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ABSTRACT 

In microfluidic systems, fluid mixing is critical for applications in chemical synthesis, 

drug delivery, diagnostics, and lab-on-a-chip technologies. However, achieving 

efficient mixing in microscale environments is challenging due to the predominance 

of laminar flow and low Reynolds numbers, which limit turbulence. This thesis 

addresses these challenges by computationally analyzing the mixing of Newtonian 

and non-Newtonian fluids in 3D micromixers using advanced numerical simulation 

techniques. 

The study systematically investigates the performance of various micromixer 

geometries, such as hybrid T-junction designs, focusing on their ability to enhance 

mixing through passive mechanisms. The analysis also examines how fluid rheology 

(the flow behaviour of fluids, particularly Newtonian vs. non-Newtonian) influences 

mixing performance. Non-Newtonian fluids, such as polymer solutions or biological 

fluids, often exhibit complex behaviours like shear-thinning or shear-thickening, 

significantly impacting flow patterns and mixing efficiency. 

A crucial part of this research involves studying operational parameters such as inlet 

velocity, Reynolds number, and fluid viscosity. These parameters affect the flow 

regime and mixing dynamics, and understanding their influence is key to optimizing 

micromixer design. Another novel aspect of the study is the incorporation of 

nanoparticles, which are increasingly used in microfluidic systems for enhanced 

mixing, heat transfer, and targeted delivery. The thesis explores how nanoparticle size, 

concentration, and distribution influence the mixing index—a quantitative measure of 

mixing quality. 

By comparing Newtonian and non-Newtonian fluid mixing in the presence and 

absence of nanoparticles, the study provides valuable insights for designing efficient 

micromixers tailored to specific applications. These findings advance the fundamental 

understanding of microscale fluid dynamics and offer practical guidelines for 

developing next-generation microfluidic devices. 
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The initial design is motivated by a simple-T micromixer using different twists and 

bends. Ansys fluent with finite volume analysis, conducts a simulation for this 

parameter. We investigate the impact of twist and bend on mixing performance and 

pressure drops. For data analysis, we consider the twist, bend angle, and Reynold 

number as input variables and mixing index and pressure drop as outputs variables for 

training using a neural network. With the moth flame optimization algorithm, the 

micromixer model was optimized for the maximum mixing performance and the 

minimum pressure drop. The optimal value for the twist and bend angle is 4 and 70°, 

respectively, at Reynold number (Re) 10. This technique has a significant benefit for 

microfluidic channel optimization. 

Using metaheuristic algorithms for a novel passive micromixer featuring bends and 

twists with offsets. The twists and bends cause constant changes in the direction of 

liquid flow, leading to chaotic advection that enhances species mixing while 

minimizing pressure loss. Although increasing channel length generally improves 

mixing performance, the proposed design's performance was higher than the reference 

channel for Reynolds numbers (Re) greater than 100. Key findings include achieving 

an excellent mixing performance of 87.76% at a Reynolds number of 400, with a bend 

angle of 60° and a twist factor of 4. The Harris Hawk Optimization (HHO) algorithm 

was most effective for optimizing microfluidic channel designs. 

Keywords: Numerical Modelling; Mixing Index; CFD; Micromixing; Thermo-

Fluidic; Passive Micromixer; Moth Flame Optimization; Haris Hawk Optimization; 

Response Surface Method;  
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Chapter 1     INTRODUCTION 

1.1   Introduction 

The degree of mixedness is a distinct characteristic that does not assess the property 

itself rather its uniformity. When referring to the "distribution of different masses 

within a specified volume," the term "mixing" describes the situation in which the 

masses in question differ in at least one property, such as density, colour, or viscosity. 

Mixing aims to achieve uniformity in the components and, consequently, in the 

properties mentioned. The level of mixedness must reflect both the definition of 

mixing and the goals of the mixing process. Typically, information is restricted to 

temporal and local concentration functions in molecular-disperse systems. For 

quantitative analysis of the data, it is necessary that the properties of the "pure" 

components and all mixing conditions be measurable factors. 

Depending on the application, reducing the length scales on which variations occur, 

their amplitudes, or both is often desired. In some cases, simply decreasing the scale 

at which segregation remains below a certain threshold may be enough to achieve the 

desired product quality, such as in blending processes. However, mixing at the 

molecular level is essential for any chemical reaction. Molecular diffusion, a 

mechanism driven by the random thermal motion of individual particles, is the only 

mechanism utilized in this process. Over the time, these random movements lead to a 

statistically homogeneous distribution of properties within a system. However, 

molecular diffusion only influences the large-scale distribution of a property when 

spatial gradients exist. Convective mixing—at the macro or mesoscopic scale—is 

crucial to enhance or control this process. It can perform its role by creating steep 

property gradients or lowering the characteristic length scale across these gradients. 

Although the ultimate goal is to achieve uniformity, convective mixing accelerates the 

process by intensifying local differences, thereby enhancing the effectiveness of 

molecular diffusion. The rate of many reactive processes is often controlled by mixing 

rather than diffusion, highlighting the importance of gaining a deeper understanding 

of the mixing process. 
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1.2   Motivation 

Micromixers are pivotal components in modern microfluidic systems, playing a 

crucial role in various applications such as biomedical devices, chemical processing, 

and lab-on-a-chip technologies. These devices facilitate the rapid and efficient mixing 

of fluids at the microscale, which is essential for numerous biochemical assays and 

analyses. The design and operation of micromixers are carefully engineered to align 

with the specific requirements of their intended applications. These devices utilize 

passive and active mixing strategies, offering distinct advantages regarding efficiency, 

control, and adaptability. 

Passive micromixers use intricate channel geometries, such as serpentine, 

herringbone, or chaotic advection structures, to enhance mixing through diffusion and 

fluid inertia without requiring external energy input. This approach mainly benefits 

applications demanding simplicity, low power consumption, and integration into lab-

on-a-chip systems. 

On the contrary, active micromixers use external forces, such as acoustic waves, 

magnetic fields, electrokinetic fluxes, or mechanical agitation, to dynamically alter 

the movement of fluids and increase the mixing efficiency. These methods enhance 

controllability, enabling precise modulation of mixing rates in response to varying 

process conditions. 

By strategically integrating these mixing mechanisms, micromixers can be optimized 

for diverse applications, ranging from chemical synthesis and biomedical diagnostics 

to drug delivery and environmental monitoring. The choice of design and mixing 

strategy ultimately depends on factors such as fluid properties, mixing time 

constraints, and the level of control required for the specific process. 

The following sections delve into the broader importance of micromixers and their 

roles in contemporary applications. 
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1.2.1    Biomedical applications 

Micromixers are integral to lab-on-a-chip systems for sample preparation, drug 

delivery, and biological synthesis. They enable rapid and homogeneous mixing, 

crucial for processes like polymerase chain reaction (PCR) amplification, DNA 

hybridization, and enzyme assays ("Analysis, Design and Fabrication of Micromixers, 

Volume II", 2023) ("Recent advancements in induced-charge electrokinetic 

micromixing", 2022). 

In biomedical devices, micromixers facilitate precise control over mixing 

concentrations, which is vital for diagnostic applications and the manipulation of 

genetic material (Takayama & MAKI 2024, Hassani et al. 2024). 

1.2.2    Chemical processing 

i. In chemical analysis, micromixers enhance reaction rates and improve the 

efficiency of chemical processes by ensuring uniform mixing of reactants. 

This is particularly important in nanoparticle synthesis and other chemical 

assays where precise control over reaction conditions is required (Hassani et 

al. 2024) (Wang et al. 2023). 

ii. The use of micromixers in chemical processing also reduces reagent costs and 

enhances safety by minimizing the volume of hazardous chemicals needed for 

reactions (Wang et al. 2023). 

1.2.3    Lab-on-a-chip technologies 

i. Lab-on-a-chip innovations, which integrate laboratory tasks onto a single chip, 

require micromixers as an essential component. 
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ii. These systems are used for environmental monitoring, disease diagnosis, and 

new energy applications (Han et al. 2024). 

iii. Incorporating micromixers into lab-on-a-chip devices makes it possible to 

miniaturize laboratory procedures, resulting in portable and cost-effective 

solutions for conducting complicated tests (Kim 2022). 

1.2.4    Design and innovation 

The design of micromixers continually evolves, with innovations in passive and active 

mixing strategies. Passive micromixers rely on complex geometries to enhance 

mixing through diffusion and chaotic advection, while active micromixers use 

external energy sources like magnetic or electric fields for precise control (Soltani et 

al. 2024, Bazaz et al. 2024). 

Recent advancements in manufacturing techniques, such as 3D printing, have 

facilitated the development of novel micromixer designs, enabling more efficient and 

customizable mixing solutions (Soltani et al. 2024). 

1.3   Microscale Mixing 

This discusses the design and characteristics of micromixers, compact mixing devices 

that combine at least two phases: liquids, solids, or gases. Micromixers are partially 

or entirely fabricated with microtechnology or precision engineering techniques, 

featuring channels typically sized in the submillimetre range. Standard channel widths 

range from 100 to 500 micrometres, with several millimetres or more channel 

lengths and heights similar to or smaller than the width. The total volume of a 

micromixer spans from microliters to millilitres. Micromixers operate on a much 

larger scale in comparison to molecular dimensions, which results in two principal 

characteristics: first, their design focuses on manipulating flow through channel 

geometry or external forces, and second, although they introduce new advantages to 

molecular-level chemical engineering processes, such as reaction kinetics, they 

remain largely unaffected. 
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The mixing process helps to move species, temperature, and phases to reduce the 

amount of inhomogeneity that exists. This process also induces secondary effects, like 

chemical reactions and changes in material properties. In conventional large-scale 

mixing methods, three primary mixing levels are defined: micromixing, mesomixing, 

and macromixing. Macromixing pertains to mixing facilitated by the most significant 

fluid motions, often characterized by the diameter of the mixing vessel. Micromixing 

transpires at the most minor fluid and molecular motion scales, typically at the level 

of turbulent eddies, referred to as the Kolmogorov scale. Between the macro and 

micro scales is mesomixing. In micromixers, transport may still be classified as 

micromixing even with micrometre-sized structures. Since micromixer dimensions 

can approach the Kolmogorov scale, this text avoids using "micromixing" to describe 

mixing processes within them. 

Mixing can be achieved in macroscale systems through various mechanisms such as 

eddy diffusion, molecular diffusion, Taylor dispersion and advection. Eddy 

diffusion involves transporting large groups of particles and relies on turbulent flow. 

However, due to the strong influence of viscous forces at the microscale, turbulence 

does not occur in micromixers, making eddy diffusion irrelevant to them. Hence, the 

key mixing processes are micromixers' molecular diffusion, advection, and Taylor 

dispersion. The molecular diffusion coefficient is a measure used to quantify the 

phenomenon of molecular diffusion caused by the random motion of molecules. 

Advection, driven by fluid motion, can produce chaotic distribution in mixed species 

through a simple Eulerian velocity field. Even in a stable, laminar flow, chaotic 

advection can still occur, making it suitable for micromixers. In contrast to axial 

dispersion, which results from a combination of advection and the interdiffusion of 

fluid layers moving at different speeds, velocity gradients induce Taylor dispersion, a 

specific kind of advection. This technique speeds up mixing by Taylor dispersion by 

two to three times that of mixing by molecular diffusion alone. 

Since existing macroscale designs cannot be quickly shrunk for microscale 

applications, creating micromixers constitutes a new branch of engineering. One of 

the primary challenges in this miniaturization is that surface effects become more 

dominant than volume effects. Many actuation methods that depend on volume forces, 

which are highly effective at the macroscale, encounter significant challenges when 
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applied at the microscale. This issue primarily arises in microscale fluid systems due 

to the predominance of surface forces, which include surface tension and viscosity, 

over volumetric forces, including gravity and inertia. As a result, techniques that work 

efficiently in larger systems often fail to achieve the same level of performance in 

microfluidic environments. 

A clear example of this limitation is the conventional magnetic stirrer, which 

illustrates the fundamental difference between surface and volume forces. A standard 

magnetic stirrer generates a rotating magnetic field, typically using a combination of 

a bar magnet (stirring bar) and a rotating or stationary external magnet. This setup 

effectively induces fluid motion at the macroscale and enhances mixing through bulk 

flow and turbulence. However, at the microscale, the influence of viscous forces 

becomes dominant, significantly suppressing inertial effects and preventing the 

formation of turbulent flow. Consequently, the effectiveness of traditional stirring 

mechanisms diminishes, necessitating alternative mixing approaches specifically 

designed to leverage microscale physics. 

To address these challenges, microfluidic systems often employ specialized mixing 

techniques, such as electrokinetic stirring, acoustically driven mixing, or magnetically 

actuated micro-rotors, which are tailored to operate within the constraints of 

microscale fluid dynamics. These methods exploit localized forces and controlled 

actuation strategies to achieve efficient mixing without relying on the large-scale 

turbulence characteristic of conventional macroscopic mixers. 

