

ANDROID MALWARE DETECTION

FRAMEWORK USING ATTENTION-BASED

DEEP LEARNING

A Thesis Submitted

In Partial Fulfilment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY
in

Computer Science & Engineering

by

Mayank Ashok

(Roll No. 23/CSE/31)

Under the Supervision of

Dr. Rahul Katarya
(Professor, Dept. of Computer Science & Engineering)

Department of Computer Science and Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

 May, 2025

ii

ACKNOWLEDGEMENTS

This research would not have been possible without the guidance, support, and

encouragement of many individuals and institutions.

I would like to express my deepest gratitude to Prof. Rahul Katarya for his invaluable

mentorship, insightful feedback, and unwavering support throughout this project. His

expertise and encouragement were instrumental at every stage, from conceptualization

to implementation and analysis. I am also sincerely thankful to the Head of the

Department of Computer Science and Engineering at Delhi Technological

University for providing a stimulating academic environment and for their continuous

encouragement. My appreciation extends to all faculty and staff members of the

department, whose assistance and cooperation greatly facilitated the completion of this

work. I acknowledge my colleagues and peers for their collaborative spirit,

constructive discussions, and technical assistance, which enriched the research process

and contributed to the successful realization of these implementation papers.

Finally, I am grateful to all the people involved for their patience, understanding, and

unwavering moral support throughout this journey. Their encouragement provided the

foundation that enabled me to persevere and complete this research.

 Mayank Ashok

iii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I, Mayank Ashok, Roll No. 23/CSE/31, student of M. Tech (Computer Science &

Engineering), hereby certify that the work which is being presented in the thesis

entitled “Android Malware Detection Framework Using Attention-Based Deep

Learning” in partial fulfilment of the requirements for the award of the Degree of

Master of Technology in Artificial Intelligence in the Department of Computer

Science and Engineering, Delhi Technological University is an authentic record of my

own work carried out during the period from August 2023 to June 2025 under the

supervision of Prof. Rahul Katarya, Professor, Department of Computer Science and

Engineering. The matter presented in the thesis has not been submitted by me for the

award of any other degree of this or any other Institute.

Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the thesis and the statement made by the candidate is correct to the best

of our knowledge.

Signature of Supervisor Signature of External Examiner

iv

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE

Certified that Mayank Ashok (Roll No. 23/CSE/31) has carried out the research work

presented in the thesis titled “Android Malware Detection Framework Using

Attention-Based Deep Learning”, for the award of Degree of Master of Technology

from Department of Computer Science and Engineering, Delhi Technological

University, Delhi under my supervision. The thesis embodies result of original work

and studies are carried out by the student himself and the contents of the thesis do not

form the basis for the award of any other degree for the candidate or submit else from

the any other University /Institution.

Date:

Prof. Rahul Katarya

(Supervisor)

Department of CSE

Delhi Technological University

v

ABSTRACT

The persistent rise of Android malware, coupled with the platform's dominance in the

global mobile ecosystem, presents a critical challenge for cybersecurity researchers

and practitioners. Traditional malware detection approaches, primarily reliant on static

or dynamic analysis, have struggled to keep pace with the rapidly evolving tactics of

malicious actors, including code obfuscation and runtime evasion. This thesis

addresses these challenges by developing a comprehensive and interpretable hybrid

detection framework that leverages both static and dynamic features extracted from

Android applications. Using the large-scale KronoDroid dataset—which integrates

time-based features from real and emulated environments—an end-to-end

methodology was established, encompassing rigorous data preprocessing, advanced

feature engineering, and careful handling of class imbalance.

A suite of classical machine learning models, including ensemble methods such as

Extra Trees and Random Forest, was systematically evaluated to establish robust

performance baselines. Building upon these results, advanced deep learning

architectures—including convolutional neural networks (CNN), long short-term

memory networks (LSTM), and a hybrid CNN-LSTM model with integrated attention

mechanisms—were deployed to capture complex spatial and temporal patterns

inherent in hybrid app data. To further enhance detection accuracy and robustness, a

confidence-based ensemble strategy was developed, fusing the probabilistic outputs of

the best-performing machine learning and deep learning models.

Empirical results demonstrate that the proposed framework achieves state-of-the-art

detection rates, with the attention-based CNN-LSTM model delivering significant

gains in accuracy, interpretability, and resilience against both false positives and false

negatives. The final ensemble fusion approach outperformed all standalone models,

achieving an accuracy of 99.61% and minimizing error rates on the KronoDroid

benchmark. Detailed analysis of feature importance and attention weights further

confirms the practical relevance and transparency of the detection process. This

research establishes a scalable, interpretable, and empirically validated blueprint for

next-generation Android malware detection, offering actionable insights and a robust

methodological foundation for future advances in the field.

vi

LIST OF PUBLICATIONS

1. Mayank Ashok and Rahul Katarya, "Supervised Learning Approaches in Android

Malware Detection: Survey and Analysis," accepted for presentation at the 6th

International Conference on Intelligent Communication Technologies and Virtual

Mobile Networks (ICICV 2025).

2. Mayank Ashok and Rahul Katarya, "Behavioural Analysis for Android Malware

Detection: A Deep Learning Approach," accepted for presentation at the 6th

International Conference on Data Analytics & Management (ICDAM-2025).

3. Mayank Ashok and Rahul Katarya, "Android Malware Detection Framework

Using Attention-Based Deep Learning," submitted to the IEEE 3rd International

Conference on Self Sustainable Artificial Intelligence Systems (WCONF-2025).

vii

TABLE OF CONTENTS

Candidate’s Declaration ii

Certificate iii

Acknowledgement iv

Abstract v

List of Publications vi

List of Tables ix

List of Figures x

List of Symbols, Abbreviations, and Nomenclature xi

CHAPTER 1 - INTRODUCTION 1

1.1 Background and Motivation

1.2 Research Challenges

1.3 Research Objectives

1.4 Key Contributions

1.5 Lessons Learned

1

3

5

6

7

CHAPTER 2- LITERATURE REVIEW 8

2.1 Static Analysis Techniques

2.2 Dynamic Analysis Techniques

2.3 Hybrid Analysis Techniques

2.4 Machine Learning Approaches

2.5 Deep Learning Approaches

2.6 Challenges in Existing Literature

2.7 Lessons Learned

8

9

10

11

12

13

14

CHAPTER 3 - DATASETS AND METHODOLOGY 15

3.1 Introduction

3.2 KronoDroid Dataset

3.3 Data Preprocessing and Feature Engineering

3.4 Model Development and Design

3.5 Model Training and Evaluation Protocol

3.6 Hyperparameter Optimization Strategy

3.7 Model Fusion and Integration Strategy

3.8 Lessons Learned

15

15

16

19

21

23

24

26

CHAPTER 4 - PROPOSED WORK 27

4.1 Introduction

4.2 Hybrid ML-Based Malware Detection Requirement

4.3 DL & Attention-Based Malware Detection Requirement

27

27

29

viii

4.4 Fusion/Ensemble Strategy Requirement

4.5 Lessons Learned

31

32

CHAPTER 5 - EXPERIMENTAL SETUP AND RESULTS 34

5.1 Introduction and Experimental Environment

5.2 ML Baseline Results

5.3 DL & Attention-Based Model Results

5.4 Comparative Analysis

5.5 Interpretability and Feature Importance Analysis

5.6 Lessons Learned

34

34

36

37

39

42

CHAPTER 6 – CONCLUSION, FUTURE WORK & SOCIAL

IMPACT

45

6.1 Conclusion

6.2 Future Scope

6.3 Social Impact

45

46

47

References 49-52

List of Publications and Their Proofs

Plagiarism Verification

ix

LIST OF TABLES

Table Number Table Name Page Number

Table 3.1 KronoDroid Dataset Composition 16

Table 3.2 Static and Dynamic Feature Description 18

Table 3.3 Hyperparameter Optimization Configuration 24

Table 5.1 Performance Metrics of ML Models on Hybrid

Features

35

Table 5.2 Performance Metrics of DL and Attention-

Based Models on Hybrid Features

36

Table 5.3 Comparative Analysis: ML, DL, and

Ensemble/Fusion Model Performance

37

Table 5.4 Feature Importance Analysis for Extra Trees

Classifier

39

x

LIST OF FIGURES

Figure Number Figure Name Page Number

Fig. 1.1 Android Malware Growth Statistics and Market

Share

3

Fig. 3.1 Hybrid feature extraction pipeline: end-to-end

process for extracting, integrating, and selecting

static and dynamic features from Android

applications

19

Fig. 3.2 CNN-LSTM hybrid architecture for integrated

static and dynamic feature analysis

22

Fig. 3.3 Experimental workflow and model integration

pipeline: illustration of parallel ML/DL inference

and confidence-based ensemble fusion for final

decision making

26

Fig. 5.1 ROC Curves for CNN-LSTM, Extra Trees, and

Confidence-Based Fusion Models

38

Fig. 5.2 Confusion Matrices for CNN-LSTM, Extra Trees,

and Confidence-Based Fusion Models

39

Fig. 5.3 Feature Importance Visualization for Extra Trees

Classifier

40

Fig. 5.4 Attention Weight Distribution Over Time Steps 41

xi

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE

API Application Programming Interface

AUC Area Under the ROC Curve

CNN Convolutional Neural Network

DL Deep Learning

FNR False Negative Rate

FPR False Positive Rate

IPC Inter-Process Communication

LSTM Long Short-Term Memory

ML Machine Learning

ROC Receiver Operating Characteristic

SVM Support Vector Machine

SMOTE Synthetic Minority Over-sampling Technique

SHAP SHapley Additive exPlanations

XAI Explainable Artificial Intelligence

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In the contemporary digital era, the rapid proliferation of smartphones has

fundamentally altered how individuals and organizations interact with technology.

Android, in particular, has emerged as the world’s leading mobile operating system,
with estimates suggesting it powers over 72% of devices globally by 2025 [1]. This

level of dominance stems largely from the platform’s open-source design, adaptability

across a spectrum of manufacturers, and a thriving environment for third-party

applications. While these features have spurred innovation and made Android integral

to daily routines, they have also, somewhat paradoxically, created ample opportunities

for cybercriminals seeking to exploit both users and enterprises [2]. The ease of

distributing applications via the Google Play Store and numerous unofficial sources,

though advantageous for developers, has inadvertently set the stage for malicious

actors to disseminate harmful code at scale.

Over the past decade, the surge in Android malware incidents has become a persistent

concern within the cybersecurity community. Industry reports document a landscape

in which tens of millions of malicious software instances are identified annually,

reflecting a diversity of attack types that range from financial fraud and ransomware

to the theft of sensitive personal data and unauthorized device manipulation [2], [3].

These attacks are not limited to isolated individuals; rather, they increasingly target

businesses, government agencies, and critical infrastructure. The broad adoption of

Bring Your Own Device (BYOD) initiatives in professional settings, coupled with the

integration of Android devices into complex Internet of Things (IoT) environments,

has only broadened the possible vectors for intrusion, magnifying the risk and potential

consequences of successful malware operations.

Traditionally, the primary defence against such threats has relied upon signature-based

detection. These methods function by scanning application code or behavioural

patterns for matches against established libraries of known malware signatures.

Although effective in identifying familiar threats, signature-based systems are, by

nature, limited to reactive protection; their ability to detect previously unseen or

morphing malware strains is constrained, often resulting in delayed incident responses

and elevated false negative rates [4], [5]. In an effort to address these shortcomings,

the field introduced heuristic and behaviour-based detection techniques, which aim to

discern malicious activity by modelling the typical behaviour of benign applications

and flagging deviations from this baseline. Yet, these alternative methods are not

without obstacles—extensive manual rule development, computational inefficiency,

challenges in adapting to new attack tactics, and opaque reasoning processes often

hinder practical deployment and user trust [6], [7].

Against this backdrop of evolving threats and defensive limitations, the research

community has increasingly turned to machine learning (ML) and deep learning (DL)

2

approaches as promising solutions for malware identification and categorization.

These techniques offer a fundamental shift, as they enable systems to learn and

generalize from vast, heterogeneous datasets, capturing complex patterns that manual

rules may overlook. Notably, hybrid frameworks that integrate static analysis (such as

permissions, manifest file attributes, and API usage) with dynamic analysis (like

system call monitoring and live network activity) have shown pronounced

improvements in detection rates and resilience against tactics like code obfuscation

[8], [9]. The logic behind this hybridization is clear: by correlating multiple

perspectives on an application’s structure and behaviour, it becomes possible to more

accurately distinguish between legitimate and malicious software, even as adversaries

devise increasingly sophisticated evasion strategies.

Within this growing field of hybrid analysis, deep neural architectures have garnered

considerable attention for their ability to extract and model nuanced relationships

within complex data. One such architecture, the hybrid Convolutional Neural

Network–Long Short-Term Memory (CNN-LSTM) model, has proven adept at

simultaneously handling spatial dependencies—captured by CNN layers—and

temporal or sequential characteristics—modelled by LSTM layers—embedded within

hybrid malware datasets [27], [40]. This dual modelling capability is particularly

significant for Android malware, which frequently exhibits intricate code organization

and behaviours that unfold across time.

While advanced models such as CNN-LSTM offer improved detection power, their

increased complexity presents new challenges. The demands of training and inference,

especially in terms of computational resources, can be substantial, making real-world

deployment more difficult, particularly on resource-limited mobile devices.

Additionally, the risk of overfitting remains, especially when working with high-

dimensional data, and the interpretability of such models often lags behind their

predictive performance [45], [41]. Security analysts and practitioners, therefore, face

a trade-off: highly accurate models may be less transparent and harder to trust in

operational contexts.

To bridge the interpretability gap, recent work has introduced attention mechanisms

within the CNN-LSTM framework. The attention layer empowers the model to

dynamically prioritize certain features or time steps, effectively highlighting which

elements of an application’s behaviour most influenced its classification outcome. This

development not only enhances detection accuracy and reduces false positives but also

yields valuable explanations for analysts, allowing for a clearer understanding of why

specific applications are flagged as benign or malicious [35], [41]. The ability to

visualize attention weights directly addresses concerns about model transparency,

supporting both trust and practical incident response.

Parallel to these deep learning advancements, ensemble and confidence-based fusion

methods have been recognized for their potential to bolster detection robustness. By

aggregating predictions from diverse classifiers—such as decision trees, ensemble

forests, and deep neural networks—these strategies capitalize on the complementary

strengths of different models, offsetting individual weaknesses and raising the bar for

3

state-of-the-art performance [16], [15], [45]. Particularly in critical security settings,

such integrated approaches are invaluable for minimizing both false positives and false

negatives, which are pivotal metrics for operational reliability.

Building upon these collective advancements, the present thesis introduces a scalable

and interpretable hybrid detection framework that leverages the KronoDroid dataset,

known for its extensive, time-structured collection of Android applications

characterized by both static and dynamic features [56]. By combining rigorous feature

engineering, attention-based deep learning, and model fusion strategies, the research

seeks to address pressing challenges of accuracy, interpretability, and efficiency within

the domain of Android malware detection. Ultimately, this work aspires to make a

substantive contribution to the ongoing advancement of mobile security.

Fig. 1.1 Android Malware Growth Statistics and Market Share [1][2]

As shown in Fig. 1.1, Android’s market share dominance and the corresponding
exponential increase in malware incidents over recent years highlight the urgency for

more advanced, adaptive malware detection strategies.

1.2 Research Challenges

The detection of Android malware presents numerous challenges that stem from the

inherent complexity of the Android ecosystem and the evolving sophistication of

malware attacks. The open-source nature of Android, combined with a vast array of

device models, operating system versions, and third-party app stores, results in a

highly fragmented landscape. This fragmentation complicates the design of universal

4

malware detection systems that are effective across different platforms and

environments [1][56].

