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ABSTRACT 

 

 

The global population growth has intensified the demand on finite freshwater 

resources. Membrane separation technologies offer economically viable solutions for 

seawater desalination. Forward osmosis (FO) has emerged as a promising alternative 

to reverse osmosis (RO) due to its operation without external hydraulic pressure and 

inherently lower membrane fouling propensity. However, the commercialization of 

FO remains limited due to the lack of optimal draw solutions and energy-intensive 

regeneration processes. This thesis investigates the development of novel phase-

separating binary and ternary organic draw solutions for brackish and seawater 

desalination using FO, exploiting their lower critical solution temperature (LCST) 

behaviours to enable cost-effective draw solution regeneration. The research 

establishes theoretical foundations through data-driven techniques using Artificial 

Neural Networks (ANN) to address the limitations of traditional solution-diffusion 

models, particularly for multi-component and neutral draw solutions. Through 

systematic experimental procedures, the study evaluates 4 binary and 6 ternary 

systems incorporating sodium carboxymethyl cellulose (NaCMC) and propylene 

glycol propyl ether (PGPE). This is followed by sixteen distinct draw solution 

compositions of hydroxypropyl cellulose (HPC) and PGPE, including single-solute 

and ternary mixtures with varying HPC (0.25 – 2 wt.%) and PGPE (1.25 - 3.75 M) 

concentrations. The research employs comprehensive characterization techniques to 

analyze physico-chemical properties and osmotic performance, including 

measurements of osmotic pressure, viscosity, concentration, pH, density, cloud point 

determinations and membrane compatibility. The experiments were conducted using 

a custom FO setup with a harvested HTI CTA membrane in AL-FS mode. An ANN 

model incorporating nine input parameters - FO run details, temperatures, 

concentrations, flow rates and draw solution molecular weights - predicts permeate 

fluxes, developed using 312 experimental data points collected during 120-minute 

FO runs with various draw solutions. The work includes a thorough techno-economic 

assessment evaluating both operating expenditures (OPEX) and capital expenditures 

(CAPEX) for the FO process and phase separation (PS) draw regeneration, 
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ultimately providing significant research outcomes and recommendations for 

advancing the study of phase-separating organic draw solutions in FO desalination. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

1.1.1 Global water scarcity   

Freshwater scarcity is a global issue being exacerbated by population growth and 

climate change [1, 2]. Water scarcity occurs when freshwater demand exceeds supply 

[3]. India, now the world’s most populous nation, is projected to face a water crisis 

by 2030 due to various factors including population growth, industrialization, 

urbanization, poor water management, pollution and climate change [4]. By 2025, 

over 1.8 billion people could face serious water shortages, particularly in Southeast 

Asia and Africa [5], as shown in Figure 1.1. 

 

Figure 1.1: Global water scarcity trends by regions (Adapted from World Water 

Development Report 4. World Water Assessment Programme (WWAP), March 

2012) 

http://www.zaragoza.es/ciudad/medioambiente/onu/en/detallePer_Onu?id=71
http://www.zaragoza.es/ciudad/medioambiente/onu/en/detallePer_Onu?id=71
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Despite India’s projected improvement by 2040, its vast coastline provides an 

opportunity for innovative solutions like desalination [6]. Access to clean water is 

vital to prevent waterborne diseases as demonstrated by the 2023 cholera outbreak in 

Zimbabwe [7]. 

1.1.2 Pressure-driven membrane separation processes 

Addressing global freshwater scarcity requires a comprehensive strategy that 

preserves water, improves governance and develops novel technologies to tap into 

non-traditional water sources [8]. Membrane separation processes use specially 

engineered membranes to separate freshwater from saltwater [9]. These methods are 

crucial for desalination, treating wastewater and water reclamation [10]. Membrane 

processes such as reverse osmosis (RO) offer a more sustainable alternative to 

conventional, energy-intensive desalination techniques [11]. Spent RO membranes 

can be recycled for lower rejection applications or repurposed as nanofiltration (NF) 

or ultrafiltration (UF) membranes [12]. They can also be used in membrane biofilm 

reactors or as support for regenerated anion-exchange membranes [12]. Membranes 

allow specific molecules or ions to pass based on size, charge and other 

physicochemical properties. Membrane separation processes are driven by pressure 

gradients, concentration differentials, electrical potential and temperature gradients 

[13]. Microfiltration (MF) uses larger pore sizes to separate particulates like bacteria 

and fungi [14]. UF and NF use progressively smaller pores to retain larger molecules 

and separate ions, organic molecules and some viruses [15]. RO, with the smallest 

pore sizes, effectively removes dissolved salts and impurities thereby generating 

freshwater from seawater or brine [16]. Figure 1.2 shows these membrane separation 

processes.   
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Figure 1.2: Different membrane separation processes 

1.1.3 Osmotically driven membrane processes 

Osmotically driven processes such as forward osmosis (FO) operate at substantially 

lower hydraulic pressures than pressure-driven systems by relying on natural osmotic 

pressure gradients as the driving force [17]. This eliminates the energy-intensive 

high-pressure pumps required in RO systems thereby reducing membrane fouling 

associated with elevated operating pressures [17]. Additionally, osmotically driven 

processes demonstrate greater application versatility, effectively treating feed 

solutions and contaminants that would rapidly compromise pressure-driven 

membranes [17]. Operating at low pressures contributes to extended membrane 

lifespans and reduced equipment costs compared to pressure-driven processes [17 - 

20, 134].  

In RO, external pressure counteracts osmotic pressure, forcing water from a high to 

low concentration solution through a semi-permeable membrane [17]. RO is widely 

adopted for seawater desalination, water purification and solvent separation despite 

being energy-intensive [18]. FO passively separates water from a feed to a 

concentrated draw solution driven by the osmotic pressure difference [19]. Operating 
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at a transmembrane pressure lower than the osmotic pressure, FO eliminates the need 

for external pressure, making it energy-efficient for wastewater management and 

concentrating food products [20]. Pressure Retarded Osmosis (PRO) allows 

controlled water flow from a low to high concentration solution under a pressure less 

than the osmotic pressure difference [21]. The osmotically driven water flow can be 

harnessed to drive a turbine or other mechanical device, converting the salinity 

gradient energy into usable mechanical energy [22]. The differences between RO, 

FO, PRO and pressure enhanced osmosis (PEO) are shown in Figure 1.3. 

 

 

Figure 1.3: (a) Osmotically driven membrane processes (b) Family of osmotically 

driven membrane process for an ideal semi-permeable membrane (Adapted from 

Peter G. Nicoll, The International Desalination Association World Congress on 

Desalination and Water Reuse, Tianjin, China, 2013) 



5 
 

This review focuses on FO desalination, an energy-efficient, low-fouling alternative 

to conventional desalination methods [19]. FO, depicted in Figure 1.4, uses an 

osmotic pressure gradient to transport water across a semi-permeable membrane.  

The diluted draw solution is then reconcentrated and reused, thereby making FO a 

potentially efficient cyclic system.  

 

Figure 1.4: FO desalination process 

1.2 Literature review 

1.2.1 Past reviews on FO processes (2019 – 2024) 

The field of FO desalination has seen a surge in comprehensive literature reviews 

over the past five to six years, with researchers critically analysing various aspects of 

FO desalination processes [23 – 48]. These reviews have covered a wide range of 

topics, including the fundamental principles of the FO desalination process, the 

complex phenomenon of reverse solute flux (RSF), the development and 

optimization of FO polymeric membranes and their associated flux performance, the 

exploration of hydrogels as draw solutes, the challenges posed by organic fouling, 
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the integration of FO with membrane distillation (MD) for wastewater treatment 

applications, the emergence of novel desalination technologies, the environmental 

impacts of desalination and brine treatment strategies, as well as the implementation 

of standalone and hybrid FO systems for water treatment. An analysis of 25 such 

reviews conducted over the past five years has revealed significant insights and 

highlighted critical research gaps that still need to be addressed. Table 1.1 

summarizes these reviews' main points and research gaps.  
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Table 1.1: Main points and research gaps from some review publications on FO processes from 2019 to 2024 

Reviewer(s) Main highlights from the review and stated research gaps 

Zou et al., [23] ▪ Optimizing RSF mitigation involves intelligent DS selection, use of novel DS like stimuli-responsive 

polymers and surfactants. However, limited data, energy-intensive regeneration, potential health risks 

and the need for improved reporting and analysis are challenges.  

▪ RSF control in FO is less studied than anti-fouling research despite their close correlation in 

operational strategies and membrane development. 

Tharayil et al., [24] ▪ FO desalination, despite its challenges and efficiency issues, can be improved with high-rejection 

membranes and optimal draw agents.  

▪ Utilizing waste heat and renewables could advance FO, but its economic viability and scalability are 

still uncertain. 

Li et al., [25]  ▪ Future FO process research will concentrate on membrane materials, draw solutes, fouling 

mechanisms and cleaning strategies, with a focus on high water flux, low RSF and material 

modification. 

▪ In-depth research on membrane fouling mechanisms is needed to support the development and 

cleaning of membrane materials, an area currently lacking sufficient study 

Wang et al., [26]  ▪ Various techniques are used to enhance hydrogels as draw solutes in the FO process. Despite their 

thermal responsiveness, their dewatering efficiency needs improvement.  

▪ Integrating a reversible bidirectional shape memory polymer and designing a semi-interpenetrating 

network of thermo-sensitive and conductive hybrid hydrogels could enhance this efficiency. 

▪ Optimal draw solutes are yet to be found, requiring designs that balance low energy use and easy 

production. 

▪ Addressing these issues necessitates interdisciplinary chemistry, materials science and process 

engineering expertise. 

Yadav et al., [27]  ▪ Commercializing FO faces financial hurdles and fouling issues.  

▪ Optimal FO membranes need high water flux and low structural parameters.  

▪ Real-time tracking of foulants can help mitigate fouling.  

▪ Efficient cleaning methods and innovative techniques like UV and ultrasound need exploration. 
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▪ Applying research findings to real-time scenarios and long-term experiments can help commercialize 

FO. 

Abu-Zurayk et al., [28]  ▪ Cellulose acetate’s use in membrane filtration is hampered by fouling.  

▪ Antifouling strategies include pre-treatment, cleaning, modification and coating. 

▪ Future research should focus on the comparative study of antifouling behaviour between cellulose 

acetate and cellulose triacetate, an area currently underexplored in the literature. 

▪ Future studies should investigate how preparation methods like solution casting, electrospinning and 

spin coating influence the membrane’s morphology and structure. 

Ibrar et al., [29]  ▪ To make FO-MD competitive in desalination, the cost of FO membranes must be reduced and a low-

energy process for DS recovery, possibly using waste heat or solar energy, is needed.  

▪ The energy-intensive DS recovery hinders FO’s independent commercialization. 

Ahmed et al., [30] ▪ Nanoscience has enhanced desalination technologies by improving membrane performance.  

▪ However, full-scale FO desalination requires low-cost recovery methods and more focus on system 

design and engineering for upscaling, despite the benefits of carbon nanomaterials. 

Zhan et al., [31] ▪ Commercializing FO faces challenges like DS regeneration and energy use.  

▪ However, FO without DS regeneration shows promise.  

▪ The simultaneous osmotic dilution and concentration (SODC) concept, particularly in wastewater 

reclamation, suggests potential for future commercialization. 

Panagopoulos & 

Haralambous, [32] 

▪ Desalination’s significant environmental impacts, such as brine discharge and high energy use, can 

be mitigated through strategies like EIA, EMPs and using renewable energy sources.  

▪ Green anti-scalants and careful plant location can further reduce its ecological footprint. 

Chiao et al., [33] ▪ Zwitterions in desalination research, used in membranes and draw solutions, present a trade-off 

between osmotic pressure and product recovery, with potential resolution through temperature and 

magnetic responsive zwitterionic polymers. 

Mohammadifakhr et al., 

[34] 

▪ FO’s low water fluxes, compared to RO, could be improved by optimizing membrane support 

thickness and enhancing draw solute diffusivity, which reduces ICP.  

▪ Accurate methods for ICP estimation are needed for next-generation FO membrane supports 

Ibraheem et al., [35] ▪ Future FO research should prioritize developing efficient, sustainable membranes and draw 

solutions, transitioning from lab to large-scale implementation and designing a renewable energy-
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powered draw solution regeneration system. 

Salamanca et al., [36] 

 

▪ Future FO research should concentrate on system optimization, process integration and commercial 

scaling, with a focus on academia-industry collaboration for innovation in desalination, wastewater 

treatment, resource recovery and water reuse. 

Park and Lee, [37] ▪ South Korea’s desalination research, active since 2006, focuses on energy-efficient and 

environmentally friendly solutions.  

▪ It explores various technologies, caters to municipal and industrial needs and addresses 

environmental concerns. 

▪ Despite advancements, further research and government support are needed for commercialization. 

Singh et al., [38]  ▪ The FO process, linked to DS and its regeneration, can reduce costs by minimizing storage and 

pumping.  

▪ Future research will focus on process development, membrane fabrication and fouling control 

strategies.  

▪ Its application in various fields could stimulate commercial FO membrane production. 

Mahto et al., [39] ▪ FO-based hybrid processes excel in wastewater treatment and sludge dewatering.  

▪ Future research should focus on sustainable solutions, economic viability and scaling up novel 

technologies for commercialization, guiding industries towards the most efficient and sustainable 

effluent treatment technology. 

Xu et al., [40]  ▪ Optimizing membrane materials and draw solutes is key for efficient FO water treatment.  

▪ Future treatments will use solutes that maximize osmotic pressure and minimize fouling, with a focus 

on limiting reverse solute migration.  

▪ Hybrid systems can enhance sustainability by reducing energy use and operating costs. 

Suwaileh et al., [41] ▪ Addressing technical challenges in wastewater treatment, testing with actual wastewater and 

developing energy-efficient methods for draw solution recycling are crucial.  

▪ Integrated hybrid methods, advanced nanomaterials for membranes and real-time assessments of 

membrane fouling can enhance efficiency.  

▪ Further research is needed on permeability-selectivity trade-off. 

Wang and Liu, [42] ▪ Future research should focus on improving membrane performance, exploring efficient draw 

solutions, conducting large-scale experiments, expanding FO technology’s industrial applications 
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and enhancing recovery efficiency while reducing energy consumption. 

Ahmed et al., [43]  ▪ High energy use limits desalination technologies, but advancements and process hybridization can 

reduce costs. 

▪ Optimizing draw solutions for hybrid processes like FO-MD is crucial.  

▪ More research is needed on the energy usage of hybrid systems and the integration of renewable 

energy with these technologies. 

Skuse et al., [44]  ▪ While FO desalinates seawater more efficiently than RO, its high energy need for draw solution 

recovery limits its efficiency.  

▪ Hybrid FO and RO systems can reduce energy use, but require further testing.  

▪ As desalination demand grows, integrating new technologies with RO could lessen environmental 

impacts and costs, warranting further research. 

Giagnorio et al., [45] ▪ Complex solutes in FO systems heighten environmental impacts.  

▪ Energy supply and solute management are key impacts in large-scale FO plants.  

▪ Sodium-based solutes in FO-PDMP systems increase energy demands despite low impacts.  

▪ High-impact solutes like MgCl2 require more energy for recovery, negating benefits. 

Lin et al., [46] ▪ China’s annual desalination capacity growth is robust at about 10 000 m3/d, with water production 

costs maintained between 0.74 - 1.18 USD/m3 

Hafiz et al., [47]  ▪ Key challenges for wastewater treatment and desalination technology include developing a model for 

osmotic pressure by MNPs, evaluating membrane fouling and energy consumption, assessing 

economic feasibility and establishing regulations for MNPs use. 

Firouzjaei et al., [48]  ▪ Future development of FO membranes should focus on simplified functionalization, optimized 

reaction conditions, effective procedures and reagents for modification and application-specific 

functionalization schemes. 

▪ The goal of creating anti-biofouling membranes is to achieve durable performance for real 

applications. 

▪ However, a gap exists between lab-scale research and industrial applications due to the narrow 

conditions of experiments and a lack of understanding of long-term applications with complex feeds. 
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1.2.2 Draw solutions used in FO processes 

1.2.2.1 Hydrogels 

Hydrogels with thermoplastic polyurethane (TPU) microfibers were developed for 

improved water diffusion and swelling pressures [49]. The composite monolith 

(TPU-PSA) doubled the water flux and dewatering flux compared to standalone poly 

(sodium acrylate) (PSA), with values of 1.81 and 3.51 LMH, respectively [49]. 

Electro-responsive hydrogels demonstrated a water flux of 2.76 LMH and could 

release 71% of adsorbed water under a 15 V electric field [50]. The hydrogels 

maintained their efficiency for three regeneration cycles, suggesting the potential of 

electric fields in FO desalination [50]. A binary ionic liquid/hydrogel system enabled 

cost-effective, recyclable high-purity water recovery, overcoming challenges of 

inorganic draw solutes [51]. The system outperformed conventional methods, 

allowing continuous use of hydrogels. The use of solar energy for draw agent 

regeneration can reduce energy consumption [51]. A hydrogel-polyurethane 

interpenetrating network produced better water fluxes of 17.9 LMH as compared to 

the 2.2 LMH of pure hydrogel powders [52]. There was no observed RSF hence 

simplifying the operation. More work is still needed to increase dewatering 

efficiency in FO systems [52]. A temperature-sensitive hydrogel that incorporated 

poly (ethylene glycol) as a porogen enhanced the water flux and improved 

wastewater concentration efficiencies [52]. The use of N-isopropyl acryl-

amide/sodium acrylate/poly (ethylene glycol) (PEG4000) was recommended for FO 

applications [52]. Sewage sludge ash (SSA) was added to thermo-responsive 

hydrogels, doubling the water flux to 2.33 LMH while maintaining excellent 

performance characteristics [53]. Significantly, the hydrogels retained 94.4% of their 

initial water flux even after four regeneration cycles. SSA is recommended as an 

effective modifier to improve permeation and energy efficiency in FO processes 

[53]. Nanocomposite polymer hydrogels (NPHs) were synthesized using acrylic acid 

and N-vinyl pyrrolidone, modifying them with clay or graphene oxide [54]. These 

modified NPHs exhibited increased water flux due to enhanced swelling ratio, 

porosity and osmotic pressure [54]. The NPHs could be reused four times without 

significant flux reduction, making them promising for various FO processes [54].  
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CO2 and thermo-responsive hydrogels were developed using poly (N, N-dimethyl 

allylamine), which could absorb and release large amounts of water [55]. These 

hydrogels showed potential for extracting water from 3.5 wt.% NaCl feed solutions 

in FO [55]. Furthermore, electric-responsive hydrogels made from 2-Acrylamido-2-

methyl-1-propanesulfonic acid (AMPS) and 2-(Dimethylamino) ethyl methacrylate 

(DMAEMA) demonstrated promising water fluxes during FO operation using a 2000 

ppm NaCl feed solution, initially exhibiting water fluxes of 2.09 LMH and 1.63 

LMH [55]. These hydrogels could simplify operations and improve efficiency [55]. 

A sodium alginate-graphene oxide aerogel achieved high initial water fluxes of 15.25 

LMH and exhibited easy regeneration capability. Over repeated cycles, the aerogel 

maintained a consistent water flux of around 5 - 6.5 LMH [56]. When tested with 

seawater, it produced impressive water fluxes of approximately 7.49 LMH, 

demonstrating good desalination capacity [56]. Using this aerogel can improve 

efficiency and reduce energy consumption in FO [56]. A hydrogel composed of poly 

(vinyl alcohol) and poly (acrylic acid) (PVA-PAA) exhibited sensitivity to electric 

stimuli [57]. The hydrogel could expand or contract and release water when 

subjected to an electric field. During FO operation using deionized water and a 2000 

ppm NaCl solution as feeds, the hydrogels achieved water fluxes of 1.04, 0.72, 0.73, 

and 0.54 LMH [57]. The use of these hydrogels could prevent reverse salt flux and 

improve the overall FO process performance [57]. A hybrid monolith composed of 

hyaluronic acid-graphene oxide/poly (vinyl alcohol) was synthesized for use as a 

draw agent in FO [58]. This monolith exhibited high water fluxes of 13.9 LMH with 

no reverse permeation when deionized water was the feed solution. The HA-

GO/PVA monolith demonstrated longevity, maintaining an average water flux of 

approximately 6.22 LMH over 300 cycles [58]. When applied to real seawater 

desalination processes, the dry monolith demonstrated a capacity of about 7.2 LMH, 

while the wet monolith reached 3.9 LMH [58]. Regeneration involved a simple 

manual squeezing process, which could be accomplished quickly [58]. A gas-

responsive copolymer microgel was developed as a solution to high recovery costs in 

industrial FO systems [59]. These microgels could absorb water when exposed to 

oxygen and release it when purged with nitrogen. High water fluxes of up to 29 
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LMH were observed while desalinating a 2000 ppm NaCl solution feed solution at 

ambient temperature [59].  

The use of these microgels is highly recommended as draw agents in FO desalination 

[59]. Hydrogels in FO desalination can address the high energy consumption and 

costs challenges [60]. A hydrogel was synthesized from activated carbon filler (AC) 

blended with sodium carboxymethyl cellulose (NaCMC) and hydroxyethyl cellulose 

(HEC) in a 1:3 ratio, then crosslinked with citric acid [60]. This hydrogel showed 

improved desalination efficiency, although excess AC reduced performance [60]. 

Hydrogels were developed as a paste of water, reduced graphene oxide nanofillers, 

carboxymethyl cellulose and hydroxyethyl cellulose [61]. The crosslinking was done 

using citric acid solution. Evaluating desalination and antimicrobial properties 

revealed that a hydrogel with a swelling ratio of 1447% yielded 30% desalination 

efficiency [61]. A fluidic ionosilica hydrogel was synthesized for desalination and 

wastewater treatment applications [62]. The hydrogel exhibited high initial osmotic 

pressures around 10 atm that decreased over multiple cycles, necessitating further 

investigation [62]. The use of iodide anions showed superior osmotic properties. The 

hydrogels were regenerated using UF, facilitating a closed-loop operation of FO and 

UF [62]. 

1.2.2.2 Inorganic draw solutes 

Table 1.2 presents an overview of the FO performance data for various inorganic 

draw solutes investigated since 2000. 

1.2.2.3 Organic and other draw solutes 

Table 1.3 presents an overview of the FO performance data for various organic and 

other draw solutes investigated since 2000. The tabulated information includes the 

year, specific draw solute employed, composition of the feed solution, properties of 

the draw solution (concentration and osmotic pressure), operating temperatures of the 

feed and draw solutions, measured water and solute flux values, type of FO 

membrane utilized, method employed for regenerating the draw solution (or direct 
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application when regeneration was not required), specific energy consumption and 

the total associated costs. Some of these draw solutes are depicted in Figure 1.5. 

 

Figure 1.5: Some of the organic and other draw solutes (a) 2-Methylimidazole-based 

compounds, adapted from (Yen et al., [79]), (b) Switchable polarity solvents adapted 

from (Stone et al. [84]), (c) Thermo-sensitive polyelectrolytes adapted from (Ou et 

al. [85]), and (d) Monomeric thermo-responsive ionic liquid adapted from (Zeweldi 

et al., [107]). 

The evaluation of hydrogels, inorganic, and organic draw agents requires assessment 

across six key criteria: osmotic pressure, water flux performance, recovery 

efficiency, reverse solute flux, cost, and stability. Inorganic salts usually achieve high 

osmotic pressures, such as 152, 112, 258.3 and 219 bar for NH4HCO3, ZnSO4, 

MgCl2 and NaCl, respectively [63, 65, 67]. Organic draw agents usually generate 

moderate pressures such as 27.1 – 54.4 bar for sucrose, methyl acetate and sodium 

formate [71, 81, 82]. However, it is noteworthy that an extremely high osmotic 

pressure of 505.1 bar has been reported for 5M fructose solution [78]. In terms of 
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water fluxes, inorganic draw agents usually produce better water fluxes due to the 

high osmotic driving forces. Organic solutions usually produce moderate fluxes, 

whilst hydrogels usually exhibit low performance, such as 0.72 LMH for PVA-PAA 

hydrogel [57], although these are also dependent on various other operating 

conditions. Inorganic draw agents usually offer easy recovery through energy-

intensive established methods such as RO, UF and distillation [66, 70, 72, 74]. 

Organic draw agents show variable recovery depending on molecular properties, 

with some phase-separating draw agents requiring additional membrane separation 

processes [133]. The recovery of hydrogels can either be simple, using methods such 

as squeezing, or complex, requiring stimulus-responsive methods. Inorganic draw 

agents usually exhibit high reverse fluxes, such as 23.6 gMH for NaCl [65]. Organic 

draw agents usually demonstrate low reverse flux due to their larger sizes. Hydrogels 

usually achieve minimal or zero reverse fluxes through size exclusion [57, 58]. 

Inorganic draw agents are usually cheaper and readily available. Organic draw agents 

are usually slightly more expensive. Hydrogels may incur high costs due to synthesis 

requirements. Inorganic draw agents demonstrate excellent chemical stability. 

Organic draw agents show variable stability whilst hydrogels may experience 

swelling/deswelling issues. Thus, inorganic draw agents have been studied 

extensively for most FO applications due to their high osmotic pressure and 

established though energy intensive recovery methods, despite higher reverse solute 

flux. However, the optimal choice depends on specific application requirements and 

no ideal draw agent has yet been established.  

A more detailed comparison of the performance of hydrogels and inorganic draw 

agents in FO processes was recently conducted by Hashemifard et al. [176]. In their 

experimental setup, the same membrane was employed for both draw agents, with 

NaCl selected as the inorganic draw agent and sodium acrylate superabsorbent 

polymer as the hydrogel draw agent. NaCl solutions of varying concentrations were 

used for both feed and draw solutions, with pure water also employed as feed in 

selected experiments. Both types of draw agents were evaluated in FO and PRO 

modes. The comparative analysis revealed that NaCl draw agents produced higher 

water fluxes than the hydrogel draw agent, although the hydrogel maintained above 
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zero fluxes across all tested feed solution concentrations. The osmotic pressure 

difference between the NaCl draw agent and pure water was greater than the swelling 

pressure difference between the hydrogel and pure water, thus accounting for the 

higher fluxes observed with NaCl draw agents. The researchers identified this 

performance gap as a major concern for hydrogel systems in FO processes. The 

results also demonstrated higher water fluxes in PRO mode compared to FO mode 

when using NaCl feed solutions. Increasing the quantity of hydrogels and reducing 

hydrogel particle size were identified as factors that enhanced water fluxes in the FO 

system. The authors questioned the adequacy of hydrogel draw agents for 

desalination processes and recommended the development of novel membranes with 

minimal resistance to optimize this process - a commitment they have made for their 

future studies. They also proposed implementing continuous day-night cycles for 

hydrogel draw agents, rather than single swelling-deswelling cycles, to enhance flux 

performance.  

1.2.3 Specific energy consumption and Total costs of FO processes 

Any FO process requires a minimal energy requirement of ~ 0.25 kWh m-3, primarily 

for feed and draw solution circulation across the FO membrane [132]. The energy 

demands of FO with proprietary draw solutes contrasted against other desalination 

technologies is detailed in Table 1.4.  
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Table 1.2: Some of the inorganic draw solutes since 2000 

Reference; Draw solute; Feed solution Draw properties 

(Concentration., 

Osmotic 

pressure) 

Temperature (oC); Water 

flux; Solute flux; FO 

Membrane 

Regeneration 

method 

SEC and Cost 

Analysis 

(McCutcheon et al., [63]); Ammonium 

bicarbonate; 0.5 M NaCl 

6M; 150 atm 50; 6.5 µm/s; -; HTI CTA Thermal - 

(McGinnis and Elimelech, [64]); Ammonia–

CO2; 1.5 M NaCl 

- Low temp; -; -; - Thermal Energy - 0.24 

kWh/m3 

(Cornelissen et al., [65]); Magnesium 

sulphate; DI 

1.5 M; 73 bar 20; 1.1 LMH; 0.04 gMH; TFC-

NF 

- - 

(Cornelissen et al., [65]); Magnesium 

sulphate; DI 

1.5 M; 73 bar 20; 0.4 LMH; 0.01 gMH; TFC-

RO 

- - 

(Cornelissen et al., [65]); Sodium Nitrate; 

Activated sludge 

1.5 M; 73 bar 20; 8.1 LMH; 66 gMH; CTA - - 

(Cornelissen et al., [65]); Sodium chloride; 

Activated sludge 

1 M; 49 bar 20; 7.6 LMH; 15.4 gMH; CTA - - 

(Cornelissen et al., [65]); Sodium chloride; 

Activated sludge 

1.5 M; 73 bar 20; 9.6 LMH; 23.6 gMH; CTA - - 

(Cornelissen et al., [65]); Sodium chloride; 

Activated sludge 

4.5 M; 219 bar 20; 12.9 LMH; 48.5 gMH; CTA - - 

(Cornelissen et al., [65]); Zinc sulphate; 

Activated sludge 

0.5 M; 24 bar 20; 2.7 LMH; 4.1 gMH; CTA - - 

(Cornelissen et al., [65]); Zinc sulphate; 

Activated sludge 

1 M; 49 bar 20; 3.7 LMH; 2.9 gMH; CTA - - 

(Cornelissen et al., [65]); Zinc sulphate; 

Activated sludge 

1.5 M; 73 bar 20; 4.2 LMH; 3.8 gMH; CTA - - 

(Cornelissen et al., [65]); Zinc sulphate; 2.3 M; 112 bar 20; 4.8 LMH; 4.6 gMH; CTA - - 
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Activated sludge 

(Cornelissen et al., [65]); Sodium chloride; 

DI 

0.5 M; 24 bar 20; 5.1 LMH; 7.4 gMH; CTA - - 

(Achilli et al., [66]); Sodium sulphate; 

Ultrapure water 

127.3 g/L; 4.2 

MPa 

25; 2.56× 10-6 m/s; 3.1 gMH; 

HTI CTA 

RO Cost - 0.004 

$/L 

(Achilli et al., [66]); Sodium bicarbonate; 

Ultrapure water 

63.9 g/L; 2.8 MPa 25; 2.47× 10-6 m/s; 1.7 gMH; 

HTI CTA 

RO Cost - 0.009 

$/L 

(Achilli et al., [66]); Sodium Chloride; 

Ultrapure water 

50.8 g/L; 4.2 MPa 25; 3.38×10-6 m/s; 9.1 gMH; 

HTI CTA 

RO Cost - 0.013 

$/L 

(Achilli et al., [66]); Potassium bicarbonate; 

Ultrapure water 

99 g/L; 4.2 MPa 25; 2.80× 10-6 m/s; 2 gMH; HTI 

CTA 

RO Cost - 0.015 

$/L 

(Achilli et al., [66]); Magnesium sulphate; 

Ultrapure water 

141.3 g/L; 2.8 

MPa 

25; 1.54×10-6 m/s; 1.2 gMH; 

HTI CTA 

RO Cost - 0.015 

$/L 

(Achilli et al., [66]); Magnesium chloride; 

Ultrapure water 

47.6 g/L; 4.2 MPa 25; 2.70×10-6 m/s; 5.6 gMH; 

HTI CTA 

RO Cost - 0.018 

$/L 

(Achilli et al., [66]); Ammonium chloride; 

Ultrapure water 

48.2 g/L; 4.2 MPa 25; 3.61×10-6 m/s; 10.2 gMH; 

HTI CTA 

RO Cost - 0.023 

$/L 

(Achilli et al., [66]); Potassium sulphate; 

Ultrapure water 

101.4 g/L; 2.8 

MPa 

25; 2.52×10-6 m/s; 3.7 gMH; 

HTI CTA 

RO Cost - 0.031 

$/L 

(Achilli et al., [66]); Calcium chloride; 

Ultrapure water 

62.3 g/L; 4.2 MPa 25; 3.22×10-6 m/s; 9.5 gMH; 

HTI CTA 

RO Cost - 0.032 

$/L 

(Achilli et al., [66]); Ammonium sulphate; 

Ultrapure water 

109.1 g/L; 4.2 

MPa 

25; 2.74×10-6 m/s; 3.6 gMH; 

HTI CTA 

RO Cost - 0.033 

$/L 

(Achilli et al., [66]); Potassium chloride; 

Ultrapure water 

70.3 g/L; 4.2 MPa 25; 3.74×10-6 m/s; 15.2 gMH; 

HTI CTA 

RO Cost - 0.05 $/L 

(Achilli et al., [66]); Calcium nitrate; 

Ultrapure water 

131.2 g/L; 4.2 

MPa 

25; 2.97×10-6 m/s; 6.6 gMH; 

HTI CTA 

RO Cost - 0.091 

$/L 

(Achilli et al., [66]); Ammonium bicarbonate; 

Ultrapure water 

83.4 g/L; 4.2 MPa 25; 2.85×10-6 m/s; 20.6 gMH; 

HTI CTA 

- Cost - 0.111 

$/L 
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(Achilli et al., [66]); Potassium bromide; 

Ultrapure water 

104.7 g/L; 4.2 

MPa 

25; 3.59×10-6 m/s; 29.2 gMH; 

HTI CTA 

- Cost - 0.172 

$/L 

(Su et al., [67]); Magnesium chloride; Saline 

water 

2 M; 258.3 bar 25; 7.3 LMH; 0.53 gMH; CA 

NF 

- - 

(Phuntsho et al., [68]); Fertilizer – (KCl); DI 2 M; 89.3 atm 25; 6.337 µm/s; 0.222000 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – (NaNO3); 