 The magnetic driving force depends on the magnet's volume, whereas the friction 

force depends on its surface area. When scaling down, this relationship follows the 

cube-square law: reducing the stir bar's size by ten would decrease its volume by 

roughly 1000 times but only reduce its surface area by about 100 times. At its initial 

magnitude, the magnetic field produces a force equivalent to the frictional force, 

enabling the stir bar to move. However, shrinking the stir bar by 10 times reduces the 

driving force to only 1/10th of the friction force, preventing movement. In contrast, 

an actuation approach based on surface forces would scale down more effectively, as 

the friction force to the driving force would remain constant. 
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At the microscale, mixing processes that include immiscible interfaces are also 

influenced by dominating surface phenomena. In a solid-liquid system, mixing begins 

by suspending solid particles, with dissolution following afterwards. The high 

surface-to-volume ratio at the microscale benefits the dissolution process, making it 

relatively straightforward. Consequently, the primary challenge lies in achieving 

suspension. Due to their larger size and low diffusion coefficients, particles can only 

be effectively suspended at this scale through chaotic advection. The effectiveness of 

the suspension process significantly determines the efficacy of solid-liquid mixing 

over a small scale. 

Extra energy is required to overcome interfacial tension in a system involving 

immiscible liquids. While dispersing these immiscible phases is challenging, surface 

tension helps by breaking the stretched fluids into segments, forming microdroplets. 

At the microscale, this droplet formation can be precisely controlled for each droplet. 

As a result, micromixers can produce emulsions with uniform droplet sizes. 

Dominant surface effects also impact gas-liquid systems. Dispersion of gas and liquid 

is essential for various chemical reactions, including hydrogenation, oxidation, 

carbonation, and chlorination. In contrast to liquid-liquid emulsions, which are 

separated from one another, gas molecules can be absorbed into the liquid phase while 

maintaining their integrity. Gas-liquid mixing involves two main steps: gas bubble 

dispersion and gas molecule absorption. Although the larger interfacial area enhances 

absorption, the primary challenge in designing micromixers for gas-liquid systems is 

achieving effective dispersion of fine gas bubbles. 

In addition to surface phenomena, laminar flow conditions present a challenge when 

designing micromixers. Due to the high viscosity and low flow rates involved, similar 

problems exist with laminar mixers at the macroscale. These mixers are extensively 

employed in the food, biotechnology, and pharmaceutical sectors. Because of their 

diminutive size, micromixers create significant shear stress even at very low 

velocities. This means the flow velocity cannot be excessively high in many 

micromixer applications. This shear stress can damage cells and other sensitive 

bioparticles. High shear stress can cause the fluid to behave non-Newtonian in 

complex fluids containing large molecules or cells. High shear may compromise cells' 
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metabolic and structural integrity, while the resulting viscoelastic effects can cause 

flow instability, enhancing mixing. 

Miniaturization alters the timescale of mixing processes. Micromixers are primarily 

used as platforms for analytical or synthetic reactions, where mixing and chemical 

reactions are closely linked. Although reaction kinetics and time of response remain 

unchanged with miniaturization, mixing time can vary significantly depending on the 

design and type of micromixer. This variation brings two key considerations in 

chemical reactions: accurately measuring real reaction kinetics and controlling 

reaction products. 

At larger scales, the mixing process frequently occurs significantly slower than the 

intrinsic reaction kinetics. This means that the total reaction rate is predominantly 

driven by the rate of mixing rather than the speed at which the chemical reaction 

happens. In such cases, incomplete or slow mixing can lead to concentration gradients, 

non-uniform reactant distributions, and diffusion-limited reaction kinetics, ultimately 

constraining the system’s efficiency and performance. 

However, at the microscale, mixing times can be dramatically reduced due to the short 

diffusion distances and the ability to control fluid flow precisely. In microfluidic 

systems, mixing can occur on timescales comparable to, or even shorter than, the 

reaction times. This fundamental shift allows chemical reactions to proceed under 

conditions where mass transfer limitations are minimized or eliminated, enabling a 

more accurate measurement of intrinsic reaction kinetics. 

Researchers and engineers can study reaction mechanisms in greater detail by 

achieving rapid and efficient mixing at the microscale, uncovering kinetic parameters 

without interference from macroscopic mixing constraints. This capability is 

particularly valuable in catalysis, pharmaceutical development, and synthetic 

chemistry, where precise kinetic analysis is crucial for optimizing reaction conditions 

and designing efficient processes. Furthermore, microfluidic platforms provide a 

controlled environment for high-throughput screening of reactions, enabling rapid 

experimentation and real-time monitoring of dynamic chemical processes. 
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At the microscale, mixing duration and reaction products may be regulated. Mixing 

time will primarily influence the reaction rate if the reaction yields a single product. 

However, if multiple products are formed, mixing time will dictate the composition 

and distribution of these products. The following example demonstrates how the type 

of mixing affects the reaction outcome: Consider a reaction between substrate S and 

reagent R. 

 S + R → P1 (1.1) 

P1 is the result of the intended reaction; however, it is also possible for P1 to react with 

R, which yields a product that is not desired, which is P2. 

 P1 + R → P2 (1.2) 

1.4   Degree of Homogeneity and Scale of Segregation 

The design must use metrics to evaluate the quality of mixes while assessing mixing. 

The intensity of segregation is an example of an integral measure that can be useful 

for practical applications. Variance-based measurements, on the other hand, are 

especially pertinent when considering reactive mixing. Despite this, variance alone 

cannot account for the scales on which segregation occurs; hence, an integral scale of 

segregation supplements variance. This scale is strongly associated with the idea of 

contact area, and it is possible to compute it effectively by utilizing a formula derived 

from geometric measure theory. The pace at which the total variation flow, which is a 

term from image processing intended to eliminate sharp contrasts, may vary 

segregation intensity, is another important feature used to define the integral scale of 

segregation. This approach provides insight into how rapidly variations in 

concentration are smoothed out within a system, offering a mathematical framework 

for analyzing the dynamics of mixing and segregation at different scales. 

A unique dependency on the Schmidt number is revealed by the integral scale of 

segregation when it is applied to secondary flow mixing in a T-shaped micromixer. 

This number is used to quantify the relative effect of momentum diffusion (viscosity) 

against mass diffusion. This relationship highlights the impact of fluid properties on 
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the effectiveness of mixing. It underscores how changes in diffusivity and viscosity 

influence the distribution of segregated regions within the microfluidic environment. 

In contrast, the shortest length scales of segregation exhibit a dependence analogous 

to Batchelor’s length scale, which describes the minor scales at which scalar mixing 

occurs in turbulent or laminar flows. This suggests that, at finer length scales, the 

interplay between diffusion and flow structures follows classical mixing theories. In 

comparison, at larger integral scales, new dependencies emerge due to the 

complexities introduced by secondary flow patterns. Understanding these 

relationships is essential for optimizing micromixer designs, as it allows for precise 

control over mixing efficiency and minimises segregation within microfluidic 

systems. 

Quantitative approaches are required to evaluate mixing efficiency to optimize mixing 

devices or processes successfully. Since mixing depends on relative motion inside the 

material, it is essential to have a solid grasp of the underlying kinematics. In particular, 

when it comes to the mixing of fluids, doing a thorough analysis of the velocity field 

can provide a wealth of helpful information concerning convective mixing. 

Techniques from the mathematical theory of dynamical systems are applied to 

measure the efficacy of mixing. These techniques include Poincaré sections, length 

and area-stretch rates, and Lyapunov exponents. These techniques are discussed in 

Ottino's monograph from 1989. The Lyapunov exponent is a measurement that 

determines how sensitive flow paths are to beginning circumstances. This sensitivity 

may be used to determine whether or not chaotic advection is present (Aref 1984). For 

the sake of this study, the velocity gradient ∭v, also known as the rate of strain 

tensor, is an essential parameter. 

 D = (∆v + ∆vT) (1.3) 

Since D represents the component of ∇𝑣𝑣 associated with relative motion, in viscous 

fluids, this motion results in the dissipation of energy (ε) at a specific rate 

 ε = 2υD:Δv (1.4) 
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where ν denotes the kinematical viscosity. 

Mixing reactants influences the rate of a chemical reaction, as the response requires a 

homogeneous mixture. Therefore, the rate at which the reaction occurs is directly 

related to the homogeneity of the mix and can serve as an indicator of the degree of 

homogeneity. This is especially true for the usual bimolecular reaction of this kind. 

 A + B
k
→P (1.5) 

 
kCACB =

1
|V|� kCACBdV

 

V

 (1.6) 

as an indicator of the mixing degree within the domain V, where |V| represents the 

spatial region volume V. kCACB is the reaction rate based on mass action kinetics, with 

CB and CA denoting the molar concentrations of B and A, respectively. 

Numerical tracer experiments are becoming increasingly crucial for analyzing mixing 

processes. However, a substantial challenge occurs when combining very viscous 

liquids or, more broadly, dealing with large tracer Schmidt numbers. In these 

situations, the accuracy of the species equation solution can be compromised by 

"numerical diffusion," which refers to the artificial smoothing of the tracer profile 

caused by discretization errors. This numerical diffusion can be much stronger than 

the actual physical diffusion. One solution to this problem is replacing the continuous 

tracer concentration with several concentrations derived from Lagrangian (inertia-

free) particles tracked during the simulation. The Brownian motion of diffusive 

particles must be taken into consideration while utilizing this technique; however, in 

order to do so, random displacements that are based on a Wiener process must be 

incorporated. More details on the tracking of Lagrangian particles in mixing 

estimations may be found in the most recent work that was produced by (Phelps and 

Tucker 2006). 

To accurately assess mixing quality, the degree of segregation must be considered 

alongside a quantifiable measure of the segregation scale. There are several 

approaches to defining this scale. One standard method is to derive it from a given 
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measure of segregation intensity. In batch mixing processes, where species mass is 

conserved due to impermeable boundaries, the rate described in (section 1.6) 

corresponds to the decay rate of variance. Defining a meaningful scale of segregation 

for a scalar quantity requires understanding the distribution's structure. In convection-

dominated mixing, small-scale structures often exhibit a lamellar pattern, which 

arises, for example, when the interface between regions of higher and lower 

concentration is twisted into secondary, vortex-like velocity fields. 

1.5   Types of Micromixers 

Micromixers are classified into two categories: active and passive. Active 

micromixers enhance mixing by utilizing moving parts or external energy sources, 

such as magnetic fields, electrical energy, pressure disturbances, or ultrasonic waves, 

to stir the fluids. In contrast, passive micromixers rely on geometrical modifications 

to induce chaotic advection or lamination, promoting fluid mixing without needing 

external energy. These passive designs are more straightforward to fabricate and 

integrate into lab-on-a-chip and micro-total analysis systems (μ-TAS). 

This section covers both active and passive micromixers, primarily focusing on the 

design and mechanisms of passive micromixers and their applications. While it is not 

feasible to provide an exhaustive review of all active and passive micromixers due to 

space constraints, an effort is made to introduce a broad range of micromixer designs 

and concepts. 

Typically, micromixers possess dimensions that fall within the sub-millimeter range. 

Channel widths and heights range from 100 to 500 μm, and lengths up to a few 

millimetres. The limits of the microfluidic platform for particular applications 

determine these dimensions. Microfluidic systems offer some benefits in comparison 

to large-scale mixing devices. These benefits include reduced sample consumption, 

lower production costs, and greater throughput. 

On the other hand, mixing at the microscale creates difficulties because laminar flow 

within the channels (with Reynolds numbers ranging from 0.01-1000) is brought 

about by the predominance of viscous forces. That being the case, the random 
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turbulent fluctuations necessary for the fluid's homogeneity are absent at this site. In 

its place, micromixing is principally dependent on advection and diffusion processes. 

In laminar flows, diffusional mixing is a sluggish process requiring considerable 

channel lengths to complete mixing. In this context, it is essential to remember that 

the dimensions of the microfluidic platform constrain the length of the channel. The 

diffusion process is determined by the molecular diffusion coefficient, which usually 

has a value of around 10e−10 m2s−1 for tiny proteins in aqueous solutions. 

Advection, on the other hand, improves mixing by straining and flexing the fluid 

surface. This is how it takes place. Consequently, the interfacial area is expanded, 

which results in an improvement in mass transfer, a reduction in the thickness of the 

striation, an acceleration of the mixing process, and an increase in the concentration 

gradient. All of these outcomes are advantageous. 

Researchers have created various micromixers, which may be roughly classified as 

active or passive, to optimize the mixing process on a microscale. Passive 

micromixers use channel geometry to create complex flow fields for efficient fluid 

mixing and require no external energy. On the other hand, active micromixers improve 

mixing performance by using moving components or external energy sources, such as 

magnetic, electrical, pressure-based, or ultrasonic. While active micromixers achieve 

higher mixing efficiency, passive micromixers are more straightforward to design, 

fabricate, and integrate into complex systems. 

The authors (Hardt & Schönfeld 2003) classified passive micromixers based on the 

underlying hydrodynamic principles, including flow separation, chaotic advection, 

hydrodynamic flow splitting and recombination focusing. Their review aimed to guide 

micromixer designers in selecting the optimal concept for specific applications. 