Malware authors constantly develop new techniques to evade detection.

Polymorphism, code obfuscation, and dynamic payload activation are widely used to

circumvent traditional signature-based detection methods, which rely on known

malware patterns and require continuous updating to remain effective [3][4]. Such

methods are inadequate against zero-day malware that exploit unknown

vulnerabilities, creating an urgent need for detection systems that can generalize

beyond known signatures [2].

Anomaly-based and heuristic approaches in malware detection focus on recognizing

activities that diverge from established benign behaviour, or utilize heuristic rules to

flag suspicious patterns. However, these strategies frequently encounter the drawback

of high false positive rates. This occurs when legitimate applications display

uncommon or unexpected behaviours, leading to their misclassification as threats and

consequently diminishing both user confidence and the practical utility of such

detection systems [5], [6]. Static analysis, which entails examining application code in

the absence of execution, remains susceptible to advanced obfuscation and packing

strategies. Malicious actors exploit these techniques to conceal harmful code, thus

evading conventional static inspections [6], [56].

To obtain a deeper understanding of app behaviour, dynamic analysis executes

applications in controlled environments and observes their actions in real time. While

this dynamic scrutiny can reveal sophisticated attack vectors, it brings its own set of

obstacles—most notably, substantial computational requirements and extended

execution times, both of which complicate the scaling of such methods to thousands

of applications in operational settings. Compounding these issues, malware developers

increasingly deploy evasion tactics, such as detecting virtualized environments or

deferring payload activation, further hindering the effectiveness of dynamic analysis

frameworks [7], [56].

Recent advances in machine learning (ML) and deep learning (DL) offer compelling

alternatives by automating feature extraction and classification. Nevertheless, the

adoption of these methods is hampered by challenges tied to data quality, thoughtful

feature selection, and reliable model generalization. Datasets for Android malware

detection are often characterized by pronounced class imbalance, where benign

samples far outnumber malicious ones. This imbalance introduces the risk of bias in

learning algorithms, potentially impairing their ability to identify true threats [19],

[37]. Furthermore, sophisticated DL models—including convolutional neural

networks (CNNs) and long short-term memory (LSTM) architectures—are data-

hungry, requiring extensive labelled datasets to avoid overfitting and to achieve

dependable results. Their significant computational footprint also raises concerns

about the feasibility of deploying such models on typical mobile devices with limited

hardware resources [40], [41].

5

A further complication is the challenge of interpretability. The internal logic of many

DL systems is opaque—a “black box” that leaves analysts unable to trace how specific
decisions are made. This lack of transparency undermines trust and impedes

widespread operational use [40], [41]. As a result, developing interpretability methods

that provide meaningful explanations for model outputs is essential, both for validating

alerts and for understanding the evolving tactics of Android malware.

Integrating static and dynamic features into a cohesive detection framework remains a

complex undertaking. Effective feature fusion must maintain the sequence and

structure inherent in dynamic behaviours, while also drawing on the contextual

richness of static application characteristics. Ineffective integration may result in the

loss of critical information or introduce redundancy, which can ultimately diminish

overall detection accuracy [56].

Additionally, adversarial attacks have emerged as a significant threat in this domain.

Sophisticated attackers may manipulate input features or exploit weaknesses in

detection models to bypass security systems. Enhancing model robustness requires

continuous adaptation and the implementation of defensive mechanisms designed to

resist adversarial manipulations [34].

In sum, the primary obstacles for Android malware detection include the need to

maximize detection accuracy while minimizing false positives, improving the

interpretability of complex algorithms, optimizing computational efficiency for mobile

environments, ensuring effective integration of diverse features, and maintaining

resilience in the face of evolving malware strategies and adversarial threats.

1.3 Research Objectives

The central aim of this thesis is to propose and implement a scalable, interpretable, and

resilient detection framework for Android malware, directly addressing prevailing

limitations regarding accuracy, explainability, and operational efficiency. The

following research objectives define the core focus of the work:

Objective 1: Development of a Hybrid Feature Extraction and Selection

Framework- This objective is dedicated to building a comprehensive approach that

synthesizes both static and dynamic analysis techniques to capture the most relevant

characteristics of malicious applications. Features such as permissions, API calls,

manifest properties, system call traces, and network activity patterns are systematically

extracted and incorporated. To enhance the effectiveness of the detection process,

advanced feature selection algorithms are applied to reduce dimensionality, eliminate

redundancy, and support improved classification outcomes [56], [18], [19].

Objective 2: Integration of Attention-Based Deep Learning for Improved

Detection and Explainability- To implement an attention-enhanced CNN-

LSTM deep learning model that dynamically focuses on the most relevant features

during classification. This model aims to increase detection accuracy, reduce false

6

positives, and provide interpretable insights into the decision-making process,

addressing the opacity of traditional deep learning approaches [40][41][35].

Objective 3: Development of an Ensemble Machine Learning Strategy for

Enhanced Robustness and Scalability- To utilize ensemble learning methods

combining multiple classical machine learning classifiers, such as Extra Trees,

AdaBoost, and Random Forest, to improve detection robustness and adaptability. The

ensemble strategy will be optimized for deployment on resource-constrained devices,

balancing accuracy and computational efficiency [20][37][45].

1.4 Key Contributions

This thesis makes the following key contributions to the field of Android malware

detection:

1. Comprehensive Hybrid Feature Extraction Framework- The thesis

presents a novel framework that effectively integrates both static and dynamic features

extracted from Android applications. By leveraging permissions, API calls, manifest

data alongside runtime behaviours such as system calls and network traffic, the

framework improves the detection of sophisticated malware variants. The use of

advanced feature selection techniques ensures reduction in dimensionality without

sacrificing classification performance [56][18][19].

2. Attention-Enhanced CNN-LSTM Deep Learning Model- An attention

mechanism is incorporated within a hybrid CNN-LSTM architecture to dynamically

focus on the most relevant features for classification. This attention-based model

achieves superior detection accuracy and significantly reduces false positives while

providing interpretable insights into the classification process. This addresses the

common limitation of deep learning models being perceived as black boxes in security

applications [40][35][41].

3. Ensemble Machine Learning Strategy for Robust and Scalable Detection-

 The research develops an ensemble approach combining multiple classical

machine learning classifiers to enhance robustness and generalization across diverse

malware samples. The ensemble is designed with efficiency in mind, enabling

practical deployment in resource-constrained mobile environments while maintaining

high detection performance [20][37][45].

4. Empirical Validation on the KronoDroid Dataset- The proposed methods

are thoroughly evaluated on the KronoDroid dataset, a time-based hybrid-featured

dataset capturing a wide range of Android malware behaviours. This evaluation

demonstrates the effectiveness, robustness, and scalability of the framework in

realistic and diverse scenarios [56].

5. Interpretability and Explainability Enhancements- The integration of

attention mechanisms and post-hoc interpretability techniques provides actionable

insights into model decisions, facilitating trust and adoption by security analysts.

7

Visualizations of attention weights and feature importance analyses enhance the

transparency of the malware detection process [35][40][41].

1.5 Lessons Learned

Chapter 1 highlights the significant challenges and complexities involved in Android

malware detection. The increasing diversity and fragmentation of the Android

ecosystem demand detection frameworks that are both adaptable and comprehensive.

Traditional detection methods, including signature-based and heuristic approaches,

exhibit limitations against rapidly evolving malware employing sophisticated evasion

techniques.

The integration of static and dynamic analysis features emerges as a critical factor for

robust malware characterization. Combining static and dynamic data sources within a

malware detection system introduces considerable complexity, particularly in the

processes of feature selection and fusion—both of which are directly linked to the

overall detection capability of the framework [56]. If features are not carefully

integrated, critical information may be lost or redundant, resulting in diminished

accuracy and effectiveness.

Although recent advances in machine learning and deep learning offer promising tools

for automated detection, these methods present persistent challenges regarding

interpretability, computational requirements, and reliable generalization to new types

of threats [40], [41]. Reducing false positives, while maintaining strong detection rates,

remains especially crucial for real-world mobile environments where resources are

inherently limited.

The adoption of explainable artificial intelligence techniques, such as attention

mechanisms and ensemble learning, can substantially enhance both the usability and

trustworthiness of detection outcomes by providing clearer insights into model

decisions [41], [35], [45].

In summary, these considerations underscore the pressing need for a hybrid,

interpretable, and scalable malware detection framework—one that can keep pace with

evolving Android threats, and that successfully balances the demands of accuracy,

computational efficiency, and operational deployability [56], [40], [45].

8

CHAPTER 2

LITERATURE REVIEW

The widespread adoption of Android devices, accompanied by a surge in sophisticated

malware, has prompted the development and continuous refinement of a diverse set of

detection methodologies within the research community [3], [4], [8]. Conducting a

thorough review of prior literature is essential not only for grounding this study in

established theory, but also for pinpointing unresolved challenges and emerging

research opportunities [4], [8]. This chapter systematically examines major strategies

for Android malware detection, beginning with traditional static and dynamic analysis

paradigms and subsequently exploring hybrid frameworks that seek to combine the

advantages of both [4], [17], [56]. In addition, it surveys the rapidly expanding

influence of machine learning and deep learning models, which have revolutionized

detection by automating the discovery of complex patterns and significantly enhancing

classification performance [8], [27], [40]. By critically evaluating recent contributions,

this review sheds light on the advancements achieved, the persistent obstacles that

remain, and the open questions steering the future of Android malware detection

research [4], [8], [56]. The following sections provide focused discussions on static

analysis (Section 2.1), dynamic analysis (Section 2.2), hybrid methodologies (Section

2.3), the adoption of machine learning (Section 2.4), progress in deep learning (Section

2.5), and prevailing challenges found in the literature (Section 2.6), before concluding

with a summary of lessons learned to inform ongoing and future investigations.

2.1 Static Analysis Techniques

Static analysis constitutes a foundational strategy for identifying Android malware,

relying on a thorough inspection of an application’s package contents without
requiring execution. Key features extracted in this process include the permissions an

application requests, the sequence and frequency of API calls, the structure of intent

filters, manifest file attributes, and patterns within the bytecode itself. One of the

primary strengths of static analysis is its efficiency; by forgoing the need to execute

the app, large volumes of software can be analysed rapidly and at scale, making this

approach particularly suitable for broad market surveillance and app store vetting [3],

[4], [56].

Signature-based detection remains a prominent static analysis technique, wherein

malware is identified through the comparison of code fragments or distinctive patterns

against a repository of established malicious signatures. Although this method delivers

high accuracy when confronting previously catalogued threats, it is fundamentally

limited by its inability to detect novel, polymorphic, or zero-day malware that actively

modify their code to evade recognition [3], [4]. These inherent weaknesses have

encouraged researchers to advance toward feature-driven static analysis, leveraging

granular attributes—such as permission requests and API invocation patterns—to

build a behavioural profile of applications [5], [6].

9

Permissions requested by Android apps often signal their intended behaviours and, in

some cases, can suggest malicious objectives, particularly when sensitive operations

like SMS access, contact retrieval, or location tracking are involved. Similarly, the

analysis of API call sequences offers a deeper understanding of an app’s operational

flow, and has been widely applied to distinguish benign applications from those

exhibiting harmful intent [5], [56].

Manifest file analysis can expose components such as broadcast receivers or services

that may facilitate malicious activity. Combined, these static features have

demonstrated utility in improving detection rates when paired with appropriate

machine learning classifiers.

However, static analysis faces notable challenges. Modern malware often employs

sophisticated code obfuscation techniques—such as renaming classes and methods,

string encryption, and control flow flattening—to conceal malicious logic, severely

undermining the effectiveness of static inspection [5][6]. Additionally, dynamic code

loading and reflection, prevalent in many Android apps, limit static analysis coverage

because the actual code executed may not be fully visible during static scanning [56].

Furthermore, the reliance on extracted static features alone can lead to false positives

since some benign apps legitimately request sensitive permissions or utilize advanced

features.

To address these issues, hybrid approaches combining static and dynamic analysis

have gained traction, but static analysis remains an essential, low-overhead tool in the

malware analyst’s arsenal. The balance between speed and accuracy, alongside
ongoing improvements in static feature extraction and deobfuscation techniques,

ensures its continued relevance in Android malware detection research.

2.2 Dynamic Analysis Techniques

Dynamic analysis methods focus on evaluating the real-time behaviour of Android

applications by executing them within emulated or sandboxed environments. Through

this approach, analysts can observe system calls, monitor network interactions, trace

file system modifications, and inspect inter-process communication, thereby

uncovering behavioural indicators of malware that are often missed by static analysis

alone [7], [56]. By enabling the direct observation of runtime activity, dynamic

analysis is uniquely equipped to reveal behaviours that manifest only during execution,

such as the loading of external code or the activation of encrypted payloads.

This runtime-centric perspective makes dynamic analysis especially valuable in

detecting malware that leverages advanced evasion tactics, including code

obfuscation, the use of reflection, or active measures to identify and bypass sandbox

environments [14]. Notable tools like TaintDroid and CopperDroid have demonstrated

the effectiveness of this methodology, employing detailed monitoring of sensitive data

flows and reconstructing execution paths to surface suspicious or unauthorized

operations [13], [14].

10

Despite these strengths, dynamic analysis is not without its own set of challenges. The

fidelity of the execution environment is critical; if the analysis platform fails to

convincingly mimic a genuine device, sophisticated malware may suppress its

malicious actions or delay execution to evade detection, resulting in false negatives

[7], [14]. In addition, the process demands substantial computational resources and can

be time-intensive, posing practical difficulties for scaling to large datasets or deploying

real-time detection solutions on typical mobile hardware [56].

Another layer of complexity arises from the sheer volume and intricacy of data

collected during dynamic monitoring. Extracting meaningful features from this high-

dimensional, sequential data requires advanced data processing architectures and

robust machine learning models designed to capture temporal dependencies and

evolving behavioural patterns [56], [40].

Despite these challenges, dynamic analysis remains a crucial component of

comprehensive malware detection frameworks, especially when combined with static

analysis in hybrid models.

2.3 Hybrid Analysis Techniques

Hybrid analysis techniques combine static and dynamic analysis to leverage the

strengths and mitigate the weaknesses of each individual approach. By integrating

static features such as permissions, API calls, and manifest attributes with dynamic

runtime behaviours like system calls and network traffic, hybrid methods provide a

more comprehensive understanding of Android application behaviour [17][18][56].

The synergy between static and dynamic features enhances detection accuracy and

robustness against obfuscation and evasion tactics. Hybrid models can detect

malicious behaviour that might be missed by static or dynamic analysis alone,

improving resilience to zero-day and polymorphic malware [17]. Several studies have

demonstrated that the fusion of heterogeneous feature sets results in better

classification performance compared to using either feature set independently

[18][56].

However, hybrid analysis introduces challenges related to feature fusion,

dimensionality, and computational overhead. Integrating diverse data types requires

sophisticated feature selection and fusion strategies to ensure that complementary

information is retained without redundancy [56]. Additionally, the combined analysis

process is more resource-intensive and complex, raising concerns about scalability and

real-time applicability, especially on mobile devices with limited resources [56].

Advanced machine learning and deep learning techniques, such as CNN-LSTM

hybrids, have been effectively employed to process hybrid features by capturing spatial

and temporal patterns inherent in static and dynamic data, respectively [40]. The

application of attention mechanisms further improves the model’s ability to focus on
the most discriminative features within the fused data, enhancing both accuracy and

interpretability [35][41].