DI 

2 M; 81.1 atm 25; 5.706 µm/s; 0.277500 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – (KNO3); 

DI 

2 M; 64.9 atm 25; 4.429 µm/s; 0.485625 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – 

(NH4NO3); DI 

2 M; 64.9 atm 25; 4.177 µm/s; 0.790876 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – (NH4Cl);

 DI 

2 M; 87.7 atm 25; 5.348 µm/s; 0.333000 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – 

((NH4)2SO4); DI 

2 M; 92.1 atm 25; 5.391 µm/s; 0.005550 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – 

(NH4H2PO4); DI 

2 M; 86.3 atm 25; 4.349 µm/s; 0.069375 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – 

(Ca(NO3)2); DI 

2 M; 108.5 atm 25; 5.022 µm/s; 0.009019 

mmoles/m2s; HTI CA 

Fertigation - 

(Phuntsho et al., [68]); Fertilizer – 

((NH4)2HPO4); DI 

2 M; 95.0 atm 25; 3.892 µm/s; 0.009713 

mmoles/m2s; HTI CA 

Fertigation - 

(Yangali-Quintanilla et al.,[69]); Real Red 

Sea seawater; Secondary wastewater effluent 

- 20; 5.5 LMH; -; HTI CA FO–LPRO Energy 

consumption - 

1.5 kWh/m3 

Cost - 0.91 

USD/m3 

(Su et al., [70]); Sodium chloride; DI 0.60 M; 28 atm 25; 9.6 LMH; 9.1 gMH; HTI 

CTA 

RO Cost - 0.013 

$/L 
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(Su et al., [70]); Magnesium chloride; DI 0.36 M; 28 atm 25; 8.4 LMH; 5.6 gMH; HTI 

CTA 

RO Cost - 0.018 

$/L 

(Su et al., [70]); Potassium Chloride; DI 2 M; 89.3 atm 25; 22.6 LMH; 0.222000 

mmoles/m2s; HTI CA 

Fertigation - 

(Su et al., [70]); Ammonium bicarbonate; DI 0.67 M; 28 atm 25; 7.3 LMH; 20.6 gMH; HTI 

CTA 

- Cost - 0.111 

$/L 

(Alnaizy et al., [71]); Copper sulphate; 5050 

ppm NaCl 

200 000 ppm; 

29.94 bar 

25; 3.57 LMH; -; HTI CTA Metathesis 

precipitation 

- 

(Amjad et al., [72]); K/CNF; DI 0.2 wt.% K/CNF 

and 

20 vol.% TEG; 

70.3 bar 

25; 13.3 LMH; 0.031 g/L; pre-

wetted FO flat sheet (Aquaporin 

Inside) 

Evaporation 

 

- 

(Gulied et al., [73]); Single fertilizer draw 

solution; Synthetic wastewater 

22 g/L has 23.73- 

29.04 bar 

25; 4.43 LMH; varying; FTSH2 

CTA 

- - 

(Gulied et al., [73]); multi-component draw 

solution; Synthetic wastewater 

200 g/L; 222 g/L - 

6.64 bar 

100 g/L; 222 g/L - 

6.64 bar 

25; 14.0 LMH; varying; FTSH2 

CTA 

25; 10 LMH; varying; FTSH2 

CTA 

- 

 

- 

Energy - 0.312 

kW/h m3 

Energy - 0.23 

kW/h m3 

(Gadelha et al., [74]); Sodium dodecyl 

sulphate; DI 

1 M; 0.35 bar -; 2.98 × 10−7 mol/m2/h; -; HTI 

CTA 

UF - 

(Gadelha et al., [74]); 1-octane sulfonic acid 

sodium salt; DI 

1 M; 5 bar -; 2.01 × 10−6 mol/m2/h; -; HTI 

CTA 

UF - 

(Gadelha et al., [74]); Meristyl trimethyl 

ammonium bromide; DI 

1 M; - -; 6.8 × 10−7 mol/m2/h; -; HTI 

CTA 

UF - 

(Gadelha et al., [74]); Trimethyl octyl 

ammonium bromide; DI 

1 M; 27.2 bar -; 1.58 × 10−6 mol/m2/h; -; HTI 

CTA 

UF - 

(Gadelha et al., [74]); Tetraethyl ammonium 

bromide; DI 

1 M; 42 bar -; 2.28 × 10−6 mol/m2/h; -; HTI 

CTA 

UF - 

(Liu et al., [75]); NH4Cl; DI 0.5 M; 22 atm 25; 2.217 μm/s; -; HTI TFC Irrigation - 
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(Liu et al., [75]); K2SO4; DI 0.5 M; 24 atm 25; 2.140 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); KCl; DI 0.5 M; 22 atm 25; 2.012 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); KNO3; DI 0.5 M; 20 atm 25; 1.926 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); NH4NO3; DI 0.5 M; 18 atm 25; 1.884 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); NaCl; DI 0.5 M; 23 atm 25; 1.781 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); (NH4)2HPO4; DI 0.5 M; 27 atm 25; 1.551 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); Urea; DI 0.5 M; 12 atm 25; 0.577 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); NH4HCO3; DI 0.5 M; 20 atm 25; 1.534 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); NH4Cl + NH4HCO3; DI 0.5 M:0.5 M; 49 

atm 

25; 3.108 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); K2SO4 + NH4HCO3; DI 0.5 M:0.5 M; 37 

atm 

25; 2.858 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); KCl + NH4HCO3; DI 0.5 M:0.5 M; 50 

atm 

25; 3.093 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); KNO3 + NH4HCO3; DI 0.5 M:0.5 M; 38 

atm 

25; 3.036 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); NH4NO3 + NH4HCO3; DI 0.5 M:0.5 M; 37 

atm 

25; 2.839 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); NaCl + NH4HCO3; DI 0.5 M:0.5 M; 50 

atm 

25; 3.028 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); (NH4)2HPO4 + NH4HCO3; 

DI 

0.5 M:0.5 M; 42 

atm 

25; 2.553 μm/s; -; HTI TFC Irrigation - 

(Liu et al., [75]); Urea + NH4HCO3; DI 0.5 M:0.5 M; 32 

atm 

25; 2.142 μm/s; -; HTI TFC Irrigation - 

(Qasim et al., [76]); ferric sulphate; 5000 

ppm NaCl 

280 000 ppm; 

52.6 atm 

25; 3.75 LMH; 1.88 gMH; HTI 

CTA 

Precipitation - 

(Aende et al.,[77]); Sodium carbon 

nanofibers; DI 

0.1 wt./vol%; 93.9 

bar 

25; 4.13 LMH; 0.24 gMH; 

FTSH2O™ CTA 

Evaporation - 
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Table 1.3: Organic and other draw solutes since the year 2000 

Reference; Draw solute; Feed 

solution 

Draw properties 

(Concentration., 

Osmotic 

pressure) 

Temperature (oC); Water flux; 

Solute flux; FO Membrane 

Regeneration 

method 

SEC and Cost 

analysis 

(Tang and Ng, [78]); Fructose; 1 M 

NaCl 

5 M; 498.5 atm 50; 15 LMH; -; CA - - 

(Yen et al.,[79]); 2-Methylimidazole-

based (C11H18I2N4); 3.5 wt.% NaCl 

0.5 M; ~ 40 bar 23; 10.75 LMH; 0.90 gMH; HTI 

CTA 

FO–MD - 

(Yong et al. [80]); Urea; DI 4 M; - 20; 7.5 LMH; 8 mol m-2h-1; HTI 

CTA 

- - 

(Yong et al. [80]); Ethylene glycol; DI 2 M; - 20; 4 LMH; 2.1 mol m-2h-1; HTI 

CTA 

- - 

(Yong et al. [80]); Glucose; DI 1 M; - 20; 3 LMH; ~0 mol m-2h-1; HTI 

CTA 

- - 

(Kim et al., [81]); Methanol; - 3 M; 67.517 atm - Distillation Cost - 4.512 ($/t) 

(Kim et al., [81]); Ethanol; - 3 M; 62.794 atm - Distillation Cost - 4.201 ($/t) 

(Kim et al., [81]); 2-Butanone; - 3 M; 61.392 atm - Distillation Cost - 1.372 ($/t) 

(Kim et al., [81]); Methyl acetate; - 3 M; 53.657 atm - Distillation Cost - 3.837 ($/t) 

(Kim et al., [81]); 2-Propanol; - 3 M; 50.485 atm - Distillation Cost - 4.609 ($/t) 

(Bowden et al., [82]); Magnesium 

acetate; DI 

264 g/L; 4.2 MPa 25; 2.47 m/s; 1.06 gMH; HTI CTA RO Cost - 0.029 ($/L) 

(Bowden et al., [82]); Sodium formate; 

DI 

70 g/L; 4.2 MPa 25; 3.25 m/s; 7.63 gMH; HTI CTA RO Cost - 0.090 ($/L) 

(Bowden et al., [82]); Sodium acetate; 

DI 

139 g/L; 4.2 MPa 25; 2.89 m/s; 3.55 gMH; HTI CTA RO Cost - 0.018 ($/L) 

(Bowden et al., [82]); Sodium 

propionate; DI 

102 g/L; 4.2 MPa 25; 2.97 m/s; 2.29 gMH; HTI CTA RO Cost - 0.019 ($/L) 
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(Ge et al., [83]); Polyelectrolytes of 

PAA-Na; DI 

0.25 g/mL; 20 atm 25; 6 LMH; ~ 0.5 gMH; HTI CTA UF - 

(Alnaizy et al., [71]); Sucrose; DI 1 M; 26.7 atm 25; 12.9 LMH; Minimal; CA 

hollow fibre 

NF - 

(Su et al., [70]); PAA-Na 1200; DI 0.72 g/mL; 44 atm 25; 22 LMH; ~ 0.5 gMH; HTI 

CTA 

UF - 

(Su et al., [70]); Poly (ethylene glycol) 

diacid-coated MNPs; DI 

0.065 M; 73 atm 23; 13 LMH; 0 gMH; HTI CTA Magnet - 

(Su et al., [70]); 1,2,3-

Trimethylimidazolium iodide; DI 

1 M; 50 atm 23; 13 LMH; 0.90 gMH; HTI CTA FO–MD - 

(Su et al., [70]); Sodium formate; DI 0.68 M; 28 atm 25; 9.4 LMH; 7.63 gMH; HTI 

CTA 

RO Total cost - 0.090 

($/L) 

(Su et al., [70]); Polyglycol copolymer; 

3.5% NaCl 

30-70%; 40-95 

atm 

-; ≥ 4 LMH; -; HTI CTA - - 

(Su et al., [70]); Sodium hexa- 

carboxylatophenoxy phosphazene; DI 

0.067 M; - 30; 6 LMH; -; HTI CTA - - 

(Stone et al., [84]); Switchable polarity 

solvents; 1 mol/kg NaCl 

7.6 mol/kg; 325 

atm 

30; 16 LMH; -; HTI CTA Switching 

process 

- 

(Ou et al., [85]); Thermo-sensitive 

polyelectrolytes; DI 

14.28 wt.%; 31.2 

atm 

25; 0.347 LMH; -; HTI CTA Hot UF Energy: (Wh·m−3) 

- 1965.13. 

 Cost: 

(RMB·ton−1) - 

1.18 

(Yu et al., [86]); HA-GO/PVA 

monolith; Seawater 

1:1 HA: GO 

(mass ratio); - 

25; 7.2 LMH; 0 gMH; HTI CTA-

ES 

Squeezing - 

(Zhao et al., [87]); Polyacrylamide 

(MW - 3 000 000); RBR dye solution 

20 g/L; 366 

mOsm/kg 

25; 3.211 LMH; 0.015 gMH; PA-

based TFC 

- - 

(Ray et al., [88]); Chlorhexidine 

gluconate-based Mouthwash; DI 

25%; > 600 

mOsm/kg 

25; 8 LMH; SRSF - 0.07 g/L; HTI 

TFC 

Membrane 

Distillation 

- 
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(Yu et al., [89]); Ferric-lactate complex; 

DI 

1 M; 3180 mOsm 

kg-1 

25; 18.78 LMH; 1 gMH; HTI 

CTA-ES 

NF - 

(Long et al., [90]); Oligomeric Sodium 

carboxylates; 0.15 or 0.6 M NaCl 

0.5 mol/kg; 143 

bar 

25; 23.5 LMH; 0.5 gMH; HTI-TFC NF - 

(Ding et a., [91]); Polysaccharide 

derivatives; DI 

40 wt.%; 65 bar 25; 24.9 LMH PRO; 0.97 gMH; 

PVDF-TFC 

UF SEC - low 

(Wang et al., [92]); Thermo-sensitive 

polyelectrolyte; DI 

0.20 g/ml; 72×10-

5 Pa 

25; 2.09 LMH; Very low; HTI 

CTA 

Centrifugation - 

(Zhao et al., [93]); Thermo-responsive 

PSSS-PNIPAM; Seawater 

33.3 wt.%; 2137 

mOsm kg−1. 

-; 4 LMH; -; HTI TFC Membrane 

distillation 

Energy - 1.16 

kWh/m3 for every 

1 oC 

MD - 29 kWh/m3 

(Orme et al., [94]); 1-

Cyclohexylpiperidine; 0.5 mol/kg NaCl 

5 mol/kg; > 500 

atm 

25; 8.5 kg/m2h; 0.0040 kg/m2h; 

Polyamide TFC 

CO2 removal - 

(Zhao et al., [95]); EDTA-MgNa2; DI 0.5 M; 1500 

mOsm/kg 

25; 8 LMH; 1 gMH; HTI TFC NF Cost: 0.47 $/m3 

(Zhao et al., [95]); EDTA-CaNa2; DI 0.5 M; 1500 

mOsm/kg 

25; 8 LMH; 1 gMH; HTI TFC NF Cost: 0.32 $/m3 

(Zhao et al., [95]); EDTA-MnNa2; DI 0.5 M; 1500 

mOsm/kg 

25; 8 LMH; 1 gMH; HTI TFC NF Cost: 0.41 $/m3 

(Zhao et al., [95]); EDTA-ZnNa2; DI 0.5 M; 1500 

mOsm/kg 

25; 8.5 LMH; 1 gMH; HTI TFC NF Cost: 0.30 $/m3 

(Kim et al.,  [96]); Poly(tetra butyl 

phosphonium styrene sulfonate)s; DI 

20 wt.%; 20.85 

atm 

25; 14.50 LMH; 0.14 gMH; HTI 

TFC 

Thermal 

precipitation 

- 

(Kumar et al., [97]); Hydrolysed 

poly(isobutylene-alt-maleic anhydride); 

DI 

0.375 g/mL; 1500 

mmol/kg 

60; 34 LMH PRO; 0.196 gMH; 

HTI CTA 

Membrane 

distillation 

- 

(Huang et al., [98]); Poly(4-

styrenesulfonic acid-co-maleic acid) 

0.25 g/ml; 32.8 

bar 

25; 15 LMH under PRO; 0.04 

gMH; HTI TFC 

NF - 
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sodium salt; DI 

(Monjezi et al., [99]); Dimethyl ether 

(Chabahar, Iran); 0.5 wt.% NaCl 

7.0 wt.%; 0.43 

MPa 

- Thermal Energy - 0.46 

kWh/m3 

(Laohaprapanon et al. [100]); Natural 

polyelectrolyte; DI 

30 wt.%; 11.91 

atm 

45; 4.10 LMH for PRO; 1.62 gMH; 

HTI TFC 

UF - 

(Yang et al., [101]); Polyacrylic acid 

sodium salts (PAA-Na); DI 

25 wt.%; - 21; 18.02 LMH; 0.110 gMH; HTI 

TFC 

Combined pH 

and MF 

Cost - 0.037 $/m3 

(Zeweldi et al., [102]); 

Tetraethylammonium bromide 

([N2222]Br) IL; DI 

0.50 M; - 25; 10.65 LMH; 0.0397 molm−2 

h−1; HTI CTA 

Membrane 

distillation 

Energy - 0.5 

kWhm−3 

(Zeweldi et al., [102]); 

Tetraethylammonium bromide 

([N2222]Br) IL; DI 

1 M; - 25; 14.20 LMH; 0.066 molm−2 h−1; 

HTI CTA 

Membrane 

distillation 

Energy - 0.5 

kWhm−3 

(Zeweldi et al., [102]); 

Tetraethylammonium bromide 

([N2222]Br) IL; DI 

2 M; -   25; 21.27 LMH; 0.086 molm−2 h−1; 

HTI CTA 

Membrane 

distillation 

Energy - 0.5 

kWhm−3 

(Zeweldi et al., [102]); 

Tetraethylammonium bromide 

([N2222]Br) IL; DI 

4 M; 167.8 bar 25; 26.46 LMH; 0.1128 molm−2 

h−1; HTI CTA 

Membrane 

distillation 

Energy - 0.5 

kWhm−3 

(Huang et al., [103]); Sodium phytate; 

DI 

0.45M; 76.38 bar 25; 19.02 LMH in PRO; 0.51 

gMH; HTI TFC 

Dilution - 

(Huang et al., [103]); Sodium phytate; 

DI 

0.45M; 76.38 bar 25; 30.35 LMH in PRO; 0.61 

gMH; HPAN-TFC 

Dilution - 

(Islam et al., [104]); Potassium acetate 

(KAc); DI 

0.66 M; 28 bar 24; 15.48 LMH; 0.021-0.04 

mol/m2.h; HTI TFC 

Membrane 

distillation 

- 

(Islam et al., [104]); Ammonium acetate 

(NH4Ac); DI 

0.91 M; 28 bar 24; 15.86 LMH; 0.021-0.04 

mol/m2.h; HTI TFC 

Membrane 

distillation 

- 

(Islam et al., [104]); Ammonium 

carbamate (NH4Car); DI 

0.38 M; 28 bar 24; 16.56 LMH; 0.021-0.04 

mol/m2.h; HTI TFC 

Membrane 

distillation 

- 
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(Islam et al., [104]); Ammonium 

formate (NH4For); DI 

0.62 M; 28 bar 24; 16.92 LMH; 0.021-0.04 

mol/m2.h; HTI TFC 

Membrane 

distillation 

- 

(Islam et al., [104]); Potassium formate 

(KFor); DI 

0.68 M; 28 bar 24; 17.15 LMH; 0.021-0.04 

mol/m2.h; HTI TFC 

Membrane 

distillation 

- 

(Islam et al., [104]); Sodium propionate 

(NaPro); DI 

0.69 M; 28 bar 24; 19.71 LMH; 0.021-0.04 

mol/m2.h; HTI TFC 

Membrane 

distillation 

- 

(Islam et al., [104]); Sodium glycolate 

(NaGly); DI 

0.73 M; 28 bar 24; 18.47 LMH; 0.021-0.04 

mol/m2.h; HTI TFC 

Membrane 

distillation 

- 

(Kim et al., [105]); Ethanol; DI 10 wt.%; 46.7 bar 25; 17 LMH; 240 g/m1.h1; Porifera 

Inc. TFC 

Vacuum 

distillation 

Energy - 8.8 

kWh/m3 

(Shokrollahzadeh et al., [106]); Itaconic 

acid-choline chloride (IA-CC); DI 

1.2 mol/L; 204.1 

atm 

25; 32.8 LMH; 1.4 gMH; HTI 

CTA 

Phase 

separation at 5 
oC 

- 

(Zeweldi et al., [107]); 

Tetrabutylammonium 2,4,6-

trimethylbenzenesulfonate; DI 

2 M; 58.92 bar 25; 12.3 LMH in PRO; 0.006 

mol/m2.h1; TFC 

Thermal 

precipitation 

Energy - 9.95 

kWh m−3 

Cost – 0.756 $/m3 

(Nguyen et al., [108]); Mixed trivalent 

draw solution containing of EDTA–2Na 

and Na3PO4; DI 

0.3 M EDTA–

2Na and 0.55 M 

Na3PO4; 50 atm 

25; 9.17 LMH; 0.053 g/L; HTI 

CTA 

Membrane 

distillation 

- 

(Kamel et al., [109]); Sodium carbon 

quantum dots; DI 

0.5 g/ml; 

113.9967 bar 

29; 11.935 LMH; 0.0621 gMH; 

CTA-FO 

Thermal - 

(Kamel et al., [109]); Potassium carbon 

quantum dots; DI 

0.5 g/ml; 

121.0399 bar 

29; 13.924 LMH; 0.0253 gMH; 

CTA-FO 

Thermal - 

(Ge et al., [110]); Poly(ethylene glycol) 

diacid-coated MNPs; DI 

0.065 M; 73 atm 23; 16.2 LMH; 0 gMH; HTI CTA Magnetic - 

(Guizani et al., [111]); Polyethylene 

glycol 4000 coated MNPs; Urine 

9.6 g/L; 14.9 atm 25; > 1 LMH; 0 gMH; FTSH2O™ 

CTA 

Magnetic - 

(Hafiz et al., [47]); Polyethylene glycol 

5000 coated MNPs; DI 

1800 ppm; 14.6 

Pa 

25; 1.16 LMH; 0 gMH; Porifera Magnetic - 
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(Mishra et al., [112]); Polyethylene 

glycol coated MNPs; DI 

0.08 M; - 25; 11.30 LMH; -; HTI CTA Electromagnet - 

(Mishra et al., [112]); Polyacrylic acid 

coated MNPs; DI 

0.08 M; - 25; 13.85 LMH; -; - - - 

(Ling et al., [113]); Polyacrylic acid 

coated MNPs; - 

-; 6 atm 22; 0 gMH; HTI CTA - - 

(Ling et al., [114]); Polyacrylic acid 

coated MNPs; DI 

-; - 22; 10.4 LMH; 0 gMH; HTI CTA Magnetism - 

(Ling et al., [115]); MNPs capped with 

Tri ethylene glycol; DI 

0.23 mol/L; 70 

atm 

22; 7 LMH; -; HTI CTA Magnetic / UF - 

(Ling et al., [116]); MNPs 

functionalized with poly(N-isopropyl 

acrylamide) and triethylene glycol; DI 

- 22; 1.2 LMH; 0 gMH; HTI CTA Magnetic - 

(Yang et al., [117]); Hyperbranched 

Polyglycerol Carboxylate-Coated 

MNPs; DI 

500 g/L; 16 atm 25; 7.2 LMH; 0 gMH; HTI CTA UF - 

(Yang et al., [118]); Hyperbranched 

polyglycerol-coated MNPs; DI 

400 g/L; 10 atm 25; 3.0 LMH; 0 gMH; HTI CTA UF - 

(Ban et al., [119]); Poly-Sodium-

Acrylate (PSA)-Coated MNPs; DI 

7 wt.%; 8.8 atm 23; 3.8 LMH; 0.05 gMH; AIM 

Aquaporin 

UF - 

(Zhou et al., [120]); Poly(N-

isopropylacrylamide-co-sodium 2-

acrylamido-2-methylpropane sulfonate) 

magnetic nanogels; DI 

20 g/L; 3.3 atm 25; 0.25 LMH; -; HTI CTA Thermal – 

Magnetic 

- 

(Zhao et al., [121]); Fe3O4 NPs grafted 

with copolymer poly(sodium 

styrene-4-sulfonate)-co-poly(N-

isopropylacrylamide; DI 

33 wt.%; 55 atm 25; 14.9 LMH; -; HTI CTA Magnetic / UF - 

(Shakeri et al., [122]); MNP- -; - 25; 5.72 LMH; -; TFC-FO Magnetic - 
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crosslinked ferro hydrogel; DI 

(Bai et al., [123]); Dextran coated 

Fe3O4 MNPs; DI 

2.0 M; -  22; 9.0 LMH; 0 gMH; HTI CTA Magnetic - 

(Attallah et al., [124]); Pectin-coated 

MNPs; Well water 

2 wt.%; -  25; 0.4 LMH; -; PES Aquaporin Magnetic - 

(Tayel et al., [125]); Pectin-coated 

MNPs; 1% NaCl 

0.5 wt.%; - 25; 7 LMH; -; Porifera Magnetic - 

(Shabani et al., [126]); Chitosan and 

dehydroascorbic acid‑coated MNPs; DI 

0.06 g/L; - 25; 5.3 LMH; -; CA/CTA Magnetic - 

(Azadi et al., [127]); Gelatin-Coated 

MNPs; DI 

14.3 g/L; - 30; 1.54 LMH; -; HTI CTA Magnetic - 

(Khazaie et al., [128]); Sulfonated 

sodium alginate MNPs; DI 

60 g/L; 117.2 atm 25; 12.8 LMH; 1.5 gMH; CTA Magnetic - 

(Na et al., [129]); Citrate coated MNPs; 

DI 

20 mg/L; - 25; 13 LMH; -; HTI CTA Magnetic - 

(Ge et al., [130]); Citric acid coated 

MNPs; DI 

0.8 g/mL; 68 atm 23; 12.6 LMH; 0.08–0.09 gMH; 

TFC-PES 

Magnetic, 

then NF 

- 

(Ge et al., [130]); Oxalic acid coated 

MNPs; DI 

0.8 g/mL; 56 atm 23; 10.2 LMH; 0.08–0.09 gMH; 

TFC-PES 

Magnetic, 

then NF 

- 

(Ge et al., [130]); EDTA coated MNPs; 

DI 

0.8 g/mL; 40 atm 23; 8.2 LMH; 0.08–0.09 gMH; 

TFC-PES 

Magnetic, 

then NF 

- 

(Khazaie et al.,[131]); Sodium alginate 

sulphate; DI 

0.11 g/mL; 219.89 

atm 

25; 28.5 LMH; 3.4 gMH; CTA RO - 

(Zeweldi et al., [132]); Supramolecular 

host-guest complex of methylated β-

cyclodextrin with polymerized ionic 

liquid ([vbim]TFSI)n; DI 

0.5 M; 7 Osm/kg 25; 13.73 LMH PRO; 4.41 × 10-3 

mol/m2.h1; TFC 

Heating, then 

NF 

Energy - 5.54 

kWh m-3 

Cost - $ 0.42 m-3 
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Table 1.4: SEC, in kWh/m3 of various desalination technologies compared to FO, 

adapted from (Colciaghi et al., [133]) 

Desalination 

technology 

Electrical 

(𝒌𝑾𝒉𝒆𝒍𝒆/𝒎𝟑) 

Thermal 

(𝒌𝑾𝒉𝒕𝒉𝒆𝒓/𝒎𝟑) 

Total electricity 

(𝒌𝑾𝒉𝒆𝒍𝒆/𝒎𝟑) 

Multi-stage flash 

distillation (MSF) 

2.5 – 5 53 – 65 19.6 – 27.3 

Multiple effect 

distillation (MED) 

2 – 2.5 40 – 64 14.5 – 21.4 

Mechanical vapour 

compression (MVC) 

7 –12 - 7 – 12 

Thermal vapour 

compression (TVC) 

1.8 – 1.6 63 16.3 

Reverse osmosis (RO) 4 – 6 - 4 – 6 

Electrodialysis (ED) 2.6 – 5.5 - 2.6 – 5.5 

Forward osmosis (FO) 

using PAGB 

0.5 – 1.9 39.5 – 123 6.7 – 21.8 

Forward osmosis (FO) 

using AB 

> 3.51 > 442 > 90.6 

 

The energy consumption is quantified as: [91] 

𝐸𝐹𝑂 =
1

𝜂𝑝𝑢𝑚𝑝
× 𝑄𝑑𝑟𝑎𝑤 × (𝑃𝐹𝑂 − 𝑃0) +

1

𝜂𝑝𝑢𝑚𝑝
× 𝑄𝑓𝑒𝑒𝑑 × (𝑃𝐹𝑂 − 𝑃0)                    (1.1) 

where, 𝑄𝑑𝑟𝑎𝑤, 𝑄𝑓𝑒𝑒𝑑, 𝑃𝐹𝑂, 𝑃0 and 𝜂𝑝𝑢𝑚𝑝are the draw solution flow rate in the 

module, feed solution flow rate in the module, operating pressure, ambient pressure 

and efficiency of the pump, respectively. The Specific Energy Consumption (SEC), 

quantified in kWh/m3, is determined as follows: [91] 

𝑆𝐸𝐶 =
𝐸

𝑄𝑃
                                                                                                                 (1.2) 

𝑄𝑃 = 𝐽𝑤 × 𝐴𝑚                                                                                                         (1.3) 

where, 𝑄𝑃 is the flow rate of the permeate.  

In developing the SEC equation, the key assumptions include an infinite membrane 

area, water recovery (𝑌) determined as the ratio of permeate flow rate to feed 

solution flow rate, pump efficiency assumed to be 100% to consume the lowest 
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electrical energy, and negligible pressure drops in FO modules due to extremely low 

flow velocities [91]. It should be noted that some of these assumptions represent 

highly idealized conditions that do not reflect real-world operational parameters. In 

practice, pump efficiencies typically range from 70 - 85% for centrifugal pumps 

depending on design or sizes. The pressure drops, while minimal in FO systems, are 

not negligible in large-scale installations. These simplifications result in SEC 

estimates that represent theoretical lower bounds rather than realistic energy 

consumption values. The actual energy requirements would be higher due to pump 

inefficiencies and system pressure losses, with the magnitude of increase depending 

on specific system design and operating conditions. 

RO is energy-demanding due to its requirement for substantial hydraulic pressure to 

overcome the seawater’s osmotic pressure [93]. Basing on thermodynamic analysis 

and presuming 3.5% salinity and 50% water recovery, the RO process’s practical 

minimum energy is nearly 1.5 kWh/m3 [93]. Typically, the energy requirement 

ranges between 3-7 kWh/m3 for RO [93]. In turn, for FO processes to rival existing 

RO in energy consumption, the comprehensive energy demand, including the draw 

solute recovery system must not exceed 4 kWh/m3 [93]. This implies that the energy 

expenditure for the draw solute regeneration process should remain under 3.75 

kWh/m3 [93]. However, as discernible from Tables 1.2 and 1.3, the majority of 

scholars overlooked the energy expenditure and overall cost of FO processes in their 

investigations.  

1.2.4 FO Membranes 

Any material exhibiting characteristics such as high density, non-porosity and 

selective permeability can theoretically be suitable for use as a FO membrane [134]. 

Traditional RO membranes are suboptimal for FO applications due to fundamental 

structural differences. RO membranes require substantial mechanical strength to 

withstand applied hydrostatic pressures [134, 172]. This is achieved through a 

composite structure comprising a dense sponge-like support layer reinforced with a 

loose mesh backing. The support layer exhibits increasing density toward the active 

layer to provide a smooth substrate for active layer formation [134, 172]. Conversely, 
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FO membranes operate without external hydraulic pressure, thus eliminating the 

need for high mechanical strength. This allows FO membranes to use a single, 

thinner support layer with a more open pore structure. The reduced thickness and 

enhanced porosity significantly enhance FO performance while minimizing ICP. 

[134, 172]. 

Figure 1.6 shows an HTI cellulose acetate FO membrane with a thickness of less 

than 50 µm and a magnification of 263X. 

 

Figure 1.6: HTI CTA membrane adapted from (Cath et al., [134]) 

Efficient desalination using FO requires membranes that exhibit high water flux, thus 

necessitating membranes with elevated water permeability and low structural 

parameters [134]. The ideal semipermeable FO membranes would completely restrict 

solute permeation into the feed solution. However, absolute barrier properties are 

unattainable, allowing minor solute transport across the membrane [135]. Thin-film 

composite polyamide membranes demonstrated superior water flux, solute rejection, 

pH stability, and hydrolysis and biological degradation resistance compared to CTA 

FO membranes [136]. Fouling in FO processes can be grouped into four categories 

according to the type of foulant [137]. These four categories of fouling are colloidal 

(deposition of colloidal particles), organic (adsorption of macromolecular organics), 
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inorganic scaling (precipitation of sparingly soluble inorganics) and biofouling 

(microbial adhesion and biofilm formation) [137]. An osmotic-resistance filtration 

model was advanced to elucidate the implications of fouling [137]. The HTI CTA 

membrane shown in Figure 1.6 exhibited better performance than RO membranes 

employed in FO processes. This superior performance is attributed to the HTI CTA 

membrane's relatively thin structure and the absence of a fabric support layer [134]. 

Based on the information in Tables 1.2 and 1.3, most researchers utilized the HTI 

CTA membrane, which has since been discontinued.   As a result, researchers have 

developed various novel FO membranes to compete with the former industry 

standard. Figure 1.7 highlights some of these innovative FO membrane designs.  

 

Figure 1.7: SEM micrographs of (a) asymmetric polybenzimidazole flat sheet 

membrane adapted from (Flanagan et al., [138]), (b) Reduced graphene oxide 

modified graphitic carbon nitride TFC polyamide membrane adapted from (Wang et 

al., [139]), (c) Polyamide TFC membranes based on carboxylated polysulfone 

microporous support membrane adapted from (Cho et al., [140]), and (d) Thin film 
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nanocomposite (TFN) FO membranes using functionalized multi-walled carbon 

nanotubes adapted from (Amini et al., [141]). 

The polybenzimidazole membrane exhibited enhanced performance in terms of both 

water flux and salt rejection [138]. The hybrid TFC membrane, modified with 

reduced graphene oxide and carbon nitride, showed great water transport during the 

FO process [139]. This suggests incorporating such nanosheets could be a promising 

approach for creating high-performance FO membranes [139]. FO membranes with a 

carboxylated polysulfone microporous support layer were found to be more 

favourable than unmodified polysulfone [140]. Their high porosity and 

hydrophilicity led to higher water fluxes, making them a better support material 

choice [140]. Membranes incorporating functionalized multi-walled carbon 

nanotubes exhibited superior potential for FO applications due to their enhanced 

structural and separation performance [141].  

1.3 Current studies on FO processes 

1.3.1 Number of publications on FO 

Figure 1.8 shows the ScienceDirect publication counts from 2000 to mid-2024 for 

the keyword’s "desalination" and "forward osmosis". The data illustrates a sustained 

upward trend in the number of research outputs focused on FO since the beginning of 

the 21st century. However, it is evident that FO constitutes a relatively modest 

fraction of the overall scientific literature encompassing desalination technologies 

and processes during this timeframe.  
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Figure 1.8: Number of publications per year from ScienceDirect 

Recent FO research from 2023 onwards has focused on four key areas: developing 

novel draw solutes, fabricating improved FO membranes, applying machine learning 

for process optimization and investigating hybrid desalination systems integrating 

FO with other technologies like RO and MD [142 – 171]. Figure 1.9 summarizes the 

main research focus areas of FO desalination from 2023 onwards. 
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Figure 1.9: Main research focus areas of FO desalination from 2023 onwards 

1.3.2 Novel draw solutes 

A thermo-responsive ionic liquid-based draw solute exhibited LCSTs between 6 and 

34 oC, at various concentrations, allowing for draw solution recovery [142]. The 

water fluxes achieved were 11.26, 8.01 and 6.76 LMH when using distilled water, 

2000 ppm NaCl and 20 wt.% orange juice as feeds, respectively [142]. A new draw 

solute using poly (amidoamine) dendrimer coated magnetic nanoparticles produced 

an initial water flux of 12.9 LMH [143]. However, the flux decreased over time due 

to solution dilution. The nanoparticles could be recovered using a magnet for reuse. 

