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Enhanced Link Prediction using Machine Learning and Deep 
Learning Techniques 

 
Rahul Jaggi 

 
ABSTRACT 

 
The ultimate aim of link prediction is to identify the possible potential connections in 
a network. The study on this topic has gained impetus as it results in efficiently saving 
resources, time, cost and effort to analyze future possibilities in a network. With the 
refined use of this technique, it significantly improves how the complex networks like 
social network analysis, biological networks, and recommendation systems are 
interpreted vis-à-vis experimental processes. In this paper, we propose a novel 
combination of five node centralities and four similarity measures with the aim of 
capturing both local and global features of networks. Consequently, feature vector 
made by integration of these five node centralities and four similarity indices are then 
passed through Machine Learning(ML) classifiers. By combination of results of 
different classifiers according to dynamic weighting scheme, the integrated classifier 
is then utilized for final link prediction. We have also analyzed the effect of varying 
thresholds on the ROC AUC and F1 scores and the same have been tabulated. This 
paper provides insights into the effectiveness of combining graph-theoretic features 
with ML models for accurate link prediction. 
  
 The understanding of time dependent dynamics in evolving network 
interactions is crucial for applications ranging across various domains. In this paper, 
we introduce TA-GC-LSTM (Temporal Adaptive Graph Convolutional Long Short-
Term Memory) which uses deep learning framework with novel combination of 
models. This proposed model of ours, efficiently captures spatial dependencies 
through graph convolution, temporal sequences using LSTM, and gives selective 
importance to influential time steps through the attention mechanism. In contravention 
to traditional methods, which rely on static graph representations, TA-GC-LSTM 
dynamically learns the temporal evolution of node relationships, enhancing predictive 
accuracy in link prediction tasks. In our framework, we have carried out processing of 
datasets by binning interactions into fixed time windows, encoding unique nodes with 
learnable embeddings, and filtering sparse time steps to optimize computational 
efficiency. To validate our approach, we have tested the model on three real-world 
datasets and compared our model performance against Graph Convolution Embedded 
LSTM (GC-LSTM) and Temporal Graph Convolutional Network (T-GCN) as 
benchmarks across multiple evaluation metrics. Our results demonstrated that TA-GC-
LSTM outperforms baseline models, achieving an AUC score of 93%, while 
maintaining computational efficiency, making it a robust solution for modelling 
evolving graph structures.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1  OVERVIEW 
 

Link prediction and analysis is one of the fundamental task in complex network 
analysis that involves predicting future or missing links in a graph based network. 
Since its inception, the topic has remained in focus and continues gaining community 
wide attention. It is one of the popular research topics and has a wide application 
covering a large number of domains. The increasing complexity of networks, such as 
social networks, citation networks, and biological networks, has motivated research in 
this area due to its broad applicability and potential to improve decision making 
processes. Link prediction has been effectively utilized in various domains, such as 
social network growth prediction, protein-protein interaction analysis, and 
recommender systems, where identifying future relationships can significantly 
enhance performance and reduce costs. 

Furthermore, in the real world networks, relationships evolve over time which 
implies that a temporal dimension gets associated with it. Therefore, this necessitates 
a separate analytical approach compared to static networks. So to fulfil this task, the 
concept of dynamic link prediction is utilized. It involves forecasting future 
connections that might get developed or the present links which might be missing. 
Thus, dynamic network link prediction is vital topic crucial for understanding modern 
complex networks. 

Traditionally, only topological structures of the network were considered for link 
prediction, such as similarity indices and matrix factorization which primarily relied 
on static networks. This limited their ability to model real world dynamism efficiently 
and effectively [1], [2]. As a result, traditional approaches were not able to capture 
complex patterns in dynamic networks resulting in limited accuracy and applicability. 
Thus, dynamic network link prediction is vital topic crucial for understanding modern 
complex networks. 

In our thesis, we have implemented two separate novel models based on ML and 
DL approaches respectively. In the ML domain, we have demonstrated 
implementation of an integrated approach that combines three ML models to enhance 
link prediction accuracy. Specifically, we have employed RF, XGB, and LDA as base 
classifiers and integrated their prediction probabilities by using dynamically 
determined optimal weights through LR. This weighted stacking framework that is 
generated, dynamically ensures that the integrated model effectively balances 
performance across multiple evaluation metrics, including AUC and F1-score [9].  

In contrast, deep learning models, particularly GNNs, have shown the ability to 
learn intricate node relationships by capturing higher order dependencies. Building on 
this foundation, our research introduced a novel approach called TA-GC-LSTM 
model, which integrates GCNs, Attention mechanism, and LSTM networks to improve 
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link prediction in dynamic networks. Our model captures spatial dependencies using 
GCNs, models temporal sequences with LSTM, and selectively focuses on influential 
historical time steps through a Temporal Attention Module. GC-LSTM architecture 
with an adaptive attention mechanism, enhances prediction accuracy, and 
computational efficiency. 

1.2  MOTIVATION 

India, as one of the world’s most geopolitically significant nations, has long been 
a target of terrorist activities orchestrated primarily by cross-border groups. From 
major attacks in metropolitan areas to insurgencies in border regions, the evolving 
nature of terrorism in India has made early detection and prevention more challenging 
than ever before. Terrorist networks operating in and around the nation, often function 
through covert, decentralized, and dynamic modes of communication, making their 
detection using conventional surveillance techniques increasingly difficult. 

In this context, the proactive prediction of  hidden or probable links that can be 
established in future within suspected networks becomes a strategic advantage for 
national security agencies. Link prediction, when applied to communication graphs, 
financial transactions, social networks, or other intelligence databases, can assist in 
identifying unobserved associations or planning stages of coordinated attacks. For 
instance, uncovering a potential connection between a known militant and a previously 
unmonitored individual can allow for timely investigation and preemptive measures.  

These networks are engineered to evade detection—connections are often 
indirect, communication is minimal, and participants deliberately avoid centrality. 
Consequently, there is a pressing need for intelligent models capable of learning from 
both structured patterns and temporal dynamics, even under conditions of incomplete 
or noisy data. 

It is the vast and varied data landscape, ranging from call records and financial 
flows to social media activity, offers immense potential for constructing actionable 
network graphs. However, the real value lies in building models that can sift through 
this data to highlight emerging threats before they manifest. The integration of 
enhanced link prediction models into India’s national security infrastructure could help 
intelligence agencies prioritize leads, allocate resources, and neutralize threats 
proactively. 

1.3  OBJECTIVES 

a) To carry out Literature Survey on evolution of link prediction. 

b) To study and use diverse real world datasets for model validation and 
prediction. 

c) To implement ML based static link prediction model for enhanced link 
prediction using integrated classifier. 
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d) To implement DL based dynamic link prediction model for enhanced link 
prediction using TA-GC-LSTM models. 

1.4  PROBLEM FORMULATION 

Two formulations of the link prediction task have been elaborated below: - 

(a) Static Link Prediction. Static link prediction treats the network as a 
snapshot frozen in time, focusing on identifying missing connections within 
the existing network structure. The problem formulation involves removing a 
random set of links from the network and then aiming to predict these missing 
connections based solely on the remaining topological structure. The proposed 
integrated ML classifier will target this problem. 

 Let us assume a simple graph network depicted mathematically as 
G(V,E), where ‘V’ denotes the vertices set and ‘E’ denotes the edges in the 
graph. Mathematically, the universal set ‘U’ should contain a total of  
V(V−1)/2 edges. Therefore, the difference i.e. |U|−|E| provide us with a set of   
links that are not present at this juncture but some of these links may appear in 
the near future. The aim of link prediction is to find these edges in a static 
framework. 

