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ABSTRACT 

This thesis presents a comprehensive framework for detecting fraudulent 

Ethereum addresses using machine learning and deep learning techniques. 

Leveraging a rich set of behavioral and transactional features, the framework 

incorporates robust preprocessing (including log transformation and scaling), 

feature selection via Recursive Feature Elimination (RFE), and classification 

using an FT-Transformer model tailored for tabular data. To address the 

challenge of class imbalance inherent in fraud detection, a weighted binary 

cross-entropy loss is employed. The proposed system achieves high 

performance, with an accuracy of 97.09% , F1-score of 93.55%, precision of 

91.76%, recall of 95.41%, and AUC of 0.9961. Even after reducing the feature 

space, the model maintains comparable accuracy, demonstrating its efficiency 

and generalizability. This work introduces a scalable and interpretable deep 

learning-based approach for Ethereum fraud detection, contributing to the 

growing field of blockchain security. 

Keywords- Ethereum, Fraud Detection, Deep Learning, Machine Learning, 

FT-Transformer,Recursive Feature Elimination (RFE), Class Imbalance 
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CHAPTER 1 

INTRODUCTION 

 
Back in 2015, Ethereum was introduced by Vitalik Buterin as a decentralized 

blockchain platform, aim to do more than just facilitate digital currency transfers. 

Bitcoin, which mainly focused on sending and receiving value, Ethereum brought  

the idea of smart contracts—small programs that run on the blockchain 

automatically. This made it possible to build a wide variety of decentralized 

applications (dApps), and has since led to the rise of entire ecosystems like 

decentralized finance (DeFi) and NFTs. These technologies have really changed how 

people interact digitally and manage value online. But at the same time, Ethereum’s 

opened and anonymous nature also makes it a good target for fraud. Since 

transactions can’t be reversed and there’s no real-world identity linked to most 

addresses, bad actors can take advantage of users pretty easily. Traditional fraud 

detection methods, especially those that are rule-based or require manual work, often 

don’t catch up with how quickly fraud techniques are evolving. 

 

In this thesis, we try to build a complete fraud detection framework for Ethereum by 

using advanced machine learning and deep learning models. The approach we’re 

proposing includes strong preprocessing step, smart feature selection, and also uses a 

transformer-based deep learning model (FT-Transformer) to help catch fraudulent 

addresses more accurately. It also looks at important issues like having too many 

features and class imbalance problems of not enough fraud examples in the data. 
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1.1 Architecture of Ethereum 

1.1.1 Ethereum Virtual Machine (EVM) 

Ethereum Virtual Machine or EVM is the main engine that runs smart contracts on 

Ethereum. It does the execution on all nodes in the network and make sure they all 

getting the same result. This is important for everyone to agree on what happen on 

blockchain. EVM handles lot of complex computing, and tries using resource in 

smart way. It also helps prevent bad codes or peoples from breaking the system or 

wasting computing power for nothing. 

 

1.1.2 Smart Contracts 

Smart contracts is like auto programs which run when some condition is met. It is 

mainly written in Solidity and then put on blockchain. After that, they just work by 

itself. You don’t need any middle person or someone to control. It does the task like 

transfer tokens, check some rules, or give access if allowed. It used for DeFi things, 

token launch, lending and borrow, exchange without a middleman and more others 

things too. 

 

1.1.3 Ethereum Accounts 

Ethereum have two type account. First is EOAs, or Externally Owned Accounts, 

which are controlled with private key by user. These account can send transactions, 

deploy contracts and also talk with other contracts. Other type is Contract Accounts. 

These ones not belong to anyone, they just working by logic written inside them. If 

they get transaction from other account, they just do what they are programmed to 

do. No need for someone control. 
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1.1.4 Transactions and Gas Mechanism 

So, in Ethereum, everything mostly work through transactions, Deploying contract or 

calling a function in smart contract and transaction too. Every transaction has to be 

signed with crypto keys so it can be checked and not fake. But also, it not free — 

there’s something called gas. Gas is like a fee you pay depending on how heavy the 

work is. If the transaction needs lot of computing, you pay increased gas. It helps 

protect the network, so people don’t spam it. When there’s not enough gas, the 

transaction just stuck or failed. So it keeps things from going out of control. 

 

1.1.5 Consensus Mechanism 

Ethereum before was using Proof-of-Work, like Bitcoin does. Miners had to solve 

these hard puzzles using lots of electric and hardware. But now it switch to 

Proof-of-Stake. It’s way more eco friendly. Instead of solving stuff, now people stake 

Ether to become validator. If you got more Ether staked, you get more chance to be 

picked. And if you do something wrong, like trying to cheat the system, you can lose 

your stake. Hence , it is faster, cleaner, and safer than before. 
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Fig1.1 Ethereum Architecture 

1.2 Frauds in Ethereum 

Although decentralized and transparent , frauds can still occur on the Ethereum 

blockchain. Among the most prevalent types of fraud in the Ethereum ecosystem are 

Ponzi schemes and Phishing attacks, both of which exploit the openness of the 

network and the anonymity of its users [3]. 