After four FO cycles, the water flux was reduced by approximately 25% due to 

membrane fouling effects [143]. Zinc sulphate was explored for its potential as a 

draw solute for desalinating brackish water [144]. Fresh water was generated from 

the diluted solution through reagent precipitation (RP) and nanofiltration, yielding 

product water with 9.8 and 360 ppm total dissolved solids, respectively [144]. The 

diluted draw solution was regenerated by adding sulphuric acid. The specific energy 

consumption and water production cost for the FO-RP process were estimated 

around 0.5 kWh/m3 and $ 0.09/m3, respectively [144]. Five commercial thermo-

responsive polyalkylene glycols (PAGs) were tested as draw agents in FO [145]. The 

Harnessing 
machine learning 

for process 
optimization

Integrating FO 
with hybrid 

systems

Exploring 
nanomaterial-

based membrane 
modifications

Creating 
robust fouling 

mitigation 
strategies

Smooth transition 
from lab-scale to 

large-scale 
implementation

Long-term 
pilot studies

System 
optimization

Need for scaling 
up and 

commercialization 

Developing 
innovative 

draw solutions



 

36 
 

water flux varied between 1.5 - 2.0 LMH, while the reverse solute flux ranged from 

0.04 - 0.4 gMH [145]. All PAG solutions could be recovered and reused below 100 

oC, making them promising for systems utilizing low-grade waste heat [145]. 

Specifically, regenerated Pluronic® L-35 showed recovery rates of 91.1%, 93.1%, 

and 91.9% across three FO cycles [145]. CO2-responsive polymers were used as a 

draw solute in FO [146]. The 50 wt.% poly (N, N-dimethyl allylamine) draw agent 

produced an osmotic pressure over 170 bars [146]. Using a cellulose triacetate 

membrane, the highest observed water flux was 89 LMH for a 0.2 wt.% NaCl feed 

solution [146]. Slightly lower fluxes of 81 and 77 LMH were produced for higher 

1.75 and 3.5 wt.% NaCl feeds, respectively [146]. Afterwards, the draw agent was 

regenerated through heating to remove CO2, precipitating the polymer for easy 

recovery [146]. This left around 2 wt.% residual in the water-rich phase, which was 

subsequently removed using RO to yield clean water [146]. Development of a cost-

effective draw solution was accomplished using a mixture of NaCl and the 

polyethylene glycol tert-octyl phenyl ether surfactant TX114 [147]. Compared to 

NaCl alone, this mixture improved the water flux to 21.26 LMH and reduced salt 

leakages (Js/Jw = 1.82 g/L) [147]. The draw solution was efficiently recovered using 

membrane distillation powered by solar or waste heat [147]. The hybrid FO/MD 

process showed a stable 6 LMH water flux, excellent ~100% salt rejection for 25 

hours and resistance to membrane fouling, making it promising for seawater 

desalination [147]. Thermo-responsive magnetic ionic liquids (TMILs) were 

developed for seawater desalination [148]. The TMILs possessed tunable LCSTs, 

making them ideal FO draw solutes [148]. Over 43% of the TMILs could be 

magnetically extracted above their LCSTs, demonstrating an easy draw solution 

regeneration method [148]. A 25 wt.% D-Bu-FeX4 draw solution achieved a water 

flux of 4.5 LMH. The TMILs' ionic, thermo-, and magnetic-responsive properties 

make them promising FO draw solutes for desalination and wastewater reclamation 

[148].  

A review was performed on thermally responsive draw solutes (TRDS) like ionic 

liquids (ILs) and hydrogels for sustainable FO desalination [149]. TRDS offer 

improved water recovery and draw solute regeneration by leveraging low-grade and 
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renewable heat sources [149]. The design and synthesis of TRDS, balancing 

hydrophilic and hydrophobic components, were discussed. Compared to non-

responsive draw solutes, TRDS have shown higher water flux, better recovery rates, 

lower energy demands, and greater economic feasibility [149]. TRDS demonstrate 

potential for contributing to more sustainable desalination processes [149]. Green 

hydrogels from flaxseed gum and sodium alginate were developed for FO 

desalination [150]. The hydrogel, crosslinked with epichlorohydrin and semi-

interpenetrated with polyethylene glycol, was optimized for high swelling capacity 

[150]. When tested in a batch FO unit, the hydrogel showed enhanced water flux 

with increased feed temperature, reduced concentration and smaller particle size 

[150]. The optimal formulation achieved swelling ratios of 1800% after 1 hour and 

5300% at equilibrium [150]. Another hydrogel was fabricated from sodium alginate 

and polyvinyl alcohol and crosslinked with epichlorohydrin for FO applications 

[151]. The hydrogel composition was optimized based on swelling capacity and 

evaluated in a batch FO unit with a cellulose triacetate membrane [151]. The optimal 

25% polyvinyl alcohol hydrogel with 0.8 crosslinking ratio achieved 5228% 

equilibrium swelling [151]. Using distilled water feed, 60 μm hydrogel particles and 

40 oC feed temperature yielded the maximum water flux of 0.845 LMH [151]. 

1.3.3 Hybrid processes involving FO with other desalination technologies 

 Several studies have explored various hybrid processes for desalinating brackish and 

saline waters. A melamine sponge loaded with polypyrrole solar evaporator was used 

in a forward osmosis-solar evaporation (FO-SE) process, achieving a maximum 

evaporation flux of 17.4 LMH for a 2 M NaCl draw solution [152]. A high-

temperature forward osmosis/crystallization/reverse osmosis (FO/Cry/RO) process 

was developed that outperformed conventional RO in recovery, cost, and energy 

consumption [153]. Integrating photocatalysis and forward osmosis (PFO) using a 

simple photocatalytic hydrogel film decomposed 90% of organic pollutants in the 

feed solution while maintaining a sustainable water flux of 11.8 LMH, without 

significant fouling [154].  
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The use of a reverse electrodialysis-forward osmosis (RED-FO) hybrid system for 

agricultural fertigation and power generation demonstrated high salinity power 

generation [155]. Evaluating the impact of feed and draw solution concentrations on 

a pilot-scale forward osmosis-air gap membrane distillation (FO-AGMD) system for 

desalination showed the highest recoveries at a fixed draw solution concentration of 

70 000 ppm NaCl [156]. A mathematical model to optimize FO, reverse osmosis and 

their hybrid system was developed [157]. The model confirmed the FO-RO system's 

greater energy efficiency compared to RO alone, with energy savings of 87.57% to 

87.81% [157]. Development was made of a graphene oxide-enhanced forward 

osmosis membrane (GFO), integrating it with membrane distillation (FO-MD) for 

textile wastewater treatment [158]. The GFO-based FO-MD system achieved over 

80% water recovery and nearly 100% rejection of contaminants [158]. A techno-

economic study showed lower water production costs for the GFO-MD system 

($5.73 m-3) compared to the commercial FO membrane-MD system ($6.48 m-3) 

[158]. However, the water flux has to be maintained above 10 LMH for economic 

viability [158]. Studies on solar-assisted humidification-dehumidification (HDH) and 

FO were done for desalinating brackish water [159]. Two hybrid configurations, 

HDH-FO and FO-HDH showed FO to be crucial contributing over 90% to 

productivity in both configurations [159]. Despite a lower inlet flow rate, the HDH-

FO system outperformed a conventional FO unit [159]. A pilot scale forward 

osmosis integrated air gap membrane distillation (FO-AGMD) system for 

desalinating Arabian Gulf seawater was designed and tested [160]. The water flux 

remained stable within the range of 6.3 - 7.3 LMH for the FO process, while the MD 

process exhibited a stable water flux between 3.75 - 4.0 LMH [160]. The main 

energy consumption was from heating the feed and cooling the permeate [160]. 

Integrated FO and Capacitive Deionization (CDI) in four configurations produced 

ultrapure water and achieved up to 90% water recovery [161]. Exploring a combined 

FO and temperature swing solvent extraction (TSSE) yielded water fluxes up to 7.5 

LMH against artificial seawater [162]. 
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1.3.4 FO membrane modifications 

A highly efficient thin film composite polyamide-based FO membrane was 

developed, achieving an impressive water flux of 60.94 ± 3.5 LMH and a solute flux 

of 1.52 ± 0.08 gMH [163].  Critically reviewing the surface tailoring of FO 

membranes identified knowledge gaps [164]. These included the need for large-scale 

production feasibility studies, long-term performance assessments and exploration of 

novel materials and modification techniques [164]. The design of thin film 

membranes manipulated the substrate membrane structure to optimize the final 

composite membrane [165]. The substrate structure and MAX phase (Ti3AlC2) 

significantly improved the membrane's morphological characteristics and 

performance, outperforming the pure PES membrane [165]. Fabricated double-sided 

coated polyethyleneimine crosslinked reduced graphene oxide, PEI:rGO, membranes 

exhibited superior salt rejection (95%) than single-sided ones (90.1%) [166]. 

However, they were slightly lower than of a commercial CTA-FO membrane 

(99.3%) [166]. Under an electric field, both PEI:rGO membranes demonstrated 

improved antifouling properties due to electro-oxidation and unique nanocomposite 

structure [166]. Fabrication of MoS2-Ag nanofillers used photochemical deposition 

and incorporated them into thin-film composite membranes for FO water treatment 

[167]. Incorporating the MoS2-Ag nanofillers smoothened the active layer surface, 

reducing roughness from 40.09 ± 1.39 nm (TFC) to 15.53 ± 0.17 nm (TFN), and 

decreased contact angle from 79.0 ± 2.0o (TFC) to 52.2 ± 0.7o (TFN) [167]. This 

surface modification improved water flux by 35.2% [167].   

1.3.5 Machine learning and FO process modeling 

Artificial neural network (ANN) data-driven and Spiegler-Kedem transport models 

for FO and NF membranes have been developed [168]. ANN exhibited superior fit 

(R2 between 0.9 - 0.65) over other machine learning techniques [168]. Optimized 

ANN models showed high R2 (95.03% FO, 96.08% NF) but higher errors (5-12%) 

than transport models (2%) due to limited training data variation [168]. However, 

ANN competently predicted suitable draw solutes and feed responses [168]. The 

process development of an upgraded temperature and agent-dependent FO model 

was performed and calibrated using NaCl and validated with MgCl2 [169].  
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The process showed good agreement (relative index > 0.99) between simulated and 

measured performance [169]. Optimizing for maximum water flux, minimum reverse 

solute flux under constraints increased the water flux/reverse solute flux ratio by 

40% for NaCl and 20% for MgCl2, while improving effective osmotic pressure 

difference 2 - 3.8 times [169]. Assessment of machine learning methods like artificial 

neural networks, XGBoost, CatBoost, Random Forest, and linear regression for 

predicting ICP in FO processes was performed [170]. CatBoost outperformed other 

methods based on R2 and mean square error [170]. CatBoost accurately predicted 

ICP on non-training data, showing better generalizability than solution diffusion 

models [170]. Machine learning algorithms offered insights into major input features 

affecting ICP modeling [170]. Developing a machine learning approach using 

supervised CatBoost algorithm accurately predicted reverse solute flux in FO [171]. 

CatBoost achieved high accuracy with R2 of 0.94 and RMSE of 0.44 on actual versus 

predicted data [171]. Simulations on real experimental data showed minimal 0 - 2% 

error compared to experimental RSF [171]. This demonstrates machine learning's 

potential to save time while precisely predicting RSF based solely on FO process, 

membrane permeability inputs and valuable for applications involving reverse salt 

flux [171]. 

A highly accurate integrated machine learning and explainable artificial intelligence 

(ML-XAI) model was developed for predicting permeate fluxes in FO [173]. The 

XGBoost, LightGBM and CatBoost models demonstrated excellent predictive 

performance, with XGBoost achieving an R2 of 0.9716 [173]. Analysis revealed that 

differences in osmotic pressure and water permeability were the most critical factors 

influencing water flux predictions [173].  

Response surface methodology (RSM) was employed to optimize reverse solute 

fluxes in FO processes [174]. The parameters identified as critical for Na⁺ reverse 

diffusion included the electrical conductivity of the draw solution, feed solution 

conductivity, interactions between solution flow rates, and interactions between draw 

solution flow rate and operating time [174]. RSM yielded R2 values of 0.948 and 

0.958, compared to R2 values of 0.984 and 0.968 for ANN models. Consequently, 

ANN models were recommended for use in future studies [174].     
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Various artificial intelligence techniques, including ANN and Gradient Boosting 

Regressor (GBR), were used to predict the performance of commercial FO 

membranes in removing micropollutants [175]. GBR achieved an R2 of 0.98 and 

RMSE of 0.54 for water flux prediction, and an R2 of 0.81 and RMSE of 7.65 for 

rejection rate prediction [175]. In comparison, ANN demonstrated superior 

performance with an R2 of 1 and RMSE of 0.22 for water flux, and an R2 of 0.89 and 

RMSE of 5.99 for rejection rate [175]. Based on these results, ANN was identified as 

the optimal machine learning approach, demonstrating exceptionally high prediction 

accuracy [175]. 

1.4 Research gaps  

FO desalination has gained significant traction in the 21st century as an energy-

efficient technology which has the potential to complement existing desalination 

processes. Future research areas were identified to unlock FO's full potential 

including: 

▪ Need to harness machine learning techniques to optimize FO  

▪ Need to develop innovative, high-performing and sustainable draw solutions 

for FO systems. 

▪ Need to create robust and effective fouling mitigation strategies to enhance 

the long-term operational stability of FO processes. 

▪ To address the need for scaling up FO technology and facilitating its 

commercialization. 

▪ Need to advocate for long-term pilot studies to better understand the real-

world applicability and reliability of FO systems. 

▪ Need to investigate the economic viability of harnessing waste heat and 

renewable energy sources for FO desalination 

As the global water crisis intensifies, FO desalination stands out as a promising 

solution – sustainable, energy-efficient and economically viable, provided cheaper 

draw solution recovery strategies are devised. By addressing these identified 

challenges and capitalizing on such exciting opportunities, FO desalination can play 
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a pivotal role in securing the availability of pure drinking water for generations to 

come. 

1.5 Research objectives 

This research work aimed to develop novel phase separating draw solutions for 

desalinating brackish water or seawater using FO. The detailed objectives of the 

present study are as follows:  

▪ To identify new draw solutes with high osmotic pressure for osmotic driven 

processes. 

▪ To test the identified draw solutes on membrane test cells for osmotic driven 

processes. 

▪ To undertake mathematical modeling of the process and estimation of 

transport parameters. 

▪ Use the Artificial Neural Network based approach to model the forward 

osmosis with the new identified draw solutions 

▪ To perform a feasibility and economic analysis of the process with new draw 

solutes. 

1.6 Overview of the Thesis 

To fulfil the above objectives, the work embodied in the thesis entitled “Studies on 

water desalination using osmotic pressure-driven processes” has been divided 

into SEVEN chapters. 

Chapter 1 introduces the thesis on osmotic pressure-driven water desalination. It 

provides an overview, identifies research gaps and establishes the significance of the 

proposed work. The chapter defines the research problems, objectives and thesis 

structure. It also presents a comprehensive literature review on the progress, 

challenges and future of forward osmosis (FO) desalination. Analyzing FO as an 

emerging energy-efficient solution, the chapter evaluates technological 

advancements, membrane properties and comparative performance. It highlights 

critical research gaps to position FO as a viable, efficient and sustainable approach to 

the global water crisis. 
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Chapter 2 focuses on the theoretical foundations and modeling approaches for FO 

desalination processes, with a particular emphasis on data-driven techniques using 

Artificial Neural Networks (ANN). This work acknowledges the limitations of the 

traditional solution-diffusion (S-D) model, especially for multi-component and 

neutral draw solutions, as well as the lack of diffusion coefficient data for the 

developed systems. To address these challenges, the chapter employs ANN modeling 

as a robust and flexible alternative to the S-D model. The theoretical underpinnings 

and assumptions of the ANN approach are presented in detail, along with the 

governing equations and computational frameworks utilized. Furthermore, the 

chapter delves into the theoretical aspects of the techno-economic assessment for the 

FO process, providing a comprehensive treatment of the models and equations used 

to estimate both operating expenditures (OPEX) and capital expenditures (CAPEX). 

By establishing this robust theoretical framework, Chapter 2 lays the groundwork for 

the successful implementation and analysis of data-driven FO desalination models 

within the broader context of the thesis. 

Chapter 3 details the materials, methodology, experimental setup and 

characterization techniques employed in the development and analysis of novel 

organic draw solution systems for FO desalination of brackish and seawater. The 

chapter outlines the specific organic compounds used as potential draw solutes. It 

then describes the step-by-step experimental procedures for preparing, optimizing 

and testing these draw solution formulations. The experimental setup is 

comprehensively covered, including the FO membrane, test cells, feed and draw 

solution circulation systems, analytical instruments and other key components. 

Emphasis is placed on the design considerations, operational parameters and control 

mechanisms to ensure data reliability. Furthermore, the chapter discusses the 

extensive characterization techniques employed to analyze the physico-chemical 

properties and osmotic performance, such as measurements of osmotic pressure, 

viscosity, concentration, pH, density, cloud point determinations and compatibility of 

the novel organic draw solutions and the FO membrane.  

Chapter 4 investigates novel polyelectrolyte-glycol ether ternary phase-separating 

draw solutions for FO desalination. The chapter systematically evaluates 4 binary 
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and 6 ternary systems incorporating sodium carboxymethyl cellulose (NaCMC) and 

propylene glycol propyl ether (PGPE), utilizing their lower critical solution 

temperature (LCST) behaviour for draw solution regeneration. Experiments were 

conducted using a custom FO setup with a harvested HTI CTA membrane in AL-FS 

mode. Optimal draw solutions were selected based on osmotic pressure, viscosity 

and cloud point measurements.  

Chapter 5 investigates the enhancement of FO desalination of brackish water 

through the development and application of phase-separating ternary organic draw 

solutions incorporating hydroxypropyl cellulose (HPC) and propylene glycol propyl 

ether (PGPE). The study systematically evaluates sixteen distinct draw solution 

compositions, including single-solute and ternary mixtures with varying HPC (0.25 – 

2 wt.%) and PGPE (1.25 - 3.75 M) concentrations. Notably, the study established the 

feasibility of draw solution regeneration through the lower critical solution 

temperature (LCST) behaviour. 

Chapter 6 discusses the results of modeling using Artificial Neural Networks (ANN) 

and a techno-economic evaluation of the FO-PS desalination process. The ANN 

model incorporates nine input parameters - FO run details, temperatures, 

concentrations, flow rates and draw solution molecular weights - to predict permeate 

fluxes. The model was developed using 312 experimental data points collected 

during 120-minute FO runs with various draw solutions. The techno-economic 

assessment evaluates both operating expenditures (OPEX) and capital expenditures 

(CAPEX) for the FO process and phase separation (PS) draw regeneration.  

Chapter 7 presents the conclusions and major findings of the research on phase-

separating organic draw solutions in FO desalination. The chapter outlines significant 

research outcomes and provides recommendations for future applications. Key 

suggestions are presented to guide researchers interested in advancing the study of 

phase-separating organic draw solutions in FO desalination. The thesis utilizes a 

chapter-wise reference system to ensure clear organization and easy access to source 

materials. 
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CHAPTER 2 

THEORY AND MODELING 

The initial section of this chapter centres on the theoretical foundations and 

underlying assumptions of the data-driven modeling approach employed for FO 

desalination, specifically the utilization of Artificial Neural Networks (ANNs). The 

latter portions of the chapter delve into the theory and assumptions underpinning the 

techno-economic assessment of the forward osmosis-phase separation system. 

2.1 Modeling of FO desalination processes 

2.1.1 Introduction  

The modeling of FO processes can be approached through two primary methods: 

transport-based models and data-driven models [1]. The transport-based models 

include the Solution-Diffusion (S-D) and Spiegler-Kedem (S-K) models, which rely 

on theoretical principles of solute and solvent transport [1]. In contrast, data-driven 

models leverage machine learning techniques to derive predictive relationships from 

empirical data [1]. 

2.1.2 Transport-based models 

2.1.2.1 Solution-Diffusion model 

The solution-diffusion model is widely used to explain mass transport in membrane 

separation processes like RO [2]. It postulates that the membrane’s internal pressure 

is uniform [2]. Furthermore, the model stipulates that the chemical potential gradient 

across the membrane manifests solely as a variation in concentration [2]. This model 

adopts the solution-diffusion mechanism to describe the transport of water and 

solutes across the membrane [2]. The permeating species initially dissolves into the 

membrane material, followed by diffusion through the membrane due to a driving 

force [2, 3]. 
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Figure 2.1: Solution-diffusion model (Source: Wijmans & Baker [2]) 

 

Using the classical solution diffusion model for FO processes, the water flux can be 

expressed using the equation [4 – 9]. 

𝐽𝑊 = 𝐴𝛿(𝜋𝐷 − 𝜋𝐹) = 𝐴𝛿∆𝜋 = 𝐴∆𝜋                                                                      (2.1) 

where, 𝐽𝑊 is the water flux (L/m2h or LMH), A is the membrane hydraulic 

permeability coefficient (L m-2 h-1 bar-1), δ is the reflection coefficient of the FO 

membrane, 𝜋𝐷 is the osmotic pressure of the draw solution (bar) at the membrane 

surface, 𝜋𝐹 is the osmotic pressure of the feed solution (bar) at the membrane surface 

and ∆π is the net osmotic pressure (bar). 

The Van't Hoff equation establishes a quantitative relationship between a solution's 

osmotic pressure and its solute concentration [10 – 12] 

𝜋𝐹𝑏
= 𝑛𝑚𝑅𝑇                                                                                                           (2.2) 

where, πFb
 is the bulk osmotic pressure of the feed solution (bar), 𝑚 is the solute 

molar concentration, 𝑛 is the Van’t Hoff factor (i.e. 2 for NaCl), 𝑅 is the universal 

gas constant (0.08206 L-atm/mol/K) and 𝑇 is the temperature in Kelvin.  

The osmotic pressure of the draw or feed solutions can also be determined from the 

water activity using the equation [13] 
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𝜋 =  −
𝑅𝑇

𝑉𝑖
ln 𝑎𝑖                                                                                                         (2.3) 

where π is the osmotic pressure of the solution, 𝑅 is gas constant (J/mol.K), 𝑇 is the 

temperature of solution (K), 𝑉𝑖 is the molar volume, and 𝑎𝑖 is the water activity of 

solution in m3/mole. Since pure water has a water activity of 1, its osmotic pressure 

is inherently zero. Therefore, when using distilled water as the feed in FO or PRO, 

the driving force, represented by the difference in osmotic pressure, can be 

approximated as solely arising from the draw solution's osmotic pressure [13]. 

The solute flux (Js) is given by the expression  

𝐽𝑠 = 𝐵∆𝐶                                                                                                                 (2.4) 

where 𝐵 is the solute permeability coefficient, and ∆𝐶 is the concentration difference 

between the draw and feed solutions [14, 15] 

While the solution-diffusion model offers advantages in simplicity and aligns with 

basic mass transfer principles, it possesses limitations. Notably, it does not account 

for concentration polarization phenomena [16]. Phuntsho et al. [17] presented 

expressions to capture the influence of both ECP and internal concentration 

polarization (ICP) of asymmetric FO membranes 

𝜋𝐹,𝑚 = 𝜋𝐹,𝑏 exp (
𝐽𝑤

𝑘𝑓
)                                                                                              (2.5) 

𝜋𝐷,𝑖 = 𝜋𝐷,𝑏 exp(−𝐽𝑤𝐾𝐷)                                                                                         (2.6) 

where, 𝜋𝐹,𝑚 denotes the osmotic pressure of the feed solution on the FO membrane 

active layer, 𝜋𝐹,𝑏 represents the bulk osmotic pressure of the feed solution and 𝑘𝑓 is 

the mass transfer coefficient of the feed side boundary layer, 𝜋𝐷,𝑖 is the osmotic 

pressure inside the porous support layer, 𝜋𝐷,𝑏 and 𝐾𝐷 is the solute resistivity for 

diffusion of draw solutes within the porous support layer. The solute resistance to 

diffusion within the membrane support layer is given by the equation [17, 18]. 

𝐾𝐷 =
𝑡𝜏

𝐷𝐷𝜀
                                                                                                                 (2.7) 
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where 𝑡 is the thickness of the FO membrane support layer, τ is the tortuosity of the 

membrane support layer, ε is the porosity of the membrane support and 𝐷𝐷 is the 

diffusion coefficient of the draw solution. The mass transfer coefficient of the feed 

solution, 𝑘𝑓 is given by the equation [17] 

𝑘𝑓 =
𝑆ℎ𝐷𝐹

𝑑ℎ
                                                                                                                 (2.8) 

where 𝑆ℎ is the Sherwood number, 𝐷𝐹  is the diffusion coefficient of the feed solution 

and  𝑑ℎ is the hydraulic diameter of the feed channel. The Sherwood number can be 

expressed on whether the fluid flow is laminar or turbulent using the equations [19] 

𝑆ℎ = 1.85 (𝑅𝑒
𝜂𝐹

𝜌𝐹𝐷𝐹

𝑑ℎ

𝑃
)

0.33

 for laminar flow                                                          (2.9) 

𝑆ℎ = 0.04𝑅𝑒 (
𝜂𝐹

𝜌𝐹𝐷𝐹
)

0.33

 for turbulent flow                                                          (2.10) 

where 𝑅𝑒 is the Reynolds number, 𝜂𝐹 is the absolute viscosity of the feed solution, 

𝜌𝐹 is the density of the feed solution and 𝑃 is the channel length (m). The Reynolds 

number is given by the expression [20, 21]  

𝑅𝑒𝐹 =
𝑑ℎ𝑣𝐹𝜌𝐹

𝜂𝐹
                                                                                                         (2.11) 

The Diffusion coefficient of NaCl feed solutions, 𝐷𝐹 can also be determined using 

OLI Stream Analyzer™ (OLI Systems, Inc.), with the average diffusion coefficient 

value, 𝐷𝐹𝑎𝑣𝑔
, expressed using the equation [22] 

𝐷𝐹𝑎𝑣𝑔
=

|𝑍1|+|𝑍2|

(
|𝑍2|

𝐷1
)+(

|𝑍1|

𝐷2
)
                                                                                                (2.12) 

where 𝑍1 is the sodium ion charge, 𝑍2 is the chloride ion charge, 𝐷1 is the diffusion 

coefficient of sodium ion and 𝐷2 is the diffusion coefficient of chloride ion.  

The diffusion coefficients of draw solutions can be estimated using the Wilke-Chang 

equation [23 – 28].  
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𝐷12 = 7.4 × 10−8 (∅𝑀1)0.5𝑇

𝜇1(𝑉𝑇𝑐,𝑏𝑝,2)
0.6                                                                             (2.13) 

𝑉𝑇𝑐,𝑏𝑝,2 = 0.285 × 𝑉𝑐,2
1.048                                                                                      (2.14) 

where 𝐷12 is the binary diffusion coefficient in cm2/s, ∅ is the association factor of 

the solvent (2.26 for water), 𝑇 is the temperature (K), 𝑀1 is the molecular weight of 

the solvent (18 g/mol for water), 𝜇1 is the solvent viscosity (0.7972 cP for water at 

303K), 𝑉𝑇𝑐,𝑏𝑝,2 is the solute molar volume at normal boiling temperature in cm3/mol 

and 𝑉𝑐,2 is the solute critical volume in cm3/mol i.e. 
𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 (

𝑔

𝑚𝑜𝑙
)

𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 (
𝑔

𝑐𝑚3)
 

The water and solute fluxes are then predicted using the equations [17, 18] 

𝐽𝑤 = 𝐴𝜎 [𝜋𝐷 exp(−𝐽𝑤𝐾𝐷) − 𝜋𝐹 exp (
𝐽𝑤

𝑘𝑓
)]                                                           (2.15)    

𝐽𝑠 = 𝐵 [
(𝜋𝐷 exp(−𝐽𝑤𝐾𝐷)−𝜋𝐹 exp(−

𝐽𝑤
𝑘𝑓

))

1+
𝐵

𝐽𝑤
(exp(−

𝐽𝑤
𝑘𝑓

) −exp(−𝐽𝑤𝐾𝐷))

]                                                                    (2.16)       

2.1.2.2 Limitations of the Solution-Diffusion model 

Yong et al. [29] investigated the water fluxes produced by three neutral draw solutes 

- urea, ethylene glycol and glucose - using a commercial asymmetric FO membrane. 

The experimental measurements showed that the water fluxes generated by these 

solutes were consistently lower than the theoretical predictions of the established 

models. This discrepancy persisted even after accounting for the impact of external 

concentration polarization (ECP).  

Yong et al. [29] attributed this behaviour to a coupling between the forward water 

flux and the reverse solute flux and they introduced a reflection coefficient to capture 

this solute-solvent coupling. 

The elegance of the solution-diffusion (S-D) model lies in its simplicity, providing an 

intuitive approach to membrane transport phenomena [2, 30]. However, the 

applicability of Equations 2.15 and 2.16 in the S-D model is primarily limited to 
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binary draw solutes. Foo et al. [31] noted that the model's accuracy diminishes for 

ternary or multi-component draw solutions, with errors reaching up to 66%. To 

address this limitation, Foo et al. developed a multicomponent solution-diffusion 

model, an extension of the binary model, which incorporated multicomponent 

diffusion theory. With access to the necessary multicomponent diffusion coefficients, 

their model's average absolute deviation was reduced from 21% to 3% for seven 

distinct ternary mixtures [31]. 

Ibrar et al. [32] further emphasized that the limited availability of data on the 

diffusion coefficients of multi-component electrolyte draw solutions complicates the 

determination of mass transfer coefficients and solute resistance to diffusion in the 

FO process. 

Given the inadequacy of the S-D model in addressing multi-component draw 

solution systems, as demonstrated by Foo et al. [31] and Ibrar et al. [32], as well as 

its limitations in modeling neutral draw solutions, as shown by Yong et al. [29], this 

work presents an alternative approach to modeling novel binary and ternary organic 

draw solutions developed in our studies. Specifically, this work opts for data-driven 

modeling utilizing Artificial Neural Networks (ANNs), given the lack of literature 

data on the diffusion coefficients of the novel binary mono propylene glycol propyl 

ether (PGPE) and the ternary systems of hydroxypropyl cellulose–propylene glycol 

propyl ether (HPC–PGPE) and sodium carboxymethyl cellulose–propylene glycol 

propyl ether (NaCMC–PGPE). 

2.1.3 Introduction to data-driven modeling 

2.1.3.1 Artificial neural networks (ANN) 

ANN is one of the foremost data-driven approaches to modeling membrane-based 

systems. ANNs have emerged as powerful tools for modeling and optimizing these 

complex systems by effectively capturing intricate relationships between various 

operating parameters. ANN algorithm learns the basic relationship present in terms 

of input data and utilizes that knowledge to predict the output data. The satisfactory 
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performance of ANN in giving accurate predictions from non-linear complex 

datasets makes it more suitable for membrane-based operations. 

2.1.3.2 Fundamental principles of ANNs 

ANNs mimic biological neural systems through layers of interconnected neurons that 

process information through weighted connections [1]. The network architecture 

consists of an input layer, hidden layers containing multiple neurons and an output 

layer, all connected by adjustable weights [1]. During training, data flows through 

the network and the system compares predictions to actual values, continuously 

adjusting weights to minimize errors [1]. Key parameters such as activation 

functions, layer configuration, learning rate and weight coefficients are fine-tuned 

throughout this process [1]. By iteratively adjusting these parameters using training 

data, the network learns to recognize patterns and improves its predictive accuracy 

for complex problems [1]. 

The basic architecture of ANNs consists of interconnected neurons organized into 

three main layers:  

▪ Input Layer: receives initial data for processing 

▪ Hidden Layers: processes inputs through one or more intermediate layers 

▪ Output Layer: produces the final predictions 

The neurons are connected through weighted links, which are adjusted during 

training to optimize predictions. The activation functions comprise of non-linear 

functions that enable the network to capture complex patterns in the data. The log-

sigmoid and tan-sigmoid transfer functions are given using the equations [1] 

𝐿𝑜𝑔 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =  
1

1−𝑒−𝑧                                                                                      (2.17) 

𝑇𝑎𝑛 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =  
𝑒2𝑧−1

𝑒2𝑧+1
                                                                                      (2.18) 

where 𝑧 represents the initialized weight of the neuron. 
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2.1.3.3 Core assumptions 

▪ Black-box modeling: ANNs learn patterns from data without explicitly 

representing underlying physical processes 

▪ Nonlinear relationships: The network can capture complex, nonlinear 

interactions common in FO processes 

▪ Data requirements:  

o Sufficient quantity and quality of training data 

o Statistical independence of training samples 

o Generalization capability to unseen scenarios 

2.1.4 Implementation procedure 

The following section describes the procedures followed in modeling the novel 

phase-separating draw solutions for FO processes using ANNs in this work.  

2.1.4.1 Data gathering 

The dataset used in this study comprises 312 experimental data points, which are 

presented in Table AP-1 Appendix section. These data were obtained from FO 

experiments using binary or ternary organic draw solutions, including 0.25HPC-

3.75PGPE, 0.5HPC-3.75PGPE, 0.75HPC-3.75PGPE, 0.5NaCMC-3.75PGPE, 

40PGPE and 0.5NaCMC-20PGPE. Each FO experiment, an FO run, was conducted 

for 120 minutes, with the number of runs varying for each specific draw solution. 