 

 

 

 

 

 

 

 

 

Figure 1.1 : Find Missing Links (AC, AD and BD) 

(b) Dynamic Link Prediction. Dynamic link prediction incorporates temporal 
evolution, predicting future connections based on historical network states and 
temporal patterns. The problem formulation differs in the context of time. 
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 Given a graph G[t, t'] containing edges up to time t measured within a 
fixed time [t, t’], output a ranked list ‘L’ of potential links (not present in G[t, 
t']) that are predicted to appear in the future time window G[t+1, t+1'].  

The adjacency matrix At for each time step is defined as: 

!!(#, %) = {1, if(#, %) ∈ -!
0, otherwise  

The proposed TA-GC-LSTM model based on DL framework will target this 
problem. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 : Illustration of Adjacency Matrices at different time steps 

1.5  THESIS STRUCTURE 

The thesis is structured into five distinct chapters as follows: 

•  Chapter 1 introduces the topic, outlines the motivation behind the research, sets 
forth the objectives of the study and defines the problem statement formally.  
 
•  Chapter 2 offers a comprehensive review of the existing literature on methods 
for link prediction and their various forms. It also highlights the research gaps 
which were found and endeavoured to be addressed with the proposed models.  
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•  Chapter 3 is dedicated to the proposed methodology and its results for ML 
based Integrated classifier model  for enhance link prediction. 
 
•  Chapter 4 is dedicated to the proposed methodology and its results for DL 
based TA-GC-LSTM model for dynamic link prediction. 
 
•  Chapter 5 concludes the study with discussion on potential future research and 
probable additions. 
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CHAPTER 2 

RELATED WORK 

Link prediction has emerged as a critical research area within the broader field of 
network analysis, with applications spanning from social media recommendations and 
biological interactions to cybersecurity and counter-terrorism. Over the past decade, 
researchers have developed a variety of methods to address the problem of predicting 
missing or future links in both static and dynamic graphs. 

2.1 TRADITIONAL METHODS 

 Link prediction in various networks has been on centre stage due to its 
applications in various domains, including social networks, terrorist networks, field of 
biology, product recommendation systems, etc. The primary goal here is to infer 
potential future or missing connections in a network depending on its existing 
structure. Since the very start, numerous approaches have been proposed, which can 
be generally classified into similarity based methods, probability based models, 
embedding techniques, and ML based approaches. 

The earliest link prediction methods were based on simple topological similarity 
indices that measure the chances of a link formation between two nodes. Local 
measures such as CN, JC and AA are commonly used due to their computational 
efficiency. CN counts the shared neighbours between two nodes, while JC normalizes 
this count by the size of the union of their neighbourhoods. AA further refines 
Common Neighbours by weighting rare neighbours more heavily [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1: Link Prediction Example 
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Although the above mentioned methods are simple and computationally 
inexpensive, they primarily rely on local information. 

Global similarity measures, on the flip side, overcome this limitation. Katz Index 
provides a score based on the path count between two nodes with more weight to 
shorter paths. However, the main limitation is that it incurs a high computational cost. 
Rooted Random Walk calculates the probability of reaching one node from another 
through a random walk. In essence, global measures provide better results but at the 
cost of high computational load. 

 
2.2 ML BASED METHODS FOR STATIC LINK PREDICTION 
 
Rahman et al. [5] considered the activities of the users and the mutual neighbours to 
bring out the local and global link prediction algorithm to calculate the similarity 
indices. ML approaches to link prediction involve extracting graph features and using 
them to train classifiers.  
 Early approaches focused on manually engineered features, such as node 
degree, clustering coefficient, and shortest path length. These features were used with 
classifiers like LR and SVMs. However, the reliance on handcrafted features limited 
the flexibility and scalability of these models [6]. A community relationship strength 
index (CRS) to find out the closeness between groups based on the similarity of nodes 
and topological information was proposed by Li et al. [7]. Ghorbanzadeh et al. [4] 
proposed a hybrid approach wherein, even if there are no common neighbours among 
nodes, they still have a chance of probable connection in the future [9]. In Table I, 
summarized information for recent advancements in the researches on this topic have 
been provided along with characteristics and limitations. 
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Table I.  Recent Important Related Works(ML based Link Prediction) 
 

Ser 
No. 

Author(s) and 
Year 

Method(s) Characteristics Limitations 

(a) Devi et al., 2020 
[39]  

Link prediction 
model based on 
measurement of 
geodesic 
distance  

The model 
primarily relies on 
geodesic distance 
(shortest path 
between any two 
nodes) as a key 
predictor.  
Assumes that nodes 
with shorter 
geodesic distances 
have a higher 
probability of 
forming links. 

Overreliance on 
Geodesic Distance: 
Focusing primarily 
on geodesic distance 
may overlook other 
significant 
topological features, 
such as common 
neighbours, 
clustering 
coefficients, or node 
centrality measures. 

(b) Berahmand et 
al.  ,2021 [40] 

CSADW based 
LP 
(Combination of 
Structural and 
Attributed deep 
Walk) 

It is based on the 
notion that the 
probability of  a 
connection between 
two nodes is more if 
they have more 
structure and 
attribute similarity. 

The method relies on 
the idea that the 
probability of a 
connection between 
nodes is more if they 
are nearby in the 
network or share 
similar attributes, 
which may not 
always hold in 
complex networks 

 
 
 
 
 
 
 
 
 
 
 
 
 



9 | P a g e  
 

Ser 
No. 

Author(s) and 
Year 

Method(s) Characteristics Limitations 

(c) Kumar et al., 
2022 [41] 

NC-LGBM 
based LP (Node 
Centrality with 
Light Gradient 
Boosting 
Machine) 

Proposed a 
combination based 
on using various 
node centralities. 
The feature vector 
generated is then 
passed through 
LGBM classifier 
for accurate link 
prediction. 

Focusing primarily 
on node centrality 
metrics may overlook 
other significant 
topological features 
and the broader 
structural context of 
the network, 
potentially limiting 
predictive 
performance. 

(d) Chen et al. ,2022 
[42] 

EMLP 
(Ensemble 
model for link 
prediction based 
on graph 
embedding) 

Combines multiple 
graph embedding 
techniques (e.g., 
node2vec, 
DeepWalk, GCN, 
GAT, 
etc.).Leverages 
diverse 
representations to 
capture different 
structural and 
relational 
properties. 

The ensemble 
approach introduces 
additional 
hyperparameters, 
necessitating careful 
tuning to achieve 
optimal performance, 
which can be time-
consuming and 
computationally 
intensive. 

 

Modern ML techniques like RF and XGB, can automatically learn complex 
patterns from a diverse set of features. A link prediction method named LPXGB using 
the XGB ML technique employed the use of varied features to represent the dataset 
for binary classification problems [9]. These models are well suited for link prediction 
tasks, achieving high accuracy by combining multiple decision trees or boosting weak 
learners. 

 
2.3 DL BASED METHODS FOR DYNAMIC LINK PREDICTION 

 
Dynamism in link prediction has been a topic of pivotal focus in graph-based 

machine learning, with varied applications spanning across domains like social 
networks, biological systems, and communication infrastructures. The whole idea is 
to carry out analysis of a dynamic graph network and predict missing and future links. 
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While early methods primarily laid emphasis on static networks, researchers 
progressively recognized the necessity of modelling both spatial and temporal 
dependencies in order to adapt to dynamic networks.  