1.2.1 Ponzi scheme 

It is a fraudulent investment model in which returns to previous investors are paid by 

using the capital from new inventors , rather than from any actual profit or legitimate 

business activity [19]. In the Ethereum blockchain , Ponzi schemes often present as 

high-yield smart contracts projects , which lures investors with a promise of fast 

gains. The transparent and immutable nature of smart contracts make them seem 

trustworthy to the investors . Due to the immutable nature of the Ethereum network, 

transactions are permanent once deployed on the blockchain , with no way for 

investors to recover their funds [19]. 
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1.2.2 Phishing 

In an Ethereum Network , users are targeted through social engineering with the aim 

to trick users into revealing their private information such as private keys or 

authorizing malicious transactions . Fake websites which imitate popular Ethereum 

services are used to trick users into sharing this information with the scammers . 

Some phishing attacks involve contracts that request unlimited token approvals, 

enabling attackers to drain user wallets even after a single interaction. 

 

1.2.3 Rug Pulls 

Rug pulls occur when malicious developers initiate seemingly legitimate 

decentralized finance projects, attract substantial investment, and then suddenly 

withdraw liquidity from decentralized exchanges. The abrupt removal of liquidity 

causes token values to plummet instantly, inflicting severe financial damage on 

unsuspecting investors and severely damaging market confidence. 

 

 

1.3 Machine Learning Models 

1.3.1 Logistic Regression 

Logistic regression is  used for binary classification problem by estimating 

probability from linear combination of input features. It gives results which are 

transparent and easy to understand, so it’s often used as a quick baseline when testing 

models. Because of its simplicity, it can be implemented fast and works well when 

the data have clear linear relationships. But logistic regression also have some 

limitations. It only capture linear patterns, which might be too simple when working 
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with Ethereum transaction data that can be complex or non-linear. So, while it’s 

useful in early stages, it may miss deeper patterns in the fraud behaviour. 

1.3.2 Random Forest 

Random Forest is an ensemble machine learning algorithm that works by building multiple 
decision trees using random subsets of samples and combining their output — through 
majority voting for classification and average or mean for regression. RF is effective in 
detecting frauds in Ethereum network because of its ability to model complex , non-linear 
relationships in transaction data [5] , for example irregular gas usage or anomalous transfer 
patterns. RF is also robust to noise and can handle high-dimensional, imbalanced data which 
makes it ideal for Ethereum transaction dataset [18]. 

 

1.3.3 XGBoost (Extreme Gradient Boosting) 

XGBoost is boosting method that builds decision trees one after another, where each 

new tree try to fix the mistake made by the previous ones. This process helps in 

making the predictions more accurate with each step. It works good even when the 

dataset have too many features, missing values, or lot of noise. One of the main 

strength of XGBoost is that it can handle large datasets quite efficiently, both in 

terms of memory and time. It also supports parallel processing and has 

regularization, which help to avoid overfitting sometimes.  It able to capture hidden 

relationships and interactions between variables, which is useful in Ethereum data 

because fraud behaviour can be very complex and not easy to detect. Because of 

these things, XGBoost is used a lot for structured data and has shown strong results 

in many machine learning tasks and even real applications. 
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1.3.4 Support Vector Machines (SVM) 

Support Vector Machines classify data by identifying hyperplanes maximizing  

margin between different classes. Highly effective in high-dimensional spaces, SVMs 

robustly handle complex datasets, though their performance significantly depend on 

proper kernel selection and parameter tuning, sometimes complicating practical 

implementation. 

 

1.3.5 K-Nearest Neighbors (KNN) 

KNN classifies samples based on proximity to labeled instances, providing intuitive 

and straightforward classifications. Despite simplicity, KNN can be computationally 

intensive with large datasets, limiting scalability in extensive Ethereum datasets. 

 

1.4 Deep Learning Models 

1.4.1 1D Convolutional Neural Network (1DCNN): 

1DCNN is a deep learning model which is commonly used in pattern recognition and 

time series analysis. Originally CNNs were designed for image classification but 

1DCNN has been proven useful in working with one-dimensional data like numerical 

time series . In Ethereum fraud detection  localized patterns such as sudden spikes in 

transfer amount are identified by processing raw transaction data using 1DCNNs [8]. 

Features are extracted from the dataset using a convolutional layer , pooling layer to 

reduce dimensionality and to classify the pattern a fully connected layer is part of the 

architecture of 1 DCNN [8]. 
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1.4.2 Long Short-Term Memory (LSTM) 

LSTMs specialize in modeling sequential dependencies in transaction histories. They 

effectively capture evolving fraud strategies, recognizing gradual behavioral shifts in 

Ethereum address activities, making them particularly effective against slow-building 

fraud tactics. 

 

1.4.3 CNN-Long Short-Term Memory (CLSTM):  

CLSTM combines the strength of CNN and LSTM both to achieve a hybrid deep 

learning model [8]. CLSTM is effective in fraud detection because of its ability to 

capture both spatial and temporal patterns in transaction data. Local features such as 

transaction values are extracted from CNN while how the features evolve over time 

are modelled by the LSTM layer . The architecture consists of a convolution and 

pooling layer and a dropout between them which prevents overfitting. The result is 

given to the LSTM layer and finally to the dense layer which generates the final 

result [8]. It allows to detect complex fraud behaviours by learning both short-term 

and long term patterns [21]. 