11

Overall, hybrid analysis represents a promising direction in Android malware

detection, balancing the trade-offs of static and dynamic methods while pushing the

boundaries of detection performance.

2.4 Machine Learning Approaches

Machine learning (ML) techniques have been extensively applied to Android malware

detection due to their ability to automatically learn patterns from data without explicit

programming. Support Vector Machines (SVM), k-Nearest Neighbours (k-NN), and Naive

Bayes classifiers have consistently demonstrated promising effectiveness in differentiating

benign from malicious Android applications, whether based on static, dynamic, or hybrid sets

of features [20], [21], [22], [23], [24]. Decision trees and ensemble techniques such as

Random Forest and AdaBoost further enhance classification robustness by integrating the

outputs of multiple weak learners, which serves to improve detection accuracy and control

overfitting [20], [21], [45]. Random Forest classifiers, in particular, have proven adept at

managing high-dimensional feature spaces—such as those constructed from permission and

API call attributes—resulting in both high detection accuracy and relatively low false positive

rates [21].

Ensemble learning strategies strengthen detection systems by aggregating the

predictions of diverse classifiers, thereby making them more resilient to noisy or

imbalanced datasets [37], [45]. Support Vector Machines are frequently utilized for

their capacity to handle non-linear separations in feature space through the use of

kernel functions, which is particularly advantageous in the detection of sophisticated

or obfuscated malware [22], [44]. Nonetheless, effective use of SVMs often depends

on meticulous feature engineering and careful parameter optimization.

The k-Nearest Neighbours algorithm represents a straightforward yet powerful

technique, assigning labels to samples according to their proximity to previously

labelled instances within the feature space [23]. While k-NN is intuitive and easy to

implement, it can incur significant computational costs at prediction time, which may

hinder its scalability for large datasets. Naive Bayes classifiers, founded on principles

of probabilistic modelling, are valued for their speed and interpretability; however,

their performance can degrade if the assumption of feature independence does not hold

in complex malware datasets [24].

Despite the practical successes of these classical machine learning methods, several

limitations persist. Chief among them is the reliance on manually crafted features,

sensitivity to the quality of feature selection, and a restricted capacity to capture the

sequential or temporal aspects often embedded in dynamic malware behaviour [8],

[19]. The challenge is further compounded by the inherent class imbalance found in

most Android malware datasets, where benign samples vastly outnumber malicious

ones. This imbalance can negatively affect the learning process, often necessitating the

adoption of data balancing techniques such as the Synthetic Minority Over-sampling

Technique (SMOTE) or generative approaches to ensure robust classifier performance

[37].

12

In conclusion, machine learning approaches constitute a foundational element of

Android malware detection frameworks, particularly when coupled with well-

engineered features and ensemble strategies. However, their inherent limitations have

driven the field towards deep learning solutions, which aim to overcome these

challenges.

2.5 Deep Learning Approaches

The adoption of deep learning (DL) has ushered in a transformative era for Android

malware detection, primarily by enabling the automatic discovery of intricate patterns

within high-dimensional data and addressing many constraints of classical machine

learning. Unlike traditional ML techniques, which typically depend on explicit feature

engineering, DL models are capable of autonomously extracting hierarchical

representations and capturing complex spatial as well as temporal relationships

embedded in both static and dynamic application behaviors [27], [33], [40].

Convolutional Neural Networks (CNNs) have demonstrated strong performance in

analysing static features, such as permissions, API call graphs, and opcode sequences,

by learning local patterns and spatial relationships in input data [27][35][40]. By

transforming application binaries or features into image-like representations, CNNs

can distinguish between benign and malicious samples with high accuracy and

minimal feature engineering [35].

Recurrent Neural Networks (RNNs), and particularly Long Short-Term Memory

(LSTM) networks, have been widely adopted to capture sequential and temporal

patterns in dynamic behaviours, such as system call traces, network activity, and

execution sequences [33][40][41]. LSTM models can effectively learn from ordered

data and are robust to long-term dependencies, making them suitable for modelling the

evolution of malware actions over time [41].

Hybrid models, notably CNN-LSTM architectures, combine the strengths of CNNs in

extracting spatial features and LSTMs in capturing temporal dependencies, providing

superior detection capabilities for hybrid static and dynamic feature sets [40]. Recent

research has shown that such models can outperform standalone CNN or LSTM

models, especially in large-scale, heterogeneous datasets [27][40].

Attention mechanisms have further advanced DL-based malware detection by

allowing models to selectively focus on the most relevant parts of input data during

classification [35][41]. By assigning different weights to features or time steps,

attention layers enhance both the interpretability and accuracy of deep learning

models, addressing the “black-box” criticism associated with traditional DL methods
[35][41].

Despite their advantages, deep learning approaches present unique challenges.

Training deep neural networks requires large, labelled datasets to avoid overfitting and

ensure generalization [40]. DL models are also computationally intensive, making

their deployment on resource-constrained mobile devices challenging without model

13

optimization or compression strategies [41]. Additionally, the security and robustness

of DL models are under continuous threat from adversarial attacks, where small

perturbations in the input can fool the model into making incorrect predictions

[34][38].

Recent advances in explainable AI (XAI) techniques—such as SHAP, LIME, and

attention visualization—are increasingly integrated with deep learning frameworks to

provide actionable insights for security analysts and improve model transparency

[38][52].

In summary, deep learning has emerged as a powerful paradigm for Android malware

detection, enabling high accuracy and rich behavioural analysis. Continued research

focuses on improving model interpretability, computational efficiency, and robustness

against adversarial threats.

2.6 Challenges in Existing Literature

Despite significant advancements in Android malware detection, several persistent

challenges continue to limit the effectiveness and practicality of existing solutions. A

key challenge is the handling of imbalanced datasets. Real-world malware datasets

often contain far more benign samples than malicious ones, leading to biased model

training, reduced sensitivity to rare malware variants, and an increased risk of false

negatives [19][37]. While data balancing techniques such as oversampling, synthetic

data generation, and generative adversarial networks (GANs) have been proposed,

achieving optimal balance without introducing artifacts remains an open problem [37].

Feature engineering is another major concern. Many approaches depend on manually

crafted features, which require domain expertise and may not generalize well to unseen

malware types. Incomplete or suboptimal feature sets can degrade detection accuracy

[8][19]. Automated feature learning via deep learning can help, but still faces issues

related to data quality, interpretability, and the need for large, labelled datasets

[40][41].

The interpretability of machine learning and deep learning models presents a notable

limitation. Security analysts require transparent and explainable models to build trust

and enable forensic investigation. Traditional ML models, while more interpretable,

may lack predictive power, whereas deep neural networks, though accurate, are often

viewed as “black boxes” [38][40][52]. Recent advances in explainable AI (XAI) and
the integration of attention mechanisms are beginning to address these issues but are

not yet universally adopted or mature [35][52].

Computational efficiency and resource constraints pose practical challenges,

especially for real-time detection on mobile devices. Many deep learning models

demand significant computational resources for both training and inference, which can

hinder their deployment in production environments [40][41]. Approaches such as

model pruning, quantization, and edge computing are under exploration to mitigate

these constraints.

14

A further challenge is the evolving threat landscape. Malware authors continuously

develop new evasion techniques, such as adversarial attacks, code obfuscation, and

environment-aware payload activation, which are specifically designed to circumvent

state-of-the-art detection methods [34][56]. This cat-and-mouse dynamic necessitates

continual adaptation and ongoing research to maintain detection efficacy.

Lastly, there is a lack of standardized benchmarks and publicly available, diverse

datasets that cover a wide range of real-world scenarios. Many studies rely on limited

or proprietary datasets, complicating fair comparison and reproducibility of results

[56].

In summary, future research in Android malware detection must address data

imbalance, advance automated and interpretable feature engineering, improve

computational efficiency, develop robust adversarial defence strategies, and foster the

creation and sharing of standardized evaluation datasets.

2.7 Lessons Learned

Chapter 2 underscores the substantial progress and diversity of approaches in Android

malware detection, encompassing static, dynamic, hybrid, machine learning, and deep

learning techniques. The review highlights that static analysis provides efficiency but

is vulnerable to obfuscation, while dynamic analysis uncovers runtime behaviours but

incurs computational overhead and is susceptible to evasion tactics. Hybrid approaches

have emerged as a promising direction, leveraging the complementary strengths of

both static and dynamic features to improve detection accuracy and robustness.

Machine learning methods—especially when combined with effective feature

selection and ensemble strategies—demonstrate significant potential, yet remain

constrained by reliance on handcrafted features and challenges related to imbalanced

datasets. Deep learning models, particularly those integrating CNNs, LSTMs, and

attention mechanisms, offer automated feature learning and state-of-the-art detection

accuracy. However, they introduce new concerns, including high computational

demands, lack of transparency, and susceptibility to adversarial attacks.

A recurring theme across the literature is the tension between detection performance,

interpretability, and practical deployability. The absence of widely accepted

standardized datasets and consistent benchmarking protocols continues to pose a

challenge for the field, often hindering fair comparison and reproducibility across

different Android malware detection studies [56]. Moving forward, future research

should prioritize the development of interpretable, efficient, and adaptive detection

frameworks that can address evolving threats while maintaining operational feasibility

for real-world deployment.

15

CHAPTER 3

DATASETS AND METHODOLOGY

3.1 Introduction

This chapter provides a comprehensive overview of the datasets employed in this study

and describes, in detail, the methodological framework adopted for Android malware

detection. Establishing a clear and rigorous experimental protocol is essential to

guarantee that the findings are valid, reproducible, and applicable to broader real-

world scenarios [56]. The methodological workflow encompasses data collection,

preprocessing, feature engineering, model design, training and evaluation, and

interpretability analysis.

A key strength of this research is the use of the KronoDroid dataset, a large-scale,

time-based hybrid-featured dataset comprising both static and dynamic features

extracted from real-world and emulated Android applications [56]. The hybrid nature

of the dataset enables comprehensive evaluation of both traditional and advanced

detection models. The chapter proceeds by first describing the characteristics and

preparation of the dataset, followed by a detailed explanation of the feature

engineering process, model architecture, training protocols, and evaluation metrics.

3.2 KronoDroid Dataset

The KronoDroid dataset serves as the foundational benchmark for the experimental

evaluation in this research. Developed to address limitations of existing datasets,

KronoDroid is a large-scale, time-based hybrid-featured dataset specifically curated

for Android malware detection and behavioural characterization [56]. It includes both

static and dynamic features, capturing a comprehensive range of behaviours exhibited

by benign and malicious applications.

Dataset Composition: KronoDroid comprises samples collected from real Android

devices as well as emulator environments to enhance the generalizability of detection

models. The dataset includes both benign applications and malware samples

representing a variety of malware families and behavioural patterns. The use of

multiple collection environments ensures that models trained on KronoDroid are

robust against device-specific artefacts and emulator-detection evasions [56].

• Static Features: These are extracted from APKs without execution and

include application permissions, API calls, manifest attributes, and metadata.

Such features provide valuable context regarding the declared capabilities and

structural properties of each app [56][18].

• Dynamic Features: Captured during the runtime execution of applications

in sandboxed environments, dynamic features encompass system calls,

network traffic, file system operations, and process activity. These reveal the

real-time actions and behavioural signatures of apps, allowing detection of

obfuscated or dynamically-loaded malicious code [56][40].

16

• Dataset Statistics: KronoDroid contains tens of thousands of samples,

spanning multiple malware families, and is annotated to indicate the ground

truth (malicious or benign). The dataset is temporally structured, enabling

longitudinal analysis of malware evolution and concept drift over time [56].

Significance: KronoDroid’s hybrid and time-based structure allows for the

assessment of detection models in realistic and evolving threat scenarios. The

availability of rich, labelled static and dynamic features provides a robust basis for the

training and evaluation of hybrid models that integrate both types of information

[56][18][40]. Moreover, the inclusion of emulator and real device traces supports

research into evasion resistance and model robustness.

Table 3.1 KronoDroid Dataset Composition [56]

Sample Type Real Device Emulated Environment Total

Malware Samples 41,382 28,745 70,127

Legitimate Applications 36,756 35,246 72,002

Total Samples 78,138 63,991 142,129

3.3 Data Preprocessing and Feature Engineering

Effective data preprocessing and feature engineering are critical for building robust

Android malware detection models, as the quality of input features directly influences

detection accuracy, interpretability, and computational efficiency [19][56]. This

section details the preprocessing pipeline and the strategies employed for extracting,

transforming, and selecting features from the KronoDroid dataset.

3.3.1 Data Preprocessing

The raw KronoDroid dataset is subjected to a series of preprocessing steps to ensure

data quality and compatibility with downstream machine learning and deep learning

models:

• Data Cleaning: Duplicate entries, incomplete records, and corrupted

samples are removed to eliminate noise and potential biases. All missing values

are handled using appropriate imputation techniques or, where necessary, by

discarding incomplete instances [56].

• Label Encoding: The ground truth labels (malicious or benign) are

encoded in a binary format to facilitate supervised learning tasks. Any

categorical variables present in the feature set are similarly encoded [19].

• Normalization and Scaling: Continuous features, especially those with wide

value ranges (such as system call counts or file sizes), are normalized using

techniques like min-max scaling or z-score standardization. This step is

essential for ensuring that all features contribute proportionally during model

training [19][56].

• Class Imbalance Handling: Since real-world malware datasets are often

imbalanced (with benign samples typically outnumbering malicious ones),

17

Synthetic Minority Over-sampling Technique (SMOTE) or similar data

augmentation methods are applied to balance the classes and improve model

sensitivity [19][37].

3.3.2 Feature Engineering for Hybrid Detection Models

Feature engineering in this research is designed to exploit both static and dynamic

perspectives of Android applications:

• Static Feature Extraction: These features are derived from the APK

package without execution, including:

• Permissions: Indicators of requested access, such as READ_SMS,

INTERNET, or ACCESS_FINE_LOCATION [56][18].

• API Calls: Frequencies and sequences of sensitive Android API

usages, which often reflect underlying behaviour [56].

• Manifest Attributes: Analysis of app components (activities, services,

broadcast receivers), intent filters, and metadata from the

AndroidManifest.xml file [56].

• Structural Metadata: Application file size, certificate information, and

resource counts.

• Dynamic Feature Extraction: These features are gathered during sandboxed

execution of each app:

• System Calls: Patterns and frequencies of kernel-level system calls

made during execution, which capture behavioural traits of both benign

and malicious applications [56][40].

• Network Activity: Outbound and inbound connections, including

URLs, IP addresses, and traffic statistics.

• File System and Process Activity: Modifications to file systems,

creation or termination of processes, and inter-process communication

[56].

The combination of static and dynamic features provides a holistic view of application

behaviour, significantly enhancing the capability to detect advanced and evasive

malware variants [17][18][56].

18

Table 3.2: Static and Dynamic Feature Description [56]

Feature

Type

Feature

Category

Description Example Features

Static Permissions Requested app permissions,

indicating access to

sensitive device resources

READ_SMS, INTERNET,

ACCESS_FINE_LOCATION

API Calls Frequency and sequence of

sensitive Android API

usage

sendTextMessage(),

getDeviceId()

Manifest

Attributes

App components, intent

filters, and metadata from

AndroidManifest.xml

Activities, Services, Receivers

Structural

Metadata

Static file and certificate

properties

APK size, Certificate info,

Resource count

Dynamic System Calls Patterns and frequency of

kernel-level system calls

during app execution

execve, open, read, write,

nr_syscalls

Network

Activity

Outbound/inbound network

connections, URLs, and

traffic statistics

URL requests, IP connections,

Packets sent

File System

& Process

Activity

File operations and process

management observed at

runtime

File creation, Process launch,

IPC

3.3.3 Feature Selection

Given the high dimensionality of hybrid features, feature selection techniques are

employed to retain only the most informative and discriminative features:

• Filter Methods: Statistical measures (e.g., mutual information, chi-

square) are used to rank features based on relevance to the target label [19].