In this sub-section, we have reviewed key advancements in three primary areas 
namely, static link prediction, dynamic network modelling, and spatio-temporal graph 
neural networks. 

With the advent of deep learning, embedding-based methods became prominent, 
enabling learning of low-dimensional representations of nodes that captured structural 
properties. Techniques such as DeepWalk [10], Node2Vec [11], and LINE [12] used 
random walks and neural language models to generate node embeddings. More 
recently, Integrated GraphSAGE and variational autoencoder (GSVAELP) developed 
a deep learning based model for link prediction by using graphSAGE (graph sample 
and aggregation) and Variational Autoencoders (VAE) [13]. However, these 
approaches were inherently static and lacked the ability to capture evolving 
relationships in dynamic networks. The fixed representations of the above mentioned 
techniques, however, limited their application in real world scenarios where network 
structures are dynamic. 

Dynamic networks have continuous and frequent changes, wherein nodes and 
edges keep appearing and disappearing as time elapses. Older static approaches proved 
insufficient for capturing such evolving structures, which led to the exploration of 
dynamic network modelling methods. These techniques can be categorised into two 
prominent categories, namely, temporal graph embedding techniques and RNN based 
models.  

 
2.3.1 Temporal Graph Embedding Methods 

Temporal graph embedding methods maintain temporal consistency along with 
preservation of topological information. Dynamic Triad [14] use static embeddings by 
enforcing temporal overlap, whereas Continuous-Time Dynamic Network 
Embeddings (CTDNE) [15] use time dependent random walks to learn temporal node 
representations. Although these methods gained impetus, but could not explicitly 
capture interdependencies across different time steps. Due to this, it limited their 
overall effectiveness in long-term link prediction tasks.  

 
2.3.2 Recurrent Neural Network (RNN)Based Models 

 
Spatio-Temporal Graph Neural Networks (STGNNs) enhanced the modelling of 

temporal aspect by integrating RNNs with GNNs. The T-GCN [16] combined GCNs 
with GRUs for traffic prediction, which enabled them for spatial and temporal pattern 
recognition tasks. Similarly, to improve temporal sequence learning the Graph 
Convolutional Recurrent Network (GCRN) [17] employed LSTM cells with GCNs to 
improve upon the time dependent learning. These models improved the overall 
experience in link prediction tasks, but the fixed time window sizes and the absence of 
attention mechanisms limited their scope of application in complex and evolving 
networks.  
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2.3.3 Spatio-Temporal GNNs 
 
STGNNs address both the requirements in dynamic networks. These models 

combined graph convolutions for spatial learning with RNN based architectures or 
temporal attention mechanisms to model dynamic patterns effectively.  

 
a) GC-LSTM: 
 
GC-LSTM [18] integrated GCNs with LSTM cells, which resulted in improved 

memory retention for long term dependencies. The inherent nature of LSTM’s 
sequential learning capabilities empowered GC-LSTM to provide superior 
performance in capturing complex temporal aspects. However, it’s lack of a temporal 
attention mechanism restricted its ability to selectively choose important historical 
time steps, leading to susceptibility to dilution of information over long sequences.  

 
b) Temporal Attention Mechanisms: 
 
A significant improvement with the incorporation of temporal attention 

mechanisms allowed models to assign weights on the fly to historical time steps based 
on their relevance and contribution to the current state. Temporal Attention Memory 
(TAM) networks [19] and Spatio-Temporal Graph Attention Networks (ST-GAT) [20] 
exhibited superior performance by selectively emphasizing on influential past 
interactions. Although many advantages got accrued with this concept, due to their 
predominant focus on time steps and no explicit focus and integration on spatial 
relationships, it lead to suboptimal results in link prediction tasks.  

 
c) Graph Convolutional Temporal Attention Mechanisms: 
 
The combination of the above two architectures, led to the exploration of Graph 

Convolution with Temporal Attention mechanisms to enhance the task of link 
prediction. For event base networks, Temporal Graph Attention Networks (T-GAT) 
[21] used temporal attention along with Graph Attention Networks (GATs), whereas 
Adaptive Spatio-Temporal Graph Convolution Networks (ASTGCN) [22] 
incorporated both spatial and temporal attention for traffic forecasting. But these 
models although effective in their respective domains, were primarily designed for not 
exactly meant for link prediction tasks. 

More recently, TLP-NEGCN transformed matrix into lower dimensional vector 
representations for the nodes of the network initially with the use of graph embedding 
with self-clustering (GEMSEC). These embeddings were then fed into GCNs across 
timestamps in the dataset [23]. 

 
2.3.4 Cross Domain Temporal Deep Learning 

 
Recent works in various domains have demonstrated the versatility and 

efficiency of combining sequential models like LSTM, Bi-LSTM, and attention-based 
architectures for time-sensitive predictions. These architectures, though applied in 
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non-graph settings, validate the effectiveness of temporal learning strategies that 
closely align with our motivations in dynamic link prediction. 

Ghosh et al. [24] introduced a model combining GloVe embeddings with LSTM 
for emotion detection. Their work emphasized how selective integration of shallow 
and deep models can enhance learning efficiency without compromising on semantic 
representation. Similarly, in the domain of sentiment analysis, Yadav and Pal [25] 
applied Bi-RNN and Bi-LSTM frameworks to classify Amazon reviews. Their 
findings highlighted the importance of capturing bidirectional temporal dependencies, 
further justifying our inclusion of LSTM modules in TA-GC-LSTM. 

In event processing, F-DES (Fast and Deep Event Summarization) demonstrated 
how temporal attention and deep summarization could capture evolving storylines in 
textual event streams, showing the benefits of temporal compression and contextual 
focus [26]. This principle finds a direct echo in our temporal attention module, which 
selectively amplifies important time steps in evolving graphs. 

Furthermore, summarization focused architectures like those studied by Sharma 
and Kaushal [27] in video summarization using deep learning leveraged sequential 
modelling to distil relevant content over time, an idea we borrow when filtering graph 
time steps through attention mechanisms. 

Complementing this, a cloud based deep learning interface for text query-based 
event summarization and retrieval was presented in [28], demonstrating scalable 
implementations of attention-driven systems for large, evolving datasets reinforcing 
the importance of both efficiency and interpretability in time-aware models. 

From a computational efficiency standpoint, Mehta and Roy [29] proposed an 
optimized ANN architecture tailored for small-scale problems, emphasizing minimal 
resource utilization. Inspired by such design goals, our use of Chebyshev polynomials 
in the GCN layer ensures scalability by avoiding expensive spectral decompositions. 
In Table II, summarized information for recent advancements in the researches on this 
topic have been provided along with characteristics and limitations. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 | P a g e  
 

 
Table II.  Recent Important Related Works(DL based Link Prediction) 
 

Ser No. Author(s) 
and Year 

Method(s) Characteristics Limitations 

(a) Yu et al.,  
2020 [16]  

T-GCN Integrates GCN with 
GRU for temporal 
modelling in traffic 
networks  

GRUs struggle 
with long-term 
dependencies and 
is not tailored for 
link prediction  

(b) Rossi et 
al., 2020 
[43]  

Temporal Graph 
Network (TGN)  

Uses memory 
modules and 
message passing 
for continuous-
time graphs. 

