1 Introduction

A singularly perturbed system of reaction-diffusion equations represents a class of mathematical

models that describe the dynamics of phenomena where diffusion and reaction processes occur si-

multaneously but at significantly different rates. These systems are characterised by having one or

more small parameters relative to others, resulting in multiscale behaviour. In such systems, the dif-

fusion term dominates at one scale, while the reaction term dominates at another, leading to intricate

phenomena such as boundary layer formation and sharp transition regions [3, 5]. Singularly perturbed

systems find applications in various fields, including biology [266], chemistry [10], physics [25, 26], and

engineering [7, 9, 24], where understanding the intricate interplay between diffusion and reaction is

crucial to accurately predict system behaviour.

The analysis and solution of these systems often require specialised mathematical techniques, such

as asymptotic analysis and numerical methods tailored to handle stiffness and boundary layer phenom-

ena. Although asymptotic and numerical methods offer valuable tools for tackling singularly perturbed

systems of reaction-diffusion equations, they also have limitations [89, 5]. Asymptotic methods, such

as matched asymptotic expansions, can struggle to provide accurate solutions in regions where multi-

ple lengths or time scales interact [58]. This leads to challenges in identifying appropriate asymptotic

expansions or neglecting important terms. Additionally, these methods often rely on analytical approxi-

mations, which may not fully capture the system’s behaviour. Numerical methods also have limitations

when applied on uniform meshes [5]. The numerical methods on uniform meshes require excessively

fine meshes to accurately capture the behaviour within the boundary layers, leading to computationally

expensive simulations [5, 4]. Adaptive mesh refinement techniques address this challenge by automat-

ically increasing the mesh resolution in regions where it is needed most, such as near steep gradients

or boundary layers, while maintaining coarser meshs in smoother areas [6]. As a result, adaptive

meshes enable more efficient and accurate simulations of singularly perturbed systems, making them

49
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indispensable tools for researchers and practitioners studying these complex phenomena [5, 1].

Many authors have made efforts to develop numerically accurate techniques to solve systems in-

volving reaction-diffusion equations [292, 203]. In [291], the authors consider a coupled system of

singularly perturbed reaction-diffusion equations and present a higher-order method based on differ-

ential identity expansion defined on a Shishkin mesh. The discrete operator satisfies the maximum

principle and the method converges uniformly. In [293], the authors use a similar technique to solve

a coupled system of singularly perturbed initial value problems. In addition, the paper addresses a

system of interconnected first-order nonlinear differential equations. The nonlinear system of equa-

tions is linearised using a quasi-linearisation process, resulting in a series of linear equations. The

resultant linear equations are then solved using a higher-order differential identity expansion method

(HODIE). In [282], one can find a first-order uniform method based on the central difference method on

a Shishkin mesh. The authors in [290, 294] demonstrate that the central difference method is almost

second-order accurate. In [295], the author dealt with a relatively simple situation involving a system

of two equations. In [296], the authors present an overview of methods for solving a system of two

equations. In [297], the authors consider a system of two equations and employ the HODIE technique

to achieve uniform higher-order convergence. However, only in [297] does the order of convergence

exceed two for the system of reaction-diffusion equations. In [298], the author presents a hybrid FDM

to solve a system of reaction-diffusion equations with a negative shift. In [299], the author proposed a

parameter-uniform method for a similar system with integral boundary conditions.

The analysis of special methods for the coupled system of singularly perturbed differential equations

with shifts based on equidistributed meshs has seen limited development and lacks attention. Re-

searchers have applied algorithms based on equidistribution principles to many practical problems, but

have conducted little theoretical analysis to explain their success. The reason is primarily due to the

inherent nonlinear nature of adaptive methods. This chapter presents a higher-order hybrid approxima-

tion using splines over an adaptive mesh generated by the equidistribution of a positive monitor func-

tion. Additionally, the chapter presents rigorous theoretical analysis, establishes parameter-uniform

error estimates, and provides insight into the convergence behaviour of equidistributed meshs. Numer-

ical results and illustrations for model problems support the theoretical projections.

3.2 Continous Problem

Consider the system of singularly perturbed reaction-diffusion equations with a shift given belowLy(x) := −εy′′(x)+Ay(x)+By(x−δ ) = g(x), x ∈ Ω = (0,1)

y(x) = ρρρ(x), x ∈ [−δ ,0], y(1) = l
(3.2.1)

where 0 < ε ≪ 1 is the perturbation parameter and δ denotes the small shift of order o(ε). Here,

y(x) = (y1(x),y2(x))T , A = (am j(x))2×2 is an L0-matrix, B = diag(b1(x),b2(x)) is a diagonal matrix.

The source vector g(x) = (g1(x),g2(x))T and the given data am j(·), bm(·) and ρρρ(x) = (ρ1(x),ρ2(x))T
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are sufficiently smooth functions defined on Ω̄. Besides, for every m and j

amm > 0, bm > 0, min
{∥∥∥ am j

amm +bm

∥∥∥,∥∥∥ am j

δbm

∥∥∥}< 1 and am j ≤ 0 ∀ m ̸= j, m, j = 1,2. (3.2.2)

Since δ is of order o(ε), the Taylor’s series expansion of y(x− δ ) after neglecting the higher order

derivative terms in (3.2.1) leads toLy(x) := −εy′′(x)−δBy′(x)+(A+B)y(x) = g(x)

y(0) = ρρρ(0) = ρρρ, y(1) = l
(3.2.3)

where ||.|| represents the maximum norm on Ω. The above hypotheses ensure that the problem (3.2.1)

admits a unique solution y = (y1,y2)
T ∈

(
C2(Ω)∩C(Ω̄)

)
[5].

3.3 Properties of the Solution

In this section, we begin our analysis by studying some analytical properties of the solution yyy that

can be deduced from the standard maximum principle as shown in [128] and establish the stability of

the differential operator. The differential operator L = (L1,L2)
T satisfies the maximum principle [285].

Lemma 3.3.1. Let Ly ≥ 0 on Ω and y(0)≥ 0, y(1)≥ 0. Then y(x)≥ 0 on Ω̄.

Proof. Let p,q ∈ Ω be such that y1(p) = min
x∈Ω̄

{y1(x)} and y2(q) = min
x∈Ω̄

{y2(x)}. Without loss of gen-

erality, assume that y1(p) ≤ y2(q) and let y1(p) < 0. Clearly p ̸= {0,1}, y′1(p) = 0 and y′′1(p) ≥ 0.
Then

L1y(p)≡−εy′′1(p)−δb1y′1 +(a11 +b1)y1(p)+a12y2(p)

=−εy′′1(p)+(a11 +b1 +a12)y1(p)+a12(y2(p)− y1(p))< 0.

A contradiction to the assumption, and hence it follows that y(x)≥ 0 for all x ∈ Ω̄.

As an immediate consequence of the maximum principle, it is straightforward to obtain the following

estimate.

Lemma 3.3.2. Let y(x) be any smooth function. Then

∥y(x)∥ ≤ max{∥y(0)∥,∥y(1)∥,max
x∈Ω̄

∥L1y∥,max
x∈Ω̄

∥L2y∥}, ∀ x ∈ Ω̄. (3.3.1)

Using the stability property of the scalar differential operator, we proceed to estimate the stability of

the operator L in the following lemma.

Lemma 3.3.3. Let y be the solution of (3.2.1) and (3.2.2) hold on Ω̄. Then

∥ym∥ ≤
2

∑
j=1

(Υ−1)m j min
{∥∥∥ g j

a j j +b j

∥∥∥,∥∥∥ g j

δb j

∥∥∥}, m = 1,2
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where Υ= (γm j)2×2 such that γmm = 1 and γm j =−min
{∥∥∥ am j

amm +bm

∥∥∥,∥∥∥ am j

δbm

∥∥∥} for m ̸= j.

Proof. Let y := u+v where the components u and v satisfy

−εu′′m −δbmu′m +(amm +bm)um = gm on Ω, um(0) = ρm, um(1) = lm and

−εv′′m −δbmv′m +(amm +bm)vm =−
2

∑
j=1
j ̸=m

am jy j on Ω,vm(0) = 0,vm(1) = 0.

Lemma 3.3.2 and the triangle inequality lead to

∥ym∥−
2

∑
j=1
j ̸=m

min
{∥∥∥ am j

amm +bm

∥∥∥,∥∥∥ am j

δbm

∥∥∥}∥y j∥ ≤ min
{∥∥∥ gm

amm +bm

∥∥∥,∥∥∥ gm

δbm

∥∥∥}, m = 1,2.

Since, matrix A and B satisfies (3.2.2), the matrix Υ = (γm j)2×2 is a diagonally dominant L0-matrix.
Hence, Υ is inverse monotone and

∥ym∥ ≤
2

∑
j=1

(Υ−1)m j min
{∥∥∥ g j

a j j +b j

∥∥∥,∥∥∥ g j

δb j

∥∥∥}, m = 1,2.

The stability of the differential operator L as established in Lemma 3.3.3, coupled with the standard

maximum principle in Lemma 3.3.1, guarantees the existence of a unique solution y ∈ C4(Ω̄)2. To

facilitate the analysis of the numerical discretisation of (3.2.1), we establish a priori bounds on the

derivatives of the solution y as follows.

Lemma 3.3.4. Let y be the solution of (3.2.1) and ω ∈ (0,1)⊂ R be such that

2

∑
j=1
j ̸=m

min
{∥∥∥ am j

amm +bm

∥∥∥,∥∥∥ am j

δbm

∥∥∥}< ω < 1 for m = 1,2.

Then, for k = 0, . . . ,4

|y(k)m (x)| ≤C
(

1+ ε
− k

2

(
e

(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

)))
, ∀ x ∈ Ω̄, (3.3.2)

where ρ = ρ(ω) := (1−ω) min
m=1,2

min
x∈[0,1]

(amm(x)+bm(x))> 0.

Proof. We establish (3.3.2) by induction on k, the case k = 0 being immediate from Lemma 3.3.3. For
k > 1, differentiate (3.2.1) k-times to get

−εy(k+2)+Ay(k)+by(k) = g(k)−
k−1

∑
l=0

(
k
s

)
(A(k−s)+b(k−s))y(s) = fk,
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where fk = ( fk,1, fk,2)
T . Let |y(s)m (x)| ≤C

(
1+ ε

− k
2

(
e

(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

)))
:= ˆAk for all s ≤

k−1. Consequently, | fk,m(x)| ≤C ˆAk−1(x) for m = 1,2. For x ∈ Ω̄, define ŷ(x) := y(k)(x)
ˆAk(x)

. After careful
manipulations, as outlined in [286] and using Lemma 3.3.2 along with the M-matrix criterion, we
obtain the inequality ∥ŷ∥ ≤C. Hence, from the definition of ŷ, it follows that

|y(k)m (x)| ≤C

(
1+ ε

− k
2

(
e

(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

)))
, ∀ x ∈ Ω̄.

3.4 Solution Decomposition

The standard decomposition of the solution plays a crucial role in the convergence analysis of nu-

merical methods for singularly perturbed problems. Therefore, we decompose the solution of (3.2.1)

into smooth and layer parts as y = u+v, where the smooth component u = (u1,u2)
T satisfy

Lu(x) = g(x), x ∈ Ω; u(0) = u0(0), u(1) = u0(1) (3.4.1)

and the layer part v = (v1,v2)
T satisfy

Lv(x) = 0, x ∈ Ω; v(0) = ρ −u0(0), v(1) = l−u0(1). (3.4.2)

Following this, we utilise a proposition from [300] stated below and the standard factorisation to esti-

mate precise bounds on the components and their derivatives.

Proposition 3.4.1. Let µ > 0 and I = [χ,χ +µ] be an arbitrary interval. If 𭟋 ∈C2(I), then

∥𭟋′∥I ≤
2
µ
∥𭟋∥I +

µ

2
∥𭟋′′∥I.

Lemma 3.4.1. Let y := u+ v be the solution of (3.2.1) where u and v satisfy (3.4.1) and (3.4.2),
respectively. Then, the smooth part u = (u1,u2)

T satisfies

∥u(k)m ∥ ≤C
(

1+ ε
(2−k)

2

)
, k = 0, ...,4, m = 1,2,

and the layer part v = (v1,v2)
T satisfies

∥vk
m∥ ≤C

(
1+ ε

− k
2

(
e

(
−x
√

ρ

ε

)
+ e

(
−(1−x)

√
ρ

ε

)))
, k = 0, ...,4, m = 1,2 and ρ ∈ Ω̄.

Proof. Writing u(x) as an asymptotic series expansion that reads

u(x) = u0(x)+ εu1(x)+ ε
2u∗

2(x) = (u0,1(x)+ εu1,1(x)+ ε
2u∗2,1(x),u0,2(x)+ εu1,2(x)+ ε

2u∗2,2(x))
T .
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Substitute u(x) into (3.2.1) and equate coefficients of like powers of ε to obtain

A(x)u0(x)+b(x)u0(x−δ ) = g(x)

A(x)u1(x)+b(x)u1(x−δ ) = u′′
0(x),

Lu∗
2(x) = u′′

1(x), u∗
2(0) = u∗

2(1) = 0.

Then, from Lemma (3.3.4), it follows that

∥u(k)m ∥ ≤C, k = 0,1,2 and m = 1,2.

Next, we differentiate Lu = g twice to obtain ∥u(iv)m ∥ ≤Cε
−1, m = 1,2. Finally, for I ⊆ Ω, Proposition

(3.4.1) with 𭟋= u′′m and µ = ε
1
2 yields ∥u′′′m∥=Cε−

1
2 , m = 1,2.

To find bounds on v(x) = (v1(x),v2(x))T and its derivatives, we factorise it further as v(x) = v−(x)+
v+(x), where v−(x) = (v−1 (x),v

−
2 (x))

T satisfy

Lv−(x) = 0, x ∈ Ω, v−(0) = v(0), v−(1) = 0, (3.4.3)

and v+(x) = (v+1 (x),v
+
2 (x))

T satisfy

Lv+(x) = 0, x ∈ Ω, v+(0) = 0, v+(1) = v(1). (3.4.4)

Using the method of the matched asymptotic expansions, we find that

v−m(x) =
2p+1

∑
s=0

ε
s
2 v−s,m(x)+ ε

p+1v∗−2(p+1),m, m = 1,2 and (3.4.5)

v+m(x) =
2p+1

∑
s=0

ε
s
2 v+s,m(x)+ ε

p+1v∗+2(p+1),m, m = 1,2. (3.4.6)

For v−, stretch the variable using the coordinate transformation ξ = x√
ε

and using Taylor’s series

expansion of A(
√

εξ ) to define L̂ =− d2

dξ 2 −δb(0)I. Then, from (3.4.3)

L̂v−0 (ξ ) = 0, v−0 = ρ −u−
0 (0) and lim

ξ→∞

v−0 (ξ ) = 0,


L̂v−s (ξ ) =−

s

∑
j=1

(
− ξ j

j!
δb j(0)v

′−
s− j(ξ )+

ξ

( j−1)!
(A j−1(0)+b j−1(0))v−s− j(ξ )

)
v−s =−u−

s (0), lim
ξ→∞

v−s (ξ ) = 0, s = 1, ...,2k+1

and Lv∗−2p+2(x) =−ε
−(p+1)L(v−0 + · · ·+ ε

(2p+1)
2 v−2p+1)(x),

v∗−2p+2(0) = 0, v∗−2p+2(1) =−ε−(p+1)L(v−0 + · · ·+ ε
(2p+1)

2 v−2p+1)(1).
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Thus, from Lemma (3.3.4), it follows that v−m satisfies

|v−m(0)|<C, |v−m(1)|<Ce

(
−
√

ρ

ε

)
, and |v−m(k)|<Cε

− k
2 e

(
−x
√

ρ

ε

)
, m = 1,2.

Similarly, we can establish the derivative bounds for v+m to complete the proof.

3.5 Mesh Structure

To construct an adaptive mesh, we propose a mesh generation algorithm based on the mesh equidis-

tribution principle. The algorithm begins with a uniform mesh and then refines it into a layer-adapted

mesh by equidistributing a nonnegative monitor function. This function helps improve the mesh struc-

ture by estimating the error bound on the computed approximation. In singularly perturbed differential

equations, these estimates account for sudden changes in solution behaviour due to steep boundary

layers.

For a suitable monitor function M(y(κ),κ) > 0, the equidistribution principle defines a mapping

x = x(ξ ) that relates the physical coordinate κ ∈ [0,1] to the numerical coordinate ξ ∈ [0,1] using the

relation ∫ x(ξ )

0
M(y(κ),κ)dκ = ξ

∫ 1

0
M(y(κ),κ)dκ. (3.5.1)

Thus, a nonuniform mesh Ω̄N is generated using the relation

∫ xi

xi−1

M(y(κ),κ)dκ =
1
N

∫ 1

0
M(y(κ),κ)dκ.

We consider the following monitor function

M = β + |v′′1|
1
2 + |v′′2|

1
2 (3.5.2)

where v1 and v2 are the layer components of the solution yyy = (y1,y2)
T and β is a positive constant.

Earlier work [108, 287, 278] shows that one should choose the least value of the monitor function with

caution to improve convergence. Therefore, setting an appropriate floor value β , the mesh prevents

point clustering within layers and ensures a proper distribution of mesh points outside layers.

The leading term in the expression (3.4.5) and (3.4.6) yields an approximation of v′′m(x), m = 1,2

given by

v′′m(x) =


α0

ε
e

(
−x
√

ρ

ε

)
, x ∈ [0, 1

2 ],

α1

ε
e

(
−(1−x)

√
ρ

ε

)
, x ∈

(1
2 ,1
]
,

where α0 and α1 are the constants. Imitating the analysis from [277, 287, 278], we have

∫ 1

0
(|v′′1|

1
2 + |v′′2|

1
2 )dx ≡ Ψ ≈ 2

√
ρ
(|α0|

1
2 + |α1|

1
2 ). (3.5.3)
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Now, using (3.5.2) and (3.5.1) to obtain a map

β

Ψ
x(ξ )+µ0

(
1− e

(
− x(ξ )

2

√
ρ

ε

))
= ξ

(
β

Ψ
+1
)
, x(ξ )≤ 1

2
(3.5.4)

and
β

Ψ
(1− x(ξ ))+µ1

(
1− e

(
− (1−x(ξ ))

2

√
ρ

ε

))
= (1−ξ )

(
β

Ψ
+1
)
, x(ξ )>

1
2

(3.5.5)

where µ0 =
|α0|

1
2

|α0|
1
2 + |α1|

1
2

and µ1 =
|α1|

1
2

|α0|
1
2 + |α1|

1
2
= 1−µ0.

Given the relation between adaptive mesh {xi}N
i=0 and uniform mesh

{
ξi =

i
N

}N

i=0
, the required

nonuniform mesh is given by

β

Ψ
xi +µ0

(
1− e

(
− xi

2

√
ρ

ε

))
=

i
N

(
β

Ψ
+1
)
, xi ≤

1
2

(3.5.6)

and
β

Ψ
(1− xi)+µ1

(
1− e

(
− (1−xi)

2

√
ρ

ε

))
=

(
1− i

N

)(
β

Ψ
+1
)
, xi >

1
2
. (3.5.7)

Next, for an appropriate β , we examine the structure of the generated mesh, some of its associated

properties, and illustrate its distribution.

Lemma 3.5.1. Let β = Ψ. Then

xkl < 2
√

ε

ρ
logN < xkl+1 and xkr−1 < 1−2

√
ε

ρ
logN < xkr

where

kl =

[
µ0

2
(N −1)+

√
ε

ρ
NlogN

]
and kr =

[
N −

(
µ1

2
(N −1)+

√
ε

ρ
NlogN

)]
+1.

Here, [·] represents the integral part of the term. Moreover,

e
(
− xi

2

√
ρ

ε

)
≤CN−1, i ≥ kl −1, xi ≤

1
2

and e
(
− (1−xi)

2

√
ρ

ε

)
≤CN−1, i ≤ kr, xi >

1
2
.

Proof. Put xi = 2
√

ε

ρ
logN in (3.5.6) and solve for i to find kl . Using (3.5.7) we can similarly compute

kr.

Setting β = Ψ aligns the equidistributed mesh with some features of the a priori mesh. However,

exponential stretching within layers reduces discretisation errors, enhancing precision [288]. Next, we

obtain bounds on the width of the mesh in the layer region
(
{xi}kl−1

i=0 and {xi}N
i=kr+1

)
and the outer

region
(
{xi}kr

i=kl

)
.
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Lemma 3.5.2. For i = {1, ...,kl}∪{kr +1, ...,N}, hi := hi −hi−1 < 2C
√

ε

ρ
. Moreover

|hi+1 −hi| ≤

Ch2
i , i = 1, ...,kl −1,

Ch2
i+1, i = kr +1, ...,N −1.

Proof. We prove the result for the left layer region. The result for the right layer region follows analo-
gously. Imitating the steps from [278, Lemma 3.2] we use (3.5.6) to obtain x̄i > xi such that

e
(
− xi

2

√
ρ

ε

)
= 1− 2i

µ0N
.

A rearrangement of terms yields

xi < x̄i =−2
√

ε

ρ
log
(

1− 2i
µ0N

)
.

Using x̄i into (3.5.6) to compute

xi > xi =−2
√

ε

ρ
log
(

1− 1
µ0

(
2i
N

+2
√

ε

ρ
log
(

1− 2i
µ0N

)))
.

Thus, for i = 1, ...,kl

hi = xi − xi−1 < x̄i − xi−1 = 2
√

ε

ρ
log

1+
2+2

√
ρ

ε
Nlog

(
µ0N

µ0N−2(i−1)

)
µ0N −2i

< 2C
√

ε

ρ
.