Similarly, (Nguyen and Wu 2005) reviewed micromixer developments based on 

various working principles, focusing on the design and mechanisms of passive 

micromixers. They also discussed operating conditions, fabrication techniques, and 

mixing characterization. 

The authors (Hessel, Löwe, and Schönfeld 2005) comprehensively reviewed active 

and passive mixing principles, covering typical mixing element designs, 
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characterization methods, and application areas, including gas mixing in 

microchannels. A comprehensive review of the relevant literature investigated the 

operating ranges of passive and active micromixers about Re and Pe numbers (Kumar 

et al. 2017). Passive micromixers demonstrated wider operational ranges, with 0.001 

≤ Re ≤ 10000 and 0.01 ≤ Pe ≤1,00,000. While micromixers built for diffusive mixing 

function effectively at low Reynolds and Peclet numbers, those that use chaotic 

advection are successful throughout a wider Reynolds number range. 

1.5.1    Passive Micromixers  

Passive micromixers utilize the geometry of their channels to create intricate flow 

fields, enabling efficient mixing without the need for moving parts. They can be 

manufactured in both planar and three-dimensional configurations. Basic designs, 

including T-shaped and Y-shaped microchannels, have been widely investigated 

through experimental and numerical studies to understand fundamental mixing 

dynamics (Kockmann et al. 2006a). 

Dreher et al. investigated T-shaped micromixers over a wide range of Reynolds 

numbers (0.01–1000), identifying different flow regimes based on Reynolds numbers, 

including stratified, vortex, and engulfment flows. The engulfment flow at high 

Reynolds numbers significantly improved mixing efficiency among these. 

(Kockmann et al. 2006b)  examined mixing behaviours in various mixer designs, such 

as asymmetric T-mixers, T-tree mixers, and tangential mixers. (Afzal and Kim 2014) 

studied T- T-micromixers with non-Newtonian fluids microchannels employing 

shear-dependent viscosity models, finding that at higher flow rates, mixing efficiency 

increased for Newtonian fluids like water but showed negligible improvement for 

non-Newtonian fluids like blood. 

(Ansari et al. 2012) introduced a vortex micro-T-mixer featuring tangentially aligned 

inlet channels, creating a vortex at the inlet to stretch and fold the fluid interface, 

thereby improving mixing efficiency. 

Passive micromixers are typically classified into two main categories: 
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i. Multi-lamination and focusing: This approach splits a fluid stream into 

multiple sub-streams to increase surface contact for diffusion-based mixing. 

In some designs, designed interdigital micromixers featuring alternating feed 

channels to generate periodic liquid lamellae, significantly decreasing mixing 

time to mere milliseconds (Hessel et al. 2003). 

ii. Chaotic advection: Involves stretching, folding, and breaking flow patterns to 

increase fluid mixing. This is achieved through channel geometries with 

surface patterning, serpentine channels, obstacles, and split-and-recombine 

paths. (Stroock et al. 2002) introduced staggered herringbone grooves to 

generate transverse flows, significantly enhancing mixing. Numerical studies 

by (Yang, Huang, and Lin 2005) and experimental work by (Wang, Yang, and 

Lyu 2007) highlighted the importance of geometric parameters and 

overlapping crisscross inlet designs for superior performance. 

1.5.1.1   Serpentine channels and dean vortices 

Curved channels with rectangular or circular cross sections generate Dean vortices 

through centrifugal forces, improving mixing by stretching and folding fluid 

interfaces. (Liu et al. 2000b) 3D serpentine channels with C-shaped units 

outperformed planar serpentine channels, achieving near-complete mixing at 

Reynolds numbers as low as 70. 

1.5.1.2   Obstructions in flow channels 

Adding obstacles, such as cylindrical or diamond-shaped structures, to channels 

enhances mixing by breaking and recombining flows. (Bhagat, Peterson, and 

Papautsky 2007) demonstrated that spatial arrangements of flow breakup obstructions 

in microchannels resulted in excellent mixing performance at low Reynolds numbers 

(Re < 1). (Alam, Afzal, and Kim 2014) further highlighted the superior mixing 

efficiency of curved channels with cylindrical obstructions compared to simple curved 

channels or T-channels. 
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Additional designs include planar micromixers with sinusoidal or zigzag patterns and 

complex 3D micromixers fabricated using advanced techniques like 

stereolithography. These studies underline the versatility of passive micromixers in 

achieving efficient mixing across a wide range of flow conditions. 

1.5.2    Active Micromixers 

Active micromixers enhance mixing efficiency by incorporating external energy 

sources such as pressure fluctuations, acoustic waves, mechanical vibrations, rotating 

impellers, and electric or magnetic fields. These energy inputs generate controlled 

fluid disturbances, promoting faster and more effective mixing than passive methods. 

Active micromixers can be classified into various categories depending on the specific 

external force utilised, each optimized for different applications and fluid dynamics: 

i. Pulsed Flow: Comprehensive research on pulsed flow in T-mixers with 

different configurations and operating conditions was carried out using CFD 

and experiments (Glasgow & Aubry, 2003a, 2003b). They applied a low-

frequency sinusoidal flow superimposed on steady flow, observing significant 

improvements in mixing compared to steady-state conditions. For instance, in 

one study (Glasgow, Lieber, and Aubry 2004), ribbed and 3D twisted 

micromixers showed enhanced mixing under pulsed flow. More recently, 

(Afzal and Kim 2015) demonstrated that a sinusoidal wall channel coupled 

with pulsatile flow achieved a mixing index of 92% between the two 

sinusoidal input periods, rapidly increasing the interfacial area and producing 

discrete fluid puffs. 

ii. Electrokinetic Flow: Electrokinetic micromixers use fluctuating electric fields 

to enhance mixing as an alternative to pressure-driven flows (Jacobson, 

McKnight, and Ramsey 1999; El Moctar, Aubry, and Batton 2003; Oddy, 

Santiago, and Mikkelsen 2001). The interaction of electric fields with ionic 

conductivity creates electric body forces that induce flow instabilities, 

improving mixing efficiency. Oddy et al. developed electrokinetic 

micromixers for bioanalytical applications, leveraging electroosmotic flow 

instabilities at low Reynolds numbers to mix fluid streams effectively.  
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iii. Magnetohydrodynamic Flow: Magnetohydrodynamic micromixers use 

magnetic fields and suspended magnetic particles in the fluid to improve mass 

transport (Bau, Zhong, and Yi 2001; Fu et al. 2010; Hejazian and Nguyen 

2017; Tsai et al. 2009). Tsai et al. and Fu et al. enhanced the efficiency of Y-

shaped micromixers by incorporating ferrofluids and permanent magnets to 

generate magnetoconvective flow. This approach leverages the interaction 

between the magnetic field and the ferrofluid, creating controlled fluid motion 

that accelerates mixing. Optimizing magnet placement and fluid properties 

significantly improves mixing performance, making it suitable for 

applications requiring rapid and homogeneous mixing at microscale levels. 

Hejazian et al. employed an irregular magnetic field, a hydrodynamic flow and 

a diluted ferrofluid-focusing configuration in a microfluidic system to enhance 

mass transport. The system achieved improved mixing by generating 

secondary magnetoconvective flows. 

iv. Acoustic-Induced Flow: (Liu et al. 2002) introduced a bubble-induced 

acoustic microstreaming technique. Their micromixer incorporated a 

piezoelectric disk attached to a reaction chamber, trapping air bubbles of 

specific sizes. Vibrations generated circulatory flows via sound fields acting 

on the bubbles, dramatically reducing mixing time from hours (diffusion-

based) to seconds for a 100 μL chamber. 

v. Coriolis Force-Induced Flow: (Haeberle et al. 2005) proposed a centrifugal 

mixing concept using Coriolis forces generated by a rotating system. This 

method rapidly mixed with high throughput. 

Comprehensive reviews of active micromixer designs and applications are available 

in the works of (Nguyen and Wu 2005), (Hessel et al. 2005), and (Kumar, 

Paraschivoiu, and Nigam 2011). These reviews provide detailed insights into the 

mechanisms and effectiveness of various active micromixer designs. 

1.6   Mixing Mechanism 

Micromixers can operate across a broad range of Reynolds numbers, with their mixing 

mechanism and performance heavily influenced by the Reynolds number regime. 
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When the Reynold number is low (Re<1), the mixing process is mainly caused by 

diffusion, which is contingent upon the duration of residence of the fluids co-

occurring within the micromixer. With Reynold number increased, the amount of time 

the fluids spent in the mixer decreased, resulting in a lower mixing performance. 

Transverse flows begin to build up within the channel, which causes the mixing index 

to significantly increase with successive increases in the Reynolds number when the 

mixing index is at a minimum. This occurs as the Reynolds number continues to 

climb. This rapid improvement in mixing efficiency is due to the stretching and 

folding of fluid layers, which expand the fluid interface and promote chaotic 

advection. 

In the microchannel at Re=10, the region where mass transfer occurs mostly by 

diffusion at the intersection of fluids of differing concentrations, concentration 

contours show discrete strata that are closely aligned with one another. At Re=55, on 

the other hand, the fluid layers become misaligned as a result of the stretching and 

folding of the interface, which brings about an even more significant improvement in 

mixing efficiency. 

Mixing at T-junctions has been investigated concerning aspects like the impact of the 

mixer's aspect ratio, flow regimes, fluid speed, and strategies to improve mixing 

efficiency. Sultan et al. (Ashar Sultan et al. 2012) observed four distinct flow patterns 

in the T-junction micromixer:  

i. Segregated flow regime: At low Reynolds numbers, two fluid streams flow in 

parallel from the source to the exit without significant mixing, maintaining a 

stable flow regime. 

ii. Vortex flow regime: Each jet contains vortices, and their rotation axis is 

parallel to the axis of the micromixer channel. 

iii. Engulfment flow regime: Under continuous flow conditions, the fluid patterns 

deviate from parallel to the channel axis and rotate across it, transporting the 

fluid from one end to another. 
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iv. Chaotic flow regime: It can be recognised by the evolution of a vortex street 

that travels through a micromixer, allowing the two jets to mix quickly. In the 

chaotic flow regime, a highly dynamic state of fluid motion, vortices form 

immediately after jet impingement but dissipate just as quickly. It is estimated 

that the diameter of these vortices is roughly equivalent to half the breadth of 

the mixing channel. The vortex channel, which begins at the point where the 

jets collide and extends toward the outlet, allows the fluid that enters from the 

two intake jets to become contained inside its confines. 

Improving the design of micromixers can enhance the efficiency of these devices and 

encourage more research on microdevice production techniques. Due to the swift 

advancement of manufacturing techniques, constructing prototypes of optimised 

micromixers in the following years is becoming increasingly viable and cost-effective. 

By taking advantage of the opportunity to build inexpensive prototypes, testing and 

confirming the effectiveness of the optimised designs is necessary. 

Dataset creation presents the first hurdle for the optimization process. The expenditure 

on experimentation will increase with only experimental methods, as many 

geometries have to be constructed and tested in different configurations. Aside from 

the processing expense, the computational calculation technique based on CFD takes 

much time for a definitive number of simulations. Optimization eliminates many 

experimental and simulation simulations (Dehghani et al. 2020; Nimafar, Viktorov, 

and Martinelli 2012). ML is an innovative technique; it induces data and enables 

prognosis to develop faster than the traditional CFD method. Although many studies 

integrate ML with CFD, the literature review indicated that ML is rarely used in 

microfluidics. For micromixer performance enhancements, (Lv, Chen, Wang et al. 

2022) optimization technique for a micromixer model for fractal baffle design was 

proposed using grey relational analysis. To optimize a cantor fractal micromixer, you 

can use a multi-objective evolutionary algorithm (MOEA) to search for solutions that 

balance the conflicting objectives of mixing efficiency (η) and pressure drops (ΔP) 

(Lv, Chen, Li, et al. 2022). The MOEA can optimize the geometric parameters of the 



20 

 

cantor fractal baffles, such as their size, shape, and spacing, to find solutions that 

maximize mixing efficiency while minimizing pressure drop. 

Nanofluids are engineered colloidal suspensions consisting of a base fluid (such as 

water, ethylene glycol, or oil) and nanoparticles (typically metal, metal oxide, or 

carbon-based materials) with sizes ranging from 1 to 100 nm. The addition of 

nanoparticles significantly alters the base fluid's thermal, rheological, and flow 

properties, making them highly beneficial for heat transfer and fluid flow applications. 

When introduced into micromixers, nanofluids offer several advantages that can 

improve mixing efficiency: 

i. Brownian Motion Effect - The random motion of nanoparticles at the 

nanoscale enhances mixing by creating micro vortices and disrupting the 

laminar flow. 

ii. Altered Fluid Viscosity - Nanoparticles modify the fluid's viscosity, impacting 

flow characteristics and mixing efficiency. 

iii. Surface Interactions – Nanoparticles can interact with channel walls, 

promoting chaotic advection and improving fluid dispersion. 

iv. Tunable Fluidic Devices – Development of smart fluids with programmable 

mixing properties using external magnetic fields. 

v. Chemical and Pharmaceutical Processing – Controlled mixing of reagents for 

microreactors and nanoparticle synthesis. 

vi. Biomedical and Lab-on-Chip Devices – Precise manipulation of biofluids for 

diagnostics, drug delivery, and cell sorting. 