 

1.4.4 Graph Neural Networks (GNN) 

Graph neural networks is a type of deep learning technique in which nodes represent 

entities and relationships are represented by edges and it operates on graph structured 

data [9]. Most often there are unique patterns between Fraudulent accounts such as 

immediate transaction spikes and closely connected clusters and can be detected by 

GNNs. Embeddings are generated by combining information from neighboring nodes 

[9]. These embeddings carry complex individual and contextual behavior which 

results in more accurate fraud detection in Ethereum transactions. 
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1.4.5 Transformers for Tabular Data (FT-Transformer) 

Transformers, initially developed for natural language processing, have been adapted 

for structured tabular data through models like the FT-Transformer. The 

FT-Transformer employs self-attention mechanisms to dynamically learn feature 

interactions without manual feature engineering, providing superior performance and 

interpretability in Ethereum fraud detection tasks. 
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CHAPTER 2 
LITERATURE REVIEW 

 

Several studies have investigated anomaly and fraud detection in blockchain 
environments.In this section we will be discussing relevant research and studies. 
Table 1. summarizes these key findings. 

Kabla et al. provided a comprehensive review of the applicability of intrusion 
detection systems (IDS) on Ethereum-based attacks, categorizing vulnerabilities and 
emphasizing the need for IDS frameworks tailored to the Ethereum architecture [20]. 
However, they do not delve into the practical implementation or evaluation of 
machine learning models for fraud detection.  

Mounnan et al. explored deep anomaly detection techniques for blockchain, offering 
a broad method of learning approaches like discriminative, generative, and hybrid 
models [4]. But their main focus was towards attacks at the protocol level and lacked 
transaction fraud specific to Ethereum network . 

Saravanan et al. discussed federated learning models in enhancing anomaly detection 
on Ethereum networks [1] ,they discussed  classic attacks and lacked analysis on 
evolved smart contract frauds or phishing scams . 

Fouly et al. focuses on anomaly detection for blockchain using supervised, 
unsupervised and deep learning techniques[2], but offers limited insights into 
Ethereum specific implementations. 

Tripathy et al. evaluated the performance of various supervised machine learning 
models such as Random Forest and XGBoost on Ethereum fraud  detection dataset 
although achieving high performance [3], but solely focused on classification without 
exploring advanced approaches such as  hybrid or graph-based models. 

In this study we focus on Ethereum specific fraud detection strategies and also 
discusses challenges such as data imbalance , preprocessing techniques and 
discussion on various machine learning models as well as unique techniques like 
Graph Neural Networks (GNNs) and transformer-based language models providing a 
more holistic view in latest advancements. 
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Table 2.1 Summarizes various studies conducted in the field on fraud detection in blockchain 
networks. 
 

TABLE 2.1 Summary of related work in Fraud Detection 

Reference Year Pros Cons 

[20] 2022 Comprehensive review 
of Ethereum 
vulnerabilities and IDS 
strategies. 

No implementation or evaluation of 
ML-based detection models. 

[1] 2023 Proposes federated 
learning for blockchain 
anomaly detection using 
historical data. 

Limited to Ethereum Classic and classic 
attack types. 

[4] 2024 Provides deep anomaly 
detection taxonomy and 
method comparisons. 

Focuses on low-level cyberattacks, not 
transactional fraud. 

[2] 2024 Broad survey of ML 
techniques with practical 
applications across 
domains. 

General overview lacking 
Ethereum-specific depth or new model 
proposals. 

[3] 2024 Implements and 
evaluates multiple ML 
models (XGBoost, RF, 
etc.) on real Ethereum 
fraud data. 

Focuses only on supervised learning; 
lacks hybrid or graph-based approaches. 
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Table 2.2 highlights the various research questions and Table 2.3 highlights whether 
various studies addressed these questions. 
 

 

TABLE 2.2  Research Questions and areas of Focus in Ethereum Fraud Detection 

Q.No Research Questions 

1 What are the different DL techniques employed in Ethereum fraud 
detection ? 

2 Are challenges such as data imbalance, evolving fraud behavior, or 
real-time detection addressed? 

3 What preprocessing techniques were described in the studies? 

4 Is a multi field survey conducted in the Ethereum fraud detection 
studies ? 

 

 

 

TABLE 2.3 Comparison of Research Questions Across Various Studies 

Research 
Questions 

[1] [2] [3] [4] [20] 

RQ1 No No No Yes No 

RQ2 Yes Yes Yes Yes No 

RQ3 Yes No No Yes No 

RQ4 Yes No No Yes Yes 
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Fig 2.1 Compares the frequency of various Blockchain fraud detection studies 
published between 2022 and 2024 

 

 

Fig 2.1 High Level flowchart of the process 
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Table 2.4 provides key information of various datasets used in the studies . 
 

