

Deep Learning and Machine Learning based Ethereum
Fraud Detection Framework

A Thesis Submitted

In Partial Fulfillment of the Requirements for the
 Degree of

MASTER OF TECHNOLOGY

in
ARTIFICIAL INTELLIGENCE

by

Aditya Rastogi
(2K23/AFI/11)

Under the Supervision of

Dr. Pawan Singh Mehra
Assistant Professor

(Dept of Computer Science & Engineering)

DEPARTMENT OF COMPUTER SCIENCE &
ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

May 2025

 DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I, Aditya Rastogi, Roll No. 23/AFI/11 student of M.Tech (Artificial Intelligence),

hereby certify that the work which is being presented in the thesis entitled “Deep

Learning and Machine Learning based Ethereum Fraud Detection Framework”

in partial fulfillment of the requirements for the award of the Degree of Master of

Technology in Artificial Intelligence in the Department of Computer Science and

Engineering, Delhi Technological University is an authentic record of my own work

carried out during the period from August 2023 to Jun 2025 under the supervision of

Dr. Pawan Singh Mehra, Asst. Professor,Dept of Computer Science and

Engineering. The matter presented in the thesis has not been submitted by me for the

award of any other degree of this or any other Institute.

Place: Delhi​ Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the thesis and the statement made by the candidate is correct to the best

of our knowledge.

Signature of Supervisor (s)​ Signature of External Examiner

ii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)​

 Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE

I hereby certify that the Project titled “Deep Learning and Machine Learning
based Ethereum Fraud Detection Framework”, submitted by Aditya Rastogi,
Roll No. 2K23/AFI/11, Department of Computer Science & Engineering, Delhi
Technological University, Delhi in partial fulfillment of the requirement for the
award of the degree of Master of Technology (M.Tech) in Artificial Intelligence is a
genuine record of the project work carried out by the student under my supervision.
To the best of my knowledge this work has not been submitted in par or full for any
Degree to this University or elsewhere.

Place: Delhi​ ​ ​ ​ ​ ​ Dr. Pawan Singh Mehra
Date: 31.05.2025​ ​ ​ ​ ​ ​ Assistant Professor

Delhi Technological University

iii

ACKNOWLEDGEMENT

I am grateful to Prof. Manoj Kumar, HOD (Department of Computer Science

and Engineering), Delhi Technological University (Formerly Delhi College of

Engineering), New Delhi, and all other faculty members of our department for

their astute guidance, constant encouragement, and sincere support for this

project work.

I am writing to express our profound gratitude and deep regard to my project

mentor Dr. Pawan Singh Mehra, for his exemplary guidance, valuable

feedback, and constant encouragement throughout the project. His valuable

suggestions were of immense help throughout the project work. His

perspective criticism kept us working to make this project much better.

Working under her was an extremely knowledgeable experience for us.

I would also like to thank all my friends for their help and support sincerely.

Aditya Rastogi

(2K23/AFI/11)

iv

ABSTRACT

This thesis presents a comprehensive framework for detecting fraudulent

Ethereum addresses using machine learning and deep learning techniques.

Leveraging a rich set of behavioral and transactional features, the framework

incorporates robust preprocessing (including log transformation and scaling),

feature selection via Recursive Feature Elimination (RFE), and classification

using an FT-Transformer model tailored for tabular data. To address the

challenge of class imbalance inherent in fraud detection, a weighted binary

cross-entropy loss is employed. The proposed system achieves high

performance, with an accuracy of 97.09% , F1-score of 93.55%, precision of

91.76%, recall of 95.41%, and AUC of 0.9961. Even after reducing the feature

space, the model maintains comparable accuracy, demonstrating its efficiency

and generalizability. This work introduces a scalable and interpretable deep

learning-based approach for Ethereum fraud detection, contributing to the

growing field of blockchain security.

Keywords- Ethereum, Fraud Detection, Deep Learning, Machine Learning,

FT-Transformer,Recursive Feature Elimination (RFE), Class Imbalance

v

Table of Content

INTRODUCTION... 10
1.1 Architecture of Ethereum.. 11

1.1.1 Ethereum Virtual Machine (EVM).. 11
1.1.2 Smart Contracts... 11
1.1.3 Ethereum Accounts..11
1.1.4 Transactions and Gas Mechanism... 12

1.2 Frauds in Ethereum... 13
1.2.1 Ponzi scheme... 13
1.2.2 Phishing... 14
1.2.3 Rug Pulls..14

1.3 Machine Learning Models.. 14
1.3.1 Logistic Regression... 14
1.3.2 Random Forest...15
1.3.3 XGBoost (Extreme Gradient Boosting).. 15
1.3.4 Support Vector Machines (SVM).. 16
1.3.5 K-Nearest Neighbors (KNN)...16

1.4 Deep Learning Models..16
1.4.1 1D Convolutional Neural Network (1DCNN):... 16
1.4.2 Long Short-Term Memory (LSTM).. 17
1.4.3 CNN-Long Short-Term Memory (CLSTM):...17
1.4.4 Graph Neural Networks (GNN).. 17
1.4.5 Transformers for Tabular Data (FT-Transformer)... 18

LITERATURE REVIEW... 19
METHODOLOGY.. 26

3.1 Dataset and Feature Description... 26
3.2 Data Preprocessing..27
3.3 Feature Selection with Recursive Feature Elimination (RFE)....................................29
3.4 Model Architecture: FT-Transformer for Tabular Data.. 29
3.5 Training Strategy and Imbalance Handling.. 33

RESULTS AND DISCUSSION.. 36
4.1 Experimental Setup... 36
4.2 Evaluation Metrics.. 36
4.3 Results with RFE-Selected Features... 38

CONCLUSION AND FUTURE SCOPE...41
REFERENCES.. 42

vi

List of Tables

2.1 Summary of related work in Fraud Detection... 19

2.2 Research Questions and areas of Focus in Ethereum Fraud Detection............................ 20

2.3 Comparison of Research Questions Across Various Studies...20

2.4 Brief Summary of Publically Available Ethereum Datasets..21

4.1 Summary of performance of fraud detection model..37

vii

LIST OF FIGURES

1.1 Ethereum Architecture...13

2.1 High Level flowchart of the process..22

3.1 High Level flowchart of the process..32

3.2 FT-Transformer Architecture for Ethereum Fraud Detection..33

4.1 Confusion Matrix for the fraud detection model... 40

4.2 ROC curve for the fraud detection model...40

viii

LIST OF ABBREVIATIONS

CLSTM – Convolutional Long Short-Term Memory

CNN – Convolutional Neural Network

EVM – Ethereum Virtual Machine

ETH – Ether (Ethereum cryptocurrency)

FT-Transformer – Feature Tokenizer Transformer

GNN – Graph Neural Network

LSTM – Long Short-Term Memory

ML – Machine Learning

RF – Random Forest

RFE – Recursive Feature Elimination

ROC – Receiver Operating Characteristic

SVM – Support Vector Machine

XGBoost – Extreme Gradient Boosting

F1 – F1-Score

AUC – Area Under Curve

ix

CHAPTER 1

INTRODUCTION

Back in 2015, Ethereum was introduced by Vitalik Buterin as a decentralized

blockchain platform, aim to do more than just facilitate digital currency transfers.

Bitcoin, which mainly focused on sending and receiving value, Ethereum brought

the idea of smart contracts—small programs that run on the blockchain

automatically. This made it possible to build a wide variety of decentralized

applications (dApps), and has since led to the rise of entire ecosystems like

decentralized finance (DeFi) and NFTs. These technologies have really changed how

people interact digitally and manage value online. But at the same time, Ethereum’s

opened and anonymous nature also makes it a good target for fraud. Since

transactions can’t be reversed and there’s no real-world identity linked to most

addresses, bad actors can take advantage of users pretty easily. Traditional fraud

detection methods, especially those that are rule-based or require manual work, often

don’t catch up with how quickly fraud techniques are evolving.