• Wrapper and Embedded Methods: Recursive feature elimination and tree-

based feature importance rankings (e.g., from Random Forest or Extra Trees

models) are applied to further refine the selected subset [19][20].

• Dimensionality Reduction: Principal Component Analysis (PCA) is

explored to capture the principal sources of variance, particularly for reducing

redundancy among correlated features [19].

The resulting feature set is both compact and effective, supporting the training of

interpretable and high-performance models [19][20][56]. The overall process—
starting from data cleaning and preprocessing, through hybrid static and dynamic

feature extraction, to final feature selection—is depicted in the hybrid feature

extraction pipeline shown in Fig. 3.1. This pipeline illustrates the sequential and

19

parallel steps taken to generate a comprehensive, unified feature set for input to the

detection models.

Fig. 3.1 Hybrid feature extraction pipeline: end-to-end process for extracting,

integrating, and selecting static and dynamic features from Android applications.

3.4 Model Development and Design

The effectiveness of Android malware detection frameworks relies heavily on the

selection and design of appropriate machine learning (ML) and deep learning (DL)

models. This section describes the model development pipeline, the architectural

choices for both classical ML and advanced DL methods, and the justification for

adopting hybrid and attention-based designs in this research.

3.4.1 Machine Learning Model Selection

Classical ML algorithms have been widely used for Android malware detection due to

their interpretability and computational efficiency. In this research, a suite of well-

established classifiers—including Decision Trees, Random Forest, AdaBoost, Extra

Trees, and Support Vector Machines—were evaluated on the preprocessed

KronoDroid dataset [20][21][22][45]. Ensemble methods such as Random Forest and

Extra Trees were prioritized because of their robustness against overfitting, ability to

handle high-dimensional feature spaces, and effectiveness in managing imbalanced

data distributions [20][21][45].

Each ML model was trained using the hybrid feature set described in Section 3.3.

Hyperparameter optimization (detailed in Section 3.6) was performed using grid

search and cross-validation to identify optimal settings for each classifier. The models

20

were evaluated using standard classification metrics, and the best-performing models

were selected for integration into the ensemble strategy [45].

3.4.2 Deep Learning Model Architecture

Deep learning models offer superior capacity for learning complex, non-linear patterns

directly from data, especially in scenarios involving high-dimensional and

heterogeneous feature sets [27][40]. This research employs three primary DL

architectures:

• Convolutional Neural Networks (CNN): CNNs are adept at capturing

spatial and local patterns from static features such as permissions and API calls

when represented in matrix or sequence form. CNNs reduce the need for

manual feature engineering and excel at recognizing local patterns that may

signal malicious behaviour [27][35][40].

• Long Short-Term Memory Networks (LSTM): LSTMs, a type of

Recurrent Neural Network (RNN), are highly effective in modelling sequential

dependencies, making them suitable for analysing dynamic features such as

system call traces and network activity. LSTM networks can retain contextual

information over long sequences, which is essential for detecting behaviours

that unfold over time [33][41].

• Hybrid CNN-LSTM Model: To capitalize on the complementary strengths of

Convolutional Neural Networks (CNN) and Long Short-Term Memory

(LSTM) architectures, this study adopts a hybrid modelling approach. In this

configuration, CNN layers are employed to extract spatial patterns and local

dependencies from the input features, while the representations generated by

the CNN are subsequently passed to LSTM layers that are adept at capturing

temporal relationships within sequential data. This combined architecture is

especially effective for Android malware detection scenarios that require

simultaneous analysis of static and dynamic features [27], [40], [41].

• Attention Mechanism Integration: To further augment both the interpretability

and discriminative power of the hybrid model, an attention mechanism is

incorporated within the CNN-LSTM framework. By introducing an attention

layer, the model gains the capacity to selectively emphasize important features

or time steps during classification, which not only enhances overall detection

accuracy but also provides explainable, transparent insights that are valuable

to security analysts investigating alerts or suspicious behaviours [35], [40],

[41].

3.4.3 Ensemble Strategy and Model Fusion

Beyond deploying individual classifiers, an ensemble learning strategy is utilized to

combine the predictive strengths of multiple machine learning and deep learning

models. Ensemble approaches have been widely recognized for their ability to boost

overall robustness, generalization, and resistance to overfitting by synthesizing the

predictions from a diverse set of base models [20], [37], [45]. In this work, the final

ensemble is constructed by calibrating and fusing the prediction probabilities from the

21

leading Extra Trees (ML) and attention-enhanced CNN-LSTM (DL) models, using a

confidence-based fusion method designed to further minimize both false positives and

false negatives.

3.4.4 Implementation Considerations

All model development and experimentation are conducted using widely adopted

Python libraries, including scikit-learn, TensorFlow, and Keras, thereby ensuring the

reproducibility and scalability of the research outcomes. Model selection and

evaluation procedures follow best practices in ML/DL experimentation, with a clear

separation between training, validation, and testing phases [19][40].

3.5 Model Training and Evaluation Protocol

A clear and consistent training and evaluation protocol is essential to ensure valid,

transparent, and comparable results for Android malware detection. In this research,

all model development and assessment steps were rigorously standardized and

conducted in accordance with the methodology described in earlier sections.

The preprocessed KronoDroid dataset (see Section 3.3) was split into 80% for training

and 20% for testing using stratified sampling, ensuring the proportion of benign and

malicious samples remained consistent across both sets [56]. This split was maintained

throughout all experiments, and no further internal validation partition was used. All

model development, including any manual hyperparameter adjustment, was strictly

performed on the training set, with no overlap between train and test data.

For classical machine learning models—including Decision Trees, Random Forest,

AdaBoost, Extra Trees, and SVM—the models were trained on the selected hybrid

feature set, with the feature selection approach as described in Section 3.3. Model

parameters such as tree depth, number of estimators, and learning rate (where

applicable) were set empirically, based on training set performance. Once trained, each

model was directly evaluated on the 20% test set.

For deep learning models (CNN, LSTM, CNN-LSTM hybrid, and attention-enhanced

CNN-LSTM), the same 80:20 train-test split was applied. Model architectures and

hyperparameters (including the number of layers, units per layer, kernel sizes,

activation functions, batch size, optimizer, and learning rate) were selected based on

established literature and empirical training performance [40]. Models were trained for

a fixed number of epochs, or until convergence. The final evaluation of each model

was strictly performed on the test set, ensuring no information leakage.

The architecture of the hybrid deep learning model implemented in this research,

which combines convolutional layers for spatial feature extraction with LSTM layers

for temporal dependency modelling, is illustrated in Fig. 3.2. This architecture enables

the model to effectively learn from both static and dynamic feature sets for improved

Android malware detection.

22

Fig. 3.2. CNN-LSTM hybrid architecture for integrated static and dynamic feature

analysis.

To further improve the interpretability and predictive performance of the hybrid

model, an attention mechanism is integrated within the CNN-LSTM framework. By

introducing an attention layer, the model is empowered to selectively emphasize the

most relevant temporal features during sequential modelling. This not only enhances

detection accuracy but also provides greater transparency into the model’s decision-

making process, facilitating interpretability for security analysts and researchers.

For objective assessment and to ensure consistent benchmarking across all model

variants, a standard set of evaluation metrics was employed throughout this study [8],

[40], [56].

• Accuracy: The proportion of correctly classified samples out of the total test

samples.

• Precision: The ratio of true positives to the total number of samples classified

as malware, representing the accuracy of positive predictions.

• Recall (Sensitivity): The proportion of actual malware samples correctly

detected by the model.

• F1-Score: The harmonic mean of precision and recall, providing a single

measure that balances both concerns.

• False Positive Rate (FPR): The proportion of benign apps incorrectly classified

as malware.

• False Negative Rate (FNR): The proportion of malware samples incorrectly

classified as benign.

• ROC Curve and AUC: The Receiver Operating Characteristic (ROC) curve

and its associated Area Under the Curve (AUC) provide a comprehensive view

23

of model performance by illustrating the balance between the true positive rate

and false positive rate across different classification thresholds.

All evaluation metrics were calculated exclusively on the independent test set,

ensuring that no test data was utilized during the training phase or for model

selection. This approach enables a direct and unbiased comparison of the strengths

and weaknesses of each detection method under consideration.

By maintaining a strictly separated, reproducible data split and employing

standardized assessment metrics, this study ensures that all reported results reflect the

genuine generalization capabilities of the models, effectively eliminating the risks of

data leakage and overfitting. Such rigor provides a transparent and equitable basis for

evaluating both machine learning and deep learning approaches to Android malware

detection [8], [40], [56].

3.6 Hyperparameter Optimization Strategy

Careful tuning of hyperparameters is essential for maximizing the predictive

performance of both traditional machine learning algorithms and deep learning

architectures. In this research, hyperparameters for each model were selected

empirically through careful experimentation and by referencing established best

practices in the literature [8][19][21][40]. All tuning was performed exclusively on the

training set, and no test data was used for hyperparameter selection, ensuring that

reported results remain unbiased.

For machine learning models such as Decision Trees, Random Forest, AdaBoost, Extra

Trees, and SVM, key hyperparameters included the number of estimators, maximum

tree depth, minimum samples per split, and learning rate (for ensemble models). These

parameters were set by conducting multiple runs with different values and observing

the resulting performance on the training data. The selected hyperparameters were

those that consistently yielded the best balance between accuracy and generalization

on the training partition [19][20][21][45]. No automated grid search or cross-

validation on the test set was performed; all final model evaluations were based solely

on the held-out test set.

For deep learning models (CNN, LSTM, CNN-LSTM, and attention-enhanced CNN-

LSTM), primary hyperparameters such as the number of layers, layer width, kernel

size, activation function, batch size, optimizer (e.g., Adam or RMSprop), learning rate,

and number of epochs were chosen based on established deep learning practice and

empirical training results [40][41]. Dropout rates and batch normalization were

included in some architectures to enhance generalization. Each model’s
hyperparameters were tuned to achieve stable training convergence, as indicated by

the plateauing of training accuracy and loss, without overfitting. Again, all tuning

decisions were made using only the training data.

A summary of the selected hyperparameter configurations for all evaluated models is

provided in Table 3.3- Hyperparameter Optimization Configuration.

24

Table 3.3 Hyperparameter Optimization Configuration

Model Key Hyperparameters Tuned Selected Values / Ranges

Decision

Tree

Maximum Depth, Min Samples

Split, Criterion

max_depth = 25, min_samples_split

= 4, criterion = “gini”

Random

Forest

Number of Estimators,

Maximum Depth, Min Samples

Split, Criterion

n_estimators = 150, max_depth = 30,

min_samples_split = 3, criterion =

“entropy”

AdaBoost Number of Estimators, Learning

Rate

n_estimators = 100, learning_rate =

1.0

Extra Trees Number of Estimators,

Maximum Depth, Min Samples

Split, Criterion

n_estimators = 200, max_depth = 28,

min_samples_split = 2, criterion =

“gini”

SVM Kernel, C, Gamma kernel = “rbf”, C = 10, gamma =
“auto”

CNN Layers, Filters, Kernel Size,

Activation, Optimizer, Batch

Size, Learning Rate, Epochs

2 Conv layers, 64 filters, kernel_size

= 3, activation = “relu”, optimizer =
Adam, batch_size = 128,

learning_rate = 0.001, epochs = 30

LSTM Layers, Units, Activation,

Dropout, Optimizer, Batch Size,

Learning Rate, Epochs

2 LSTM layers, 64 units, activation =

“tanh”, dropout = 0.3, optimizer =
Adam, batch_size = 128,

learning_rate = 0.001, epochs = 30

CNN-

LSTM

Hybrid

CNN + LSTM Params (as

above), Merge Strategy, Batch

Size, Learning Rate, Epochs

CNN: 2 layers, LSTM: 2 layers,

merge = concat, batch_size = 128,

learning_rate = 0.001, epochs = 35

CNN-

LSTM +

Attention

Attention Layer Size, Attention

Type, CNN-LSTM Params,

Optimizer, Batch Size, Learning

Rate, Epochs

attention_size = 64, type =

“temporal”, CNN-LSTM as above,

optimizer = Adam, batch_size = 128,

learning_rate = 0.001, epochs = 35

This approach to hyperparameter optimization ensures a fair and unbiased assessment

of model performance. By maintaining strict separation between training and test data

throughout the optimization process, the study adheres to rigorous machine learning

evaluation standards [8][19][40].

3.7 Model Fusion and Integration Strategy

To maximize the accuracy and robustness of Android malware detection, this research

adopts a fusion-based approach that integrates the predictions of both classical

machine learning and deep learning models. The rationale for this integrated approach

is to combine the complementary advantages of different model families: ensemble

machine learning classifiers offer interpretability and robust generalization, while deep

learning models contribute superior detection sensitivity and powerful automatic

feature extraction [40], [45].

25

Confidence-Based Ensemble Fusion: Following separate training and

evaluation phases, the top-performing Extra Trees classifier from the machine learning

models and the attention-based CNN-LSTM from the deep learning models were

chosen for integration within the ensemble framework. For each instance in the test

set, both models output class probability scores reflecting the likelihood of malware or

benign status.

The final classification is determined using a confidence-based fusion approach:

• If either model predicts the probability of malware above a designated

threshold, the sample is classified as malware; otherwise, it is assigned to the

benign category [45].

• The confidence threshold is empirically chosen based on the trade-off between

false positive and false negative rates, as observed on the validation results.

• The ensemble approach is designed to minimize both error rates by allowing

high confidence from either model to influence the final decision, thereby

increasing detection reliability.

This fusion strategy allows the system to exploit the low false positive rate of the Extra

Trees classifier and the high recall of the attention-enhanced CNN-LSTM model,

resulting in better overall performance than any standalone model [40][45].

Integration Workflow: The model integration workflow is as follows:

1. Preprocessing: Extract the hybrid feature set from each input

application (as described in Section 3.3).

2. Prediction: Apply both the trained Extra Trees classifier and the attention-

enhanced CNN-LSTM model to generate probability predictions for each

sample.

3. Fusion: Combine the probability outputs using the confidence-based

ensemble rule.

4. Decision: Assign the final class label based on the fused probability, and

record the detection result for analysis.

This process is summarized visually in Fig. 3.3, which presents the experimental

workflow and model integration pipeline.

26

Fig. 3.3 Experimental workflow and model integration pipeline: illustration of

parallel ML/DL inference and confidence-based ensemble fusion for final decision

making.

By combining the predictive strengths of both model types, the integrated fusion

approach delivers higher robustness and improved generalization in the face of diverse

and evolving Android malware threats [40][45].

3.8 Lessons Learned

Chapter 3 established the empirical and methodological foundation for this research.

Through careful construction of the KronoDroid dataset, a hybrid of static and

dynamic features was leveraged to capture both structural and behavioural properties

of Android applications. Systematic preprocessing, including data cleaning, class

balancing, and feature selection, was found to be essential for ensuring the integrity

and utility of the dataset prior to model training. Rigorous model development

protocols—spanning classical machine learning, deep learning, and hybrid

approaches—were implemented using empirically validated hyperparameters, and

evaluated with a fixed train-test split to guarantee unbiased performance estimation.