Moreover, note that

|hi+1 −hi|
h2

i
≤

2
∣∣∣xξ ξ

(
θ
(1)
i

)∣∣∣(
xξ

(
θ
(2)
i

))2 where θ
(1)
i ∈ (ξi−1,ξi+1) and θ

(2)
i ∈ (ξi−1,ξi).

Then, from (3.5.4) and β = Ψ, we obtain

xξ (θ) =
4
√

ε

ρ√
2 ε

ρ
+µ0e

(
− x(θ)

2

√
ρ

ε

) and xξ ξ (θ) =
8µ0

√
ε

ρ
e

(
− x(θ)

2

√
ρ

ε

)
(

2 ε

ρ
+µ0e

(
− x(θ)

2

√
ρ

ε

))3 .

This implies that

|hi+1 −hi|
h2

i
≤

µ0

√
ρ

ε

(
2 ρ

ε
+µ0e

(
− x(θ)

2

√
ρ

ε

))2

2
(

2 ρ

ε
+µ0e

(
− x(θ)

2

√
ρ

ε

))3 ≤C.
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The following lemma generalises the bounds on hi across the entire domain.

Lemma 3.5.3. For i = 1, ...,N, the width of the adaptive mesh satisfies hi ≤CN−1.

Proof. Use (3.5.2) and (3.5.3) with β = Ψ to obtain

∫ 1

0
M(x,y(x))dx ≤Cβ .

Finally, the equidistribution principle leads to

βhi ≤
∫ xi

xi−1

M(x,y(x))dx =
1
N

∫ 1

0
M(x,y(x))dx ≤CβN−1.

3.6 The Difference Method

We now describe the difference approximation of (3.2.1) on the adaptive mesh Ω̄N
E ≡ {0 = x0 < x1 <

· · · < xN = 1}. We employ the cubic spline difference method for discretising the boundary layer and

the exponential spline difference method for the outer layer. To begin with, the cubic spline difference

method, let us introduce the cubic spline polynomial Sm(x) for m = 1,2, on the nonuniform mesh

{0 = x0 < x1 < · · · < xN = 1} where hi = xi − xi−1. For the given values Ym(x0),Ym(x1), ...,Ym(xN) of

the polynomial ym(x), m = 1,2, at x0,x1, ...,xN , the polynomial Sm(x) satisfies for m = 1,2,

1. Sm(x) ∈C2[0,1],

2. On each sub-interval [xi−1,xi], Sm(x) is a polynomial of degree 3, i = 1, . . . ,N and

3. Sm(xi) = Ym(xi), i = 0,1, ...,N.

The polynomials Sm(x) for m = 1,2, are determined by solving D4Sm(x) = 0, for all x ∈ [xi−1,xi], i =

1,2, . . .N such that Sm(xi−1) = Ym(xi−1), Sm(xi) = Ym(xi), S′′m(xi−1) = Y ′′
m(xi−1) and S′′m(xi) = Y ′′

m(xi).

Now, using S′′m(xi) = Mm,i, i = 0, . . . ,N, the solution of the above boundary value problem reads

Sm(x) =
(xi − x)3

6hi
Mm,i−1 +

(x− xi−1)
3

6hi
+

(
Ym(xi−1)−

h2
i

6
Mm,i−1

)
(xi − x)

hi

+

(
Ym(xi)−

h2
i

6
Mm,i

)
(x− xi−1)

hi
. (3.6.1)

To determine Mm,i, we use the continuity constraint of S′m(x) at the internal nodes xi, where i =

1, ...,N −1. This leads us to the following system of equations

hi

6
Mm,i−1 +

(hi +hi+1

3

)
Mm,i +

hi+1

6
Mm,i+1 =

Ym(xi+1)−Ym(xi)

hi+1
− Ym(xi)−Ym(xi−1)

hi
. (3.6.2)
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To obtain second order approximation for Y ′
m(x), we use Taylor’s series expansion of Ym about xi to

write

Ym(xi+1)≈ Ym(xi)+hi+1Y ′
m(xi)+

h2
i+1

2
Y ′′

m(xi) and

Ym(xi−1)≈ Ym(xi)−hiY ′
m(xi)+

h2
i

2
Y ′′

m(xi), m = 1,2.

Consequently, for m = 1,2, we obtain

Y ′
m(xi)≈

h2
i Ym(xi+1)+(h2

i+1 −h2
i )Ym(xi)−h2

i+1Ym(xi−1)

hi+1hi(hi+1 +hi)
and

Y ′′
m(xi)≈

2(hiYm(xi+1)− (hi+1 +hi)Ym(xi)+hi+1Ym(xi−1))

hi+1hi(hi+1 +hi)
.

A substitution in Y ′
m(xi+1)≈ Y ′

m(xi)+hi+1Y ′′
m(xi) and Y ′

m(xi−1)≈ Y ′
m(xi)−hiY ′′

m(xi) leads to

Y ′
m(xi+1)≈

(h2
i +2hi+1hi)Ym(xi+1)− (hi+1 +hi)

2Ym(xi)+h2
i+1Ym(xi−1)

hi+1hi(hi+1 +hi)
and

Y ′
m(xi−1)≈

2(−h2
i Ym(xi+1)+(hi+1 +hi)

2Ym(xi)− (h2
i+1 +2hi+1hi)Ym(xi−1))

hi+1hi(hi+1 +hi)
, m = 1,2.

Substitute Mm,i from

− εM1, j −δb1(x j)Y ′
1(x j)+(a11(x j)+b1(x j))Y1(x j)+a12(x j)Y2(x j) = g1(x j), j = i, i±1,

− εM2, j −δb2(x j)Y ′
2(x j)+a21(x j)Y1(x j)+(a22(x j)+b2(x j))Y2(x j) = g2(x j), j = i, i±1

in (3.6.2) to obtain the following linear system of equations for i = 1, ...N −1, m = 1,2(
−ε

hi(hi+1 +hi)
+

hi

6(hi+1 +hi)
(amm(xi−1)+bm(xi−1))+

hi+1 +2hi

6(hi+1 +hi)2 δbm(xi−1)+

hi+1

3hi(hi+1 +hi)
δbm(xi)−

(hi+1)
2

6hi(hi+1 +hi)2 δbm(xi+1)

)
Ym,i−1+(

ε

hi+1hi
+

(amm(xi)+bm(xi))

3
− 1

6hi+1
δbm(xi−1)−

(hi+1 −hi)

3hi+1hi
δbm(xi)+

1
6hi

δbm(xi+1)

)
Ym,i+(

−ε

hi+1(hi+1 +hi)
+

hi+1

6(hi+1 +hi)
(amm(xi+1)+bm(xi+1))+

(hi)
2

6(hi+1 +hi)2 δbm(xi−1)−

hi

3hi+1(hi+1 +hi)
δbm(xi)−

(hi +2hi+1)

6(hi+1 +hi)2 δbm(xi+1)

)
Ym,i+1+(

hi

6(hi+1 +hi)
am(3−m)(xi−1)

)
Y(3−m),i−1 +

(
am(3−m)(xi)

3

)
Y(3−m),i+(

hi+1

6(hi+1 +hi)
am(3−m)(xi+1)

)
Y(3−m),i+1 =

hi

6(hi+1 +hi)
gm(xi−1)+

gm(xi)

3
+

hi+1

6(hi+1 +hi)
gm(xi+1).

(3.6.3)
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The difference method (3.6.3) ceases to be uniformly stable in the outer layer region. It does not satisfy

the discrete maximum principle. Hence, we resort to using exponential splines outside the layers. The

exponential spline is determined as the solution to the boundary value problem: (D4 − p2
m,iD

2)Tm = 0, ∀x ∈ [xi−1,xi], m = 1,2, i = 1, ...,N,

Tm(xi−1) = Ym(xi−1), Tm(xi) = Ym(xi), T ′′
m (xi−1) = T ′′

m,i−1, T ′′
m (xi) = T ′′

m,i

(3.6.4)

where pm,i are nonnegative tension parameters and T ′′
m,i are yet to be determined. Notably, the differ-

ential equation (3.6.4) reduces to D4Tm = 0 whenever the tension parameter pm,i → 0, thus yielding a

cubic spline. A rigorous analysis reveals that {1,x,epm,ix,e−pm,ix} spans the solution space of (3.6.4)

[277]. As in our earlier derivation, we employ continuity constraints to derive a system of equations

representing the exponential spline relation
em,iT ′′

m,i−1 +(dm,i +dm,i+1)T ′′
m,i + em,i+1T ′′

m,i+1 =
Ym(xi+1)−Ym(xi)

hi+1
− Ym(xi)−Ym(xi−1)

hi
,

em,i =
sm,i − pm,ihi

p2
m,ism,ihi

, dm,i =
pm,ihicm,i − sm,i

p2
m,ism,ihi

,

sm,i = sinh(pm,ihi), cm,i = cosh(pm,ihi).

(3.6.5)

Now substitute T ′′
m,i from

− εT ′′
1, j −δb1(x j)Y ′

1(x j)+(a11(x j)+b1(x j))Y1(x j)+a12(x j)Y2(x j) = g1(x j), j = i, i±1,

− εT ′′
2, j −δb2(x j)Y ′

2(x j)+a21(x j)Y1(x j)+(a22(x j)+b2(x j))Y2(x j) = g2(x j), j = i, i±1
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into (3.6.5), we get the following system of equations for i = 1, . . .N −1, m = 1,2(
−ε

hi(hi+1 +hi)
+

em,i

hi+1 +hi
(amm(xi−1)+bm(xi−1))+

em,i(hi+1 +2hi)

hi(hi+1 +hi)2 δbm(xi−1)+

(dm,i +dm,i+1)hi+1

hi(hi+1 +hi)2 δbm(xi)−
em,i+1hi+1

hi(hi+1 +hi)2 δbm(xi+1)

)
Ym,i−1+(

ε

hi+1hi
+

(
dm,i +dm,i+1

hi+1 +hi

)
(amm(xi)+bm(xi))−

em,i

hi+1hi
δbm(xi−1)−

(dm,i +dm,i+1)(hi+1 −hi)

hi+1hi(hi+1 +hi)
δbm(xi)+

em,i+1

hi+1hi
δbm(xi+1)

)
Ym,i+(

−ε

hi+1(hi+1 +hi)
+

em,i+1

hi+1 +hi
(amm(xi+1)+bm(xi+1))+

em,ihi

hi+1(hi+1 +hi)2 δbm(xi−1)−

(dm,i +dm,i+1)hi

hi+1(hi+1 +hi)2 δbm(xi)−
em,i+1(hi +2hi+1)

hi+1(hi+1 +hi)2 δbm(xi+1)

)
Ym,i+1+

em,i

hi+1 +hi
am(3−m)(xi−1)Y(3−m),i−1+(

dm,i +dm,i+1

hi+1 +hi

)
am(3−m)(xi)Y(3−m),i +

em,i+1

hi+1 +hi
am(3−m)(xi+1)Y(3−m),i+1 =

em,i

hi+1 +hi
gm(xi−1)+

(
dm,i +dm,i+1

hi+1 +hi

)
gm(xi)+

em,i+1

hi+1 +hi
gm(xi+1).

(3.6.6)

Therefore, in the outer layer region, the proposed method mitigates the nonmonotonic behaviour of

the cubic spline difference method by incorporating exponential splines. Consequently, the associated

problem for the system (3.2.1) takes the form: Find Y = (Y1,Y2)
T such that

[LNY]i = [Γg]i

⇐⇒



[LN
1 Y]≡ r−1,iY1,i−1 + rc

1,iY1,i + r+1,iY1,i+1 +q−m,ia12,i−1Y2,i−1+

qc
m,ia12,iY2,i +q+m,ia12,i+1Y2,i+1 = q−m,ig1,i−1 +qc

m,ig1,i +q+m,ig1,i+1,

[LN
2 Y]≡ r−2,iY2,i−1 + rc

2,iY2,i + r+2,iY2,i+1 +q−m,ia21,i−1Y1,i−1+

qc
m,ia21,iY1,i +q+m,ia21,i+1Y1,i+1 = q−m,ig2,i−1 +qc

m,ig2,i +q+m,ig2,i+1,

Y1,0 = y1(0), Y1,N = y1(1), Y2,0 = y2(0), Y2,N = y2(1)

(3.6.7)

where [Γ(gm)]i = q−m,igm,i−1 +qc
m,igm,i +q+m,igm,i+1, LN = (L1,L2)

N and gi = (g1,i,g2,i)
T .

The values of the coefficients r∗m,i and q∗m,i, where m = 1,2, i = 1, ...,N − 1 and ∗ = −,c,+, are

determined based on the location of the mesh points xi that partition the domain [0,1] of LN . The

coefficients are given as follows:

1. When xi lies within the boundary layer part of the mesh, i.e. i ∈ {1, ...kl −1}∪{kr +1, ...,N−1},
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the cubic spline difference method employed to determine the coefficients reads

r−m,i =
−ε

hi(hi+1 +hi)
+q−m,i(amm(xi−1)+bm(xi−1))+

(hi+1 +2hi)

6(hi+1 +hi)2 δbm(xi−1)+

hi+1

3hi(hi+1 +hi)
δbm(xi)−

(hi+1)
2

6hi(hi+1 +hi)2 δbm(xi+1),

rc
m,i =

ε

hi+1hi
+qc

m,i(amm(xi)+bm(xi))−
1

6hi+1
δbm(xi−1)−

(hi+1 −hi)

3hi+1hi
δbm(xi)+

1
6hi

δbm(xi+1),

r+m,i =
−ε

hi(hi+1 +hi)
+q+m,i(amm(xi+1)+bm(xi+1))+

(hi)
2

6(hi+1 +hi)2 δbm(xi−1)−
hi

3hi+1(hi+1 +hi)
δbm(xi)−

(hi +2hi+1)

6(hi+1 +hi)2 δbm(xi+1),

(3.6.8)

q−m,i =
hi

6(hi+1 +hi)
, qc

m,i =
1
3
, q+m,i =

hi+1

6(hi+1 +hi)
. (3.6.9)

2. When xi lies outside layers, i.e. i ∈ {kl, . . . ,kr}, the coefficients associated with the exponential

spline difference method reads

r−m,i =
−ε

hi(hi+1 +hi)
+q−m,i(amm(xi−1)+bm(xi−1))+

em,i(hi+1 +2hi)

hi(hi+1 +hi)2 δbm(xi−1)+

(dm,i +dm,i+1)hi+1

hi(hi+1 +hi)2 δbm(xi)−
em,i+1hi+1

hi(hi+1 +hi)2 δbm(xi+1),

rc
m,i =

ε

hi+1hi
+qc

m,i(amm(xi)+bm(xi))−
em,i

hi+1hi
δbm(xi−1)−

(dm,i +dm,i+1)(hi+1 −hi)

hi+1hi(hi+1+hi)
δbm(xi)+

em,i+1

hi+1hi
δbm(xi+1),

r+m,i =
−ε

hi(hi+1 +hi)
+q+m,i(amm(xi+1)+bm(xi+1))+

em,ihi

hi+1(hi+1 +hi)2 δbm(xi−1)−
(dm,i +dm,i+1)hi

hi+1(hi+1 +hi)2 δbm(xi)−
em,i+1(hi +2hi+1)

hi+1(hi+1 +hi)2 δbm(xi+1),

(3.6.10)

q−m,i =
em,i

hi+1 +hi
, q+m,i =

em,i+1

hi+1 +hi
, qc

m,i =
dm,i

hi+1 +hi
+

dm,i+1

hi+1 +hi
. (3.6.11)

A thorough analysis indicates that the coefficient matrix does not meet the M-matrix criterion outside

the layer region [277]. However, for a specific choice of the tension parameter

pm = min
i=kl ,...kr

{pm,i}= max
i=kl ,...kr

{√
amm(xi)+bm(xi)

ε
,

√
δbm(xi)

ε

}

a systematic application of the exponential spline difference method results in a uniformly stable nu-

merical discretisation. Consequently, the associated coefficient matrix of the discrete hybrid operator

LN is an M-matrix with positive diagonal and nonpositive off-diagonal entries [287, 278].

3.7 Error Analysis

In this section, we investigate the order of accuracy of the proposed hybrid spline difference discreti-

sation of (3.2.1) over the adaptive mesh generated. As in section 3.4, we decompose the discrete
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approximate solution Y of (3.2.1) into smooth and layer parts as Y := U+V, where the smooth com-

ponent U satisfies

[LNU] = [Γg]i, i = 1, ...,N −1; U0 = u(0), UN = u(1)

and the boundary layer part V satisfies

[LNV] = 0, i = 1, ...,N −1; V0 = v(0), VN = v(1).

Then, at each xi, the error associated with Yi satisfies

∥Yi −y(xi)∥ ≤ ∥Ui −u(xi)∥+∥Vi −v(xi)∥. (3.7.1)

Next, we calculate the consistency error for regular and singular components separately. Then, we

combine both results and estimate the error. We begin our analysis with the smooth component.

Lemma 3.7.1. The smooth component u of the solution yyy and its discrete approximation U satisfies

∥LN(U−u)(xi)∥ ≤CN−2, i = 1, ...,N −1.

Proof. 1. When i ∈ {1, . . . ,kl −1}∪{kr +1, . . . ,N −1}, the spline difference approximation is ob-
tained using cubic splines. Then, for m = 1,2, the Taylor’s expansion yields

∥LN
m(U−u)(xi)∥= |(Lm −LN

m)u(xi)|,

≤Cε|hi+1 −hi∥|u′′′m (x)∥[xi−1,xi+1]+Cε(h2
i+1 +h2

i )∥u(iv)m (x)∥[xi,xi+1]

≤Cεh2
i (1+ ε

−1
2 )+C(h2

i+1 +h2
i )≤C(h2

i+1 +h2
i ).

The required estimate follows immediately from Lemma 3.4.1, Lemma 3.5.2 and Lemma 3.5.3.

2. When i ∈ {kl, . . . ,kr}, the spline difference approximation is obtained using exponential splines.
Then, it is easy to follow that

∥LN
m(U−u)(xi)∥= |(Lm −LN

m)u(xi)| ≤Cεh2
i p2∥u′′m(x)∥[xi−1,xi+1], m = 1,2.

For pm = min
i=kl ,...,kr

{pm,i} = max
i=kl ,...,kr

{√
amm(xi)+bm(xi)

ε
,

√
δbm(xi)

ε

}
, it follows from Lemma

3.4.1 and Lemma 3.5.3 that

∥LN(U−u)(xi)∥ ≤CN−2, i = kl, . . . ,kr.

Lemma 3.7.2. The layer component v of the solution yyy and its discrete approximation V satisfies

∥LN(V−v)(xi)∥ ≤CN−2, i = 1, . . . ,N −1.

Proof. 1. When i ∈ {1, . . . ,kl −1}∪{kr +1, . . . ,N −1}, for the left segment of the boundary layer
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region, Taylor’s expansion yields

∥LN
m(V−v)(xi)∥= |(Lm −LN

m)v(xi)|= ε
|h2

i+1v′′′m (θ
(2)
i )−h2

i v′′′m (θ
(1)
i )|

3(hi+1 +hi)
, m = 1,2

where θ
(2)
i ∈ (xi,xi+1) and θ

(1)
i ∈ (xi−1,xi). Moreover,

|h2
i+1v′′′m (θ

(2)
i )−h2

i v′′′m (θ
(1)
i )| ≤ |h2

i+1 −h2
i ∥v′′′m (θ

(2)
i )|+h2

i |v′′′m (θ
(2)
i )− v′′′m (θ

(1)
i )|

≤C(|h2
i+1 −h2

i ∥v′′′m (xi)|+h2
i |hi+1 +hi∥v(iv)m (xi)|)

where |θ (2)
i −θ

(1)
i |< (hi+1+hi). Now, using Lemma 3.4.1, Lemma 3.5.2 and (3.5.1) to compute

|LN(V−v)(xi)| ≤Cε
−1
2 h2

i e
(
−xi

√
ρ

ε

)
+Cε

−1h2
i e
(
−xi

√
ρ

ε

)

≤C(ε
−1
2 + ε

−1)

(∫ xi

xi−1

e
(
− t

2

√
ρ

ε

)
dt
)2

≤C(ε
−1
2 + ε

−1)

(√
ε

∫ xi

xi−1

M(y(κ),κ)dκ
)2

≤CΨ
2N−2 ≤CN−2.

Likewise, we can estimate the outcome for the right segment of the boundary layer region, and
the desired result follows immediately.

2. When i ∈ {kl, ...,kr}, Taylor’s expansion with integral remainder yields

∥LN
m(V−v)(xi)∥= |(Lm −LN

m)v(xi)| ≤Cε∥v′′m(x)∥[xi−1,xi+1], m = 1,2.

Now, the derivative bounds derived in Lemma 3.4.1 yield

∥LN
m(V−v)(xi)∥ ≤C

e
(
−xi−1

√
ρ

ε

)
, xi ≤ 1

2 ,

e
(
−(1−xi+1)

√
ρ

ε

)
, xi >

1
2 .

For i ≥ kl −1 and xi ≤ 1
2 , Lemma (3.5.1) suggests

∥LN
m(V−v)(xi)∥ ≤Ce

(
−xkl−1

√
ρ

ε

)

=C

(
e

(−xkl−1
2

√
ρ

ε

))2

≤CN−2.

The bounds for i ≤ kr and xi >
1
2 can be easily established in a similar manner. Thus, combining the

various estimates completes the proof.

We can now present the main convergence result by summarising the error estimates derived thus

far. The proof of this result follows from Lemma 3.7.1, Lemma 3.7.2 and the triangle inequality.

Theorem 3.7.1. Let y be the solution of the continuous problem (3.2.1) and Y be the solution of the
discrete problem (3.6.7) on the equidistributed mesh defined by (3.5.6)-(3.5.7).Then, there exists a
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positive constant C independent of N and ε such that

∥y−Y∥
Ω̄N

E
≤CN−2.