In this thesis, we try to build a complete fraud detection framework for Ethereum by

using advanced machine learning and deep learning models. The approach we’re

proposing includes strong preprocessing step, smart feature selection, and also uses a

transformer-based deep learning model (FT-Transformer) to help catch fraudulent

addresses more accurately. It also looks at important issues like having too many

features and class imbalance problems of not enough fraud examples in the data.

10

1.1 Architecture of Ethereum

1.1.1 Ethereum Virtual Machine (EVM)

Ethereum Virtual Machine or EVM is the main engine that runs smart contracts on

Ethereum. It does the execution on all nodes in the network and make sure they all

getting the same result. This is important for everyone to agree on what happen on

blockchain. EVM handles lot of complex computing, and tries using resource in

smart way. It also helps prevent bad codes or peoples from breaking the system or

wasting computing power for nothing.

1.1.2 Smart Contracts

Smart contracts is like auto programs which run when some condition is met. It is

mainly written in Solidity and then put on blockchain. After that, they just work by

itself. You don’t need any middle person or someone to control. It does the task like

transfer tokens, check some rules, or give access if allowed. It used for DeFi things,

token launch, lending and borrow, exchange without a middleman and more others

things too.

1.1.3 Ethereum Accounts

Ethereum have two type account. First is EOAs, or Externally Owned Accounts,

which are controlled with private key by user. These account can send transactions,

deploy contracts and also talk with other contracts. Other type is Contract Accounts.

These ones not belong to anyone, they just working by logic written inside them. If

they get transaction from other account, they just do what they are programmed to

do. No need for someone control.

11

1.1.4 Transactions and Gas Mechanism

So, in Ethereum, everything mostly work through transactions, Deploying contract or

calling a function in smart contract and transaction too. Every transaction has to be

signed with crypto keys so it can be checked and not fake. But also, it not free —

there’s something called gas. Gas is like a fee you pay depending on how heavy the

work is. If the transaction needs lot of computing, you pay increased gas. It helps

protect the network, so people don’t spam it. When there’s not enough gas, the

transaction just stuck or failed. So it keeps things from going out of control.

1.1.5 Consensus Mechanism

Ethereum before was using Proof-of-Work, like Bitcoin does. Miners had to solve

these hard puzzles using lots of electric and hardware. But now it switch to

Proof-of-Stake. It’s way more eco friendly. Instead of solving stuff, now people stake

Ether to become validator. If you got more Ether staked, you get more chance to be

picked. And if you do something wrong, like trying to cheat the system, you can lose

your stake. Hence , it is faster, cleaner, and safer than before.

12

Fig1.1 Ethereum Architecture

1.2 Frauds in Ethereum

Although decentralized and transparent , frauds can still occur on the Ethereum

blockchain. Among the most prevalent types of fraud in the Ethereum ecosystem are

Ponzi schemes and Phishing attacks, both of which exploit the openness of the

network and the anonymity of its users [3].

1.2.1 Ponzi scheme

It is a fraudulent investment model in which returns to previous investors are paid by

using the capital from new inventors , rather than from any actual profit or legitimate

business activity [19]. In the Ethereum blockchain , Ponzi schemes often present as

high-yield smart contracts projects , which lures investors with a promise of fast

gains. The transparent and immutable nature of smart contracts make them seem

trustworthy to the investors . Due to the immutable nature of the Ethereum network,

transactions are permanent once deployed on the blockchain , with no way for

investors to recover their funds [19].

13

1.2.2 Phishing

In an Ethereum Network , users are targeted through social engineering with the aim

to trick users into revealing their private information such as private keys or

authorizing malicious transactions . Fake websites which imitate popular Ethereum

services are used to trick users into sharing this information with the scammers .

Some phishing attacks involve contracts that request unlimited token approvals,

enabling attackers to drain user wallets even after a single interaction.

1.2.3 Rug Pulls

Rug pulls occur when malicious developers initiate seemingly legitimate

decentralized finance projects, attract substantial investment, and then suddenly

withdraw liquidity from decentralized exchanges. The abrupt removal of liquidity

causes token values to plummet instantly, inflicting severe financial damage on

unsuspecting investors and severely damaging market confidence.

1.3 Machine Learning Models

1.3.1 Logistic Regression

Logistic regression is used for binary classification problem by estimating

probability from linear combination of input features. It gives results which are

transparent and easy to understand, so it’s often used as a quick baseline when testing

models. Because of its simplicity, it can be implemented fast and works well when

the data have clear linear relationships. But logistic regression also have some

limitations. It only capture linear patterns, which might be too simple when working

14

with Ethereum transaction data that can be complex or non-linear. So, while it’s

useful in early stages, it may miss deeper patterns in the fraud behaviour.

1.3.2 Random Forest

Random Forest is an ensemble machine learning algorithm that works by building multiple
decision trees using random subsets of samples and combining their output — through
majority voting for classification and average or mean for regression. RF is effective in
detecting frauds in Ethereum network because of its ability to model complex , non-linear
relationships in transaction data [5] , for example irregular gas usage or anomalous transfer
patterns. RF is also robust to noise and can handle high-dimensional, imbalanced data which
makes it ideal for Ethereum transaction dataset [18].

1.3.3 XGBoost (Extreme Gradient Boosting)

XGBoost is boosting method that builds decision trees one after another, where each

new tree try to fix the mistake made by the previous ones. This process helps in

making the predictions more accurate with each step. It works good even when the

dataset have too many features, missing values, or lot of noise. One of the main

strength of XGBoost is that it can handle large datasets quite efficiently, both in

terms of memory and time. It also supports parallel processing and has

regularization, which help to avoid overfitting sometimes. It able to capture hidden

relationships and interactions between variables, which is useful in Ethereum data

because fraud behaviour can be very complex and not easy to detect. Because of

these things, XGBoost is used a lot for structured data and has shown strong results

in many machine learning tasks and even real applications.

15

1.3.4 Support Vector Machines (SVM)

Support Vector Machines classify data by identifying hyperplanes maximizing

margin between different classes. Highly effective in high-dimensional spaces, SVMs

robustly handle complex datasets, though their performance significantly depend on

proper kernel selection and parameter tuning, sometimes complicating practical

implementation.

1.3.5 K-Nearest Neighbors (KNN)

KNN classifies samples based on proximity to labeled instances, providing intuitive

and straightforward classifications. Despite simplicity, KNN can be computationally

intensive with large datasets, limiting scalability in extensive Ethereum datasets.

1.4 Deep Learning Models

1.4.1 1D Convolutional Neural Network (1DCNN):

1DCNN is a deep learning model which is commonly used in pattern recognition and

time series analysis. Originally CNNs were designed for image classification but

1DCNN has been proven useful in working with one-dimensional data like numerical

time series . In Ethereum fraud detection localized patterns such as sudden spikes in

transfer amount are identified by processing raw transaction data using 1DCNNs [8].

Features are extracted from the dataset using a convolutional layer , pooling layer to

reduce dimensionality and to classify the pattern a fully connected layer is part of the

architecture of 1 DCNN [8].

16

1.4.2 Long Short-Term Memory (LSTM)

LSTMs specialize in modeling sequential dependencies in transaction histories. They

effectively capture evolving fraud strategies, recognizing gradual behavioral shifts in

Ethereum address activities, making them particularly effective against slow-building

fraud tactics.

1.4.3 CNN-Long Short-Term Memory (CLSTM):

CLSTM combines the strength of CNN and LSTM both to achieve a hybrid deep

learning model [8]. CLSTM is effective in fraud detection because of its ability to

capture both spatial and temporal patterns in transaction data. Local features such as

transaction values are extracted from CNN while how the features evolve over time

are modelled by the LSTM layer . The architecture consists of a convolution and

pooling layer and a dropout between them which prevents overfitting. The result is

given to the LSTM layer and finally to the dense layer which generates the final

result [8]. It allows to detect complex fraud behaviours by learning both short-term

and long term patterns [21].