The experimental water flux was measured at 10-minute intervals throughout each 

120-minute FO run, providing the data points used for modeling. Table 2.1 presents 

the input variables and their respective ranges employed in the modeling process.  
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Table 2.1: Input variables of the dataset 

Input variables Range Units 

FO runs 1 – 4 - 

Time for each FO run 120 mins 

Feed side temperature 25 – 30 oC 

Feed side concentration 0.0181 – 0.6519 M 

Feed side flow rate 9 – 24 L/h 

Draw side temperature 25 – 30 oC 

Draw side concentration 1.9598 – 38.4661 M 

Draw side molecular weight 118.17 - 120.17 g mol-1 

Draw side flow rate 9 – 24 L/h 

 

The molecular weights of the draw solutions were determined by calculating the 

weighted average of their constituent components' molecular masses, defined as the 

ratio of total molecular mass to the total number of molecules in the system. The 

molecular weights for 0.25HPC-3.75PGPE, 0.5HPC-3.75PGPE, 0.75HPC-

3.75PGPE, 0.5NaCMC-3.75PGPE, 40PGPE and 0.5NaCMC-20PGPE were 118.84, 

119.50, 120.17, 119.50, 118.17 and 118.42 g mol-1, respectively. Notably, these 

values closely approximate the molecular weight of PGPE. 

2.1.4.2 Pre-processing step: Normalizing data 

The data can be normalized by employing the equation [1] 

𝑦 = [
(𝑦𝑚𝑎𝑥−𝑦min)(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
] + 𝑦𝑚𝑖𝑛                                                                         (2.19) 

where 𝑦 represents the normalised 𝑥 value, 𝑥𝑚𝑎𝑥 represents the maximum value of 

the dataset, 𝑥𝑚𝑖𝑛 is the minimum value of the dataset, 𝑦𝑚𝑎𝑥 is 1 and 𝑦𝑚𝑖𝑛 is 0.  
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2.1.4.3 Pre-processing step: Data splitting 

The normalized dataset was imported into MATLAB and partitioned into three 

subsets: training, validation and test sets as shown in Table 2.2 

Table 2.2: Data partitioning 

FO raw dataset 1st Ratios 2nd Ratios 3rd Ratios 

Training 70% 80% 90% 

Validation 15% 10% 5% 

Testing 15% 10% 5% 

 

2.1.4.4 Network Architecture Design 

The input, hidden and output layers of the ANN network consisting of neurons are 

shown in Figure 2.2. 

 

Figure 2.2: Artificial neural network architecture 

2.1.4.5 ANN training 

The artificial neural network was trained using the Levenberg-Marquardt algorithm 

implemented in MATLAB R2022a. The training process encompassed weight and 



 

70 
 

bias initialization, forward and backward propagation, optimization, convergence 

monitoring, hyperparameter tuning and regularization to mitigate overfitting. In this 

work, the ANN training was done following the procedures from Mahawer et al. [1] 

as shown in Figure 2.3 

 

Figure 2.3: ANN training procedure adapted from [1] 

2.1.4.6 Model validation and evaluation 

The ANN model was evaluated using the R2 values and mean square errors [33 – 35] 
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𝑅2 =  1 −
∑ (𝑌𝑖̂− 𝑌𝑡)2𝑛

𝑖=1

∑ (𝑌𝑖̂−𝑌̅)2 𝑛
𝑖=1

                                                                                            (2.20) 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √
1

𝑛
∑ (𝑌𝑖̂ − 𝑌𝑡)

2
  𝑛

𝑖=1                                (2.21)  

where n represents the total data points, 𝑌𝑖̂ is the predicted value, 𝑌𝑡 is the target 

result and 𝑌̅ is the mean of the data. The coefficient of determination, R2, is a crucial 

metric for assessing model performance. Models that exhibit R2 values greater than 

0.9 are generally regarded as highly satisfactory, indicating strong predictive 

capability [33]. Those with R2 values ranging from 0.8 to 0.9 are considered 

acceptable, while models yielding R2 values below 0.8 are typically deemed 

unsatisfactory [33].  

2.2 Techno-economic assessment (TEA) 

Most assumptions and formulas used for the techno-economic assessment of the 

ternary HPC-PGPE, NaCMC-PGPE and binary PGPE organic draw systems were 

based on previous methodologies [36 – 39]. The TEA assumed a full-scale FO plant 

with an operational capacity of 160 m3 d-1, positing that membrane parameters 

derived from laboratory-scale experimental data could be directly extrapolated to 

full-scale operations. The ternary 0.5NaCMC-20PGPE draw solution was chosen as 

the draw solution for desalinating seawater.  Figure 2.4 illustrates the schematic of 

the FO-PS process used for the economic evaluation. 

The calculation of CAPEX and OPEX for both the FO and PS processes was 

predicated on multiple assumptions comprehensively presented in Table 2.3. The 

efficiency of the FO-PS system was contingent upon the regeneration and reuse of 

draw solutions and the utilization of industrial waste energy as the thermal source for 

the phase separation process. 
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Figure 2.4: Schematic of FO-PS process used for economic evaluation 

Table 2.3: Assumptions for OPEX and CAPEX calculations 

Economic or Plant parameter Value Unit Ref 

FO plant capacity 160 m3 d-1 [36] 

FO plant lifetime, 𝑛 20 yr [36] 

FO Interest rate, 𝑖 6 % [36] 

FO electricity cost, 𝐷𝐸𝑙𝑒 0.08 $ kWh-1 [36] 

Unit cost of the FO membrane, 𝐶𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 30 $ m-2 [40] 

Total area of the FO membrane, 

𝐴𝑟𝑒𝑎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 

27 m2 [36] 

Feed solution flow rate, 𝑄𝐹𝑆 75 m3 h-1 - 

Draw solution flow rate, 𝑄𝐷𝑆 100 m3 h-1 - 

Pressure drop for FS pump, 𝑝𝐹𝑆 2 bar [36] 

Pressure drop for DS pump, 𝑝𝐷𝑆 0.5 bar [36] 

Annual operating cost of pre-treatment, 

𝑂𝐶𝑝𝑟𝑒𝐹𝑂  

0.15 kWh m-3 of feed [36] 
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FO operation time per day, 𝑡 20 h [36] 

Cost of the draw solution, 𝐶𝐷𝑆 1.73 $ kg-1 - 

FO pump efficiency, 𝜂𝑝𝑢𝑚𝑝 0.85 - [36] 

Lifetime of the FO membrane, 𝑛𝑀𝑒𝑚 5 yr [36] 

Draw solution drainage frequency per day, 

𝑓𝐷𝑆 

1 - [36] 

Molar mass of the ternary draw solution, 𝑀𝐷𝑆 118.42 g mol-1 - 

Plant loading factor, 𝑃𝐿𝐹 0.91  [41] 

PS maintenance costs 4 % [41] 

PS operator costs 84 103.25 $ yr-1 [41] 

PS plant operating hours per year 8000 h [41] 

 

The TEA contains several inherent limitations that must be acknowledged. The 

CAPEX and OPEX formulas for the stand-alone FO process were adapted from 

Zarebska-Mølgaard et al. [36], while the corresponding PS draw regeneration 

process formulas were based on industrial waste heat recovery systems [41]. Since 

FO technology has not been commercialized at scale, all cost equations derive from 

theoretical projections rather than actual commercial plant operations. The linear 

scaling relationships employed may not accurately represent the true nature of scale 

during the transition from laboratory scale to full commercial scale. Membrane 

performance parameters were extrapolated from short-term laboratory studies and 

may not reflect long-term commercial operation conditions, where membrane 

fouling, degradation, and replacement cycles could differ substantially from 

controlled experimental conditions. The model assumes constant values for critical 

economic parameters such as a 6% interest rate, $ 0.08/kWh electricity cost and 20-

year plant lifetime without accounting for market volatility or regional variations that 

significantly impact project economics. Additionally, the model assumes continuous 

operation at design capacity with fixed operational parameters, which does not 

reflect real-world variability including maintenance downtime, process optimization 

adjustments and variable feed water quality. The absence of commercial FO plants 
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eliminates benchmarking opportunities against actual operational data, preventing 

validation of cost estimates or identification of systematic modeling biases. 

2.2.1 CAPEX for stand-alone FO process 

The capital cost for the stand-alone FO process was contingent upon both direct and 

indirect capital costs [36]. The pumping costs for both feed and draw solution pumps, 

𝐶𝐶𝑝𝑢𝑚𝑝𝐹𝑆/𝐷𝑆
 ($), depended on the applied pressures, 𝑝𝐹𝑆/𝐷𝑆 (bar) and the flow rates, 

𝑄𝐹𝑆/𝐷𝑆 (m3 h-1) 

𝐶𝐶𝑝𝑢𝑚𝑝𝐹𝑆/𝐷𝑆
= 52 × (𝑝𝐹𝑆/𝐷𝑆  ×  𝑄𝐹𝑆/𝐷𝑆)                                                           (2.22) 

𝐶𝐶𝑝𝑢𝑚𝑝𝐹𝑆/𝐷𝑆
= 81 × (𝑄𝐹𝑆/𝐷𝑆 × 𝑝𝐹𝑆/𝐷𝑆)0.96                                                        (2.23) 

Equation 2.22 is applicable for pump flow rates less than 200 m3 h-1, while Equation 

2.23 applies for pump flow rates exceeding 200 m3 h-1 but less than 450 m3 h-1 [40]. 

The capital cost of the FO membrane, 𝐶𝐶𝑀𝑒𝑚𝐹𝑂
 ($), was calculated based on the total 

area of the FO membrane, 𝐴𝑟𝑒𝑎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 (m2) and the unit cost of the FO 

membrane, 𝐶𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ($ m-2) 

𝐶𝐶𝑀𝑒𝑚𝐹𝑂
=  𝐴𝑟𝑒𝑎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 × 𝐶𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒                                                            (2.24) 

The capital cost of the equipment, 𝐶𝐶𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝐹𝑂
 ($), encompassed the sum of the 

capital costs of the individual feed and draw solution pumps and the FO membrane 

𝐶𝐶𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝐹𝑂
=  𝐶𝐶𝑝𝑢𝑚𝑝𝐹𝑆 + 𝐶𝐶𝑝𝑢𝑚𝑝𝐷𝑆 + 𝐶𝐶𝑀𝑒𝑚𝐹𝑂                                        (2.25) 

The capital cost of site development, 𝐶𝐶𝑆𝑖𝑡𝑒𝐹𝑂
 ($), was assumed to be 20% of the 

capital cost of the equipment 

𝐶𝐶𝑆𝑖𝑡𝑒𝐹𝑂
=  𝐶𝐶𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝐹𝑂

 × 0.2                                                                         (2.26) 

The direct capital cost, 𝐷𝐶𝐶𝐹𝑂 ($), was the aggregate of the capital cost of the 

equipment and the capital cost of site development 

𝐷𝐶𝐶𝐹𝑂 =  𝐶𝐶𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝐹𝑂
+  𝐶𝐶𝑆𝑖𝑡𝑒𝐹𝑂

                                                                   (2.27) 
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The indirect capital costs, 𝐼𝐶𝐶𝐹𝑂 ($), were assumed to constitute 30% of the direct 

capital cost 

𝐼𝐶𝐶𝐹𝑂 =  𝐷𝐶𝐶𝐹𝑂  × 0.3                                                                                         (2.28) 

The total capital costs, 𝑇𝐶𝐶𝐹𝑂 ($), of the FO process was the sum of the direct and 

indirect capital costs  

𝑇𝐶𝐶𝐹𝑂 =  𝐷𝐶𝐶𝐹𝑂 + 𝐼𝐶𝐶𝐹𝑂                                                                                   (2.29) 

The total annual capital cost, 𝐴𝐶𝐶𝐹𝑂 ($), was determined from the total capital costs, 

the lifetime of the plant, 𝑛, and the interest rate,  𝑖. 

𝐴𝐶𝐶𝐹𝑂 =  𝑇𝐶𝐶𝐹𝑂
𝑖(1+𝑖)𝑛

(1+𝑖)𝑛−1
                                                                                      (2.30) 

2.2.2 OPEX for stand-alone FO process 

The operating cost associated with power consumption during the standalone FO, 

𝑂𝐶𝑃𝑜𝑤𝑒𝑟𝐹𝑂
 ($), was a function of the annual operating cost of pre-treatment, 

𝑂𝐶𝑝𝑟𝑒𝐹𝑂 , operating cost of the feed solution pump, 𝑂𝐶𝑝𝑢𝑚𝑝𝐹𝑆  and operating cost of 

the draw solution pump 𝑂𝐶𝑝𝑢𝑚𝑝𝐷𝑆  

𝑂𝐶𝑃𝑜𝑤𝑒𝑟𝐹𝑂
= (𝑂𝐶𝑝𝑟𝑒𝐹𝑂 + 𝑂𝐶𝑝𝑢𝑚𝑝𝐹𝑆 + 𝑂𝐶𝑝𝑢𝑚𝑝𝐷𝑆 )  × 365                               (2.31) 

The operating cost of the feed or draw solution pumps, 𝑂𝐶𝑝𝑢𝑚𝑝𝐹𝑆/𝐷𝑆
, was a function 

of the extrapolated pressure drop, ∆𝑃𝐹𝑂𝐹𝑆/𝐷𝑆 , operation time,  𝑡, the efficiency of the 

pumps, 𝜂𝑝𝑢𝑚𝑝, FO electricity cost, 𝐷𝐸𝑙𝑒 and the Plant loading factor, 𝑃𝐿𝐹 [39] 

𝑂𝐶𝑝𝑢𝑚𝑝𝐹𝑆/𝐷𝑆
=  

0.028 × ∆𝑃𝐹𝑂𝐹𝑆/𝐷𝑆  × 𝑄𝐹𝑆/𝐷𝑆 × 𝑡 × 𝐷𝐸𝑙𝑒 ×𝑃𝐿𝐹

𝜂𝑝𝑢𝑚𝑝
                                        (2.32) 

The operating cost of membrane replacement, 𝑂𝐶𝑀𝑅𝐹𝑂
 ($), was determined from the 

capital cost of the FO membrane, interest rate and the lifetime of the FO membrane, 

𝑛𝑀𝑒𝑚.  

𝑂𝐶𝑀𝑅𝐹𝑂
=  

𝐶𝐶𝑀𝑒𝑚𝐹𝑂
 × 𝑖 

[1−(1+𝑖)−𝑛𝑀𝑒𝑚]
                                                                                     (2.33) 
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The operating cost of the draw solution, 𝑂𝐶𝐷𝑆, was a function of the frequency of 

draw solution drainage per day, 𝑓𝐷𝑆, cost of the 0.5NaCMC-20PGPE draw solution, 

𝑐𝐷𝑆, the concentration of the draw solution at the inlet, 𝐶𝐷𝑆 and the molar mass of the 

ternary draw solution, 𝑀𝐷𝑆. 

𝑂𝐶𝐷𝑆 =  𝑓𝐷𝑆 × 𝐶𝐷𝑆 × 𝑄𝐷𝑆 × 𝑀𝐷𝑆 × 𝑐𝐷𝑆                                                               (2.34) 

The operating costs associated with other ancillary parameters, including labour, 

maintenance and cleaning chemicals, were estimated to constitute 55% of the total 

operating capital cost. 

𝑂𝐶𝑒𝑡𝑐𝐹𝑂 =  
𝑂𝐶𝑀𝑅𝐹𝑂 + 𝑂𝐶𝐷𝑆+𝑂𝐶𝑝𝑟𝑒𝐹𝑂

+𝑂𝐶𝑝𝑢𝑚𝑝𝐹𝑆/𝐷𝑆
 

45%
× (1 − 45%)                            (2.35) 

The annual operating cost, 𝐴𝑂𝐶𝐹𝑂, was the total costs associated with power 

consumption, membrane replacement and other operational costs. 

𝐴𝑂𝐶𝐹𝑂 = 𝑂𝐶𝑃𝑜𝑤𝑒𝑟𝐹𝑂
+ 𝑂𝐶𝑀𝑅𝐹𝑂

+  𝑂𝐶𝑒𝑡𝑐𝐹𝑂                                                         (2.36) 

Thus, for the standalone FO process, the total water production cost, 𝑊𝐶𝐹𝑂, was 

based on the total annual capital cost, annual operating cost, permeate flow (m3 d-1) 

and the plant loading factor, 𝑃𝐿𝐹. 

𝑊𝐶𝐹𝑂 =
𝐴𝐶𝐶𝐹𝑂+𝐴𝑂𝐶𝐹𝑂

365× 𝑄𝑝×𝑃𝐿𝐹
                                                                                            (2.37) 

2.2.3 CAPEX for PS draw regeneration process 

Using waste heat can appreciably decrease the overall cost associated with the draw 

regeneration process of the novel organic draw solute systems. The installed 

equipment cost was contingent upon the cost and installation factor for each. The 

installation factors for the steam pipelines, storage tanks, heat exchangers, pumps 

and condensers were 1.60, 6.13, 3.45 – 4.90, 12.24 and 9.84, respectively [41].   

𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡 ($) = 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 ($) ×

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟                                                                        (2.38) 

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡 ($) = ∑(𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠)    (2.39) 
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The yearly CAPEX ($ yr-1) depended upon the total installed cost and an annualized 

factor.  

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =  ∑ [
1

(1+𝑝)𝑛]𝑛=1
24                                                                   (2.40) 

where, 𝑝 is the interest rate. 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 =  
𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟
                                                           (2.41) 

2.2.4 OPEX for PS draw regeneration process 

The PS process's annual OPEX was contingent upon maintenance, operators, 

electricity and cooling costs.  

𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡 (
$

𝑦𝑟
) = 𝑃𝑢𝑚𝑝 𝐸𝑓𝑓𝑒𝑐𝑡 (𝑘𝑊) ×

𝑂𝑝𝑒𝑟.ℎ𝑟𝑠

𝑦𝑒𝑎𝑟
 ×

𝐸𝑙. 𝑝𝑟𝑖𝑐𝑒 (
$

𝑘𝑊ℎ
)                                                                                                  (2.42) 

𝑌𝑒𝑎𝑟𝑙𝑦 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 (
$

𝑦𝑟
) = 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟 (

𝑚3

ℎ𝑟
) ×  

𝑂𝑝𝑒𝑟.ℎ𝑟𝑠

𝑦𝑒𝑎𝑟
 ×

𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 (
$

𝑚3)                                                                                (2.43) 

𝑌𝑒𝑎𝑟𝑙𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 ($) =  ∑(𝑌𝑒𝑎𝑟𝑙𝑦 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 +

𝑌𝑒𝑎𝑟𝑙𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑐𝑜𝑠𝑡 + 𝑌𝑒𝑎𝑟𝑙𝑦 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 + 𝑌𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡)   (2.44) 

𝑇𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡𝑠 (
$

𝑦𝑟
) = 𝐶𝐴𝑃𝐸𝑋 (

$

𝑦𝑟
) + 𝑂𝑃𝐸𝑋 (

$

𝑦𝑟
)                                   (2.45) 

The cost of steam ($ ton-1) depended on the total yearly costs, the amount of steam 

produced and the total operating hours of the plant. 

𝑆𝑡𝑒𝑎𝑚 𝑐𝑜𝑠𝑡 (
$

𝑡𝑜𝑛
) =  

𝑌𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡 (
$

𝑦𝑟
)

𝑆𝑡𝑒𝑎𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (
𝑡𝑜𝑛

ℎ𝑟
) × 𝑃𝑙𝑎𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 (

ℎ𝑟𝑠

𝑦𝑒𝑎𝑟
)
                (2.46) 
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CHAPTER 3 

EXPERIMENTAL SETUP AND PROCEDURE 

3.1 Raw materials/chemicals 

In this study, the following raw materials/chemicals were employed 

▪ Propylene glycol propyl ether (PGPE) 

▪ Hydroxypropyl cellulose (HPC) 

▪ Sodium carboxymethyl cellulose (NaCMC) 

▪ Sodium chloride (NaCl) 

▪ Commercial asymmetric cellulose triacetate (CTA) membrane  

3.1.1 Specification and Sources of raw materials/chemicals 

Specifications and sources of the raw materials and chemicals used in the 

development and analysis of novel phase-separating organic draw solutions are given 

in Table 3.1 

Table 3.1: Specification and sources of raw materials/chemicals 

Sr. No. Chemical/Raw 

material 

Source Specification 

1.  Propylene glycol 

propyl ether 

Sigma-Aldrich, 

India 

molecular weight of 118.17 Da, 99% 

purity, viscosity of 2.389 mPa.s at 25 oC 

and density of 0.885 g/mL at 25 oC 

2.  

 

Hydroxypropyl 

cellulose 

ThermoFisher 

Scientific, India 

molecular weight of 100 000 and 

viscosity of 75 – 150 mPa.s for 5% 

aqueous solution 

3.  Sodium 

carboxymethyl 

cellulose 

Sigma-Aldrich, 

India 

molecular weight of 90 000, 0.7 

carboxymethyl groups per anhydro 

glucose unit, density of 1.59 g/cm3, 

viscosity of 50 – 200 mPa.s for 4% in 

water at 25 oC 

4.  Sodium chloride ThermoFisher 

Scientific, India 

Analytical reagent grade and > 99.5% 

purity 

5.  CTA membrane Hydration 

Technology 

Inc., Albany, 

OR, USA 

Harvested commercial OsMem2521FO-

MS-CTA-P-3H membrane 

 



 

83 
 

3.2 Research Methodology 

The methodology used to achieve the objectives of the research work is divided into 

the following sections 

▪ Preparation and nomenclature of draw solutions 

▪ Properties of the feed solution 

o Concentration 

o Osmotic pressure 

o Density 

▪ Properties of the draw solution 

o Osmotic pressure 

o Dynamic viscosity 

o pH 

o Density and Concentration 

▪ Draw solution regeneration potential 

▪ FO membrane and draw solution compatibility study 

o Using Scanning Electron Microscopy (SEM) 

o Using ImageJ software 

▪ Phase-separation tests 

▪ Membrane parameters 

o Membrane hydraulic permeability constant 

o Solute permeability coefficient 

o Reflection coefficient 

3.2.1 Preparation and nomenclature of draw solutions 

The draw solutes were dissolved in double RO water. Equal volumes of the cellulose 

derivative solution and the PGPE solution were dissolved separately. These two 

solutions were then combined and allowed to dissolve together at room temperature 

to form the final designated ternary draw solution. 

In the nomenclature of the draw solutions, the numerical value preceding the 

polyelectrolyte, NaCMC, or the cellulose derivative, HPC, signifies its weight 

percentage (wt.%). The numerical value before PGPE denotes its molarity (M).  
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For instance, the draw solution designated as "0.5NaCMC-3.75PGPE" represents a 

draw solution comprising 0.5wt.% NaCMC and 3.75 M PGPE solution. 

Four binary and six ternary draw solutions were prepared using various combinations 

of PGPE and NaCMC for the NaCMC-PGPE system in desalinating brackish water. 

The binary draw solutions were 0.5NaCMC, 1NaCMC, 2NaCMC and 3.75PGPE. 

The ternary draw solutions were 1NaCMC-1.25PGPE, 1NaCMC-2.5PGPE, 

1NaCMC-3.75PGPE, 0.25NaCMC-1.25PGPE, 0.5NaCMC-2.5PGPE and 

0.5NaCMC-3.75PGPE. For seawater desalination, higher concentration draw 

solutions of 40PGPE and 0.5NaCMC-20PGPE were prepared. For the HPC-PGPE 

system, a total of sixteen distinct single-solute and ternary organic draw mixtures 

were prepared. These draw solutions were named 0.5HPC, 1HPC, 1.5HPC, 2HPC, 

0.25HPC-1.25PGPE, 0.5HPC-1.25PGPE, 0.75HPC-1.25PGPE, 1HPC-1.25PGPE, 

0.25HPC-2.5PGPE, 0.5HPC-2.5PGPE, 0.75HPC-2.5PGPE, 1HPC-2.5PGPE, 

0.25HPC-3.75PGPE, 0.5HPC-3.75PGPE, 0.75HPC-3.75PGPE and 1HPC-

3.75PGPE.  

3.2.2 Properties of the feed solution 

3.2.2.1 Concentration 

The present work adopted the method proposed by Di Noto and Mecozzi [1] for 

determining NaCl concentrations, which was thoroughly analyzed through 

experimentation and modeling by Peters [2]. At a wavelength of 206 nm, Peters 

demonstrated a linear relationship between molarity and absorbance for NaCl 

solutions, with an R2 value of 0.9836.  Di Noto and Mecozzi, as well as Peters, 

reported a maximum absorbance for NaCl solutions around 200 nm. On the other 

hand, Tong et al. [3] observed the peak at 197 nm.  

The feed solution concentrations were determined using an Eppendorf Bio 

Spectrometer for the 5000 ppm and 35 000 ppm NaCl solutions. The concentration 

of the 1000 ppm NaCl brackish feed solution was determined using a Shimadzu UV-

1800 UV/Visible Scanning Spectrophotometer at 228.4 nm.  
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The absorbance values of the feed solution were catalogued, and the results of the 

absorbance versus wavelength are shown in Figure 3.1a. The standard curve, shown 

in Figure 3.1b, served as a reference for estimating the feed solution’s concentration 

based on its corresponding absorbance value. The relationship between the brackish 

feed solution’s concentration and its osmotic pressure is shown in Figure 3.1c.  

 

 

 

Figure 3.1: Feed solution calibration curves 
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3.2.2.2 Osmotic pressure 

The osmotic pressures of the NaCl feed solutions were determined from OLI 

Analyzer software. 

3.2.2.3 Density 

The densities of the feed solutions were determined using a density bottle. 

3.2.3 Properties of the draw solution 

3.2.3.1 Osmotic pressure 

The draw solution’s osmolality was measured using freezing point depression 

osmometry. The osmometer was a Semi-Micro Osmometer K-7400 (Knauer Inc., 

Germany), with a measuring range from 0 – 2000 mOsm/kg.  The osmolality (in 

Osmoles/kg) was converted to osmotic pressure using the equation  

Osmotic pressure = RTc                                                                                       (3.1)      

where, 𝑅 is the universal gas constant (0.083144598 L.bar.K-1.mol-1), 𝑇 is the 

absolute temperature in Kelvin, and 𝑐 (Osmoles/L) is the osmolarity calculated from 

the osmolality given by the osmometer. 

  

Figure 3.2: Freezing point depression osmometer 
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3.2.3.2 Dynamic viscosity 

The dynamic viscosities of the draw solutions were determined using an Anton Paar 

MCR 302 Modular Compact Rheometer at different temperatures. 

  

Figure 3.3: Anton Paar MCR 302 Modular Compact Rheometer 

3.2.3.3 pH 

The pH of the draw solutions was determined using an esaw pH meter at a 

temperature of 15 oC. 

3.2.3.4 Density and Concentration 

The densities of the draw solutions were determined using a density bottle. The 

concentrations of the various draw solutions were determined by refractive index 

determinations. 
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3.2.4 Draw solution regeneration potential 

The thermal reversibility of the draw solutions was evaluated by visually determining 

the cloud point temperatures. Samples were heated in a water bath at various 

temperatures of 25 oC, 32 oC, 40 oC, 45 oC and 50 oC for 30 minutes each.  

Subsequent visual inspection, conducted using a high-grade camera, aimed to detect 

any cloudiness or phase separation. This approach provided a preliminary assessment 

of the draw solutions' thermal stability and reversibility. 

3.2.5 FO membrane and draw solution compatibility study 

3.2.5.1 Morphological analysis by SEM 

Morphological studies were conducted to assess the compatibility of the FO 

membrane with the organic draw solutions after a 21-day immersion period. Three 

identical membranes were immersed in solutions of 0.5NaCMC, 3.75PGPE and 

0.5NaCMC-3.75PGPE, with one unimmersed membrane serving as a control. 

Following the immersion period, the membranes were rinsed with distilled water and 

then sputter-coated using an Emitech K550X coater. The membranes were imaged 

using a JSM-7800F Prime Field Emission Scanning Electron Microscope at 100x, 

250x, 1 000x and 10 000x magnifications. 

3.2.5.2 Morphological analysis by ImageJ software 

ImageJ software was used to analyse the SEM micrographs for morphological 

parameters such as size and surface roughness. The SEM micrographs of the FO 

membranes, taken at a magnification of 10 000x were further analysed 

using ImageJ to determine the compatibility of the membranes with the draw 

solutions. The analysis process involved opening all four membranes in ImageJ, 

scaling and colour adjusting them using the Huang thresholding method, and then 

converting them into binary form. Various parameters of the membranes, including 

total count, total area, perimeter, average size, mean gray value, modal gray value 

(corresponding to the highest peak in the histogram), circularity (which indicates the 

shape with a value between 0 and 1, where 1 represents a perfect circle), solidity, 



 

89 
 

Feret diameter, integrated intensity, and kurtosis, were determined. These 

morphological parameters were then compared for all the FO membranes.  

Surface roughness of the FO membranes was quantified using ImageJ software. SEM 

micrographs were initially converted to 8-bit grayscale images. The waviness and 

roughness plugin were then utilized with a cut-off value of 40 pixels.  

This plugin converts the SEM micrograph into separate surface roughness and 

waviness plots. The roughness profile for each FO membrane was then plotted as a 

function of gray value against distance. 

3.2.6 Phase-separation tests 

Phase-separation was induced by heating the draw solutions at a temperature above 

the cloud point temperature for 1 hour.  

3.2.7 Membrane parameters 

3.2.7.1 Membrane hydraulic permeability constant 

The hydraulic permeability coefficient, A, of the FO membrane was determined on a 

RO system by measuring the water fluxes at pressures of 2, 3 and 4 kg/cm2. The 

value of A was determined as the slope of the water flux (LMH) versus applied 

pressure (bar) linear fit. 

3.2.7.2 Solute permeability and Reflection coefficient 

The solute permeability coefficient and reflection coefficients of the draw solutions 

were evaluated using the Spiegler-Kedem mathematical model for FO processes. 

Model equations were coded in the MATLAB. Steady-state experimental data were 

fitted in the model equations by minimizing the errors between experimental results 

and model predictions. 
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3.3 Experimental setup and procedure 

3.3.1 Experimental setup 

Figure 3.4 depicts a schematic representation of the self-assembled FO experimental 

setup used for the NaCMC-PGPE draw solutions 

 

Figure 3.4: Schematic representation of the self-assembled laboratory FO 

experimental setup for the NaCMC-PGPE draws solution system 

The FO setup consisted of a 10L plastic feed tank connected to a submersible pump 

capable of providing a maximum hydraulic head of 1.65m. The feed and draw 

solution temperatures were monitored using a waterproof LABARTTM digital 

thermometer with a range of -50 to 300 oC. A 10L plastic draw solution tank was 

coupled to a 12V high-pressure GenericTM non-submersible pump. Rotameters with a 

maximum flow range of 1 LPM were employed to measure the flow rates of the draw 

solution entering and exiting the FO test cell, as well as the feed solution entering the 

cell. The mass changes of the draw and feed solutions were recorded using a Cynor 

CY-04 electronic weighing scale and an Eminent SS electronic weighing machine, 

respectively. 

Figure 3.5 shows the schematic of the self-assembled FO experimental setup for the 

HPC-PGPE draw solution system 
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Figure 3.5: Schematic of the self-assembled FO laboratory setup for the HPC-PGPE 

draw solution system 

3.3.2 Experimental procedure 

3.3.2.1 NaCMC-PGPE draw solution systems 

The self-assembled FO setup equipped with the harvested HTI CTA membrane 

employed the AL-FS mode. In this configuration, the feed solution was in direct 

contact with the active layer of the FO membrane. The feed and draw solutions were 

kept at controlled temperatures of 25 ± 1 oC or 30 ± 1 oC for 120 minutes. The 

fluctuations in the weights of both the feed and draw solutions were monitored every 

10 minutes. The experiment was initiated by pumping the draw solution into the 

system, followed by the feed solution one minute later. After stabilizing the flow 

rates, the experiment commenced and afterwards, the setup was disassembled. The 

FO membrane was cleaned using double RO water and immersed in distilled water 

for 24 hours before reuse. The same membrane was used for all the experiments 

reported in this work. Feed and draw spacers were used to mitigate ECP effects. 
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The experimental water and solute fluxes were then determined by  

𝐽𝑤−𝑒𝑥𝑝 =
𝑚

𝜌𝐹×𝐴𝑚×𝑡
                                                                                                   (3.2) 

where 𝐽𝑤−𝑒𝑥𝑝 is the experimental water flux (LMH), 𝑚 is the gain in the mass of the 

draw solution (kg), 𝜌𝐹 is the density of the feed solution (kg/L), 𝐴𝑚 is the active area 

of the FO membrane (m2) and 𝑡 is time (hours). 

𝐽𝑠−𝑒𝑥𝑝 =
𝐶𝑡𝑉𝑡−𝐶𝑜𝑉𝑜

𝐴𝑚×𝑡
                                                                                                    (3.3) 

where 𝐽𝑠−𝑒𝑥𝑝 is the experimental solute flux (gMH), 𝐶𝑡 and 𝐶𝑜 are the final and initial 

feed solution concentrations (g/L) whilst 𝑉𝑡 and 𝑉𝑜 are the volumes (L) of the final 

and initial feed solutions. 