3.8 Numerical Experiments

In this section, we examine the performance of the proposed method and numerically verify the

theoretical estimates. We consider four test problems for numerical computations. If the exact solution

of the problem is unknown, we estimate the maximum pointwise errors using the double mesh principle

[5], given by:

EN
m,ε = max

0≤i≤N
|Y N

m (xi)− Ŷ 2N
m (x̂2i)|, m = 1,2.

However, if the exact solution is available, we evaluate the maximum pointwise errors using the formula:

EN
m,ε = max

0≤i≤N
|Y N

m (xi)− ym(xi)|, m = 1,2.

Here, ym(xi) represents the exact solution, and Y N
m (xi) denotes the numerical solution obtained at the

mesh points xi of the adaptive mesh with N number of intervals. Taking the maximum over a wide

range of ε say K = {ε|ε = 20,2−2, ...,2−40}, the uniform errors are estimated by EN
m = max

ε∈K
EN

m,ε . To

compute the corresponding orders of convergence and the parameter-uniform orders of convergence,

we utilise the following standard formulas:

pN
m,ε = log2

(
EN

m,ε

E2N
m,ε

)
, and pN

m = log2

(
EN

m

E2N
m

)
.

In the adaptive mesh generation process, we choose Q = 1.3. Tables 3.1-3.4 list the uniform errors

and corresponding order of convergence for the proposed method applied to Examples 3.8.1 and 3.8.2.

The uniform errors decrease consistently as the number of mesh intervals increases, and the orders of

convergence are approximately two, confirming the second-order accuracy of the method. The results

align with the theoretical predictions, reinforcing the method’s effectiveness across different examples.

For Example 3.8.3, Table 3.5 compares the maximum pointwise error and the order of convergence

using the proposed method and a hybrid finite difference method on a Shiskin mesh [298].

Figures 3.1 and 3.3 illustrate the numerical solution of a system of second-order delay reaction-

diffusion equations for Example 3.8.1 with N = 160 and for Example 3.8.2 with N = 128, computed

using the proposed hybrid spline difference method. The plot shows the behaviour of the numerical

solution across the domain. The boundary layer effect is evident, highlighting the method’s ability to

capture steep gradients near the boundary. The solution remains stable and accurate, reflecting the

robustness of the proposed method in handling the system of reaction-diffusion equations with delay

terms. Figures 3.2 and 3.4 show the distribution of mesh points for Example 3.8.1 with N = 160 and for

Example 3.8.2 with N = 128 highlighting areas with higher density. The density of the mesh is higher

near the boundary layer, indicating that the adaptive algorithm effectively places more points where
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the solution requires a higher resolution. This adaptive mesh ensures better accuracy and efficiency in

solving the problem. Figures 3.5 and 3.6 depict a log-log plot of the maximum pointwise errors against

the number of mesh intervals for Examples 3.8.1 and 3.8.2, respectively. The plot illustrates the error

convergence rates for the two components of the solution. The linear behaviour in the log-log plot

indicates second-order convergence, validating the theoretical error estimates provided in the paper.

Figure 3.7 compares the maximum pointwise errors for various values of the perturbation parameter in

Example 3.8.1. The plot shows how the error varies with different values of the perturbation parameter

ε . The consistent pattern indicates the robustness of the method to changes in ε , maintaining second-

order accuracy across a range of perturbation sizes. In contrast, Figure 3.8 compares the maximum

pointwise error of the proposed method with a hybrid finite difference method over a Shiskin mesh for

Example 3.8.3. The comparison demonstrates the superiority of the proposed hybrid spline difference

method, which achieves lower maximum pointwise errors, particularly in resolving boundary layers.

Finally, Figure 3.9 shows the comparison between the exact and numerical solutions for Example 3.8.4.

The numerical solution closely matches the exact solution within and outside the boundary layer. This

visual confirmation underscores the accuracy and reliability of the method.

Example 3.8.1. Consider the following system of second-order delay reaction diffusion equation for
x ∈ Ω = (0,1)

−εy′′(x)+

(
x2 + e−2x −12x2

−x3 4(1+ x4)

)
y(x)+

(
2x4 0
0 xe−x

)
y(x−δ ) =

(
x4

2ex

)
,

where y(x) =
(
−cosx

2
,x−1

)T
for x ∈ [−δ ,0] and y(1) =

(
−1

2
,−1

)T

.

Example 3.8.2. Consider the following system of second-order delay reaction diffusion equation for
x ∈ Ω = (0,1)

−εy′′(x)+

(
(x+1)2 −(1+ x3)

−2cos
(

πx
4

)
3e−x

)
y(x)+

(
x2 0
0 10x

)
y(x−δ ) =

(
ex−1

4x

)
,

where y(x) =
(
−sinx

2
,x
)T

for x ∈ [−δ ,0] and y(1) = (0,0)T .

Example 3.8.3. Consider the following system of second-order delay reaction diffusion equation

−εy′′(x)+

(
11 0
0 16

)
y(x)+

(
−(x2 +1) −(x+1)

−x −x

)
y(x−1) =

(
ex

ex

)
,

where y(x) = (1,1)T for x ∈ [−1,0] and y(1) = (1,1)T .

Example 3.8.4. Consider the following system of second-order delay reaction diffusion equation for
x ∈ Ω = (0,1)

−εy′′(x)+

(
2(x+1)2 −x2

−sin(πx) e1−x

)
y(x)+

(
x2 0
0 x

)
y(x−δ ) = g(x),
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where y(x)= (x,sin(x))T for x∈ [−δ ,0] and y(1)=
(
e−1 −1,0

)T
. Here, the function g(x)= (g1(x),g2(x))T

is choosen such that the exact solution of the problem reads

y1(x) = (x−1)e−
2x

ε+δ − xe−
2(1−x)

ε+δ + e−x, y2(x) = (x−1)e−
x

ε+δ − xe−
1−x
ε+δ +1.
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Fig. 3.1: Numerical solution for Example 3.8.1 with N = 160.

Table 3.1: The errors EN
m and orders of convergence pN

m in approximations Ym for Example 3.8.1 with ε = 2−4,
δ = 2−6 and m = 1, 2.

N=32 N=64 N=128 N=256 N=512 N=1024
EN

1 8.372e-04 2.207e-04 5.768e-05 1.481e-05 3.757e-06 8.789e-07
pN

1 1.96 1.98 1.99 1.99 1.99
EN

2 6.131e-03 1.546e-03 3.874e-04 9.689e-05 2.423e-05 6.057e-06
pN

2 1.98 1.99 1.99 1.99 2.00

3.9 Conclusion

A singularly perturbed system of reaction-diffusion equations with a shift is solved numerically using

a higher-order hybrid approximation over an adaptive mesh. The equidistribution of a positive mon-

itor function generates the mesh. The difference method combines an exponential spline difference

method for the outer layer and a cubic spline difference method for the boundary layer on the adaptive

mesh generated. This innovative approach improves the accuracy of numerical solutions while main-

taining computational efficiency. The proposed numerical method is consistent, stable, and converges

regardless of the size of the perturbation parameter. The numerical results and illustrations support

the theoretical findings.
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Fig. 3.2: Density of mesh points for Example 3.8.1 with N = 160.

Table 3.2: The errors EN
m in approximations Ym for Example 3.8.1 for different values of ε and N with δ = 0.03

and m = 1, 2.

ε ↓ N=32 N=64 N=128 N=256 N=512
0.01 EN

1 1.160e-02 1.472e-03 3.727e-04 9.334e-05 2.353e-05
EN

2 5.057e-02 1.018e-02 2.411e-03 6.049e-04 1.514e-04
0.05 EN

1 1.072e-03 2.777e-04 7.222e-05 1.852e-05 4.697e-06
EN

2 7.637e-03 1.931e-03 4.841e-04 1.211e-04 3.028e-05
0.09 EN

1 5.642e-04 1.521e-04 3.998e-05 1.028e-05 2.609e-06
EN

2 4.273e-03 1.075e-03 2.691e-04 6.729e-05 1.682e-05

Table 3.3: The errors EN
m and orders of convergence pN

m in approximations Ym for Example 3.8.2 with ε = 2−4,
δ = 2−6 and m = 1, 2.

N=32 N=64 N=128 N=256 N=512 N=1024
EN

1 1.147e-03 2.856e-04 7.133e-05 1.783e-05 4.456e-06 1.114e-06
pN

1 2.00 2.00 2.00 2.00 2.00
EN

2 4.315e-03 1.094e-03 2.743e-04 6.864e-05 1.716e-05 4.292e-06
pN

2 1.97 1.99 1.99 2.00 1.99

Table 3.4: The errors EN
m in approximations Ym for Example 3.8.2 for different values of ε and N with δ = 0.03

and m = 1, 2.

ε ↓ N=32 N=64 N=128 N=256 N=512
0.01 EN

1 1.065e-02 1.928e-03 4.464e-04 1.115e-04 2.786e-05
EN

2 3.405e-02 7.115e-03 1.704e-03 4.283e-04 1.072e-04
0.05 EN

1 1.435e-03 3.571e-04 8.916e-05 2.228e-05 5.571e-06
EN

2 5.367e-03 1.365e-03 3.428e-04 8.580e-05 2.146e-05
0.09 EN

1 7.954e-04 1.983e-04 4.953e-05 1.238e-05 3.095e-06
EN

2 3.014e-03 7.606e-04 1.906e-04 4.767e-05 1.192e-05
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Fig. 3.3: Numerical solution for Example 3.8.2 with N = 128.
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Fig. 3.4: Density of mesh points for Example 3.8.2 with N = 128.
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Fig. 3.5: Loglog plot of maximum pointwise errors for Example 3.8.1.
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Fig. 3.6: Loglog plot of maximum pointwise errors for Example 3.8.2.
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Fig. 3.7: Comparison of maximum pointwise errors, EN
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Fig. 3.8: Comparison of maximum pointwise errors for Example 3.8.3 for proposed method with a finite differ-
ence method defined over a piece-wise uniform Shiskin mesh.
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Table 3.5: Comparison of errors EN
m and order of convergence pN

m for Example 3.8.3 of the proposed method with
a hybrid difference method on a Shiskin mesh [298] with m = 1, 2.

N Method in [298] Proposed method Method in [298] Proposed method
EN

1 pN
1 EN

1 pN
1 EN

2 pN
2 EN

2 pN
2

32 2.8268e-2 1.2217 1.154e-02 1.9240 4.4596e-2 1.1560 3.002e-03 1.9650
64 1.2121e-2 1.5008 3.041e-03 1.9788 2.0012e-2 1.4547 7.689e-04 1.9912

128 4.2829e-3 1.5013 7.715e-04 1.9945 7.3012e-3 1.5440 1.934e-04 1.9976
256 1.5128e-3 1.5937 1.936e-04 1.9988 2.5038e-3 1.5529 4.843e-05 1.9997
512 5.0124e-4 1.7179 4.844e-05 1.9996 8.5338e-4 1.7106 1.211e-05 2.0074

1024 1.5237e-4 1.212e-05 2.6074e-4 3.012e-06
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Fig. 3.9: Comparison of numerical solution with the exact solution for Example 3.8.4 with N = 128.



Chapter 4

System of Convection-Diffusion Equations

with Shifts

4.1 Introduction

A singularly perturbed system of convection-diffusion equations constitutes a class of mathematical

models that involves simultaneous interactions of convection and diffusion phenomena. A small pa-

rameter characterises them, which multiplies the highest-order derivative term in the governing equa-

tions. This small parameter induces a significant disparity in the scales of convection and diffusion

processes. The solution of these equations exhibits a multiscale character, since the corresponding

degenerate system fails to satisfy the given boundary data. There are narrow regions in which the solu-

tion changes rapidly, with the gradient growing exponentially and showing layer behaviour [1]. Coupled

systems of equations with shifts have garnered significant attention due to their diverse applications

in neuroscience [267, 27], ecology [1], control theory [26], and population dynamics [266], among

others [9, 24, 25, 268]. These systems often arise where the dynamics of interconnected processes

are influenced by instantaneous and delayed interactions and singular perturbation parameters, lead-

ing to rich and complex dynamics that defy straightforward analysis. Understanding the behaviour of

singularly perturbed coupled systems with shifts is crucial to predicting system stability, identifying crit-

ical thresholds, and designing effective control strategies [3, 5]. However, the inherent complexity of

these systems poses significant challenges in analytical treatment, which requires the development of

advanced mathematical techniques and computational tools [6].

Many researchers have tried to provide a consistent numerical approximation to singularly perturbed

systems involving convection-diffusion equations with shifts. In [301], the author explores a system

of convection-diffusion equations that are weakly coupled and feature a discontinuous source. The

system under consideration is singularly perturbed, and overlapping boundaries and interior layers

characterise the solution to the problem. The paper presents a uniformly convergent numerical ap-

proach based on finite differences on a piecewise uniform Shishkin mesh. In addition, [302] deals with

a similar system of convection-diffusion equations, but with integral boundary conditions, and proposes

73
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an almost first-order convergent method. In the paper [303], the author proposes a numerical method

to solve a system of two convection-diffusion equations with discontinuous coefficients and source

terms. The hybrid parameter-uniform approach uses FDM on piecewise uniform Shishkin meshes to

handle interior layers. These layers arise from discontinuities in the solution. In the study described

in [304], the author deals with a system of weakly coupled convection-diffusion equations that exhibit

multiple scales. The author uses sharp estimates for the first-order derivatives obtained in [305] to

analyse an upwind FDM on a Shishkin mesh. This analysis leads to sharp bounds for second-order

derivatives. Moreover, the study provides the first robust convergence result for the Galerkin FEM on

modified Shishkin meshes.

On the other hand, the research presented in [306] introduces an algorithm to approximate solutions

to a coupled system of singularly perturbed convection-diffusion problems. This method involves con-

structing a zero-order asymptotic approximate solution, which leads to the formation of two systems:

one with a known analytical solution for the boundary layer and another for the reduced terminal value

system. The latter was solved analytically using an improved residual power series approach. More-

over, in [307], the author proposes a fitted numerical method for solving coupled systems of singularly

perturbed convection-diffusion delay differential equations. This method presents a novel approach to

addressing complex systems, utilising a cubic spline in tension on a uniform mesh. However, these

works only analyse systems that have two equations. In reference [308], the author discusses a system

of strongly coupled singularly perturbed convection-diffusion problems. They discretise the system us-

ing an upwind FDM on a nonuniform mesh, derive a posteriori error estimation in the maximum norm,

and design an adaptive mesh algorithm based on this estimation. The algorithm employs a mesh gen-

eration procedure using a monitor function based on the arc length. Similarly, reference [309] focuses

on a system of weakly coupled singularly perturbed convection-diffusion equations, discretising them

using an upwind FDM. They also design an adaptive mesh generation algorithm using a posteriori error

estimates in the maximum norm. This algorithm establishes a first-order convergence rate independent

of the perturbation parameters. In the article [310], they investigate a system of singularly perturbed

convection-diffusion equations with Robin boundary conditions in a unit interval. They transform the

problem into a system of first-order singularly perturbed initial value problems and discretise it using

the backward Euler formula on a nonuniform mesh. Besides, they develop a posteriori error estima-

tion in the maximum norm for mesh generation and determine the initial values by solving a nonlinear

optimisation problem using the Nelder-Mead simplex method. In [280], the authors explore adaptive

mesh generation for a coupled system of reaction-diffusion equations. They utilise a central difference

method on adaptively generated meshes derived from an equidistribution principle. The method pro-

vides a priori and a posteriori error estimates, facilitating second-order parameter uniform convergence,

albeit relying on prior knowledge of boundary layer characteristics. For some other earlier works, the

reader is referred to [311, 312, 313, 314, 296, 292].

Over the last few decades, the authors have extensively developed various numerical methods for

singular perturbation problems. However, most computational studies focus solely on second-order

differential equations. The results are notably limited for systems of differential equations or higher-

order differential equations. In recent scholarly works, non-classical techniques have emerged as
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a powerful tool for diverse systems of singularly perturbed differential equations. The development

of special methods for singularly perturbed systems of convection-diffusion equations is a growing

area of research that has yet to receive significant attention in the literature. This chapter presents

one such method for a system of singularly perturbed convection-diffusion equations with shifts. A

careful factorisation handles complex multiscale systems by splitting them into two explicit parts: one

capturing smooth solutions and the other addressing boundary layer solutions. Despite its simplicity,

this approach effectively captures all essential characteristics of the system. The method utilises the

Runge-Kutta method for smooth solutions and asymptotic expansions for boundary layer solutions, en-

suring stability and higher-order accuracy. The method is easy to implement, does not require adaptive

mesh generation, and avoids logarithmic terms. The numerical results and illustrations support the

theoretical results.

4.2 Continous Problem

Let m ≥ 2 be an integer and consider a system of m-coupled convection-diffusion equations with

shifts of mixed type
Lỹ := εεε ỹ′′+Bỹ′+ςςς ỹ(x− τ)+Aỹ+ρρρ ỹ(x+µ) = g̃(x), x ∈ Ω = (0,1)

ỹ(x) = φφφ(x), x ∈ [−τ,0]

ỹ(x) =ψψψ(x), x ∈ [1,1+µ]

(4.2.1)

where 0 < εi ≪ 1 for i = 1,2, ...m denotes the perturbation parameters, εεε = diag(ε1,ε2, ...εm), ρρρ =

diag(ρ1,ρ2, ...,ρm), ςςς = diag(ς1,ς2, ...,ςm), ỹ = (ỹ1, ỹ2, ...ỹm)
T ∈ (C(Ω)∩ (C2(Ω))m and τ and µ rep-

resents small shifts of o(ε), respectively. Moreover, let us assume that B = diag(b1,b2, ...bm) the

convection matrix, A = (ai j)m×m the coupling matrix, g̃ = (g̃1, g̃2, ...g̃m)
T the source vector, and the

given data φφφ(x) = (φ1,φ2, . . . ,φm)
T , ψψψ(x) = (ψ1,ψ2, . . . ,ψm)

T are sufficiently smooth on Ω̄. Besides,

for every i and j

bi − τςi +µρi > 0, ςi +aii +ρi ≤ 0 and ai j ≥ 0 ∀ i ̸= j.

Since τ and µ are of o(ε), the Taylor series approximation of ỹ(x− τ) and ỹ(x+ µ) after neglecting

higher order terms in (4.2.1) leads to εεε ỹ′′+(B− τςςς +µρρρ)ỹ′(x)+(ςςς +A+ρρρ)ỹ(x) = g̃(x)

ỹ(0) = φφφ(0) = φφφ , ỹ(1) =ψψψ(1) =ψψψ.
(4.2.2)

In general, one can assume homogeneous boundary conditions by subtracting from ỹ(x) a smooth

function℘℘℘(x) that satisfies the original boundary conditions [4]. For example, given Drichlet boundary

conditions ỹ(0) = φφφ and ỹ(1) =ψψψ , take

℘℘℘(x) = φφφ(1− x)+ψψψx
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and set y(x) = ỹ(x)−℘℘℘(x). Then y is the solution of a differential equation of the same type but with

homogeneous boundary conditions εεεy′′+(B− τςςς +µρρρ)y′(x)+(ςςς +A+ρρρ)y(x) = g(x)

y(0) = 0, y(1) = 0
(4.2.3)

where g(x) := g̃(x)− (B− τςςς +µρρρ)(ψψψ −φφφ)− (ςςς +A+ρρρ)((1− x)φφφ + xψψψ).

For i = 1,2, . . . ,m, the ith equation of (5.2.2) satisfies
εiy′′i +(bi(x)− τςi(x)+µρi(x))y′i +(ςi(x)+ρi(x))yi +

m
∑
j=1

ai j(x)y j = gi(x), x ∈ Ω

yi(0) = 0,yi(1) = 0.
(4.2.4)

Rewriting (4.2.4) as
εiy′′i +(bi − τςi +µρi)y′i +(ςi +aii +ρi)yi = gi −

m
∑
j=1
j ̸=i

ai jy j

yi(0) = 0,yi(1) = 0

and from [5, pp. 64], it follows that

∥yi∥+
m

∑
j=1
j ̸=i

γi j∥y j∥ ≤ min
{∥∥∥ gi

ςi +aii +ρi

∥∥∥,∥∥∥ gi

bi − τςi +µρi

∥∥∥}, i = 1,2, . . . ,m.

where γ =(γi j)m×m is a constant matrix defined as

γii = 1, γi j =−min
{∣∣∣∣∣∣ ai j

ςi +aii +ρi

∣∣∣∣∣∣, ∣∣∣∣∣∣ ai j

bi − τςi +µρi

∣∣∣∣∣∣} for i ̸= j

and ∥.∥ is the maximum norm over Ω.

4.3 Properties of the Solution

Imitating the analysis of [305], the stability of the differential operator and uniqueness of the solution

follow from the following estimates from [5, Theorem 3.51 and Corollary 3.52].

Theorem 4.3.1. Let Ã := ςςς +A+ρρρ be a matrix with its entries in C[0,1] and γ is inverse monotone.
Then

∥yi∥ ≤
m

∑
j=1

(γ−1)i j min
{∣∣∣∣∣∣ (L y) j

ς j +a j j +ρ j

∣∣∣∣∣∣, ∣∣∣∣∣∣ (L y) j

b j − τς j +µρ j

∣∣∣∣∣∣}, i = 1, . . . ,m

for any function y = (y1,y2, ...,ym)
T ∈Ω with y(0) = y(1) = 0. The first term in min{. . .} should be

omitted if ςi +aii +ρi = 0 for any x ∈ Ω.

Corollary 4.3.2. Under the hypotheses of Theorem (4.3.1), the solution y of (5.2.2) is unique and
satisfies ∥y∥ ≤C∥g∥ for some constant C.
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The derivatives of the solution grow exponentially across overlapping boundary layers [4]. Conse-

quently, sharper estimates will be needed to bound the solution derivative.