High 
computational 
complexity and 
is harder to 
scale 

(c) Chen et 
al., 2022 
[18] 

GC-LSTM Embeds GCN into 
LSTM cells for 
dynamic network 
learning 

Equal weight to 
all time steps 
but lacks 
temporal 
attention 

(d) Kumar 
et al., 
2024 
[23] 

TLP-NEGCN Uses self-
clustering 
embeddings with 
GCN over time 
steps for link 
prediction 

Relies on fixed-
time binning, 
however, no 
attention or 
LSTM 
modelling 

 
Lastly, recent innovations in human activity recognition such as those by Verma 

et al. [30] and Bansal et al. [31] used residual networks and fine tuning strategies to 
capture subtle temporal variations in sensor data. These models show how residual 
learning and attention can boost generalization and performance, especially when 
long-term dependencies are involved much like in dynamic graphs. 

 In a more recent advancement, Verma and Agarwal [32] introduced a hybrid 
deep learning model for road accident classification that integrated Capsule Recurrent 
Neural Networks (Capsule-RNNs) with an Improved Reptile Search Algorithm for 
optimization. Their architecture captured spatial hierarchies using capsule networks 
while maintaining sequential dependencies through RNNs demonstrating that spatial-
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sequential fusion, when guided by effective attention or optimization strategies, can 
lead to substantial gains in predictive accuracy. 

 These studies, though addressing varied domains, provide strong foundational 
evidence supporting the core components of our proposed model especially the 
integration of GCNs for spatial learning, LSTM for sequence modelling, and temporal 
attention mechanisms for selective memory. The broader success of these components 
in other time sensitive tasks strengthens our motivation for adapting them in the 
context of dynamic link prediction. 

 
2.4 RESEARCH GAPS 
 
2.4.1 Overview 

 
 The advancement in the domain of link prediction in complex networks has 
evolved significantly over the past decade, yet several critical gaps persist that limit 
the effectiveness and applicability of existing approaches. Through comprehensive 
analysis of current methodologies, this research identifies and addresses key 
limitations across both static and dynamic link prediction paradigms. 

 
2.4.2 Static Link Prediction 

 
(a) Feature Fragmentation and Limited Integration 
  
 Traditional static link prediction methods suffer from a fundamental 
fragmentation problem where approaches focus on either local topological 
features (CN, AA, JC) or global structural properties (Katz Index, Random 
Walk measures) but rarely integrate both effectively. Local measures, while 
computationally efficient, fail to capture broader network topology and often 
yield suboptimal accuracy. Conversely, global measures provide better 
performance but incur prohibitive computational costs for large-scale 
networks. 
 
(b) Static Weighting Limitations 
 
 ML approaches to link prediction, including ensemble methods using 
Random Forest, XGBoost, and other classifiers, typically employ static 
weighting schemes that cannot dynamically adapt to network specific patterns. 
The lack of adaptive weighting mechanisms results in suboptimal performance 
across heterogeneous network domains. 
 
(c) Limited Scalability and Generalizability 
 
 Existing feature engineering approaches rely heavily on handcrafted 
similarity indices that lack adaptability across diverse network types. This 
limitation becomes particularly pronounced when dealing with networks of 
varying scales and structural properties, where fixed feature sets fail to capture 
domain-specific relationship patterns effectively. 
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2.4.3 Dynamic Link Prediction 

 
(a) Temporal Oversimplification and Fixed Time Windows 
 
Current dynamic link prediction methods suffer from temporal 
oversimplification, where models like GC-LSTM and T-GCN use fixed time 
windows or uniform attention across historical states. This approach fails to 
account for the varying importance of different time periods in network 
evolution, leading to information dilution over long sequences. The inability to 
adaptively focus on evolutionarily significant network states severely limits 
predictive accuracy in temporal networks with irregular interaction patterns. 
 
(b) Long-Term Dependency Limitations 
 
Recurrent architectures commonly used in dynamic link prediction, 
particularly GRU-based models like T-GCN, have a major limitation of 
vanishing gradients. This limitation becomes particularly problematic for 
networks with extended temporal sequences where early interactions 
significantly influence future link formation patterns. 
 
(c) Computational Inefficiency in Spectral Methods 
 
While spectral graph convolutions (such as ChebConv) provide effective 
spatial feature learning, they incur high computational costs for large dynamic 
graphs. The lack of efficient approximation methods for spectral operations 
limits the scalability of sophisticated graph neural network architectures to 
real-world large-scale temporal networks. 
 

2.4.4 Comprehensive Gap Analysis 
 
The identified research gaps reveal a clear need for: 
 
(a) Integrated Feature Learning: Methods that systematically combine 
multi-scale graph-theoretic features with adaptive ensemble techniques. 
 
(b) Advanced Temporal Modelling: Frameworks that incorporate 
sophisticated attention mechanisms for selective historical context processing 
 
(c) Unified Spatio-Temporal Architectures: Models that effectively 
capture interdependencies between spatial network topology and temporal 
evolution 
 
(d) Scalable Implementation: Approaches that balance computational 
efficiency with predictive accuracy for large-scale networks. 
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This comprehensive gap analysis provides the foundation for our researches in this 
domain, ensuring that the proposed solutions address real limitations in current link 
prediction methodologies. 
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CHAPTER 3 

PROPOSED METHODOLOGY AND RESULTS FOR ML BASED 
INTEGRATED CLASSIFIER 

In this chapter, we present our methodology used for predicting potential links 
in a given network using our ML based model. 
 
3.1 Proposed Architecture: ML Integrated Classifier 

The proposed model integrates multiple features, including node centrality measures 
and similarity indices, which are then used to train ML models for accurate link 
prediction. The overall methodology consists of various phases that have been 
enumerated below. 
 
 

 
 

Figure 3.1: Link Prediction using Integrated Classifier 
 

3.1.1 Feature Extraction 
 
The quality and accuracy of link prediction depends significantly on the quality of the 
features used. In our approach, we extract two types of features: node centrality 
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measures and similarity indices, which accrue benefits of local and global structural 
properties of the graph dataset. 
 

(a) Node Centrality Measures 
 

 Node centrality measures the popularity by quantifying the topological 
 positioning of the nodes in the network. For each pair of vertex (u, v), we have 
 extracted the five centrality scores mentioned below. For each edge (u, v), the 
 centrality-based features are combined by concatenating the centrality values 
 of both nodes.  
  We have utilized the following five node centrality measures that 
 provides a wholesome picture with the combination of local and global 
 centrality measures to capture various structural properties of the graph. A brief 
 description along with the formulas are enumerated below: 
 

(i) Clustering Coefficient: 
 

 The clustering coefficient  C(v)  measures the likelihood that a node’s 
neighbours are interconnected. A high value of this coefficient indicates 
 the presence of communities in a graph. However, on the flip side it 
does  not account for the overall connectivity of the graph which 
indicates that  the node with high clustering coefficient may still be 
poorly connected with the other parts of the graph [8]. It is defined as 
given by (1) : 
 

                           C(v) = "⋅|{(',))∈,:',)∈.(/)}|
1(/)⋅(1(/)23)          (1) 

 
 where  N(v) is the neighbourhood of node  v , and  d(v)  is its degree. 

 
(ii) Katz Centrality: 

 
   Katz centrality determines the comparative influence of 
a node by not only considering the immediate neighbourhood but the 
entire network structure. It assigns a centrality score to each node based 
on the premise that any linkages to densely connected nodes weigh 
more to the overall score of a node than connections to sparsely 
connected nodes. Therefore, the nodes with high Katz score reflect that 
they are not only well connected, rather also connected to other 
influential nodes [33]. The Katz centrality is mathematically expressed 
as given by (2) : 

    
																						9 = :(; + =! + ="!" + =4!4 +⋯)   (2) 

     where, A is the adjacency matrix,  is the decay factor,	: is the bias 
   term. 