1.7   Nanofluids 

Nanofluids in micromixers are an emerging research area due to their enhanced heat 

transfer and mixing capabilities. Nanofluids—suspensions of nanoparticles (such as 

Al₂O₃, CuO, or TiO₂) in a base fluid (like water or ethylene glycol)—exhibit improved 
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thermal conductivity, viscosity, and surface properties. The concept of nanofluids was 

first introduced and developed in 1995 by Choi and Eastman (Eastman et al. 1996) at 

the Argonne National Laboratory, USA. The literature shows nanoparticles exhibit 

superior mechanical, optical, electrical, magnetic, and thermal properties, including a 

high surface area-to-volume ratio, enhanced thermal conductivity, and dimension-

dependent physical characteristics. 

A key advantage of using nanoparticles over microparticles is their ability to remain 

well-dispersed within the fluid, preventing issues such as channel blockage and 

erosion of channel walls. In contrast, microparticles tend to settle rapidly, leading to 

problems like abrasion, clogging, and increased pressure drops. However, 

nanoparticles tend to aggregate due to their high surface area and surface activity. To 

mitigate this, nanofluids often add surfactants to enhance stability and dispersion. 

Hybrid nanofluids constitute an advanced category formed by dispersing two or more 

varieties of nanoparticles inside a single base fluid to attain enhanced thermophysical, 

optical, rheological, and morphological characteristics. They are anticipated to 

supplant traditional single-nanoparticle nanofluids owing to their broader absorption 

spectrum, diminished extinction coefficient, enhanced thermal conductivity, 

decreased pressure drop, and lower frictional losses and pumping power than mono 

nanofluids. Figure 1.1 shows the fundamental classification of nanoparticles based of 

the working media  

Key feature of Nanofluids in Micromixers 

i. Nanoparticles induce secondary flows and enhance chaotic advection, 

improving mixing performance in microchannels. 

ii. Brownian motion and thermophoresis effects contribute to faster and more 

uniform mixing. 

iii. Nanoparticles alter the rheological properties of the base fluid, affecting 

pressure drop and flow characteristics in micromixers. 

The main challenges for nanofluids are  

i. Stability and aggregation of nanoparticles over time. 
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ii. Potential clogging in microchannels. 

iii. Increased viscosity affecting pumping power. 

 

Figure 1.1 Classification of nanofluid (Bumataria, Chavda, and Panchal 2019) 

1.8   Parameters Related to Micromixer 

The following dimensionless parameters govern the flow dynamics in micromixers: 

i. Reynolds Number =  UL
ν

 

ii. Peclet number =  UL
D

 

iii. Schmidt number =  ν
D

 

A micromixer's characteristic length and velocity scales are denoted by the letters L 

and U. In contrast, the letters v and D represent the kinematic viscosity and the mass 

diffusivity coefficient, respectively. 

The Reynolds number (Re) is a dimensionless quantity used in fluid mechanics to 

predict fluid flow regime in a pipe or over a surface. It helps determine whether the 

flow is laminar, turbulent, or transitional. The Peclet number (Pe) evaluates the 

predominance of convective mass transfer relative to diffusion, with convection 
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becoming prominent at elevated Peclet values. The Schmidt number (Sc) describes 

the ratio of momentum diffusivity (kinematic viscosity) to mass diffusivity. It is used 

in fluid dynamics and mass transfer problems. 

1.9   Outline of the Thesis 

The thesis begins with Chapter 1: Introduction, which provides an overview of fluid 

mixing in microfluidics, emphasizing its importance in various applications. 

Chapter 2: Literature Review explores the literature available on principles of 

microfluidic mixing, the characteristics of Newtonian and non-Newtonian fluids, and 

different types of micromixers, including passive, active, and hybrid designs. It 

reviews the use of Computational Fluid Dynamics (CFD) in microfluidic analysis and 

identifies research gaps to formulate the objectives for the present study. 

Chapter 3: Methodology presents the governing equations for fluid flow, including 

the Navier-Stokes, continuity, and momentum equations used in the present study. 

Additionally, it explains CFD methodologies and key performance metrics like the 

mixing index, pressure drop, and residence time distribution, and also details the 

computational approach, including the design of the 3D micromixer, numerical 

simulation setup, and mesh sensitivity analysis. It describes the simulation cases for 

both Newtonian and non-Newtonian fluids, outlining boundary conditions for the 

study. 

Chapter 4: Results and Discussion analyzes the flow behaviour and mixing 

performance across different micromixer designs, and validates the strategies against 

bench data. The effects of flow rate, Reynolds number, and fluid rheology on mixing 
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efficiency have also been discussed. A comparative study of various micromixer 

configurations is presented, with insights into performance optimization. 

Finally, Chapter 5: Conclusions and Future Work summarizes the key findings and 

contributions of the study. It discusses the limitations and practical implications of the 

research while providing recommendations for future investigations.  

The thesis concludes with references and appendices containing supplementary data 

and computational details. 
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Chapter 2      LITERATURE REVIEW 

Microfluidic devices may be categorized into two groups according on their stimulus: 

passive and active. Passive microfluidic systems operate without external actuators to 

manipulate fluids, direct particles inside the fluid, or facilitate separation. Active 

microfluidic systems utilize external energy sources for mixing and separation. The 

researchers use some equations to quantify the mixing quality. Table 2.1 provides an 

overview of these relationships, where 𝐶𝐶𝐶𝐶, 𝐶𝐶𝑜𝑜, 𝐶𝐶 ̅ and 𝐶𝐶∞ signify the concentration at a 

specific location, the concentration at a point within the non-mixing cross-section, the 

mean concentration, the mean concentration in the non-mixing cross-section, and the 

overall mixing concentration, respectively. In contrast, N and 𝛿𝛿 represent the quantity 

of nodes in the section and its breadth, respectively. Equation (2.1) (Tekin et al. 

2011)calculates the mixing index using pixel intensities over a cross-section of 

channels. MI = 0.5 at the intake and zero after the fluids are entirely mixed. Equation 

(2.2) (Chen, Chen, and Liu 2020) better defines (Phan et al. 2015) the mixing index. 

The nondimensional mixing parameter in the following formula is calculated by 

assessing the ratio of the standard deviation to the mean intensity. This ratio is referred 

to by some researchers as the Mixing Index (MI) (Hashmi and Xu, 2014). 0 and 1 

denote unmixed and thoroughly mixed states, respectively. When the mixing index is 

not dimensionalized, equation (2.2) applies. This is performed by linking the standard 

deviation and intensity in a non-mixing cross-section. The distinction between 

equation (2.3) (Phan et al. 2015) and equation (2.4) (Du et al. 2013)lies in the latter's 

foundation on the cumulative effect of point concentration and pixel intensities. Some 

of the mixing index empirical formulas used by researchers are as follows. 

2.1   Passive Micromixers 

Improving the molecular diffusion and chaotic advection of fluids in passive (static) 

micromixers improves the mixing grade of these devices. The chaotic advection and 

molecular diffusion  of fluids can be enhanced by expanding the contact area between 

the fluids and shortening the mixing path (Nguyen and Wu 2005). Two-dimensional 

and three-dimensional passive micromixers are separated initially based on the 

micromixers' structural dimensions. It should be noted that manufacturing passive 
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micromixers in two dimensions using lithography is less complicated than producing 

micromixers in three dimensions. A lot of different architectures have been suggested 

for passive micromixers. Numerical and experimental investigations consider multi-

lamination, parallel lamination, curved-channel, convergence-divergence-based, 

obstacle (or baffle) based and unsymmetrical features. 

𝜂𝜂 = ��
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(2.2) 

 

 

(2.3) 

 

 

(2.4) 

𝜂𝜂 is the mixing performance, and C is the concentration gradient defined at the inlet 

and outlet. 

2.1.1    Lamination-based patterns 

The micromixers that use parallel lamination are designed to segregate the incoming 

flows into two distinct sub-streams (as seen in T-type and Y-type mixers) or further 

divided into multiple sub-streams (in multi-lamination configurations) (Nguyen and 

Wu 2005). Various micromixer designs, including T-type and Y-type configurations, 

are widely recognized for their structure, which involves introducing two separate 
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streams into distinct channels. These streams then converge into a single straight 

channel. In such micromixers, mixing occurs primarily through molecular diffusion. 

As a result, achieving high mixing efficiency at low Reynolds numbers typically 

necessitates using two sequential microchannels. (Hessel et al. 2005) demonstrated 

the mixing length 𝐿𝐿𝑚𝑚 = 𝑃𝑃𝑒𝑒 × 𝑤𝑤 for laminar flow, where w represents the width 

channel. Researchers generate secondary flows, swirling motions, and vortices, 

typically achieved under high Reynolds number conditions to enable rapid mixing in 

such micromixers. Such as, (Wong et al. 2004) employed a diamond-shaped step 

subsequent to the primary straight channel of a T-type micromixer constructed from 

silicone and glass to disrupt fluid flow, functioning within a Reynolds number from 

400 to 500 (Figure 2.1a).  (Gobby et al. 2001) examined the impact of inlet orientation 

in microchannel Y-mixers on mixing efficiency, revealing that the shortest mixing 

length is achieved by incorporating a throttle section at the start of the straight 

channels (Figure 2.1b). 

 

Figure 2.1 (a) Illustrations of T-type micromixer constructed from glass/silicon 

(Wong et al. 2004) and (b) methanol mass fraction distribution profiles in a venturi-

style Y-mixer designed for the blending of oxygen and methanol (Gobby et al. 2001). 

In contrast to the Y-type configuration, multi-lamination designs facilitate the mixing 

process by introducing fluids into the mixer through varied flow patterns. They 

include multiple flows (Bessoth et al. 1999), hydrodynamic focusing (Hessel et al. 
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2005; Löb et al. 2004), interdigitated mixing (Hardt & Schönfeld 2003; Hessel et al. 

2003)  and cyclone arrangements. Most of the multilaminate patterns have three 

dimensions (Branebjerg et al. 1996; Buchegger et al. 2011; Gray et al. 1999; Lim et 

al. 2011; Melin et al. 2004, 2004; Munson & Yager 2004; SadAbadi et al. 2013; 

Schwesinger et al. 1996; Walker 2004), the streams are combined both horizontally 

and vertically in successive stages. (Hong et al. 2004) a 2-D adapted Tesla design 

(Figure 2.2a) was proposed, constructed from olefin copolymer (cyclic) through 

thermoplastic. The Coanda effect improved the mixing efficiency of this micromixer 

through the chaotic advection. (Hossain et al. 2010) modified Tesla design was 

optimized by analyzing the relationship between the diffuser gap and channel width 

and the ratio of the curved gap to the channel width, focusing on Reynolds numbers 

in the 0.05 < Re < 40 range. The authors (Yang et al. 2015) introduced a 3D Tesla 

configuration designed for cancer cell analysis applications (Figure 2.2b). 

Additionally, other three-dimensional designs, such as C-shaped structures, have been 

suggested for use in multi-lamination micromixers (Liu et al. 2000), H-C-shape 

(Viktorov et al. 2016), H-shape (Nimafar et al. 2012), L-shape (Vijayendran et al. 

2003), etc. Table 2.1 summarises some of the lamination-based analyses of 

micromixers. 

 

Figure 2.2 (a) Schematic of two-dimensional modified Tesla structure (Hong et al. 

2004) and (b) three-dimensional Tesla structure (Yang et al. 2015). 
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Table 2.1 Lamination-based micromixers. 

Characteristic/ 

mixing species 

Re Pe Mixing 

Index 

Material/ 

Method 

Reference 

Optimized 

zigzag 

microchannel 

0.1-100 - 100% Numerical 

Simulation 

(Chen and Li 

2017) 

T-shape: simple 

and 

Serpentine/ 

distilled water 

and Rhodamine 

B 

1-80 - 91% PDMS (Ansari et al. 

2018) 

Hybrid 0.001-

45 

- 100% PDMS (Bazaz et al. 

2018) 

T-shape / blue 

dye and a 

colourless 

liquid 

500 7x105 83% Silicon/Pyrex 

glass 

(Wong et al. 

2004) 

Y-shape / 

oxygen and 

methanol 

0.1 150 - - (Gobby et al. 

2001) 

Interdigital 0.07 60 95% Glass (Bessoth et 

al. 1999) 

Interdigital / 

water blue and 

pure water 

2-341 6.41x103

-

1.07x106 

- Glass (Hessel et al. 

2003) 

Star/dye liquid 108 - - Numerical 

Simulation 

(Hardt and 

Schönfeld 

2003) 

(Walker, 2004) 

Split-join / M 

chloric acid + 

18 - - Silicon (Walker 

2004) 
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methyl orange 

dissolved in 

water - oil + air 

- water + air 

Split-join / 

fluorescein 

dissolved into 

two different 

buffers 

0.05 50 97% Myler (Munson and 

Yager 2004) 

Multi-stream / 

dyed 

water 

0.1 14 - Silicon/ PDMS (Melin et al. 