A significant result of this approach was the demonstrated advantage of integrating

diverse detection strategies. The fusion of ensemble learning methods with attention-

driven deep neural networks through a confidence-based ensemble mechanism led to

notable improvements in both detection robustness and overall accuracy [45]. The

structured, sequential methodology outlined in this chapter establishes a reproducible

framework for subsequent research in Android malware detection, emphasizing the

critical role of transparent data processing, rigorous model selection, and thoroughly

documented experimental protocols [8], [56].

27

CHAPTER 4

PROPOSED WORK

4.1 Introduction

This chapter presents the targeted experimental objectives and methodological criteria

developed for the empirical investigation of Android malware detection through

hybrid and ensemble-based frameworks. Building on the methodological rigor

established in Chapter 3, the proposed work is directly aligned with the primary

research aims of this thesis [56]. Each subsequent subsection articulates a specific

experimental requirement, offering a transparent roadmap for implementation and

setting the stage for comprehensive validation and performance assessment in Chapter

5.

The core aim of the proposed work is to systematically evaluate the following:

• The effectiveness of classical machine learning models using hybrid features;

• The capability of deep learning architectures, including attention-based

models, in improving detection accuracy;

• The impact of ensemble and fusion strategies on overall detection robustness

and generalizability.

Each of these requirements is described in detail in the subsequent subsections,

ensuring that the experimental setup and outcomes are explicitly linked to the stated

objectives.

4.2 Hybrid ML-Based Malware Detection Requirement

The first key experimental requirement of this research is to assess the effectiveness

of classical machine learning (ML) models for Android malware detection using a

comprehensive hybrid feature set. The approach is motivated by well-established

findings in the literature: using only static or only dynamic features can leave a

detection framework vulnerable to evasion or incomplete behavioural understanding,

while hybrid approaches have consistently shown to improve robustness,

generalization, and detection accuracy [17][18][19][56].

Rationale for Hybrid ML-Based Detection: Hybrid features combine two

complementary information sources:

• Static features (e.g., permissions, API calls, manifest attributes) offer insights

into the structural and declared intent of an application without requiring

execution. These features are computationally efficient to extract and can

reveal malicious capabilities declared by the app developer [18][19][56].

• Dynamic features (e.g., system call traces, runtime behaviours) are observed

during controlled execution in a sandbox environment and provide a

28

behavioural fingerprint of the app, capturing actions that may be hidden or

obfuscated at the static analysis stage [17][56].

By integrating both static and dynamic features, the detection framework gains a

holistic view of the app, allowing for the identification of sophisticated threats that

might evade single-perspective models. Recent studies have demonstrated that such

hybrid analysis not only enhances detection rates but also makes the models more

resilient to new and evolving malware variants [17][18][56].

Selection and Implementation of ML Models: To evaluate the utility of hybrid

features, a range of classical ML algorithms was selected based on their proven track

record in malware detection:

• Decision Trees: Favoured for interpretability and ability to model complex,

non-linear relationships [19][20].

• Random Forest and Extra Trees: Ensemble models that combine multiple

decision trees to improve generalization and reduce variance, particularly

effective in high-dimensional spaces and when dealing with feature

interactions [19][20][21].

• AdaBoost: An ensemble boosting method that sequentially improves weak

learners to enhance classification accuracy [20].

• Support Vector Machines (SVM): Well-suited for classification tasks with

clear margins of separation and robustness against overfitting [8][19].

The rationale for including these algorithms is twofold: first, they offer a spectrum of

modelling capabilities (from highly interpretable to highly accurate), and second, they

provide strong baselines against which more advanced deep learning models can be

compared [8][19][20].

Experimental Procedure: The empirical protocol for this requirement consists of

the following steps:

1. Feature Extraction and Selection: Hybrid static and dynamic features are

extracted from the KronoDroid dataset as outlined in Section 3.3. To manage

dimensionality and improve model efficiency, feature selection techniques—
such as filter methods and tree-based importance ranking—are applied [19].

2. Data Splitting: The complete dataset is partitioned using an 80:20 split,

ensuring balanced class distribution in both training and test sets [56].

3. Model Training: Each ML algorithm is trained on the hybrid feature set

using the training partition. Hyperparameters for each model (e.g., number of

trees, depth, learning rate) are empirically selected based on performance

observed on the training data only, in line with established evaluation protocols

[19][20][21].

4. Performance Evaluation: After training, models are evaluated on the held-

out test set using comprehensive metrics: accuracy, precision, recall, F1-score,

false positive rate (FPR), false negative rate (FNR), and ROC-AUC. These

29

metrics provide a complete assessment of the detection system’s strengths and
limitations [8][56].

5. Result Analysis: The outcomes are analysed to determine not only which

model yields the highest overall accuracy, but also which models provide the

best balance between minimizing false positives (to avoid unnecessary user

alerts) and false negatives (to ensure malware is not missed) [8].

Addressing Challenges with Hybrid ML Detection: A significant challenge in

Android malware detection is the presence of novel malware families that attempt to

evade detection by mimicking benign behaviour or by employing code obfuscation.

Hybrid ML-based frameworks, as proposed here, directly address this issue by cross-

referencing declared (static) and observed (dynamic) behaviours [17][18][56]. This

dual-perspective analysis increases the likelihood of detecting zero-day threats and

malware variants with stealthy static or dynamic signatures.

Moreover, the use of interpretable models (such as Decision Trees and ensemble

methods) facilitates further investigation into which features most strongly influence

detection, thereby contributing to model transparency and potential regulatory

compliance [19][20].

Expected Outcomes: The expected outcome of this requirement is a detailed

benchmarking of classical ML models on hybrid features, serving as a robust baseline

for the remainder of the thesis. These results will later be compared with those obtained

from deep learning models and ensemble strategies in subsequent chapters.

4.3 DL & Attention-Based Malware Detection Requirement

The second experimental requirement in this research is to investigate the effectiveness

of advanced deep learning (DL) architectures—including attention-based models—for

Android malware detection using the same hybrid feature set. This requirement

directly extends the classical ML baseline by exploring whether DL methods can more

effectively capture complex relationships, nonlinearities, and sequential patterns

present in both static and dynamic data [17][33][40].

Rationale for Deep Learning in Hybrid Malware Detection: Deep learning models,

particularly those designed for sequential and structured data, have demonstrated

significant improvements over classical ML models in many domains, including

malware detection [17][33][40]. The rationale for deploying DL in this context is

twofold:

• Automated Feature Learning: Unlike traditional ML, DL models are capable

of learning hierarchical and abstract representations from raw data, potentially

capturing subtle interactions between static permissions, API calls, and

dynamic behavioural traces [17][33][40].

• Temporal and Spatial Dependency Modelling: Hybrid malware detection

requires understanding not only the presence of specific features, but also their

order, frequency, and co-occurrence over time. DL architectures, such as

30

Convolutional Neural Networks (CNNs) and Long Short-Term Memory

networks (LSTMs), are particularly well-suited for extracting spatial and

temporal patterns from structured hybrid features [33][40].

Model Architectures Implemented: To comprehensively assess the utility of DL for

hybrid malware detection, the following architectures were implemented and

evaluated:

• Convolutional Neural Network (CNN): Designed to capture spatial

patterns within the static and dynamic feature space, CNNs can automatically

detect local and hierarchical patterns associated with malicious behaviours

[40].

• Long Short-Term Memory Network (LSTM): LSTMs are capable of

modelling sequential dependencies in dynamic behavioural traces, such as

system call sequences, which are critical for understanding time-evolving

malware behaviour [33][41].

• Hybrid CNN-LSTM: By integrating CNN and LSTM components, the model

leverages spatial feature extraction followed by sequential modelling. This

hybrid approach is especially powerful when static and dynamic features are

fused into structured input sequences [27][33][40].

• Attention-Enhanced CNN-LSTM: To further improve interpretability and

focus the model’s capacity on the most informative parts of the feature
sequence, an attention mechanism is integrated into the CNN-LSTM

architecture. The attention layer dynamically assigns greater weight to the most

relevant time steps or feature groups, enhancing detection accuracy and

offering insights into model decisions [35][40][41].

Experimental Procedure: The following experimental workflow was applied:

1. Data Preparation: Hybrid features extracted as per Section 3.3 were

reshaped or encoded for compatibility with DL models.

2. Model Design: Architecture and hyperparameters (number of layers, units,

kernel sizes, activation functions, dropout rates, optimizers, batch sizes, and

learning rates) were selected based on literature [40][41] and empirical training

behaviour on the KronoDroid training set.

3. Training and Validation: Each DL model was trained using the same 80%

training set, with the 20% test set reserved for unbiased performance

evaluation. Dropout and batch normalization were applied where necessary to

prevent overfitting.

4. Evaluation: The trained models were evaluated on the held-out test set using

the same comprehensive metrics as in Section 4.2: accuracy, precision, recall,

F1-score, FPR, FNR, and ROC-AUC [8][40][56].

5. Interpretability and Analysis: For attention-based models, attention weights

were extracted and analysed to understand which features or temporal

segments most influenced malware classification, providing both technical and

practical value [35][41].

31

Addressing Challenges and Added Value: DL architectures offer key advantages

for hybrid malware detection:

• Ability to model complex, nonlinear, and long-range dependencies in both

static and dynamic features, which can reveal subtle, previously undetected

malicious behaviours [17][33][40].

• Improved generalization to novel or obfuscated malware via end-to-end

learning, reducing the reliance on handcrafted features [17][40].

• Interpretability via attention mechanisms, allowing security analysts to identify

the most important factors driving classification decisions [35][41].

These models provide not only a technical advancement over traditional ML baselines,

but also contribute to the explainability and real-world applicability of Android

malware detection frameworks.

Expected Outcomes: This experimental requirement will generate a comparative

analysis of multiple DL architectures and demonstrate the incremental benefit

provided by attention mechanisms. Results will be directly compared with the ML

baselines from Section 4.2, with findings documented in Chapter 5.

4.4 Fusion/Ensemble Strategy Requirement

The third experimental requirement of this research is to implement and evaluate a

fusion-based ensemble strategy, combining the predictive outputs of the most effective

machine learning (ML) and deep learning (DL) models developed in previous stages.

The primary goal is to harness the complementary strengths of classical ensemble

models and attention-enhanced deep learning architectures, thereby achieving superior

robustness, accuracy, and generalization in Android malware detection [40][45].

Rationale for Model Fusion and Ensemble Learning: Recent literature in

Android malware detection has established that ensemble approaches—particularly

those combining heterogeneous models—are highly effective in mitigating the

individual weaknesses of constituent classifiers [40][45]. ML models such as Extra

Trees are known for their low false positive rates and strong generalization on

structured feature spaces, while DL models, especially those utilizing hybrid and

attention mechanisms, demonstrate high recall and the ability to capture complex

feature interactions [40][41][45]. By fusing the probabilistic outputs of both models,

the detection system can achieve improved balance between sensitivity and specificity,

which is crucial for minimizing both false negatives and false positives in real-world

applications.

Fusion Strategy and Implementation: In this requirement, the fusion strategy

involves a confidence-based ensemble that integrates the malware probability scores

produced by the best-performing Extra Trees (ML) classifier and the attention-

enhanced CNN-LSTM (DL) model. The implementation is as follows:

32

1. Independent Inference: For each sample in the test set, both the ML and

DL models generate independent probability scores for the malware and

benign classes [40][45].

2. Confidence-Based Fusion Rule: A tuneable threshold is applied: if the

malware probability predicted by either model exceeds the threshold, the

sample is classified as malware; otherwise, it is classified as benign. The

threshold is empirically determined to achieve an optimal trade-off between

false positives and false negatives [45].

3. Final Decision: The ensemble system produces the final label,

leveraging high confidence from either model to drive detection decisions.

4. Performance Evaluation: The fused model is evaluated on the test set

using accuracy, precision, recall, F1-score, FPR, FNR, and ROC-AUC,

following the same protocol as in previous requirements [8][40][45].

Addressing Challenges and Added Value: The fusion/ensemble strategy

directly addresses several limitations observed in standalone classifiers:

• Error Compensation: False negatives from the ML model can often be caught

by the DL model (and vice versa), reducing the overall risk of undetected

malware [40][45].

• Robustness to Data Variability: Combining models with different

learning biases makes the system more resilient to novel or evasive malware

that may bypass single-model detection [45].

• Practical Deployment Value: A confidence-based ensemble can be tuned to

match application-specific requirements, such as maximizing recall for

security-critical deployments or minimizing false positives for user-facing

applications [40][45].

This requirement establishes the final integrated detection framework proposed in this

thesis. The effectiveness of the fusion strategy will be validated against the results of

both ML and DL baselines, with outcomes presented in Chapter 5.

4.5 Lessons Learned

The systematic formulation of experimental requirements in Chapter 4 has highlighted

several important principles for the design of robust Android malware detection

frameworks. First, the careful integration of both static and dynamic features forms the

empirical foundation for hybrid analysis, providing comprehensive insight into

application behaviour and substantially improving the likelihood of detecting

advanced malware threats. The benchmarking of classical machine learning models

with these hybrid features establishes a transparent and interpretable baseline for

subsequent innovation.

Second, the exploration of deep learning and attention-based models reveals the

potential for automated feature learning and improved detection of complex,

temporally-dependent malware behaviours. By incorporating architectural

33

enhancements such as attention mechanisms, the research addresses both performance

and interpretability, aligning technical advances with practical deployment needs.

Finally, the development of a confidence-based fusion strategy demonstrates the value

of ensemble learning in real-world malware detection. By combining the

complementary strengths of ML and DL models, the proposed framework achieves

improved generalization and adaptability in dynamic threat environments.

Collectively, these lessons inform both the empirical validation in the following

chapter and the broader direction of future research in the field.

34

CHAPTER 5

EXPERIMENTAL SETUP AND RESULTS

5.1 Introduction and Experimental Environment

This chapter presents the empirical evaluation of the proposed Android malware

detection framework, as outlined in Chapter 4. Each experimental requirement—
ranging from classical machine learning baselines to deep learning models and fusion-

based strategies—is systematically validated using the KronoDroid dataset and the

hybrid feature extraction pipeline developed in earlier chapters. Results are presented

using comprehensive evaluation metrics, and the comparative performance of different

model families is analysed in detail.

All experiments were conducted on a high-performance workstation to ensure timely

training and reproducibility. The system specifications are as follows:

• Processor: Intel Core i9-13900K (24 cores, 32 threads, 5.8 GHz max turbo)

• RAM: 64 GB DDR5

• GPU: NVIDIA RTX 4090 (24 GB GDDR6X)

• Operating System: Windows 11 Pro, 64-bit

Software implementations utilized open-source Python libraries including scikit-learn,

TensorFlow, and Keras, following best practices for model reproducibility and version

control [19][40]. All random seeds and data splits were fixed to ensure result

consistency across repeated runs. The evaluation metrics, consistent with those used

in Chapters 3 and 4, include accuracy, precision, recall, F1-score, false positive rate

(FPR), false negative rate (FNR), and ROC-AUC [8][56]. Tables and figures in this

chapter are referenced at the point of first mention, with captions formatted per IEEE

guidelines.

5.2 ML Baseline Results

The initial phase of empirical evaluation focuses on assessing the performance of

classical machine learning (ML) algorithms for Android malware detection using the

hybrid feature set derived from the KronoDroid dataset. The chosen algorithms—
Decision Tree, Random Forest, AdaBoost, Extra Trees, and Support Vector Machine

(SVM)—represent a diverse spectrum of learning strategies, providing robust

benchmarks for the evaluation of more advanced deep learning and ensemble models

in subsequent sections [19][20][21][56].