 

α
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(iii) Radiality Coefficient: 
 

 The radiality coefficient measures the closeness of a node to all other 
 nodes and quantifies how easily a node can reach other nodes. It 
considers the shortest path distances between nodes while incorporating 
 the concept of reachability within a maximum possible distance in the 
 network. 
  A substantial score means that a node can reach a large portion 
of the graph quickly. However,  for bigger networks computational cost 
increases because of calculation of shortest paths between all pairs of 
nodes. 
 The radiality coefficient is mathematically expressed as given by (3) : 
 
   ?(@) = ∑!∈#(6max26(7,8))

|9|23               (3) 
 
 where  is the maximum shortest path distance in the graph. 
 
(iv) Extended Coreness(EC): 

 
  It is a way of identifying the core part of the network. The 
coreness of a node means the spatial positioning and is the largest  k -
value of the k -core of the graph. This implies that the particular node 
has at least k neighbours.  
Extended coreness [34] includes not only the immediate degree of a 
node but also the broader structural properties of the graph. Highly 
connected dense graphs will have nodes with high extended coreness. 
As the graph size increases, the calculation for this metric may be 
computationally expensive. 
Mathematically, EC centrality of a node is given by (4) : 
 

 9e(@) = A(@) + = ∑
;∈<(=)

>
A(C)           (4) 

 
where, k(v)  is the core number from k-core decomposition, N(v)  
represents the set of neighbours of node  v, k(u) is the core number of a 
neighbor u ,   is a scaling factor (typically between 0 and 1) that adjusts 
the contribution of the neighbour’s coreness. 
 
(v) Vote Rank: 

 
Vote rank is an iterative algorithm that ranks nodes based on their 
potential to spread influence in the network. Each node votes for its 
neighbours, and nodes with the highest votes are considered more 
influential. The voting process occurs iteratively, with previously 
selected nodes having reduced influence in subsequent rounds to 
prevent selecting similar or nearby nodes. Unlike many other centrality 

dmax

α
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measures that identify only a single most important node, Vote Rank 
selects a set of influential nodes. By reducing the influence of 
previously selected nodes, Vote Rank avoids selecting nodes that are 
too close to each other, ensuring better network coverage. Vote Rank 
excels in applications where the goal is to maximize the spread of 
information or influence, such as viral marketing, epidemic control, and 
rumour spreading. 
 

(b) Similarity Measures 
 

Similarity indices measure the chances of a link formation based on their 
structural similarity. Four similarity indices have been computed for each node 
pair (u, v). The combination of these similarity indices provides a 
comprehensive representation of the potential relationship between node pairs. 
The following four similarity indices have been employed in our framework: 
 

(i) Preferential Attachment: 
 

Preferential Attachment algorithm [35] calculates the similarity score 
based on the degree of nodes u and v respectively. It works on the 
concept of ‘Rich gets Richer’. When a new node joins a network, it 
doesn’t connect randomly to other nodes. Instead, it is more likely to 
link to other nodes that already have a high number of connections.  
This index assumes that higher degree nodes are more likely to form 
new links. The mathematical expression is given by (5): 
 

D!(C, @) = E(C) ⋅ E(@)           (5) 
 

where d(u) and d(v) are the degrees of nodes. 
 
(ii) Rooted Random Walk: 

 
This index calculates the probability of reaching a specific node through 
a random walk starting from a given node. A rooted random walk starts 
at a designated root node in a graph. The walk progresses by randomly 
choosing one of the neighbouring nodes to move to. The probability of 
moving to a neighbour ‘u’ from the current node ‘v’ is typically given 
by (6): 
     

D(@ → C) = 3
6?@(7)            (6) 

 
 where deg(v) is the degree of node. 
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(iii) Laplacian Similarity: 
 

Laplacian similarity is derived from the graph Laplacian matrix  L , 
where the similarity is computed based on their spectral representation. 
Unlike simple similarity measures based on direct connections, 
Laplacian similarity captures the overall structure of the graph, making 
it more robust for complex networks. However, computing the 
eigenvectors of the graph Laplacian can be expensive for large graphs, 
making it less practical for massive networks. Let  ‘U’  be the 
eigenvector matrix of the Laplacian, and let  and  represent the 
eigenvector components corresponding to nodes i and  j . The similarity 
between nodes is given by (7) : 
 

SimLaplacian(#, %) = JH⊤JJ           (7) 
 
(iv) Pearson Correlation: 

 
Pearson correlation gives out the correlation between the two variables. 
It quantifies the linear relationship between two variables. It is given by 
(8) : 
 

D9(C, @) = ∑'∈((!)∩((,)(K!'2L!)(K,'2L,)

M∑'∈((!)(K!'2L!)-⋅M∑'∈((,)(K,'2L,)-
           (8) 

 
where	K; and K= are the mean of the degrees of nodes. 

 
3.1.2 Sample Generation: 
 
Once the features are extracted, the samples are generated for training the ML models. 
This involves creating both positive as well as negative samples. Labels are assigned 
to each sample, with 1 for positive samples and 0 for negative samples. To ensure a 
balanced dataset, equal number of negative and positive samples were generated. 
 
3.1.3 Feature Combination: 
 
For each sample (positive or negative), the extracted centrality and similarity features 
were then concatenated to form a combined feature vector. 
 
3.1.4 Model Training and Prediction: 
 
ML classifiers are fed with the feature vector formed from the combined centrality 
and similarity features described above to predict potential links. Following ML 
models have been employed in our framework : 
 

ui uj
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(a) RF: 
 

 RF [36] is a ML technique that builds multiple sets of decision trees and a 
combination of prediction of each of the tree is considered to make a final 
decision. Each such decision tree is trained on a random part of the dataset and 
uses different features at each split. This randomness helps prevent overfitting. 
Because it averages the results of many trees, RF is known for its worthwhile 
performance in classification tasks and can handle huge amounts of data 
effectively. 

  
(b) XGB: 

 
XGB is another efficient tree based model that enhance the quality of results 
from decision trees through multiple iterations. Its speed, scalability and the 
ability to improve the results of the traditional decision trees makes it a popular 
ML model. Furthermore, it has the ability to handle large datasets. 

 
(c) LDA: 

 
 LDA is a classical dimensionality reduction method which is employed for 
classification problems involving multiple classes. LDA separates data for 
multiple classes through dimensionality reduction technique [37]. 

 
3.1.5 Integrated Classifier for Prediction 
 
The final step in the process is to predict the links using the integrated classifier. In our 
approach, we integrate three ML classifiers to enhance link prediction performance. 
The final prediction is made by the proposed integrated classifier, wherein, the 
predictions from RF, XGB, and LDA are combined by associating dynamically 
learned optimal weights through Logistic Regression (LR) as the meta-classifier [9]. 
Using the learned weights from the LR meta-classifier, the final probability score for 
each instance is computed by (9) : 
 

L[#] = NO(P[R])⋅TU./VWXY(P[R])⋅TU012VZ[K(P[R])⋅TU345
TU./VTU012VTU345

           (9) 
 
Where , ,  are the learned weights and RF(T[i]), XGB(T[i]), 
LDA(T[i])  represent the probability predictions from the respective classifiers each 
instance. The final binary classification decision is made using an optimized threshold 
which is given by (10) : 
 

DOPE#QR#ST[#] = {1 ifU[#] ≥ WPXR_RℎOPXℎS[E
0 SRℎPO\#XP            (10) 

  

where best_threshold is dynamically selected to maximize the F1-score 

wtRF wtXGB wtLDA
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3.2 EXPERIMENTAL SETUP 
 

3.2.1 Software Requirements 
 

(a) Operating System : Ubuntu 20.04/22.04 LTS, Windows 10/11, or macOS  
 

(b) Python Version : Python 3.7 or higher. 
 