3.3.2.2 HPC-PGPE draw solution systems 

Both the feed solution and draw solutions were kept at a controlled temperature of 25 

± 1 oC throughout the experiment. The initial volume of the feed solution was 5 L, 

and the weight loss of the feed solution was monitored every 10 minutes for a total 

duration of 120 minutes. The draw solution had an initial volume of 3.5 L, and the 

weight gain of the draw solution was continuously monitored every 10 minutes for 

the same 120-minute duration. To initiate the experiment, the draw solution was first 

pumped into the system using a non-submersible high-pressure pump, followed by 

the feed solution a minute later. The volumetric flow rates of both solutions were 

measured using rotameters and expressed in litres per minute. The flow rates of the 

draw solution were initially set at 0.20 LPM and were increased to 0.40 LPM for the 

more viscous draw solutions. The experimental water flux was calculated using the 

Equation 3.2. The experimental solute flux (in gMH) was determined by checking 

the concentrations of the feed solution at regular intervals and calculated using the 

Equation 3.3. 
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CHAPTER 4 

NOVEL POLYELECTROLYTE-GLYCOL ETHER TERNARY PHASE-

SEPARATING DRAW SOLUTIONS FOR DESALINATION USING 

FORWARD OSMOSIS 

4.1 Introduction 

The progress of FO has been hindered by several challenges, including the lack of an 

ideal draw solution and expensive regeneration methods [1]. Although inorganic 

draw solutes like NaCl, KCl and NH4HCO3 have been explored, they suffer from 

high reverse salt fluxes and limited biodegradability, prompting research into novel 

organic draw solutes [2, 3]. Most organic draw solutions, such as polysaccharides, 

possess high viscosities, which contribute to internal concentration polarization (ICP) 

effects and bio fouling [4].  

Researchers are actively engaged in the development of novel organic draw solutes 

with tailored and customizable properties for optimal performance. Advancements in 

FO membrane technology hold promise for overcoming the limitations of traditional 

FO desalination systems [5]. As a result, FO is strategically positioned to lead 

research efforts in addressing global water scarcity [6].   

Extensive work has been conducted using binary organic draw solutions 

incorporating food additives [7], molasses [8], ethanol [9], polyacrylamide [10], 

micellar solution [11] and dimethyl ether [12]. However, the high costs of some of 

these materials, ICP and fouling effects posed major drawbacks on the water flux 

performance. Researchers then explored the use of ternary (three components) or 

quaternary (four components) systems in order to mitigate the drawbacks associated 

with binary (two component) draw solutions. Some of these multi-component 

systems include a ternary combination of ionic liquid and hydrogel [13], various 

mixtures of magnesium chloride, sodium chloride, sucrose and maltose [14], a 

ternary system comprising sodium acetate and glucose in calcium chloride [15] and 

the addition of aluminium sulphate to magnesium chloride [16]. These combined 

draw solutions exhibited improved water fluxes and reduced reverse solute fluxes. 

However, their major drawback was the inefficiency of the draw solution 
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regeneration processes. Cellulose derivatives have been widely used in areas like 

medicine and biotechnology [17]. Sodium carboxymethyl cellulose is a specialized 

material that is characterized as both a polyelectrolyte and a cellulose derivative.  

Darvishmanesh et al. [18] investigated the potential of using mixtures of two distinct 

glycol ethers, tripropylene glycol methyl ether (TPM, molecular weight 206.27 Da) 

and tripropylene glycol n-butyl ether (TPnB, molecular weight 248.35 Da), as draw 

agents. Despite generating high osmotic pressures, the draw agents caused 

substantial initial reductions in the transmembrane water and solute fluxes. The water 

flux was hindered by concentration polarization (CP) stemming from the high 

viscosities of the draw solutions and the adsorption of glycol ether onto the dense 

layer of the FO membrane. Additionally, the reverse solute fluxes in all FO modes 

were reported to be greater than 2.9 gMH. Inada et al. [19] used mass spectrometry 

to demonstrate that polyalkylene glycol draw solutes with molecular weights below 

1250 Da permeated the FO membrane. Draw solutes with a molecular weight of 

1810 – 3911 Da exhibited the lowest Js/Jw ratio. This suggests that lower molecular 

weight glycol ether draw solutes, while being less viscous and exerting greater 

osmotic pressures, produce higher solute fluxes [19]. On the other hand, glycol ethers 

with higher molecular weights are more viscous but yield relatively lower solute 

fluxes. The solute permeability coefficient of draw solutions can be evaluated using a 

Spiegler-Kedem mathematical model for FO processes [20].  

In the present study, the feasibility of employing PGPE and NaCMC solutions as 

draw agents for FO desalination was investigated. These solutions exhibit LCST 

behaviour, enabling facile regeneration through moderate heating. Initially, binary 

and ternary solutions were evaluated based on their osmotic pressures and 

viscosities. Cloud point measurements were performed to determine the LCST and 

assess the regeneration potential. The most promising solutions were subsequently 

tested in a laboratory-scale FO setup for water recovery from model brackish water 

(5 000 ppm NaCl) and model seawater (35 000 ppm NaCl). 
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4.2 Results and Discussion 

4.2.1 Draw solutions’ properties 

The densities, dynamic viscosities, pH, freezing point depressions and osmolalities of 

the binary draw solutions are shown in Tables 4.1. 

Table 4.1: Binary draw system’s properties 

Draw 

solution 

Density 

(g/ml) 

Dynamic 

viscosity 

(mPa.s) 

pH at 

15 oC 

Freezing 

point 

depression 

(oC) 

Osmolality 

(mOsm/kg) 

Osmotic 

pressure 

at 25 oC 

(bar) 

0.5NaCMC 0.9657 1.9197 7.45 -0.020 11 0.272 

1NaCMC 0.9786 4.6843 7.48 -0.039 21 0.520 

2NaCMC 0.9855 11.8860 7.49 -0.049 26 0.644 

3.75PGPE 0.9649 3.1354 5.85 -2.107 1133 28.1 

             

The dynamic viscosities, pH, freezing point depressions and osmolalities of the 

ternary draw solutions are shown in Tables 4.2. 

Table 4.2: Ternary draw system’s properties 

Draw solution Dynamic 

viscosity 

(mPa.s) 

pH at 

15 oC 

Freezing 

point 

depression 

(oC) 

Osmolality 

(mOsm/kg) 

Osmotic 

pressure 

at 25 oC 

(bar) 

1NaCMC-1.25PGPE 6.0074 7.14 -1.146 718 17.8 

1NaCMC-2.5PGPE 6.9824 7.11 -2.409 1295 32.1 

1NaCMC-3.75PGPE 7.9458 7.10 -2.738 1477 36.7 

0.25NaCMC-1.25PGPE 2.2470 7.35 -1.079 582 14.4 

0.5NaCMC-2.5PGPE 3.6481 7.25 -1.952 1053 26.1 

0.5NaCMC-3.75PGPE 4.2369 7.23 -2.538 1369 33.9 

                                      

It is evident from Tables 4.1 and 4.2 that the addition of NaCMC in PGPE solutions 

significantly increases the osmotic pressure, while the pH remains almost constant. 

However, the ternary solutions have higher dynamic viscosities compared to the 

binary draw solutions, which may cause high pressure drops in the system and 

increased concentration polarization. Therefore, the amount of NaCMC in the draw 

solution needs to be optimized to improve the water flux in the FO system. 
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4.2.2 Selection of favourable draw solutions 

NaCMC solutions have an entanglement concentration (ce), beyond which their 

specific viscosities exhibit a substantial increase [21 – 23]. The dynamic viscosities 

and osmolalities of the binary and ternary draw solutions from Tables 4.1 and 4.2 

were used to select the best solutions for further investigation. The chosen draw 

solution for FO runs against 1000 ppm and 5000 ppm NaCl brackish feed solutions 

was the ternary 0.5NaCMC-3.75PGPE. The 0.5NaCMC-3.75PGPE draw solution 

generated comparable osmotic pressures to 1NaCMC-3.75PGPE, while requiring a 

lower NaCMC concentration, potentially lowering costs and environmental impact. 

For desalinating 35 000 ppm NaCl feed solution, the concentrated solutions 40PGPE 

and 0.5NaCMC-20PGPE were chosen due to their significantly higher osmotic 

pressures of 130.297 and 59.455 bars, respectively, as detailed in Table 4.3. This 

selection aimed to achieve sufficient driving force for water transport against the 

high salinity feed solution. 

Table 4.3: Osmotic pressures of 0.5NaCMC-20PGPE and 40PGPE draw solutions. 

Draw solution Freezing 

point 

depression 

(oC) 

Average 

freezing 

point 

depression 

(oC) 

Osmolality 

(mOsm/kg) 

Average 

Osmolality 

(mOsm/kg) 

Osmotic 

pressure 

(bar) 

40PGPE -2.409# -2.394# 1305# 1293# 5172 130.297 

-2.378# 1281# 

0.5NaCMC-

20PGPE 

-2.180* -2.187* 1176* 1180* 2360 59.455 

-2.193* 1183* 
# Represents readings after 1:3 dilution of draw solution with water 

* Represents readings after 1:1 dilution of draw solution with water 

 

4.2.3 Dynamic viscosities of the favourable draw solutions 

The dynamic viscosities of the pure 0.5NaCMC, 1NaCMC and 2NaCMC solutions 

are shown in Figure 4.1a. Their respective dynamic viscosities at 100 s-1 shear rate 

were 1.797, 4.6031 and 14.342 mPa.s. The dynamic viscosities of the 0.5NaCMC-

3.75PGPE and 1NaCMC-3.75PGPE draw solutions at temperatures of 25, 30, 32, 35, 

40, 45 and 50 oC are shown in Figures 4.1b and 4.1c, respectively. 
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Figure 4.1: Dynamic viscosities of the organic draw solutions 

The dynamic viscosities of the 40PGPE and 0.5NaCMC-20PGPE draw solutions as a 

function of shear rate are shown in Figure 4.2 

 

Figure 4.2: Dynamic viscosities of 40PGPE and 0.5NaCMC-20PGPE draw solutions 
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Figures 4.1 and 4.2 clearly show that adding NaCMC to PGPE solutions significantly 

increases the viscosity of the solutions. However, these solutions can still be used as 

draw solutions because they provide high osmotic pressures (as shown in Tables 4.1 

and 4.2). The dynamic viscosities at a shear rate of 100 s-1 were 8.768 and 14.301 

mPa.s for the respective solutions. It is clear from Figures 4.2 and 4.3 that all the 

draw solutions exhibit non-Newtonian behaviour up to very low shear rates (< 10 s-

1). Therefore, for draw solution applications, these solutions can be considered as 

Newtonian fluids only. 

4.2.4 Phase-Separation Tests 

Figure 4.3 shows phase separation induced by heating at 70 oC for the 3.75PGPE, 

0.5NaCMC-3.75PGPE, 40PGPE and 0.5NaCMC-20PGPE draw solutions.  

 

 

(a) 

 
 

 

(b) 
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(c) 

 
 

 

 

(d) 

 
 

Figure 4.3: Phase separation induced by heating for 1 hour at 70 oC for the 

0.5NaCMC-3.75PGPE (shown as A), 3.75PGPE (shown as B) and 0.5NaCMC-

20PGPE (shown as C) draw solutions. (a) Homogeneous solutions at room 

temperature. (b) Phase-separated solutions after heating. (c) Distinct separated phases 

for 3.75PGPE (left) and 0.5NaCMC-20PGPE (right). (d) Regenerated homogeneous 

solutions at room temperature. 

The binary 3.75PGPE solution was successfully regenerated. However, no visible 

phase separation occurred at 70 oC for the more concentrated 40PGPE solution, 

underscoring the critical influence of concentration on the phase separation 

behaviour. The dilution of the 40PGPE draw solution during FO processes may thus 

facilitate phase separation. These results confirm that the 3.75PGPE, 0.5NaCMC-

3.75PGPE and 0.5NaCMC-20PGPE draw solutions can be regenerated by heating 

the solutions at a temperature of 70 oC. The same method was also proposed by 

Darvishmanesh et al. [18] for mixtures of two different glycol ethers, tripropylene 

glycol methyl ether and tripropylene glycol n-butyl ether. 
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4.2.5 Solute permeability and Reflection coefficient 

The FO membrane hydraulic permeability constant, A, was determined to be 0.78274 

L m-2 hr-1 bar-1. The steady-state experimental data (Table 4.4) was fitted in the 

Spiegler-Kedem model to calculate the solute permeability and reflection coefficient.  

Table 4.4: Experimental data at steady state used to estimate the solute permeability 

coefficient for the 0.5NaCMC-3.75PGPE draw solution 

FO 

Run 

𝑸𝑭𝒊𝒏
 

(LPH) 

𝑸𝑫𝒊𝒏
 

(LPH) 

𝑪𝑭𝒊𝒏
 

(g/L) 

Feed 

osmotic 

pressure 

(bar) 

Draw 

osmotic 

pressure 

(bar) 

𝑸𝒑𝒆𝒙𝒑
 

(LPH×102) 

𝑸𝒑𝒕𝒉𝒆
 

(LPH×102) 

1 12 9 5 4.34 33.9 4.8779 4.6669 

2 12 12 5 4.34 33.9 4.8779 4.6590 

3 12 15 5 4.34 33.9 5.4876 4.6537 

4 9 12 5 4.34 33.9 6.0975 4.6590 

 

The estimated values of the solute permeability coefficient and reflection coefficient 

for the 0.5NaCMC-3.75PGPE draw solution were 1.24×10-8 m/s and 0.999, 

respectively. The reported solute permeability and reflection coefficients of NaCl for 

the same membrane are 1.14×10-7 m/s and 0.988 [20].  

The results demonstrate that the permeability of the 0.5NaCMC-3.75PGPE solution 

was considerably lower than the reported value for NaCl, likely attributable to the 

larger molecular sizes of NaCMC and PGPE compared to NaCl. 

4.2.6 FO performances of 0.5NaCMC-3.75PGPE desalinating 1000 ppm NaCl 

brackish feed solution 

Figure 4.4a shows the FO performances when the 0.5NaCMC-3.75PGPE draw 

solution was used to desalinate 1000 ppm NaCl brackish feed solution. An FO run 

constitutes a complete 120-minute forward osmosis experiment. Runs 1, 2, 3 and 4 

represent sequential independent experiments, with Run 1 denoting the initial 120-

minute trial, followed consecutively by Runs 2, 3 and 4. The feed and draw flow 

rates were set at 0.15 LPM and 0.20 LPM, respectively, with the experiment 

conducted at 25 oC. The average experimental water fluxes for the four runs were 
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12.173, 11.899, 10.140 and 8.772 LMH. Their corresponding solute fluxes were 

2.737, 2.654, 2.393 and 2.316 gMH, respectively, as shown in Figure 4.4b. 

 

 

Figure 4.4: 0.5NaCMC-3.75PGPE desalinating 1000 ppm NaCl brackish feed 

solution. (a) Water flux; (b) Solute flux; (Error bars represent the standard deviation). 
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4.2.7 FO performances of 0.5NaCMC-3.75PGPE desalinating 5 000 ppm NaCl 

brackish feed solution 

The experimental results of the 0.5NaCMC-3.75PGPE draw solution against 5 000 

ppm NaCl brackish feed solutions are shown in Figure 4.5a for two FO runs. The 

feed flow rate was 0.15 LPM and the draw flow rate was 0.20 LPM at a temperature 

of 25 oC for 2 hours. The average experimental water flux for runs 1 and 2 were 

7.629 and 7.760 LMH respectively. The solute fluxes for the two runs were 2.255 

and 2.479 gMH, as shown in Figure 4.5b.  
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Figure 4.5: 0.5NaCMC-3.75PGPE desalinating 5 000 ppm NaCl brackish feed 

solutions. (a) Water flux; (b) Solute flux; (Errors bars represent the standard 

deviation). 

4.2.8 FO performances of 0.5NaCMC-3.75PGPE desalinating 5 000 ppm NaCl 

solution at varying flow rates 

Figure 4.6a shows the experimental results of the 0.5NaCMC-3.75PGPE draw 

solution desalinating 5 000 ppm NaCl brackish feed solutions for three FO runs using 

a feed flow rate of 0.20 LPM and a draw flow rate of 0.15 LPM. 
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107 
 

 

Figure 4.6: Experimental water fluxes of 0.5NaCMC-3.75PGPE against 5 000 ppm 

NaCl at 30 oC at (a) draw flow rate of 0.15 LPM.  (b) draw flow rate of 0.20 LPM (c) 

draw flow rate of 0.25 LPM (d) draw flow rate of 0.20 LPM and feed flow rate of 

0.15 LPM. Errors bars represent the standard deviation. 

The temperature was kept at 30 oC for 2 hours. The average experimental water flux 

for runs 1, 2 and 3 were 9.006, 7.769 and 8.534 LMH respectively. The percentage 

difference in the water flux values decreased more than tenfold from the initial 10 

minutes to the final 120-minute readings, showing that there was a considerable 

decline in the experimental water fluxes as the experiment progressed. The 

corresponding solute fluxes for the three runs were 2.025, 2.021 and 2.030 gMH. 

The experimental results of the 0.5NaCMC-3.75PGPE draw solution against 5 000 

ppm NaCl brackish feed solutions for three FO runs at a feed flow rate of 0.20 LPM 

and a draw flow rate of 0.20 LPM are shown in Figure 4.6b. The experiment was 

done at a temperature of 30 oC for 2 hours. The average experimental water fluxes 

for runs 1, 2 and 3 were 14.303, 12.514 and 11.927 LMH respectively. The 

corresponding experimental solute fluxes were 2.875, 3.054 and 2.996 gMH, 

respectively as shown in Figure 4.7.  
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The experimental results of the 0.5NaCMC-3.75PGPE draw solution against 5 000 

ppm NaCl brackish feed solutions for three FO runs using a feed flow rate of 0.20 

LPM and a draw flow rate of 0.25 LPM are shown in Figure 4.6c. The experiment 

was performed at a temperature of 30 oC for 2 hours. The average experimental water 

flux for runs 1, 2 and 3 were 15.361, 14.221 and 14.727 LMH respectively. There 

was minimal deviation in the percentage water flux differences in all three FO runs. 

However the trend in which the experimental water fluxes declined with time was 

still observed, although not as much as at a draw flow rate of 0.15 LPM (Figure 

4.6a). The corresponding solute fluxes were 3.246, 3.380 and 3.393 gMH, 

respectively.  

The experimental results for the 0.5NaCMC-3.75PGPE draw solution against 5 000 

ppm NaCl brackish feed solutions for three FO runs for a feed flow rate of 0.15 LPM 

and a draw flow rate of 0.20 LPM are shown in Figure 4.6d. The temperature was 

maintained at 30 oC for 2 hours. The average experimental water flux for runs 1, 2 

and 3 were 17.487, 15.654 and 12.482 LMH respectively. The first FO run had the 

least percentage differences in the water fluxes of all the experiments, although the 

same trend in which the experimental water fluxes declined with time was observed. 

The solute fluxes for the three runs were 3.057, 3.194 and 3.390 gMH. In all 

instances observed in Figures 4.6, the water fluxes declined over time suggesting 

potential membrane fouling or concentration polarization. Minimal water flux 

decline at the higher draw flow rate of 0.25 LPM compared to those at 0.15 LPM 

suggests reduced concentration polarization at higher draw flow rates.  

The solute fluxes of the 0.5NaCMC-3.75PGPE ternary draw solution when 

desalinating 5000 ppm NaCl brackish feed solution at varying flow rates at 30 oC are 

shown in Figure 4.7.  
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Figure 4.7: Solute fluxes of 0.5NaCMC-3.75PGPE at varying flow rates at 30 oC. 

Errors bars represent the standard deviation. 

4.2.9 FO performances of 40PGPE desalinating 35 000 ppm NaCl feed 

solution 

The experimental results of the 40PGPE draw solution in desalinating 35 000 ppm 

NaCl feed solution are shown in Figure 4.8 for two FO runs. The feed flow rate was 

0.15 LPM and the draw flow rate was 0.20 LPM at a temperature of 30 oC for 2 

hours.  

The average experimental water fluxes for runs 1 and 2 were 22.436 and 19.738 

LMH. There was great percentage difference in the water fluxes caused by the draw 

solution not remaining totally homogenous as the experiment progressed. Thus, for 

future work it is recommended that a continuous stirring system be used with this 

organic draw solution. 
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Figure 4.8: Binary 40PGPE draw solution against 35 000 ppm NaCl feed solution. 

Errors bars represent the standard deviation 

4.2.10 FO performances of 0.5NaCMC-20PGPE desalinating 35 000 ppm NaCl 

feed solution 

The experimental results of the 0.5NaCMC-20PGPE ternary draw solution against 35 

000 ppm NaCl feed solution are shown in Figure 4.9 for two FO runs. The feed flow 

rate was 0.15 LPM and the draw flow rate was 0.20 LPM at a temperature of 30 oC 

for 2 hours. The average experimental water flux for runs 1 and 2 were 13.975 and 

14.284 LMH respectively. 
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Figure 4.9: Ternary 0.5NaCMC-20PGPE draw solution against 35 000 ppm NaCl 

feed solution. Errors bars represent the standard deviation. 

The solute fluxes of the binary 40PGPE draw solution surpassed those of the ternary 

0.5NaCMC-20PGPE for both FO runs. The experimental solute fluxes for the 

40PGPE draw solution were 8.958 and 7.469 gMH for both FO runs, whist those of 

the 0.5NaCMC-20PGPE draw solution were 4.763 and 4.511 gMH. This 

demonstrated that the binary 40PGPE draw solution, with a lower molecular weight, 

allowed more solutes to permeate back to the feed solution compared to the ternary 

solution. The findings corroborate the observations of Inada et al. [19], who reported 

that glycol ether draw solutes with molecular weights below 1250 Da exhibited FO 

membrane permeation and higher Js/Jw ratios compared to those with molecular 

weights ranging from 1810 to 3911 Da. However, significantly higher water fluxes 

were observed with the binary 40PGPE draw solution compared to the ternary 
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0.5NaCMC-20PGPE draw solution. Both organic draw solutions necessitate the 

implementation of a continuous stirring system to guarantee solution homogeneity 

throughout the FO runs.   

4.2.11 FO Membrane and Organic draw solutions compatibility study 

Various parameters of the membranes, including total count, total area, perimeter, 

average size, mean gray value, modal gray value (corresponding to the highest peak 

in the histogram), circularity (which indicates the shape with a value between 0 and 

1, where 1 represents a perfect circle), solidity, Feret diameter, integrated intensity, 

and kurtosis, were determined. These morphological parameters were then compared 

for all the FO membranes as shown in Table 4.5 

Table 4.5: Comparison of morphological parameters of the FO membranes after 

immersion in draw solutions 

Membrane Original 0.5NaCMC 3.75PGPE 0.5NaCMC-

3.75PGPE 

Count 26376 35580 34056 31099 

Total Area 179128.4 199219.2 120661.9 134926.3 

Average Size 6.791 5.599 3.543 4.339 

Mean 254.549 254.386 254.560 254.529 

Mode 255 255 255 255 

Perimeter 6.552 6.789 5.683 5.861 

Circularity 0.911 0.891 0.898 0.904 

Solidity 0.916 0.899 0.904 0.909 

Feret 2.305 2.500 2.308 2.281 

Integrated 

intensity 

1543 1268 818 989 

Kurtosis 11 10 9 8 

 

As indicated in Table 4.5, minor morphological variations were observed, 

particularly for the membrane immersed in the binary 3.75PGPE solution, compared 

to the original membrane. These slight alterations are also evident in the SEM 

micrographs of the membranes presented in Figure 4.10 
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Figure 4.10: SEM micrographs of FO membrane before and after immersion in the organic draw solutions (a) Original FO membrane 

(b) FO membrane after immersion in 0.5NaCMC (c) FO membrane after immersion in 3.75PGPE (d) FO membrane after immersion in  

0.5NaCMC-3.75PGPE

(a) (b) 

(c) (d) 
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The roughness profile for each FO membrane was plotted as a function of gray value 

against distance. 

 

Figure 4.11: Gray value vs distance plots for roughness of FO membranes 

The results from Table 4.5 on morphological parameters showed that the immersed 

membranes generally exhibited smaller average sizes compared to the original, 

suggesting potential alterations in pore structure or surface area. Grayscale intensity 

remained consistent across all membranes, indicating similar material compositions. 

Parameters like circularity and solidity showed slight variations but remained close 

to the original. The Feret diameter experienced minor alterations. Additionally, the 

immersed membranes exhibited lower integrated density values, implying changes in 

material distribution. Analysis of the gray value profiles in Figure 4.11 revealed 

distinct surface characteristics across the membrane treatments. The original FO 

membrane exhibited a relatively uniform pattern with minimal fluctuations, 

indicating a smooth surface texture. Upon immersion in 0.5NaCMC, the membrane 

surface demonstrated pronounced high-frequency oscillations with substantial 
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amplitude variations, suggesting significantly enhanced surface roughness compared 

to the original membrane. The FO membrane treated with 3.75PGPE displayed an 

intermediate texture profile, characterized by increased frequency variations relative 

to the original membrane, albeit with smaller magnitude changes than those observed 

in the 0.5NaCMC-treated membrane. When exposed to the ternary 0.5NaCMC-

3.75PGPE solution, the membrane manifested a complex texture profile 

incorporating both high and low-frequency variations in gray values, indicative of a 

heterogeneous surface with multiscale roughness features. Despite these alterations, 

the membranes generally maintained compatibility with their respective draw 

solutions. Notably, the membrane’s overall shape and integrity were preserved after 

immersion in the draw solution.  

4.2.12 Comparative studies of the novel draw solutions with literature 

Table 4.6 presents a comparative summary of the FO performance achieved by 

various inorganic, organic, and polyelectrolyte draw solutes reported in the literature. 

The table highlights their performances against the novel binary or ternary draw 

solutes investigated in this study; 40PGPE, 0.5NaCMC-3.75PGPE, and 0.5NaCMC-

20PGPE. Analysis of Table 4.6 reveals that the draw solutes developed in this work 

exhibit competitive FO performance. Notably, the 40PGPE draw solution produced 

the second-highest comparative osmotic pressure, surpassed only by the 143 bars 

achieved by oligomeric carboxylate draw solutes. Additionally, all three draw 

solutions demonstrated significantly higher osmotic pressures and performance 

compared to traditional non-polyelectrolyte organic draw solutes like fructose, 

glucose, and sucrose, which exhibit significantly lower reported water fluxes of 7.50, 

0.24, and 0.35 LMH, respectively. Furthermore, the performance of these draw 

solutes aligns well with those of existing polyelectrolyte-based draw solutes, such as 

Poly (isobutylene-alt-maleic acid) Sodium salt and Polyelectrolyte polyacrylic acid 

sodium salts. These established polyelectrolyte solutions exhibit similarly high 

osmotic pressures and low reverse solute fluxes, demonstrating the promising 

potential of the novel draw solutes developed in this study. 
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Table 4.6: Comparison study of the draw solutions with other draw solutes from literature 

Feed Draw solute FO Membrane Concentration Osmotic 

pressure 

FO Performance Ref 

Jw (LMH) Js (gMH) 

Seawater Modified potassium 

carbon quantum dots 

CTA 0.5 g/L 121.0399 

atm 

5.371 0.391 [24] 

 

DI Modified potassium 

carbon quantum dots 

CTA 0.5 g/L 121.0399 

atm 

13.924 - [24] 

DI PIAM-Na CTA 0.375 g/mL - 34 0.196 [25] 

Seawater Multicomponent 

fertilizer 

CTA 22 g/L - 4.3 0.80 [26] 

DI 2-Methylimidazole-

based 

CTA 0.5 M - 10.75 0.90 [27] 

DI Polyelectrolyte 

polyacrylic acid 

sodium salts (PAA-

NA), 1200 Da 

CTA 0.72 g/mL 44 atm 21.6 1.7 [28] 

Seawater Polyelectrolyte 

polyacrylic acid 

sodium salts (PAA-

NA), 1200Da 

CTA 0.72 g/mL 44 atm 6.5 - [28] 

DI Sodium formate CTA 46 g/L 28 atm 9.36 6.04 [29] 

DI Sodium acetate CTA 91 g/L 28 atm 9.00 2.73 [29] 

DI Sodium propionate CTA 66 g/L 28 atm 8.68 1.47 [29] 

DI Magnesium acetate CTA 166 g/L 28 atm 8.10 1.07 [29] 

DI Oligomeric 

carboxylates 

TFC 0.5 mol/kg 143 bar 19 0.8 [30] 

DI NaCl CTA 35.2 g/L 28 atm 9.6 7.2 [31] 

DI KCl CTA 47.0 g/L 28 atm 10.9 12.3 [31] 



 

120 
 

DI NH4HCO3 CTA 52.8 g/L 28 atm 7.3 18.2 [31] 

DI Fructose CTA 360 g/L 55.02 atm 7.50 - [32] 

DI Glucose CTA 360 g/L 55.03 atm 0.24 - [32] 

DI Sucrose CTA 684 g/L 56.81 atm 0.35 - [32] 

DI Ethanol CTA 92 g/L 43.93 atm - - [32] 

1 000 ppm 

NaCl 

0.5NaCMC-3.75PGPE CTA 0.5wt.% 

NaCMC and 

3.75M PGPE 

33.9942 bars 12.17 2.737 This 

work 

5 000 ppm 

NaCl 

0.5NaCMC-3.75PGPE CTA 0.5wt.% 

NaCMC and 

3.75M PGPE 

33.9942 bars 7.629 2.255 This 

work 

35 000 ppm 

NaCl 

40PGPE CTA 40M PGPE 130.297 bars 22.44 8.958 This 

work 

35 000 ppm 

NaCl 

0.5NaCMC-20PGPE CTA 0.5wt.% 

NaCMC and 

20M PGPE 

59.455 bars 13.98 4.763 This 

work 
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CHAPTER 5 

ENHANCED FORWARD OSMOSIS DESALINATION OF BRACKISH 

WATER USING PHASE SEPARATING TERNARY ORGANIC DRAW 

SOLUTIONS OF HYDROXYPROPYL CELLULOSE AND PROPYLENE 

GLYCOL PROPYL ETHER 

5.1 Introduction 

In areas with freshwater scarcity, the desalination of brackish water plays a critical 

role in providing a sustainable freshwater supply [1]. Forward osmosis (FO) is a 

promising membrane separation system based on the osmotic pressure gradient, thus 

requiring lesser energy requirements than reverse osmosis (RO) [2]. Cath et al. [3] 

have reported the advantages of FO over pressure-driven membrane processes. As 

FO uses minimal hydraulic pressures, the equipment is relatively cheaper, simpler 

and gives less membrane fouling compared to RO. Much attention has been paid to 

inorganic draw solutions, especially sodium chloride, while low molecular weight 

glycol ethers have produced promising results as organic draw solutions [4]. 

However, some organic compounds have good potential as draw solutes because 

they dissolve easily in water, resulting in high osmotic pressures [5]. Chu et al. [6] 

have shown that citric acid produces better water fluxes of 4.5 LMH despite having 

lesser osmotic pressures of 22.29 bar compared to 22.63 and 53.24 bar of 1M 

potassium sorbate and sodium benzoate, respectively. A good organic draw solution 

should possess high osmotic pressure and low dynamic viscosity. Hsu et al. [7] have 

successfully utilized a 70 wt.% ternary ionic liquid (IL) and hydrogel draw solution 

for the effective desalination of 0.15 to 0.3 M saline feed solutions. In their study, 

Hamdan et al. [8] have reported on the osmotic pressures of binary and ternary draw 

solutions containing magnesium chloride, sodium chloride, sucrose, and maltose. 

Their findings have shown that the ternary solutions had higher osmotic pressures 

compared to the binary solutions. Farman et al. [9] have incorporated organic 

compounds, sodium acetate and glucose, in a calcium chloride draw solution. 

Introducing 5% sodium acetate to calcium chloride has delivered better water fluxes 

of 23.9 LMH and solute fluxes of 6.64 gMH. Nguyen et al. [10] have lowered the 

reverse solute flux while keeping the water fluxes relatively high by adding 0.05 M 
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aluminium sulphate to 0.5 M magnesium chloride draw solution. Given the 

impressive osmotic pressures demonstrated by multi-component solutions, as 

highlighted by Hamdan et al. [8], and the reduced reverse solute fluxes, as evidenced 

by Nguyen et al. [10], it is worth noting that the primary drawback lies in the 

regeneration process of the draw solution.  

In the continuous pursuit of innovative draw solutions, Ahangar and Taghavijeloudar 

[11] have conducted an investigation into rhamnolipid biosurfactants, which have 

been found to generate osmotic pressures up to 29 bar. Volpin et al. [12] have 

conducted a study on the potential use of human urine in the dewatering of 

microalgae through FO. The hydrolyzed urine has been able to generate osmotic 

pressures exceeding 20 bars. During the course of a 20-hour FO operation, there has 

been no significant fouling observed in the support layer.  

Thermally responsive IL’s have shown promising potential as effective draw solutes 

for FO processes. Zeweldi et al. [13] have employed a stable, low-toxicity 

tetrabutylammonium 2,4,6-trimethyl benzenesulfonate IL draw solute, which has 

generated an osmotic pressure of 58.92 bar. The IL solution has exhibited 98% 

recovery upon heating above its LCST of 57 oC, with the remaining residuals 

recovered by RO. Zhong et al. [14] have utilized 3.2 M protonated betaine bis 

(trifluoromethyl sulfonyl) imide draw solution with LCST maintained above 56 oC. 

In a similar study, Yang et al. [15] have investigated various thermoresponsive 

phosphonium and ammonium-based ILs draw solutes with different cation-anion 

pairs for FO processes. Moon and Kang [16] have developed tetrabutylphosphonium-

based ILs exhibiting LCST for use in FO processes. The thermoresponsive ILs, 

[P4444][MBS] and [P4444][EBS], have exhibited LCSTs of 36 oC and 25 oC 

respectively in 20 wt.% aqueous solutions, facilitating draw solute recovery through 

liquid-liquid phase separation.  

As reported above, thermally responsive solutions exhibit significant potential as 

draw solutions due to their high osmotic pressure and facile regeneration using low-

grade heat [12 – 15], which can be readily obtained from renewable energy sources 

or waste heat from thermal and nuclear power plants. This chapter investigates novel 
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ternary draw solutions with promising properties for FO applications. Mitigating the 

drawbacks of single glycol ether draw solutes, the developed ternary HPC-PGPE 

solutions demonstrate potential for enhanced performance and regeneration 

capabilities. The systematic approach, encompassing the determination of osmotic 

pressures, viscosities, and experimental evaluation of water and solute fluxes, 

provides a comprehensive understanding of these novel draw solutions. Moreover, 

the investigation of regeneration potential through phase separation further augments 

the practical applicability of these ternary solutions.  