Theorem 4.3.3. Let y = (y1,y2, ...,ym)
T be the solution of (5.2.2). Then

∥y(k)i ∥=

O(ε−k
i ) if k = 1,2

O(ε−k
p ) if k ≥ 3

for i = 1,2, . . . ,m and εp := min
1≤i≤m

εi.

Proof. The problem (4.2.4) can be written as:

εiy′′i +(bi(x)− τςi(x)+µρi(x))y′i = gi − (ςi(x)+ρi(x))yi +
m

∑
j=1

ai j(x)y j = hi(x).

Multiplying both sides by e
1
εi

∫ x
0 (bi(t)−τςi(t)+µρi(t))dt and integrating both sides within the limits 0 to x,

we get

y′i(x) =
∫ x

0

1
εi

e−
1
εi

∫ x
s (bi(t)−τςi(t)+µρi(t))dthds+ y′i(0)e

− 1
εi

∫ x
0 (bi(t)−τςi(t)+µρi(t))dt

. (4.3.1)

Again integrating within the limits 0 to x and using the boundary conditions at x = 0, we obtain

yi(x)−κi =
∫ x

0

∫
ξ

0

1
εi

e−
1
εi

∫
ξ
s (bi(t)−τςi(t)+µρi(t))dthdsdξ + y′i(0)

∫ x

0
e−

1
εi

∫ ξ

0 (bi(t)−τςi(t)+µρi(t))dtdξ .

Let x = 1, we get

y′i(0) =
λi −κi −

∫ x
0
∫ ξ

0
1
εi

e−
1
εi

∫
ξ
s (bi(t)−τςi(t)+µρi(t))dthdsdξ∫ 1

0 e−
1
εi

∫ ξ

0 (bi(t)−τςi(t)+µρi(t))dtdξ

.

This implies

|y′i(0)| ≤
|λi|+ |κi|+ |

∫ x
0
∫ ξ

0
1
εi

e−
1
εi

∫
ξ
s (bi(t)−τςi(t)+µρi(t))dthdsdξ |

|
∫ 1

0 e−
1
εi

∫ ξ

0 (bi(t)−τςi(t)+µρi(t))dtdξ |
≤C2ε

−1
i .

Then equation (4.3.1) gives

∥y′i∥ ≤
1

(bi − τςi +µρi)
(1− e−(bi−τςi+µρi)

x
εi )+ |y′i(0)|e

− 1
εi

∫ x
0 (bi(t)−τςi(t)+µρi(t))dt

≤C{1+ ε
−1
i e−(bi−τςi+µρi)

x
εi }.
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Now for k = 2, differentiate (4.2.4) to obtain

∥y′′i ∥ ≤
(bi − τςi +µρi)

εi
∥y′i∥+

∥gi∥
εi

+
∥ςi +ρi∥

εi
∥yi∥+

m

∑
j=1

∥ai j∥
εi

∥y j∥

≤C1ε
−2
i +C2ε

−1
i +C3ε

−1
i +C4ε

−1
i

≤Cε
−2
i .

For k = 3, differentiating (4.2.4) to get

∥y′′′i ∥ ≤
∥bi − τςi +µρi∥

εi
∥y′′i ∥+

∥bi − τςi +µρi∥
εi

∥y′i∥+
∥g′i∥

ε
+

∥ςi +ρi∥
εi

∥yi∥+
∥ςi +ρi∥

εi
∥y′i∥

+
m

∑
j=1

(∥ai j∥
εi

∥y j∥+
∥ai j∥

εi
∥y′j∥

)
≤C

(
ε
−3
i + ε

−2
i + ε

−1
i + ε

−1
i + ε

−2
i +

m

∑
j=1

(
ε
−1
i + ε

−1
i ε

−1
j
))

≤C
(

ε
−3
p + ε

−2
p + ε

−1
p + ε

−1
p + ε

−2
p +

m

∑
j=1

(
ε
−1
p + ε

−1
p ε

−1
j
))

≤Cε
−3
p ,

where εp := min
1≤i≤m

εi. For k > 3, the required result follows from the successive differentiation.

Remark 4.3.1. The solution of the problem exhibits interacting/overlapping layers of width O(εi lnεi)

near x = 0 for small perturbation parameters. We can obtain similar estimates for problems with con-
densing layers near x = 1 simply by replacing x 7→ 1− x.

4.4 Analysis of the Method

Let us write the solution (y) as the sum of a regular (u) and singular (v) parts, y := u+v. Next, we

expand u as an asymptotic series expansion that reads

u = u0 +ϵu1 +ϵ
2u2 + · · ·+ϵkuk +ϵ

k+1U(x,ϵ) (4.4.1)

where ui = (ui1,ui2, . . . ,uim)
T for i = 0,1, ...,k. The components ui satisfies(B− τςςς +µρρρ)u′

0 +(ςςς +A+ρρρ)u0 = g

u0(1) = 0
(4.4.2)

(B− τςςς +µρρρ)u′
i +(ςςς +A+ρρρ)ui =−u′′

i−1

ui(1) = 0
(4.4.3)
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for each i = 1,2, . . . ,k andεεεU′′+(B− τςςς +µρρρ)U′+(ςςς +A+ρρρ)U =−u′′
k

U(0) = 0, U(1) = 0.
(4.4.4)

On the other hand, the singular part v satisfiesεεεv′′+(B− τςςς +µρρρ)v′+(ςςς +A+ρρρ)v = 0

v(0) =−u(0), v(1) = 0.
(4.4.5)

4.4.1 Outer solution

Let h := 1/N, N ∈ N and define Ω̄N = {xi : xi = ih, i = 0,1, . . . ,N}. In this section, we present a

higher-order approximation of the smooth part of the solution using the q-stage Runge-Kutta method

and estimate the error.

The matrices (B− τςςς + µρρρ), (ςςς +A+ρρρ) and g are continuous on Ω̄ and ∥(B− τςςς + µρρρ)∥ ̸= 0.

Thus, the initial value problem (4.4.2) becomes

u′
0 =−(B− τςςς +µρρρ)−1[(ςςς +A+ρρρ)u0 −g] := G0(x,u0), u0(1) = 0 (4.4.6)

where G0 : Ω×Rm → Rm. Note that its contribution to the solution is only for values near x = 1. The

q-stage Runge-Kutta method applied to (4.4.6) leads to

(u0)n+1 = (u0)n −hψ(xn,(u0)n,h),

ψ(xn,(u0)n,h) =
q
∑

r=1
w0

r k0
r ,

k0
r = G0(xn −κ0

r (u0)n −h
q
∑

s=1
λ 0

rsk0
s ),

λ 0
rs = 0 for s ≥ r and

q
∑

s=1
λ 0

rs = κ0
r for 1 ≤ r ≤ q.

The corresponding determinantal equation is ρ(ζ ) = ζ −1, and the root condition ρ(1) = 0 is satisfied

by the polynomial. In addition, we assume that
q
∑

r=1
w0

r = 1 to ensure the stability and consistency of the

Runge-Kutta approach [315]. Thus, an application of the Lax-Richtmyer theorem leads to convergence

[315]. Also, it follows from [316] that

∥u0(xn)− (u0)n∥= O(hp0); p0 ≤ q.

For u1, set i = 1 in (4.4.3), we get

u′
1 =−(B− τςςς +µρρρ)−1(ςςς +A+ρρρ)u1 − (B− τςςς +µρρρ)−1u′′

0
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substitute value of u′′
0 from (4.4.6) in equation above to write



u′
1 =−(B− τςςς +µρρρ)−1(ςςς +A+ρρρ)u1 +(B− τςςς +µρρρ)−1(((B− τςςς +µρρρ)−1(ςςς +A+ρρρ))′

−((B− τςςς +µρρρ)−1(ςςς +A+ρρρ))2)u0 +B−1((B− τςςς +µρρρ)−1(ςςς +A+ρρρ))

(((B− τςςς +µρρρ))−1g)− (B− τςςς +µρρρ)−1((B− τςςς +µρρρ)−1g)′

u1(1) = 0.

(4.4.7)

From (4.4.6) and (4.4.7) it follows that

u′
01 = G1(x,u01); u01(1) = η1 (4.4.8)

where G1 : Ω×R2m → R2m, u01 : Ω→ R2m and η1 are given by

G1(x,u01) =

[
C11 0

C21 C22

][
u0

u1

]
+

[
D1

D2

]
, u01 =

[
u0

u1

]
, η1 =

[
0

0

]

and

C11 = −(B− τςςς +µρρρ)−1(ςςς +A+ρρρ),

C21 = (B− τςςς +µρρρ)−1(((B− τςςς +µρρρ)−1(ςςς +A+ρρρ))′− ((B− τςςς +µρρρ)−1(ςςς +A+ρρρ))2),

C22 = −(B− τςςς +µρρρ)−1A,

D1 = (B− τςςς +µρρρ)−1g,

D2 = (B− τςςς +µρρρ)−1((B− τςςς +µρρρ)−1(ςςς +A+ρρρ))((B− τςςς +µρρρ)−1g),

−(B− τςςς +µρρρ)−1((B− τςςς +µρρρ)−1g)′.

Again, (4.4.8) leads to 

(u01)n+1 = (u01)n −hψ(xn,(u01)n,h),

ψψψ(xn,(u01)n,h) =
q
∑

r=1
w1

r k1
r ,

k1
r = G1(xn −κ1

r ,(u01)n −h
q
∑

s=1
λ 1

rsk1
s ),

λ 1
rs = 0 for s ≥ r and

q
∑

s=1
λ 1

rs = κ1
r for 1 ≤ r ≤ q.

As earlier, we assume that
q
∑

r=1
w1

r = 1 and obtain

∥u01(xn)− (u01)n∥= O(hp1); p1 ≤ q.

Finally, set i = k in (4.4.3), and then from (4.4.6), (4.4.7), we obtain

u′
k =

k

∑
i=0

Piui +Qi; uk(1) = 0 (4.4.9)
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where Pi and Qi depend continuously on the given data and the coefficient matrices. For i = 0,1, . . . ,k,

we now examine the following system of first-order initial value problems

u′
0i = Gi(x,u0i); u0i(1) = ηi (4.4.10)

where u0i : Ω→ Rim, Gi : Ω×Rim → Rim and ηi reads

u0i =



u0

u1

u2
...

ui


, Gi(x,u0i) =



C11 0 0 . . . 0

C21 C22 0 . . . 0

C31 C32 C33 . . . 0
...

...
...

...
...

Ci1 Ci2 Ci3 . . . Cii





u0

u1

u2
...

ui


+



D1

D2

D3
...

Di


, ηi =



0

0

0
...

0


.

Here, Crs are matrices of order m×m and Dr are the vectors of order m× 1 that depend on the

given data and the coefficient matrices. For i = 2,3, . . . ,k, again we solve (4.4.10) using the q-stage

Runge-Kutta approach that reads

(u0i)n+1 = (u0i)n −hψ(xn,(u0i)n,h),

ψψψ(xn,(u0i)n,h) =
q
∑

r=1
wi

rki
r,

ki
r = Gi(xn −κ i

r,(u0i)n −h
q
∑

s=1
λ i

rski
s),

λ i
rs = 0 for s ≥ r and

q
∑

s=1
λ i

rs = κ i
r for 1 ≤ r ≤ q.

As earlier, for i = 2,3, . . . ,k, we assume that
q
∑

r=1
wi

r = 1 and obtain

∥u0i(xn)− (u0i)n∥= O(hpi), pi ≤ q. (4.4.11)

Hence, for i = 1,2, . . . ,k, we get

∥ui(xn)− (ui)n∥= O(hp), p := min(p0, p1, . . . , pi)≤ q. (4.4.12)

Using (4.4.9) into (4.4.4) to get
ϵU′′+(B− τςςς +µρρρ)U′+(ςςς +A+ρρρ)U =−

( k
∑

i=0
Piui +Qi

)
U(0) = 0, U(1) = 0.

Then, Corollary (4.3.2) asserts that U is bounded. Consequently, it follows that

∥u(xn)− (u)n∥ ≤
k

∑
i=0

∥ϵi(ui(xn)− (ui)n∥+∥ϵk+1U∥. (4.4.13)

Next, we combine (4.4.12) and (4.4.13) to obtain the error estimate, summarised below.
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Theorem 4.4.1. For i = 0,1, . . . ,k, let (ui)n be the approximation to ui. Then

∥u(xn)− (u)n∥= O(hp); p ≤ q. (4.4.14)

4.4.2 Inner solution

The singular part v = (v1,v2, . . . ,vm)
T satisfies (4.4.5). For i = 1,2, . . . ,m, we rewrite (4.4.5) as

εiv′′i +(bi(x)− τςi(x)+µρi(x))v′i +(ςi(x)+ρi(x))vi +
m
∑
j=1

ai j(x)v j = 0

vi(0) =−
k
∑
j=0

ε
j

i u ji(0), vi(1) = 0.
(4.4.15)

Using the coordinate transform ti = x/εi, i = 1,2, . . . ,m, to write
v′′i (ti)+(bi(tiεi)− τςi(tiεi)+µρi(tiεi))v′i(ti)+(ςi(tiεi)+ρi(tiεi))vi(ti)

+εi
m
∑
j=1

ai j(tiεi)v j(t j) = 0

vi(0) =−
k
∑
j=0

ε
j

i u ji(0), lim
ti→∞

vi(ti) = 0.

(4.4.16)

For each i, (4.4.16) preserves the order of the original problem and is regularly perturbed from a

mathematical perspective. Hence, we can induce a perturbation expansion

vi(ti) = v0i(ti)+ εiv1i(ti)+ ε
2
i v2i(ti)+ · · ·+ ε

k
i vki(ti), k → ∞

where vri = (vr1,vr2, . . . ,vrm)
T for r = 0,1, . . . ,k. Consequently, from (4.4.16) we get
v′′0i(ti)+(bi(0)− τςi(0)+µρi(0))v′0i(ti) = 0

v0i =−u0i(0), lim
ti→∞

v0i(ti) = 0
(4.4.17)

and

v′′ri(ti)+(bi(0)− τςi(0)+µρi(0))v′ri(ti) =−
r

∑
n=1

(
bn

i (0)− τςn
i (0)+µρn

i (0)
n!

tn
i v′r−n,i

+

(
ε j

εi

)r−n (ςi(0)+ρi(0))n−1

(n−1)!
tivr−n,i(ti)

)
+

m

∑
j=1

(
ε j

εi

)r−n an−1
i j (0)

(n−1)!
tivr−n, j(t j)

vri(0) =−uri(0), lim
ti→∞

vri(ti) = 0

(4.4.18)

for r = 1,2, . . . ,k and i = 1,2, . . . ,m. Note that the solution of (4.4.17) is

v0i(x) =−u0i(0)e
−(bi(0)−τςi(0)+µρi(0)) x

εi .
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Let (v0i)n denote the approximation of v0i(x) subject to q-stage Runge-Kutta approximation (u0i)N of

the regular component u0i obtained in the previous section. Then, at x = xn, we have

(v0i)n =−(u0i)Ne−(bi(0)−τςi(0)+µρi(0))
xn
εi .

Then, for i = 1,2, . . . ,m, we compute

∥v0i(xn)− (v0i)n∥ = ∥(u0i(0)− (u0i)N)∥e−(bi(0)−τςi(0)+µρi(0))
xn
εi ∥= ∥(u0i(0)− (u0i)N)∥.

If (v0)n is the approximation of v0, then the above expression with (4.4.11) yields

∥v0(xn)− (v0)n∥= O(hp0); p0 ≤ q.

Taking r = 1 in (4.4.18), we get

v′′1i(ti)+(bi(0)− τςi(0)+µρi(0))v′1i(ti) =−
(b′i(0)− τς ′

i (0)+µρ ′
i (0)

1!
tiv′0i(ti)

+
ςi(0)+ρi(0)

0!
v0i(ti)+

m

∑
j=1

ai j(0)
0!

v0 j(t j)
)

v1i(0) =−u1i(0), lim
ti→∞

vri(ti) = 0.

(4.4.19)

The exact solution v1i of (4.4.19) is obtained as

v1i(x) =−
(
(b′i(0)− τς ′

i (0)+µρ ′
i (0))u0i(0)

(bi(0)− τςi(0)+µρi(0))2 +u1i(0)
)

e−(bi(0)−τςi(0)+µρi(0)) x
εi

−
m

∑
j=1
j ̸=i

ai j(0)u0 j(0)e
−(bi(0)−τςi(0)+µρi(0)) x

εi

(b j(0)− τς j(0)+µρ j(0) εi
ε j
)2 − (bi(0)− τςi(0)+µρi(0))(b j(0)− τς j(0)+µρ j(0)) εi

ε j

+u0i(0)
(
(b′i(0)− τς

′
i (0)+µρ

′
i (0))

(
x2

2ε2
i
+

x
(bi(0)− τςi(0)+µρi(0))εi

+
1

(bi(0)− τςi(0)+µρi(0))2

)
− ςi(0)+aii(0)+ρi(0)

bi(0)− τςi(0)+µρi(0)
x
εi

)
e−(bi(0)−τςi(0)+µρi(0)) x

εi

+
m

∑
j=1
j ̸=i

ai j(0)u0 j(0)e
−(b j(0)−τς j(0)+µρ j(0)) x

ε j

(b j(0)− τς j(0)+µρ j(0)) εi
ε j
)2 − (bi(0)− τςi(0)+µρi(0))(b j(0)− τς j(0)+µρ j(0)) εi

ε j

.

(4.4.20)
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Now, if (v1i)n denotes the approximation of v1i(x) at x = xn, we obtain

(v1i)n =
(
− (b′i(0)− τς ′

i (0)+µρ ′
i (0))(u0i)N

(bi(0)− τςi(0)+µρi(0))2 − (u1i)N

)
e−(bi(0)−τςi(0)+µρi(0))

xn
εi

−
m

∑
j=1
j ̸=i

ai j(0)(u0 j)Ne−(bi(0)−τςi(0)+µρi(0))
xn
εi

((b j(0)− τς j(0)+µρ j(0)) εi
ε j
)2 − (bi(0)− τςi(0)+µρi(0))(b j(0)− τς j(0)+µρ j(0)) εi

ε j

+(u0i)N

(
(b′i(0)− τς

′
i (0)+µρ ′

i (0))
(

x2
n

2ε2
i
+ xn

(bi(0)−τςi(0)+µρi(0))εi
+

1
(bi(0)− τςi(0)+µρi(0))2

)
− ςi(0)+aii(0)+ρi(0)

bi(0)− τςi(0)+µρi(0)
xn

εi

)
e−(bi(0)−τςi(0)+µρi(0))

xn
εi

+
m

∑
j=1
j ̸=i

ai j(0)(u0 j)Ne
−(b j(0)−τς j(0)+µρ j(0))

xn
ε j

((b j(0)− τς j(0)+µρ j(0)) εi
ε j
)2 − (bi(0)− τςi(0)+µρi(0))(b j(0)− τς j(0)+µρ j(0)) εi

ε j

.

(4.4.21)

Therefore, from (4.4.20) and (4.4.21), the error for v1i satisfies

∥v1i(xn)− (v1i)n∥ ≤
(∣∣∣− b′i(0)− τς ′

i (0)+µρ ′
i (0)

(bi(0)− τςi(0)+µρi(0))2

∣∣∣|u0i(0)− (u0i)N |+ |u1i(0)− (u1i)N |
)

∥e−(bi(0)−τςi(0)+µρi(0))
xn
εi ∥

+ |b′i(0)− τς
′
i (0)+µρ

′
i (0)||u0i(0)− (u0i)N |

(1
2

∣∣∣∣∣∣ x2
n

ε2
i

e−(bi(0)−τςi(0)+µρi(0))
xn
εi

∣∣∣∣∣∣
+
∣∣∣ 1
bi(0)− τςi(0)+µρi(0)

∣∣∣∣∣∣∣∣∣xn

εi
e−(bi(0)−τςi(0)+µρi(0))

xn
εi

∣∣∣∣∣∣
+
∣∣∣ 1
(bi(0)− τςi(0)+µρi(0))2

∣∣∣∣∣∣∣∣∣xn

εi
e−(bi(0)−τςi(0)+µρi(0))

xn
εi

∣∣∣∣∣∣)
+

m

∑
j=1

∣∣∣ ai j(0)
bi(0)− τςi(0)+µρi(0)

∣∣∣|u0i(0)− (u0i)N |
∣∣∣∣∣∣xn

εi
e−(bi(0)−τςi(0)+µρi(0))

xn
εi

∣∣∣∣∣∣
+
∣∣∣ ςi(0)+ρi(0)
bi(0)− τςi(0)+µρi(0)

∣∣∣|u0i(0)− (u0i)N |
∣∣∣∣∣∣xn

εi
e−(bi(0)−τςi(0)+µρi(0))

xn
εi

∣∣∣∣∣∣
+

m
∑
j=1
j ̸=i

|ai j(0)||u0 j(0)−(u0 j)N |
|((b j(0)−τς j(0)+µρ j(0))

εi
ε j
)2−(bi(0)−τςi(0)+µρi(0))(b j(0)−τς j(0)+µρ j(0))

εi
ε j
|

(∥e−(bi(0)−τςi(0)+µρi(0))
xn
εi ∥+∥e

−(b j(0)−τς j(0)+µρ j(0))
xn
ε j ∥), i = 1,2, . . . ,m.

(4.4.22)

Also, for n ∈ N, note that

∥e−(bi(0)−τςi(0)+µρi(0))
xn
εi ∥

Ω̄
= 1,

∣∣∣∣∣∣ xn

εn
i

e−(bi(0)−τςi(0)+µρi(0)) x
εi

∣∣∣∣∣∣
Ω̄

=
( ne−1

bi(0)− τςi(0)+µρi(0)

)n
.