3.2.2 Hardware Requirements 
 

(a) Processor: Multi-core CPU (Intel i5/i7/i9, AMD Ryzen 5/7/9 or equivalent) 
 

(b) Memory (RAM): 
 

(i) Minimum: 8 GB 
(ii) Recommended: 16–32 GB 

 
(c) Graphics Processing Unit (GPU): 

 
(i) GPU is optional but can accelerate certain ML tasks; CPU is sufficient 

for most experiments. 
 

3.2.3 Major Libraries/ Packages 

 (a) scikit-learn: An open-source machine learning library also known as 
 sklearn. It provides a wide range of tools for various tasks such as 
 classification, regression, clustering, and dimensionality reduction.  

 (b) xgboost: It is a library optimized distributed and gradient boosting which 
 provides parallel tree boosting. 

  (c) Numpy: A fundamental package for carrying out various computations on 
 the experimental data in Python, and provides support for arrays and matrices. 

 (d) Pandas: It is a library that provides various data structures and tools for 
 data analysis which is used for manipulation of mathematical and time series 
 data. 
 
 (e) Matplotlib: It is a plotting library for Python which renders useful 
 visualizations for the model and helps in visual analysis of the data points. 
 

3.3  DATASET DESCRIPTION 
 

3.3.1 Rationale for Datasets Selection 
 
(a) Diversity of Scale: Ranges from moderate to large-scale networks. 
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(b) Interaction Heterogeneity: Includes social, expertise-based, and 

organizational communication patterns. 
 
(c) Public Availability: All datasets are part of the Stanford Network 

Analysis Platform (SNAP), ensuring reproducibility. 
 
3.3.2 Overview of Dataset Characteristics 

 
The experimental validation of the integrated classifier model utilized three real-
world network datasets spanning collaboration networks and social networks. These 
datasets were selected for their structural diversity and relevance to link prediction 
tasks. In Table I, summarized information for all datasets has been provided. 

 
(a) CA-HepTh [38]: This dataset represents a collaboration network of 

authors in the field of High Energy Physics Theory. Each node represents 
an author, and an edge indicates co-authoring at least one paper. 
 

(b) CA-GrQc [38]: This dataset represents a collaboration network of 
authors in the field of General Relativity and Quantum Cosmology. Nodes 
represent authors, and edges indicates co-authors relationships. 
 

(c) Facebook  [38]: This dataset represents an anonymized Facebook 
friendship network. Nodes correspond to Facebook users, and edges 
represent friendship relationships between users. In Table I, summarized 
information for all datasets has been provided. 

 
TABLE III.  VARIOUS DATASETS FOR INTEGRATED CLASSIFIER 

 
S. 

No. 
Dataset Type Nodes Edges Domain 

(i) CA-HepTh Collaboration 
Network 

9875 25,973 High Energy 
Physics 

(ii) CA-GrQc Collaboration 
Network 

5241 14,484 General Relativity  
and Cosmology 

(iii) Facebook Social Network 4039 88,234 Social Network 

 

3.4  COMPLEXITY ANALYSIS 

The computational complexity of feature extraction and model training varies 
based on the methods used.  
 Feature extraction includes similarity measures like Preferential 
Attachment (O(1)), Rooted Random Walk (O(n)), Laplacian Similarity ( ), 
and Pearson Correlation (O(n)), where Laplacian Similarity is the most 

O (n2)
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expensive due to matrix operations.  
 Model training complexity differs across classifiers: Random Forest (

), XGB ( ), where T is the number of estimators), and LDA 
( ), with XGBoost being the most computationally expensive. 
Optimizations such as feature selection, reducing XGB estimators, and using 
simpler similarity measures can improve efficiency. 
 

3.5  RESULT ANALYSIS 
 

 The ML based integrated classifier approach combining five node centralities 
and four similarity indices with a dynamically weighted ensemble of RF, XGB, and 
LDA consistently outperformed individual classifiers across all tested datasets (CA-
HepTh, CA-GrQc, Facebook). The integrated model achieved the highest AUC and 
F1-scores, demonstrating its ability to leverage both local and global structural features 
for more reliable link prediction. The dynamic weighting mechanism further ensured 
stable performance across varying data splits and thresholds, highlighting the model’s 
robustness and generalizability. These results affirm that a unified feature extraction 
and ensemble learning framework can address the limitations of traditional methods, 
providing enhanced scalability and interpretability for static networks 

 The performance of the models were measured using AUC and F1-score. 
Across all datasets, the Integrated Classifier consistently outperformed the individual 
models, demonstrating its robustness in link prediction. The combination of various 
models as per dynamic weighting scheme resulted in more stable F1-scores for all 
datasets. The results for the same have been tabulated in table III below. These results 
have been tabulated for a fixed threshold of 0.5 for binary classification. Also, 
analysis of how the AUC and F1 scores vary with different values of thresholds 
for all the models was carried out across datasets and the sample results for CA-
GrQc dataset have been given in Fig. 1 and Fig. 2. Likewise, similar results were 
achieved for all datasets. Further analysis was carried out based on capturing 
model performance by splitting the datasets into training and test sets according 
to a split ratio varied from 50% to 95% [9]. 

 
TABLE IV.  RESULTS ACROSS DATASETS 

 
Ser 
No. 

Model CA-GrQc CA-HepTh Facebook 
AUC F1 AUC F1 AUC F1 

(a) RF 0.981 0.937 0.962 0.915 0.991 0.9614 

(b) XGBoost 0.979 0.932 0.965 0.913 0.991 0.9613 

(c) LDA 0.967 0.903 0.959 0.902 0.969 0.8939 

(d) Integrated 
Classifier 

0.982 0.938 0.967 0.918 0.992 0.9592 

O (T m log m) O (T m log m)
O (n d2)
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Figure 3.2. AUC vs Threshold  Figure 3.3.  F1 vs Threshold 
 
Best threshold value was found across various splits. The plots generated have 
been given in Figures 3, 4 and 5. For illustration purpose, bar graph giving 
performance summary of all models at 70% split ratio with best threshold 
parameters for CA-GrQc dataset has been given in Fig. 6. 
 

 
Figure 3.4. CA-HepTh(AUC and F1 score plots) 

 
 
 

Figure 3.5. CA-GrQc(AUC and F1 score plots) 
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Fig. 3.6. Facebook(AUC and F1 score plots) 
 

Fig. 3.7. Performance Summary (CA-HepTh) 
 

Threshold selection is a critical aspect of binary classification models, as different 
thresholds affect how the classifier distinguishes between positive and negative links. 
To evaluate model stability across different dataset sizes, we analyze AUC at various 
split ratios (50% to 95%) [9]. This helps determine whether the models maintain their 
ranking performance as the available training data increases. Across all split ratios, the 
Integrated Model achieves the highest AUC, reaching 0.970, 0.974 and 0.993 at 95% 
split ratio for CA-GrQc, CA-HepTh and Facebook datasets respectively. 
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CHAPTER 4 

PROPOSED METHODOLOGY AND RESULTS FOR DL BASED 
TA-GC-LSTM MODEL 

In this chapter, we present our methodology used for dynamic link prediction 
through our model. The proposed model integrates Graph Convolution, LSTM and 
temporal attention aspects to effectively capture both spatial and temporal 
dependencies in graphs. By using the temporal attention mechanism, the model 
assigns different levels of importance to past time steps, helping it to learn complex 
patterns and long-term dependencies more effectively. 
 