1.4.4 Graph Neural Networks (GNN)

Graph neural networks is a type of deep learning technique in which nodes represent

entities and relationships are represented by edges and it operates on graph structured

data [9]. Most often there are unique patterns between Fraudulent accounts such as

immediate transaction spikes and closely connected clusters and can be detected by

GNNs. Embeddings are generated by combining information from neighboring nodes

[9]. These embeddings carry complex individual and contextual behavior which

results in more accurate fraud detection in Ethereum transactions.

17

1.4.5 Transformers for Tabular Data (FT-Transformer)

Transformers, initially developed for natural language processing, have been adapted

for structured tabular data through models like the FT-Transformer. The

FT-Transformer employs self-attention mechanisms to dynamically learn feature

interactions without manual feature engineering, providing superior performance and

interpretability in Ethereum fraud detection tasks.

18

CHAPTER 2
LITERATURE REVIEW

Several studies have investigated anomaly and fraud detection in blockchain
environments.In this section we will be discussing relevant research and studies.
Table 1. summarizes these key findings.

Kabla et al. provided a comprehensive review of the applicability of intrusion
detection systems (IDS) on Ethereum-based attacks, categorizing vulnerabilities and
emphasizing the need for IDS frameworks tailored to the Ethereum architecture [20].
However, they do not delve into the practical implementation or evaluation of
machine learning models for fraud detection.

Mounnan et al. explored deep anomaly detection techniques for blockchain, offering
a broad method of learning approaches like discriminative, generative, and hybrid
models [4]. But their main focus was towards attacks at the protocol level and lacked
transaction fraud specific to Ethereum network .

Saravanan et al. discussed federated learning models in enhancing anomaly detection
on Ethereum networks [1] ,they discussed classic attacks and lacked analysis on
evolved smart contract frauds or phishing scams .

Fouly et al. focuses on anomaly detection for blockchain using supervised,
unsupervised and deep learning techniques[2], but offers limited insights into
Ethereum specific implementations.

Tripathy et al. evaluated the performance of various supervised machine learning
models such as Random Forest and XGBoost on Ethereum fraud detection dataset
although achieving high performance [3], but solely focused on classification without
exploring advanced approaches such as hybrid or graph-based models.

In this study we focus on Ethereum specific fraud detection strategies and also
discusses challenges such as data imbalance , preprocessing techniques and
discussion on various machine learning models as well as unique techniques like
Graph Neural Networks (GNNs) and transformer-based language models providing a
more holistic view in latest advancements.

19

Table 2.1 Summarizes various studies conducted in the field on fraud detection in blockchain
networks.

TABLE 2.1 Summary of related work in Fraud Detection

Reference Year Pros Cons

[20] 2022 Comprehensive review
of Ethereum
vulnerabilities and IDS
strategies.

No implementation or evaluation of
ML-based detection models.

[1] 2023 Proposes federated
learning for blockchain
anomaly detection using
historical data.

Limited to Ethereum Classic and classic
attack types.

[4] 2024 Provides deep anomaly
detection taxonomy and
method comparisons.

Focuses on low-level cyberattacks, not
transactional fraud.

[2] 2024 Broad survey of ML
techniques with practical
applications across
domains.

General overview lacking
Ethereum-specific depth or new model
proposals.

[3] 2024 Implements and
evaluates multiple ML
models (XGBoost, RF,
etc.) on real Ethereum
fraud data.

Focuses only on supervised learning;
lacks hybrid or graph-based approaches.

20

Table 2.2 highlights the various research questions and Table 2.3 highlights whether
various studies addressed these questions.

TABLE 2.2 Research Questions and areas of Focus in Ethereum Fraud Detection

Q.No Research Questions

1 What are the different DL techniques employed in Ethereum fraud
detection ?

2 Are challenges such as data imbalance, evolving fraud behavior, or
real-time detection addressed?

3 What preprocessing techniques were described in the studies?

4 Is a multi field survey conducted in the Ethereum fraud detection
studies ?

TABLE 2.3 Comparison of Research Questions Across Various Studies

Research
Questions

[1] [2] [3] [4] [20]

RQ1 No No No Yes No

RQ2 Yes Yes Yes Yes No

RQ3 Yes No No Yes No

RQ4 Yes No No Yes Yes

21

Fig 2.1 Compares the frequency of various Blockchain fraud detection studies
published between 2022 and 2024

Fig 2.1 High Level flowchart of the process

22

Table 2.4 provides key information of various datasets used in the studies .

TABLE 2.4 Brief Summary of Publically Available Ethereum Datasets

Dataset
names

Used
By

Link Records Description

Ethereum

Fraud

Detection

Dataset

[6],[11],[
16]

https://www.kaggle.com/datasets/
vagifa/ethereum-frauddetection-da
taset

9840 Contains records of
fraudulent and legitimate
transactions on Ethereum.
Dataset is imbalanced.

Fraud

Detection:

ETHERE

UM

transactio

ns

[7],[8],[1
2]

https://www.kaggle.com/code/suk
antokumardas/fraud-detection-eth
ereum-transactions

9841 The dataset consists of 47
columns , including a
‘flag’ column indicating
the nature of the
transaction.

Fraud

Detection

in

Ethereum

Transactio

ns

[17] https://www.kaggle.com/code/unn
atkmistry/fraud-detection-in-ether
eum-transactions

12146 Dataset contains
Ethereum transaction
records with features
such as timestamps,
sender and receiver
addresses, transaction
amounts, and labels for
fraudulent or
non-fraudulent
transactions.​

Transactio

n Graph

Dataset

for the

Ethereum

Blockchai

n [18]

[18] https://zenodo.org/records/366993
7

2000000 Dataset contains ether
and ERC20 token transfer
transactions from the
Ethereum Mainnet
blockchain.

23

In table 2.5 we compare the performance of various DL and ML models used along
with their pros and cons in this section.

TABLE 2.5 Comparison of performance of ML and DL used for Ethereum Fraud Detection
Reference Year Pros Cons Models Used Result

[5] 2023 Reduced
Feature Set

Dependent
on
transaction
network data

Random Forest
(RF) , Neural
Network (NN)
and K-nearest
neighbor (KNN)
[5]

Accuracy:
Random Forest :
94%
Neural Network:
92%
KNN: 86%

[10] 2024 Addresses
data
imbalance

Complex
architecture

Meta-IFD
(Generative +
Contrastive +
GNN)
Self-supervised
Dual View
Learning with
GNN

Macro-F1:
+14.7% for
Ponzi; +2.02%
for phishing
over best ML
baseline

[6] 2023 Handles
Complex
Patterns

Complex
Training

Artificial Neural
Network (ANN)

Accuracy:
97.1%

[7] 2024 Improved
Optimization

Computation
ally intensive

Deep Neural
Network with
Genetic
Algorithm
metaheuristic
optimization.

Accuracy: 98.6
F1-Score: 94.86

[13] 2024 ML
techniques
showed
improved
performance
over naive
rule-based
methods

Unable to
handle
complex
patterns due
to using
simple ML
techniques.

Logistic
Regression,
Random Forest
, KNN
Classifier,
AdaBoost
Classifier

Accuracy:
Logistic
Regression: 61%
Random Forest :
97%
KNN Classifier :
90%
AdaBoost
Classifier: 96%

[14] 2024 Handles
imbalanced
datasets

Complex
preprocessin
g.

Topological
Filtering +
VGG16 Transfer
Learning

F1- Score: .9891

[11] 2023 Improved
Accuracy

Limited to
one Fraud

Ensemble CNN
+ LSTM
(Bagging &
Boosting)

Accuracy:
96.4% (Bagged
LSTM)

24

[8] 2024 Detailed
architecture
tuning

High
Training time
and
complexity

TabPFN,
CLSTM,
1DCNN, LSTM,
MLP

TabPFN: 99.2%
Accuracy

[9] 2024 Improved
performance

High
resource
consumption
and training
complexity.