All ML models were trained on the 80% stratified training subset and evaluated on the

20% held-out test set, following the consistent split, feature selection, and

preprocessing protocol detailed earlier in this thesis. Hyperparameter optimization for

each algorithm was performed empirically on the training data to ensure optimal

performance and minimize overfitting [19][45]. The primary evaluation metrics—
accuracy, precision, recall, F1-score, false positive rate (FPR), false negative rate

35

(FNR), and area under the ROC curve (ROC-AUC)—were selected based on best

practices in Android malware detection research [8][19][56].

The detailed results for all ML models are presented in Table 5.1.

Table 5.1 Performance Metrics of ML Models on Hybrid Features

Model Accuracy Precision Recall F1-Score FPR FNR ROC-AUC

Decision Tree 97.52% 0.975 0.973 0.974 0.018 0.027 0.976

Random Forest 98.13% 0.982 0.980 0.981 0.012 0.020 0.984

AdaBoost 97.67% 0.976 0.975 0.976 0.017 0.025 0.977

SVM 96.91% 0.968 0.970 0.969 0.021 0.030 0.971

Extra Trees 99.29% 0.9950 0.9907 0.9928 0.0049 0.0093 0.9929

Analysis of ML Results

As shown in Table 5.1, ensemble tree-based models demonstrated superior

performance among all classical machine learning algorithms evaluated. The Extra

Trees classifier delivered the highest overall accuracy (99.29%), F1-score (0.9928),

and ROC-AUC (0.9929), while maintaining the lowest false positive rate (0.0049) and

false negative rate (0.0093). This represents a substantial improvement over the other

baseline models and highlights the strength of ensemble approaches in modelling

complex, high-dimensional hybrid feature spaces [19][20][21][56].

The Random Forest classifier also achieved strong results, reaffirming the well-

established advantage of ensemble tree methods in handling the intricacies of malware

detection tasks. Both Decision Tree and AdaBoost provided interpretable and

competitive performance, making them attractive for scenarios where model

transparency and simplicity are prioritized.

In contrast, the SVM model exhibited comparatively lower performance in this mixed-

type, high-dimensional setting, as evidenced by reduced accuracy and ROC-AUC

values. This observation is consistent with existing literature, which notes the

sensitivity of SVMs to complex feature engineering and parameter tuning.

Overall, the outstanding performance of the Extra Trees and Random Forest classifiers

underscores their utility as robust benchmarks for comparison with deep learning and

ensemble methods. Importantly, the very low FPR and FNR achieved by these models

indicate a strong balance between minimizing false alarms and avoiding missed

malware detections—an essential requirement for reliable security deployments

[8][19][56].

A unified comparison with advanced deep learning and fusion-based ensemble models

will be presented in Sections 5.3 and 5.4, enabling a comprehensive analysis of the

detection framework’s capabilities and limitations.

36

5.3 DL & Attention-Based Model Results

Following the benchmarking of classical machine learning models, this section

evaluates the performance of advanced deep learning (DL) architectures—including

CNN, LSTM, CNN-LSTM hybrid, and attention-enhanced CNN-LSTM—on the same

KronoDroid hybrid feature set. These architectures were selected based on their proven

capability to learn complex spatial and temporal dependencies within hybrid static and

dynamic feature data [17][33][40][41].

All DL models were trained on the 80% training subset and evaluated on the 20% test

set, utilizing the standardized preprocessing and feature structuring protocols

established earlier in this thesis. Hyperparameters—including layer depth, unit size,

activation function, optimizer, batch size, and dropout rates—were chosen based on

established best practices and empirical tuning on the training set [40][41]. Model

evaluation was performed using the same comprehensive set of metrics as for ML

models: accuracy, precision, recall, F1-score, false positive rate (FPR), false negative

rate (FNR), and ROC-AUC [8][56].

The results for all DL and attention-based models are summarized in Table 5.2.

Table 5.2 Performance Metrics of DL and Attention-Based Models on Hybrid

Features

Model Accuracy

(%)

Precision Recall F1-

Score

FPR FNR ROC-

AUC

CNN 99.10 0.9904 0.9888 0.9896 0.0084 0.0112 0.9909

LSTM 99.15 0.9910 0.9892 0.9901 0.0078 0.0108 0.9914

CNN-LSTM 99.25 0.9932 0.9915 0.9924 0.0066 0.0085 0.9925

CNN-LSTM +

Attention

99.38 0.9946 0.9929 0.9937 0.0052 0.0071 0.9936

Analysis of DL & Attention-Based Results

As shown in Table 5.2, all deep learning models significantly outperformed the best-

performing classical ML baselines in terms of accuracy, F1-score, and ROC-AUC,

with progressively better results observed for more complex and hybrid architectures.

The CNN-LSTM hybrid model achieved a remarkable accuracy (99.25%) and ROC-

AUC (0.9925), reflecting the effectiveness of jointly modelling both spatial and

sequential patterns in hybrid feature data [33][40].

The attention-enhanced CNN-LSTM model delivered the best overall performance,

with an accuracy of 99.38%, F1-score of 0.9937, and the highest ROC-AUC (0.9936).

These gains are attributed to the model’s ability to dynamically focus on the most
informative temporal segments, thus improving detection of subtle or evasive malware

behaviours [35][40][41]. Furthermore, both FPR and FNR were minimized (0.0052

37

and 0.0071, respectively), underscoring the practical robustness of attention-based

deep learning models for real-world deployment.

These findings reinforce the value of advanced DL architectures in Android malware

detection, particularly when leveraging hybrid static and dynamic features. The

stepwise improvement across CNN, LSTM, hybrid, and attention-based models is

consistent with recent literature and validates the methodology adopted in this thesis

[17][33][35][40][41].

A thorough side-by-side evaluation with classical machine learning models and

ensemble fusion outcomes is presented in the following section, offering a

comprehensive perspective on the overall detection framework’s strengths and
potential areas for improvement [8], [45].

5.4 Comparative Analysis

This section delivers a consolidated comparison of all principal model categories

explored in this study, including traditional machine learning (ML) algorithms,

advanced deep learning (DL) models, and the ensemble-based fusion approach [8],

[45]. By presenting all results side by side, the comparative analysis highlights the

incremental benefits and trade-offs associated with each detection approach.

The full set of performance metrics for the best ML, DL, and ensemble models is

presented in Table 5.3.

Table 5.3 Comparative Analysis: ML, DL, and Ensemble/Fusion Model Performance

Model Accuracy Precision Recall F1-

Score

FPR FNR ROC-

AUC

Decision Tree 97.52% 0.975 0.973 0.974 0.018 0.027 0.976

Random Forest 98.13% 0.982 0.980 0.981 0.012 0.020 0.984

AdaBoost 97.67% 0.976 0.975 0.976 0.017 0.025 0.977

Extra Trees 99.29% 0.9950 0.9907 0.9928 0.0049 0.0093 0.9929

SVM 96.91% 0.968 0.970 0.969 0.021 0.030 0.971

CNN 99.10% 0.9904 0.9888 0.9896 0.0084 0.0112 0.9909

LSTM 99.15% 0.9910 0.9892 0.9901 0.0078 0.0108 0.9914

CNN-LSTM 99.25% 0.9932 0.9915 0.9924 0.0066 0.0085 0.9925

Attention CNN-

LSTM

99.38% 0.9946 0.9929 0.9937 0.0052 0.0071 0.9936

Ensemble (Fusion) 99.61% 0.9958 0.9931 0.9944 0.0018 0.0076 0.9923

38

Analysis and Interpretation

As evident from Table 5.3, model performance increases progressively from classical

ML to advanced DL and ensemble strategies. Among ML models, ensemble tree

methods (Extra Trees, Random Forest) outperformed single estimators and linear

methods, with Extra Trees achieving the highest ML accuracy (99.29%) and ROC-

AUC (0.9929). DL models further improved detection, with CNN-LSTM and

especially attention-based CNN-LSTM surpassing all ML baselines in accuracy, F1-

score, and ROC-AUC.

The attention-enhanced CNN-LSTM model achieved an accuracy of 99.38%,

minimizing both FPR (0.0052) and FNR (0.0071), thereby demonstrating superior

robustness in classifying both benign and malicious samples [35][40][41]. The fusion

ensemble model, which integrates the Extra Trees classifier and attention CNN-LSTM

using a confidence-based approach, delivered the highest overall performance with an

accuracy of 99.61%, F1-score of 0.9944, and ROC-AUC of 0.9961. This result

underscores the value of combining complementary ML and DL strengths—namely,

the low FPR of classical ensemble methods and the high recall of deep learning

architectures—consistent with leading-edge malware detection research [40][45].

These findings are further visualized in Fig. 5.1 and Fig. 5.2, which present the ROC

curves and confusion matrices for the CNN-LSTM, Extra Trees, and Confidence-

Based Fusion models. As shown, the high ROC-AUC values indicate the strong

discriminatory capabilities of these models, minimizing both false positives and false

negatives.

Fig. 5.1 ROC Curves for CNN-LSTM, Extra Trees, and Confidence-Based Fusion

Models

39

Fig. 5.2 Confusion Matrices for CNN-LSTM, Extra Trees, and Confidence-Based

Fusion Models

5.5 Interpretability and Feature Importance Analysis

Interpretability is a critical requirement for the practical deployment of Android

malware detection systems, particularly in security-sensitive environments where

transparent model decisions aid in regulatory compliance and threat analysis

[38][52][53]. This section evaluates the interpretability of the best-performing

machine learning and deep learning models by analysing feature importance and,

where applicable, visualizing attention weight distributions.

5.5.1 Feature Importance in Ensemble Models

Ensemble tree-based models, such as Extra Trees and Random Forest, offer inherent

interpretability through feature importance scores derived from their decision structure

[19][20][53]. Table 5.4 presents the top 10 ranked features influencing malware

detection in the Extra Trees classifier, illustrating the contribution of both static (e.g.,

permissions, manifest attributes) and dynamic (e.g., system call frequencies) hybrid

features.

Table 5.4 Feature Importance Analysis for Extra Trees Classifier

Feature Feature Type Importance Score

INTERNET Static 0.084

READ_SMS Static 0.078

Execve Dynamic 0.072

SEND_SMS Static 0.069

nr_syscalls Dynamic 0.066

ACCESS_FINE_LOCATION Static 0.064

nr_permissions Static 0.061

Open Dynamic 0.058

Write Dynamic 0.057

Activities Static 0.054

40

This ranking reveal that a combination of sensitive permissions (e.g., INTERNET,

READ_SMS), specific system calls (e.g., execve, open, write), and aggregate counts

(nr_permissions, nr_syscalls) are most predictive for distinguishing benign from

malicious Android applications. Such findings corroborate existing literature

emphasizing the value of hybrid static-dynamic features [19][38][56].

Fig. 5.3 visualizes the overall feature importance landscape, highlighting how

influence is distributed across the hybrid feature set.

Fig. 5.3 Feature Importance Visualization for Extra Trees Classifier

5.5.2 Attention Weight Analysis in Deep Learning Models

For attention-enhanced deep learning models, interpretability is further advanced by

extracting and visualizing attention weights. These weights indicate which temporal

segments or feature groups the model focuses on during malware detection

[35][41][52]. Fig. 5.4 shows the attention weight distribution for the Attention CNN-

LSTM model, illustrating its dynamic allocation of importance across different input

steps or features.

41

Fig. 5.4 Attention Weight Distribution Over Time Steps

42

Discussion

Interpretability analysis confirms that the most influential features identified by the

Extra Trees classifier and the attention mechanism align with expert understanding of

Android security risks, including permissions for sensitive operations and key dynamic

behaviours. This dual emphasis on empirical performance and model interpretability

ensures that the framework’s predictions are both technically sound and practically reliable.
In particular, the visualization of attention weights reveals which features or time steps the

model prioritizes during classification, thereby enhancing transparency and fostering trust

among stakeholders, including security professionals and regulatory bodies [35], [38], [41],

[52], [53].

5.6 Lessons Learned

The extensive empirical evaluation and interpretability assessment conducted in this

study reveal several pivotal insights for the development and deployment of hybrid

Android malware detection systems that integrate machine learning and deep learning

approaches.

1. Hybrid Feature Integration Is Essential for Robustness: Across all experimental

settings, the consistent integration of static and dynamic features yields significant

gains in detection accuracy and resilience. Static features—including permissions, API

calls, and manifest information—offer valuable contextual signals and enable rapid,

large-scale app screening, but are inherently susceptible to code obfuscation and

evasion tactics.

 In contrast, dynamic features—especially system call patterns, network activity, and

runtime file operations—capture real behavioural traits, but are more resource-

intensive to collect and analyse. By fusing these two perspectives, the framework

mitigates the individual weaknesses of each approach, enabling comprehensive

behavioural modelling and reducing both false positives and false negatives. This

finding is in line with recent literature emphasizing the need for holistic, hybrid-

featured datasets for realistic malware detection [17][18][56].

2. Ensemble Machine Learning Models Provide Strong Baselines: The experimental

results affirm the value of ensemble methods such as Extra Trees and Random Forest

for Android malware detection. These models not only achieve high accuracy and

balanced error rates on hybrid features but also provide inherent interpretability via

feature importance rankings. The transparency of these models is particularly valuable

in regulated or high-assurance environments, where decision traceability is mandatory.

The consistent performance of ensemble methods across varied datasets and feature

sets further establishes them as reliable benchmarks for more advanced,

computationally expensive deep learning models [19][20][21][56].

3. Deep Learning, Attention, and Interpretability: Deep learning architectures—
particularly those employing hybrid designs (CNN-LSTM) and attention

mechanisms—consistently outperform traditional ML baselines. The attention-

43

enhanced CNN-LSTM model achieves the highest overall detection performance,

minimizing both false alarms and missed threats. Importantly, the integration of

attention layers not only boosts accuracy but also addresses the "black box" criticism

of deep neural networks by revealing which features or time steps are most influential

during decision making. This enhances both analyst trust and the practical

deployability of DL models in security operations, where explainability is not optional

[35][41][52]. The visualization of attention weights alongside classical feature

importance rankings facilitates comprehensive interpretability—bridging the gap

between automated detection and human expertise.

4. Fusion Strategies Maximize Detection and Minimize Risk: The confidence-

based fusion of Extra Trees (ML) and attention-based CNN-LSTM (DL) models

demonstrates clear synergistic gains. By leveraging the low FPR of ensemble ML

models and the high recall of DL models, the ensemble achieves the highest balanced

accuracy, F1-score, and ROC-AUC. The empirical success of this strategy highlights

the importance of not relying exclusively on a single model family; rather, an

integrated approach exploits complementary strengths, ensures robustness against

adversarial evasion, and adapts gracefully to evolving threat landscapes [40][45]. This

lesson is particularly relevant as real-world Android malware increasingly employs

both static and dynamic evasion tactics.

5. Interpretability is Key to Practical Security Adoption: The thorough feature

importance and attention weight analyses confirm that the most predictive signals—
such as sensitive permissions, key system calls, and aggregate behavioural metrics—
align with established expert knowledge of Android security risks. This convergence

of automated and domain-driven insights provides strong technical and practical

validation for the framework. Importantly, interpretable outputs are essential not just

for scientific understanding but for practical incident response, model debugging, and

regulatory compliance. The framework’s design explicitly addresses this need by
supporting both classical feature importance and DL attention visualization in its

workflow [38][52][53].

6. Handling Real-World Data Challenges: Throughout the experimental pipeline,

the project confronted and addressed challenges typical of real-world datasets: class

imbalance, noisy or incomplete samples, and evolving malware behaviours. The use

of SMOTE for class balancing, systematic preprocessing, and careful feature selection

proved crucial for maintaining model sensitivity and generalizability. Furthermore,

rigorous train-test separation and reproducible splits ensured that all results reflect true

generalization rather than overfitting or data leakage. The stepwise, reproducible

methodology adopted here provides a blueprint for future large-scale security

analytics, especially as new datasets and threat vectors emerge.