2004) 

Split-join / 

phenol- red and 

an acid 

0.03-

0.66 

15-330 - Silicon/glass (Branebjerg 

et al. 1996) 

Four-layer / 

D2O and 

H2O 

- - 90% Silicon (Buchegger 

et al. 2011) 

Three-layer / 

red 

and green-

coloured water 

< 5.5 - 85% Numerical 

simulation 

(SadAbadi et 

al. 2013) 

Crossing 

manifold / 

DI water and 

ethanol 

- - 90% Numerical 

simulation 

(Lim et al. 

2011) 

Modified 2D 

Tesla 

/ dyed DI water 

n/r - - Cyclic Olefin 

Copolymer 

(COC) 

(Hong et al. 

2004) 

Modified 2D 

Tesla / 

dyed DI water 

0.05-40 - 70.2% Numerical 

simulation 

(Hossain et 

al. 2010) 
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3D Tesla / DI 

water 

and DI water 

a solution 

containing 

fluorescent dye 

0.1-100 - 94% PDMS (Yang et al. 

2015) 

H-C-shape / 

Blue- and 

yellow-coloured 

food-grade 

water 

1-100 - 93% Polycarbonate (Viktorov et 

al. 2016) 

H-shape / 

coloured 

water solutions 

0.08-

4.16 

- 98% Plexiglas (Nimafar et 

al. 2012) 

Serpentine / 

dyed 

water and pure 

water 

1-120 1×104- 

1.2×106 

n/r Numerical 

simulation 

(Wasim Raza 

et al. 2018) 

Serpentine / 

blue ink 

and yellow ink 

0.1-100 - > 95% PMMA (Lee et al. 

2006) 

T-shape / 

deionized water 

100-

500 

- ~ 65% PMMA (Mariotti et 

al. 2019) 

2.1.2    Obstacle (baffle-based patterns) 

Introducing barriers in the microchannel induces chaotic advection and vortices, 

decreasing the mixing length, particularly in basic configurations like T- and Y-

mixers. Numerous computational and experimental studies have employed various 

obstacle layouts to assess the mixing process. There are two categories of barriers: 

wall barriers and microchannel barriers. The fact that these designs are intimately 

connected to other configurations, such as spiral patterns and convergence-divergence 

patterns, should be considered. 
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Various obstacle arrays layout were studied by (Wang et al. 2002) Y-type micromixer 

(Figure 2.3a). Thus, obstacles can generate turbulence and disturb the liquid flows for 

high Reynolds numbers. It was further demonstrated that the most effective 

configuration aligns with the asymmetric arrangement. (Alam et al. 2014) determine 

the effectiveness of mixing water and ethanol, cylindrical obstacles were employed in 

a curved-channel micromixer that was working at Reynolds numbers ranging from 

0.1 to 60. A comparison of different obstruction shapes revealed that micromixers 

with hexagonal and circular cross-sections demonstrate similar mixing performance. 

(Lin et al. 2003) additionally, cylindrical obstacles were incorporated into a 

microchannel to enhance mixing efficiency, particularly for operation at high 

Reynolds numbers, specifically within the 200 < Re < 2000 range. (Bazaz et al. 2020) 

refined the configuration of four rectangular obstacles within a T-type micromixer 

(Figure 2.3b) for Reynolds numbers ranging from 0.1 to 60. Using the Taguchi 

method, they evaluated the effect of obstacle geometry and determined that obstacle 

height had a more significant impact on performance than width. (Bhagat et al. 2007) 

examined the influence of the shape and height of obstacles—specifically triangular, 

circular and smooth diamonds—on the mixing approach. Their findings indicated that 

increasing the obstruction heights enhances the mixing grade. Among the 

configurations studied, circular obstacles were shown to achieve a higher mixing 

index than the others. The obstacle designs explored included check mark, chevron, 

straight and arc geometries (Sadegh Cheri et al. 2013), leakage side-channels (Lee et 

al. 2006), triangle (Wang et al. 2014) and staggered grooves (Afzal & Kim 2014; Du 

et al. 2010; Hama et al. 2018; Whulanza et al. 2018; Yoshimura et al. 2019) have been 

introduced by researchers to achieve shorter mixing lengths and higher mixing 

efficiencies across a wide range of Re. To determine the efficiency of mixing, 

Sadeghcheri and colleagues deployed round-corner rectangular and hexagonal 

chambers. These chambers were equipped with four obstacles (Figure 2.3c) through 

numerical and experimental means. Their findings led them to conclude that the RCR 

chamber with straight obstacles had a more excellent mixing performance than other 

geometries they investigated. Various staggered grooves have also been investigated 

to achieve a more significant mixing of fluids in shorter microchannels. In a recent 

study, Hama and colleagues conducted a computational and experimental 

investigation of reverse-staggered herringbone micromixers (shown in Figure 2.3d) 
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for values of Re ranging from 1 to 100. Their findings demonstrated that the mixing 

efficiency remains independent of the Re and the diffusion coefficient within this 

range of Re. This suggests that, under these conditions, other factors—such as flow 

patterns, channel geometry, or secondary flow effects—play a more dominant role in 

determining mixing performance. The results indicate that, beyond a certain threshold, 

increasing the Reynolds number or altering the diffusion coefficient does not 

significantly enhance or hinder mixing, implying the presence of a regime where 

mixing dynamics are governed primarily by convective mechanisms rather than 

molecular diffusion or inertial effects. 

Certain micromixers, including lamination-based, obstacle-based, and divergence-

convergence-based designs, operate on the principles of split-and-recombine (SAR) 

or split-joint mechanisms (Bahei Islami & Ahmadi 2019; He et al. 2019). Both 

experimental and numerical analyses demonstrated that a D-shaped obstacle induced 

the formation of extended Dean flows and vortices, achieving a peak mixing 

efficiency of 95% at a Reynolds number of 80. (Islami and Ahmadi 2019) integrated 

passive mixing techniques (utilizing rectangular obstacles) with active mixing 

methods (employing oscillatory inlet velocity) to attain a maximum mixing efficiency 

of 98% at a Reynolds number of 0.156. 

Obstacle-based micromixers are those with obstacles embedded in the walls (Hussain 

et al. 2019; Jain & Nandakumar 2010; Karthikeyan et al. 2018; Milotin & Lelea 2016; 

Tsai & Wu 2011). Micromixers with triangular and rectangular obstacles on the walls 

were utilized by Karthikeyan et al. to study and optimize the mixing quality of fluids 

with extremely low diffusivity (~ 10-12 m2/s). This optimization was accomplished via 

the application of the ANOVA methodology.  

They discovered that the mixing efficiency might reach one hundred per cent in the 

case of a quarter cross-section when Re equalled ninety-one. The Koch fractal 

snowflake pattern has recently been incorporated into micromixers with obstacles to 

enhance their mixing performance (S. Zhang et al. 2019). The authors (Chen et al. 

2019) conducted research on a Koch fractal mixer that included a pattern of rounding 

corners. According to their research findings, the micromixer with rounded corners 

has a smaller pressure drop than the one with a secondary fractal design. This suggests 
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that smoother, curved channel geometries reduce flow resistance and energy 

dissipation, leading to more efficient fluid transport. In contrast, the secondary fractal 

structure introduces additional complexity, likely increasing flow disturbances and 

resistance, contributing to a higher pressure drop. These findings are significant for 

optimizing micromixer designs, as minimizing pressure loss can improve overall 

efficiency, reduce pumping power requirements, and enhance mixing performance 

without unnecessarily increasing operational costs. Table 2.2 summarises some of the 

obstacle-based micromixer analyses. 

 

Figure 2.3 Diagram of obstacle-based micromixers with obstacles positioned within 

the channel: (a) cylindrical array (Wang et al. 2002), (b) cylindrical obstacles in a 

curved-channel mixer (Alam et al. 2014), (c) Round-corner rectangular (RCR) and 

hexagonal (H) chambers featuring chevron (CH), check mark (CM), arc (A), and 

straight (S) obstructions (Sadegh Cheri et al. 2013) and (d) reverse-staggered 

herringbone (Hama et al. 2018). 

Table 2.2 Obstacle based micromixers 

Characteristic Re Pe Mixing 

Index 

Materials References 

Circular obstacle 

array in channel 

0.13-

1333 

100-

106 

55% Computation

al 

(Wang et al. 

2002) 

Circular and 

hexagonal 

0.1-60 - 88% Numerical 

simulation 

(Alam et al. 

2014) 

 

(a) (b) 

  
(c) (d) 
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obstacles 

in curved 

channel 

Cylindrical 

obstacle in 

channel 

0.2 200 - Glass/Silicon (Lin et al. 

2003) 

Rectangular 

obstacle 

in channel 

0.1-60 - 74.5% Numerical 

simulation 

(Bazaz et al. 

2020) 

Circular, 

triangular, 

diamond 

(smooth) and 

diamond 

(stepped) 

obstacles in 

channel 

0.02-10 - 30% PDMS (Bhagat et al. 

2007) 

Chevron, check 

mark, arc, and 

straight obstacles 

in 

channel 

0.1-40 - 99% PDMS (Sadegh Cheri 

et al. 2013) 

Reverse-

staggered 

herringbone in-

channel 

0.01-

100 

34.4-

3440

0 

- PDMS (Hama et al. 

2018) 

Triangular and 

rectangular 

obstacles 

on the wall 

- - 68% Numerical 

simulation 

(Karthikeyan 

et al. 2018) 

Radial obstacles 

on 

0.01-

100 

- 93% PDMS (Tsai and Wu 

2011) 
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curved wall 

Half and quarter 

cross-section of 

circular 

obstacles on 

the wall 

0.2-91 - 100% Numerical 

simulation 

(Milotin and 

Lelea 2016) 

Koch fractal 

baffles 

on the wall 

0.05-

100 

- 95% Numerical 

simulation 

(S. Zhang et 

al. 2019) 

Rounded Koch 

fractal baffles on 

the wall 

0.1-100 - 90% Numerical 

simulation 

(Chen et al. 

2019) 

2.1.3    Convergence-divergence patterns 

These designs produce Expansion vortices if there is a rapid rise in the cross-sectional 

area. Since these vortices originate horizontally, the interfacial area between the fluids 

is increased, which results in improved mixing (Mondal et al. 2019). Consequently, 

the mixing grade is improved. It has been indicated before that convergence-

divergence designs are commonly integrated with various configurations, such as 

obstacle-based, split-and-recombine (SAR), and curved-channel pattern designs 

(Afzal and Kim 2015, 2012; Arshad Afzal & Kwang-Yong Kim 2014; Chen & Li 

2016; Chung & Shih 2007; He et al. 2019; Tran-Minh et al. 2014). Khosravi Parsa 

and Hormozi investigated the formation of Dean vortices and expansion vortices in 

micromixers characterized by convergent-divergent structures, specifically within the 

range of 0.2 to 75. Adjusting the phase shift among the sidewalls resulted in a 

convergent-divergent cross-sectional design, effectively enhancing mixing 

performance. The phase changes between π/2 and 3π/4 brought about the highest 

possible mixing efficiency, which was determined to be 90%. Figure 2.4a evaluates 

the mixing efficacy of micromixers with two different topologies—raccoon and 

serpentine—in research performed by (Mondal et al. 2019). While the raccoon 

micromixer demonstrated superior mixing performance to the serpentine micromixer 

for specific Reynolds numbers and wavelengths, the results revealed that the mixing 

index improved with increasing wavelength for both designs. In a separate 
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investigation, Afzal and Kim explored various combinations of split-and-recombine 

(SAR) and convergence-divergence configurations for Reynolds numbers ranging 

from 10 to 70. Their findings indicated that the mixing index was markedly affected 

by the proportion of the throat length to the circumference of the circular wall in the 

micromixer, as seen in Figure 2.4b. Using ellipse-shaped micropillars, Tran-Minh and 

colleagues developed a micromixer that achieved a 90% efficiency rate for laminar 

blood mixing (Figure 2.4c). This micromixer was intended to induce the fluid to 

converge and diverge throughout the device. To enhance the mixing performance, 

Chen and Li utilized a topological micromixer (Figure 2.4d). This was accomplished 

by increasing the amount of chaotic advection. For the ranges of 0.1 < Re < 10, the 

mixing efficiency was 95% and 85%. Therefore, the mixing efficiency was 95%. 

Table 2.3 shows convergence-divergence-based micromxers analyses. 

 

 

Figure 2.4 Illustration of convergence-divergence based micromixers: (a) serpentine 

(Zhang et al. 2019), (b) SAR and convergence-divergence (Arshad Afzal and Kwang-

Yong Kim 2014), (c) ellipse-like micropillars (Tran-Minh et al. 2014), and (d) 

unbalanced SAR (Raza and Kim 2020). 

Table 2.3 Convergence-divergence-based micromixers. 

Characteristics Re Mixing 

Index 

Material References 

Sinusoidal side 

walls 

0.2-75 90% Plexiglas (Parsa and 

Hormozi 2014) 

Raccoon and 0.1-100 ~ 100% Numerical (Mondal et al. 