Transaction
Language Model
+ Multi-head
Attention +
GNN

F1-score:
+10–20% over
baselines
Balanced
Accuracy:
+8–15%

[12] 2022 Fast and
Efficient

Sensitive to
Hyperparame
ters

LGBM Accuracy
LGBM: 98.60%
Optimized
LGBM: 99.03%

[16] Handles class
imbalance
efficiently

Complex
GAN
training.

CTGAN +
Cost-sensitive
Learning +
Ensemble
Models (RF,
LGBM,
XGBoost,
AdaBoost, DT)

Accuracy: 98%

[17] highly
efficient

computationa
lly intensive

XGBoost (final),
compared with
CART, RF,
LGBM

Accuracy: 96%

[18] Improved
prediction

Complex
preprocessin
g on
blockchain
graphs

MLP, RF, DT,
GB, KNN, SVM

Accuracy:.97%

25

CHAPTER 3
METHODOLOGY

To solve the problem of Ethereum fraud detection, this work proposes an end-to-end
approach that combines data preprocessing, feature selection, and a deep learning
model. The full framework, starting from input data and ending in fraud prediction, is
shown in Figure 4.2. Each part of the system is explained more in the following
subsections.

3.1 Dataset and Feature Description

We used the publicly available Ethereum fraud detection dataset provided by Vagifa
Abilova on Kaggle [source]. It is a tabular collection of Ethereum addresses, with a
wide set of behavioral and statistical features. It contains 9,841 addresses, where each
address is labeled with a binary FLAG value. If address was involved in fraud, the
label is 1, otherwise it is 0. After removing unnecessary columns, there are around 46
features for each address. These features are basis on transaction history and
interaction with smart contracts. They covered different types of behavior, which are
grouped as follows:

Transaction Time Features: These include values like average time between sent
transactions, average time between received transactions, and the time difference
between first and last transaction.How often the addresses were active can be
understood by these features.Such features helps to understand when and how often
the address been active. Fraudulent addresses sometimes showing strange or unusual
pattern of activity, which these features are able to point out.

Transaction Count Features: This part tells how many actions the address do. Like,
total number of transaction, how many time it send or receive money, and how many
smart contracts it did create. These values can shows if the address was too active
and doing things in weird ways, like sending too many transactions or creating lots of
contracts repeatedly.

Value Features (Ether and Tokens): These include total Ether sent or received,
Ether sent to contracts, and the current Ether balance. Similar features are included
for ERC-20 token activity, like how much tokens were sent or received, and their
minimum, maximum, and average values. These are important to measure the
volume of money going through the address. In fraud cases, you might see extreme

26

values—like very large token movements in Ponzi-type scams or many small token
transfers in phishing attempts.

Unique Interaction Features: This includes things like how many unique addresses
send Ether to this address, or how many other addresses it has sent Ether to. Also, it
looks at how many different types of tokens were sent or received. These help
measure how wide or diverse the address interactions are. For example, an address
used in phishing might receive Ether from many different victims, show high number
of unique senders. In case of Ponzi, the address might have unusual fan-in and
fan-out behavior, which stands out from normal ones.

All features in the dataset are numeric or converted into numeric format. Identifiers
that are not numeric, like the wallet address string or token names, are either dropped
or changed into numbers. For example, the ERC20 most sent token type was
removed because it’s a category, but the number of unique token names sent was
kept, since it’s a count value and can be used as numeric.By including so many
different kinds of features, the model can look at both big-picture behaviors (like
totals and counts) and smaller patterns (like timing or min/max values). But because
the feature space becomes very large, it’s important to do good preprocessing and
feature selection, which is explained in the next part.

3.2 Data Preprocessing

Doing proper data preprocessing is important to make sure the features are in right
shape before training the model. In this work, we applied several steps to clean and
prepare the raw dataset before it goes into the learning algorithm.

Data Cleaning: First step is to remove columns which doesn’t really add anything
useful for the learning. In this dataset, things like Unnamed: 0, Index, and Address
columns are removed. These are mostly just identifiers, and they don’t help in
predicting anything. They don’t show any behaviour or activity, so keeping them
only adds extra data that model don’t need.Also, textual fields such as the most
frequent token type names are dropped, and we keep focus only on features which
are numeric.

Type Conversion: All the feature values are forced into numeric format. In cases
where values are non-numeric or missing (for example, strings like “None”), they are
turn into NaN (Not a Number). This help to make sure that the model receives clean
and consistent numerical inputs for every feature.

27

Missing Value Imputation: In some cases, few addresses might not have done
certain kinds of activities at all. Like, if one address never received any ERC20
tokens, then features such as ERC20 max value received will just stay empty — that
is, as NaN. To handle this, we followed a two-step method. First step is to go through
the data and replace all infinite values (both +Inf and -Inf) with NaN as well. Then in
second step, we take each feature one by one and calculate the median — but only
using the training set, so test data doesn’t leak into it. All NaN values in that feature
are filled with this median. Median was selected because it is less sensitive to outliers
and usually makes more sense for skewed data. If some feature still has NaN values
even after that (which only happens when the whole column is empty in training),
then we just use 0 to fill those. That way, there’s no missing data left, and at the same
time, we don’t introduce very large or unusual values into the model.

Feature Transformation: Many of the features exhibit highly skewed distributions.
For instance, features like total Ether received or max value sent can span several
orders of magnitude (some addresses have transacted tiny amounts, while others have
handled massive Ether volumes). To reduce skewness and stabilize variance, we
apply a logarithmic transformation to high-magnitude features. Specifically, for any
feature whose maximum value is greater than 100 (a heuristic threshold indicating a
wide value range). A log(1 + x) transformation is applied to reduce the effect of
extreme values, where log denotes the natural logarithm.

Feature Scaling: After the above steps, we perform feature scaling to normalize the
feature ranges. We use standardization, i.e., z-score scaling, which shift feature to
mean 0 and standard deviation 1. This is done using StandardScaler from scikit-learn,
fitted on the training data and apply to all sets. Scaling is particularly important for
our chosen model (FT-Transformer) to ensure that the optimization process is
well-behaved and that features are on comparable scales when computing distances
or dot-products in the neural network. It also benefits any distance-based
interpretation and accelerates convergence during training.

After preprocessing, the processed dataset is split into training, validation, and test
sets. We use stratified split to maintained the same fraud ratio in each subset. 70% of
the data is used for train, and remaining 30% is further split evenly into 15%
validation and 15% test. The training set is used to fit the model, the validation set is
used for tuning and feature selection, and the test set is reserved for final
performance evaluation.

28

3.3 Feature Selection with Recursive Feature Elimination (RFE)

When dataset has too many features, like in our case, not all of them help much in
finding fraud. Some features say kind of the same thing again, or just bring noise,
which makes it hard for model to learn properly or make it slow and complex. So, to
find which features actually useful, we used something called as Recursive Feature
Elimination (RFE).

RFE is a method where a model is trained again and again, and each time it removes
the feature that seems least useful — based on things like weight or score from the
model. This keeps happening step by step, until only a fixed number of features are
left. In our case, we used RFE with training data, and picked a basic model like
logistic regression or sometimes random forest to do this. After ranking the features,
we kept the top ‘k’ ones that gave better results when we checked with validation set.
During our tests, we found that using only around 20 features was enough to keep
most of the useful info. These important features included things like total ERC20
token transactions, the time gap between first and last transaction, total Ether
received, number of different addresses that sent tokens, and total number of
transactions. This kind of makes sense — for example, scam addresses usually show
very high number of token transfers in phishing, or have long time gaps in Ponzi-like
activity where funds keep flowing in over time.

By cutting down the feature list, the model becomes simpler, runs faster, and
sometimes even performs better. It also helps us understand things more easily, since
we only look at the most meaningful features. Later in this work, we also compare
how the model performs when we use all features versus when we only use the ones
selected by RFE, to see how much difference it makes.