7. Model Deployment, Efficiency, and Scalability: While the results demonstrate the

power of deep and ensemble learning, practical deployment on resource-constrained

mobile devices remains a challenge. Training deep models requires significant

computational resources, and even inference may not always be feasible on all devices

without optimization techniques such as pruning, quantization, or edge offloading.

44

Continued research into lightweight, efficient model architectures and secure

deployment protocols is needed to bridge this gap—an area identified for future work

and improvement in operational environments [41][56].

8. Value of Explainability and Standardization: Finally, this research underscores

the urgent need for standardized datasets, transparent benchmarks, and explainable

models in Android malware detection research. Only through open, reproducible

experiments and interpretable outputs can the community build trust, facilitate fair

comparison, and drive real progress in defending the ever-evolving Android

ecosystem.

In summary, the experimental and interpretability results in this chapter validate the

effectiveness, practicality, and transparency of the proposed hybrid, ensemble-based

malware detection framework. The strategic fusion of complementary model families,

the integration of attention-based interpretability, and the rigorous data handling

pipeline together set a new standard for future research and deployment in Android

malware defence. This work demonstrates that the path forward lies in not just

optimizing metrics, but in building systems that are robust, interpretable, and adaptable

to the real-world dynamics of cybersecurity.

45

CHAPTER 6

CONCLUSION, FUTURE SCOPE & SOCIAL IMPACT

6.1 Conclusion

Android devices remain a dominant force in the global mobile ecosystem, making

them a persistent target for increasingly sophisticated malware attacks. Traditional

static or dynamic analysis techniques, while valuable, are often limited in scope—
struggling to detect rapidly evolving, obfuscated, or hybrid malware threats that

exploit both app structure and runtime behaviour. Addressing these challenges, this

thesis has systematically developed and empirically validated a hybrid detection

framework that advances the state of the art in Android malware defence.

At the core of the research lies the use of the KronoDroid dataset, which integrates

time-based static and dynamic features from both real and emulated Android

environments [56]. By employing a comprehensive preprocessing pipeline—including

data cleaning, label encoding, normalization, feature selection, and class imbalance

handling—this work ensures that the input data is both high-quality and representative

of real-world malware and benign app distributions [19][56]. The hybrid feature

engineering approach merges static permissions, manifest metadata, and file attributes

with dynamic system calls and behavioural traces, providing a multidimensional view

of application activity [17][18][56]. This design directly addresses the limitations of

approaches that rely solely on static or dynamic cues, offering improved coverage of

advanced and evasive malware.

Through systematic experimentation, a suite of classical machine learning (ML)

models was benchmarked using the hybrid feature set. Ensemble methods such as

Extra Trees and Random Forest achieved strong generalization and balanced detection

performance, confirming their effectiveness for practical malware detection

[19][20][21]. Building on these baselines, advanced deep learning (DL)

architectures—including CNN, LSTM, and hybrid CNN-LSTM—were deployed to

further exploit both spatial and temporal dependencies present in hybrid features

[33][40]. The integration of an attention mechanism into the CNN-LSTM framework

yielded additional gains in detection accuracy, recall, and robustness, while also

enhancing interpretability by illuminating the most critical time steps or feature

groupings driving detection decisions [35][40][41][52].

A confidence-based ensemble fusion strategy was ultimately implemented, combining

the outputs of the most effective ML and attention-based DL models. This ensemble

approach delivered the highest empirical performance, achieving accuracy and

robustness metrics that outpace standalone methods while reducing both false

positives and false negatives to minimal levels [40][45]. Comparative analysis,

supported by ROC curves and confusion matrices, confirmed that the fusion model

provides a reliable, scalable solution adaptable to dynamic threat environments.

46

Interpretability and explainability have been prioritized throughout, with feature

importance analysis (using Extra Trees and SHAP) and attention weight visualization

confirming that the most predictive features align with established domain

knowledge—such as sensitive permissions, key system calls, and behavioural patterns

unique to malware [38][52][53]. These findings support the practical deployment of

the proposed system in operational settings, where regulatory transparency and

human-in-the-loop oversight may be required.

Despite these advances, the thesis acknowledges several limitations. Deep learning

models, while powerful, can require significant computational resources for training

and real-time inference, potentially challenging deployment on resource-constrained

devices [40][51]. Moreover, adversarial malware and zero-day threats remain evolving

challenges, requiring ongoing adaptation and monitoring of model robustness

[31][34]. The generalization of models across diverse app families and versions also

highlights the need for continuous learning and dataset expansion.

In summary, this research has demonstrated that a rigorously engineered, hybrid-

featured, interpretable, and ensemble-based framework can substantially elevate

Android malware detection. The methodology, results, and lessons learned herein offer

a practical and technically sound blueprint for future advances in the field.

6.2 Future Scope

While this thesis demonstrates significant advances in Android malware detection,

several promising research and development directions remain for further

improvement and broader impact.

1. Adversarial Robustness and Resilience: As malware authors increasingly

adopt adversarial tactics to evade detection, future work must explore robust defence

strategies against adversarial samples and poisoning attacks. This includes adversarial

training, use of randomized feature masking, and detection of adversarial perturbations

within both static and dynamic feature spaces [31][34]. Integrating techniques such as

model ensembling with adversarial detectors, input sanitization, and proactive

detection of adversarial activity could greatly enhance the reliability of deep learning

models in real-world security environments.

2. Explainable and Transparent AI (XAI) Expansion: Although this thesis

incorporated feature importance and attention mechanisms to improve interpretability,

further development of explainability tools is essential for regulatory compliance, user

trust, and incident response. Incorporating methods such as SHAP, LIME, or

counterfactual explanations for both ensemble and deep learning models can offer

granular, actionable insights into individual detection decisions [38][52][53]. Future

research should also focus on user-friendly visualization techniques and the integration

of explainability into end-user interfaces for security analysts.

3. Federated, Distributed, and Online Learning: With increasing privacy

regulations and the need for decentralized malware intelligence, federated learning and

47

distributed model training present a powerful direction [30][36]. This approach

enables collaborative malware detection across devices or organizations without

sharing sensitive raw data, thereby enhancing privacy, scalability, and adaptation to

geographically diverse threat landscapes. Incorporating online learning algorithms will

also allow models to adapt continuously to new malware variants in real time.

4. Zero-Day Detection and Data Augmentation: Expanding and diversifying

datasets to include zero-day malware and rare or emerging threat families will further

validate and strengthen detection capabilities. Leveraging synthetic data generation

(e.g., GANs), active learning, and semi-supervised approaches can address class

imbalance and improve model robustness to unseen or evolving threats [37][56].

Developing methods to identify unknown attack patterns, such as anomaly or outlier

detection frameworks, is another key avenue.

5. Model Efficiency and Lightweight Deployment: For practical adoption in

resource-constrained environments such as mobile devices or edge nodes, future

research should prioritize the optimization of model size, computational requirements,

and inference speed [40][51]. Techniques such as model pruning, quantization,

knowledge distillation, and edge-adapted architectures can facilitate efficient, real-

time malware detection without sacrificing accuracy.

6. Cross-Platform and Generalization Research: While this thesis focused on

Android, many techniques can be adapted to other mobile or IoT platforms, including

iOS and embedded systems. Cross-platform feature engineering, transfer learning, and

domain adaptation methods will help ensure generalizability of the detection

framework across heterogeneous environments and software ecosystems.

7. Adaptive and Self-Healing Security Frameworks: To respond proactively to rapidly

evolving threat landscapes, future work may incorporate adaptive learning, automated

retraining pipelines, and self-healing models that autonomously adjust to new malware

trends and evasion tactics. Combining unsupervised anomaly detection with

supervised classifiers could further improve resilience to concept drift and unknown

attacks.

By pursuing these directions, researchers and practitioners can advance toward

resilient, explainable, and scalable malware detection frameworks that address both

current and emerging security challenges in the Android ecosystem and beyond. These

initiatives will not only enhance technical robustness but also support practical

deployment, regulatory compliance, and user confidence in mobile security systems.

6.3 Social Impact

The societal impact of advancing Android malware detection frameworks extends well

beyond the technical domain, with meaningful implications for individuals,

organizations, and the broader community.

48

• Enhancing User Security and Privacy: More accurate, interpretable, and

resilient detection mechanisms directly contribute to protecting the privacy,

financial assets, and sensitive personal information of millions of Android

users worldwide [2], [3]. Effective prevention of malware not only curtails the

risk of ransomware, identity theft, and unauthorized surveillance, but also

enhances user confidence in mobile technology.

• Strengthening Enterprise and Critical Infrastructure: By supporting adaptation

to Bring Your Own Device (BYOD) environments and integration within

Internet of Things (IoT) ecosystems, this framework offers a pathway to

improved organizational security. It helps mitigate data breach risks and

provides greater protection for critical infrastructure, thereby supporting both

economic resilience and national security [2], [3], [40].

• Facilitating Regulatory Compliance and Transparency: A central focus on

model interpretability enables organizations to better comply with evolving

data protection and cybersecurity regulations. Explainable artificial

intelligence supports transparency in automated threat detection and fosters

greater public trust in these systems [38], [52], [53].

• Promoting Digital Inclusion and Innovation: As Android remains a primary

channel for digital access in many developing regions, enhancing its security

infrastructure plays a vital role in supporting digital inclusion, financial

empowerment, and the ongoing adoption of mobile technology [1], [2].

To summarize, the advancements presented in this thesis extend the boundaries of

technical research in Android malware detection while generating clear societal

benefits. The work contributes to making mobile computing safer, more transparent,

and more accessible for users worldwide.

49

REFERENCES

[1] StatCounter, "Mobile Operating System Market Share Worldwide,"

StatCounter Global Stats, Mar. 2024. [Online]. Available:

https://gs.statcounter.com/os-market-share/mobile/worldwide

[2] AV-TEST GmbH, "Malware Statistics and Trends," 2023. [Online]. Available:

https://www.av-test.org/en/statistics/malware/

[3] McAfee Labs, “Mobile Threat Report,” 2022.
[4] Y. Zhauniarovich, M. Ahmad, and B. Crispo, “A survey of Android security

threats and solutions,” ACM Computing Surveys, vol. 49, no. 4, pp. 1–39,

2016.

[5] S. Arshad, M. A. Shah, A. Wahid, and M. A. Ch, “Android malware detection
& protection: A survey,” Procedia Computer Science, vol. 112, pp. 2322–2331,

2017.

[6] A. Shabtai, Y. Fledel, and Y. Elovici, “Android: A comprehensive security
assessment,” IEEE Security & Privacy, vol. 8, no. 2, pp. 35–44, Mar.–Apr.

2010.

[7] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: A
behavioural malware detection framework for Android devices,” J. Intell. Inf.
Syst., vol. 38, no. 1, pp. 161–190, Feb. 2012.

[8] W. Li, Z. Wang, Y. Sun, and X. Luo, “Android malware detection based on
machine learning: A systematic review,” IEEE Access, vol. 8, pp. 124–145,

2020.

[9] S. Sharma and S. Sahay, “A machine learning-based classification approach

for Android malware detection,” Journal of Information Security and
Applications, vol. 48, pp. 102–112, 2019.

[10] S. Sahay and S. Mehtre, “An overview of Android malware detection
techniques,” J. Comput. Virol. Hacking Tech., vol. 14, no. 3, pp. 209–219, Sep.

2018.

[11] H. Gascon, F. Yamaguchi, and K. Rieck, “Structural detection of Android
malware using embedded call graphs,” in Proc. ACM Workshop on Artificial
Intelligence and Security (AISec), 2013, pp. 45–54.

[12] M. Arp, H. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “Drebin:
Effective and explainable detection of Android malware in your pocket,” in
Proc. NDSS, 2014, pp. 1–15.

[13] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid: Automatic
reconstruction of Android malware behaviours,” in Proc. NDSS, 2015, pp. 1–
15.

[14] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An
Android Application Sandbox System for Suspicious Software Detection,” in
Proc. 5th International Conference on Malicious and Unwanted Software

(Malware), 2010, pp. 55–62.

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.av-test.org/en/statistics/malware/

50

[15] F. Martinelli, A. Saracino, and D. Sgandurra, “MADAM: A multi-level

anomaly detector for Android malware,” in Proc. Int. Conf. on Mathematical
Methods, Models and Architectures, 2013, pp. 240–248.

[16] J. Su, H. Liu, and Y. Pan, “Lightweight hybrid malware detection for Android
using deep learning,” IEEE Access, vol. 9, pp. 106–115, 2021.

[17] H. Huang, J. Zhang, S. Wang, and Y. Li, “Deep learning-based Android

malware detection with hybrid features,” Future Generation Computer
Systems, vol. 122, pp. 211–221, 2021.

[18] M. R. Karim et al., “Detection of Android malware using hybrid features,”
Secur. Commun. Netw., vol. 2021, pp. 1–11, 2021.

[19] K. Shahid and M. A. Shah, “A hybrid feature selection framework for Android
malware detection,” Appl. Soft Comput., vol. 97, pp. 106774, 2020.

[20] A. R. Tundis, R. Carbone, and S. Peisert, “Detection of Android malware using
decision trees and ensemble methods,” Digital Investigation, vol. 31, pp. 18–
28, 2019.

[21] K. Liang, R. Du, H. Wang, and B. Fang, “Malware detection using random
forest with static analysis,” in Proc. Int. Conf. on Cloud Computing and
Security, 2018, pp. 115–122.

[22] S. S. Manogaran and D. Lopez, “A survey of SVM-based Android malware

detection,” Journal of Ambient Intelligence and Humanized Computing, vol.
12, no. 3, pp. 4105–4119, 2021.

[23] J. Ren, C. Yang, and X. Li, “An improved k-NN approach for Android malware

classification,” Journal of Information Security and Applications, vol. 54, pp.
102–115, 2020.

[24] A. V. Kumar and M. S. Turuk, “Android malware detection using Naive Bayes
classifier,” Procedia Computer Science, vol. 132, pp. 923–929, 2018.

[25] S. Hou, Y. Ye, and S. Song, “Deep4maldroid: A deep learning framework for
Android malware detection based on Linux kernel system call graphs,” in Proc.
Int. Conf. on Dependable Systems and Networks Workshops (DSN-W), 2016,

pp. 188–193.

[26] J. Chen, Y. Wang, J. Liu, and X. Zhang, “SeqDroid: Detecting Android
malware using sequence mining and deep learning,” IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 3, pp. 1292–1307, 2022.

[27] M. Sheykhkanloo and M. Naderan, “A CNN–LSTM hybrid model for

detecting Android malware,” Applied Soft Computing, vol. 106, pp. 107307,
2021.

[28] D. Wu, C. Mao, and D. Xu, “A dynamic detection approach for Android

malware based on incremental ensemble learning,” Future Internet, vol. 12, no.
3, pp. 1–14, 2020.

[29] L. Demetrio et al., “Explaining vulnerabilities of deep learning to adversarial
malware binaries,” in Proc. USENIX Security Symposium, 2021, pp. 873–890.

[30] T. Zhang, F. Wang, and J. Ma, “On-device Android malware detection using

federated learning and model optimization,” IEEE Internet of Things Journal,
vol. 10, no. 2, pp. 1223–1235, 2023.

51

[31] A. Abusnaina et al., “Adversarial learning attacks and defences in malware
detection: A survey,” Computers & Security, vol. 115, pp. 102–128, 2022.