4.1 Proposed Architecture: DL Model 

TA-GC-LSTM model comprises of three main components: 
(a) Graph Convolution Layer 
(b) Temporal Attention Layer 
(c) LSTM Module 

The above components enable the model to learn spatio-temporal patterns and make 
it suitable for dynamic link prediction. 

 
 

Figure 4.1: Dynamic Link Prediction using TA-GC-LSTM 
 
4.1.1 Graph Convolution Layer 
 
Once the graph snapshots have been prepared, the next step is to extract spatial 
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dependencies using GCNs. In order to improve computational efficiency, rather than 
traditional GCNs, which are inherently spectral graph convolutions, Chebyshev 
Graph Convolutions were used. The Chebyshev approximation enables efficient 
convolution without explicitly computing the Laplacian eigenvalues. The mathematic 
equation for the convolution operation is given by (11): 
 

!!(#) = ∑
#%&

'()
$# ⋅ &#((

˜
) ⋅ *!     (11) 

Where,  ]
˜
= 2^

_max
− ; is the Laplacian of the graph post scaling,  L = D - A  is the 

graph Laplacian, _`(⋅) denotes the Chebyshev polynomial of order  k , K  is the 
number of Chebyshev polynomial terms and U`  are learnable weights. 
 
4.1.2 Temporal Sequence Modelling using LSTM 
 
The spatial embeddings extracted through the graph convolution layers as described 
above are extracted and their temporal evolution are modelled using LSTM network. 
At each time step t, the LSTM receives the concatenated input    from the 
Graph Convolution and Temporal Attention Layers, and computes the hidden and 
cell states. The LSTM cell equations are given by (12) to (17): 
 

(a) Input, Ouput and Forget gates: 
 

											#! = `(aH[b!, 9!, ℎ!−1] + WH)                        (12) 
c! = `(ac[b!, 9!, ℎ!−1] + Wc)                               (13) 
S! = `(ad[b!, 9!, ℎ!−1] + Wd)                         (14) 

 
(b) Cell States and Hidden State: 

 
	Q˜ ! = RdTℎ(ae[b!, 9!, ℎR − 1] + We)                    (15) 	

Q! = c!⊙ Q!−1 + #!⊙ Q˜ !                 (16) 	
ℎ! = S!⊙ RdTℎ(Q!)      (17) 

 
4.1.3 Temporal Attention Mechanism 
 
The temporal attention mechanism selectively assigns importance to past time steps, 
allowing the model to focus on most influential historical interactions. The temporal 
attention mechanism is formulated as follows: 
Given hidden states b = [ℎ3, ℎ", … , ℎP], attention weights  are computed as given 
by (18) to (20): 
 

P! = @fg ⋅ RdTℎ(afb! + Wf)      (18) 
 

[Ht, Ct]

αt
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=! = hij(h6)
∑7=1: hij(h7)

        (19) 

 
 	

b′ = ∑
!=1

g
=! ⋅ b!       (20) 

Where, af, Wf, @fare trainable attention parameters and  is the weighted sum of 
past hidden states. 
 
4.1.4 Feature Vector 
 
From the node embeddings, the model then derives the edge representations. For an 
edge between two nodes, the equation is given by (21): 

 	
-HJ = [ℎH ∥ ℎJ]       (21) 

Where, ∥ represents concatenation. This forms the final feature vector for each 
candidate edge. 
The context vector 9! is then concatenated with the current hidden state and fed into 
the LSTM module for temporal modeling. 
 
4.1.5 Final Prediction Layer 

The edge embeddings i.e. the feature vector are then mapped to respective 
probabilities by passing the feature vector through a Fully Connected (FC) layer. 
 

 	
ĥ HJ = `(a ⋅ -HJ + W)                                                (22) 

where, W, b are learnable parameters and hHJ	represents the probability of an edge 
forming. 
 
4.1.6 Loss Function and Optimization 
 
The model is trained using the Binary Cross-Entropy (BCE) loss function. In order to 
ensure faster convergence, the optimization is performed using Adam optimizer. The 
equation is given by (23): 
 

 
ℒ = − ∑

(R,n)
jhRn ⋅ [Sk(h

̂ #%) + (1 − h#%) ⋅ [Sk(1 − ĥ Rn)l        (23) 

 
where,  is the predicted probability and hHJ is the ground truth. 

 

 

H ′ 

̂yij
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4.2  EXPERIMENTAL SETUP 
 

4.2.1 Software Requirements 
 

(a) Operating System : Ubuntu 20.04/22.04 LTS, Windows 10/11, or macOS  
 

(b) Python Version : Python 3.7 or higher. 
 

4.2.2 Hardware Requirements 
 

(a) Processor: Multi-core CPU (Intel i5/i7/i9, AMD Ryzen 5/7/9 or equivalent) 
 

(b) Memory (RAM): 
 
(i) Minimum: 8 GB 
(ii) Recommended: 16–32 GB 

 
(c) Graphics Processing Unit (GPU): 

 
(i) For Dynamic Link Prediction: 

 
(aa)  NVIDIA GPU with CUDA support (e.g., RTX 3060/3090, A100, 

or equivalent) 
 

(bb)  Minimum 8 GB VRAM; 12 GB or more recommended for large 
datasets and deep models 

 
(cc)  CUDA Toolkit 11.7+ for PyTorch compatibility 

4.2.3 Major Libraries/ Packages 

 (a) PyTorch: An open-source machine learning library favoured for its ease 
 of use and efficiency in creating and training neural networks. 

 (b) PyTorch Geometric: It is a library built upon PyTorch to easily write and 
 train Graph Neural Networks (GNNs) for a wide range of applications related 
 to structured data.. 

  (c) Numpy: A fundamental package for carrying out various computations on 
 the experimental data in Python, and provides support for arrays and matrices. 

 (d) Pandas: It is a library that provides various data structures and tools for 
 data analysis which is used for manipulation of mathematical and time series 
 data. 
 
 (e) Matplotlib: It is a plotting library for Python which renders useful 
 visualizations for the model and helps in visual analysis of the data points. 
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4.3  DATASET DESCRIPTION 
 

4.3.1 Rationale for Datasets Selection 
 
(a) Diversity of Scale: Ranges from moderate to large-scale networks. 

 
(b) Interaction Heterogeneity: Includes social, expertise-based, and 

organizational communication patterns. 
 
(c) Public Availability: All datasets are part of the Stanford Network 

Analysis Platform (SNAP), ensuring reproducibility. 
 
(d) Temporal Granularity: Varied timestamp resolutions test model 

adaptability to different time scales. 

4.3.2 Overview of Dataset Characteristics 
 

The experimental validation of the TA-GC-LSTM model utilized three real-world 
temporal network datasets, each representing distinct domains of interaction. 
These datasets were selected for their dynamic nature, enabling rigorous 
evaluation of spatio-temporal link prediction capabilities. In Table II, summarized 
information for all datasets has been provided. 
 