TABLE 2.4 Brief Summary of Publically Available Ethereum Datasets 

Dataset 
names 

Used 
By 

Link Records Description 

Ethereum 

Fraud 

Detection 

Dataset 

[6],[11],[
16] 

https://www.kaggle.com/datasets/
vagifa/ethereum-frauddetection-da
taset 

9840 Contains records of 
fraudulent and legitimate 
transactions on Ethereum. 
Dataset is imbalanced. 

Fraud 

Detection: 

ETHERE

UM 

transactio

ns 

[7],[8],[1
2] 

https://www.kaggle.com/code/suk
antokumardas/fraud-detection-eth
ereum-transactions 

9841 The dataset consists of 47 
columns , including a 
‘flag’ column indicating 
the nature of the 
transaction. 

Fraud 

Detection 

in 

Ethereum 

Transactio

ns 

[17] https://www.kaggle.com/code/unn
atkmistry/fraud-detection-in-ether
eum-transactions 

12146 Dataset contains 
Ethereum transaction 
records with features 
such as timestamps, 
sender and receiver 
addresses, transaction 
amounts, and labels for 
fraudulent or 
non-fraudulent 
transactions.​ 

Transactio

n Graph 

Dataset 

for the 

Ethereum 

Blockchai

n [18] 

[18] https://zenodo.org/records/366993
7 

2000000 Dataset contains ether 
and ERC20 token transfer 
transactions from the 
Ethereum Mainnet 
blockchain. 
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In table 2.5 we compare the performance of various DL and ML models  used along 
with their pros and cons in this section. 
 

TABLE 2.5 Comparison of performance of  ML and DL used  for Ethereum Fraud Detection 
Reference Year Pros Cons Models Used Result 

[5] 2023 Reduced 
Feature Set 

Dependent 
on 
transaction 
network data 

Random Forest 
(RF) , Neural 
Network (NN) 
and K-nearest 
neighbor (KNN) 
[5] 

Accuracy: 
Random Forest : 
94% 
Neural Network: 
92% 
KNN: 86% 

[10] 2024 Addresses 
data 
imbalance 

Complex 
architecture 

Meta-IFD 
(Generative + 
Contrastive + 
GNN) 
Self-supervised 
Dual View 
Learning with 
GNN 

Macro-F1: 
+14.7% for 
Ponzi; +2.02% 
for phishing 
over best ML 
baseline 

[6] 2023 Handles 
Complex 
Patterns 

Complex 
Training 

Artificial Neural 
Network (ANN) 

Accuracy: 
97.1% 

[7] 2024 Improved 
Optimization 

Computation
ally intensive 

Deep Neural 
Network with 
Genetic 
Algorithm 
metaheuristic 
optimization. 

Accuracy: 98.6 
F1-Score: 94.86 

[13] 2024 ML 
techniques 
showed 
improved 
performance 
over naive 
rule-based 
methods 

Unable to 
handle 
complex 
patterns due 
to using 
simple ML 
techniques. 

Logistic 
Regression, 
Random Forest  
, KNN 
Classifier, 
AdaBoost 
Classifier 

Accuracy:  
Logistic 
Regression: 61% 
Random Forest : 
97% 
KNN Classifier : 
90% 
AdaBoost 
Classifier: 96% 

[14] 2024 Handles 
imbalanced 
datasets 

Complex 
preprocessin
g. 

Topological 
Filtering + 
VGG16 Transfer 
Learning 

F1- Score: .9891 

[11] 2023 Improved 
Accuracy 

Limited to 
one Fraud 

Ensemble CNN 
+ LSTM 
(Bagging & 
Boosting) 

Accuracy: 
96.4% (Bagged 
LSTM) 
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[8] 2024 Detailed 
architecture 
tuning 

High 
Training time 
and 
complexity 

TabPFN, 
CLSTM, 
1DCNN, LSTM, 
MLP 

TabPFN: 99.2% 
Accuracy 

[9] 2024 Improved 
performance 

High 
resource 
consumption 
and training 
complexity. 

Transaction 
Language Model 
+ Multi-head 
Attention + 
GNN 

F1-score: 
+10–20% over 
baselines 
Balanced 
Accuracy: 
+8–15% 

[12] 2022 Fast and 
Efficient 

Sensitive to 
Hyperparame
ters 

LGBM Accuracy 
LGBM: 98.60% 
Optimized 
LGBM: 99.03% 

[16]  Handles class 
imbalance 
efficiently 

Complex 
GAN 
training. 

CTGAN + 
Cost-sensitive 
Learning + 
Ensemble 
Models (RF, 
LGBM, 
XGBoost, 
AdaBoost, DT) 

Accuracy: 98% 

[17]  highly 
efficient 

computationa
lly intensive 

XGBoost (final), 
compared with 
CART, RF, 
LGBM 

Accuracy: 96% 

[18]  Improved 
prediction 

Complex 
preprocessin
g on 
blockchain 
graphs 

MLP, RF, DT, 
GB, KNN, SVM 

Accuracy:.97% 
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CHAPTER 3 
METHODOLOGY 

 

To solve the problem of Ethereum fraud detection, this work proposes an end-to-end 
approach that combines data preprocessing, feature selection, and a deep learning 
model. The full framework, starting from input data and ending in fraud prediction, is 
shown in Figure 4.2. Each part of the system is explained more in the following 
subsections. 

 

3.1 Dataset and Feature Description 

We used the publicly available Ethereum fraud detection dataset provided by Vagifa 
Abilova on Kaggle [source]. It is a tabular collection of Ethereum addresses, with a 
wide set of behavioral and statistical features. It contains 9,841 addresses, where each 
address is labeled with a binary FLAG value. If address was involved in fraud, the 
label is 1, otherwise it is 0. After removing unnecessary columns, there are around 46 
features for each address. These features are basis on  transaction history and 
interaction with smart contracts. They covered different types of behavior, which are 
grouped as follows: 

Transaction Time Features: These include values like average time between sent 
transactions, average time between received transactions, and the time difference 
between first and last transaction.How often the addresses were active can be 
understood by these features.Such features helps to understand when and how often 
the address been active. Fraudulent addresses sometimes showing strange or unusual 
pattern of activity, which these features are able to point out. 