3.4 Model Architecture: FT-Transformer for Tabular Data

The main part of the proposed Ethereum fraud detection system is a deep learning
model based on transformer structure, inspired by FT-Transformer. This model is
specially made to work well with tabular data. The architecture is designed in a way
that it can capture complex relationships between different transaction features, while
still staying efficient and not too hard to understand. It includes different parts like
feature preprocessing, tokenizing and embedding of features, transformer encoder
blocks, and finally a classification head. The model is trained using a loss function
that is aware of class imbalance, which helps in detecting frauds more accurately,
especially when fraud examples are much less than normal ones.

29

3.4.1 Input Layer

The model takes in 20 numeric features as input, which are selected using Recursive
Feature Elimination (RFE). These features picked from Ethereum transaction dataset
and found to be most important in fraud identification. Each feature about some kind
of behavior or transaction activity of an Ethereum address, like how much Ether was
received, how often the address was active, or how many ERC20 tokens were
moved.

3.4.2 Feature Tokenization and Embedding

Every one of the 20 input values is passed through a learnable embedding layer. This
converts the raw number into a dense vector (for example, 64 dimensions). So now,
instead of simple numbers, the model works with richer vector representations. This
helps it understand not just individual feature values, but also how they relate with
each other in deeper ways. Along with that, we add positional embeddings to each
feature token, even if the order of features doesn’t mean anything directly. This way,
the model can still tell features apart during training.

3.4.3 Transformer Encoder Blocks

After embedding, the feature tokens are passed into a stack of transformer encoder
layers. Each of these blocks contains multiple parts — like multi-head self-attention,
feedforward neural networks (FFN), dropout, and layer normalization. The
self-attention helps the model to understand how features relate to each other in
context. For example, when there is a high number of ERC20 transfers together with
short time gaps between transactions, it may point toward fraud activity. These
encoder blocks allows the model to learn such patterns through deep and non-linear
relationships in efficient way.

3.4.4 Attention Pooling

Once the data goes through all the transformer layers, the output from all the tokens
are combined. In our case, we do this by flattening the transformer output directly
into the classifier. This is called attention pooling in some works, but here it’s done in
a simple way. The idea is to summarize everything the model has learned from all the
features into one compact vector that reflects the behavior of the address overall.

30

3.4.5 Classification Head

This final step is where the model makes the actual prediction. The pooled vector is
sent through a two-layer feedforward neural net. First layer takes the 64-dimensional
input and reduces it to 32, with a ReLU activation and dropout applied to avoid
overfitting. The second layer gives out a single number (logit), which then goes
through sigmoid to make it a probability. That final value tells how likely the address
is doing fraud.

3.4.6 Loss Function and Class Imbalance Handling

To deal with the class imbalance in this fraud detection task (since only around 22%
of the addresses are marked as fraud), the model is trained using Binary
Cross-Entropy with Logits Loss. We also include a pos_weight parameter to give
more focus to the fraud class during training. This helps the model to pay more
attention catching fraudulent samples, which improve recall while keeping precision
at decent level.

To sum up, the model brings together the powerful capability of transformers with
smart feature selection and a method to handle class imbalance. Each tabular feature
is treated as a separate token, and with self-attention, the FT-Transformer can learn
deep and complex connections between different features. These kinds of
relationships are often key in detecting fraud. The model is not only able to scale
well with data but also gives good performance while still being somewhat
interpretable. This makes it a suitable choice for detecting fraud in Ethereum
addresses with high precision and recall.

31

Fig 3.1 High Level flowchart of the process

32

Fig 3.2 FT-Transformer Architecture for Ethereum Fraud Detection.

3.5 Training Strategy and Imbalance Handling

3.5.1 Training Procedure:

We trained the FT-Transformer model using the cleaned training data and the training
was carried out for a fixed number of epochs — 20 in our case — and we make use
of the Adam optimizer with an initial learning rate of 0.001 for updating the model
weights during training. The data was divided into batches of size 64, and after
processing each batch, the model parameters got updated to reduce the loss. While
training, we also kept checking how the model was doing on the validation set, so we
can avoid overfitting. If the validation loss started increasing or not improving, it

33

would give us a signal to stop early or adjust the learning settings. If needed, we
apply early stopping or reduce the learning rate depending on how validation loss
behaves. The choice of hyperparameters like learning rate, number of epochs, and
batch size was based on initial experiments done using the validation data. After
training is finished, we pick the model version (or checkpoint) that gave the best
results on validation, and then we use that one to test final performance.

3.5.2 Loss Function and Class Imbalance:

As mentioned earlier, class imbalance is a serious challenge in this task, since only
around 22% of the addresses are marked as fraudulent. If no correction is applied,
then the normal binary cross-entropy loss becomes biased toward the majority class,
and the model ends up predicting “non-fraud” most of the time just to reduce the total
loss. This kind of behavior makes the model less useful for identifying actual fraud
cases.

To fix this, we use a weighted version of the Binary Cross Entropy loss, known as
BCEWithLogitsLoss, where we set the pos_weight parameter to increase the penalty
for misclassifying fraudulent cases.

In our dataset, since fraud samples make up about 22%, we use a pos_weight value
of roughly 3.5. This means the model treats a mistake on a fraud address as 3.5 times
more serious than a mistake on a benign one. This forces the model to pay more
attention to the minority class during training. With this setting, we observed the
model performed better in terms of balancing precision and recall, compared to when
the loss was unweighted. This is a cost-sensitive learning approach, which works
better than resampling methods in many cases — because it keeps the training data
as-is, while only changing how the model learns from mistakes.

3.5.3 Evaluation during Training:

We evaluates the model on the validation set after each epoch (or in some cases, after
few epochs) using metrics like validation loss and F1-score, which considers both
precision and recall. Selecting the best version of model — usually the one having
highest validation F1 or lowest loss — and also helps deciding when to stop the
training early if validation metrics not improving anymore. While doing evaluation,
the model’s output (which is a probability after applying sigmoid) is by default
thresholded at 0.5 for calculating classification metrics. But in some cases, we
changes this threshold depending on precision-recall curve, especially if getting
higher recall is more important than precision.

34

With the whole methodology now explained — from preprocessing and selecting features to
model architecture and training steps — we proceeds to applying this framework on the
Ethereum fraud dataset. The next section presenting the results of our implementation, with
comparison between models with and without feature selection, and some discussion about
how well the deep learning approach worked for fraud detection.

comparing performance with and without feature selection and analyzing the effectiveness of
our deep learning based approach.

35

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Experimental Setup

The proposed framework was done using Python, with commonly used libraries like
pandas for managing data, scikit-learn for preprocessing and selecting features, and
PyTorch to build and train the FT-Transformer model. All the experiments were
carried out on a system that had GPU support — in this case, an NVIDIA Tesla T4
GPU on Google Colab — which helped in making the training of the neural net
faster. The system was also having an Intel(R) Xeon(R) CPU @ 2.20GHz and 12 GB
RAM, which was enough to load the full dataset into memory for smooth processing.
Using the GPU helped a lot in making the transformer model train faster, especially
because attention operations involves large matrix computations that can run in
parallel.

During the training phase, we was monitoring performance on both training and
validation sets in every epoch. Early stopping were applied based on validation loss
— if it didn’t improve for few epochs, then training gets stopped early to avoid
overfitting. In practice, the model was usually converging somewhere between 15 to
20 epochs, as the dataset wasn’t too large to begin with.

4.2 Evaluation Metrics

The effective evaluation of models for Ethereum fraud detection models need
effective performance metrics . They should take in consideration both the predictive
power and class imbalance. We will briefly discuss the following metrics used to
assess the models performance:

Accuracy: It measures the models ability to correctly predict the true labels out of
all the predictions. Ratio of the correct predictions to the total number of predictions
is known as accuracy [25]. In the context of Ethereum fraud detection , accuracy may
be misleading due to the imbalanced nature of the dataset.

​
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

36

Precision: the proportion of predicted frauds that are actually frauds. This metric
tells us how often the model is correct when it raises an alarm. High precision means
few false positives (innocent addresses flagged incorrectly).​

Recall: It is the proportion of actual frauds that the model correctly identified. This
measures the model’s ability to catch the frauds. High recall means few false
negatives (fraudulent addresses missed by the model).​

F1-Score: It is the harmonic mean of the precision and recall where precision
measures how many of the "positive" predictions made were actually correct and
recall is the measure of how many actual positive classes were correctly identified by
the model. This evaluation metric is preferred when the data is imbalanced in nature
as it provides a balance between the precision and recall [25].