 

(a) (b) 

  
(c) (d) 
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serpentine simulation 2019) 

SAR and 

convergence- 

divergence 

10-70 95% Numerical 

simulation 

(Afzal and Kim 

2012) 

SAR and 

convergence- 

divergence 

10-70 95% Numerical 

simulation 

(Arshad Afzal and 

Kwang-Yong Kim 

2014) 

Ellipse-like 

micropillars 

0.238-

2.38 

90% Numerical 

simulation 

(Tran-Minh et al. 

2014) 

Topological Re < 0.1 

and Re > 

10 

0.1-10 

85% 

 

 

95% 

Numerical 

simulation 

(Chen and Li 2016) 

Rhombic > 20 84% PDMS (Hossain and Kim 

2014) 

Unbalanced SAR Re > 20 86% PDMS (Raza and Kim 

2020) 

2.1.4    Curved-channel pattern 

One of the most notable qualities of curved micromixers is that they can function well 

even when the Reynolds number is high. The Dean number is a dimensionless metric 

that characterizes fluid flow in this specific type of micromixer (Hessel et al. 2005). 

subsequently, it was revealed that for De > 150, the secondary flow consists of two 

vortices, and for De < 150, it contains four vortices. (Cheng et al. 1976). High mixing 

efficiency requires multiple flow loops to enhance fluid interaction and dispersion. 

However, increasing the number of loops can lead to higher pressure drops and greater 

energy consumption, making it less practical for specific applications. To address this 

challenge, researchers have developed innovative designs that optimize mixing 

performance in curved-channel micromixers using a limited number of loops. 

These advanced designs leverage chaotic advection, secondary flow generation, and 

strategically engineered curvature to enhance mixing without excessive looping. By 

carefully shaping the channel geometry, incorporating asymmetrical structures, or 
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introducing strategically placed obstacles, these designs effectively promote fluid 

stretching and folding, leading to rapid and efficient mixing. Such improvements are 

crucial for applications in microfluidics, lab-on-a-chip systems, and chemical or 

biomedical processing, where maintaining high efficiency while minimizing pressure 

loss and energy consumption is essential. 

Moreover, as noted earlier, this design is frequently combined with other 

configurations, including obstacle-based and convergence-divergence structures, to 

improve overall performance (Afzal & Kim 2015; Arshad Afzal & Kwang-Yong Kim 

2014; Chen & Li 2016; Chung & Shih 2007; Hossain & Kim 2014; Raza & Kim 2020; 

Tran-Minh et al. 2014). (Schönfeld and Hardt, 2004) introduced a 3-D micromixer 

composed of two curved square channels, leveraging different forms of Dean vortices 

to enhance mixing efficiency. (Jiang et al. 2004) was determined that the mixing 

process is influenced by the Dean number, depending on whether it is greater or less 

than 140. They developed a planar meander mixer, asserting that it can achieve chaotic 

mixing without relying on a multi-step process or complex three-dimensional 

structures. This approach simplifies fabrication, reduces manufacturing costs, and 

facilitates integration into lab-on-a-chip and microfluidic systems. Additionally, the 

absence of intricate 3D features minimizes potential pressure losses and operational 

challenges, making the design more practical for various applications, including 

chemical analysis, biomedical diagnostics, and point-of-care testing. They also 

claimed that chaotic mixing may be created without a multistep or three-dimensional 

framework-dimensional structure (Figure 2.5a). Spiral microchannels featuring 

multiple mixing sections connected through a central S-section were introduced by 

(Sudarsan & Ugaz 2006) (Figure 2.5b) who analyzed five spiral configurations within 

the Reynolds number range of 0.02 to 18, concluding that transverse Dean flows result 

in a mixing efficacy of 90%. (Harrson Santana et al. 2015) the design was used to mix 

ethanol and Jatropha curcas oil, revealing that spiral micromixers achieve a much 

higher mixing efficiency compared to T-type micromixers (Mehrdel et al. 2018, p. 3) 

revised the design by adding expansion and contraction sections (Figure 2.5c), 

achieving mixing efficiencies of 85% and 98.5% for one and three loops, respectively, 

with a 10% expansion at Re 1. Several designs inspired by spiral patterns, have been 

created to examine the influence of Dean vortices on the mixing efficiency of 
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micromixers. (Al-Halhouli et al. 2015; Balasubramaniam et al. 2017; Joshua Clark et 

al. 2018; Liu et al. 2015; Rafeie et al. 2017; Scherr et al. 2012; Sheu et al. 2012; Vanka 

et al. 2003; Yang et al. 2013). Table 2.4 summarises the curved-channel micromixers 

analyses. 

Table 2.4 Curved-channel micromixers. 

Characteristic Re Mixing 

Index 

Materials References 

Double spiral 0.02-18.6 > 90% SEBS (Harrson Santana et 

al. 2015) 

Double spiral 

with expansion 

and 

contraction 

 

0.1-10 

 

98.5% 

 

PDMS 

(Mehrdel et al. 2018) 

Spiral and 

concentric 

circular 

0.6 ~ 40% Aluminium (Vanka et al. 2003) 

Logarithmic 

spiral 

1-70 86% PDMS (Scherr et al. 2012) 

Tapered curved 1-100 88% PDMS (Sheu et al. 2012) 

Two layers of 

spiral channels 

overlapped 

together 

 

8-40 

 

90% 

 

Glass 

(Yang et al. 2013) 

Fine-threaded 

lemniscated-

shaped 

1-1000 > 90% PDMS (Rafeie et al. 2017) 

Non-

rectangular 

cross-section 

1-100 ~ 100% Numerical 

simulation 

(Joshua Clark et al. 

2018) 

Spiral, 

interlocking- 

0.01-50 ~ 100% PDMS (Al-Halhouli et al. 

2015) 
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semicircle, Ω 

channel 

Double helical 

channel 

0.003-30 99% Numerical 

simulation 

(Liu et al. 2015) 

Square, semi-

circle, 

trapezoid cross 

sections 

 

20-277 

 

> 90% 

 

PDMS 

(Balasubramaniam et 

al. 2017) 

(Scherr et al. 2012) studied a micromixer with logarithmic-spiral-based 

experimentally using PDMS (Figure 2.5d). With a Re value of 67, they attained % 

mixing efficiency of 86%. As a result of the varying cross-sectional area, they 

revealed that logarithmic curvature creates Dean vortices in three dimensions inside 

the system. A micromixer incorporating staggered a semi-circular microchannel and 

3-quarter ring-shaped microchannels was created by (Sheu et al. 2012) (Figure 2-5e). 

The authors concluded that the secondary flows are insignificant when the value of 

Re is less than five, but they are significant when the value of Re is fifty. Double-

layered spiral microchannels were utilized by (Yang et al. 2013) (Figure 2.5f), (Rafeie 

et al. 2017) (Figure 2.5g) and (Joshua Clark et al. 2018) (Figure 2.5h) to design 3D 

micromixers. (Yang et al. 2013) exemplify that the mixing index improves as the 

channel height increases and that cylindrical geometry is more effective than cubic. 

(Rafeie et al. 2017) a fine-threaded lemniscate-shaped mixer was designed for the 

Reynolds number range of 1 to 1000, achieving a mixing efficiency greater than 90%. 

The non-rectangular micromixer design was studied by (Joshua Clark et al. 2018) to 

examine the influence on the Dean vortices in a spiral micromixer. Their suggested 

mixers demonstrated that complete mixing may be attained at a Reynolds number of 

twenty. However, achieving complete mixing at a Re value of one hundred in 

rectangular cross-section mixers is possible. 

2.2   Active Micromixer 

External energy inputs can improve mixing performance by expanding the interfacial 

area between fluids, disturbing their flow patterns, or generating chaotic advection. 

Pressure filed (Deshmukh et al. 2000; Du et al. 2013; Li and Kim, 2017; Niu & Lee, 
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2003; Oh et al. 2012; Wu et al. 2019; Xia & Zhong, 2013; Zhang et al. 2019), acoustic 

filed (Ahmed et al. 2009; Ang et al. 2016; Choi et al. 2009; Fu et al. 2017; Lim et al. 

2019; Liu et al. 2002; Moroney et al. 1991; Orbay et al. 2017a; Qi et al. 2008; Wang 

et al. 2009; Yang et al. 2001; Yaralioglu et al. 2004), magnetic field (Ballard et al. 

2016; Chen and Zhang, 2017; Ergin et al. 2015; Fu et al. 2010; Hejazian and Nguyen, 

2017; Jeon et al. 2017; Kang and Choi, 2011; Kumar et al. 2019a; Lee et al. 2016; Liu 

et al. 2016; Nouri et al. 2017; Owen et al. 2016; Saroj et al. 2016; Veldurthi et al. 

2015), electric field (Ahmadian Yazdi et al. 2015; Bhattacharyya and Bera, 2015; 

Choi et al. 2009; Daghighi et al. 2013; Deval et al. 2002; Ebrahimi et al. 2014; El 

Moctar et al. 2003; S. Kazemi et al. 2017; Z. Kazemi et al. 2017; Kim et al. n.d., 2018; 

Matsubara and Narumi, 2016; Peng and Li, 2015; Shamloo et al. 2016; Usefian et al. 

2019, 2019; Usefian and Bayareh, 2019; Zhang et al. 2006, 2018; Zhao et al. 2017), 

thermal field (Bird 2002; Evans, Palhares Junior, and Oishi 2017; Gale et al. 2018; 

Huang et al. 2012; Huang and Tsou 2014; Kunti, Bhattacharya, and Chakraborty 

2017a, 2017b, 2018; Mao, Yang, and Cremer 2002; Sasaki, Kitamori, and Kim 2012; 

Tsai and Lin 2002; Zhang et al. 2016) are some genre of external energy sources. 

 

Figure 2.5 Illustration of curved-channel micromixers: (a) plan meander mixer (Jiang 

et al. 2004), (b) double spiral (Sudarsan and Ugaz, 2006), (c) double spiral with 

 

(a) (b) (c) 

  
(d) (e) 

   
(f) (g) (h) 
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expansion and contraction (Mehrdel et al. 2018), and (d) logarithmic spiral (Scherr et 

al. 2012) 

2.2.1    Pressure-driven micromixer 

Pressure-field-driven micromixers are microfluidic devices that use externally applied 

pressure fields to enhance fluid mixing at the microscale. The initial pressure-driven 

micromixer was developed by (Deshmukh et al. 2000) was a T-type micromixer. By 

simultaneously controlling and halting the flow in the channel, they were able to 

produce alternate fluid perturbation through the utilization of an integrated planar 

micropump. In essence, the step function was chosen to produce a pulsatile flow, 

necessitating multiple pulses to ensure the complete mixing of the fluids. Velocity 

oscillation has disrupted fluid flows and enhanced their interaction with the outer area 

(Du et al. 2013; Niu and Lee, 2003; Oh et al. 2012; Xia and Zhong, 2013). A pressure-

driven micromixer was designed by (Niu and Lee, 2003) based on the principles of 

fluid stretching and folding. The Lyapunov exponent was employed to analyze the 

chaotic behaviour and enhance the optimization of the micromixer. The study 

revealed that oscillatory flow improves fluid stretching and folding, achieving a 

mixing efficiency of 97% after four mixing units, with a total flow velocity of 44 

mL/min and an average viscosity of 8 mPa·s (Zhang et al. 2018).  (Li and Kim, 2017) 

creating pulsatile pressure in the mixer unit was accomplished using a constant input 

of water head pressure. The micromixer they introduced achieved a mixing 

performance of approximately 90% at flow of 20 microliters per minute and within a 

frequency range of 14 to 20 hertz. The research investigated time-throbbed mixing for 

viscoelastic fluids and Newtonian in a T-mixer (Zhang et al. 2019). Table 2.5 

summarises the pressure-driven micromixer analyses. 

Table 2.5 Pressure-driven micromixers. 

Characteristics Re Mixing Index Materials References 

Pulsatile flow 2.4 - SOI and 

quartz 

wafers 

(Deshmukh et 

al. 2000) 

Electric circuit 0.17 - Analytical (Oh et al. 2012) 
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methods solution 

Planar mixing 

channel 

83-250 90% n/r (Xia and Zhong, 

2013) 

Pulsatile 

micromixer 

- 90% PDMS (Wu et al. 2019) 

Oscillator and 

divergent 

chambers 

- 97% PMMA (Li and Kim, 

2017) 

 

Time-pulsed 

flow 

 

0.002-0.1 

Newtonian: 

~ 53% 

Viscoelastic: 82% 

 

PDMS 

(Zhang et al. 

2019) 

2.2.2    Acoustic field-driven micromixer 

Micromixers utilize acoustically-driven microstreams, wherein air bubbles within a 

liquid are activated via an acoustic field (Liu et al. 2002). The study concentrated on 

utilizing an acoustic actuator to agitate liquids in a flexible plate-wave (FPW) system 

(Moroney et al. 1991).  It was noted that using higher frequencies (> 50 Hz) increases 

fluid temperature, which can be detrimental to biological samples (Nguyen & Wu, 

2005; Yang et al. 2001). In bubble-based acoustic micromixers, single (Liu et al. 