Transaction Count Features: This part tells how many actions the address do. Like, 
total number of transaction, how many time it send or receive money, and how many 
smart contracts it did create. These values can shows if the address was too active 
and doing things in weird ways, like sending too many transactions or creating lots of 
contracts repeatedly. 

Value Features (Ether and Tokens): These include total Ether sent or received, 
Ether sent to contracts, and the current Ether balance. Similar features are included 
for ERC-20 token activity, like how much tokens were sent or received, and their 
minimum, maximum, and average values. These are important to measure the 
volume of money going through the address. In fraud cases, you might see extreme 
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values—like very large token movements in Ponzi-type scams or many small token 
transfers in phishing attempts. 

 

Unique Interaction Features: This includes things like how many unique addresses 
send Ether to this address, or how many other addresses it has sent Ether to. Also, it 
looks at how many different types of tokens were sent or received. These help  
measure how wide or diverse the address interactions are. For example, an address 
used in phishing might receive Ether from many different victims, show high number 
of unique senders. In case of Ponzi, the address might have unusual fan-in and 
fan-out behavior, which stands out from normal ones. 

 

All features in the dataset are numeric or converted into numeric format. Identifiers 
that are not numeric, like the wallet address string or token names, are either dropped 
or changed into numbers. For example, the ERC20 most sent token type was 
removed because it’s a category, but the number of unique token names sent was 
kept, since it’s a count value and can be used as numeric.By including so many 
different kinds of features, the model can look at both big-picture behaviors (like 
totals and counts) and smaller patterns (like timing or min/max values). But because 
the feature space becomes very large, it’s important to do good preprocessing and 
feature selection, which is explained in the next part. 

3.2 Data Preprocessing 

Doing proper data preprocessing is important to make sure the features are in right 
shape before training the model. In this work, we applied several steps to clean and 
prepare the raw dataset before it goes into the learning algorithm. 

Data Cleaning: First step is to remove columns which doesn’t really add anything 
useful for the learning. In this dataset, things like Unnamed: 0, Index, and Address 
columns are removed. These are mostly just identifiers, and they don’t help in 
predicting anything. They don’t show any behaviour or activity, so keeping them 
only adds extra data that model don’t need.Also, textual fields such as the most 
frequent token type names are dropped, and we keep focus only on features which 
are numeric. 

Type Conversion: All the feature values are forced into numeric format. In cases 
where values are non-numeric or missing (for example, strings like “None”), they are 
turn into NaN (Not a Number). This help to make sure that the model receives clean 
and consistent numerical inputs for every feature. 
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Missing Value Imputation: In some cases, few addresses might not have done 
certain kinds of activities at all. Like, if one address never received any ERC20 
tokens, then features such as ERC20 max value received will just stay empty — that 
is, as NaN. To handle this, we followed a two-step method. First step is to go through 
the data and replace all infinite values (both +Inf and -Inf) with NaN as well. Then in 
second step, we take each feature one by one and calculate the median — but only 
using the training set, so test data doesn’t leak into it. All NaN values in that feature 
are filled with this median. Median was selected because it is less sensitive to outliers 
and usually makes more sense for skewed data. If some feature still has NaN values 
even after that (which only happens when the whole column is empty in training), 
then we just use 0 to fill those. That way, there’s no missing data left, and at the same 
time, we don’t introduce very large or unusual values into the model. 

 

Feature Transformation: Many of the features exhibit highly skewed distributions. 
For instance, features like total Ether received or max value sent can span several 
orders of magnitude (some addresses have transacted tiny amounts, while others have 
handled massive Ether volumes). To reduce skewness and stabilize variance, we 
apply a logarithmic transformation to high-magnitude features. Specifically, for any 
feature whose maximum value is greater than 100 (a heuristic threshold indicating a 
wide value range). A log(1 + x) transformation is applied to reduce the effect of 
extreme values, where log denotes the natural logarithm. 

 

Feature Scaling: After the above steps, we perform feature scaling to normalize the 
feature ranges. We use standardization, i.e., z-score scaling, which shift feature to 
mean 0 and standard deviation 1. This is done using StandardScaler from scikit-learn, 
fitted on the training data and apply to all sets. Scaling is particularly important for 
our chosen model (FT-Transformer) to ensure that the optimization process is 
well-behaved and that features are on comparable scales when computing distances 
or dot-products in the neural network. It also benefits any distance-based 
interpretation and accelerates convergence during training. 

After preprocessing,  the processed dataset is split into training, validation, and test 
sets. We use  stratified split to maintained the same fraud ratio in each subset. 70% of 
the data is used for train, and remaining 30% is further split evenly into 15% 
validation and 15% test. The training set is used to fit the model, the validation set is 
used for tuning and feature selection, and the test set is reserved for final 
performance evaluation. 
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3.3 Feature Selection with Recursive Feature Elimination (RFE) 

When dataset has too many features, like in our case, not all of them help much in 
finding fraud. Some features say kind of the same thing again, or just bring noise, 
which makes it hard for model to learn properly or make it slow and complex. So, to 
find which features actually useful, we used something called as Recursive Feature 
Elimination (RFE). 