(4.4.23)

Using (4.4.11), (4.4.23) and (4.4.22) to estimate

∥v1i(xn)− (v1i)n∥= O(hp) for i = 1,2, . . . ,m and p = min{p0, p1, . . . , pk} ≤ q.
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Similarly, we an get estimates for r = 2,3, . . . ,k, leading to the following theorem.

Theorem 4.4.2. If u0i(xn) and uri(xn) be the computed solution of (4.4.2) and (4.4.3), respectively.
Then

∥vri(xn)− (vri)n∥= O(hp); 1 ≤ r ≤ k, 1 ≤ i ≤ m, p ≤ q

where vri(xn) and (vri)n are the exact and approximate solutions of (4.4.17) and (4.4.18).

Let us write the singular component v in the form of a perturbation series as previously done with

the regular component

v = v0 +ϵv1 +ϵ
2v2 + · · ·+ϵkvk, (4.4.24)

where vr = (vr1,vr2, . . . ,vrm)
T for r = 0,1, ...,k. Let

(v)n = (v0)n +ϵ(v1)n +ϵ
2(v2)n + · · ·+ϵk(vk)n (4.4.25)

where (vr)n = ((vr1)n,(vr2)n, . . . ,(vrm)n)
T denotes the estimated equivalents of vr for r = 0,1, ...,k.

Consequently, (4.4.24), (4.4.25) and Theorem 4.4.2 yields

∥v(xn)− (v)n∥= O(hp). (4.4.26)

Let (y)n be the approximate solution of (5.2.2) and is represented as

(y)n = (u)n +(v)n.

Then, (4.4.14) and (4.4.26) yields

∥y(xn)− (y)n∥= O(hp), p = min(p0, p1, . . . , pi)≤ q

the required estimate.

4.5 Numerical Experiments

To showcase the efficacy of the proposed method, we undertake some test problems and present

a comparative analysis of numerical results against well-established numerical methodologies or with

the exact analytical solution if available. Notably among the numerical methods are a fitted numerical

method based on cubic spline in tension [307], an iterative scheme [317] and a FDM over layer adap-

tive meshes generated via an entropy production operator [318]. The reduced or degenerate system is

numerically solved for the outer solution using the q-stage Runge-Kutta method. For numerical compu-

tation, we choose q = 4. The inner problem, derived through appropriate coordinate transformations,

is addressed analytically. When an exact solution is accessible for comparison, we compute maximum
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absolute errors (Ek
ε,N) employing the formula

Ek
ε,N :=

k

∑
i=0

∥(ỹi(xn)− (ỹi)n)∥, k ≥ 0.

If the exact solution is unavailable, we obtain the maximum absolute error using the double mesh

principle [5] given by

Ek
ε,N :=

k

∑
i=0

∥(ỹN
i )n − (ỹ2N

i )n∥, k ≥ 0.

Example 4.5.1. For x ∈ Ω, consider the boundary value problem(
ε1 0
0 ε2

)
ỹ′′(x)+

(
1 0
0 2

)
ỹ′(x)+

(
1 0
0 1

)
ỹ(x− τ)+

(
−6 2
1 −5

)
ỹ+

(
1 0
0 2

)
ỹ(x+µ) = g̃(x),

where ỹ(x) = (sinx,x)T for x ∈ [−τ,0] and ỹ(x) =
(

x−1,cos
(

π

2
x
))T

for x ∈ [1,1+µ]. Here, g̃(x) =
(g̃1(x), g̃2(x))T is choosen such that

ỹ1(x) =
1− e−

2x
ε2+µ

1− e−
2

ε2+µ

+
1− e−

x
ε1+τ

1− e−
1

ε1+τ

−2x, ỹ2(x) =
1− e−

2x
ε2+µ

1− e−
2

ε2+µ

− sin
(

π

2
x
)
.

Example 4.5.2. For x ∈ Ω, consider the boundary value problem [307, 317](
−ε1 0

0 −ε2

)
ỹ′′(x)+

(
11 0
0 16

)
ỹ′(x)+

(
−1 0
0 −1

)
ỹ(x−1)+

(
6 −2
−2 5

)
ỹ(x)+

(
0 0
0 0

)
ỹ(x+1)=

(
ex

x2

)
,

where ỹ(x) = (1+ x,cos(πx))T for x ∈ [−1,0] and ỹ(2) = (1,1)T for x ∈ [1,2]. The analytical solution
of the problem is not known.

Example 4.5.3. For x ∈ Ω, consider the boundary value problem(
ε1 0
0 ε2

)
ỹ′′(x)+

(
1 0
0 2

)
ỹ′(x)+

(
1 0
0 1

)
ỹ(x− τ)+

(
−4 1
1 −6

)
ỹ(x)+

(
1 0
0 2

)
ỹ(x+µ) = g̃(x),

where ỹ(x) =
(
sinx,x2)T

for x ∈ [−τ,0] and ỹ(x) =
(

xe−x,
x
2
(2− x)

)T
for x ∈ [1,1+µ]. Here, g̃(x) =

(g̃1(x), g̃2(x))T is choosen such that

ỹ1(x) =
1− e−

x
ε2+µ

1− e−
1

ε2+µ

+
1− e−

x
ε1+τ

1− e−
1

ε1+τ

+ xe−x −2x, ỹ2(x) =
1− e−

x
ε2+µ

1− e−
1

ε2+µ

+
x
2
− xe(x−1).
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Example 4.5.4. For x ∈ Ω, consider the boundary value problemε1 0 0
0 ε2 0
0 0 ε3

 ỹ′′(x)+

−1 0 0
0 −1 0
0 0 −1

 ỹ′(x)+

1 0 0
0 1 0
0 0 2

 ỹ(x− τ)+

−6 1 2
2 −7 2
4 2 −11

 ỹ(x)

+

1 0 0
0 1 0
0 0 2

 ỹ(x+µ) = g̃(x),

where ỹ(x) =
(

1−3x
4

,
1− x2

2
,e−1 − x

)T

for x ∈ [−τ,0] and ỹ(x) =
(

1− x,0,
x
2
(1− x)

)T
for x ∈

[1,1+µ]. Here, g̃(x) = (g̃1(x), g̃2(x), g̃3(x))T is choosen such that

ỹ1(x) =
1− e−

1−x
ε3

1− e−
1

ε3

+
1− e−

1−x
ε2+µ

1− e−
1

ε2+µ

+
1− e−

1−x
ε1+τ

1− e−
1

ε1+τ

+
1− x

4
−3(1− x),

ỹ2(x) =
1− e−

1−x
ε3

1− e−
1

ε3

+
1− e−

1−x
ε2+µ

1− e−
1

ε2+µ

+
1− x

2
−2sin

(
π

2
(1− x)

)
,

ỹ3(x) =
1− e−

1−x
ε3

1− e−
1

ε3

+(1− x)ex−1 − (1− x)e−x.

Table 4.1: Maximum absolute errors for Example 4.5.1 with τ = 10−2,µ = 10−8 and ε1 = ε2 = ε .

ε N=64 N=128 N=256 N=512 N=1024
10−5 E0

ε,N 5.1649e-06 5.1660e-06 5.1662e-06 5.1662e-06 5.1662e-06
E1

ε,N 1.1585e-08 7.1479e-10 5.6439e-11 5.4915e-11 5.4858e-11
10−7 E0

ε,N 5.0533e-08 5.1591e-08 5.1658e-08 5.1662e-08 5.1662e-08
E1

ε,N 1.1582e-08 7.1007e-10 4.3955e-11 2.7343e-12 1.7097e-13
10−9 E0

ε,N 1.1697e-08 8.3740e-10 5.1232e-10 5.1635e-10 5.1660e-10
E1

ε,N 1.1582e-08 7.1007e-10 4.3954e-11 2.7338e-12 1.7064e-13

Table 4.2: Comparison of analytic and approximate solutions for Example 4.5.1 with N = 100, τ = µ = 10−8

and ε1 = ε2 = 10−10.

ỹ1 ỹ2
x Analytic Approximate Analytic Approximate

0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.02 1.9600000000 1.9599999994 0.9685892409 0.9685892410
0.04 1.9200000000 1.9199999993 0.9372094805 0.9372094806
0.06 1.8800000000 1.8799999992 0.9058916867 0.9058916868
0.08 1.8400000000 1.8399999992 0.8746667664 0.8746667666
0.10 1.8000000000 1.7999999991 0.8435655350 0.8435655351
0.20 1.6000000000 1.5999999988 0.6909830056 0.6909830058
0.40 1.2000000000 1.1999999983 0.4122147477 0.4122147480
0.60 0.8000000000 0.7999999981 0.1909830056 0.1909830059
0.80 0.4000000000 0.3999999985 0.0489434837 0.0489434839
1.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000

For Examples 4.5.1, 4.5.3 and 4.5.4, Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 illustrate the comparison

between analytic and computed solutions for different values of perturbation parameters and shifts,
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Table 4.3: Maximum absolute error (E1
ε,N) for Example 4.5.1 with N = 512 and τ = µ = 10−6.

ε1 ↓ ε2 → 10−10 10−11 10−12 10−13 10−14 10−15

10−10 5.5511e-15 2.1088e-11 2.3254e-11 2.3417e-11 2.3417e-11 5.7344e-11
10−11 2.1074e-11 1.7097e-14 2.1787e-12 2.3415e-12 2.3415e-12 2.3415e-12
10−12 2.3182e-11 2.0963e-12 7.1276e-14 2.3404e-13 2.3404e-13 2.3404e-13
10−13 2.3393e-11 2.3059e-12 1.4921e-13 2.3093e-14 2.3093e-14 2.3093e-14
10−14 2.3413e-11 2.3270e-12 1.6165e-13 6.3283e-15 2.2204e-15 2.2204e-15
10−15 2.3416e-11 2.3290e-12 1.6276e-13 6.3283e-15 2.2204e-15 2.2204e-15

Table 4.4: Comparison of maximum absolute errors for Example 4.5.2 for different values of ε1 = ε2 = ε ∈
{2−6,2−7, ...,2−19,2−20}.

Method [307] Method [317] Present Method Method [307] Method [317] Present Method
N E0

ε,N E0
ε,N E0

ε,N E1
ε,N E1

ε,N E1
ε,N

64 3.0136e–03 5.7577e-3 4.5621e-07 1.8168e–03 4.5703e-3 5.1227e-10
128 1.5232e–03 2.9662e-3 5.1691e-07 9.3052e–04 2.5914e-3 2.9841e-11
256 7.6577e–04 1.4985e-3 5.1732e-07 4.7082e–04 1.4979e-3 1.7409e-12
512 3.8392e–04 7.5187e-4 5.1751e-07 2.3681e–04 8.3942e-4 2.1128e-13

1024 1.9222e–04 3.7640e-4 5.1760e-07 1.1875e–04 4.6870e-4 1.1161e-13
2048 9.6175e–05 1.8828e-4 5.1764e-07 5.9465e–05 2.5666e-4 1.0123e-13

respectively. The Figures confirm that the solution to the problem exhibits layer behaviour. Note that as

the perturbation parameter decreases, the problem becomes stiffer from a mathematical perspective,

and the layer becomes sharper and sharper. It is clear from Figures that the computed solutions of the

system are sufficiently close to the analytic solutions within and outside the boundary layer regions.

The maximum absolute errors are tabulated in Tables 4.1, 4.6 and 4.9 for Examples 4.5.1, 4.5.3 and

4.5.4, respectively. In contrast, Tables 4.4 and 4.5 compare the maximum absolute error obtained

using the present method with some other state-of-the-art methods [307, 317, 318]. The analytic

solution is available for Example, 4.5.1, 4.5.3 and 4.5.4, and Tables 4.2, 4.7, and 4.8 compare the

computed solution with the analytic solution. Moreover, Table 4.3 illustrates the maximum absolute

error for Example 4.5.1, for the relative values of the perturbation parameters.

4.6 Conclusion

A singularly perturbed coupled system of convection-diffusion equations with shifts is solved nu-

merically using a semi-analytical approach. The strategy involves factorising a coupled system of

equations into explicit systems of first-order initial value and second-order boundary problems. The

solutions to the degenerate system correspond to the regular component. In contrast, those of the

system of boundary value problems represent the singular component. The process combines the

regular and singular components to obtain the complete solution. The q-stage Runge-Kutta method

computes the outer solution, and an analytical approach derives the inner solution. The proposed

method is unconditionally stable and converges independently of the perturbation parameters. Unlike

numerical methods, the proposed technique does not require adaptive mesh generation to sustain

approximation and consequently has less computational complexity. The process is straightforward

and interdisciplinary researchers can quickly adapt the method to solve problems related to chemical
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Table 4.5: Comparison of maximum absolute errors for Example 4.5.2 for different values of ε1 = ε2 = ε and
N = 23.

Method in [318] Present Method Method in [318] Present Method
ε Generated Mesh E0

ε,N E0
ε,N E1

ε,N E1
ε,N

2−6 35 0.00196 3.0231e-05 0.00304 2.2421e-05
2−7 37 0.00193 3.0239e-05 0.00308 2.2439e-05
2−8 39 0.00192 3.0241e-05 0.00309 2.2445e-05
2−9 41 0.00191 3.0242e-05 0.00310 2.2445e-05
2−10 43 0.00192 3.0242e-05 0.00309 2.2446e-05
2−11 45 0.00192 3.0242e-05 0.00310 2.2446e-05
2−12 47 0.00192 3.0242e-05 0.00309 2.2446e-05
2−13 51 0.00192 3.0242e-05 0.00309 2.2446e-05
2−14 53 0.00192 3.0242e-05 0.00309 2.2446e-05
2−15 55 0.00192 3.0242e-05 0.00309 2.2446e-05
2−16 57 0.00192 3.0242e-05 0.00309 2.2446e-05
2−17 59 0.00192 3.0242e-05 0.00309 2.2446e-05
2−18 61 0.00192 3.0242e-05 0.00309 2.2446e-05

Table 4.6: Maximum absolute errors for Example 4.5.3 with τ = 10−2,µ = 10−8 and ε1 = ε2 = ε .

ε N=64 N=128 N=256 N=512 N=1024
10−3 E0

ε,N 7.0481e-04 7.1248e-04 7.1248e-04 7.1271e-04 7.1299e-04
E1

ε,N 5.0000e-04 5.0000e-04 5.0626e-03 3.0516e-02 5.8581e-02
10−5 E0

ε,N 7.1450e-06 7.2253e-06 7.2649e-06 7.2846e-06 7.2946e-06
E1

ε,N 5.0000e-06 5.0000e-06 5.0000e-06 5.0000e-06 5.0000e-06
10−7 E0

ε,N 5.5883e-07 5.5883e-07 5.5883e-07 5.5883e-07 5.5883e-07
E1

ε,N 5.9562e-07 5.9562e-07 5.9562e-07 5.9562e-07 5.9562e-07
10−9 E0

ε,N 5.5883e-07 5.5883e-07 5.5883e-07 5.5883e-07 5.5883e-07
E1

ε,N 5.5920e-07 5.5920e-07 5.5920e-07 5.5920e-07 5.5920e-07

Table 4.7: Comparison of analytic and approximate solutions for Example 4.5.3 with N = 100, τ = µ = 10−8

and ε1 = ε2 = 10−10.

ỹ1 ỹ2
x Analytic Approximate Analytic Approximate

0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.02 1.9796039735 1.9795305955 1.0024937780 1.0024694497
0.04 1.9584315776 1.9583578622 1.0046842846 1.0046598507
0.06 1.9365058720 1.9364318844 1.0065623299 1.0065378062
0.08 1.9138493077 1.9137751129 1.0081184767 1.0080938793
0.10 1.8904837418 1.8904094051 1.0093430340 1.0093183791
0.20 1.7637461506 1.7636720899 1.0101342072 1.0101095231
0.40 1.4681280184 1.4680596219 0.9804753456 0.9804520782
0.60 1.1292869817 1.1292317866 0.8978079724 0.8977886185
0.80 0.7594631713 0.7594301914 0.7450153975 0.7450033654
1.00 0.3678800000 0.3678800000 0.5000000000 0.5000000000
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Table 4.8: Comparison of analytic and approximate solutions for Example 4.5.4 with ε1 = ε2 = ε3 = 2−8, τ =
µ = 2−4 and N = 100.

ỹ1 ỹ2 ỹ3
x Analytic Approximate Analytic Approximate Analytic Approximate

0.00 0.2500000000 0.2500000000 0.5000000000 0.5000000000 0.3678800000 0.3678800000
0.20 0.8008765479 0.8008765474 0.5000124959 0.5000124961 0.7099226452 0.7099226449
0.40 1.3518369769 1.3518369765 0.6848226346 0.6848226382 0.9336150582 0.9336150580
0.60 1.9025426699 1.9025426695 1.0279171656 1.0279171734 1.0558126200 1.0558126186
0.80 2.4531550579 2.4531550571 1.4859528053 1.4859528155 1.0811615628 1.0811615561
0.90 2.7268792589 2.7268792552 1.7398193355 1.7398193381 1.0549536256 1.0549536198
0.92 2.7777692589 2.7777692476 1.7880982301 1.7880982383 1.0419618912 1.0419618833
0.94 2.8178048465 2.8178048391 1.8263191306 1.8263191367 1.0147509823 1.0147508981
0.96 2.8187617869 2.8187617756 1.8276162685 1.8276162733 0.9391041896 0.9391041732
0.98 2.6733546895 2.6733539567 1.6881064826 1.6881064938 0.6919178562 0.6919178417
1.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

Table 4.9: Maximum absolute errors for Example 4.5.4 with τ = µ = 10−10 and ε1 = ε2 = ε3 = ε .

ε N=64 N=128 N=256 N=512 N=1024
10−3 E0

ε,N 4.8922e-04 4.8942e-04 6.9985e-04 1.1683e-02 5.9284e-02
E1

ε,N 3.9361e-07 3.5393e-07 8.5502e-05 7.1336e-03 3.9073e-02
10−5 E0

ε,N 4.8815e-06 4.8932e-06 4.8947e-06 4.8951e-06 4.8953e-06
E1

ε,N 5.2448e-08 3.2209e-09 2.4869e-10 1.8337e-10 1.8059e-10
10−7 E0

ε,N 5.1153e-08 4.8141e-08 4.8747e-08 4.8787e-08 4.8791e-08
E1

ε,N 5.2430e-08 3.1992e-09 2.2594e-10 1.6572e-10 1.6348e-10
10−9 E0

ε,N 5.2377e-08 3.1433e-09 2.8735e-10 3.2381e-10 3.2607e-10
E1

ε,N 5.2430e-08 3.1992e-09 2.2594e-10 1.6572e-10 1.6348e-10

kinetics, mathematical physics, and biology. The method is highly accurate, free from directional bias,

and the estimates are free from logarithmic terms. The results demonstrate that the numerical method

outperforms many existing methods.
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Fig. 4.1: Analytic (ỹi) and approximate ((ỹi)n) solutions for Example 4.5.1 with N = 128.
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Fig. 4.2: Analytic (ỹi) and approximate ((ỹi)n) solutions for Example 4.5.1 with N = 128.
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Fig. 4.3: Analytic (ỹi) and approximate ((ỹi)n) solutions for Example 4.5.3 with N = 128.
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Fig. 4.4: Analytic (ỹi) and approximate ((ỹi)n) solutions for Example 4.5.3 with N = 128.
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Fig. 4.5: Analytic (ỹi) and approximate ((ỹi)n) solutions for Example 4.5.4 with N = 128.
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Fig. 4.6: Analytic (ỹi) and approximate ((ỹi)n) solutions for Example 4.5.4 with N = 128.





Chapter 5

Reaction-Diffusion Equation with Shift

and Integral Boundary Conditions

5.1 Introduction

Singularly perturbed time-dependent reaction-diffusion problems describe processes involving in-

teractions of reactions and diffusion processes that evolve over time. These problems are prevalent

in various scientific and engineering disciplines, including chemistry [10], biology [267, 266], physics

[25, 26, 27], and engineering [7, 9, 24], where they model phenomena such as chemical reactions,

heat conduction, and population dynamics, to name a few. These problems involve a small perturba-

tion parameter that multiplies the highest-order spatial derivative. This small parameter leads to rapid

changes in the solution, especially in thin regions known as boundary or interior layers. The terms

involving shifts cause asymmetry or displacement in the diffusion behaviour, making the problem more

complex. Additionally, integral boundary conditions, where the boundary values depend on integrals of

the solution over the domain, introduce nonlocal effects, reflecting scenarios such as global constraints

or memory effects in the system. These features pose significant analytical and numerical challenges

that require robust and accurate solution techniques. Effective numerical methods for these problems

must balance accuracy and efficiency, often requiring specialised techniques such as adaptive mesh

refinement, layer-adapted meshes, and hybrid difference methods.

Recently, there has been a growing emphasis on using adaptively generated meshes. These meshes

have been shown to be suitable for capturing boundary layers by automatically increasing mesh res-

olution near steep gradients or boundary layers while maintaining coarser meshes in smoother areas

[6, 108, 117, 111, 319, 116, 253]. Researchers have used a variety of mesh generation algorithms

for different classes of problems [320, 160, 159, 204, 254, 113]. In [277], the authors developed a

numerical method for solving singularly perturbed reaction-diffusion differential equations with Robin-

type boundary conditions. This method employs cubic splines to discretise the Robin boundary con-

ditions. It uses exponential splines to compute the solution at the internal nodes of a layer-adapted

mesh generated by equidistributing a positive monitor function. Similarly, the paper [287] introduces a

95
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higher-order parameter-uniform numerical approximation for a fourth-order singularly perturbed bound-

ary value problem on a nonuniform mesh. The authors transform the problem into a coupled system

of singularly perturbed differential equations and apply a higher-order hybrid difference method on a

nonuniform mesh to discretise the system.