2002) or many bubbles (Ahmed et al. 2009) can arise from various factors, utilising 

acoustic waves to form a horseshoe-shaped air bubble in a micromixer. The agitated 

trapped air bubble interrupts the channel's laminar flows, causing sound and quick 

mixing. They defined the mixing time as 𝑡𝑡 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

, dmix represents the distance 

between thoroughly mixed and unmixed regions, and vavg denotes the average fluid 

velocity. It was concluded that the mixing time significantly decreases with increased 

air bubbles (Liu et al. 2002). The impact of exerted frequency (0.5–10 kHz) on the 

mixing index of a micromixer was investigated.  The study reckoned that both 

frequencies between 0.5 kHz and 10 kHz have no impact on the mixing index (Wang 

et al. 2009). The mixing performance, however, depends highly on the frequencies 

used, which vary from 1.0 to 5.0 kHz. This frequency range caused one or more 

bubbles, disturbing the local flow field. Research demonstrates that the improvement 

of mixing performance is greatly affected by bubble production throughout the 
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frequency range of 1.0 to 5.0 kHz. Bubbles did not develop in the microchannel 

beyond this frequency range. A bubble-driven acoustic micromixer featuring three 

inlets was developed, with nitrogen introduced via the central inlet to generate bubbles 

within the mixer (Orbay et al. 2017b). Table 2.6 summarises the acoustic field-driven 

micomixers analyses. 

Table 2.6 Acoustic field-driven micromixers. 

Characteristics Re Frequency Mixing 

Index 

Material References 

Bubble vibration - 5 91% PZT (Liu et al. 

2002) 

Single-bubbled 

based 

- 70-100 - PDMS (Ahmed et al. 

2009) 

Multi-bubbled 

based 

- 1-5 - PMMA (Wang et al. 

2009) 

Multi-bubbled 

based 

~ 0.01 1-5 93% PDMS (Orbay et al. 

2017b) 

Ultrasonic 

vibration 

60 0-100 - Glass (Yaralioglu et 

al. 2004) 

Surface-acoustic- 

wave-driven 

3.1-

15.4 

1300 88% PDMS (Choi et al. 

2009) 

The other types of acoustic micromixers involve ultrasonic transducers (Jang et al. 

2005; Yaralioglu et al. 2004), thin-film piezoelectric devices (Fu et al. 2017; Yang et 

al. 2001) and surface acoustic wave ones (Ang et al. 2016; Qi et al. 2008).  A 

piezoelectric lead-zirconate generated the ultrasonic vibration--titanate (PZT) 

ceramic. In contrast to many researchers who employed planar piezoelectric 

transducers with flat surface (Choi et al. 2009), (Lim et al. 2019) analyzed the 

characteristics of concave and convex surface architecture. The research findings 

indicate that convex geometry yields enhanced mixing characteristics compared to 

flat and concave geometry. 
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2.2.3    Magnetic field-driven micromixers 

Magnetic field-driven micromixers are microfluidic devices that utilize external 

magnetic fields to induce fluid mixing at the microscale. These mixers are handy in 

lab-on-a-chip (LOC) applications, biomedical diagnostics, and chemical synthesis, 

where efficient mixing of small fluid volumes is crucial. Magnetic micromixers rely 

on magnetic forces to create flow disturbances, enhancing mixing in an otherwise low-

Reynolds-number regime (where laminar flow dominates and diffusion alone is 

inefficient). They achieve this by magnetic beads/nanoparticles, magnetic stirring, and 

Magneto-hydrodynamic. Micromixers operate through magnetic drive mechanisms 

utilizing permanent magnets (Ballard et al. 2016; Hejazian & Nguyen, 2017; Kumar 

et al. 2019a; Lee et al. 2016; Nouri et al. 2017), electromagnet (Bayareh et al. 2018; 

Boroun, 2016; Ergin et al. 2015; Fu et al. 2010; Kang et al. n.d.; Liu et al. 2016)], 

micro stirrer (Chen et al. 2014; Kang et al. n.d., n.d.; Owen et al. 2016; Veldurthi, 

2015) and integrated electrodes (Jeon et al. 2017; Kang & Choi, 2011). As part of this 

review, magnetically actuated micromixers were analyzed, incorporating studies 

published in recent years (Chen & Zhang 2017). A permanent magnet (Ballard et al. 

2016) was used to rotate above a micromixer, while magnetic microbeads orbiting 

around iron-nickel alloy discs were placed on the base (Nouri et al. 2017). A 

permanent magnet was utilized to investigate the mixing behaviour of ferrofluid, 

consisting of DI water and Fe₃O₄, within a Y-shaped mixer featuring a rectangular 

cross-section. A non-uniform magnetic field produced by a permanent magnet in a 

straight microchannel was employed to evaluate the mixing of diluted ferrofluid with 

a non-magnetic fluid  (Hejazian & Nguyen 2017). A numerical model was developed 

to simulate the improvement in mass transfer resulting from an irregular magnetic 

field. The results showed that mass transfer improves with both the magnetic field's 

strength and the magnetic particles' size (Kumar et al. 2019b). (Fu et al. 2010) study 

focused on the mixing process of deionized water and ferrofluid within a micromixer, 

utilizing an electro-magnet activated by a DC electric field. This investigation 

incorporated both numerical simulations and experimental methodologies. (Ergin et 

al. 2015) employed the micro-PIV technique to analyse transient flow fields during 

the mixing operation. Furthermore, it presented an innovative magnetic micromixer 

incorporating features of a flexible artificial cilium constructed from iron-doped 



47 

 

PDMS (Liu et al. 2016). Cilia-based micromixers reached a mixing efficiency of 80% 

under 200 G magnetic field strength. In an alternative arrangement, four 

electromagnets positioned in opposition were used in the micromixer to amalgamate 

deionized water and Rhodamine dye (Saroj et al. 2016). They identified a critical 

actuation frequency beyond which the degree of mixing declines as the actuation 

frequency increases. The mixing index of a T-mixer was investigated under 

oscillating, static, and rotating magnetic fields for Reynolds numbers ranging from 10 

to 200. (Boroun 2016). They found that rotating magnetic fields resulted in superior 

mixing performance to static and oscillating magnetic fields. 

Moreover, artificial cilia's symmetric and asymmetric motion was examined (Chen et 

al. 2014) to improve fluid mixing and demonstrated that mixing through asymmetric 

motion is 1.35 times quicker than mixing through symmetric motion. (Veldurthi 2015) 

positioned a micro-rotor within a chamber to achieve optimal mixing quality. The 

micromixer was fabricated using PDMS, and the magnetic actuator was created by 

dispersing magnetic nanoparticles in PCM, obtaining an efficiency of up to 90%. An 

organized arrangement of magnetic microbeads was employed to enhance fluid 

mixing within a microchannel. A more extended array of beads yields an increased 

mixing index (Owen et al. 2016). A micropump was designed and constructed for 

mixing at low Reynolds numbers. The findings indicate that electrodes of varying 

lengths provide superior mixing performance compared to uniform-length electrodes 

(Kang and Choi 2011). (Hejazian and Nguyen 2017) evaluated how electrode shape, 

configuration, and applied voltage influence the blending of a reagent with a 

phosphate-buffered solution. Table 2.7 summarises the magnetic field driven 

micomixer analyses. 

Table 2.7 Magnetic field-driven micromixers. 

Characteristics Re Magnetic field 

Strength (G) 

Mixing 

Index 

Material References 

A permanent 

magnet rotating 

over a micromixer 

with magnetic 

 

<< 1 

 

- 

 

70% 

 

PDMS 

(Ballard et 

al. 2016) 



48 

 

microbeads 

Permanent 

parallel 

magnet 

- 1280-3000 90% Plexiglas (Nouri et al. 

2017) 

Permanent 

parallel 

magnet 

- 1750-2500 88% PDMS (Hejazian 

and 

Nguyen, 

2017) 

Electromagnet 0.004 

and 

0.02 

200 > 95% - (Fu et al. 

2010) 

Electromagnet - 2200 80% Fe doped 

PDMS 

(Liu et al. 

2016) 

Electromagnet - 4200 and 

6000 

80% Polystyrene (Saroj et al. 

2016) 

Static, oscillating 

and rotating 

electromagnet 

 

10-

200 

 

0-90 kA/m 

 

~ 53% 

 

Glass 

(Boroun, 

2016) 

Electromagnet 5-50 - 96% Numerical 

simulation 

(Bayareh et 

al. 2018) 

Asymmetric 

actuation of 

artificial cilia 

4.64×

10-3 

- 100% PDMS (Chen et al. 

2014) 

Cylindrical 

chamber 

with micro-rotor 

0-40 - 90% PDMS (Veldurthi, 

2015) 

Array of rotating 

magnetic 

microbeads 

- - ~ 72% NiFe (Owen et al. 

2016) 

Integrated 

electrodes 

- - 27.8% PDMS (Kang and 

Choi, 2011) 

Integrated - - 100% Numerical (Jeon et al. 
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electrodes simulation 2017) 

2.2.4    Electric-field-driven micromixers 

Electric field-driven micromixers are microfluidic devices that use electric fields to 

enhance mixing in microchannels. These mixers exploit electrokinetic phenomena 

such as electroosmosis, electrophoresis, and di-electrophoresis to induce chaotic 

advection and improve mixing efficiency at small scales, where diffusion alone is 

often insufficient Electrohydrodynamic disturbance (El Moctar et al. 2003; Huang et 

al. n.d.; Kim et al. 2018). Moreover, electrokinetic instability (Daghighi et al. 2013; 

Daghighi & Li 2013; S. Kazemi et al. 2017) are used in electrical field-driven 

micromixers. EHD instability-based micromixers are equipped with electric fields 

that charge the fluids. These electric fields include direct current (DC) and alternating 

current (AC). The highly charged fluids disrupt the interface, which ultimately results 

in an improvement in the mixing index of micromixers. (El Moctar et al. 2003) 

suggested the T-type micromixer. This micromixer applied A perpendicular electric 

field across the fluid interface, generating secondary flow. This phenomenon was seen 

in the micromixer. In less than 0.1 seconds, they produced a satisfactory mixing by 

utilizing alternating direct current (DC) and current (AC) electric fields at a rate of 

0.0174. (Huang, Lin, and Yang 2005) investigated the potential of a Y-mixer 

incorporating a group of slanted electrodes placed at the channel's base. 

EKI mixing methods include electroosmosis, electrophoresis (Daghighi et al. 2013, 

2013; S. Kazemi et al. 2017) and dielectrophoretic (Choi et al. 2009; Deval et al. 2002; 

Kim et al. n.d.). (Zhang et al. 2006) performed numerical and analytical investigations 

on mixing electroosmotic flow within microchannels characterized by heterogeneous 

zeta potential. The study demonstrated that heterogeneous zeta potential results in 

symmetrical secondary flows and asymmetrical rolls, contributing to an increased 

fluid mixing rate. The authors (Ebrahimi et al. 2014) studied a T-type microchannel 

to evaluate the effects of a non-uniform DC electric field on mixing and heat transfer 

in four distinct ribbed channel configurations. They  (Bhattacharyya and Bera 2015) 

improved vertical flow was observed in an electroosmosis pressure-driven 

microchannel featuring a rectangular block. 
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This enhancement is attributed to the surface potential difference between the block 

and the microchannel wall. (Ahmadian Yazdi et al. 2015) studied Y-micromixer at 

high zeta potential influence for ionic size diffusion conditions. They discovered that 

the mixing length decreases as ionic concentration increases, provided the zeta 

potential is sufficiently high. (Shamloo et al. 2016) explored the mechanism of chaotic 

mixing by employing a charged electrode with an alternate current electric field. They 

examined various configurations, including one-ring, two-ring, and diamond types. 

They concluded that the diamond configuration achieved the highest mixing index, 

close to 99.8%, outperforming the one and two-ring designs. 

An electro-osmotic micromixer was introduced, characterized by a staggered 

arrangement of electrodes powered by an alternating current (AC). This design 

operates effectively for Reynolds numbers (Re) ranging from 0.005 to 1.0, 

demonstrating the formation of a core vortex between the electrode pairs (Matsubara 

& Narumi, 2016). The mixing efficacy of an electro-osmotic micromixer was 

evaluated by positioning an electrically conductive flap at the entrance of the main 

channel (Z. Kazemi et al. 2017).  (Zhang et al. 2018) incorporated asymmetrical planar 

floating electrodes into a T-mixer to generate asymmetrical vortices. While using a 

mixing length of 3.2 millimeters and a frequency of 400 hertz, they achieved a mixing 

quality of 94.7%. (Usefian and Bayareh, 2019) introduced a new electroosmotic 

micromixer operating under both AC and DC electric fields. Their findings revealed 

that vortices produced by the DC electric field are more intense than those created by 

the AC electric field. It was proved that increasing the voltage of both the alternating 

and direct current electric fields increases the mixing index. 

Electrophoresis is the movement of conductive or non-conductive particles in an 

electrolyte solution caused by applying an external electric field (Daghighi and Li, 

2013). (Daghighi et al. 2013) conducted an experimental analysis of the vortex 

generated for the conductive and non-conductive fragments under an exerted electric 

field. The formation of vortices and flow circulations for a conductive particle was 

analyzed during the mixing process in a micromixer with a rectangular chamber 

microchannel  (S. Kazemi et al. 2017). They demonstrated that the outlet mass flow 

rate increases with a heightened electric field for a specific zeta potential, resulting in 

diminished mixing efficacy. 
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Di-electrophoresis refers to the accessibility of neutral particles caused by an 

alternating current electric field. This process causes particles to become 

asymmetrically polarized. When particles are exposed to a dipole moment, a force is 

created that forces them to migrate away from or about the electrodes. (Deval et al. 