RFE is a method where a model is trained again and again, and each time it removes 
the feature that seems least useful — based on things like weight or score from the 
model. This keeps happening step by step, until only a fixed number of features are 
left. In our case, we used RFE with training data, and picked a basic model like 
logistic regression or sometimes random forest to do this. After ranking the features, 
we kept the top ‘k’ ones that gave better results when we checked with validation set. 
During our tests, we found that using only around 20 features was enough to keep 
most of the useful info. These important features included things like total ERC20 
token transactions, the time gap between first and last transaction, total Ether 
received, number of different addresses that sent tokens, and total number of 
transactions. This kind of makes sense — for example, scam addresses usually show 
very high number of token transfers in phishing, or have long time gaps in Ponzi-like 
activity where funds keep flowing in over time. 

By cutting down the feature list, the model becomes simpler, runs faster, and 
sometimes even performs better. It also helps us understand things more easily, since 
we only look at the most meaningful features. Later in this work, we also compare 
how the model performs when we use all features versus when we only use the ones 
selected by RFE, to see how much difference it makes. 

3.4 Model Architecture: FT-Transformer for Tabular Data 

The main part of the proposed Ethereum fraud detection system is a deep learning 
model based on transformer structure, inspired by FT-Transformer. This model is 
specially made to work well with tabular data. The architecture is designed in a way 
that it can capture complex relationships between different transaction features, while 
still staying efficient and not too hard to understand. It includes different parts like 
feature preprocessing, tokenizing and embedding of features, transformer encoder 
blocks, and finally a classification head. The model is trained using a loss function 
that is aware of class imbalance, which helps in detecting frauds more accurately, 
especially when fraud examples are much less than normal ones. 
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3.4.1 Input Layer 

The model takes in 20 numeric features as input, which are selected using Recursive 
Feature Elimination (RFE). These features picked from Ethereum transaction dataset 
and found to be most important in fraud identification. Each feature  about some kind 
of behavior or transaction activity of an Ethereum address, like how much Ether was 
received, how often the address was active, or how many ERC20 tokens were 
moved. 

 

3.4.2 Feature Tokenization and Embedding 

Every one of the 20 input values is passed through a learnable embedding layer. This 
converts the raw number into a dense vector (for example, 64 dimensions). So now, 
instead of simple numbers, the model works with richer vector representations. This 
helps it understand not just individual feature values, but also how they relate with 
each other in deeper ways. Along with that, we add positional embeddings to each 
feature token, even if the order of features doesn’t mean anything directly. This way, 
the model can still tell features apart during training. 

 

3.4.3 Transformer Encoder Blocks 

After embedding, the feature tokens are passed into a stack of transformer encoder 
layers. Each of these blocks contains multiple parts — like multi-head self-attention, 
feedforward neural networks (FFN), dropout, and layer normalization. The 
self-attention helps the model to understand how features relate to each other in 
context. For example, when there is a high number of ERC20 transfers together with 
short time gaps between transactions, it may point toward fraud activity. These 
encoder blocks allows the model to learn such patterns through deep and non-linear 
relationships in efficient way. 

 

3.4.4 Attention Pooling 

Once the data goes through all the transformer layers, the output from all the tokens 
are combined. In our case, we do this by flattening the transformer output directly 
into the classifier. This is called attention pooling in some works, but here it’s done in 
a simple way. The idea is to summarize everything the model has learned from all the 
features into one compact vector that reflects the behavior of the address overall. 
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3.4.5 Classification Head 

This final step is where the model makes the actual prediction. The pooled vector is 
sent through a two-layer feedforward neural net. First layer takes the 64-dimensional 
input and reduces it to 32, with a ReLU activation and dropout applied to avoid 
overfitting. The second layer gives out a single number (logit), which then goes 
through sigmoid to make it a probability. That final value tells how likely the address 
is doing fraud. 

 

 

3.4.6 Loss Function and Class Imbalance Handling 

To deal with the class imbalance in this fraud detection task (since only around 22% 
of the addresses are marked as fraud), the model is trained using Binary 
Cross-Entropy with Logits Loss. We also include a pos_weight parameter to give 
more focus to the fraud class during training. This helps the model to pay more 
attention  catching fraudulent samples, which improve recall while keeping precision 
at decent level. 

To sum up, the model brings together the powerful capability of transformers with 
smart feature selection and a method to handle class imbalance. Each tabular feature 
is treated as a separate token, and with self-attention, the FT-Transformer can learn 
deep and complex connections between different features. These kinds of 
relationships are often key in detecting fraud. The model is not only able to scale 
well with data but also gives good performance while still being somewhat 
interpretable. This makes it a suitable choice for detecting fraud in Ethereum 
addresses with high precision and recall. 
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Fig 3.1 High Level flowchart of the process 
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Fig 3.2 FT-Transformer Architecture for Ethereum Fraud Detection. 

 

3.5 Training Strategy and Imbalance Handling 

3.5.1 Training Procedure: 

We trained the FT-Transformer model using the cleaned training data and the training 
was carried out for a fixed number of epochs — 20 in our case — and we make use 
of the Adam optimizer with an initial learning rate of 0.001 for updating the model 
weights during training. The data was divided into batches of size 64, and after 
processing each batch, the model parameters got updated to reduce the loss. While 
training, we also kept checking how the model was doing on the validation set, so we 
can avoid overfitting. If the validation loss started increasing or not improving, it 
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would give us a signal to stop early or adjust the learning settings. If needed, we 
apply early stopping or reduce the learning rate depending on how validation loss 
behaves. The choice of hyperparameters like learning rate, number of epochs, and 
batch size was based on initial experiments done using the validation data. After 
training is finished, we pick the model version (or checkpoint) that gave the best 
results on validation, and then we use that one to test final performance. 