In contrast, the work in [278] proposes a hybrid numerical method for discretising a class of singu-

larly perturbed parabolic reaction-diffusion problems with Robin boundary conditions on an equidis-

tributed mesh. In [321], the author addresses a singularly perturbed mathematical model arising in

control theory, where the solution depends on the current state and its history. A robust numerical

method utilising mesh equidistribution is applied to solve this problem, although the method is only

first-order accurate in the discrete supremum norm. In [119], the authors investigate singularly per-

turbed parabolic reaction-diffusion problems with a time delay and Robin boundary conditions, em-

ploying a moving mesh strategy based on the equidistribution principle. In [110], the authors focus on

the approximation of a coupled system of parameterised problems with mixed-type conditions. They

employ a triangular splitting-based additive method on an equidistributed mesh to reduce computa-

tional costs and achieve second-order accuracy at interior points, maintaining this accuracy for mixed

boundary conditions. However, the approach only ensures uniform linear accuracy in time. In [114],

the author deals with time-dependent problems where diffusion parameters have varying magnitudes.

For further details on such systems of equations, the reader can refer to [179, 322, 323, 108, 324] and

related references. Singularly perturbed reaction-diffusion equations with delay and integral boundary

conditions are studied in [325]. In [326], the author deals with a singularly perturbed parabolic initial

boundary value problem with a negative shift and integral boundary condition. In [327], the authors

present an exponentially fitted FDM to solve a similar problem. The reader can find a similar treatment

for a parabolic convection-diffusion problem in [328] and for a system of reaction-diffusion equations,

see [329].

This chapter further extends the idea of developing higher-order adaptive methods. It presents a

hybrid difference method over a moving mesh for the numerical solution of time-dependent reaction-

diffusion problems with shift and integral boundary conditions. A key feature is the generation of an

adaptive moving mesh, partitioning the spatial domain to leverage the strengths of different discretisa-

tion methods. The targeted approach effectively captures the multiscale behaviour of the solution and

enhances the accuracy of numerical solutions while maintaining computational efficiency. In addition,

the chapter presents a rigorous theoretical error analysis and illustrates numerical results for model

problems to support theoretical estimates.
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5.2 Continous Problem

Let D=Ω×Λ := (0,1)×(0,T ] and consider the following problem with a shift and integral boundary

condition 

Ly(x, t) = yt(x, t)− εyxx(x, t)+a(x, t)y(x, t)+b(x, t)y(x−δ , t)

= g(x, t), (x, t) ∈D,

y(x,0) = φ0(x) on Γ0 := {(x,0) : x ∈ Ω̄},

κ1y(x, t) = y(x, t)− ε

∫ 1

0
f1(x, t)y(x, t)dx

= φl(x, t) on Γl := {(x, t) : −δ ≤ x ≤ 0, t ∈ Λ},

κ2y(x, t) = y(1, t)− ε

∫ 1

0
f2(x, t)y(x, t)dx

= φr(1, t) on Γr := {(1, t) : t ∈ Λ},

(5.2.1)

where 0 < ε ≪ 1 and δ = o(ε) denotes the perturbation parameter and shift, respectively. The given

functions a(x, t), b(x, t), g(x, t), φ0(x,0), φl(x, t), and φr(1, t) are sufficiently smooth and

a(x, t)≥ η > 0, b(x, t)≤ ρ < 0 and a(x, t)+b(x, t)≥ ρ > 0 for all (x, t) ∈ D̄. (5.2.2)

Also, suppose that f1(x, t) and f2(x, t) are nonnegative monotonic functions such that
∫ 1

0
fi(x, t)dx< 1,

i= 1,2. Since δ is of order o(ε), the Taylor series approximation of y(x−δ , t) after neglecting the terms

involving second and higher order derivatives in (5.2.1) leads to

Ly(x, t) = yt(x, t)− εyxx(x)−δb(x, t)yx(x, t)+(a(x, t)+b(x, t))y(x, t)

= g(x, t), (x, t) ∈D,

y(x,0) = φ0(x,0), on Γ0 := {(x,0) : x ∈ Ω̄},

κ1y(x, t) = y(0, t)− ε

∫ 1

0
f1(x, t)y(x, t)dx

= φl(0, t) on Γl := {(0, t) : t ∈ Λ},

κ2y(x, t) = y(1, t)− ε

∫ 1

0
f2(x, t)y(x, t)dx

= φr(1, t) on Γr := {(1, t) : t ∈ Λ}.

(5.2.3)

Additionally, we assume that the given data satisfies the compatibility conditions

φ0(0,0) = φl(0,0), φ0(1,0) = φr(1,0),

∂φl(0,0)
∂ t

− ε
∂ 2φ0(0,0)

∂x2 −δb(0,0)
∂φ0(0,0)

∂x
+(a(0,0)+b(0,0))φ0(0,0) = g(0,0),

∂φr(1,0)
∂ t

− ε
∂ 2φ0(1,0)

∂x2 −δb(1,0)
∂φ0(1,0)

∂x
+(a(1,0)+b(1,0))φ0(1,0) = g(1,0)

These conditions ensure the existence of a unique solution [330]. Moreover, it is easy to see that the

differential operator satisfies the following maximum principle [128].
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Lemma 5.2.1. Let Ly(x, t)≥ 0 on D and y(x, t)≥ 0 on ∂D. Then y(x, t)≥ 0 on D̄.

If we define two barrier functions as

υ
±(x, t) = ξ

−1∥g∥+max{φ0(x,0),max{φl(x, t),φr(x, t)}}± y(x, t).

Then, Lemma 5.2.1 suggests that

|y| ≤ ξ
−1∥g∥+max{φ0(x,0),max{φl(x, t),φr(x, t)}}, (x, t) ∈ D̄. (5.2.4)

Moreover, if we imitate steps as in Theorem 3 of [330], we can easily obtain the following bounds on

the solution y and its derivatives.

Lemma 5.2.2. The derivatives of the unique solution y of problem (5.2.1) satisfy, for all nonnegative
integers l,m with 0 ≤ l +2m ≤ 4,∣∣∣∣ ∂ l+my

∂xl∂ tm

∣∣∣∣≤C
(

1+ ε
− l

2

(
e
(
−x
√

ρ

ε

)
+ e
(
−(1−x)

√
ρ

ε

)))
.

5.3 Solution Decomposition

Let us decompose the solution of (5.2.1) as y := u+v, where the smooth part u := u0 + εu1 + ε2u2.

Then, for (x, t) ∈D, u satisfies
ut(x, t)− εuxx(x, t)−δb(x, t)ux +(a(x, t)+b(x, t))u(x, t) = g(x, t),

u(x,0) = φ0(x,0), x ∈ [0,1],

u(0, t) = u0(0, t), u(1, t) = u0(1, t), t ∈ (0,T ]

(5.3.1)

and the layer part v satisfies
vt(x, t)− εvxx(x, t)−δb(x, t)vx +(a(x, t)+b(x, t))v(x, t) = 0,

v(x,0) = 0, x ∈ [0,1],

v(0, t) = φl(0, t)−u0(0, t), v(1, t) = φr(1, t)−u0(1, t), t ∈ (0,T ].

Further, the layer part is decomposed as v = vl + vr, then the left layer part satisfies

(vl)t(x, t)− ε(vl)xx(x, t)−δb(x, t)(vl)x +(a(x, t)+b(x, t))vl(x, t) = 0, (x, t) ∈D,

vl(x,0) = 0, x ∈ [0,1],

vl(0, t) = φl(0, t)−u0(0, t), vr(1, t) = 0, t ∈ (0,T ]

(5.3.2)
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and the right layer part satisfies

(vr)t(x, t)− ε(vr)xx(x, t)−δb(x, t)(vr)x +(a(x, t)+b(x, t))vr(x, t) = 0, (x, t) ∈D,

vr(x,0) = 0, x ∈ [0,1],

vr(0, t) = 0, vr(1, t) = φr(1, t)−u0(1, t), t ∈ (0,T ].

(5.3.3)

Following this, we establish the bounds on the outer and layer parts of the solution and its derivatives

as follows.

Lemma 5.3.1. Let y be the solution of (5.2.1). Then, for all nonnegative integers l,m with 0≤ l+2m≤
4 the smooth component satisfies (5.3.1) and∣∣∣∣ ∂ l+mu

∂xl∂ tm

∣∣∣∣≤C
(

1+ ε
1− l

2

)
,

while the left layer component satisfies (5.3.2) and

∣∣∣∣ ∂ l+mvl

∂xl∂ tm

∣∣∣∣≤C
(

1+ ε
− l

2

(
e
(
−x
√

ρ

ε

)))
,

and the right layer component satisfies (5.3.3) and∣∣∣∣∂ l+mvr

∂xl∂ tm

∣∣∣∣≤C
(

1+ ε
− l

2

(
e
(
−(1−x)

√
ρ

ε

)))
.

Proof. The proof imitates steps as in Theorem 4 of [330].

5.4 Mesh Structure

The development of the adaptive numerical method is based on an adaptive moving mesh algorithm

that automatically identifies the basic characteristics of the boundary layers through an equidistribution

principle. Following [278, 287], we consider a nonnegative monitor function

M = β + |vxx(x, ti)|
1
2 , (5.4.1)

where v(x, ti) is the layer part of the solution y(x, ti) at any time level t = ti and β is a positive constant.

Earlier works [110, 119, 278, 287] show that one should choose the least value of the monitor function

with caution to improve convergence. Consequently, with an appropriate floor value β , the mesh

prevents the clustering of points within the layers and ensures the proper distribution of the mesh

points outside the layers.

Using the derivative bound of v(x, t) in Lemma (5.3.1) yields an approximation of vxx(x, t) at t = ti
given by

vxx(x, ti) =


α0

ε
e
(
−x
√

ρ

ε

)
, x ∈

[
0, 1

2

]
,

α1

ε
e
(
−(1−x)

√
ρ

ε

)
, x ∈

(1
2 ,1
]
.
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where α0 and α1 are constants. Imitating the analysis from [278], [108], we have

∫ 1

0
|vxx(x, ti)|

1
2 dx ≡ Ψ ≈ 2

√
ρ

(
|α0|

1
2 + |α1|

1
2

)
. (5.4.2)

Now using (5.4.1) to obtain a map

β

Ψ
x(ξ )+µ0

(
1− e

(
− x(ξ )

2

√
ρ

ε

))
= ξ

(
β

Ψ
+1
)
, x(ξ )≤ 1

2
, (5.4.3)

and
β

Ψ
(1− x(ξ ))+µ1

(
1− e

(
− (1−x(ξ ))

2

√
ρ

ε

))
= (1−ξ )

(
β

Ψ
+1
)
, x(ξ )>

1
2
, (5.4.4)

where µ0 =
|α0|

1
2

|α0|
1
2 + |α1|

1
2

and µ1 =
|α1|

1
2

|α0|
1
2 + |α1|

1
2
= 1−µ0.

Given the relation between uniform mesh
{

ξ j =
j

N

}N
j=0 and adaptive mesh {xi

j}N
j=0 at t = ti, the

required nonuniform mesh is given by

β

Ψ
xi

j +µ0

(
1− e

(
−

xi
j

2

√
ρ

ε

))
=

j
N

(
β

Ψ
+1
)
, xi

j ≤
1
2
, (5.4.5)

and
β

Ψ
(1− xi

j)+µ1

(
1− e

(
−

(1−xi
j)

2

√
ρ

ε

))
=
(

1− j
N

)(
β

Ψ
+1
)
, xi

j >
1
2
. (5.4.6)

Next, for an appropriate value of β , we examine the structure of the generated layer-adapted mesh

and illustrate its distribution.

Lemma 5.4.1. Let β = Ψ. Then

xi
kl
< 2
√

ε

ρ
logN < xi

kl+1
, and xi

kr−1
< 1−2

√
ε

ρ
logN < xi

kr
,

where

kl =
[

µ0

2
(N −1)+

√
ε

ρ
NlogN

]
, and kr =

[
N −

(
µ1

2
(N −1)+

√
ε

ρ
NlogN

)]
+1,

and [·] represents the integral part of the term. Moreover,

e
(
−

xi
j

2

√
ρ

ε

)
≤CN−1, j ≥ kl−1, xi

j ≤
1
2
,

e
(
−

(1−xi
j)

2

√
ρ

ε

)
≤CN−1, j ≤ kr, xi

j >
1
2
.

Proof. Put xi
j = 2

√
ε

ρ
logN in (5.4.5) and solve for j to find kl . Using (5.4.6) we can similarly compute

kr.

Setting β = Ψ aligns the equidistributed mesh with some features of the a priori mesh. However,
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exponential stretching within layers reduces discretisation errors, enhancing accuracy [288].

Lemma 5.4.2. For j = {1, ...kl − 1}∪{kr + 1, ...,N − 1}, the mesh width in the boundary layer part

satisfies hi
j < 2C

√
ε

ρ
. Furthermore,

|hi
j+1 −hi

j| ≤

C(hi
j)

2, j = 1, ...kl −1,

C(hi
j+1)

2, j = kr +1, ...,N −1.

Proof. We establish the estimate for the left layer. The estimate for the right layer follows analogously.

Then, using (5.5.4) to obtain x̄i
j > xi

j such that e
(
−

x̄i
j

2

√
ρ

ε

)
= 1− 2 j

µ0N
. A rearrangement of terms yields

xi
j < x̄i

j =−2
√

ε

ρ
log
(

1− 2 j
µ0N

)
. Using x̄i

j in (5.5.4) again, we get

xi
j > xi

j =−2
√

ε

ρ
log
(

1− 1
µ0

(
2 j
N

+2
√

ε

ρ
log
(

1− 2 j
µ0N

)))
.

Thus, for j = 1, ...,kl

hi
j = xi

j − xi
j−1 < x̄i

j − xi
j−1 = 2

√
ρ

ε
log

1+
2+2

√
ρ

ε
Nlog

(
µ0N

µ0N−2( j−1)

)
µ0N −2 j

< 2C
√

ρ

ε
.

Moreover, note that

|hi
j+1 −hi

j|
(hi

j)
2 ≤

2xi
ξ ξ
(θ

(1)
j )

(xi
ξ
(θ

(2)
j ))2

, where θ
(1)
j ∈ (ξ j−1,ξ j+1) and θ

(2)
j ∈ (ξ j−1,ξ j).

Then, from (5.4.3) with β = Ψ, we obtain

xi
ξ
(θ) =

4
√

ρ

ε√
2 ρ

ε
+µ0e

(
− x(θ)

2

√
ρ

ε

) , and xi
ξ ξ
(θ) =

8µ0

√
ρ

ε
e
(
− xi(θ)

2

√
ρ

ε

)
(
2 ρ

ε
+µ0e

(
− xi(θ)

2

√
ρ

ε

))3
.

This implies that
|hi

j+1 −hi
j|

(hi
j)

2 ≤
µ0

√
ρ

ε

(
2 ρ

ε
+µ0e

(
− xi(θ)

2

√
ρ

ε

))2

2
(
2 ρ

ε
+µ0e

(
− xi(θ)

2

√
ρ

ε

))3
≤C.

Next, we find the following generalised bounds on hi
j.

Lemma 5.4.3. For j = 1, ...,N and at any time level t = ti, the width of the mesh satisfies hi
j ≤CN−1.

Proof. Use (5.4.1) and (5.4.2) with β = Ψ to obtain
∫ 1

0
M(x,y(x, ti))dx ≤Cβ . Finally, the equidistri-

bution principle leads to

βhi
j ≤

∫ xi
j

xi
j−1

M(x,y(x, ti))dx =
1
N

∫ 1

0
M(x,y(x, ti))dx ≤CβN−1.
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5.5 The Difference Method

We now describe the difference approximation of (5.2.1) on the classical equidistant mesh {ti =

i∆t, i = 0,1, ...,M,∆t = T/M} while for the spatial domain at any time level t = ti, we discretise the

problem on the adaptive mesh {0 = xi
0 < xi

1 < · · ·< xi
N = 1}. To approximate the solution on the mesh

D̄= {(xi
j, ti) : 0 ≤ j ≤ N,0 ≤ i ≤ M}, we employ a cubic spline difference method within the boundary

layer region and an exponential spline difference method in the outer layer region. In contrast, we

discretised the time derivative using the backward difference method. Defining the modified backward

difference operator in time as

[ρ∗
t Y ] :=

Y i
j − Ŷ i−1(xi−1

j )

∆t
, ∀ 0 ≤ j ≤ N, 1 ≤ i ≤ M, (5.5.1)

where Ŷ i−1(xi−1
j ) symbolises the piecewise linear interpolant of Y i−1

j = Y ((xi−1
j ), ti−1) at time t =

ti−1.The modified backward difference discretisation of (5.2.1) at time t = ti for i = 1, ...,M and j =

0, ...,N is given by

Y (xi
j, ti)− Ŷ (xi−1

j , ti−1)

∆t
− εYxx(xi

j, ti)−δb(xi
j, ti)Yx(xi

j, ti)+(a(xi
j, ti)+b(xi

j, ti))Y (x
i
j, ti) = g(xi

j, ti),

Y (x j,0) = φ0(x j,0),

Y (0, ti) = φl(0, ti), Y (1, ti) = φr(1, ti).
(5.5.2)

To obtain a second-order approximation for Y ′(xi
j, t

i
j), we use Taylor’s expansion of Y about (xi

j, ti) at

any time level t = ti to write

Y (xi
j+1, ti)≈ Y (xi

j, ti)+hi
j+1Yx(xi

j, ti)+
(hi

j+1)
2

2
Yxx(xi

j, ti).

Y (xi
j−1, ti)≈ Y (xi

j, ti)−hi
jYx(xi

j, ti)+
(hi

j)
2

2
Yxx(xi

j, ti).

Consequently, we obtain

Yx(xi
j, ti)≈

1
hi

j+1hi
j(h

i
j+1 +hi

j)
((hi

j)
2Y (xi

j+1, ti)+((hi
j+1)

2 − (hi
j)

2)Y (xi
j, ti)− (hi

j+1)
2Y (xi

j−1, ti)),

Yxx(xi
j, ti)≈

2
hi

j+1hi
j(h

i
j+1 +hi

j)
(hi

jY (x
i
j+1, ti)− (hi

j+1 +hi
j)Y (x

i
j, ti)+hi

j+1Y (xi
j−1, ti)).

A substitution in Yx(xi
j+1, ti)≈ Yx(xi

j, ti)+hi
j+1Yxx(xi

j, ti) and Yx(xi
j−1, ti)≈ Yx(xi

j, ti)−hi
jYxx(xi

j, ti) leads

to
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Yx(xi
j+1, ti)≈

1
hi

j+1hi
j(h

i
j+1 +hi

j)
(((hi

j)
2 +2hi

j+1hi
j)Y (x

i
j+1, ti)− (hi

j+1 +hi
j)

2Y (xi
j, ti)+(hi

j+1)
2Y (xi

j−1, ti)),

Yx(xi
j−1, ti)≈

2
hi

j+1hi
j(h

i
j+1 +hi

j)
(−(hi

j)
2Y (xi

j+1, ti)+(hi
j+1 +hi

j)
2Y (xi

j, ti)− ((hi
j+1)

2 +2hi
j+1hi

j)Y (x
i
j−1, ti)).

The cubic spline polynomial S(x) is determined by solving D4S(x) = 0, for all x ∈ [xi
j−1,x

i
j], j =

1,2, ...N at any time level t = ti such that S(xi
j−1) =Y (xi

j−1), S(xi
j) =Y (xi

j), S′′(xi
j−1) =Y ′′(xi

j−1), and

S′′(xi
j) = Y ′′(xi

j). Now, for j = 0, ...,N, we use S′′(xi
j) = M i

j to find

S(x) =
(xi

j − x)3

6hi
j

M j−1 +
(x− xi

j−1)
3

6hi
j

+

(
Y (xi

j−1)−
(hi

j)
2

6
M j−1

)
(xi

j − x)

hi
j

+(
Y (xi

j)−
(hi

j)
2

6
M i

j

)
(x− xi

j−1)

hi
j

.

For fixed i and j = 1, ...,N −1, the continuity constraint of S′(x) at xi
j leads to the following system for

M i
j

hi
j

6
M i

j−1 +

(
hi

j +hi
j+1

3

)
M i

j +
hi

j+1

6
M i

j+1 =
Y (xi

j+1)−Y (xi
j)

hi
j+1

−
Y (xi

j)−Y (xi
j−1)

hi
j

. (5.5.3)

In a similar way, we devise an exponential difference method for the outer solution. The exponential

spline is determined by solving

(Di
j − (pi

j)
2D2)T = 0, ∀x ∈ [xi

j−1,x
i
j], j = 1, ...,N,with

T (xi
j−1) = Y (xi

j−1), T (xi
j) = Y (xi

j), T ′′(xi
j−1) = τ

i
j−1, T ′′(xi

j) = τ
i
j,

(5.5.4)

where pi
j ≥ 0 are the tension parameters. As in our earlier derivation, we employ continuity constraints

to find
ei

jτ
i
j−1 +(di

j +di
j+1)τ

i
j + ei

j+1τ i
j+1 =

Y (xi
j+1)−Y (xi

j)

hi
j+1

−
Y (xi

j)−Y (xi
j−1)

hi
j

,

where ei
j =

si
j − pi

jh
i
j

(pi
j)

2si
jh

i
j
, di

j =
pi

jh
i
jc

i
j − si

j

(pi
j)

2si
jh

i
j
, si

j = sinh(pi
jh

i
j), and ci

j = cosh(pi
jh

i
j).

(5.5.5)

Using exponential spline difference discretisation of problem (5.5.2) leads to

Y i
j − Ŷ i−1(xi−1

j )

∆t
− ετ

i
j −δbi

j(Yx)
i
j +(ai

j +bi
j)Y

i
j = gi

j, j = 1, ...,N −1, i = 1, ...,M.