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

ROC AUC (Area Under the Receiver Operating Characteristic Curve): AUC
measures the model’s ability to discriminate between the classes across all
classification thresholds. It is threshold-independent and summarizes the trade-off
between true positive rate and false positive rate. An AUC of 1.0 represents a perfect
classifier, while 0.5 is no better than chance. AUC is particularly informative in
imbalanced settings as well, since it considers the ranking of predictions.​

In addition to these, we also examined the confusion matrix of the final model to see
the breakdown of true positives, true negatives, false positives, and false negatives,
and balanced accuracy (which is the average of recall on fraud and recall on
non-fraud) . However, for brevity, we focus on the main metrics listed above in our
discussion.

All metrics are reported on the test set, which was held out from the training process
and not used for model tuning, to give an unbiased evaluation of how the model
would perform on new, unseen data.

37

4.3 Results with RFE-Selected Features

Using 20 features selected through Recursive Feature Elimination (RFE), the model
was able to reach strong performance across all major evaluation metrics. This shows
that the selected features are quite informative for detecting fraud in Ethereum
addresses.

Accuracy of 96.89% means the model classified nearly 97 out of every 100
addresses correctly, which reflects overall high prediction quality.

Precision is around 90.03%, which tells that whenever model predicts an address is
fraud, it’s right almost 9 out of 10 times. That helps reduce false positives. Because if
it keeps saying something is fraud when it’s not, that would create lot of noise and
make the system less usable.

Recall came to be 96.64%, so it means the model was able to catch most of the fraud
addresses. Missing fraud is something you don’t want in such tasks, especially in real
systems, because even few slipping through can be a problem.

F1 score was 93.22% — which is kind of the balance between precision and recall.
So, it shows that model isn’t just being correct sometimes, but also not missing
much. Both things are working together here.

Lastly, the AUC score reached 0.9970, which is almost near perfect. That means the
model is able to tell difference between fraud and non-fraud addresses very well, no
matter what cutoff value you use to make the final decision.

In Table 6 we summarize the results of our fraud detection model.

TABLE 4.1 Summary of performance of fraud detection model

Metric Value

Accuracy 96.89%

Precision 90.03%

Recall 96.64%

F1 Score 93.22%

AUC (ROC) 99.70%

38

To sum up, the model which was trained using 20 features selected by Recursive
Feature Elimination (RFE) were giving very strong results across all of the
evaluation metrics. These features was proving to be very useful for catching frauds
on the Ethereum network. The accuracy come out as 96.89%, and precision was
90.03%, meaning that model was right most of times when it predict a fraudulent
address. Recall was 96.64%, which shows it didn’t miss much of actual fraud cases.
The F1-score came 93.22%, showing model had a decent balance between catching
frauds and not giving too many false alarms.Also, the AUC was extremely high at
0.9970, which proves the model is very good at separating fraud and non-fraud
addresses.

These numbers show that the model can work really well even with fewer features —
less than half of the original ones — without losing much in terms of how well it
detects fraud. Having a smaller feature set makes the model simpler, faster, and easier
to understand. This is especially useful in real-time fraud monitoring systems, where
fast and clear results are important. It also makes it easier for analysts to look at why
the model made a decision, since they only have to focus on fewer, more meaningful
features.Some of the most useful features included in the final set are things like
ERC20 transaction counts, how many different tokens were used, how much Ether
was received, and the average time between received transactions. These match up
with known fraud patterns — attackers often deal with lots of addresses, use tokens
to hide movements, and show timing behavior that doesn’t look normal. So overall,
the RFE-based model not only performs well but also makes the whole system more
efficient and practical for real-world fraud detection.

39

Fig 4.1 Confusion Matrix for the fraud detection model

Fig 4.2 ROC curve for the fraud detection model

40

CHAPTER 5
CONCLUSION AND FUTURE SCOPE

The proposed Ethereum fraud detection framework, which is based on deep learning
and machine learning, shows how transformer-based models can work effectively in
identifying fraudulent addresses on blockchain. By combining strong data
preprocessing, recursive feature selection, and the FT-Transformer architecture, the
model was able to capture complex interactions between features that are present in
transactional data. The results showed that FT-Transformer gave good performance
in terms of accuracy, precision, recall, and AUC, even when trained using a smaller
number of selected features. This proves the robustness of the model and makes it
suitable for high-dimensional fraud detection tasks on Ethereum. Overall, the work
supports the idea that modern deep learning models can work well for tabular
blockchain data and gives a scalable and flexible solution that helps improve current
fraud detection systems.

Looking forward, there are still few improvements and directions that can help to
expand and make the method more effective. One is to add graph-based learning like
Graph Neural Networks (GNNs), which can help to learn the relationship patterns
among addresses in the network. This can increase the model’s ability to detect
frauds that are done in a coordinated way. Also, time-based behavior could be
modeled more directly using LSTM or Transformer-based sequence models. This
would help the model understand how fraud activity happens step-by-step over time.
Instead of just binary classification, multi-class fraud detection can also be useful, so
the system can tell different types of frauds apart and maybe apply different rules or
actions for each type. Another idea is to use unsupervised learning, like autoencoders
or variational methods, to detect frauds that were not labeled or seen before. Class
imbalance can be further improved by doing data augmentation — like using
SMOTE or by generating synthetic transactions. Lastly, deploying the model in real
time, along with explainability tools such as SHAP values or visualizing attention
weights, would make it more usable in real-world environments. These steps can
help build a stronger and more practical Ethereum fraud detection system that works
better in different situations.

41

REFERENCES

[1] R. Saravanan, S. Santhiya, K. Shalini and V. S. Sreeparvathy, "Comparative

Study Analysis of MachineLearning Algorithms for Anomaly Detection in
Blockchain," 2023 International Conference on Distributed Computing and
Electrical Circuits and Electronics (ICDCECE), Ballar, India, 2023, pp. 1-6, doi:
10.1109/ICDCECE57866.2023.10150785.

[2] Fouly, Mohamed & Soliman, Taysir & Taloba, Ahmed. (2024). Machine Learning
Techniques for Detecting Abnormal Behaviors in Blockchain Technologies: A
Methodological Review. 1-6. 10.1109/ICCA62237.2024.10927796.

[3] N. Tripathy, K. S. Chaudhury, A. Nibedita, S. K. Nayak, M. Behera and B. Jena,
"Ethereum Fraud Detection: A comparative analysis of supervised learning
approach," 2024 IEEE 1st International Conference on Advances in Signal
Processing, Power, Communication, and Computing (ASPCC), Bhubaneswar,
India, 2024, pp. 1-6, doi: 10.1109/ASPCC62191.2024.10881143.

[4] Mounnan, O., Manad, O., Boubchir, L., Mouatasim, A. E., & Daachi, B. (2024).
A review on deep anomaly detection in Blockchain. Blockchain Research and
Applications, 100227. https://doi.org/10.1016/j.bcra.2024.100227

[5] Onu, I.J., Omolara, A.E., Alawida, M. et al. Detection of Ponzi scheme on
Ethereum using machine learning algorithms. Sci Rep 13, 18403 (2023).
https://doi.org/10.1038/s41598-023-45275-0

[6] M. Dahiya, N. Mishra, R. Singh and Pavitra, "Neural network based approach for
Ethereum fraud detection," 2023 4th International Conference on Intelligent
Engineering and Management (ICIEM), London, United Kingdom, 2023, pp. 1-4,
doi: 10.1109/ICIEM59379.2023.10166745.