5.2 Results and discussion 

5.2.1 Osmotic pressure analysis 

The osmolalities of the organic draw solutions, as determined using Freezing point 

osmometry, are shown in Table 5.1 

Table 5.1: Osmotic pressures of organic draw solutions 

Draw solution Freezing point 

depression (oC) 

Osmolality 

(mOsm/kg) 

Osmotic 

pressure (bar) 

0.5HPC -0.003 1 0.02 

1HPC -0.013 7 0.17 

1.5HPC -0.015 8 0.19 

2HPC -0.030 16 0.40 

0.25HPC-1.25PGPE -1.105 596 14.8 

0.5HPC-1.25PGPE -1.153 622 15.4 

0.75HPC-1.25PGPE -1.218 657 16.3 

1HPC-1.25PGPE -1.255 677 16.8 

0.25HPC-2.5PGPE -1.843 994 24.6 

0.5HPC-2.5PGPE -1.869 1008 25.0 

0.75HPC-2.5PGPE -2.093 1129 28.0 

1HPC-2.5PGPE -2.229 1202 29.8 

0.25HPC-3.75PGPE -2.343 1264 31.3 

0.5HPC-3.75PGPE -2.581 1392 34.5 

0.75HPC-3.75PGPE -2.629 1418 35.1 

1HPC-3.75PGPE -2.753 1485 36.8 

 

Pure HPC draw solutions exhibited low osmolalities, ranging from 1 to 16 mOsm/kg. 

This rendered them unsuitable for any FO desalination processes.  
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However, incorporating PGPE significantly increased osmolalities to levels 

appropriate for FO applications, as shown in Figure 5.1. Seven combinations of HPC 

and PGPE produced osmolalities greater than 1000 mOsm/kg. These draw solutions 

were 0.25HPC-2.5PGPE, 0.75HPC-2.5PGPE, 1HPC-2.5PGPE, 0.25HPC-3.75PGPE, 

0.5HPC-3.75PGPE, 0.75HPC-3.75PGPE and 1HPC-3.75PGPE with osmolalities of 

1008, 1129, 1202, 1264, 1392, 1418 and 1485 mOsm/kg respectively. From these 

seven draw solutions, three were selected for FO experiments against 1 g/L NaCl 

brackish feed solution. The draw solutions that produced the highest osmotic 

pressures were preferred.  These chosen draw solutions were 0.25HPC-3.75PGPE, 

0.5HPC-3.75PGPE and 0.75HPC-3.75PGPE. 

 

Figure 5.1: Relationship between HPC, PGPE and overall osmotic pressures 

The dynamic viscosities, pH and osmotic pressures of these three favourable ternary 

draw solutions are shown in Table 5.2 
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Table 5.2: Properties of the chosen draw solutions 

Draw solution Dynamic viscosity 

(mPa.s) 

pH at 15 oC Osmotic pressure 

(bar) 

0.25HPC-3.75PGPE 4.20 8.17 31.3 

0.5HPC-3.75PGPE 9.16 7.95 34.5 

0.75HPC-3.75PGPE 19.5 7.86 35.1 

  

5.2.2 Dynamic viscosities of draw solutions 

The dynamic viscosities of the pure single-solute 0.5 wt.% HPC, 1 wt.% HPC, 1.5 

wt.% HPC and 2 wt.% HPC draw solutions are shown in Figure 5.2a. Figure 5.2b 

depicts the corresponding viscosities of the ternary draw solutions 0.25HPC-

3.75PGPE, 0.5HPC-3.75PGPE and 0.75HPC-3.75PGPE at 25 oC. A notable 

observation is the substantial increase in dynamic viscosities of the pure HPC 

solutions upon incorporating PGPE. At a shear rate of 100 s-1, the addition of 3.75M 

PGPE solutions increased the dynamic viscosities of the pure 0.5 wt.% HPC from 

5.48 mPa.s to 14.271 mPa.s. This substantial increase may be due to the addition of a 

polymeric substance [17 – 19].    
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Figure 5.2: Dynamic viscosities of pure HPC solutions (a) and ternary solutions (b) 

 

The dynamic viscosities of the 0.25HPC-3.75PGPE, 0.5HPC-3.75PGPE and 

0.75HPC-3.75PGPE ternary draw solutions at different temperatures are shown in 

Figure 5.3. 

Figure 5.3 clearly shows significant reductions in the viscosity of all ternary 

solutions with increasing temperature. These results suggest that running the FO 

experiments at slightly higher temperatures will reduce the pressure drop in the draw 

solution channel while significantly reducing concentration polarization, as higher 

viscosity reduces turbulence in the fluid and enhances concentration polarization. 
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Figure 5.3: Dynamic viscosities of the three ternary draw solutions at different 

temperatures 
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5.2.3 Solute permeability coefficient of HPC-PGPE solutions 

Table 5.3 shows the steady state experimental data used in estimating the solute 

permeability coefficient of the ternary draw solutions. These results were fitted in the 

Spiegler-Kedem model to determine the values of solute permeability and reflection 

coefficient [20].  

Table 5.3: Steady-state experimental data used to estimate the solute permeability 

coefficient of HPC-PGPE draw solutions 

FO 

Run 

𝑸𝑭𝒊𝒏
 

(LPH) 

𝑸𝑫𝒊𝒏
 

(LPH) 

𝑪𝑭𝒊𝒏
 

(g/L) 

Feed 

osmotic 

pressure 

(bar) 

𝑪𝑫𝒊𝒏
 Draw 

osmotic 

pressure 

(bar) 

𝑸𝒑𝒆𝒙𝒑
 

(LPH

×102) 

𝑸𝒑𝒕𝒉𝒆
 

(LPH

×102) 

1 24 12 1 0.85 0.25HPC-3.75PGPE 31.3 4.877 7.63 

2 24 12 1 0.85 0.25HPC-3.75PGPE 31.3 4.275 7.63 

3 24 24 1 0.85 0.5HPC-3.75PGPE 34.5 9.775 7.63 

4 24 24 1 0.85 0.5HPC-3.75PGPE 34.5 7.637 7.63 

5 24 24 1 0.85 0.75HPC-3.75PGPE 35.1 2.443 7.63 

6 24 24 1 0.85 0.75HPC-3.75PGPE 35.1 2.749 7.63 

 

Based on this model, the solute permeability coefficient and the reflection coefficient 

of the HPC-PGPE draw solutions were determined to be 4.05 × 10-8 m/s and 0.999, 

respectively. In contrast, the solute permeability and reflection coefficient of NaCl 

for the same membrane were reported as 1.14 × 10-7 m/s and 0.988, respectively 

[20]. Thus, the solute permeability of these HPC-PGPE solutions is significantly 

lower than that of NaCl, attributable to the larger molecular sizes of HPC and PGPE 

compared to NaCl. 

5.2.4 FO performances of 0.25HPC-3.75PGPE draw solution   

Figure 5.4 presents the experimental water fluxes achieved with a 0.25HPC-

3.75PGPE ternary draw solution while desalinating 1 g/L NaCl brackish feed 

solutions across three FO runs. The first run employed the original draw solution, 

while the second and third runs utilized a regenerated draw solution obtained using 

vacuum distillation. The average experimental water fluxes for the first, second and 

third runs were 11.062, 9.852 and 9.242 LMH, respectively. 
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Figure 5.4: Experimental water fluxes of the 0.25HPC-3.75PGPE draw solution. 

Error bars represent the standard deviation 

Figure 5.4 shows a decreasing trend in experimental water fluxes with the 0.25HPC-

3.75PGPE draw solution across multiple FO runs. The initial fluxes were observed to 

be 15.194 LMH at 10 minutes, which declined steadily to 9.18, 7.281 and 6.489 

LMH for runs 1, 2, and 3, respectively, by 120 minutes. Interestingly, run 1 exhibited 

an atypical rise in flux between 60 and 70 minutes before returning to the decreasing 

trend. In contrast, run 3, which utilized a regenerated draw solution, demonstrated a 

more consistent flux pattern. The observed decrease in water fluxes with successive 

FO runs may be due to dilutive ICP effects [21]. The solute fluxes were 2.753, 2.443 

and 2.058 gMH across the three separate runs. 

5.2.5 FO performances of 0.5HPC-3.75PGPE draw solution  

Figure 5.5 illustrates the experimental water fluxes of the 0.5HPC-3.75PGPE ternary 

draw solution against 1 g/L NaCl brackish feed solutions for two FO runs.  
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The draw flow rate was set at 0.40 LPM, twice that of the 0.25HPC-3.75PGPE 

solution, due to the higher viscosities, as shown in Figure 5.2b. The feed flow rate 

was maintained at 0.40 LPM at a temperature of 25 oC. The average experimental 

water fluxes for the two runs were 19.793 and 13.618 LMH. 

 

Figure 5.5: Experimental water fluxes of the 0.5HPC-3.75PGPE draw solution. 

Error bars represent the standard deviation. 

Figure 5.5 reveals unusually high initial water fluxes, which then reduced rapidly, 

especially for the second run in the first 50 minutes. These results suggest that the 

second run was subjected to greater concentration polarization effects compared to 

the first, albeit still lower than those observed with the 0.25HPC-3.75PGPE solution 

tested at a lower flow rate.  The solute fluxes were 2.615 and 2.789 gMH for the two 

runs. The draw solution exhibited inhomogeneity and required higher flow rates of 

0.40 LPM due to increased viscosity. This suggests the need for modifications to 

improve its stability for practical applications. 
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5.2.6 FO performances of 0.75HPC-3.75PGPE draw solution  

Figure 5.6 shows the experimental water fluxes of the 0.75HPC-3.75PGPE ternary 

draw solution against 1 g/L NaCl brackish feed solutions for two FO runs. The flow 

rates were the same as those of the 0.5HPC-3.75PGPE solution. The average 

experimental water fluxes for the two runs were 8.612 and 8.093 LMH.   

 

Figure 5.6: Experimental water fluxes of the 0.75HPC-3.75PGPE draw solution. 

Error bars represent the standard deviation. 

The solute fluxes were 2.613 and 2.309 gMH, but the draw solution faced similar 

challenges with viscosity and inhomogeneity, requiring the use of a higher flow rate 

of 0.40 LPM. While the draw solution offered the easiest regeneration process, its 

current form is unsuitable for any FO desalination processes. Among the draw 

solutions, only the 0.25HPC-3.75PGPE exhibited favourable characteristics, 

maintaining homogeneity throughout FO runs at a lower flow rate of 0.20 LPM. 
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5.2.7 Comparative study with the other draw solutions from literature 

The FO performances of these draw solutions were compared with those from the 

literature, as shown in Table 5.4. As can be seen, several prior studies have explored 

promising avenues for FO desalination by using phase separation of the draw solutes. 

However, Darvishmanesh et al. [23] highlighted the limitations of solely using glycol 

ether draw solutes, like PGPE. These included aggregate formation after phase 

separation thus reducing the osmotic pressures, decreasing initial water fluxes, an 

increase in irreversible membrane resistances, lower water fluxes compared to 

inorganic draw solutions, appreciable reverse solute fluxes and requiring RO to fully 

remove residual glycol ether from water. In our study, the glycol ether was combined 

with a cellulose derivative, which mitigated some of these drawbacks addressed by 

Darvishmanesh et al. [23], potentially leading to improved FO performance and 

broader applicability. The draw solutions used in this work have comparable FO 

performances with the draw solutes shown in Table 5.4, although further 

modifications need to be done to maintain the homogeneities of the more viscous 

0.5HPC-3.75PGPE and 0.75HPC-3.75PGPE draw solutions. 
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Table 5.4: Comparison study of the draw solutions with other draw solutes from literature 

Draw solution Feed 

solution 

Membrane 

Orientation 

FO Performance Separation Method Ref 

Jw 

(LMH) 

Js 

(gMH) 

Tetrabutylphosphonium 

mesitylenesulfonate 

0.6 M 

NaCl 

AL-FS 2 NR Thermal phase separation employing 

cheap low-grade heat plus Nanofiltration 

[22] 

Mixtures of two different 

glycol ethers 

0.6 M 

NaCl 

AL-FS 1.3 4.9 Removal of residual glycol ethers after 

phase separation using RO 

[23] 

Choline Chloride- Ethylene 

Glycol 

Seawater AL-FS 2.6 NR Using freezing due to solid-liquid 

separation at -7 oC 

[24] 

[P4446] [C3S] DI water AL-FS 3.98 1.03 LCST-type phase separation [25] 

Monocationic and 

dicationic 

phosphonium-based ILs 

DI water AL-FS 3.5 NR Phase separation into IL-rich layer and 

water-rich layer above LCST 

[26] 

UCST ionic liquid 0.17 M 

NaCl 

AL-FS 0.85 0.98 When cooled to room temperature, phase 

separated IL-rich phase was used directly 

as the draw solution in the next FO runs. 

[14] 

Chitosan derivative DI water AL-FS 9.1 NR Utilizing LCST as it undergoes a phase 

transition separation when the temperature 

changes 

[27] 

Switchable polarity solvents 0.5 M 

NaCl 

AL-FS 18.8 NR Phase switching from a high osmotic 

pressure aqueous solution to purified 

water and a nonpolar liquid, which can be 

physically separated 

[28] 

PSSS-PNIPAM 0.6 M 

NaCl 

AL-FS 3.5 2 The use of MD as the decreased osmotic 

pressure allows higher water vapour 

pressure and favours the separation of 

water 

[29] 



 

139 
 

Trimethylamine–carbon 

dioxide 

DI water AL-FS 14.5 0.1 to 

0.2 mol 

m-2 h-1 

Thermal separation using low-temperature 

vacuum distillation utilizing low-grade 

heat sources. 

[30] 

2-(meth-acryloyloxy) ethyl] 

trimethyl ammonium 

chloride (MTAC) and 2-(2-

methoxyethoxy) ethyl 

methacylate (MEO) 

NR AL-FS 5.45 NR Thermal precipitation followed by a 

microfiltration process at 51 oC 

[31] 

Rhamnolipid biosurfactants NR AL-FS 7.7 0.01 Direct use for agricultural irrigation [11] 

Real fresh human urine NR AL-FS 9.5 NR NR [12] 

Real hydrolysed urine NR AL-FS 16.7 NR NR [12] 

Sodium chloride Activated 

sludge 

AL-FS 7.6 LMH 15.4 

gMH 

NR [32] 

Zinc sulphate Activated 

sludge 

AL-FS 2.7 LMH 4.1 NR [32] 

Sodium chloride DI AL-FS 5.1 LMH 7.4 NR [32] 

Sodium sulphate Ultrapure 

water 

AL-FS 2.56× 10-6 

m/s 

3.1 Reverse Osmosis [33] 

Sodium bicarbonate Ultrapure 

water 

AL-FS 2.47× 10-6 

m/s 

1.7 Reverse Osmosis [33] 

Sodium Chloride Ultrapure 

water 

AL-FS 3.38×10-6 

m/s 

9.1 Reverse Osmosis [33] 

Potassium Bicarbonate Ultrapure 

water 

AL-FS 2.80× 10-6 

m/s 

2 Reverse Osmosis [33] 

Magnesium sulphate Ultrapure 

water 

AL-FS 1.54×10-6 

m/s 

1.2 Reverse Osmosis [33] 

Magnesium chloride Ultrapure 

water 

AL-FS 2.70×10-6 

m/s 

5.6 Reverse Osmosis [33] 

Ammonium chloride Ultrapure AL-FS 3.61×10-6 10.2 Reverse Osmosis [33] 
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water m/s 

Potassium sulphate Ultrapure 

water 

AL-FS 2.52×10-6 

m/s 

3.7 Reverse Osmosis [33] 

Calcium chloride Ultrapure 

water 

AL-FS 3.22×10-6 

m/s 

9.5 Reverse Osmosis [33] 

Ammonium sulphate Ultrapure 

water 

AL-FS 2.74×10-6 

m/s 

3.6 Reverse Osmosis [33] 

Potassium chloride Ultrapure 

water 

AL-FS 3.74×10-6 

m/s 

15.2 Reverse Osmosis [33] 

Calcium nitrate Ultrapure 

water 

AL-FS 2.97×10-6 

m/s 

6.6 Reverse Osmosis [33] 

Ammonium bicarbonate Ultrapure 

water 

AL-FS 2.85×10-6 

m/s 

20.6 NR [33] 

Potassium bromide Ultrapure 

water 

AL-FS 3.59×10-6 

m/s 

29.2 NR [33] 

0.25HPC-3.75PGPE 1 g/L NaCl AL-FS 11.062 2.753 Heating at 80 oC, then using RO to 

remove the residual draw solutes in the 

water 

This 

work 

0.5HPC-3.75PGPE 1 g/L NaCl AL-FS 19.793 2.615 Heating at 80 oC, then using RO to 

remove the residual draw solutes in the 

water 

This 

work 

0.75HPC-3.75PGPE 1 g/L NaCl AL-FS 8.612 2.613 Heating at 80 oC, then using RO to 

remove the residual draw solutes in the 

water 

This 

work 

NR: Not reported
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5.2.8 Draw solution regeneration potential 

Figure 5.7 demonstrates the effective reversibility of phase transitions in pure HPC 

solutions due to temperature changes. The pure solutions exhibit clear homogeneity 

and miscibility below the LCST of 45 oC, while above this temperature, the solutions 

become completely immiscible and phase-separated. 

 Room 

Temperature 

       45 oC     60 oC Room 

Temperature 

 

 

2wt.% HPC 

solution 

  

 

 
 

 

5wt.% HPC 

solution 

 
   

 

 

 

 

 

7wt.% HPC 
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Figure 5.7: Thermoreversibility of pure HPC solutions 
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The cloud point temperature of the 5 M and 7.5 M PGPE draw solutions was shown 

to be 32 oC. On the other hand, the 2.5 M PGPE draw solution remained clear at 32 

oC but lost its clarity at 48 oC. The 0.5wt.%, 1wt.%, 1.5wt.% and 2wt.% HPC 

concentrations all had a cloud point temperature of 45 oC. This is in agreement with 

the cloud point temperature of HPC solutions from the literature [34]. The images 

taken for the three chosen draw solutions at different temperatures are shown in 

Figure 5.8. 

 

Room temperature (25 oC) 
 

 

32 oC 
 

 

40 oC 
 

 

45 oC 
 

 

50 oC 
 

 

Room temperature (25oC) 
 

 

Figure 5.8: Cloud point temperatures of the selected organic draw solutions. From 

LEFT to RIGHT: 0.25HPC-3.75PGPE, 0.5HPC-3.75PGPE and 0.75HPC-3.75PGPE. 

The results in Figure 5.8 demonstrate the potential of using the LCST behaviour of 

the investigated draw solutions to facilitate regeneration. At a temperature of 50 oC, 

the solutions would have already undergone phase separation. Figure 5.9 highlights 

the phase separation induced in the 0.25HPC-3.75PGPE ternary draw solution upon 

heating at 80 oC for 1 hour.  
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(a) 

 

 

 

 

(b) 

 

 

 

(c) 

 

 

Figure 5.9: Phase behaviours of 0.25HPC-3.75PGPE ternary draw solution. (a) 

Homogenous draw solution at room temperature. (b) Phase separation observed after 

heating the solution at 80 oC for 1 hour. (c) Regenerated homogeneous solution at 

room temperature after cooling 

The results illustrated in Figure 5.9 demonstrate the successful regeneration of the 

draw solution upon heating above the cloud point temperatures determined in Figure 

5.8. Of notable interest is the presence of three distinct phases conspicuously visible 

in Figure 5.9(b), comprising insoluble white HPC precipitates and the separated 

PGPE and water liquid phases. 
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CHAPTER 6 

DATA-DRIVEN MODELING AND TECHNO-ECONOMIC ASSESSMENT 

FOR FORWARD OSMOSIS-PHASE SEPARATION DESALINATION 

PROCESSES USING NOVEL TERNARY ORGANIC DRAW SOLUTIONS 

6.1 Introduction 

Mathematical modeling has been extensively used in the study of membrane 

separation processes, encompassing reverse osmosis (RO) [1], nanofiltration (NF) 

[2], ultrafiltration (UF) [3], forward osmosis (FO) [4 – 7] and hybrid systems [8, 9]. 

The researchers have implemented diverse, innovative techniques, including machine 

learning algorithms, three-dimensional multiscale models, and methodologies for 

addressing scenarios with limited critical data, such as mass diffusivity. These 

approaches have been applied to both single-solute and multi-component systems. 

FO modeling can either be transport-based, such as the Solution-Diffusion (S-D) and 

Spiegler-Kedem (S-K) models, or data-driven models that make use of machine 

learning techniques [9]. The S-D model has been extensively used to predict water 

and solute fluxes in FO, particularly in single-solute inorganic draw solution systems. 

The S-D model assumes that permeants initially dissolve into the membrane material 

and diffuse through the membrane in response to a concentration gradient [10]. 

Despite its widespread use, some researchers deemed the S-D model inadequate for 

FO processes, citing flawed underlying assumptions [11]. The S-D model was 

deemed insufficient for multi-component draw solutions, as it failed to account for 

the transport coupling of the various species [12, 13]. This limitation highlighted the 

need for more comprehensive modeling approaches in complex FO systems. To 

address this deficiency, Foo et al. [12] developed a modified S-D model for multi-

component systems. Their approach incorporated solute coupling effects, 

significantly improving the predictive accuracy. In a water-sodium chloride-ethanol 

ternary FO system, the modified model reduced average absolute deviations from 

66.1% to 7.2%, demonstrating a substantial enhancement in modeling precision for 

the multi-component draw solutions. Ibrar et al. [13] propounded that the limited 

availability of data concerning the diffusion coefficients of multi-component 

electrolyte draw solutions complicated the determination of mass transfer 
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coefficients and solute resistance to diffusion in the FO process. Yong et al. [14] 

demonstrated that experimental water fluxes for organic draw solutions, such as urea, 

ethylene glycol, and glucose, were lower than the theoretical fluxes observed in the 

FO process. To address this limitation, they postulated that this discrepancy indicated 

a coupling between the forward water flux and reverse solute flux. Consequently, 

they introduced a reflection coefficient to account for this solute-solvent coupling.  

This chapter presents an approach to modeling novel binary and ternary organic draw 

solutions developed in our previous studies [15, 16]. Foo et al. [12] and Ibrar et al. 

[13] emphasize that the S-D model exhibits inadequacy when applied to multi-

component draw solution systems. Similarly, it falls short in addressing neutral draw 

solutions, as demonstrated by Yong et al. [14]. Given the lack of literature data on 

the diffusion coefficients of the novel binary mono propylene glycol propyl ether 

(PGPE) and the ternary systems of hydroxypropyl cellulose–propylene glycol propyl 

ether (HPC–PGPE) and sodium carboxymethyl cellulose–propylene glycol propyl 

ether (NaCMC–PGPE), this work opts instead for data-driven modeling making use 

of ANN. The input parameters include FO runs, time, temperatures of both feed and 

draw solutions, concentrations of both feed and draw solutions, flow rates of both 

feed and draw solutions and the molecular weights of the draw solutions. These 

inputs are used to predict permeate fluxes in the system. This chapter also conducts a 

comprehensive techno-economic assessment (TEA), incorporating operating 

expenditures (OPEX) and capital expenditures (CAPEX) calculations for both the 

stand-alone FO process and the phase-separating (PS) draw regeneration processes. 

Notably, the study emphasizes the use of waste heat energy to enhance the economic 

viability of the FO-PS hybrid process, recognizing that the draw regeneration process 

is the most energy-intensive component of the overall desalination process. 

6.2 Results and discussion 

6.2.1 Comparison of predictive models 

To determine the most effective predictive model for the process, a comparative 

analysis of seven distinct machine learning algorithms: Linear regression models, 
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Regression Tree models, Support Vector Machine models, Gaussian Process 

Regression models, Kernel Approximation Regression models, Ensemble of Trees 

models and Neural Networks models, was performed. These algorithms were 

implemented and evaluated using the Regression Learner application within 

MATLAB R2022a. To ensure a fair comparison, identical datasets were utilized 

across all seven algorithms throughout the model development and assessment 

process. The comparisons for the predictive models are shown in Table 6.1 in terms 

of the root mean square error, R-squared, mean squared error and mean absolute 

error. 

Table 6.1: Comparison of predictive models using Regression learner 

Prediction model Last 

change 

RMSE R2 MSE MAE 

Linear regression 

models 

Linear 0.066632 0.84 0.0044398 0.044924 

Interactions 

linear 

0.048858 0.91 0.0023872 0.030912 

Robust 

linear 

0.068209 0.83 0.0046525 0.045083 

Stepwise 

linear 

0.053034 0.90 0.0028126 0.034795 

Regression Trees 

models 

Fine Tree 0.087492 0.72 0.0076549 0.051194 

Medium 

Tree 

0.10465 0.60 0.010952 0.069175 

Coarse 

Tree 

0.12806 0.39 0.0164 0.093808 

Support Vector 

Machines 

models 

Linear 

SVM 

0.067625 0.83 0.0045732 0.044863 

Quadratic 

SVM 

0.057856 0.88 0.0033473 0.034164 

Cubic SVM 0.038261 0.95 0.0014639 0.020507 

Fine 

Gaussian 

SVM 

0.064581 0.85 0.0041708 0.032285 

Medium 

Gaussian 

SVM 

0.065479 0.84 0.0042874 0.038943 

Coarse 

Gaussian 

SVM 

0.099816 0.63 0.0099632 0.065151 

Gaussian Process Rational 0.024266 0.98 0.00058884 0.012962 
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Regression 

models 

Quadratic 

GPR 

Squared 

Exponential 

GPR 

0.024035 0.98 0.00057769 0.013263 

Matern 5/2 

GPR 

0.024865 0.98 0.00061825 0.013028 

Exponential 

GPR 

0.034278 0.96 0.001175 0.017291 

Kernel 

Approximation 

Regression models 

SVM 

Kernel 

0.045715 0.92 0.0020899 0.027433 

Least 

Squares 

Regression 

Kernel 

0.084529 0.74 0.0071452 0.056967 

Ensemble of Trees 

models 

Boosted 

Trees 

0.06686 0.83 0.0044702 0.04386 

Bagged 

Trees 

0.087349 0.72 0.0076298 0.057206 

Neural Networks 

models 

Narrow 

Neural 

Networks 

0.041787 0.94 0.0017461 0.026341 

Medium 

Neural 

Networks 

0.03357 0.96 0.001127 0.020699 

Wide 

Neural 

Networks 

0.028479 0.97 0.00081108 0.017985 

Bilayered 

Neural 

Networks 

0.038757 0.94 0.0015021 0.022288 

Trilayered 

Neural 

Networks 

0.028679 0.97 0.0008225 0.016483 
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The Predicted vs. True response curves of output flux for linear regression models 

are shown in Figure 6.1 

  

  

Figure 6.1: Predicted vs. True response curves of output flux for linear regression of 

the training and validation (a) Linear (b) Interactions linear (c) Robust linear (d) 

Stepwise linear 

 

 

 

(a) (b) 

(c) (d) 
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The Predicted vs. True response curves of output flux for regression tree models are 

shown in Figure 6.2 

   
Figure 6.2: Predicted vs. True response curves of output flux for regression trees of 

the training and validation (a) Fine Tree (b) Medium Tree (c) Coarse Tree 

The Predicted vs. True response curves of output flux for support vector machine 

models are shown in Figure 6.3 

   

   
Figure 6.3: Predicted vs. True response curves of output flux for support vector 

machines of the training and validation (a) Linear SVM (b) Quadratic SVM (c) 

(a) (b) (c) 

(a) (b) (c) 

(d) (e) (f) 
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Cubic SVM (d) Fine Gaussian SVM (e) Medium Gaussian SVM (f) Coarse Gaussian 

SVM 

The Predicted vs. True response curves of output flux for Gaussian process 

regression models are shown in Figure 6.4 

  

  

Figure 6.4: Predicted vs. True response curves of output flux for Gaussian process 

regression models of the training and validation (a) Rational Quadratic GPR (b) 

Squared Exponential GPR (c) Matern 5/2 GPR (d) Exponential GPR 

The Predicted vs. True response curves of output flux for Kernel approximation 

regression models are shown in Figure 6.5 

(a) (b) 

(c) (d) 
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Figure 6.5: Predicted vs. True response curves of output flux for Kernel 

approximation regression models of the training and validation (a) SVM Kernel (b) 

Least Squares Regression Kernel 

The Predicted vs. True response curves of output flux for Ensemble of Trees models 

are shown in Figure 6.6 

  
Figure 6.6: Predicted vs. True response curves of output flux for Ensemble of Trees 

models of the training and validation (a) Boosted Trees (b) Bagged Trees 

The Predicted vs. True response curves of output flux for Neural Network models are 

shown in Figure 6.7 

(a) (b) 

(a) (b) 
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Figure 6.7: Predicted vs. True response curves of output flux for Neural Networks 

models of the training and validation (a) Narrow Neural Networks (b) Medium 

Neural Networks (c) Wide Neural Networks (d) Bilayered Neural Networks (e) 

Trilayered Neural Networks 

The comprehensive analysis of the predictive models revealed a clear hierarchy in 

performance based on the coefficient of determination (R2). Gaussian Process 

Regression (GPR) models demonstrated exceptional predictive capability at R2 = 

0.98 across Rational Quadratic, Squared Exponential and Matern 5/2 variants. This 

indicates their superior ability to explain 98% of the data variance. Following closely 

behind were the Neural Network architectures, with Wide and Trilayered Neural 

Networks achieving R2 = 0.97, while Medium Neural Networks and Exponential 

GPR reached R2 = 0.96, and Cubic SVM attained R2 = 0.95. The high-performing 

category included Narrow and Bilayered Neural Networks (R2 = 0.94), SVM Kernel 

(R2 = 0.92) and linear variants such as Interactions Linear (R2 = 0.91) and Stepwise 

Linear (R2 = 0.90). Good performance was demonstrated by Quadratic SVM (R2 = 

0.88), Fine Gaussian SVM (R2 = 0.85) and several models clustered around R2 = 0.83 

- 0.84, including Linear, Medium Gaussian SVM, Linear SVM, Robust Linear and 

(a) (b) (c) 

(d) (e) 
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Boosted Trees. Moderate performance was observed in Least Squares Regression 

Kernel (R2 = 0.74), Fine Tree and Bagged Trees (both R2 = 0.72), while lower 

performance was seen in Coarse Gaussian SVM (R2 = 0.63), Medium Tree (R2 = 

0.60) and notably poor performance in Coarse Tree (R2 = 0.39). The analysis 

revealed that complex models, particularly GPR and Neural Networks, consistently 

outperformed simpler approaches by achieving better R2 values. This pattern was 

further supported by the RMSE values, where models with higher R2 values 

consistently showed lower RMSE values, with GPR models achieving the lowest 

RMSE values around 0.024. The poor performance of simpler tree-based models 

suggests that the underlying data structure likely contains complex, non-linear 

relationships that require more sophisticated modeling approaches for effective 

capture and prediction.  

6.2.2 Optimization of Hidden layers (HL) and neurons (N)  

6.2.2.1 Data split ratio of 70:15:15 

Table 6.2 presents the evaluated configurations of hidden layers and neurons for the 

70:15:15 data split ratio. Using two hidden layers as the default configuration, the 

optimal architectures are highlighted in bold italics within the table. 

Table 6.2: Model performance metrics across phases using two hidden layers with 

varying neuron configurations (70:15:15 data split) 

 HL N Training 

(218 observations) 

Validation 

(47 observations) 

Testing 

(47 observations) 

MSE 

 

R2 MSE R2 MSE R2 

2 1 0.0033 0.9300 0.0022 0.9391 0.0106 0.8831 

2 5 0.0041 0.9223 0.0024 0.9485 0.0042 0.9327 

2 10 0.0001 0.9974 0.0021 0.9686 0.0008 0.9839 

2 15 0.00005418 0.9989 0.00098079 0.9905 0.00014646 0.9958 

2 20 0.00003187 0.9993 0.00073758 0.9912 0.00043781 0.9942 

2 25 0.0011 0.9793 0.0018 0.9671 0.0026 0.9534 

2 30 0.00012108 0.9980 0.0003113 0.9921 0.00022256 0.9950 

2 35 0.000031507 0.9994 0.00048129 0.9915 0.00048392 0.9935 

2 40 0.000036308 0.9992 0.00044939 0.9929 0.00088486 0.9905 

2 45 0.0007 0.9877 0.0013 0.9803 0.0020 0.9598 

2 50 0.00004904 0.9992 0.00020482 0.9931 0.00082641 0.9863 
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2 55 0.000074443 0.9987 0.00029566 0.9934 0.00052964 0.9893 

2 60 0.000020852 0.9996 0.0004216 0.9897 0.00076632 0.9848 

2 65 0.00023066 0.9959 0.0005279 0.9889 0.00081041 0.9875 

2 70 0.00026109 0.9954 0.00049688 0.9911 0.00093686 0.9770 

2 75 0.0001533 0.9972 0.00098177 0.9792 0.00095502 0.9894 

2 80 0.0000 0.9996 0.0004 0.9947 0.0033 0.9668 

2 85 0.0001 0.9986 0.0006 0.9869 0.0012 0.9817 

2 90 0.000020045 0.9997 0.00032944 0.9944 0.00030521 0.9902 

2 95 0.000016439 0.9997 0.00060198 0.9935 0.00089194 0.9754 

2 100 0.000036522 0.9994 0.00022592 0.9935 0.00044681 0.9896 

HL - Hidden layers      N - Number of neurons 

 

The influence of the varying number of neurons is depicted in Figure 6.8. Based on 

the neural network training results in Table 6.2, the optimum configuration was 

found to be 2 hidden layers with 100 neurons, which demonstrated exceptional 

performance metrics across all evaluation sets. This configuration achieved a 

remarkably low training MSE of 0.000036522 with a corresponding R2 value of 

0.9994, indicating excellent model fit during the training phase. The validation 

performance maintained strong consistency with an MSE of 0.00022592 and R2 of 

0.9935, while the test set performance showed robust generalization with an MSE of 

0.00044681 and R2 of 0.9896. When compared to other configurations, particularly 

those with fewer neurons (N < 50) which showed higher MSE values and less 

consistent performance, this configuration represented an optimal balance between 

model complexity and predictive accuracy. The relatively small gap between training 

and test performance metrics suggests effective generalization without overfitting, 

which is crucial for practical applications. Notably, while some configurations with 

fewer neurons (such as N=90 with training MSE of 0.000020045 and R2 of 0.9997) 

showed slightly better individual metrics, they demonstrated less consistency across 

the validation and test sets. The selected configuration's balanced performance across 

all three datasets (training, validation and test) provides strong evidence for its 

selection as the optimal architecture. It offers sufficient network capacity to capture 

complex patterns while maintaining computational efficiency and avoiding the 

diminishing returns observed in larger configurations. 
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Figure 6.8: Influence of varying number of neurons (70:15:15 data split) (a) MSE 

(b) R-squared 

The consistent R2 values above 0.989 across all evaluation sets further validate this 

architecture's robust predictive capabilities and stability. 