 

3.5.2 Loss Function and Class Imbalance: 

As mentioned earlier, class imbalance is a serious challenge in this task, since only 
around 22% of the addresses are marked as fraudulent. If no correction is applied, 
then the normal binary cross-entropy loss becomes biased toward the majority class, 
and the model ends up predicting “non-fraud” most of the time just to reduce the total 
loss. This kind of behavior makes the model less useful for identifying actual fraud 
cases. 

To fix this, we use a weighted version of the Binary Cross Entropy loss, known as 
BCEWithLogitsLoss, where we set the pos_weight parameter to increase the penalty 
for misclassifying fraudulent cases. 

In our dataset, since fraud samples make up about 22%, we use a pos_weight value 
of roughly 3.5. This means the model treats a mistake on a fraud address as 3.5 times 
more serious than a mistake on a benign one. This forces the model to pay more 
attention to the minority class during training. With this setting, we observed the 
model performed better in terms of balancing precision and recall, compared to when 
the loss was unweighted. This is a cost-sensitive learning approach, which works 
better than resampling methods in many cases — because it keeps the training data 
as-is, while only changing how the model learns from mistakes. 

3.5.3 Evaluation during Training: 

We evaluates the model on the validation set after each epoch (or in some cases, after 
few epochs) using metrics like validation loss and F1-score, which considers both 
precision and recall. Selecting the best version of model — usually the one having 
highest validation F1 or lowest loss — and also helps deciding when to stop the 
training early if validation metrics not improving anymore. While doing evaluation, 
the model’s output (which is a probability after applying sigmoid) is by default 
thresholded at 0.5 for calculating classification metrics. But in some cases, we 
changes this threshold depending on precision-recall curve, especially if getting 
higher recall is more important than precision. 
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With the whole methodology now explained — from preprocessing and selecting features to 
model architecture and training steps — we proceeds to applying this framework on the 
Ethereum fraud dataset. The next section presenting the results of our implementation, with 
comparison between models with and without feature selection, and some discussion about 
how well the deep learning approach worked for fraud detection. 

comparing performance with and without feature selection and analyzing the effectiveness of 
our deep learning based approach. 
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CHAPTER 4 
RESULTS AND DISCUSSION 

 

4.1 Experimental Setup 

The proposed framework was done using Python, with commonly used libraries like 
pandas for managing data, scikit-learn for preprocessing and selecting features, and 
PyTorch to build and train the FT-Transformer model. All the experiments were 
carried out on a system that had GPU support — in this case, an NVIDIA Tesla T4 
GPU on Google Colab — which helped in making the training of the neural net 
faster. The system was also having an Intel(R) Xeon(R) CPU @ 2.20GHz and 12 GB 
RAM, which was enough to load the full dataset into memory for smooth processing. 
Using the GPU helped a lot in making the transformer model train faster, especially 
because attention operations involves large matrix computations that can run in 
parallel. 

During the training phase, we was monitoring performance on both training and 
validation sets in every epoch. Early stopping were applied based on validation loss 
— if it didn’t improve for few epochs, then training gets stopped early to avoid 
overfitting. In practice, the model was usually converging somewhere between 15 to 
20 epochs, as the dataset wasn’t too large to begin with. 

 

4.2 Evaluation Metrics 

The effective evaluation of models for Ethereum fraud detection models need 
effective performance metrics . They should take in consideration both the predictive 
power and class imbalance. We will briefly discuss the following metrics used to 
assess the models performance: 

Accuracy:  It measures the models ability to correctly predict the true labels out of 
all the predictions. Ratio of the correct predictions to the total number of predictions 
is known as accuracy [25]. In the context of Ethereum fraud detection , accuracy may 
be misleading due to the imbalanced nature of the dataset. 

​
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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Precision: the proportion of predicted frauds that are actually frauds. This metric 
tells us how often the model is correct when it raises an alarm. High precision means 
few false positives (innocent addresses flagged incorrectly).​
 

Recall: It is the proportion of actual frauds that the model correctly identified. This 
measures the model’s ability to catch the frauds. High recall means few false 
negatives (fraudulent addresses missed by the model).​
 

F1-Score: It is the harmonic mean of the precision and recall where precision 
measures how many of the "positive" predictions made were actually correct and 
recall is the measure of how many actual positive classes were correctly identified by 
the model. This evaluation metric is preferred when the data is imbalanced in nature 
as it provides a balance between the precision and recall [25]. 

 𝐹1 −  𝑆𝑐𝑜𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

ROC AUC (Area Under the Receiver Operating Characteristic Curve): AUC 
measures the model’s ability to discriminate between the classes across all 
classification thresholds. It is threshold-independent and summarizes the trade-off 
between true positive rate and false positive rate. An AUC of 1.0 represents a perfect 
classifier, while 0.5 is no better than chance. AUC is particularly informative in 
imbalanced settings as well, since it considers the ranking of predictions.​
 

In addition to these, we also examined the confusion matrix of the final model to see 
the breakdown of true positives, true negatives, false positives, and false negatives, 
and balanced accuracy (which is the average of recall on fraud and recall on 
non-fraud) . However, for brevity, we focus on the main metrics listed above in our 
discussion. 