(a) CollegeMsg [38]: The CollegeMsg dataset captures the communication 
dynamics of a facebook like online social network comprising 1,899 nodes 
representing users and 59,835 directed edges representing private 
messages exchanged between users. Each edge is timestamped, allowing 
for the analysis of temporal communication patterns. 

 
(b) sx-mathoverflow [38]: The MathOverflow dataset captures user 

interactions on the MathOverflow Q&A platform, consisting of 24,818 
nodes representing users and 506,550 directed edges indicating user-to-
user interactions such as questions, answers, and comments. Each edge is 
timestamped, enabling the study of temporal communication patterns. 

 
(c) email-Eu-core-temporal [38]: The Email-Eu-core-temporal dataset 

captures email communications consisting of 1,005 nodes representing 
individuals and 25,571 directed edges indicating emails sent between them. 
Each edge is timestamped, enabling dynamic analysis of interactions over 
a period of 803 days. The temporal nature of this dataset makes it suitable 
for studying link prediction, community evolution, and information 
diffusion in dynamic networks. 
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TABLE V.  VARIOUS DATASETS FOR TA-GC-LSTM 

 

 

 

 

 

 

4.4  COMPLEXITY ANALYSIS 
 

For feature extraction and model training, the computational complexity of the TA-
GC-LSTM model was analysed to find out its efficiency in link prediction tasks. 
  In the feature extraction phase, the node degree features were computed and 
the adjacency matrices were transformed into sparse representation. For a given 
adjacency matrix of size N x N,  O(E) is the time complexity, where N is the number 
of nodes and E is the number of edges. Furthermore, the conversion of adjacency 
matrices into sparse edge lists requires O(E) operations per time step, leading to an 
overall time complexity of feature extraction as O(TE), where T represents the number 
of different time steps. 
 For the training phase of the model, the Chebyshev Graph Convolution 
(ChebConv) requires O(KTEF + TN ) operations to aggregate information from the 
neighbourhood, where K is the Chebyshev polynomial order, F is the feature 
dimension. The LSTM-based sequence modelling introduced an additional complexity 
of O(TN + TNHT), where H represents the hidden dimension. So, the total time 
complexity per training epoch is the summation of above mentioned complexities. 

 
4.5  RESULT ANALYSIS 

 
The performance of the proposed model and its comparative analysis with baseline 
models, including GC-LSTM and T-GCN has been enumerated in the following 
paragraphs. For all datasets, interactions were binned into fixed time windows, 
creating dynamic adjacency matrices which captured the evolution of network 
structures over time. Node features were derived using degree based embeddings, and 
sparse adjacency matrices were converted into graph structures suitable for graph 
neural networks. The dataset was split into training, validation and testing with a ratio 
of 8:1:1. Adam optimizer with a learning rate of 0.001 was employed for training. 
Furthermore, in order to prevent overfitting, early stopping was implemented. We have 
also compared the performance to baseline models like GCN-LSTM and T-GCN, 
wherein our model demonstrated a well-balanced trade-off between computational 
efficiency and predictive performance, leveraging temporal attention to capture long-
term dependencies while maintaining scalability for large dynamic graphs. In Tables 

Dataset Type Nodes Edges Domain 
CollegeMsg Directed,  

Temporal 
1899 59,835 Messages on a  

Facebook 
like platform 

Sx-mathoverflow Directed,  
Temporal 

24818 506550 Comments, questions, 
and answers on Math 
Overflow 

Email-Eu-core-
temporal 

Directed,  
Temporal 

1005 25,571 E-mails between users  
at research institution 
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II to IV, performance comparison across different models for different metrics has 
been provided. 
 

TABLE VI.  AUC SCORES ACROSS DATASETS 
 
Ser No. Model Collegemsg Mathoverflo

w 
Email-EU 

(i) GC-LSTM 0.925 0.908 0.919 
(ii) T-GCN 0.924 0.903 0.915 
(iii) TA-GC-LSTM 0.931 0.945 0.943 

 
TABLE VII.  ACCURACY ACROSS DATASETS 

 
Ser No. Model Collegemsg Mathoverflow Email-EU 
(i) GC-LSTM 0.8427 0.8250 0.8408 
(ii) T-GCN 0.8395 0.8185 0.8372 
(iii) TA-GC-LSTM 0.8613 

 
0.8650 0.8617 

 
 
 

TABLE VIII.  F1 SCORES ACROSS DATASETS 
 
Ser No. Model Collegemsg Mathoverflow Email-EU 
(i) GC-LSTM 0.8398 0.8200 0.8447 
(ii) T-GCN 0.8354 0.8105 0.8357 
(iii) TA-GC-LSTM 0.8661 

 
0.8700 0.8683 

 
Graphical plots for the evaluation metrics were generated for visualizing one shot 
comparison of all the models. The same have been given in Figures 1, 2 and 3 below. 
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Fig. 4.2. Performance Summary(CollegMsg Dataset) 
 

Figure 4.3. Performance Summary (MathOverflow) 
 



36 | P a g e  
 

 

Figure 4.4. Performance Summary (Email-EU) 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

Despite the advancements in link prediction, most existing works focus on either local 
features individually or global features of the network, but combination of features 
provide a more robust approach.  
 Few studies have attempted to integrate diverse centrality measures and 
similarity indices into a unified framework. This gap motivated our proposed 
approach, which combines various graph-theoretic features, including clustering 
coefficient, Katz centrality, and vote rank, with ML classifiers for robust link 
prediction.  
 By leveraging both local and global structural properties, our method addresses 
the limitations of existing techniques and offers improved scalability for large 
networks. 
 Similarly, in the DL domain, by integrating GCN, LSTM and Temporal 
Attention Mechanism, our model effectively captured both spatial and temporal 
dependencies in evolving graph structures.  
 The temporal attention module allowed the model to selectively focus on past 
interactions that had a significant influence on future connections, improving 
predictive accuracy while maintaining computational efficiency.  
 Our results demonstrated that TA-GC-LSTM outperformed existing baselines, 
including GCN-LSTM and T-GCN, with the evaluation metrics being AUC, F1-score, 
precision, and recall, indicating its superiority in learning dynamic network 
representations 
 
5.3 FUTURE WORK 

Our study acknowledges that we have done our analysis on only 3 datasets for each of 
the models, which are relatively small compared to large-scale real-world networks 
like Twitter, DBLP, and LinkedIn. While these datasets provide valuable insights, they 
may not fully capture the complexity of large networks.  
 Future work should focus on testing our approach on bigger datasets to evaluate 
its scalability and real-world applicability. Link prediction can be a powerful tool in 
counter-terrorism by helping security agencies detect hidden connections between 
individuals and predict potential threats. Terrorist networks often operate in secret, 
making it difficult to track their activities using traditional methods.  
 By analyzing social interactions, financial transactions, and communication 
patterns, link prediction can uncover relationships that might otherwise go unnoticed. 
This can help in identifying new recruits, tracking suspicious activities on the dark 
web, and preventing coordinated attacks.  
 Additionally, it can improve intelligence sharing between agencies by 
connecting fragmented data. To ensure reliability, techniques like SHAP and LIME 
can be used to explain why certain links are predicted, making the model more 
interpretable and useful for real-world security operations.  
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 Furthermore, self-supervised learning techniques could be incorporated to 
minimize the need for labeled data, making the model more applicable in scenarios 
where ground truth link information is sparse. Furthermore, exploring adaptive 
temporal binning methods that dynamically adjust time intervals based on activity 
levels in the network could further refine the model’s temporal learning capabilities. 
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