6.2.2.2 Data split ratio of 80:10:10 

Table 6.3 presents the evaluated configurations of hidden layers and neurons for the 

80:10:10 data split ratio. Using two hidden layers as the default configuration, the 

optimal architectures are highlighted in bold italics within the table. 

Table 6.3: Model performance metrics across phases using two hidden layers with 

varying neuron configurations (80:10:10 data split) 

 HL N Training 

(250 observations) 

Validation 

(31 observations) 

Test 

(31 observations) 

MSE R2 MSE R2 MSE R2 

2 1 0.0038 0.9295 0.0049 0.8535 0.0055 0.9084 

2 5 0.0024 0.9560 0.0011 0.9534 0.0021 0.9753 

2 10 0.0001 0.9979 0.0023 0.9767 0.0005 0.9819 

2 15 0.000089201 0.9985 0.00068519 0.9796 0.0007122 0.9864 

2 20 0.000067825 0.9986 0.00060991 0.9923 0.00059379 0.9949 

2 25 0.000039561 0.9993 0.00046567 0.9783 0.00076685 0.9915 

2 30 0.0000 0.9991 0.0009 0.9777 0.0055 0.9461 

2 35 0.00038875 0.9931 0.00038377 0.9936 0.00040321 0.9876 

2 40 0.00012655 0.9977 0.00031432 0.9940 0.00065144 0.9881 

2 45 0.0002 0.9951 0.0001 0.9976 0.0017 0.9839 
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2 50 0.000061611 0.9989 0.00056667 0.9873 0.00017158 0.9953 

2 55 0.00016125 0.9972 0.00035239 0.9897 0.00027492 0.9955 

2 60 0.0001 0.9986 0.0003 0.9949 0.0058 0.9439 

2 65 0.000016488 0.9997 0.00092097 0.9899 0.00035835 0.9928 

2 70 0.0000 0.9992 0.0005 0.9913 0.0016 0.9806 

2 75 0.0000 0.9992 0.0001 0.9973 0.0011 0.9875 

2 80 0.00010109 0.9983 0.00016087 0.9943 0.00071315 0.9846 

2 85 0.00027877 0.9995 0.00044373 0.9884 0.00043259 0.9913 

2 90 0.000021065 0.9996 0.00038238 0.9946 0.00025404 0.9926 

2 95 0.0000 0.9998 0.0002 0.9936 0.0011 0.9817 

2 100 0.0001 0.9981 0.0011 0.9877 0.0010 0.9559 

HL - Hidden Layers                N - Number of neurons 

 

The influence of the varying number of neurons is depicted in Figure 6.9. Based on 

comprehensive analysis of the neural network performance data in Table 6.3, the 

optimal configuration with 2 hidden layers and 65 neurons demonstrated exceptional 

predictive capabilities and generalization performance. This is evidenced by the 

outstanding training performance (MSE = 0.000016488, R2 = 0.9997), robust 

validation metrics (MSE = 0.00092097, R2 = 0.9899) and strong test set performance 

(MSE = 0.00035835, R2 = 0.9928).  This configuration was selected as optimal 

because it achieves the best balance between model complexity and performance, 

exhibiting the lowest training MSE among all tested configurations while 

maintaining excellent generalization ability across validation and test sets. The 

architecture with 65 neurons’ superior performance is further supported by its 

consistently high R2 values across all three datasets. This indicates excellent 

explanatory power and robust generalization, with the test set R2 of 0.9928 

suggesting that the model captures the underlying patterns in the data without 

memorizing noise, which is crucial for real-world applications.  
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Figure 6.9: Influence of varying number of neurons (80:10:10 data split) (a) MSE 

(b) R-squared 

6.2.2.3 Data split ratio of 90:5:5 

Table 6.4 presents the evaluated configurations of hidden layers and neurons for the 

90:5:5 data split ratio. Using two hidden layers as the default configuration, the 

optimal architectures are highlighted in bold italics within the table. 

Table 6.4: Model performance metrics across phases using two hidden layers with 

varying neuron configurations (90:5:5 data split) 

 HL  N Training 

(280 observations) 

Validation 

(16 observations) 

Test 

(16 observations) 

MSE R2 MSE R2 MSE R2 

2 1 0.0041 0.9212 0.0028 0.9315 0.0036 0.9413 

2 5 0.0013 0.9759 0.0004 0.9965 0.0010 0.9807 

2 10 0.0001 0.9989 0.0030 0.9896 0.0004 0.9909 

2 15 0.0005 0.9908 0.0003 0.9925 0.0058 0.8564 

2 20 0.0021 0.9626 0.0007 0.9789 0.0009 0.9684 

2 25 0.0002 0.9970 0.0005 0.9939 0.0018 0.9921 

2 30 0.00043828 0.9929 0.00031464 0.9884 0.00094974 0.9799 

2 35 0.0006 0.9885 0.0005 0.9909 0.0023 0.9680 

2 40 0.00014318 0.9973 0.00024682 0.9941 0.00072432 0.9977 

2 45 0.00013343 0.9975 0.00024705 0.9953 0.0003033 0.9956 

2 50 0.0001 0.9978 0.0001 0.9976 0.0010 0.9913 

2 55 0.00020579 0.9962 0.00019831 0.9970 0.00051261 0.9904 

2 60 0.000034296 0.9994 0.00039189 0.9804 0.00015195 0.9980 

2 65 0.000013184 0.9998 0.000054543 0.9990 0.000050275 0.9984 
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2 70 0.000062910 0.9989 0.00025718 0.9877 0.00040564 0.9905 

2 75 0.0000 0.9994 0.0011 0.9952 0.0002 0.9939 

2 80 0.000046563 0.9992 0.00017597 0.9961 0.00017966 0.9983 

2 85 0.000055164 0.9990 0.00027855 0.9951 0.00060678 0.9780 

2 90 0.00013017 0.9977 0.00033628 0.9930 0.00040557 0.9902 

2 95 0.000045532 0.9992 0.000033418 0.9991 0.000096146 0.9980 

2 100 0.00013561 0.9974 0.00015810 0.9973 0.00034860 0.9954 

HL - Hidden Layers    N - Number of neurons 

 

The influence of the varying number of neurons is depicted in Figure 6.10. The 

extensive parametric study of a two-hidden-layer neural network architecture from 

Table 6.4 revealed that the optimal configuration was achieved with 65 neurons, 

demonstrating superior performance metrics across all three data partitions. This 

configuration yielded remarkably low MSE values of 0.000013184, 0.000054543 

and 0.000050275 for training, validation and testing sets respectively, accompanied 

by exceptionally high R2 values of 0.9998, 0.9990 and 0.9984. The selection of 65 

neurons as the optimal architecture is justified by several key observations.  

  

Figure 6.10: Influence of varying number of neurons (90:5:5 data split) (a) MSE (b) 

R-squared 

Firstly, it achieved the most balanced performance across all three datasets, 

indicating robust generalization capability without overfitting. Secondly, it 

demonstrated a three-fold improvement in MSE compared to the next best 
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configuration (60 neurons) during training, while maintaining superior performance 

in both validation and testing phases. Thirdly, while some configurations (such as 75 

and 80 neurons) showed comparable performance in individual metrics, they failed 

to maintain consistent excellence across all evaluation criteria. The progressive 

improvement in network performance from 1 to 65 neurons, followed by a slight 

degradation or inconsistent performance beyond 65 neurons, suggests that this 

configuration strikes an optimal balance between network complexity and 

generalization ability. This is further supported by the negligible difference between 

training and testing performance metrics, indicating that the network successfully 

captured the underlying patterns in the data without memorizing the training set, a 

crucial consideration for practical applications.  

6.2.3 Optimal Trained ANN FO model results  

6.2.3.1 70:15:15 data split 

The performance evaluation of the ANN model for the data split ratio of 70:15:15 is 

shown in Figure 6.11 

 

(a) 
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Figure 6.11: Performance evaluation for 70:15:15 data split (a) Best validation 

performance (b) Training state plot (c) Error Histogram plot 

The ANN modeling results from Figure 6.11 demonstrate several key characteristics 

indicative of successful neural network training and performance. The training 

performance plot shows the MSE progression over 25 epochs, with the best 

validation performance achieved at epoch 19 with MSE of 0.00022592. The training 

curve exhibits consistent error reduction, while validation and test curves follow 

similar trajectories. This indicates good generalization without significant overfitting 

since the validation error does not increase after the best epoch. The error histogram, 

divided into 20 bins, displays a roughly normal distribution of network errors 

concentrated near zero, with similar error patterns across training, validation, and test 

sets, and minimal outliers in the tail regions. The observed convergence pattern, early 

stopping implementation at epoch 19, well-balanced error distribution across 

datasets, and appropriately tuned training parameters collectively indicate a robust 

and well-performing neural network model suitable for the intended application. The 

close alignment between training, validation and test performance metrics suggests 

good generalization capabilities and reliable model predictions across different data 

subsets. 

Figure 6.12 presents the regression analysis for the ANN model's training, validation 

and testing stages, illustrating the relationship between targeted and predicted outputs 

for the 70:15:15 data split. 

(b) (c) 
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Figure 6.12: Trained ANN FO model results for regression analysis for 70:15:15 

data split 

The regression analysis plots from Figure 6.12 demonstrate comprehensive model 

performance through multiple correlation metrics. The training dataset shows 

exceptional correlation (R2 = 0.9994), indicating nearly perfect prediction accuracy 

for the training data. The validation set maintains strong performance (R2 = 0.99346) 

with minimal scatter, confirming robust generalization to unseen data. The test set 

exhibits continued high correlation (R2 = 0.98961) with slightly increased but still 

acceptable scatter, validating the model's predictive capabilities on independent data. 

This all culminates in an impressive aggregate performance (R2 = 0.99765). The 

outputs consistently match targets across the full value range, with evenly distributed 

data points along the regression line and minimal outliers. The high R-values across 

all subsets, combined with the consistent distribution patterns, demonstrate excellent 

model generalization, absence of overfitting (as evidenced by strong test 

performance), reliable prediction capability across the entire data range, balanced 

performance between training, validation, and test sets, and minimal bias in the 

model's predictions. This provides robust statistical evidence of a well-trained neural 
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network model suitable for accurate predictions within its trained domain. The 

regression plots clearly illustrate the model's strong predictive capabilities and 

successful training outcomes. 

6.2.3.2 80:10:10 data split 

The performance evaluation of the ANN model for the data split ratio of 80:10:10 is 

shown in Figure 6.13 

 

  

Figure 6.13: Performance evaluation for 80:10:10 data split (a) Best validation 

performance (b) Training state plot (c) Error Histogram plot 

The modeling results from Figure 6.13 show optimized network performance with 

best validation at epoch 15 (MSE = 0.00092097). The training curve demonstrates 

(a) 

(b) (c) 
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consistent error reduction, while validation and test curves follow similar patterns, 

indicating good generalization without severe overfitting. Training state plots reveal 

stable gradient values; appropriate Mu parameter adaptation and steady validation 

checks until final epochs. The error histogram shows a concentrated normal 

distribution near zero across all datasets, with minimal outliers. The parallel 

performance of training, validation and test sets, combined with early stopping at 

epoch 15, suggests a well-tuned model with robust prediction capabilities. 

Figure 6.14 presents the regression analysis for the ANN model's training, validation 

and testing stages, illustrating the relationship between targeted and predicted outputs 

for the 80:10:10 data split. 

 

Figure 6.14: Trained ANN FO model results for regression analysis for 80:10:10 

data split 

The regression analysis results from Figure 6.14 shows exceptional performance 

across all datasets, with R2 approaching unity: training (R2 = 0.9997), validation (R2 

= 0.98994), test (R2 = 0.99278) and overall (R2 = 0.99745). The training phase 

exhibits remarkable accuracy, indicating optimal model convergence and learning of 
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underlying patterns. The validation phase maintains high performance with only 

minor deviations, particularly at higher values, suggesting robust model 

generalization. The test phase demonstrates consistent predictive capability despite 

fewer data points, reinforcing the model's reliability on unseen data. The aggregate 

performance shows exceptional consistency across all datasets with minimal 

deviation from the ideal Y=T line. The uniformly high R2 values across all phases, 

coupled with the consistent clustering patterns around regression lines, definitively 

indicate successful model training, absence of overfitting, strong generalization 

capabilities and high prediction reliability, making this implementation particularly 

noteworthy for its consistency and accuracy across all evaluation metrics. 

6.2.3.3 90:5:5 data split 

The performance evaluation of the ANN model for the data split ratio of 90:5:5 is 

shown in Figure 6.15 

 

(a) 
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Figure 6.15: Performance evaluation for 90:5:5 data split (a) Best validation 

performance (b) Training state plot (c) Error Histogram plot 

The results from Figure 6.15 demonstrate excellent network performance with best 

validation achieved at epoch 68 (MSE of 0.000054543). The training curve exhibits 

steady error reduction MSE over 74 epochs, while validation and test curves follow 

comparable trajectories, indicating robust generalization. Training state metrics show 

gradient stability with minor fluctuations; appropriate Mu parameter adaptation and 

consistent validation checks until later epochs. The error histogram presents a well-

defined normal distribution centred near zero across all datasets, with balanced 

distribution between training, validation, and test sets. The extended training period 

of 74 epochs, combined with the gradual convergence and low final MSE, suggests a 

well-optimized model with strong predictive capabilities and minimal overfitting 

risk. 

Figure 6.16 presents the regression analysis for the ANN model's training, validation 

and testing stages, illustrating the relationship between targeted and predicted outputs 

for the 90:5:5 data split 

(b) (c) 
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Figure 6.16: Trained ANN FO model results for regression analysis for 90:5:5 data 

split 

The ANN regression analysis from Figure 6.16 demonstrates exceptional 

performance with remarkably high correlation coefficients: training (R2 = 0.99975), 

validation (R2 = 0.99905), test (R2 = 0.99838) and overall (R2 = 0.99968). The 

training phase shows optimal convergence with dense data points along the Y=T line. 

The validation maintains superior performance with minimal scatter whilst the test 

results confirm strong generalization despite a smaller sample size. The aggregate 

performance displays exceptional consistency. The uniformly high R2 values and 

tight clustering around regression lines indicate successful training, absence of 

overfitting, robust generalization capabilities and high prediction reliability. The 

training plot shows near-perfect alignment, validation and test plots maintain high 

accuracy with minimal scatter and the overall plot confirms consistent performance 

across the entire dataset. This suggests optimal ANN architecture and training 

parameters for the given problem domain. 
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6.2.3.4 Comparison of the performances of the three data split ratios 

When comparing the overall R2 values, the 90:5:5 split achieved marginally better 

performance (0.99968) compared to 70:15:15 (0.99765) and 80:10:10 (0.99745), 

though all splits showed excellent results above 0.997. Training performance 

improved with larger training sets, as evidenced by R2 values of 0.9994 (70:15:15), 

0.9997 (80:10:10), and 0.99975 (90:5:5), suggesting more training data enhanced 

model learning. Examining the validation/test set trade-offs reveals that 70:15:15 

maintained strong validation (0.99346) and test (0.98961) performance with larger 

evaluation sets. The 80:10:10 showed balanced validation (0.98994) and test 

(0.99278) results, while 90:5:5 achieved highest validation (0.99905) and test 

(0.99838) scores but with smallest evaluation sets. Critical analysis shows that while 

the 90:5:5 split demonstrates highest overall accuracy, it may have less reliable 

generalization assessment due to smaller validation/test sets. The 70:15:15 split 

provides most robust validation with larger evaluation sets despite slightly lower 

metrics. The 80:10:10 split offers good balance between training data and evaluation 

set sizes. While 90:5:5 shows best metrics, the 80:10:10 split likely offers optimal 

balance between model training and reliable performance assessment, as the larger 

validation/test sets in 70:15:15 provide more confidence in generalization capabilities 

despite marginally lower metrics. 

The mean absolute percentage errors (MAPE) of the various novel organic draw 

solutions for the various FO runs and different data split ratios are shown in Table 

6.5 
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Table 6.5: Mean absolute percentage errors for the various organic draw solutions at different data spilt ratios 

Draw solution FO Run Feed 

solution 

(NaCl) 

D.F.R 

(LPM) 

F.F.R 

(LPM) 

Exp. 

flux 

(LMH) 

DSR of 

70:15:15 

DSR of 

80:10:10 

DSR of 

90:5:5 

Jv 

(LMH) 

MAPE Jv 

(LMH) 

MAPE Jv 

(LMH) 

MAPE 

0.5NaCMC-3.75PGPE 1 5000 ppm 0.20 0.20 14.303 14.299 0.0280 14.278 0.1748 14.314 0.0769 

0.5NaCMC-3.75PGPE 2 5000 ppm 0.20 0.20 12.514 12.510 0.0320 12.508 0.0479 12.525 0.0879 

0.5NaCMC-3.75PGPE 3 5000 ppm 0.20 0.20 11.927 11.923 0.0335 11.926 0.0084 11.938 0.0922 

0.5NaCMC-3.75PGPE 1 5000 ppm 0.15 0.20 9.006 9.002 0.0444 9.035 0.3220 9.017 0.1221 

0.5NaCMC-3.75PGPE 2 5000 ppm 0.15 0.20 7.769 7.765 0.0515 7.810 0.5277 7.780 0.1416 

0.5NaCMC-3.75PGPE 3 5000 ppm 0.15 0.20 8.534 8.530 0.0469 8.568 0.3984 8.545 0.1289 

0.5NaCMC-3.75PGPE 1 5000 ppm 0.25 0.20 15.361 15.357 0.0260 15.326 0.2278 15.372 0.0716 

0.5NaCMC-3.75PGPE 2 5000 ppm 0.25 0.20 14.221 14.217 0.0281 14.197 0.1688 14.232 0.0774 

0.5NaCMC-3.75PGPE 3 5000 ppm 0.25 0.20 14.727 14.723 0.0272 14.698 0.1969 14.738 0.0747 

0.5NaCMC-3.75PGPE 1 5000 ppm 0.20 0.15 7.629 7.625 0.0524 7.671 0.5505 7.640 0.1442 

0.5NaCMC-3.75PGPE 2 5000 ppm 0.20 0.15 7.760 7.756 0.0515 7.801 0.5284 7.771 0.1418 

40PGPE 1 35 000 

ppm 

0.20 0.15 22.436 22.432 0.0178 22.330 0.4725 22.447 0.0490 

40PGPE 2 35 000 

ppm 

0.20 0.15 19.738 19.734 0.0203 19.659 0.4002 19.749 0.0557 

0.5HPC-3.75PGPE 1 1000 ppm 0.40 0.40 19.793 19.789 0.0202 19.713 0.4042 19.804 0.0556 

0.5HPC-3.75PGPE 2 1000 ppm 0.40 0.40 13.618 13.614 0.0294 13.600 0.1322 13.629 0.0808 

0.75HPC-3.75PGPE 1 1000 ppm 0.40 0.40 8.612 8.608 0.0464 8.645 0.3832 8.623 0.1277 

0.75HPC-3.75PGPE 2 1000 ppm 0.40 0.40 8.093 8.089 0.0494 8.131 0.4695 8.104 0.1359 

0.5NaCMC-3.75PGPE 1 1000 ppm 0.20 0.15 12.173 12.169 0.0329 12.169 0.0329 12.184 0.0904 

0.5NaCMC-3.75PGPE 2 1000 ppm 0.20 0.15 11.899 11.895 0.0336 11.899 0.0000 11.910 0.0924 

0.5NaCMC-3.75PGPE 3 1000 ppm 0.20 0.15 10.140 10.136 0.0394 10.157 0.1677 10.151 0.1085 
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0.5NaCMC-3.75PGPE 4 1000 ppm 0.20 0.15 8.772 8.768 0.0456 8.803 0.3534 8.783 0.1254 

0.5NaCMC-20PGPE 1 35 000 

ppm 

0.20 0.15 13.975 13.972 0.0215 13.954 0.1503 13.987 0.0859 

0.5NaCMC-20PGPE 2 35 000 

ppm 

0.20 0.15 14.284 14.280 0.0280 14.260 0.1680 14.295 0.0770 

0.25HPC-3.75PGPE 1 1000 ppm 0.20 0.40 11.062 11.058 0.0362 11.070 0.0723 11.073 0.0994 

0.25HPC-3.75PGPE 2 1000 ppm 0.20 0.40 9.852 9.848 0.0406 9.873 0.2132 9.863 0.1117 

0.25HPC-3.75PGPE 3 1000 ppm 0.20 0.40 9.242 9.238 0.0433 9.268 0.2813 9.253 0.1190 

DFR – draw flow rate     FFR – feed flow rate    DSR – data split ratio   MAPE – mean absolute percentage error 
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The examination of MAPE across various data split ratios (DSR) revealed that the 

70:15:15 partition consistently demonstrates superior predictive accuracy, exhibiting 

remarkably low MAPE values ranging from 0.0178% to 0.0524% with a mean of 

0.036% across all draw solutions. In contrast, the 80:10:10 partition exhibits the 

highest variability and magnitude of errors, with MAPE values spanning from 0.0% 

to 0.5505% and a mean of 0.264%. The 90:5:5 partition presents intermediate 

performance, with MAPE values ranging from 0.049% to 0.1442% and a mean of 

0.1%. These findings strongly indicate that the 70:15:15 partition ratio provides 

optimal predictive accuracy across the spectrum of draw solutions and experimental 

conditions within this dataset. 

6.2.4 Techno-economic assessment 

The cost distribution analysis for the stand-alone FO system is presented in Figure 

6.17a, delineating both OPEX and CAPEX components. The most significant 

contributors to the total costs were ancillary operational parameters (labour, 

maintenance and cleaning chemicals), accounting for 31.86% of the total 

expenditure. Power consumption-related operating costs followed at 24.73%, while 

the capital costs for the feed solution pump represented 19.15% of the total costs. 

Other notable cost factors included capital costs for the draw solution pump (6.38%), 

FO membrane (1.99%) and site development (5.51%). Indirect capital and membrane 

replacement operating costs contributed 9.91% and 0.47%, respectively. The annual 

operating costs were $ 23 273.92, with annual capital costs amounting to $ 17 

487.60. The yearly cost per unit volume of produced water for the stand-alone FO 

system was determined to be 0.47 $ m-3, based on a plant capacity of 160 m3 d-1. This 

water production cost is relatively high compared to other FO processes, primarily 

due to the slightly elevated costs associated with the organic draw solutions. 

However, it is essential to note that these draw solutions' high regeneration and reuse 

efficiency is expected to yield long-term cost savings for the overall process.   
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Figure 6.17: Total OPEX and CAPEX for (a) stand-alone FO, (b) PS and (c) annual 

costs for FO, PS, and combined FO-PS processes 

Figure 6.17b illustrates the annual cost distribution for the PS regeneration process, 

delineating both CAPEX and OPEX components. The three primary cost 

contributors for the process were operator costs (34.65%), CAPEX (33.43%) and 

maintenance costs (29.86%). Yearly electricity and cooling costs contributed 0.41% 

and 1.65% to the total costs, respectively. The total installed equipment costs, based 

on Figure 2.4, were calculated to be $ 1 811 789.21. The total yearly costs for the PS 
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regeneration process were estimated at $ 242 691.18. The cost of steam was 

determined to be 1.60 $ ton-1. This relatively low steam cost indicates potential for 

cost-effective operation, mainly if waste heat can be used. The economic feasibility 

of the FO-PS hybrid desalination system is contingent upon two critical factors, i.e., 

high efficiency in draw solution regeneration and reuse and utilization of industrial 

waste heat in the phase separation process. These findings emphasize optimizing 

regeneration and pursuing industrial symbiosis opportunities to leverage waste heat 

streams. Such integration could significantly enhance the system's economic viability 

by reducing energy costs and improving overall process efficiency. Furthermore, the 

substantial contribution of operator and maintenance costs to the total expenditure 

suggests that automation and predictive maintenance strategies could play a crucial 

role in enhancing the system's economic performance. Future research directions 

should focus on developing more efficient draw solutions, optimizing membrane 

performance and exploring innovative heat integration techniques to reduce 

operational costs further. The OPEX, CAPEX and total costs for the FO, PS and 

combined FO-PS processes are shown in Figure 6.17c.  
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CHAPTER 7 

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

7.1 Conclusion 

The world’s ever-growing population, coupled with the impacts of climate change 

and pollution, is projected to lead to widespread water scarcity by the year 2040, 

especially in Africa and Asia. This impending crisis underscores the urgent need for 

more research focused on averting this catastrophic scenario. While reverse osmosis 

(RO) remains the more common desalination technology, forward osmosis (FO) 

presents a viable and promising alternative. FO offers a probable efficient, cleaner 

and less energy-intensive means of desalination, as it does not require external 

hydraulic pressure and exhibits lower fouling propensities compared to RO. 

However, the full commercialization of FO has been hindered by several challenges, 

primarily the lack of an optimal draw solution and energy-intensive draw solution 

regeneration processes. This research work has addressed these limitations by 

developing novel organic draw solutions that leverage their lower critical solution 

temperatures for efficient phase separation and regeneration. The aim was to 

leverage waste heat to improve the overall efficiency of the FO desalination process. 

The significant findings of this research work contribute towards overcoming the 

barriers to the widespread adoption of FO technology as a sustainable solution to 

impending global water scarcity. 

Major scientific contributions 

Novel draw solution development and characterization: This work successfully 

developed novel PGPE-based draw solutions that fundamentally advance FO 

technology. The binary 40PGPE and ternary 0.5NaCMC-20PGPE draw solutions 

produced significantly higher osmotic pressures of 130.297 and 59.455 bars, 

respectively. Adding NaCMC to PGPE solutions significantly increases the viscosity, 

but the solutions maintain high osmotic pressures suitable for use as FO draw 

solutions. For draw solution applications, these draw solutions can be considered as 

Newtonian fluids only. 
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Critical phase behaviour studies revealed that the binary 3.75PGPE solution showed 

successful regeneration, but the more concentrated 40PGPE solution did not exhibit 

visible phase separation at 70 oC, highlighting the critical influence of concentration 

on phase behaviour. However, dilution of the 40PGPE draw solution during FO may 

facilitate phase separation. The 3.75PGPE, 0.5NaCMC-3.75PGPE and 0.5NaCMC-

20PGPE draw solutions can be regenerated by heating the solutions at a temperature 

of 70 oC. The novel 0.25HPC-3.75PGPE ternary draw solution demonstrated 

successful regeneration upon heating above the cloud point temperatures, resulting in 

the formation of three distinct phases: insoluble white HPC precipitates and 

separated PGPE and water liquid phases. 

Forward osmosis performance and membrane characterization: Comprehensive 

testing established the membrane hydraulic permeability constant, A, at 0.78274 L 

m-2 h-1 bar-1. The 0.5NaCMC-3.75PGPE draw solution against a 5 000 ppm NaCl 

feed had average experimental water fluxes of 7.629 LMH and 7.760 LMH with 

corresponding solute fluxes of 2.255 gMH and 2.479 gMH. The water fluxes 

declined over time suggesting potential membrane fouling or concentration 

polarization. 

For higher salinity applications, the 40PGPE draw solution had average experimental 

water fluxes of 22.436 LMH and 19.738 LMH when desalinating a 35 000 ppm NaCl 

feed, while the 0.5NaCMC-20PGPE ternary draw had average experimental water 

fluxes of 13.975 LMH and 14.284 LMH. The solute fluxes of the binary 40PGPE 

draw solution surpassed those of the ternary 0.5NaCMC-20PGPE for both FO runs. 

The novel 0.25HPC-3.75PGPE ternary draw solution achieved experimental water 

fluxes of 11.062 and 9.852 LMH against 1000 ppm NaCl brackish feed solution. 

Membrane compatibility analysis showed that minor morphological variations were 

observed, particularly for the membrane immersed in the binary 3.75PGPE solution, 

compared to the original membrane. Importantly, the FO membrane's overall shape 

and integrity were preserved after immersion in the draw solutions. Based on the 

Spiegler-Kedem model, the solute permeability coefficient and the reflection 
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coefficient of the HPC-PGPE draw solutions were determined to be 4.05 × 10-8 m/s 

and 0.999, respectively. 

Machine learning optimization and predictive modeling: Advanced 

computational approaches were successfully implemented to optimize FO 

performance prediction. Among the predictive machine learning approaches 

evaluated, Gaussian Process Regression achieved superior performance (R2 = 0.98), 

closely followed by Wide and Trilayered Neural Networks (R2 = 0.97). Through 

systematic optimization, this work identified an optimal ANN architecture 

comprising two hidden layers with 65 neurons. 

Analysis of data split ratios revealed the 70:15:15 partition demonstrated superior 

predictive accuracy with remarkably low MAPE (0.0178 - 0.0524%, mean 0.036%), 

outperforming both 80:10:10 (0 - 0.5505%, mean 0.264%) and 90:5:5 (0.049 - 

0.1442%, mean 0.1%) splits. This configuration achieved exceptional accuracy with 

R2 values exceeding 0.99 across all datasets, peaking at R2 = 0.99968 with a 90:5:5 

split. 

Economic analysis and commercial viability: Comprehensive techno-economic 

evaluation demonstrated the commercial potential of the developed FO system. The 

annual operating costs were $23 273.92, with annual capital costs amounting to $17 

487.60. The yearly cost per unit volume of produced water for the stand-alone FO 

system was determined to be 0.47 $ m-3, based on a plant capacity of 160 m3 d-1. The 

total yearly costs for the PS regeneration process were estimated at $242 691.18, 

with the cost of steam determined to be 1.60 $ ton-1. 

Significance and impact 

The developed novel draw solutes exhibited competitive FO performances with those 

from literature, while offering the critical advantage of efficient thermal 

regeneration. This research provides a comprehensive pathway toward overcoming 

the primary barriers to FO commercialization by delivering draw solutions that 

combine high osmotic driving force with low-temperature regeneration capabilities. 
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The ability to utilize waste heat at 70 oC positions this technology as particularly 

attractive for industrial integration and sustainable desalination applications. 

The demonstrated performance of these novel draw solutions, coupled with their 

thermal regeneration capabilities and economic viability, positions FO as a credible 

alternative to conventional desalination technologies. This work contributes essential 

building blocks toward addressing the impending global water crisis through 

sustainable, energy-efficient desalination solutions that can leverage industrial waste 

heat and renewable energy sources, ultimately supporting global efforts toward water 

security in an increasingly water-stressed world. 

7.2 Future Scope 

FO desalination, whilst demonstrating promising laboratory-scale performance, faces 

critical limitations that constrain practical implementation. Most studies rely on 

synthetic feed solutions with controlled ionic compositions that poorly represent real 

seawater or wastewater complexity, where organic matter and biological 

contaminants create substantially different fouling behaviours. Furthermore, 

investigations typically focus on short-term performance metrics rather than the 

long-term operational stability required for commercial viability. The majority of 

studies have omitted the determination of specific energy consumption and techno-

economic assessments of their FO processes. The limited studies that report high 

specific energy consumption values universally recommend utilising waste heat or 

renewable energy sources for draw agent recovery processes. However, these 

recommendations lack empirical validation in subsequent research.  

This research work has laid the foundation for significant advancements in FO 

desalination technologies. Building upon the insights and findings of this thesis, a 

three-phase strategy is suggested for the future prospects of FO. Economic viability 

fundamentally hinges on draw agent recovery costs. The transition to commercial 

implementation requires addressing specific technical milestones across three phases. 

FO research suffers from critical fragmentation preventing commercial 

implementation. Researchers developing innovative draw agents with stimulus-

responsive cost-effective recovery publish their work and move on. Membrane 
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specialists creating materials that reduce concentration polarisation whilst increasing 

water flux similarly fail to collaborate beyond publication. Researchers utilising 

machine learning algorithms for optimisation operate in isolation. The first step 

requires collaborative integration of these three domains to develop optimised 

membrane–draw agent–machine learning systems that function together rather than 

as isolated components. Key research questions focus on how machine learning 

algorithms can predict optimal membrane-draw agent pairings for specific feed water 

compositions. Research should investigate fundamental compatibility requirements 

between different membrane materials and draw agents. Studies must determine how 

real-time monitoring systems can optimise FO performance through adaptive control 

strategies. Methodologies should develop multi-objective optimisation algorithms 

using experimental databases of membrane performance and draw agent properties. 

Research requires standardised testing protocols for membrane-draw agent 

compatibility assessment. Implementation needs pilot systems with real-time 

monitoring of key performance indicators. Collaborative research networks must link 

membrane developers, draw solution researchers, and artificial intelligence 

specialists. Once these integrated systems demonstrate superior performance in 

laboratory settings, scale-up should focus on real feed waters in remote areas where 

FO's low-pressure operation provides clear competitive advantages. Mercury-

contaminated mining wastewaters in African artisanal and small-scale gold mines 

represent an ideal initial application. This requires membranes that prevent mercury 

adhesion and minimise reverse solute flux. FO's ability to function at low pressure 

suits treating complex contaminated streams in energy-limited remote locations. 