All metrics are reported on the test set, which was held out from the training process 
and not used for model tuning, to give an unbiased evaluation of how the model 
would perform on new, unseen data. 
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4.3 Results with RFE-Selected Features 

Using 20 features selected through Recursive Feature Elimination (RFE), the model 
was able to reach strong performance across all major evaluation metrics. This shows 
that the selected features are quite informative for detecting fraud in Ethereum 
addresses. 

Accuracy of 96.89% means the model classified nearly 97 out of every 100 
addresses correctly, which reflects overall high prediction quality. 

Precision is around 90.03%, which tells that whenever model predicts an address is 
fraud, it’s right almost 9 out of 10 times. That helps reduce false positives. Because if 
it keeps saying something is fraud when it’s not, that would create lot of noise and 
make the system less usable. 

Recall came to be 96.64%, so it means the model was able to catch most of the fraud 
addresses. Missing fraud is something you don’t want in such tasks, especially in real 
systems, because even few slipping through can be a problem. 

F1 score was 93.22% — which is kind of the balance between precision and recall. 
So, it shows that model isn’t just being correct sometimes, but also not missing 
much. Both things are working together here. 

Lastly, the AUC score reached 0.9970, which is almost near perfect. That means the 
model is able to tell difference between fraud and non-fraud addresses very well, no 
matter what cutoff value you use to make the final decision. 

In Table 6 we summarize the results of our fraud detection model. 
 

TABLE 4.1  Summary of performance of  fraud detection model 

Metric Value 

Accuracy 96.89% 

Precision 90.03% 

Recall 96.64% 

F1 Score 93.22% 

AUC (ROC) 99.70% 
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To sum up, the model which was trained using 20 features selected by Recursive 
Feature Elimination (RFE) were giving very strong results across all of the 
evaluation metrics. These features was proving to be very useful for catching frauds 
on the Ethereum network. The accuracy come out as 96.89%, and precision was 
90.03%, meaning that model was right most of times when it predict a fraudulent 
address. Recall was 96.64%, which shows it didn’t miss much of actual fraud cases. 
The F1-score came 93.22%, showing model had a decent balance between catching 
frauds and not giving too many false alarms.Also, the AUC was extremely high at 
0.9970, which proves the model is very good at separating fraud and non-fraud 
addresses. 

These numbers show that the model can work really well even with fewer features — 
less than half of the original ones — without losing much in terms of how well it 
detects fraud. Having a smaller feature set makes the model simpler, faster, and easier 
to understand. This is especially useful in real-time fraud monitoring systems, where 
fast and clear results are important. It also makes it easier for analysts to look at why 
the model made a decision, since they only have to focus on fewer, more meaningful 
features.Some of the most useful features included in the final set are things like 
ERC20 transaction counts, how many different tokens were used, how much Ether 
was received, and the average time between received transactions. These match up 
with known fraud patterns — attackers often deal with lots of addresses, use tokens 
to hide movements, and show timing behavior that doesn’t look normal. So overall, 
the RFE-based model not only performs well but also makes the whole system more 
efficient and practical for real-world fraud detection. 
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Fig 4.1 Confusion Matrix for the fraud detection model 

 

 

Fig 4.2  ROC curve for the fraud detection model 
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CHAPTER 5 
CONCLUSION AND FUTURE SCOPE 

 

The proposed Ethereum fraud detection framework, which is based on deep learning 
and machine learning, shows how transformer-based models can work effectively in 
identifying fraudulent addresses on blockchain. By combining strong data 
preprocessing, recursive feature selection, and the FT-Transformer architecture, the 
model was able to capture complex interactions between features that are present in 
transactional data. The results showed that FT-Transformer gave good performance 
in terms of accuracy, precision, recall, and AUC, even when trained using a smaller 
number of selected features. This proves the robustness of the model and makes it 
suitable for high-dimensional fraud detection tasks on Ethereum. Overall, the work 
supports the idea that modern deep learning models can work well for tabular 
blockchain data and gives a scalable and flexible solution that helps improve current 
fraud detection systems. 

Looking forward, there are still few improvements and directions that can help to 
expand and make the method more effective. One is to add graph-based learning like 
Graph Neural Networks (GNNs), which can help to learn the relationship patterns 
among addresses in the network. This can increase the model’s ability to detect 
frauds that are done in a coordinated way. Also, time-based behavior could be 
modeled more directly using LSTM or Transformer-based sequence models. This 
would help the model understand how fraud activity happens step-by-step over time. 
Instead of just binary classification, multi-class fraud detection can also be useful, so 
the system can tell different types of frauds apart and maybe apply different rules or 
actions for each type. Another idea is to use unsupervised learning, like autoencoders 
or variational methods, to detect frauds that were not labeled or seen before. Class 
imbalance can be further improved by doing data augmentation — like using 
SMOTE or by generating synthetic transactions. Lastly, deploying the model in real 
time, along with explainability tools such as SHAP values or visualizing attention 
weights, would make it more usable in real-world environments. These steps can 
help build a stronger and more practical Ethereum fraud detection system that works 
better in different situations. 
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