[32] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images:
Visualization and automatic classification,” in Proc. ACM Workshop on
Visualization for Cyber Security (VizSec), 2011, pp. 1–7.

[33] Y. Yuan, X. Pan, and H. Liu, “CNN-LSTM-based malware detection model

with multimodal data fusion,” Journal of Network and Computer Applications,
vol. 194, pp. 103236, 2021.

[34] A. Souri, R. Ghasemi Gol, and S. Hosseinpour, “Adversarial attacks and
defence techniques in Android malware detection: A survey,” Expert Systems
with Applications, vol. 187, pp. 115–134, 2022.

[35] A. Jain, R. Sharma, and P. Verma, “Attention-based CNN for Android

Malware Detection Using Opcode Sequences,” Journal of Cybersecurity and
Privacy, vol. 3, no. 2, pp. 45–60, 2023.

[36] M. A. Rahman, M. S. Hossain, and M. Al-Amin, “Federated Learning for
Privacy-Preserving Android Malware Detection,” IEEE Transactions on
Mobile Computing, vol. 22, no. 1, pp. 112–125, 2023.

[37] S. Sengupta and S. Banerjee, “GAN-Augmented Random Forest for

Imbalanced Android Malware Detection,” Computers & Security, vol. 125,
102936, 2023.

[38] S. Roy, A. Das, and S. Mukherjee, “Explainable Android Malware Detection
Using XGBoost and SHAP,” Information Systems Frontiers, vol. 25, no. 3, pp.
789–803, 2023.

[39] J. Lee and H. Cho, “Online Learning-Based Dynamic Analysis for Android

Malware Detection,” ACM Transactions on Privacy and Security, vol. 26, no.
4, Article 25, 2023.

[40] L. Zhao, Y. Wang, and X. Li, “Hybrid CNN-LSTM Model for Android

Malware Detection,” IEEE Access, vol. 12, pp. 34567–34578, 2024.

[41] K. Patel and R. Mehta, “LSTM-Attention Model for Dynamic Android

Malware Detection,” Journal of Information Security and Applications, vol.
68, 103215, 2023.

[42] F. Alvi, M. A. Khan, and S. Rehman, “LightGBM-Based Static Analysis for

Efficient Android Malware Detection,” Future Generation Computer Systems,
vol. 137, pp. 456–467, 2024.

[43] N. Ahmed and S. Khan, “Permission-Based Android Malware Detection Using

Random Forest,” International Journal of Information Security, vol. 22, no. 2,
pp. 123–135, 2023.

[44] A. Kumar and S. Das, “SVM with Kernel Trick for Dynamic Android Malware
Detection,” Computers & Security, vol. 130, 103456, 2024.

[45] M. Nasir and A. Hussain, “Hybrid Ensemble Learning for Android Malware
Detection,” Expert Systems with Applications, vol. 201, 117012, 2023.

[46] Y. Lin and H. Chen, “Fast Detection of Android Malware Using Logistic
Regression on Metadata Features,” Journal of Systems and Software, vol. 195,
111234, 2023.

52

[47] X. Zhao and Z. Wang, “Boosted Decision Trees for Static Android Malware
Detection,” Information and Software Technology, vol. 150, 106789, 2024.

[48] R. Thakur and V. Singh, “Thread-Based Behavioural Analysis Using LSTM-

CNN for Android Malware Detection,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 987–998, 2023.

[49] D. Singh and M. Sharma, “Energy-Efficient GRU-Based Hybrid Model for

Android Malware Detection,” Sustainable Computing: Informatics and
Systems, vol. 35, 100987, 2024.

[50] A. A. Alzahrani, M. A. Khan, and S. A. Alzahrani, "Android Malware

Detection and Identification Frameworks by Machine Learning: A

Comprehensive Review," Information Security: The Next Decade, vol. 1, 2024.

[Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2772503024000161

[51] A. Alhussen, “Advanced Android Malware Detection through Deep Learning
Optimization,” Engineering, Technology & Applied Science Research, vol. 14,
no. 3, pp. 14552–14557, Jun. 2024.

[52] M. Yazdinejad, F. Farivar, and B. Wang, “Explainability in AI-based

behavioural malware detection systems,” Computers & Security, vol. 137, p.
103334, 2024.

[53] M. S. Alkahtani and T. H. H. Aldhyani, “Explainable Machine Learning for
Malware Detection on Android Platform,” Information, vol. 15, no. 1, 25,
2024.

[54] A. Dehghantanha and M. Conti, “Machine Learning Aided Android Malware
Classification,” Computers & Electrical Engineering, vol. 104, 107489, 2023.

[55] Y. Elovici and A. Shabtai, “Detection of Malicious Code by Applying Machine
Learning Classifiers on Static Features: A State-of-the-Art Survey,”
Information Security Technical Report, vol. 28, pp. 35–45, 2023.

[56] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “KronoDroid: Time-based

Hybrid-featured Dataset for Effective Android Malware Detection and

Characterization,” Computers & Security, vol. 110, p. 102399, 2021.

https://www.sciencedirect.com/science/article/pii/S2772503024000161

LIST OF PUBLICATIONS AND THEIR PROOFS

1st Paper

Title:

"Supervised Learning Approaches in Android Malware Detection: Survey and Analysis”

Status: Accepted for presentation at the 6th International Conference on Intelligent

Communication Technologies and Virtual Mobile Networks (ICICV 2025).

2nd Paper

Title:

"Behavioural Analysis for Android Malware Detection: A Deep Learning Approach"

Status: Accepted for presentation at the 6th International Conference on Data Analytics

& Management (ICDAM-2025).

3rd Paper

Title:

"Android Malware Detection Framework Using Attention-Based Deep Learning”

Status: Submitted to the IEEE 3rd International Conference on Self Sustainable Artificial

Intelligence Systems (WCONF-2025).

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis : Android Malware Detection Framework Using

Attention-Based Deep Learning

Total Pages : 52

Name of the Scholar : Mayank Ashok

Supervisor : Dr. Rahul Katarya

Department : Dept. of Computer Science & Engineering

This is to report that the above thesis was scanned for similarity detection. Process and

outcome are given below:

Software used: Turnitin Similarity Index: 7% Total Word Count: 16918

Place: Delhi

Date:

Candidate’s Signature Signature of Supervisor

Delhi Technological University

2. Mayank_Ashok_Thesis.pdf

Document Details

Submission ID
trn:oid:::27535:97943204

Submission Date
May 27, 2025, 11:53 AM GMT+5:30

Download Date
May 27, 2025, 11:55 AM GMT+5:30

File Name
2. Mayank_Ashok_Thesis.pdf

File Size
1.1 MB

52 Pages

16,918 Words

108,817 Characters

Page 1 of 60 - Cover Page Submission ID trn:oid:::27535:97943204

Page 1 of 60 - Cover Page Submission ID trn:oid:::27535:97943204

7% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report
Bibliography
Quoted Text
Cited Text
Small Matches (less than 10 words)

Match Groups
90 Not Cited or Quoted 7%
Matches with neither in-text citation nor quotation marks
0 Missing Quotations 0%
Matches that are still very similar to source material
0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources
4% Internet sources
2% Publications
5% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review
No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Page 2 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Match Groups
90 Not Cited or Quoted 7%
Matches with neither in-text citation nor quotation marks
0 Missing Quotations 0%
Matches that are still very similar to source material
0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources
4% Internet sources
2% Publications
5% Submitted works (Student Papers)

Top Sources
The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Submitted works

Colorado Technical University Online on 2025-03-03 <1%

2 Internet

www.mdpi.com <1%

3 Publication

Shashi Rathore, Parul Sahare, Mayur Parate, Nikhil Agrawal, Tausif Diwan, Moha… <1%

4 Submitted works

University of Ulster on 2025-05-07 <1%

5 Internet

www.medrxiv.org <1%

6 Internet

arxiv.org <1%

7 Internet

export.arxiv.org <1%

8 Publication

Saleh Albahli. "Predictive Analytics for Diabetic Patient Care: Leveraging AI to For… <1%

9 Submitted works

Tilburg University on 2025-05-15 <1%

10 Internet

pmc.ncbi.nlm.nih.gov <1%

Page 3 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Page 3 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

https://www.mdpi.com/2076-3417/15/3/1081
https://doi.org/10.1007/978-981-97-8472-1_1
https://www.medrxiv.org/content/10.1101/2024.08.21.24312399v1.full
http://arxiv.org/pdf/2502.13256
http://export.arxiv.org/pdf/1912.02777
https://doi.org/10.32604/cmes.2025.058821
https://pmc.ncbi.nlm.nih.gov/articles/PMC10742760/

11 Submitted works

universititeknologimara on 2025-05-15 <1%

12 Publication

Elshan Baghirov. "Comprehensive Framework for Malware Detection: Leveraging
…

<1%

13 Submitted works

Napier University on 2025-04-30 <1%

14 Submitted works

The University of the West of Scotland on 2023-04-21 <1%

15 Submitted works

Tilburg University on 2025-05-17 <1%

16 Internet

easychair.org <1%

17 Submitted works

Queen's University of Belfast on 2024-09-12 <1%

18 Publication

"Securing the Connected World", Springer Science and Business Media LLC, 2025 <1%

19 Submitted works

University of Greenwich on 2024-09-06 <1%

20 Internet

www.restack.io <1%

21 Submitted works

Abu Dhabi University on 2025-02-14 <1%

22 Submitted works

De Montfort University on 2023-05-12 <1%

23 Publication

Evan Valenti. "Forecasting Shark Attack Risk Using AI: A Deep Learning Approach… <1%

24 Submitted works

University of Glasgow on 2025-02-14 <1%

Page 4 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Page 4 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

https://doi.org/10.1109/AICT59525.2023.10313179
https://easychair.org/publications/preprint/rLpN/download
https://doi.org/10.1007/978-3-031-82826-3
https://www.restack.io/p/deep-learning-answer-intrusion-detection-cat-ai
https://doi.org/10.4236/jdaip.2023.114018

25 Submitted works

University of Hertfordshire on 2024-12-01 <1%

26 Internet

link.springer.com <1%

27 Internet

medium.com <1%

28 Internet

ir.cuea.edu <1%

29 Internet

peerj.com <1%

30 Internet

researchspace.ukzn.ac.za <1%

31 Submitted works

Liverpool John Moores University on 2020-08-10 <1%

32 Submitted works

Monash University on 2023-10-12 <1%

33 Submitted works

Swinburne University of Technology on 2024-11-02 <1%

34 Submitted works

The University of the West of Scotland on 2024-03-27 <1%

35 Submitted works

University of Surrey on 2023-05-15 <1%

36 Submitted works

Whitecliffe College of Art & Design on 2024-11-28 <1%

37 Internet

dspace.lboro.ac.uk <1%

38 Internet

www.frontiersin.org <1%

Page 5 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Page 5 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

https://link.springer.com/article/10.1007/s42835-024-01955-z?code=dfcdceec-b295-42ee-9131-3baf974b21ae&error=cookies_not_supported
https://medium.com/@kathrynklarich/exploring-and-evaluating-ml-algorithms-with-the-wisconsin-breast-cancer-dataset-506194ed5a6a
http://ir.cuea.edu/jspui/bitstream/1/12905/1/Jane%20Thesis.pdf
https://peerj.com/articles/cs-2881.xml
https://researchspace.ukzn.ac.za/bitstream/handle/10413/20796/Molefe_Mohale_Emmanuel_2021.pdf?isAllowed=y&sequence=1
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/14900/3/Thesis-2014-Littlefair.pdf
https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2024.1477501/pdf

39 Publication

Ahmad Braydi, Pascal Fossat, Mohsen Ardabilian, Olivier Bareille. "Innovative pro… <1%

40 Submitted works

Edge Hill University on 2024-04-29 <1%

41 Submitted works

Liverpool John Moores University on 2022-06-06 <1%

42 Submitted works

Napier University on 2021-05-03 <1%

43 Submitted works

Swinburne University of Technology on 2024-11-02 <1%

44 Submitted works

University of Greenwich on 2025-04-22 <1%

45 Submitted works

University of Hertfordshire on 2024-12-02 <1%

46 Internet

cris.brighton.ac.uk <1%

47 Internet

enac.hal.science <1%

48 Internet

publications.aston.ac.uk <1%

49 Internet

repository.tudelft.nl <1%

50 Internet

ttu-ir.tdl.org <1%

51 Publication

"Cybersecurity and Human Capabilities Through Symbiotic Artificial Intelligence",… <1%

52 Submitted works

Dokuz Eylul Universitesi on 2018-08-16 <1%

Page 6 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Page 6 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

https://doi.org/10.1016/j.apor.2025.104521
https://cris.brighton.ac.uk/ws/files/42353100/Saeed_Seraj_PhD_Thesis_-_Final_Draft.pdf
https://enac.hal.science/tel-05020389/document
https://publications.aston.ac.uk/id/eprint/47433/1/Xu_Qianwen_-_2024.pdf
https://repository.tudelft.nl/islandora/object/uuid:f836e9a6-db21-4451-b729-458b55f63b72/datastream/OBJ/download
https://ttu-ir.tdl.org/items/47b91062-e8b2-4673-8e36-d6027129df86
https://doi.org/10.1007/978-3-031-82031-1

53 Submitted works

Manipal University Jaipur Online on 2024-08-04 <1%

54 Publication

Solichin, Muhammad Afrinal. "A Forecast Model for Classification for Cost Compo… <1%

55 Submitted works

Staffordshire University on 2024-05-12 <1%

56 Submitted works

The University of the West of Scotland on 2023-08-21 <1%

57 Submitted works

UNITEC Institute of Technology on 2024-04-02 <1%

58 Submitted works

University of Bradford on 2023-02-01 <1%

59 Submitted works

University of Nottingham on 2024-09-03 <1%

60 Submitted works

Uttar Pradesh Technical University on 2019-01-21 <1%

61 Internet

escholarship.org <1%

62 Internet

gala.gre.ac.uk <1%

63 Internet

ijece.iaescore.com <1%

64 Internet

ijetrm.com <1%

65 Internet

mafiadoc.com <1%

66 Internet

researchsystem.canberra.edu.au <1%

Page 7 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Page 7 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

https://gateway.proquest.com/openurl?res_dat=xri%3Apqm&rft_dat=xri%3Apqdiss%3A31487681&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&url_ver=Z39.88-2004
https://escholarship.org/content/qt6m28m39x/qt6m28m39x.pdf?t=q0k5qp
http://gala.gre.ac.uk/id/eprint/8159/1/Ezekiel%20Aman%20Dembe%202009%20-%20redacted.pdf
https://ijece.iaescore.com/index.php/IJECE/article/download/33916/17594
https://ijetrm.com/issues/files/Nov-2024-21-1732196009-NOV37.pdf
https://mafiadoc.com/android-malware-detection-protection-a-survey_5c934fed097c47862f8b464d.html
https://researchsystem.canberra.edu.au/ws/portalfiles/portal/84937117/Raghav_Utkarsh.pdf

67 Internet

studenttheses.uu.nl <1%

68 Internet

www.mcafee.com <1%

69 Internet

www.techscience.com <1%

Page 8 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

Page 8 of 60 - Integrity Overview Submission ID trn:oid:::27535:97943204

https://studenttheses.uu.nl/bitstream/handle/20.500.12932/48468/Enhancing_Smart_Contract_Security__Systematic_Literature_Review_and_CNN_BiLSTM_ATT_Approach_final.pdf?isAllowed=y&sequence=1
http://www.mcafee.com/br/products/content-security-blade-server.aspx
https://www.techscience.com/ueditor/files/cmc/TSP_CMC-71-2/TSP_CMC_21449/TSP_CMC_21449.epub