[7] A. Srivastava, A. Kumar, A. Pillai and V. S. Sharma, "Enhanced Fraud Detection
in Ethereum Transactions: Fusion of Modified Genetic Algorithms and Deep
Learning with Limited Attributes," 2024 International Conference on Signal
Processing and Advance Research in Computing (SPARC), LUCKNOW, India,
2024, pp. 1-5, doi: 10.1109/SPARC61891.2024.10829277.

[8] Olusegun, Ruth & Yang, Bo. (2024). Improved Ethereum Fraud Detection
Mechanism with Explainable Tabular Transformer Model. 59-68.
10.1109/TPS-ISA62245.2024.00017.

[9] Jia, Yifan & Wang, Yanbin & Sun, Jianguo & Liu, Yiwei & Sheng, Zhang &
Tian, Ye. (2024). Ethereum Fraud Detection via Joint Transaction Language
Model and Graph Representation Learning. 10.48550/arXiv.2409.07494.

[10] C. Jin, J. Zhou, C. Xie, S. Yu, Q. Xuan and X. Yang, "Enhancing Ethereum
Fraud Detection via Generative and Contrastive Self-Supervision," in IEEE

42

https://doi.org/10.1038/s41598-023-45275-0
https://doi.org/10.1038/s41598-023-45275-0

Transactions on Information Forensics and Security, vol. 20, pp. 839-853, 2025,
doi: 10.1109/TIFS.2024.3521611.

[11] Q. Umer, J. -W. Li, M. R. Ashraf, R. N. Bashir and H. Ghous, "Ensemble Deep
Learning-Based Prediction of Fraudulent Cryptocurrency Transactions," in IEEE
Access, vol. 11, pp. 95213-95224, 2023, doi: 10.1109/ACCESS.2023.3310576.

[12] Aziz, Rabia & Baluch, Mohammed Farhan & Patel, Sarthak & Ganie, Abdul.
(2022). LGBM: a machine learning approach for Ethereum fraud detection.
International Journal of Information Technology. 14.
10.1007/s41870-022-00864-6.

[13] Tripathy, Nrusingha & Balabantaray, Sidhanta & Parida, Surabi & Nayak,
Subrat. (2024). Cryptocurrency fraud detection through classification techniques.
International Journal of Electrical and Computer Engineering (IJECE). Vol. 14,
No. 3, June 2024, pp. 2918~2926 ISSN: 2088-8708, DOI: 10.11591/ijece.v14i3.
2918-2926. 10.11591/ijece.v14i3.pp2918-2926.

[14] Nakatani, Shunsuke & Kuzuno, Hiroki & Takita, Makoto & Mohri, Masami &
Shiraishi, Yoshiaki. (2024). Can We Determine Whether a Set of Ethereum
Transaction Data Contains Fraudulent Transactions?. 108-114.
10.1109/DSC63325.2024.00023.

[15] Nadella, Geeta & Meduri, Karthik & Gonaygunta, Hari & Satish, Snehal & e
Vadakkethil Somanathan Pillai, Sanjaikanth. (2024). Blockchain Fraud Detection
Using Unsupervised Learning: Anomalous Transaction Patterns Detection Using
K-Means Clustering. 407-412. 10.1145/3675888.3676080.

[16] P. Saket, P. Jyothi, A. B. Venkata Ayush Patnaik, N. Chaithanya Vardhan Reddy
and S. Suresh, "Cost Sensitive Approach to Ethereum Transactions Fraud
Detection using Machine Learning," 2024 Fourth International Conference on
Advances in Electrical, Computing, Communication and Sustainable
Technologies (ICAECT), Bhilai, India, 2024, pp. 1-8, doi:
10.1109/ICAECT60202.2024.10469665.

[17] Rathore, Muhammad Mazhar & Chaurasia, Sushil & Shukla, Dhirendra &
Anand, P.. (2023). Detection of Fraudulent Entities in Ethereum Cryptocurrency:
A Boosting-based Machine Learning Approach. 6444-6449.
10.1109/GLOBECOM54140.2023.10437184.

[18] B. Kılıç, A. Sen and C. Özturan, "Fraud Detection in Blockchains using
Machine Learning," 2022 Fourth International Conference on Blockchain
Computing and Applications (BCCA), San Antonio, TX, USA, 2022, pp.
214-218, doi: 10.1109/BCCA55292.2022.9922045.

[19] Y. Zhang, S. Kang, W. Dai, S. Chen and J. Zhu, "Code Will Speak: Early
detection of Ponzi Smart Contracts on Ethereum," 2021 IEEE International

43

Conference on Services Computing (SCC), Chicago, IL, USA, 2021, pp. 301-308,
doi: 10.1109/SCC53864.2021.00043.

[20] A. H. H. Kabla et al., "Applicability of Intrusion Detection System on Ethereum
Attacks: A Comprehensive Review," in IEEE Access, vol. 10, pp. 71632-71655,
2022, doi: 10.1109/ACCESS.2022.3188637.

[21] R. Olusegun, T. Oladunni, H. Audu, Y. Houkpati and S. Bengesi, "Text Mining
and Emotion Classification on Monkeypox Twitter Dataset: A Deep
Learning-Natural Language Processing (NLP) Approach," in IEEE Access, vol.
11, pp. 49882-49894, 2023, doi: 10.1109/ACCESS.2023.3277868

[22] Goodfellow, Ian & Pouget-Abadie, Jean & Mirza, Mehdi & Xu, Bing &
Warde-Farley, David & Ozair, Sherjil & Courville, Aaron & Bengio, Y.. (2014).
Generative Adversarial Networks. Advances in Neural Information Processing
Systems. 3. 10.1145/3422622.

[23] Mohammed, Roweida & Rawashdeh, Jumanah & Abdullah, Malak. (2020).
Machine Learning with Oversampling and Undersampling Techniques: Overview
Study and Experimental Results. 243-248. 10.1109/ICICS49469.2020.239556.

[24] Ma, W., Gou, C., & Hou, Y. (2023). Research on Adaptive 1DCNN Network
Intrusion Detection Technology Based on BSGM Mixed Sampling. Sensors,
23(13), 6206. https://doi.org/10.3390/s23136206

[25] Rainio, O., Teuho, J. & Klén, R. Evaluation metrics and statistical tests for
machine learning. Sci Rep 14, 6086 (2024).
https://doi.org/10.1038/s41598-024-56706-x

44

https://doi.org/10.3390/s23136206

Delhi Technological University

Thesis_Aditya.docx

Document Details

Submission ID
trn:oid:::27535:97822831

Submission Date
May 26, 2025, 5:47 PM GMT+5:30

Download Date
May 26, 2025, 5:50 PM GMT+5:30

File Name
Thesis_Aditya.docx

File Size
413.9 KB

35 Pages

7,930 Words

44,373 Characters

Page 1 of 42 - Cover Page Submission ID trn:oid:::27535:97822831

Page 1 of 42 - Cover Page Submission ID trn:oid:::27535:97822831

12% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report
Bibliography
Cited Text

Match Groups
92 Not Cited or Quoted 12%
Matches with neither in-text citation nor quotation marks
0 Missing Quotations 0%
Matches that are still very similar to source material
0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources
7% Internet sources
7% Publications
9% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review
No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Page 2 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Match Groups
92 Not Cited or Quoted 12%
Matches with neither in-text citation nor quotation marks
0 Missing Quotations 0%
Matches that are still very similar to source material
0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources
7% Internet sources
7% Publications
9% Submitted works (Student Papers)

Top Sources
The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Internet

www.mdpi.com <1%

2 Publication

Poonam Nandal, Mamta Dahiya, Meeta Singh, Arvind Dagur, Brijesh Kumar. "Pro… <1%

3 Publication

D. Jeya Mala, Anto Cordelia Tanislaus Antony Dhanapal, Saurav Sthapit, Anita Kha… <1%

4 Internet

peerj.com <1%

5 Internet

pdffox.com <1%

6 Internet

doctorpenguin.com <1%

7 Submitted works

University of Reading on 2024-04-22 <1%

8 Internet

fastercapital.com <1%

9 Internet

www.ubishops.ca <1%

10 Internet

vbmv.org <1%

Page 3 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Page 3 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