Research questions must identify critical design parameters for FO systems treating 

real industrial wastewaters with complex contaminant matrices. Studies should 

investigate how long-term fouling mechanisms differ between synthetic and real feed 

waters. Research must determine optimal system configurations for achieving low 

energy consumption using renewable energy sources. Methodologies require 

extended pilot-scale studies with actual contaminated waters from mining operations, 

municipal wastewater, and agricultural runoff. Research needs comprehensive 

fouling analysis protocols including the use of spectroscopy. Techno-economic 

models must be developed incorporating real-world operational costs and 
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maintenance requirements. Field testing stations in water-stressed regions should 

validate performance under variable environmental conditions. Future development 

should expand successful remote applications into autonomous, AI-powered 

networks that integrate multiple treatment sites. These systems would use real-time 

environmental data and distributed learning algorithms for adaptive responses to 

climate variability and demand fluctuations. Research questions focus on how 

distributed FO networks can adapt autonomously to changing environmental 

conditions whilst maintaining optimal performance. Methodologies require federated 

learning algorithms that enable individual FO systems to learn from collective 

network experience. Development needs predictive maintenance protocols using 

learning diagnostics. Implementation must create edge computing solutions for real-

time decision making in remote locations with limited connectivity. Design should 

focus on modular, standardised FO units that can be easily replaced without 

disrupting network operations. Immediate focus should prioritise integration 

activities due to their high impact and feasibility. Medium-term development should 

begin pilot-scale validation with real waters once laboratory success is demonstrated. 

Long-term vision represents the ultimate goal but requires successful completion of 

earlier phases. FO desalination will likely succeed in niche applications where its 

unique advantages justify current economic limitations. Currently, FO plays a 

complementary rather than transformative role in global water security. Yet FO has 

the potential to capture a substantial portion of the desalination market in the coming 

decades if draw solution recovery processes can achieve energy consumption below 

3.75 kWh/m3. Success depends on systematic advancement across technical and 

economic fronts, enabling FO to establish a sustainable position in specific 

applications whilst complementing rather than replacing conventional desalination 

technologies in the global water treatment landscape. This work has laid the 

foundation for significant advancements in FO desalination technologies. Building 

upon these insights, several promising avenues for future research and development 

have been identified. These research directions position FO as a transformative 

technology that can reshape how societies approach water security, resource 

management, and environmental sustainability in an era of increasing global 

challenges. Whilst key technical hurdles such as energy-intensive draw solution 
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recovery requirements still need resolution, the unique advantages of FO systems 

make them well-positioned to address diverse water treatment applications across 

multiple scales and contexts.      

7.3 Environmental and Social Impact 

The social implications of this research on osmotic pressure-driven desalination 

processes extend across multiple dimensions of sustainable development and public 

welfare. By developing more efficient draw solutions, this work contributes to 

addressing global water security challenges, particularly in developing regions where 

conventional desalination technologies remain cost-prohibitive. The FO approach 

demonstrates enhanced environmental sustainability through reduced energy 

requirements compared to traditional desalination methods, with the added potential 

for utilizing waste heat or solar energy given the 70 oC regeneration temperature of 

draw solutions. This improved environmental profile, coupled with increased 

accessibility to clean water sources, has direct positive implications for public health 

outcomes, especially in areas currently relying on contaminated water supplies. 

Furthermore, the research aligns with and advances the United Nations Sustainable 

Development Goals, specifically SDG 6 regarding clean water access and sanitation, 

while supporting sustainable urban development through more effective water 

management strategies. 

The creation of organic draw solutions made from cellulose for forward osmosis is a 

sustainable step forward in water treatment technology. Such an innovation carries 

significant environmental and socioeconomic implications. The inherently 

biodegradable nature of these organic compounds eliminates environmental 

accumulation concerns associated with inorganic draw solutions. FO eliminates 

energy-intensive high-pressure pumps required in RO, substantially reducing the 

operational energy demands. The regeneration process operates at moderate 

temperatures of 70 oC using industrial waste heat. This creates a synergistic 

relationship that transforms discarded thermal energy into productive water treatment 

capacity while simultaneously reducing the overall carbon footprint. FO membranes 

demonstrate exceptional durability through multiple operational cycles with minimal 
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requirements for cleaning using chemicals. The extended lifespan of membranes 

reduces replacement frequency and minimizes solid waste generation. The reduced 

chemical cleaning requirements eliminate hazardous waste streams and 

environmental toxicity risks. FO systems effectively treat highly saline feeds and 

severely contaminated water sources, expanding treatment applications to previously 

unusable water resources. Such capability proves particularly valuable in water-

stressed regions where conventional treatment approaches demonstrate limited 

effectiveness. From a socio-economic perspective, these processes address critical 

water security challenges in developing nations where millions lack access to safely 

managed drinking water services. This process demonstrates economic viability in 

resource-constrained regions through the elimination of huge pumping costs and the 

utilization of waste heat for draw solution recovery. Clean water becomes accessible 

to communities where conventional treatment remains economically unfeasible. The 

integration with industries creates mutually beneficial relationships that improve both 

water treatment economics and industrial energy efficiency while facilitating 

knowledge transfer to developing nations. Employment opportunities emerge across 

manufacturing, installation, and maintenance sectors. Climate change has intensified 

global water scarcity, making cellulose-derived phase-separating FO processes both 

an environmental solution and an economic opportunity. This solution addresses 

fundamental human development challenges through sustainable approaches, 

transforming industrial waste heat into productive water treatment resources. 
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APPENDIX – I  

Table AP-1: FO raw experimental dataset used in ANN modeling 

 INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT OUTPUT 

Data 

points 

Data 

Type 

FO Run Time 

(mins) 

Feed 

side 

temp. 

(°C) 

Feed 

side 

conc. 

(M) 

Feed 

side 

flowrate 

(L/h) 

Draw 

side 

temp. 

(°C) 

Draw 

side 

conc. 

(M) 

Draw 

side 

solute 

Mol. 

Weight 

(g/mol) 

Draw 

side 

flowrate 

(L/h) 

FO flux 

(L/h/m2) 

1 Exp 1 10 30 0.093778 12 30 2.39818 119.50 12 15.163 

2 Exp 1 20 30 0.095781 12 30 2.37720 119.50 12 15.163 

3 Exp 1 30 30 0.097785 12 30 2.35621 119.50 12 15.163 

4 Exp 1 40 30 0.099538 12 30 2.33785 119.50 12 14.689 

5 Exp 1 50 30 0.101541 12 30 2.31687 119.50 12 14.784 

6 Exp 1 60 30 0.103294 12 30 2.29851 119.50 12 14.532 

7 Exp 1 70 30 0.105047 12 30 2.28014 119.50 12 14.351 

8 Exp 1 80 30 0.106800 12 30 2.26178 119.50 12 14.216 

9 Exp 1 90 30 0.108803 12 30 2.24080 119.50 12 14.321 

10 Exp 1 100 30 0.110055 12 30 2.22768 119.50 12 13.837 

11 Exp 1 110 30 0.110806 12 30 2.21981 119.50 12 13.096 

12 Exp 1 120 30 0.111307 12 30 2.21456 119.50 12 12.320 

13 Exp 2 10 30 0.093778 12 30 2.39818 119.50 12 15.163 

14 Exp 2 20 30 0.095531 12 30 2.37982 119.50 12 14.216 

15 Exp 2 30 30 0.097284 12 30 2.36146 119.50 12 13.900 
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16 Exp 2 40 30 0.099037 12 30 2.34310 119.50 12 13.742 

17 Exp 2 50 30 0.100539 12 30 2.32736 119.50 12 13.268 

18 Exp 2 60 30 0.101791 12 30 2.31424 119.50 12 12.636 

19 Exp 2 70 30 0.103294 12 30 2.29851 119.50 12 12.456 

20 Exp 2 80 30 0.104546 12 30 2.28539 119.50 12 12.083 

21 Exp 2 90 30 0.105548 12 30 2.27490 119.50 12 11.583 

22 Exp 2 100 30 0.106299 12 30 2.26703 119.50 12 10.993 

23 Exp 2 110 30 0.106800 12 30 2.26178 119.50 12 10.339 

24 Exp 2 120 30 0.107301 12 30 2.25653 119.50 12 9.793 

25 Exp 3 10 30 0.093778 12 30 2.25721 119.50 12 15.163 

26 Exp 3 20 30 0.095781 12 30 2.23623 119.50 12 15.163 

27 Exp 3 30 30 0.097284 12 30 2.22049 119.50 12 13.890 

28 Exp 3 40 30 0.098786 12 30 2.20475 119.50 12 13.268 

29 Exp 3 50 30 0.100289 12 30 2.18901 119.50 12 12.889 

30 Exp 3 60 30 0.101541 12 30 2.17589 119.50 12 12.320 

31 Exp 3 70 30 0.102543 12 30 2.16540 119.50 12 11.643 

32 Exp 3 80 30 0.103544 12 30 2.15491 119.50 12 11.136 

33 Exp 3 90 30 0.104045 12 30 2.14966 119.50 12 10.320 

34 Exp 3 100 30 0.104546 12 30 2.14442 119.50 12 9.667 

35 Exp 3 110 30 0.105047 12 30 2.13917 119.50 12 9.132 

36 Exp 3 120 30 0.105297 12 30 2.13655 119.50 12 8.529 

37 Exp 1 10 30 0.093164 12 30 2.37476 119.50 9 17.059 

38 Exp 1 20 30 0.094091 12 30 2.35009 119.50 9 13.268 

39 Exp 1 30 30 0.094709 12 30 2.33035 119.50 9 11.373 

40 Exp 1 40 30 0.095018 12 30 2.32049 119.50 9 9.477 
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41 Exp 1 50 30 0.095326 12 30 2.31062 119.50 9 8.340 

42 Exp 1 60 30 0.095790 12 30 2.29581 119.50 9 7.898 

43 Exp 1 70 30 0.096099 12 30 2.28595 119.50 9 7.311 

44 Exp 1 80 30 0.096716 12 30 2.27114 119.50 9 7.108 

45 Exp 1 90 30 0.097025 12 30 2.26127 119.50 9 6.739 

46 Exp 1 100 30 0.097488 12 30 2.24647 119.50 9 6.634 

47 Exp 1 110 30 0.097952 12 30 2.23167 119.50 9 6.548 

48 Exp 1 120 30 0.098260 12 30 2.22180 119.50 9 6.318 

49 Exp 2 10 30 0.093072 12 30 2.37970 119.50 9 15.163 

50 Exp 2 20 30 0.093720 12 30 2.35996 119.50 9 11.373 

51 Exp 2 30 30 0.094207 12 30 2.34516 119.50 9 9.477 

52 Exp 2 40 30 0.094693 12 30 2.33035 119.50 9 8.529 

53 Exp 2 50 30 0.095018 12 30 2.32049 119.50 9 7.582 

54 Exp 2 60 30 0.095342 12 30 2.31062 119.50 9 6.950 

55 Exp 2 70 30 0.095666 12 30 2.30075 119.50 9 6.499 

56 Exp 2 80 30 0.095828 12 30 2.29581 119.50 9 5.923 

57 Exp 2 90 30 0.096153 12 30 2.28595 119.50 9 5.686 

58 Exp 2 100 30 0.096477 12 30 2.27608 119.50 9 5.497 

59 Exp 2 110 30 0.096801 12 30 2.26621 119.50 9 5.342 

60 Exp 2 120 30 0.097125 12 30 2.25634 119.50 9 5.212 

61 Exp 3 10 30 0.093072 12 30 2.28572 119.50 9 15.163 

62 Exp 3 20 30 0.093883 12 30 2.26104 119.50 9 12.320 

63 Exp 3 30 30 0.094531 12 30 2.24131 119.50 9 10.741 

64 Exp 3 40 30 0.095180 12 30 2.22157 119.50 9 9.951 

65 Exp 3 50 30 0.095504 12 30 2.21170 119.50 9 8.719 
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66 Exp 3 60 30 0.095828 12 30 2.20183 119.50 9 7.898 

67 Exp 3 70 30 0.096153 12 30 2.19197 119.50 9 7.311 

68 Exp 3 80 30 0.096477 12 30 2.18210 119.50 9 6.871 

69 Exp 3 90 30 0.096639 12 30 2.17716 119.50 9 6.318 

70 Exp 3 100 30 0.096963 12 30 2.16729 119.50 9 6.065 

71 Exp 3 110 30 0.097125 12 30 2.16236 119.50 9 5.686 

72 Exp 3 120 30 0.097288 12 30 2.15743 119.50 9 5.370 

73 Exp 1 10 30 0.094279 12 30 2.39294 119.50 15 18.954 

74 Exp 1 20 30 0.096533 12 30 2.36933 119.50 15 18.006 

75 Exp 1 30 30 0.098286 12 30 2.35097 119.50 15 16.427 

76 Exp 1 40 30 0.100289 12 30 2.32998 119.50 15 16.111 

77 Exp 1 50 30 0.102042 12 30 2.31162 119.50 15 15.542 

78 Exp 1 60 30 0.103544 12 30 2.29588 119.50 15 14.847 

79 Exp 1 70 30 0.105047 12 30 2.28014 119.50 15 14.351 

80 Exp 1 80 30 0.107301 12 30 2.25653 119.50 15 14.689 

81 Exp 1 90 30 0.109554 12 30 2.23293 119.50 15 14.953 

82 Exp 1 100 30 0.110556 12 30 2.22243 119.50 15 14.216 

83 Exp 1 110 30 0.111307 12 30 2.21456 119.50 15 13.440 

84 Exp 1 120 30 0.112058 12 30 2.20669 119.50 15 12.794 

85 Exp 2 10 30 0.094028 12 30 2.39556 119.50 15 17.059 

86 Exp 2 20 30 0.096032 12 30 2.37458 119.50 15 16.111 

87 Exp 2 30 30 0.097785 12 30 2.35621 119.50 15 15.163 

88 Exp 2 40 30 0.100038 12 30 2.33261 119.50 15 15.637 

89 Exp 2 50 30 0.102042 12 30 2.31162 119.50 15 15.542 

90 Exp 2 60 30 0.103043 12 30 2.30113 119.50 15 14.216 
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91 Exp 2 70 30 0.104296 12 30 2.28801 119.50 15 13.539 

92 Exp 2 80 30 0.106549 12 30 2.26440 119.50 15 13.979 

93 Exp 2 90 30 0.107551 12 30 2.25391 119.50 15 13.268 

94 Exp 2 100 30 0.108553 12 30 2.24342 119.50 15 12.699 

95 Exp 2 110 30 0.109304 12 30 2.23555 119.50 15 12.062 

96 Exp 2 120 30 0.109805 12 30 2.23030 119.50 15 11.373 

97 Exp 3 10 30 0.094279 12 30 2.30836 119.50 15 18.954 

98 Exp 3 20 30 0.096533 12 30 2.28475 119.50 15 18.006 

99 Exp 3 30 30 0.098786 12 30 2.26114 119.50 15 17.691 

100 Exp 3 40 30 0.100539 12 30 2.24278 119.50 15 16.585 

101 Exp 3 50 30 0.102292 12 30 2.22442 119.50 15 15.922 

102 Exp 3 60 30 0.103544 12 30 2.21130 119.50 15 14.847 

103 Exp 3 70 30 0.104796 12 30 2.19819 119.50 15 14.080 

104 Exp 3 80 30 0.105798 12 30 2.18769 119.50 15 13.268 

105 Exp 3 90 30 0.106800 12 30 2.17720 119.50 15 12.636 

106 Exp 3 100 30 0.107801 12 30 2.16671 119.50 15 12.131 

107 Exp 3 110 30 0.108553 12 30 2.15884 119.50 15 11.545 

108 Exp 3 120 30 0.109304 12 30 2.15097 119.50 15 11.057 

109 Exp 1 10 25 0.093778 9 25 2.39818 119.50 12 15.163 

110 Exp 1 20 25 0.094780 9 25 2.38769 119.50 12 11.373 

111 Exp 1 30 25 0.095781 9 25 2.37720 119.50 12 10.109 

112 Exp 1 40 25 0.096282 9 25 2.37195 119.50 12 8.529 

113 Exp 1 50 25 0.096783 9 25 2.36671 119.50 12 7.582 

114 Exp 1 60 25 0.097284 9 25 2.36146 119.50 12 6.950 

115 Exp 1 70 25 0.097785 9 25 2.35621 119.50 12 6.499 
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116 Exp 1 80 25 0.097785 9 25 2.35621 119.50 12 5.686 

117 Exp 1 90 25 0.098286 9 25 2.35097 119.50 12 5.476 

118 Exp 1 100 25 0.098286 9 25 2.35097 119.50 12 4.928 

119 Exp 1 110 25 0.098786 9 25 2.34572 119.50 12 4.825 

120 Exp 1 120 25 0.098786 9 25 2.34572 119.50 12 4.423 

121 Exp 2 10 25 0.093528 9 25 2.40081 119.50 12 13.268 

122 Exp 2 20 25 0.094529 9 25 2.39032 119.50 12 10.425 

123 Exp 2 30 25 0.095531 9 25 2.37982 119.50 12 9.477 

124 Exp 2 40 25 0.096533 9 25 2.36933 119.50 12 9.003 

125 Exp 2 50 25 0.097033 9 25 2.36408 119.50 12 7.961 

126 Exp 2 60 25 0.097534 9 25 2.35884 119.50 12 7.266 

127 Exp 2 70 25 0.098035 9 25 2.35359 119.50 12 6.769 

128 Exp 2 80 25 0.098536 9 25 2.34834 119.50 12 6.397 

129 Exp 2 90 25 0.099037 9 25 2.34310 119.50 12 6.107 

130 Exp 2 100 25 0.099538 9 25 2.33785 119.50 12 5.876 

131 Exp 2 110 25 0.099788 9 25 2.33523 119.50 12 5.514 

132 Exp 2 120 25 0.099788 9 25 2.33523 119.50 12 5.054 

133 Exp 1 10 30 0.584093 9 30 38.46614 118.17 12 32.897 

134 Exp 1 20 30 0.591042 9 30 37.32877 118.17 12 27.302 

135 Exp 1 30 30 0.597174 9 30 36.32522 118.17 12 24.193 

136 Exp 1 40 30 0.604123 9 30 35.18786 118.17 12 23.572 

137 Exp 1 50 30 0.610255 9 30 34.18430 118.17 12 22.453 

138 Exp 1 60 30 0.617613 9 30 32.98004 118.17 12 22.639 

139 Exp 1 70 30 0.623335 9 30 32.04339 118.17 12 21.707 

140 Exp 1 80 30 0.629467 9 30 31.03983 118.17 12 21.240 
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141 Exp 1 90 30 0.634372 9 30 30.23699 118.17 12 20.256 

142 Exp 1 100 30 0.638051 9 30 29.63486 118.17 12 18.908 

143 Exp 1 110 30 0.641321 9 30 29.09963 118.17 12 17.637 

144 Exp 1 120 30 0.644183 9 30 28.63130 118.17 12 16.422 

145 Exp 2 10 30 0.586431 9 30 38.26543 118.17 12 32.492 

146 Exp 2 20 30 0.595462 9 30 36.92735 118.17 12 26.897 

147 Exp 2 30 30 0.602687 9 30 35.85690 118.17 12 22.545 

148 Exp 2 40 30 0.610814 9 30 34.65263 118.17 12 21.302 

149 Exp 2 50 30 0.617136 9 30 33.71598 118.17 12 19.064 

150 Exp 2 60 30 0.625263 9 30 32.51171 118.17 12 18.815 

151 Exp 2 70 30 0.631585 9 30 31.57506 118.17 12 17.572 

152 Exp 2 80 30 0.63881 9 30 30.50461 118.17 12 17.105 

153 Exp 2 90 30 0.643325 9 30 29.83557 118.17 12 16.499 

154 Exp 2 100 30 0.646937 9 30 29.30034 118.17 12 15.841 

155 Exp 2 110 30 0.649646 9 30 28.89892 118.17 12 15.146 

156 Exp 2 120 30 0.651904 9 30 28.56440 118.17 12 13.578 

157 Exp 1 10 25 0.018581 24 25 2.44361 119.50 24 26.590 

158 Exp 1 20 25 0.019207 24 25 2.41499 119.50 24 24.691 

159 Exp 1 30 25 0.019729 24 25 2.39113 119.50 24 22.791 

160 Exp 1 40 25 0.020147 24 25 2.37205 119.50 24 20.892 

161 Exp 1 50 25 0.020460 24 25 2.35773 119.50 24 18.993 

162 Exp 1 60 25 0.020878 24 25 2.33865 119.50 24 18.360 

163 Exp 1 70 25 0.021295 24 25 2.31956 119.50 24 17.907 

164 Exp 1 80 25 0.021817 24 25 2.29571 119.50 24 18.043 

165 Exp 1 90 25 0.022235 24 25 2.27662 119.50 24 17.727 
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166 Exp 1 100 25 0.022652 24 25 2.25754 119.50 24 17.473 

167 Exp 1 110 25 0.023070 24 25 2.23845 119.50 24 17.266 

168 Exp 1 120 25 0.023383 24 25 2.22414 119.50 24 16.777 

169 Exp 2 10 25 0.018790 24 25 2.43407 119.50 24 34.187 

170 Exp 2 20 25 0.019103 24 25 2.41976 119.50 24 22.791 

171 Exp 2 30 25 0.019207 24 25 2.41499 119.50 24 16.460 

172 Exp 2 40 25 0.019207 24 25 2.41499 119.50 24 12.345 

173 Exp 2 50 25 0.019312 24 25 2.41021 119.50 24 10.636 

174 Exp 2 60 25 0.019520 24 25 2.40067 119.50 24 10.129 

175 Exp 2 70 25 0.019729 24 25 2.39113 119.50 24 9.768 

176 Exp 2 80 25 0.019938 24 25 2.38159 119.50 24 9.496 

177 Exp 2 90 25 0.020147 24 25 2.37205 119.50 24 9.285 

178 Exp 2 100 25 0.020460 24 25 2.35773 119.50 24 9.496 

179 Exp 2 110 25 0.020669 24 25 2.34819 119.50 24 9.324 

180 Exp 2 120 25 0.020982 24 25 2.33388 119.50 24 9.496 

181 Exp 1 10 25 0.018059 24 25 2.46110 120.17 24 7.597 

182 Exp 1 20 25 0.018268 24 25 2.43369 120.17 24 7.597 

183 Exp 1 30 25 0.018685 24 25 2.37887 120.17 24 10.129 

184 Exp 1 40 25 0.018894 24 25 2.35146 120.17 24 9.496 

185 Exp 1 50 25 0.019103 24 25 2.32405 120.17 24 9.117 

186 Exp 1 60 25 0.019312 24 25 2.29664 120.17 24 8.863 

187 Exp 1 70 25 0.019520 24 25 2.26923 120.17 24 8.682 

188 Exp 1 80 25 0.019729 24 25 2.24182 120.17 24 8.547 

189 Exp 1 90 25 0.019938 24 25 2.21441 120.17 24 8.441 

190 Exp 1 100 25 0.020147 24 25 2.18700 120.17 24 8.357 



 

195 
 

191 Exp 1 110 25 0.020356 24 25 2.15959 120.17 24 8.288 

192 Exp 1 120 25 0.020564 24 25 2.13218 120.17 24 8.230 

193 Exp 2 10 25 0.018059 24 25 2.46110 120.17 24 7.597 

194 Exp 2 20 25 0.018372 24 25 2.41999 120.17 24 9.496 

195 Exp 2 30 25 0.018581 24 25 2.39258 120.17 24 8.863 

196 Exp 2 40 25 0.018894 24 25 2.35146 120.17 24 9.496 

197 Exp 2 50 25 0.019103 24 25 2.32405 120.17 24 9.117 

198 Exp 2 60 25 0.019312 24 25 2.29664 120.17 24 8.863 

199 Exp 2 70 25 0.019416 24 25 2.28294 120.17 24 8.140 

200 Exp 2 80 25 0.019520 24 25 2.26923 120.17 24 7.597 

201 Exp 2 90 25 0.019625 24 25 2.25553 120.17 24 7.175 

202 Exp 2 100 25 0.019834 24 25 2.22812 120.17 24 7.217 

203 Exp 2 110 25 0.019938 24 25 2.21441 120.17 24 6.906 

204 Exp 2 120 25 0.020042 24 25 2.20071 120.17 24 6.647 

205 Exp 1 10 25 0.01832 9 25 2.43780 119.50 12 17.094 

206 Exp 1 20 25 0.01869 9 25 2.40843 119.50 12 15.194 

207 Exp 1 30 25 0.01911 9 25 2.37486 119.50 12 15.194 

208 Exp 1 40 25 0.01942 9 25 2.34969 119.50 12 14.245 

209 Exp 1 50 25 0.01963 9 25 2.33291 119.50 12 12.915 

210 Exp 1 60 25 0.01984 9 25 2.31612 119.50 12 12.029 

211 Exp 1 70 25 0.02000 9 25 2.30354 119.50 12 11.124 

212 Exp 1 80 25 0.02015 9 25 2.29095 119.50 12 10.446 

213 Exp 1 90 25 0.02036 9 25 2.27417 119.50 12 10.129 

214 Exp 1 100 25 0.02052 9 25 2.26158 119.50 12 9.686 

215 Exp 1 110 25 0.02062 9 25 2.25319 119.50 12 9.151 



 

196 
 

216 Exp 1 120 25 0.02078 9 25 2.24060 119.50 12 8.863 

217 Exp 2 10 25 0.01827 9 25 2.44199 119.50 12 15.194 

218 Exp 2 20 25 0.01869 9 25 2.40843 119.50 12 15.194 

219 Exp 2 30 25 0.01911 9 25 2.37486 119.50 12 15.194 

220 Exp 2 40 25 0.01937 9 25 2.35388 119.50 12 13.770 

221 Exp 2 50 25 0.01963 9 25 2.33291 119.50 12 12.915 

222 Exp 2 60 25 0.01984 9 25 2.31612 119.50 12 12.029 

223 Exp 2 70 25 0.02005 9 25 2.29934 119.50 12 11.396 

224 Exp 2 80 25 0.02020 9 25 2.28675 119.50 12 10.683 

225 Exp 2 90 25 0.02031 9 25 2.27836 119.50 12 9.918 

226 Exp 2 100 25 0.02041 9 25 2.26997 119.50 12 9.306 

227 Exp 2 110 25 0.02052 9 25 2.26158 119.50 12 8.806 

228 Exp 2 120 25 0.02062 9 25 2.25319 119.50 12 8.388 

229 Exp 3 10 25 0.01827 9 25 2.44199 119.50 12 15.194 

230 Exp 3 20 25 0.01858 9 25 2.41682 119.50 12 13.295 

231 Exp 3 30 25 0.01890 9 25 2.39165 119.50 12 12.662 

232 Exp 3 40 25 0.01911 9 25 2.37486 119.50 12 11.396 

233 Exp 3 50 25 0.01942 9 25 2.34969 119.50 12 11.396 

234 Exp 3 60 25 0.01952 9 25 2.34130 119.50 12 10.129 

235 Exp 3 70 25 0.01963 9 25 2.33291 119.50 12 9.225 

236 Exp 3 80 25 0.01973 9 25 2.32451 119.50 12 8.547 

237 Exp 3 90 25 0.01984 9 25 2.31612 119.50 12 8.019 

238 Exp 3 100 25 0.01994 9 25 2.30773 119.50 12 7.597 

239 Exp 3 110 25 0.02005 9 25 2.29934 119.50 12 7.252 

240 Exp 3 120 25 0.02015 9 25 2.29095 119.50 12 6.964 
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241 Exp 4 10 25 0.01816 9 25 2.45039 119.50 12 11.396 

242 Exp 4 20 25 0.01848 9 25 2.42521 119.50 12 11.396 

243 Exp 4 30 25 0.01874 9 25 2.40423 119.50 12 10.763 

244 Exp 4 40 25 0.01895 9 25 2.38745 119.50 12 9.971 

245 Exp 4 50 25 0.01916 9 25 2.37067 119.50 12 9.496 

246 Exp 4 60 25 0.01931 9 25 2.35808 119.50 12 8.863 

247 Exp 4 70 25 0.01942 9 25 2.34969 119.50 12 8.140 

248 Exp 4 80 25 0.01952 9 25 2.34130 119.50 12 7.597 

249 Exp 4 90 25 0.01968 9 25 2.32871 119.50 12 7.386 

250 Exp 4 100 25 0.01979 9 25 2.32032 119.50 12 7.027 

251 Exp 4 110 25 0.01989 9 25 2.31193 119.50 12 6.734 

252 Exp 4 120 25 0.02000 9 25 2.30354 119.50 12 6.489 

253 Exp 1 10 30 0.580228 9 30 4.94420 118.42 12 18.651 

254 Exp 1 20 30 0.581816 9 30 4.80832 118.42 12 17.718 

255 Exp 1 30 30 0.583052 9 30 4.70261 118.42 12 16.164 

256 Exp 1 40 30 0.584111 9 30 4.61200 118.42 12 14.921 

257 Exp 1 50 30 0.585170 9 30 4.52140 118.42 12 14.175 

258 Exp 1 60 30 0.586229 9 30 4.43079 118.42 12 13.677 

259 Exp 1 70 30 0.587287 9 30 4.34018 118.42 12 13.322 

260 Exp 1 80 30 0.588170 9 30 4.26468 118.42 12 12.823 

261 Exp 1 90 30 0.589052 9 30 4.18917 118.42 12 12.434 

262 Exp 1 100 30 0.589582 9 30 4.14387 118.42 12 11.750 

263 Exp 1 110 30 0.590111 9 30 4.09856 118.42 12 11.191 

264 Exp 1 120 30 0.590817 9 30 4.03816 118.42 12 10.880 

265 Exp 2 10 30 0.576445 9 30 4.94423 118.42 12 18.651 

266 Exp 2 20 30 0.578198 9 30 4.79322 118.42 12 18.651 
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267 Exp 2 30 30 0.579601 9 30 4.67241 118.42 12 17.408 

268 Exp 2 40 30 0.580828 9 30 4.56670 118.42 12 16.320 

269 Exp 2 50 30 0.582056 9 30 4.46099 118.42 12 15.667 

270 Exp 2 60 30 0.582757 9 30 4.40059 118.42 12 14.299 

271 Exp 2 70 30 0.583458 9 30 4.34018 118.42 12 13.322 

272 Exp 2 80 30 0.584160 9 30 4.27978 118.42 12 12.589 

273 Exp 2 90 30 0.584861 9 30 4.21937 118.42 12 12.019 

274 Exp 2 100 30 0.585387 9 30 4.17407 118.42 12 11.377 

275 Exp 2 110 30 0.585913 9 30 4.12877 118.42 12 10.851 

276 Exp 2 120 30 0.586264 9 30 4.09856 118.42 12 10.258 

277 Exp 1 10 25 0.018268 24 25 2.22730 118.84 12 15.194 

278 Exp 1 20 25 0.018581 24 25 2.19520 118.84 12 13.295 

279 Exp 1 30 25 0.018894 24 25 2.16310 118.84 12 12.662 

280 Exp 1 40 25 0.019103 24 25 2.14169 118.84 12 11.396 

281 Exp 1 50 25 0.019312 24 25 2.12029 118.84 12 10.636 

282 Exp 1 60 25 0.019520 24 25 2.09889 118.84 12 10.129 

283 Exp 1 70 25 0.019938 24 25 2.05608 118.84 12 10.853 

284 Exp 1 80 25 0.020147 24 25 2.03468 118.84 12 10.446 

285 Exp 1 90 25 0.020356 24 25 2.01328 118.84 12 10.129 

286 Exp 1 100 25 0.020460 24 25 2.00258 118.84 12 9.496 

287 Exp 1 110 25 0.020669 24 25 1.98117 118.84 12 9.324 

288 Exp 1 120 25 0.020878 24 25 1.95977 118.84 12 9.180 

289 Exp 2 10 25 0.018268 24 25 2.22730 118.84 12 15.194 

290 Exp 2 20 25 0.018581 24 25 2.19520 118.84 12 13.295 

291 Exp 2 30 25 0.018790 24 25 2.17380 118.84 12 11.396 
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292 Exp 2 40 25 0.018998 24 25 2.15239 118.84 12 10.446 

293 Exp 2 50 25 0.019207 24 25 2.13099 118.84 12 9.876 

294 Exp 2 60 25 0.019416 24 25 2.10959 118.84 12 9.496 

295 Exp 2 70 25 0.019520 24 25 2.09889 118.84 12 8.682 

296 Exp 2 80 25 0.019729 24 25 2.07749 118.84 12 8.547 

297 Exp 2 90 25 0.019938 24 25 2.05608 118.84 12 8.441 

298 Exp 2 100 25 0.020042 24 25 2.04538 118.84 12 7.977 

299 Exp 2 110 25 0.020147 24 25 2.03468 118.84 12 7.597 

300 Exp 2 120 25 0.020251 24 25 2.02398 118.84 12 7.281 

301 Exp 3 10 25 0.018268 24 25 2.22730 118.84 12 15.194 

302 Exp 3 20 25 0.018529 24 25 2.20055 118.84 12 12.345 

303 Exp 3 30 25 0.018790 24 25 2.17380 118.84 12 11.396 

304 Exp 3 40 25 0.018998 24 25 2.15239 118.84 12 10.446 

305 Exp 3 50 25 0.019155 24 25 2.13634 118.84 12 9.496 

306 Exp 3 60 25 0.019312 24 25 2.12029 118.84 12 8.863 

307 Exp 3 70 25 0.019416 24 25 2.10959 118.84 12 8.140 

308 Exp 3 80 25 0.019520 24 25 2.09889 118.84 12 7.597 

309 Exp 3 90 25 0.019625 24 25 2.08819 118.84 12 7.175 

310 Exp 3 100 25 0.019781 24 25 2.07213 118.84 12 7.027 

311 Exp 3 110 25 0.019886 24 25 2.06143 118.84 12 6.734 

312 Exp 3 120 25 0.019938 24 25 2.05073 118.84 12 6.489 
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