Substitute τ i
j from the above relation in (5.5.5) at time t = ti, to obtain the following system of equations
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for j = 1, ...,N −1 and i = 1, ...,M

(
−ε∆t

hi
j(h

i
j+1 +hi

j)
+

ei
j

hi
j+1 +hi

j
((ai

j−1 +bi
j−1)∆t +1)+

ei
j(h

i
j+1 +2hi

j)

hi
j(h

i
j+1 +hi

j)
2 δbi

j−1∆t+

(di
j +di

j+1)h
i
j+1

hi
j(h

i
j+1 +hi

j)
2 δbi

j∆t −
ei

j+1hi
j+1

hi
j(h

i
j+1 +hi

j)
2 δbi

j+1∆t

)
Y i

j−1+(
ε∆t

hi
j+1hi

j
+

(
di

j +di
j+1

hi
j+1 +hi

j

)
((ai

j +bi
j)∆t +1)−

ei
j

hi
j+1hi

j
δbi

j−1∆t−

(di
j +di

j+1)(h
i
j+1 −hi

j)

hi
j+1hi

j(h j+1 +h j)
δbi

j∆t +
ei

j+1

hi
j+1hi

j
bi

j+1∆t

)
Y i

j+(
−ε∆t

hi
j+1(h

i
j+1+hi

j)
+

ei
j+1

hi
j+1+hi

j
((ai

j+1 +bi
j+1)∆t +1)+

ei
jh

i
j

hi
j+1(h

i
j+1+hi

j)
2 δbi

j−1∆t−

(di
j +di

j+1)h
i
j

hi
j+1(h

i
j+1 +hi

j)
2 δbi

j∆t −
ei

j+1(h
i
j +2hi

j+1)

hi
j+1(h

i
j+1 +hi

j)
2 δbi

j+1∆t

)
Y i

j+1 =

ei
j

hi
j+1 +hi

j
(gi

j−1∆t + Ŷ i−1
j−1)+

(
d j +d j+1

h j+1 +h j

)
(gi

j∆t + Ŷ i−1
j )+

ei
j+1

hi
j+1 +hi

j
(gi

j+1∆t + Ŷ i−1
j+1).

(5.5.6)

Simultaneously, the cubic splines for the spatial discretisation of (5.5.2) lead to

Y i
j − Ŷ i−1(xi−1

j )

∆t
− εM i

j −δbi
j(Yx)

i
j +(ai

j +bi
j)Y

i
j = gi

j, j = 1, ...,N −1, i = 1, ...,M.

Substitute M i
j from above relation in (5.5.3) at time t = ti, to obtain the following system of equations

for j = 1, ...,N −1 and i = 1, ...,M

(
−ε∆t

hi
j(h

i
j+1 +hi

j)
+

hi
j

6(hi
j+1 +hi

j)
((ai

j−1 +bi
j−1)∆t +1)+

hi
j+1 +2hi

j

6(hi
j+1 +hi

j)
2 δbi

j−1∆t+

hi
j+1

3hi
j(h

i
j+1 +hi

j)
δbi

j∆t −
(hi

j+1)
2

6hi
j(h

i
j+1 +hi

j)
2 δbi

j+1∆t

)
Y i

j−1∆t+(
ε∆t

hi
j+1hi

j
+

(ai
j +bi

j)∆t +1

3
− 1

6hi
j+1

δbi
j−1∆t −

hi
j+1 −hi

j

3hi
j+1hi

j
δbi

j∆t +
1

6hi
j
bi

j+1∆t

)
Y i

j+(
−ε∆t

hi
j+1(h

i
j+1 +hi

j)
+

hi
j+1

6(hi
j+1 +hi

j)
((ai

j+1 +bi
j+1)∆t +1)+

(hi
j)

2

6(hi
j+1 +hi

j)
2 δbi

j−1∆t−

hi
j

3hi
j+1(h

i
j+1 +hi

j)
δbi

j∆t −
(hi

j +2hi
j+1)

6(hi
j+1 +hi

j)
2 δbi

j+1∆t

)
Y i

j+1 =

hi
j

6(hi
j+1 +hi

j)
(gi

j−1∆t + Ŷ i−1
j−1)+

gi
j∆t + Ŷ i−1

j

3
+

hi
j+1

6(hi
j+1 +hi

j)
(gi

j+1∆t + Ŷ i−1
j+1).

(5.5.7)

Therefore, in the outer layer portion, the proposed method mitigates the nonmontonic behaviour of

the cubic spline difference method by incorporating exponential splines. Consequently, the associated

problem (5.2.1) takes the form: Find Y such that
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
[LN,MY ]ij := r−j,iY (x

i
j−1, ti)+ rc

j,iY (x
i
j, ti)+ r+j,iY (x

i
j+1, ti) = q−j,iG

i
j−1 +qc

j,iG
i
j +q+j,iG

i
j+1,

Ŷ (x j,0) = φ0(x j,0),

Y (0, ti) = φl(0, ti), Y (1, ti) = φr(1, ti).

(5.5.8)

where Gi
j = g(xi

j, ti)+ Ŷ (xi−1
j , ti−1) for all j = 0, ...,N, i = 1, ...,M, and Ŷ (xi−1

j , ti−1) is the linear inter-

polant of Y i−1
j at any time level t = ti−1. The value of the coefficients r∗j,i and q∗j,i, where j = 0, ...,N, i =

1, ...,M and ∗ = −,c,+, are determined based on the location of the mesh points xi
j which partitions

the domain [0,1]× [0,T ] of LN,M. The coefficients are given as follows:

1. Whenever xi
j lies within the boundary layer part of the mesh i.e., j = {1, ...,kl − 1} ∪ {kr +

1, ...,N − 1}, i = 1, ...,M , the cubic spline difference method employed to determine the coef-

ficients reads

r−j,i =
−ε∆t

hi
j(h

i
j+1 +hi

j)
+q−j,i

((
a(xi

j−1, ti)+b(xi
j−1, ti)

)
∆t +1

)
+

hi
j+1 +2hi

j

6(hi
j+1 +hi

j)
2 δb(xi

j−1, ti)∆t+

hi
j+1

3hi
j(h

i
j+1 +hi

j)
δb(xi

j, ti)∆t −
(hi

j+1)
2

6hi
j(h

i
j+1 +hi

j)
2 δb(xi

j+1, ti)∆t,

rc
j,i =

ε∆t
hi

j+1hi
j
+qc

j,i
((

a(xi
j, ti)+b(xi

j, ti)
)

∆t +1
)
− 1

6hi
j+1

δb(xi
j−1, ti)∆t−

(hi
j+1 −hi

j)

3hi
j+1hi

j
δb(xi

j, ti)∆t +
1

6h j
δb(xi

j+1, ti)∆t,

r+j,i =
−ε∆t

hi
j(h

i
j+1 +hi

j)
+q+j,i

((
a(xi

j+1, ti)+b(xi
j+1, ti)∆t

)
+1
)
+

(hi
j)

2

6(hi
j+1 +hi

j)
2 δb(xi

j−1, ti)∆t−

hi
j

3hi
j+1(h

i
j+1 +hi

j)
δb(xi

j, ti)∆t −
hi

j +2hi
j+1

6(hi
j+1 +hi

j)
2 δb(xi

j+1, ti)∆t,

(5.5.9)

q−j,i =
hi

j

6(hi
j+1 +hi

j)
, qc

j,i =
1
3
, q+j,i =

hi
j+1

6(hi
j+1 +hi

j)
. (5.5.10)

2. While xi
j lies outside layers i.e. j = {kl, ...kr}, i = 1, ...,M, the coefficients associated with the

exponential spline difference method reads
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

r−j,i =
−ε∆t

hi
j(h

i
j+1 +hi

j)
+q−j,i

((
a(xi

j−1, ti)+b(xi
j−1, ti)

)
∆t +1

)
+

ei
j(h

i
j+1 +2hi

j)

hi
j(h

i
j+1 +hi

j)
2 δb(xi

j−1, ti)∆t+

(di
j +di

j+1)h
i
j+1

hi
j(h

i
j+1 +hi

j)
2 δb(xi

j, ti)∆t −
ei

j+1hi
j+1

hi
j(h

i
j+1 +hi

j)
2 δb(xi

j+1, ti)∆t,

rc
j,i =

ε∆t
hi

j+1hi
j
+qc

j,i
((

a(xi
j, ti)+b(xi

j, ti)
)

∆t +1
)
−

ei
j

hi
j+1hi

j
δb(xi

j−1, ti)∆t−

(di
j +di

j+1)(h
i
j+1 −hi

j)

hi
j+1hi

j(h
i
j+1 +hi

j)
δb(xi

j, ti)∆t +
ei

j+1

hi
j+1hi

j
δb(xi

j+1, ti)∆t,

r+j,i =
−ε∆t

hi
j(h

i
j+1 +hi

j)
+q+j,i

((
a(xi

j+1, ti)+b(xi
j+1, ti)

)
∆t +1

)
+

ei
jh

i
j

hi
j+1(h

i
j+1 +hi

j)
2 δb(xi

j−1, ti)∆t−

(di
j +di

j+1)h
i
j

hi
j+1(h

i
j+1 +hi

j)
2 δb(xi

j, ti)∆t −
ei

j+1(h
i
j +2hi

j+1)

hi
j+1(h

i
j+1 +hi

j)
2 δb(xi

j+1, ti)∆t,

(5.5.11)

q−j,i =
ei

j

hi
j+1 +hi

j
, q+j,i =

ei
j+1

hi
j+1 +hi

j
, qc

j,i =
di

j

hi
j+1 +hi

j
+

di
j+1

hi
j+1 +hi

j
. (5.5.12)

5.6 Error Analysis

At each mesh point (xi
j, ti), j = 0, ...,N, i = 0, ...,M, let η i

j = y(xi
j, ti)−Y (xi

j, ti) denotes the error

in the numerical solution Y . Then, the consistency error associated with the hybrid spline difference

discretisation (5.5.8) is given by

[LN,M
η ]ij = LN,M(y(xi

j, ti)−Y (xi
j, ti)) = χ

i
1, j +χ

i
2, j, j = 0, ...,N, i = 0, ...,M, (5.6.1)

where, χ i
1, j =(LN,M

1 −L1)y(xi
j, ti), L1y :=−εyxx−δb(x, t)yx+(a(x, t)+b(x, t))y and χ i

2, j = ρ∗
t y(xi

j, ti)−
yt(xi

j, ti). Now, to examine the order of convergence, we decompose the consistency error as η i
j =

Φi
j +ψ i

j, where for each fixed i = 0, ...,M and j = 1, ...,N −1, Φi
j is defined as the solution of

[LN,M
1 Φ]ij = χ

i
1, j, [κ

N,M
1 Φ] j

0 = (κN,M
1 −κ1)y(0, ti), [κ

N,M
2 Φ] j

N = (κN,M
2 −κ2)y(1, ti), (5.6.2)

and ψ i
j is defined as the solution of



[LN,Mψ]ij = χ i
2, j − [ρ∗

t Φ]ij, i = 0, ...,M, j = 1, ...,N −1,

[κN,M
1 ψ]i0 = ρ∗

t y(0, ti)− yt(0, ti)−ρ∗
t Φi

0,

[κN,M
2 ψ]iN = ρ∗

t y(1, ti)− yt(1, ti)−ρ∗
t Φi

N ,

ψ0
j =−Φ0

j .

(5.6.3)

Using (5.2.4), (5.6.2) as in [331], we get a bound on Φ given by

∥Φ
i∥ ≤C∥χ

i
1∥, for all i = 0, ...,M. (5.6.4)

Lemma 5.6.1. For i = 1, ...,M, the error component Φi satisfies ∥Φi∥ ≤CN−2.
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Proof. Using the standard decomposition of the solution y as yi
j = ui

j + si
j, we have

χ
i
1, j = [(LN,M

1 −L1)y]ij = [(LN,M
1 −L1)u]ij +[(LN,M

1 −L1)s]ij.

Next, we calculate an error bound for the smooth parts and the layers separately. We begin our analysis
with the smooth part, such that

1. When j = {1, ...kl −1}∪{kr+1, ...,N−1}, the spline difference approximation is obtained using
cubic splines. Then, the Taylor expansions yield

|[(LN,M
1 −L1)u]ij| ≤Cε|hi

j+1 −hi
j|||u′′′(x)||[xi

j−1,x
i
j+1]

+Cε((hi
j+1)

2 +(hi
j)

2)||u(iv)(x)||[xi
j,x

i
j+1]

≤Cε(hi
j)

2(1+ ε
−1
2 )+C((hi

j+1)
2 +(hi

j)
2)≤Cε

1
2 (hi

j)
2 +C(hi

j)
2.

Using Lemmas (5.3.1), (5.4.2) and (5.4.3) along with the assumption that
√

ε ≪ N−1, we obtain

|[(LN,M
1 −L1)u]ij| ≤CN−2.

2. When j = {kl, ...,kr}, the spline difference approximation is obtained using exponential splines.
Then, it is easy to follow that

|[(LN,M
1 −L1)u]ij| ≤Cε(hi

j)
2(pi)2||u′′(x)||[xi

j−1,x
i
j+1]

.

For p = min
j=kl ,...kr

{p j} = max
j=kl ,...kr


√

a(xi
j, ti)+b(xi

j, ti)+
1
∆t

ε
,

√
δb(xi

j, ti)

ε

 it follows from lem-

mas (5.3.1), (5.4.2) and (5.4.3), that

|[(LN,M
1 −L1)u]ij| ≤CN−2.

Next, to compute the error bound on the layer part, such that

1. When j = {1, ...kl −1}∪{kr +1, ...,N−1}, for the left side of the boundary layer portion, Taylor
expansions yield

∣∣∣∣[(LN,M
1 −L1

)
v
]i

j

∣∣∣∣≤ ε

∣∣∣∣(hi
j+1

)2
v′′′
(

θ
(2)
j , ti

)
−
(

hi
j

)2
v′′′
(

θ
(1)
j , ti

)∣∣∣∣
3
(

hi
j+1 +hi

j

) ,
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where θ
(2)
j ∈

(
xi

j,x
i
j+1

)
and θ

(1)
j ∈

(
xi

j−1,x
i
j

)
. Moreover,

∣∣∣(hi
j+1
)2

v′′′
(

θ
(2)
j , ti

)
−
(
hi

j
)2

v′′′
(

θ
(1)
j , ti

)∣∣∣≤ ∣∣(hi
j+1)

2 − (hi
j)

2∣∣ ∣∣∣v′′′(θ
(2)
j , ti

)∣∣∣+(
hi

j
)2
∣∣∣v′′′(θ

(2)
j , ti

)
− v′′′

(
θ
(1)
j , ti

)∣∣∣
≤C
(∣∣(hi

j+1)
2 − (hi

j)
2∣∣ ∣∣v′′′ (xi

j, ti
)∣∣+(

hi
j
)2 ∣∣hi

j+1 +hi
j
∣∣ ∣∣∣v(iv) (xi

j, ti
)∣∣∣),

Now using Lemma (5.3.1) and Lemma (5.4.2) to compute∣∣∣∣[(LN,M
1 −L1

)
v
]i

j

∣∣∣∣≤Cε
−1
2
(
hi

j
)2

e
(
−xi

j

√
ρ

ε

)
+Cε

−1 (hi
j
)2

e
(
−xi

j

√
ρ

ε

)
≤C

(
ε

−1
2 + ε

−1
)(∫ xi

j

xi
j−1

e
(
− x

2

√
ρ

ε

)
dx

)2

≤C
(

ε
−1
2 + ε

−1
)(√

ε

∫ xi
j

xi
j−1

M (x,y(x, ti))dx

)2

≤CΨ
2N−2 ≤CN−2.

Likewise, we can estimate the outcome for the right side of the boundary layer portion, and the
desired result follows immediately.

2. When j = {kl, ...,kr}, the taylor expansions with integral remainder yields∣∣∣∣[(LN,M
1 −L1

)
v
]i

j

∣∣∣∣≤Cε||v′′(x)||[xi
j−1,x

i
j+1]

.

Now the derivative bounds derived in Lemma (5.3.1) yield

∣∣∣∣[(LN,M
1 −L1

)
v
]i

j

∣∣∣∣≤C

e
(
−xi

j−1

√
ρ

ε

)
, xi

j ≤ 1
2 ,

e
(
−(1−xi

j+1)
√

ρ

ε

)
, xi

j >
1
2 .

For j ≥ kl −1 and xi
j ≤ 1

2 , Lemma (5.4.1) suggests∣∣∣∣[(LN,M
1 −L1

)
v
]i

j

∣∣∣∣≤Ce
(
−xi

kl−1

√
ρ

ε

)

=C

e

(
−xi

kl−1
2

√
ρ

ε

)
2

≤CN−2.

The bounds for j ≤ kr and xi
j >

1
2 can easily be established in a similar manner.

Lemma 5.6.2. For all j = 1, ...,N−1 and i = 1, ...,M, the error component ψ i
j satisfies ψ i

j ≤C(N−2 +

∆t).
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Proof. Using (5.6.3) and Lemma (5.2.1), we obtain the following bounds

∣∣ψ i
j
∣∣≤ (max

j

(
Φ

0
j
)
+max

j,i

∣∣χ i
2, j −ρ

∗
t
(
Φ

i
j
)∣∣+max

i

(
ψ

i
0
)
+max

i

(
ψ

i
N
))

.

Now, using Taylor expansions and the time derivative bounds on the solution in Lemma (5.2.2), it is
easy to verify that

∣∣∣χ i
2, j

∣∣∣≤C∆t, j = 1, ...,N−1, i = 1, ...,M. Using (5.6.2), (5.6.3) and Lemma (5.6.1)
with i = 0, we have

∣∣ψ i
j
∣∣≤C

(
N−2 +∆t +max

j,i

∣∣ρ∗
t
(
Φ

i
j
)∣∣+max

i

(
ψ

i
0
)
+max

i

(
ψ

i
N
))

.

Using (5.6.2) such that for a fixed i, ρ∗
t Φi

j satisfies the following boundary value problem

LN,M
1 ρ

∗
t Φ

i
j = ρ

∗
t χ

i
1, j −

((
ρ
∗
t
(
ai

j +bi
j
))

Φ
i−1
j

)
, j = 1, ...,N −1

[κN,M
1 ρ

∗
t Φ] j

0 = ρ
∗
t (κ

N,M
1 −κ1)y(0, ti), [κ

N,M
2 ρ

∗
t Φ] j

N = ρ
∗
t (κ

N,M
2 −κ2)y(1, ti).

Using the piecewise linear interpolant technique on xi−1
q−1 ≤ xi

j ≤ xi
q−1, for some q with a fixed i, yields

ρ
∗
t χ

i
1, j =

χ i
1, j − χ̂

i−1
1 (xi−1

j )

∆t
=

1
∆t

((
LN,M

1 −L1

)
ui

j −σq−1
(
xi

j
)((

LN,M
1 −L1

)
ui−1

q−1

)
−

σq
(
xi

j
)((

LN,M
1 −L1

)
ui−1

q

))
,

where σq−1(x) =
xi−1

q − x

xi−1
q − xi−1

q−1
and σq(x) =

x− xi−1
q−1

xi−1
q − xi−1

q−1
. As the interpolation error in the space domain

is of order O(N−2), let L̂1 =−ε
∂ 2

∂x2 and L̂N,M
1 =−ερ

2
x , we obtain

ρ
∗
t χ

i
1, j ≤

1
∆t

∣∣∣∣∫ ti

ti−1

(
L̂N,M

1 − L̂1

)
∂y
∂ t

(xi
j, t)dt

∣∣∣∣+O(N−2)

.

Now using Lemma (5.2.2) and Lemma (5.6.1) yields the bound required on ρ∗
t χ i

1, j. Moreover, since∣∣∣ρ∗
t

(
ai

j +bi
j

)∣∣∣≤C, using the bounds of Lemma (5.6.1), we have

max
j

∣∣∣ρ∗
t
(
ai

j +bi
j
)

Φ
i−1
j

∣∣∣≤C max
j

∣∣∣Φi−1
j

∣∣∣≤CN−2.

Thus, combining the various estimates completes the proof.

We now summarise all the previously derived error estimates to present the main convergence result.

The proof follows directly from Lemma (5.6.1), Lemma (5.6.2), and the triangle inequality.

Theorem 5.6.1. Let y be the solution of (5.2.1) and Y be the solution of (5.5.9). Then, there exists a
positive constant C independent of N, ε and ∆t such that

max
j,i

∣∣y(xi
j, ti)−Y (xi

j, ti)
∣∣≤C(∆t +N−2).
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5.7 Numerical Experiments

In this section, we examine the performance of the method using three model problems and present

numerical findings. When an exact solution to the problem is not available, we estimate the error EN,∆t
ε

using the double mesh principle [5], according to the formula defined in [324, 278]. However, if the

exact solution is known, we use

EN,∆t
ε = max

(xi
j,ti)∈D̄N,M

∣∣∣y(xi
j, ti)−Y N,∆t(xi

j, ti)
∣∣∣ .

Here, y(xi
j, ti) marks the analytic solution and Y N,∆t is the numerical approximation on D̄N,M. Moreover,

we estimate uniform errors using EN,∆t = max
ε∈K

EN,∆t
ε where K = {ε|ε = 20,2−2, ...,2−40} and compute

the order of convergence pN,∆t
ε and parameter-uniform order of convergence pN,∆t using the formula

defined in [119, 324, 278].

Example 5.7.1. Consider the following problem:

yt(x, t)− εyxx(x, t)+(0.1+ sin(πx))y(x, t)+(x+10e−t)y(x−δ , t) = g(x, t), (x, t) ∈ (0,1)× (0,1],

y(x,0) = cos
(

πx
2

)(
1− e−x

√
δ+2/ε

)
+
(

1− e−(1−x)
√

δ+2/ε

)
, x ∈ [0,1],

y(x, t) =
∫ 1

0

1− e−
√

δ+2/ε

(δ +2/ε −2)−1
(√

δ +2/ε +2e−
√

δ+2/ε

)
− (δ +2/ε)−1

(
1− e−

√
δ+2/ε

)
+1

y(x, t)dx,

(x, t) ∈ [−δ ,0]× [0,1],

y(1, t) =
∫ 1

0

1

cos
(

πx
2

)(
1− e−x

√
δ+2/ε

)
+
(

1− e−(1−x)
√

δ+2/ε

)y(x, t)dx, t ∈ [0,1]

where the function g(x, t) is choosen such that

y(x, t) = (1− t3)
(

cos
(

πx
2

)(
1− e−x

√
δ+2/ε

)
+
(

1− e−(1−x)
√

δ+2/ε

))
.