11 Submitted works

University of Southampton on 2023-09-14 <1%

12 Submitted works

Indus International School on 2024-03-05 <1%

13 Submitted works

University of Auckland on 2024-08-20 <1%

14 Submitted works

University of Surrey on 2024-09-19 <1%

15 Submitted works

Glyndwr University on 2025-04-18 <1%

16 Submitted works

Academy of Information Technology on 2025-05-20 <1%

17 Submitted works

Associatie K.U.Leuven on 2025-05-21 <1%

18 Publication

Ruth Olusegun, Timothy Oladunni, Halima Audu, Yao Houkpati, Staphord Bengesi… <1%

19 Internet

blockchaindose.com <1%

20 Internet

www.geeksforgeeks.org <1%

21 Publication

Arvind Dagur, Karan Singh, Pawan Singh Mehra, Dhirendra Kumar Shukla. "Intelli… <1%

22 Publication

Thangaprakash Sengodan, Sanjay Misra, M Murugappan. "Advances in Electrical … <1%

23 Internet

genomemedicine.biomedcentral.com <1%

24 Internet

arxiv.org <1%

Page 4 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Page 4 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

25 Internet

www.oecd.org <1%

26 Submitted works

University of South Florida on 2024-10-31 <1%

27 Internet

dspace.daffodilvarsity.edu.bd:8080 <1%

28 Internet

repository.riteh.uniri.hr <1%

29 Submitted works

Liverpool John Moores University on 2021-02-01 <1%

30 Submitted works

UCL on 2025-04-25 <1%

31 Submitted works

University of Stellenbosch, South Africa on 2025-02-11 <1%

32 Publication

"Blockchain and Trustworthy Systems", Springer Science and Business Media LLC,… <1%

33 Submitted works

Southampton Solent University on 2025-01-10 <1%

34 Submitted works

VIT University on 2025-04-22 <1%

35 Submitted works

Canadian University of Dubai on 2023-11-12 <1%

36 Submitted works

Leeds Beckett University on 2024-05-04 <1%

37 Publication

M. Sabari Ramachandran, S. Sajithabanu, A. Ponmalar, M. Mohamed Sithik, A. Jos… <1%

38 Submitted works

Morgan State University on 2025-05-12 <1%

Page 5 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Page 5 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

39 Submitted works

University of Duhok on 2024-11-27 <1%

40 Submitted works

University of Sheffield on 2017-04-19 <1%

41 Publication

V. Sharmila, S. Kannadhasan, A. Rajiv Kannan, P. Sivakumar, V. Vennila. "Challeng… <1%

42 Internet

dspace.bracu.ac.bd <1%

43 Publication

"Innovations and Advances in Cognitive Systems", Springer Science and Business … <1%

44 Submitted works

Cardiff University on 2019-10-10 <1%

45 Submitted works

Liverpool John Moores University on 2023-02-22 <1%

46 Submitted works

The University of Manchester on 2025-05-05 <1%

47 Submitted works

Tilburg University on 2025-05-19 <1%

48 Submitted works

University of Hertfordshire on 2025-04-26 <1%

49 Submitted works

University of Lincoln on 2022-05-19 <1%

50 Submitted works

University of Stirling on 2024-09-09 <1%

51 Submitted works

University of Stirling on 2024-12-09 <1%

52 Submitted works

University of the Pacific on 2025-05-07 <1%

Page 6 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Page 6 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

53 Internet

acikerisim.ikcu.edu.tr <1%

54 Internet

bmcmedimaging.biomedcentral.com <1%

55 Internet

dokumen.pub <1%

56 Internet

dr.ntu.edu.sg <1%

57 Internet

ijece.iaescore.com <1%

58 Internet

jis-eurasipjournals.springeropen.com <1%

59 Internet

mdpi-res.com <1%

60 Submitted works

Indian Institute of Technology Guwahati on 2023-04-30 <1%

61 Publication

Salwa Belaqziz, Salma El Hajjami, Hicham Amellal, Redouan Lahmyed, Lahcen Kou… <1%

62 Submitted works

University of Essex on 2023-08-25 <1%

63 Submitted works

UCL on 2025-05-02 <1%

Page 7 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Page 7 of 42 - Integrity Overview Submission ID trn:oid:::27535:97822831

Delhi Technological University

Thesis_Aditya.docx

Document Details

Submission ID
trn:oid:::27535:97822831

Submission Date
May 26, 2025, 5:47 PM GMT+5:30

Download Date
May 26, 2025, 5:49 PM GMT+5:30

File Name
Thesis_Aditya.docx

File Size
413.9 KB

35 Pages

7,930 Words

44,373 Characters

Page 1 of 37 - Cover Page Submission ID trn:oid:::27535:97822831

Page 1 of 37 - Cover Page Submission ID trn:oid:::27535:97822831

*% detected as AI
AI detection includes the possibility of false positives. Although some text in
this submission is likely AI generated, scores below the 20% threshold are not
surfaced because they have a higher likelihood of false positives.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions
about a student’s work. We encourage you to learn more about Turnitin’s AI detection
capabilities before using the tool.

Disclaimer
Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify
writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?
The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin’s AI writing
detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was
likely revised using an AI-paraphrase tool or word spinner.

False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.

AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).

The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted
assignment in accordance with their school's policies.

What does 'qualifying text' mean?
Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be
highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.

Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the
percentage shown.

Page 2 of 37 - AI Writing Overview Submission ID trn:oid:::27535:97822831

Page 2 of 37 - AI Writing Overview Submission ID trn:oid:::27535:97822831

	 DELHI TECHNOLOGICAL UNIVERSITY
	DELHI TECHNOLOGICAL UNIVERSITY
	INTRODUCTION
	
	1.1 Architecture of Ethereum
	1.1.1 Ethereum Virtual Machine (EVM)
	1.1.2 Smart Contracts
	1.1.3 Ethereum Accounts
	1.1.4 Transactions and Gas Mechanism
	Fig1.1 Ethereum Architecture

	1.2 Frauds in Ethereum
	1.2.1 Ponzi scheme
	1.2.2 Phishing
	1.2.3 Rug Pulls

	1.3 Machine Learning Models
	1.3.1 Logistic Regression
	1.3.2 Random Forest
	1.3.3 XGBoost (Extreme Gradient Boosting)
	
	
	
	1.3.4 Support Vector Machines (SVM)
	1.3.5 K-Nearest Neighbors (KNN)

	
	1.4 Deep Learning Models
	1.4.1 1D Convolutional Neural Network (1DCNN):
	
	
	1.4.2 Long Short-Term Memory (LSTM)
	1.4.3 CNN-Long Short-Term Memory (CLSTM):
	
	1.4.4 Graph Neural Networks (GNN)
	
	1.4.5 Transformers for Tabular Data (FT-Transformer)

	LITERATURE REVIEW
	TABLE 2.1 Summary of related work in Fraud Detection
	TABLE 2.2 Research Questions and areas of Focus in Ethereum Fraud Detection
	TABLE 2.3 Comparison of Research Questions Across Various Studies
	Fig 2.1 High Level flowchart of the process

	TABLE 2.4 Brief Summary of Publically Available Ethereum Datasets

	METHODOLOGY
	3.1 Dataset and Feature Description
	3.2 Data Preprocessing
	3.3 Feature Selection with Recursive Feature Elimination (RFE)
	3.4 Model Architecture: FT-Transformer for Tabular Data
	
	Fig 3.1 High Level flowchart of the process
	Fig 3.2 FT-Transformer Architecture for Ethereum Fraud Detection.

	3.5 Training Strategy and Imbalance Handling

	RESULTS AND DISCUSSION
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	
	
	4.3 Results with RFE-Selected Features
	TABLE 4.1 Summary of performance of fraud detection model
	Fig 4.1 Confusion Matrix for the fraud detection model
	Fig 4.2 ROC curve for the fraud detection model

	CONCLUSION AND FUTURE SCOPE
	REFERENCES