Example 5.7.2. Consider the following problem [332]:

yt(x, t)− εyxx(x, t)+3y(x, t)− y(x−1, t) = 1, (x, t) ∈ (0,1)× (0,1],

y(x,0) = 0, x ∈ [0,2],

y(x, t) =
ε

6

∫ 2

0
y(x, t)dx, (x, t) ∈ [−1,0]× [0,1],

y(2, t) =
∫ 2

0

e−
√

δ+1/ε

2
y(x, t)dx, t ∈ [0,1].
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Example 5.7.3. Consider the following problem

yt(x, t)− εyxx(x, t)+ cos(πx)y(x, t)+ xe−ty(x−δ , t) = g(x, t), (x, t) ∈ (0,1)× (0,1],

y(x,0) = 0, x ∈ [0,1],

y(x, t) =
1√
2ε

∫ 1

0

1− e−
√

2/ε√
2/ε −1+ e−

√
2/ε

y(x, t)dx, (x, t) ∈ [−δ ,0]× [0,1],

y(1, t) =
1√
2ε

∫ 1

0

1− e−
√

2/ε√
2/ε −1+ e−

√
2/ε

y(x, t)dx, t ∈ [0,1]

where the function g(x, t) is choosen such that

y(x, t) = t
(

2−
(

e−x
√

2/ε + e−(1−x)
√

2/ε

))
.

Example 5.7.4. Consider the following problem [333]:

yt(x, t)− εyxx(x, t)+ y(x, t) = g(x, t), (x, t) ∈D= (0,1)× (0,1]

where the source term, initial and boundary conditions are calculated from the exact solution reads(
t +

x2

2ε

)
er f c

(
x

2
√

εt

)
−
√

t
πε

xe−x2/4εt .

Table 5.1: The error EN,∆t and the order of convergence pN,∆t for Example 5.7.1 for different values of ε , N and
M with δ = 0.05.

ε N=32 N=64 N=128 N=256 N=512
M=8 M=32 M=128 M=512 M=2048

2−1 EN,∆t 5.292e-02 1.499e-02 3.690e-03 8.783e-04 2.0811e-04
pN,∆t 1.8198 2.0223 2.0708 2.0773

2−2 EN,∆t 5.706e-02 1.602e-02 3.927e-03 9.292e-04 2.1879e-04
pN,∆t 1.8326 2.0283 2.0793 2.0864

2−3 EN,∆t 5.981e-02 1.661e-02 4.046e-03 9.552e-04 2.2546e-04
pN,∆t 1.84833 2.0374 2.0826 2.0829

2−4 EN,∆t 6.202e-02 1.699e-02 4.105e-03 1.022e-03 2.5129e-04
pN,∆t 1.8680 2.0492 2.0059 2.0239

2−5 EN,∆t 5.358e-02 1.738e-02 4.391e-03 1.107e-03 2.7359e-04
pN,∆t 1.6242 1.9848 1.9878 2.0165

We choose Q = 1.05 in the adaptive moving mesh generation process. For Example 5.7.1, Tables

5.1, 5.2, and 5.3 list the parameter uniform error and order of convergence for spatial variables, time

variables, and a comparative analysis of the analytical and approximate solutions, respectively. It is

evident from Tables 5.1, 5.5 and 5.6 that the method is second-order accurate in the space variable.

To demonstrate the global first-order accuracy in the time variable, we balance the contribution of

space and time discretisations by doubling the number of mesh points in space and quadrupling the

number of time steps defined in [119]. The same is apparent from Table 5.2. Also, Tables 5.2 and 5.5

illustrate parameter uniform error and order of convergence and compare the result of the proposed

hybrid method with uniformly convergent difference methods over a Shishkin mesh and equidistributed
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Table 5.2: The error EN,∆t and the order of convergence pN,∆t for Example 5.7.1 for different values of ε , N and
M with δ = 0.05.

ε N=32 N=64 N=128 N=256 N=512
M=8 M=16 M=32 M=64 M=128

2−1 EN,∆t 5.292e-02 2.858e-02 1.425e-02 6.788e-03 3.3244e-03
pN,∆t 0.8888 1.0040 1.0699 1.0298

2−2 EN,∆t 5.706e-02 3.055e-02 1.516e-02 7.220e-03 3.5912e-03
pN,∆t 0.9013 1.0109 1.0701 1.0075

2−3 EN,∆t 5.981e-02 3.168e-02 1.562e-02 7.443e-03 3.7018e-03
pN,∆t 0.9168 1.0201 1.0694 1.0076

2−4 EN,∆t 6.202e-02 3.240e-02 1.585e-02 7.8211e-3 3.8921e-03
pN,∆t 0.9367 1.0315 1.0190 1.0068

2−5 EN,∆t 5.358e-02 3.314e-02 1.697e-02 8.678e-03 4.3198e-03
pN,∆t 0.6931 0.9655 0.9675 1.0063

Table 5.3: Comparison of analytic and approximate solution for Example 5.7.1 with ε = 10−4, δ = 10−2, N = 100
and M = 32.

Analytic Solution
x ↓/ t → 0 0.2 0.4 0.6 0.8 1

0.00 1.0000000000 0.9920000000 0.9360000000 0.7840000000 0.4880000000 0.0000000000
0.30 1.8910065242 1.8758784720 1.7699821066 1.4825491150 0.9228111838 0.0000000000
0.60 1.5877852523 1.5750829703 1.4861669961 1.2448236378 0.7748392031 0.0000000000
0.90 1.1564337437 1.1471822737 1.0824219841 0.9066440551 0.5643396669 0.0000000000
0.92 1.1253210291 1.1163184609 1.0533004833 0.8822516868 0.5491566622 0.0000000000
0.94 1.0939018285 1.0851506138 1.0238921114 0.8576190335 0.5338240923 0.0000000000
0.96 1.0592970352 1.0508226589 0.9915020249 0.8304888756 0.5169369532 0.0000000000
0.98 0.9723050543 0.9645266139 0.9100775308 0.7622871626 0.4744848665 0.0000000000
1.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

Approximate Solution
x ↓/ t → 0 0.2 0.4 0.6 0.8 1

0.00 1.0000000000 0.9920000000 0.9360000000 0.7840000000 0.4880000000 0.0000000000
0.30 1.8910065433 1.8758784800 1.7699821064 1.4825491151 0.9228111839 0.0000000000
0.60 1.5877852635 1.5750829793 1.4861669978 1.2448236380 0.7748392029 0.0000000000
0.90 1.1564337563 1.1471822847 1.0824219833 0.9066440551 0.5643396670 0.0000000000
0.92 1.1253210293 1.1163184633 1.0533004879 0.8822516860 0.5491566623 0.0000000000
0.94 1.0939018296 1.0851506142 1.0238921134 0.8576190332 0.5338240923 0.0000000000
0.96 1.0592970363 1.0508226599 0.9915020251 0.8304888758 0.5169369532 0.0000000000
0.98 0.9723050549 0.9645266143 0.9100775309 0.7622871615 0.4744848665 0.0000000000
1.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

Table 5.4: Comparison of order of convergence pN,∆t for Example 5.7.2 for proposed method with a FDM over a
piecewise uniform Shishkin mesh.

ε N=64 N=128 N=256 N=512 N=1024
M=32 M=128 M=512 M=2048 M=8192

Present Method 2−12

EN,∆t 1.655e-02 4.328e-03 1.094e-03 2.744e-04 6.865e-05
pN,∆t 1.9350 1.9840 1.9952 1.9989 1.9993

Method in [332]
pN,∆t 1.3369 1.5402 1.6333 1.6722 1.7052
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Table 5.5: The error EN,∆t and the order of convergence pN,∆t for Example 5.7.3 for different values of ε , N and
M with δ = 0.05.

ε N=32 N=64 N=128 N=256 N=512
M=8 M=32 M=128 M=512 M=2048

2−1 EN,∆t 2.661e-04 7.388e-05 1.921e-05 4.9860e-06 1.2834e-06
pN,∆t 1.8487 1.9433 1.9459 1.9579

2−2 EN,∆t 2.512e-04 7.135e-05 1.877e-05 4.8281e-06 1.1919e-06
pN,∆t 1.8158 1.9264 1.9589 2.0181

2−3 EN,∆t 2.346e-04 6.872e-05 1.837e-05 4.7922e-06 1.1922e-06
pN,∆t 1.7714 1.9033 1.9385 2.0070

2−4 EN,∆t 2.132e-04 6.518e-05 1.782e-05 4.6821e-06 1.1782e-06
pN,∆t 1.7097 1.8709 1.9282 1.9905

2−5 EN,∆t 2.697e-04 6.013e-05 1.698e-05 4.5291e-06 1.1490e-06
pN,∆t 2.1651 1.8242 1.9065 1.9788

Table 5.6: Comparison of errors EN,∆t and order of convergence pN,∆t for Example 5.7.4 for proposed method
with a modified backward Euler FDM on layer adapted nonuniform mesh.

ε N=16 N=32 N=64 N=128 N=256
M=5 M=20 M=80 M=320 M=1280

Present Method 100

EN,∆t 8.463e-03 2.245e-03 5.537e-04 1.362e-04 3.326e-05
pN,∆t 1.9145 2.0195 2.0234 2.0339

Method in [333]
EN,∆t 1.3208e-02 4.8368e-03 1.3771e-03 3.6046e-04 9.2406e-05
pN,∆t 1.4493 1.8124 1.9337 1.9638

Present Method 10−2

EN,∆t 4.912e-03 1.231e-03 3.018e-04 7.233e-05 1.678e-05
pN,∆t 1.9965 2.0282 2.0609 2.1079

Method in [333]
EN,∆t 1.6934e-02 5.0200e-03 1.3741e-03 3.6053e-04 9.2542e-05
pN,∆t 1.7542 1.8693 1.9302 1.9619
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Fig. 5.1: Numerical solution of Example 5.7.1 with ε = 10−4, δ = 10−2, N = 64 and M = 32.

meshs, respectively, for Examples, 5.7.2 and 5.7.4. Similarly, for Example 5.7.3, the uniform error and

the order of convergence are tabulated in Table 3.4.

Figures 5.1, 5.3 and 5.5 illustrate the numerical solution of Examples 5.7.1, 5.7.2 and 5.7.3 for the

given values of different parameters. Figures 5.2 depict the solution of Example 5.7.1 at different time

levels. In contrast, Figure 5.7 shows the behaviour of the solution of Example 5.7.4 at a given time level

for different values of the perturbation parameters. It is evident from the Figures that the solution to the

problem exhibits layer behaviour in the neighbourhood of the outflow boundary. In these regions, the

solution gradient grows exponentially, giving rise to multiscale character. Moreover, Figures 5.4 and 5.8

represent the log-log plot for the maximum pointwise error for Examples 5.7.2 and 5.7.4, respectively.

The straight line in the log-log plot ensures that the error decreases monotonically and that the error

satisfies the power function relationship as anticipated by theoretical estimates. Figure 5.6 presents

the mesh density for the corresponding example in the spatial direction when N = 128. Note that the

moving mesh algorithm successfully generates the mesh that remains dense in the layer regions and

sparse outside as required.

5.8 Conclusion

A singularly perturbed time-dependent reaction-diffusion problem with shift and integral boundary

conditions is solved numerically using a hybrid difference method over a moving mesh. The technique

utilises a modified backward difference discretisation in time on a uniform mesh and a suitable com-

bination of the exponential and cubic spline difference methods over a layer adaptive moving mesh

in space. The layer-adapted mesh in space is generated by equidistributing a nonnegative monitor
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Fig. 5.2: Numerical solution of Example 5.7.1 at different time-levels with M = 32 and N = 64.
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Fig. 5.3: Numerical solution of Example 5.7.2 with ε = 2−5, δ = 1, N = 100 and M = 32.



116

10
2

10
3

10
-4

10
-3

10
-2

M
a
x
im

u
m

 P
o
in

tw
is

e
 E

rr
o
r

Fig. 5.4: Log-log plot of maximum pointwise errors for Example 5.7.2.
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Fig. 5.5: Numerical solution of example 5.7.3 with ε = 10−4, δ = 10−2, N = 128 and M = 64.
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function, and the modified backward difference discretisation ensures alignment with the mesh at each

subsequent time level. The presented method demonstrates second-order parameter uniform conver-

gence in space and first-order convergence in time. The method improves the accuracy of numerical

solutions while maintaining computational efficiency. The method is unconditionally stable and free

from directional bias. The numerical experiments validate the theoretical estimates.



Chapter 6

Summary and Future Scope

6.1 Summary

This chapter summarises the work of the thesis and outlines future research directions with possible

extensions of the present work. This thesis contributes to the development of adaptive numerical

methods for analysing different classes of singularly perturbed boundary value problems with shifts and

integral boundary conditions. The numerical techniques combine a high-order FDM with the adaptive

moving mesh refinement strategy or a semi-analytical approach to capture the layer behaviour of the

solution. This thesis comprises six chapters. The first chapter presents the introduction, providing

the necessary background and motivation for the research. The subsequent four chapters detail the

academic contributions to the treatment of four distinct problems. Finally, the sixth chapter offers the

conclusion of the thesis and outlines potential directions for future research. The following is a chapter-

wise summary of the thesis and its significant contributions.

Chapter 1 recalls an overview of the fundamentals of singular perturbation theory. It also presents

concepts and a historical assessment of the related literature. This chapter also provides a detailed

literature review of various state-of-the-art techniques developed in the recent past. In addition, the

chapter illustrates the aim and objectives of the thesis.

Chapter 2 presents a higher-order adaptive hybrid difference method to solve a singularly perturbed

system of reaction-diffusion problems with Dirichlet boundary conditions. The numerical method com-

bines a Hermite difference method with the classical central difference method on a layer-adapted

mesh. The equidistribution principle generates the mesh using a nonnegative monitor function. The

mesh generation procedure automatically detects the thickness and steepness of any boundary lay-

ers present in the solution and does not require prior information about its analytical behaviour. The

chapter presents a rigorous theoretical analysis and numerical results for model problems to support

theoretical findings. The method is almost fourth-order accurate, converges uniformly, and is uncon-

ditionally stable. Moreover, the convergence obtained is optimal, as the estimates are free from any

logarithmic term compared to the difference methods over the piecewise uniform Shishkin mesh.

Chapter 3 presents a higher-order hybrid approximation over an adaptive mesh designed to solve a

119
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coupled system of singularly perturbed reaction-diffusion equations with a shift on an equidistributed

mesh. The difference method combines an exponential spline difference method for the outer layer

and a cubic spline difference method for the boundary layer on the adaptive mesh generated. The

mesh relies on the equidistribution principle, a nonnegative monitor function, and the second-order

derivatives of the layer components of the solution. The proposed numerical method improves the

accuracy of numerical solutions while maintaining computational efficiency. The proposed numerical

method is consistent, stable, and converges regardless of the size of the perturbation parameter. The

numerical results and illustrations support the theoretical findings.

Chapter 4 presents a semi-analytical approach to solving a system of singularly perturbed convection-

diffusion equations with shifts. A careful factorisation handles complex multiscale systems by splitting

them into two explicit parts: one capturing smooth solutions and the other addressing boundary layer

solutions. The strategy involves factoring a coupled system of equations into explicit systems of first-

order initial value problems and second-order boundary value problems. The solutions to the degener-

ate system correspond to the regular component. In contrast, those of the system of boundary value

problems represent the singular component. The process combines the regular and singular compo-

nents to obtain the complete solution. The q-stage Runge-Kutta method computes the outer solution,

and an analytical approach derives the inner solution. The proposed method is unconditionally stable

and converges independently of the perturbation parameters. Unlike numerical methods, the proposed

technique does not require adaptive mesh generation to sustain approximation and consequently has

lower computational complexity. The process is straightforward and interdisciplinary researchers can

quickly adapt the method to solve problems related to chemical kinetics, mathematical physics, and

biology. The method is highly accurate, free from directional bias, and the estimates are free from

logarithmic terms. The results demonstrate that the numerical method outperforms many existing

methods.

Chapter 5 presents a highly efficient hybrid difference approximation for a time-dependent singularly

perturbed reaction-diffusion equation with shift and integral boundary conditions. The technique utilises

a modified backward difference discretisation in time on a uniform mesh and a suitable combination of

the exponential and cubic spline difference methods over a layer adaptive moving mesh in space. The

layer-adapted mesh in space is generated by equidistributing a nonnegative monitor function, and the

modified backward difference discretisation ensures alignment with the mesh at each subsequent time

level. The presented method demonstrates second-order spatial uniform convergence and first-order

temporal convergence. The method improves the accuracy of numerical solutions while maintaining

computational efficiency. The method is unconditionally stable and free from directional bias. The

numerical experiments validate the theoretical estimates.

6.2 Future Scope

In this section, we outline some of the interesting problems to which the approach/idea presented in

the thesis can be extended. It would be interesting to consider the following problems for future work.
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1. Consider a time-dependent reaction-diffusion problem with a fractional temporal derivative

Dα
t y(x, t)− ε

∂ 2y(x,t)
∂x2 +b(x, t)y(x, t) = g(x, t), (x, t) ∈ Ω = (0,1)× (0,T ],

y(x,0) = φ0(x,0), on Γ0 := {(x,0) : x ∈ [0,1]},

y(0, t) = φl(0, t), on Γl := {(0, t) : t ∈ (0,T ]},

y(1, t) = φr(1, t), on Γr := {(1, t) : t ∈ (0,T ]},

where 0 < ε ≪ 1, 0 < α < 1, T > 0, b(x, t) and g(x, t) are sufficiently smooth functions such that

b(x, t)≥ β > 0 on (x, t) ∈ Ω and Dα
t denotes the Caputo fractional derivative defined by

Dα
t {(x, t) :=

1
Γ(1−α)

∫ t

s=0
(t − s)−α ∂{(x,s)

∂ s
ds, for (x, t) ∈ D .

Such problems model various physical phenomena, particularly in the fields of genetic algorithms,

traffic systems, telecommunications, robotic technology, signal processing, and many more.

2. Consider a two-parameter singularly perturbed parabolic convection-diffusion problem with a time

delay posed on the domain Ω = (0,1)× (0,T ], Γ = Ω̄\Ω
ε

∂ 2y(x,t)
∂x2 +µa ∂y(x,t)

∂x +by(x, t − τ)+ cy(x, t)− ∂y(x,t)
∂ t = g(x, t),

y(x, t) = φ0(x, t), x ∈ (0,1) = Γ0, t ∈ [−τ,0),

y = φ1(t), on Γl
⋃

Γr,

where Γ0 = {(x,0) : 0 ≤ x ≤ 1}, Γl = {(0, t) : 0 ≤ t ≤ T}, and Γr = {(1, t) : 0 ≤ t ≤ T}. Note

that 0 < ε ≤ 1 and 0 < µ ≤ 1 are perturbation parameters.

These types of problems have several applications in physical, biological and chemical pro-

cesses, including chemical flow, lubrication theory, and reactor theory.

3. Consider a time dependent singularly perturbed convection-diffusion problem with discontinuity

in the initial condition on domain Ω:

∂y(x,t)
∂ t − ε

∂ 2y(x,t)
∂x2 +a(x, t)∂y(x,t)

∂x +b(x, t)y(x, t) = g(x, t), (x, t) ∈ Ω,

y(x,0) = φ(x), 0 ≤ x ≤ 1, [φ ](d̃) ̸= 0,0 < d̃ ≤ O(1)< 1,

y(0, t) = y(1, t) = 0, 0 < t ≤ T,

a(x, t)> α > 0, ∀(x, t) ∈ D, 0 ≤ t ≤ T, a,g ∈C4+γ(D̄), γ > 0,

φ (i) ∈C4(((0,1))\{d̃}) : φ (i)(0) = φ (i)(1) = 0, 0 ≤ i ≤ 4,

g(i+2 j)(p,0) = 0, 0 ≤ i+2 j ≤ 4−2p, p = 0,1,

ax(d̃,0) = 0, [φ ′] (d̃) = 0,

where Ω = (0,1)× (0,T ],T > 0. Here ε is a perturbation parameter such that 0 < ε ≪ 1 and

the coefficients a(x, t),b(x, t) are smooth functions such that a(x, t)≥ α > 0, b(x, t)≥ β ≥ 0 on
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Ω̄. Moreover, [φ ] denotes the jump in the function φ across the point of discontinuity x = d̃, that

is, [φ ](d̃) = φ
(
d̃+
)
−φ

(
d̃−
)
.

Such type of problems appear in many fields of science and engineering, including the simulation

of oil extraction from underground reservoirs, fluid flows such as water quality problems in river

networks and convective heat transport problems with large Peclet numbers.
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[217] K. Surla and M. Stojanović. “Solving singularly perturbed boundary-value problems by spline in tension”.

In: Journal of Computational and Applied Mathematics 24.3 (1988), pp. 355–363.

[218] M. Sakai and R. A. Usmani. “A class of simple exponential B-splines and their application to numerical

solution to singular perturbation problems”. In: Numerische Mathematik 55.5 (1989), pp. 493–500.

[219] V.V. Strygin, I.A. Blatov, and I.Yu. Pokornaya. “Collocation method for solving singularly perturbed

boundary-value problems by using cubic splines”. In: Ukrainian Mathematical Journal 46.4 (1994),

pp. 433–440.
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