2002) introduced a di-electrophoretic micromixer designed to generate chaotic motion 

for the particles, demonstrating a significant reduction in mixing time. The author 

(Kim et al. n.d.) introduced a novel micro/nano mixer utilizing the dielectrophoretic 

approach. They demonstrated that the mixing quality increases as the channel depth 

decreases. Nevertheless, the channel depth must exceed roughly 20 micrometres. 

Table 2.8 summarises the electric field driven micromixers analyses. 

Table 2.8 Electric-field driven micromixers. 

Characteristics Re Frequenc

y 

Mixing 

Index 

Materials References 

EHD 

(perpendicular 

electrode array) 

0.0174 0.5-100 ~ 81% Lexan (El Moctar 

et al. 2003) 

EHD (inclined 

electrode array) 

- 1000 94% - (Huang et 

al. n.d.) 

Electroosmosis- 

pressure-driven 

10 - 71% Numerical 

simulation 

(Peng and 

Li, 2015) 

Electroosmosis 

mixing at high zeta 

potentials 

- - 99.5% Numerical 

simulation 

(Ahmadian 

Yazdi et al. 

2015) 

Electroosmosis 

mixing in a 

diamond 

type mixer 

- 2-16 99.8% Numerical 

simulation 

(Shamloo et 

al. 2016) 

Electroosmotic 

micromixer with a 

staggered array of 

electrodes 

 

0.005-

1.0 

0.2-2 

(dimensio

nless 

frequency

 

~ 98% 

 

Numerical 

simulation 

(Matsubara 

and 

Narumi, 

2016) 
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)  

Electroosmotic 

micromixer with a 

throat 

 

- 

 

- 

 

51.5% 

Numerical 

simulation 

(Z. Kazemi 

et al. 2017) 

Electroosmotic 

micromixer with 

rotating inner 

obstacle 

 

- 

 

- 

 

~ 98% 

 

Numerical 

simulation 

(Usefian et 

al. 2019) 

Turbulent-like 

electroosmotic 

mixer 

< 1 1-10000 - Transpare

nt 

acrylic 

(Zhao et al. 

2017) 

Planar floating- 

electrodes in a T- 

mixer 

 

- 

 

400 

 

94.7% 

 

Glass 

(Zhang et 

al. 2018) 

Electroosmotic 

micromixer with 

two 

electrodes in a 

chamber 

 

- 

 

0.5-4 

 

~ 96% 

 

PDMS 

(Usefian 

and 

Bayareh, 

2019) 

Electrophoretic 

micromixer with a 

cylindrical 

chamber 

- - 100% Numerical 

simulation 

(Daghighi 

and Li, 

2013) 

Electrophoretic 

micromixer with 

rectangular 

chamber 

 

- 

 

- 

 

99.5% 

 

Numerical 

simulation 

(S. Kazemi 

et al. 2017) 

2.2.5    Thermal-field driven micromixers  

Thermal field-driven micromixers are microfluidic devices that utilize temperature 

gradients to enhance mixing at the microscale. Unlike passive micromixers that rely 

on geometric structures or active micromixers that use external forces (such as electric 
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or magnetic fields), thermal field-driven micromixers exploit temperature-induced 

phenomena like thermophoresis, convection, bubble-induced, and viscosity variation. 

Thermal energy can enhance the mixing index of micromixers by enhancing the 

diffusion  (Mao et al. 2002), employing thermal bubbles (Huang and Tsou, 2014, 

2014; Tan, 2019) or using electrothermal effects (Huang et al. 2012; Kunti et al. 2018, 

2017; Meng et al. 2018; Sasaki et al. 2012; Zhang et al. 2016). A thermal bubble-

based micromixer was implemented using a micropump and microvalve. It was found 

that larger thermal bubbles result in greater mixing efficiency (Huang & Tsou, 2014). 

The simulation involved using a Y-mixer equipped with an integrated micro heater to 

combine a dye solution with distilled water (Tan, 2019). 

Thermal bubbles act as micropumps and are responsible for driving the streams on 

their own. When the microheater is inserted asymmetrically, the author discovered 

that this results in the generation of an asymmetric vortex and secondary flow, 

increasing the mixing rate. When the microheater was positioned at the channel intake, 

it was possible to obtain a mixing efficacy of up to 95.6%. (Zhang et al. 2016) used 

AC electro-thermal flow to improve the mixing of two laminar streams. The 

microchannel was equipped with two asymmetric planar electrodes installed along its 

length, and a thin film resistive was positioned underneath the electrodes. The 

microchannel was fitted with two asymmetric planar electrodes along its length, with 

a thin-film resistor placed beneath them. It was demonstrated that the temperature 

gradient, generated by externally increasing the temperature, induces fluid stretching 

and folding, ultimately enhancing mixing potency.  

Electro-thermal actuated micromixers were explored by (Kunti et al. 2018, 2017) 

integrated passive micromixer characteristics by adding grooves with electro-thermal 

micromixer advantages by placing a couple of asymmetric electrodes at the walls. 

(Meng et al. 2018) leveraged the advantages of AC electro-thermal effects to develop 

a micromixer for applications in microfluidics. Table 2.9 summarises the thermal 

field-driven micromixer analyses. 
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 Table 2.9 Thermal-field driven micromixers. 

Characteristics Flow Rate 

(μl/s) 

Mixing Index Material References 

Thermal-

bubble 

actuated 

micromixer 

4.5 - SOI (Huang and 

Tsou, 2014) 

Electrothermal 

micromixer 

0.214 95.6% Numerical 

simulation 

(Tan, 2019) 

Electrothermal 

micromixer 

- 83.6% Numerical 

simulation 

(Zhang et al. 

2016) 

Electrothermal 

micromixer 

29.9 97.25% Numerical 

simulation 

(Kunti et al. 

2017) 

Electrothermal 

micromixer 

Inlet velocity 

40 μm/s 

 

~ 100% 

 

PDMS 

(Meng et al. 

2018) 

2.3   Nanofluids 

Nanofluids are a unique type of heat transfer fluids that are produced by dispersing 

nanoparticles that are either metallic or non-metallic and have a high thermal 

conductivity into traditional fluids such as water, ethylene glycol, or oils. These 

nanoparticles, typically ranging from 1 to 100 nanometers, enhance the thermal 

properties of the base fluid, improving its ability to transfer heat efficiently. This 

makes nanofluids useful for heat exchangers, cooling systems, and other thermal 

management technologies. Table 2.10 shows various nanoparticles' thermo-physical 

properties and their cost analysis. 

Over the past several years, nanofluids, which are two-phase systems consisting of a 

base fluid and nanoparticles suspended in the fluid, have garnered substantial attention 

in the fields of biomedicine and industry. (Rudyak, Pryazhnikov, and Minakov 2024). 

Their widespread use includes separating blood components, targeted drug delivery, 

and cooling microdevices (Matouq et al. 2024). In particular, nanofluids are 
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considered highly promising for thermal management in advanced electronic and 

biomedical systems due to their enhanced heat transfer properties. 

One of the key aspects of these applications is the need for adequate mixing, which is 

essential for ensuring uniform distribution of nanoparticles, improving process 

efficiency, and optimizing performance. However, designing efficient mixing 

microdevices presents unique. Table 2.11 summaries the nanofluid analysis on hydro-

thermal performanes.  

 Table 2.10 Thermal-physical properties of nanoparticles and their cost analysis 

challenges. 

Nanoparticles ρ (kg.m-3) Cp (J.kg-

1K-1) 

K (W.m-

2k-1) 

Quantity(g) Cost 

(Rs) 

CuO 6510 540 76 5 3111 

Al2O3 3880 729 42.3 25 2000 

TiO2 4175 692 8.5 100 12859 

SnO2 2220 745 36 25 1500 

ZnO 5610 494 29 100 1500 

Fe3O4 4950 640 7 25 1750 

Ag 10500 230 424 5 12917 

Au 19300 129 315 1 35029 

CNT 1350 3900 3000-6000 250 19521 

Table 2.11 Hybrid- nanofluids on hydro-thermal performance 

Fluid 

Base 

Nanoparti

cles 

Concentration Remarks References 

Distilled 

Water 

Al2O3, 

CuO, SiO2 

and ZnO 

1-5 % The volume fraction of 

particles increases, 

viscosity also increases. 

However, as 

temperature rises, 

viscosity decreases. 

Nanoparticles' shape 

(Alawi et al. 

2018) 
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significantly influences 

thermal conductivity (k) 

and viscosity. 

Water TiO2 0.2 % Models have been used 

to analyze the 

thermophysical 

properties, including 

viscosity, specific heat, 

and thermal 

conductivity. It was 

found that at very low 

concentrations, these 

properties have minimal 

impact on the heat 

transfer coefficient of 

nanofluids. 

 

Water Zn and 

Fe2O4 

0.02-0.5 % The heat transfer 

coefficient and thermal 

conductivity increased 

by 42.99% and 11.8%, 

respectively, at a 0.5 

weight concentration of 

Zn ferrite nanofluids. 

(Gupta, 

Singh, and 

Said 2020) 

Deionize

d Water 

and EG 

Al2O3 and 

CuO 

0.05-0.75 % Deionized water (DW) 

is used as the host fluid 

to decrease viscosity 

while enhancing 

electrical conductivity. 

(Giwa et al. 

2021) 

Water ZnFe2O4, 

MnFe2O4, 

NiFe2O4 

- Ternary nanoparticle-

based heat transfer 

liquids offer better 

thermal dispersion in 

(Goud et al. 

2022) 
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fins than mono 

nanofluids, with their 

temperature gradient 

affected by the wetting 

parameter of the ternary 

hybrid nanofluid. 

Given these devices' minimal dimensions of microchannels, fluid flow is typically 

laminar, meaning that mixing occurs primarily through molecular diffusion rather than 

turbulence. This reliance on diffusion alone often results in insufficient mixing rates 

due to the inherently low diffusion coefficients of nanoparticles in the fluid.  

Researchers and engineers are actively developing innovative micro-mixing strategies 

to address these limitations. These include chaotic advection, passive and active 

micromixers, and external forces like electric or magnetic fields to enhance 

nanoparticle dispersion. Advancements in microfluidic technology and nanofluid 

engineering continue to drive improvements in mixing efficiency, ultimately leading 

to better performance in biomedical diagnostics, targeted drug therapies, and next-

generation cooling systems for electronic devices. 

2.4   Summary of Literature Review 

A set of characteristic nondimensional numbers determines the working conditions of 

passive and active micromixers. These numbers include the Re, the Pe, the Sr, the Fr, 

and the Kn. The molecular-diffusion process is responsible for mixing, which takes 

place because viscous effects predominate on the microscale. Because of this, passive 

micromixers require either substantial channel lengths or intricate design, which 

results in a significant pressure loss along the mixer. The ratio, represented as η/∆p, 

must be found between the mixing index and the pressure drop. The residence time 

(tr) of a rapid flow, also known as a high Reynolds number flow, is relatively brief. 

To fulfill the requirements, the disturbance frequency must be increased for active 

micromixers, while for passive micromixers, the channel length must be extended or 

the characteristic length reduced. When viscoelastic fluids are mixed in 

microchannels, the viscous and elastic effects impact the mixing process. It has been 
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discovered that more acute and smaller geometries might increase the instability of 

chaotic flow, ultimately resulting in more outstanding mixing effectiveness. The 

dimensionless Deborah number is utilized to quantify the mixing of viscoelastic fluid 

streams. This number is the ratio of the forces generated by elastic and viscous forces. 

By increasing the Deborah number, the elastic force can reduce the flow instability at 

the contact. 

During numerical simulations, numerical diffusion errors significantly influence the 

accuracy of quantifying the mixing index. These errors arise due to the inherent 

approximations in discretization schemes and can lead to artificial smearing of scalar 

fields, reducing the precision of mixing measurements. As a result, the computed 

mixing index may not accurately reflect the accurate physical mixing process but be 

affected by the extent of numerical diffusion. This dependency underscores the 

importance of selecting appropriate numerical methods and resolution strategies to 

minimize diffusion artefacts and ensure reliable simulation outcomes. The formation 

of spurious diffusion in numerical simulations is highly impacted by the types of grid 

and discretization methods considered. In order to acquire a correct mixing index, 

information regarding the numerical diffusion error must be submitted. This is 

especially true for three-dimensional micromixers. During the numerical research of 

micromixers, the time-dependent method is another significant issue that has to be 

addressed. When assessing the mixing performance of micromixers, most numerical 

simulations have relied on steady-state approaches, with limited consideration given 

to time-dependent schemes. The mixing period is a key characteristic parameter of 

micromixers; hence, time-dependent simulations are necessary, mainly to confirm the 

findings of experiments. 

Several different manufacturing methods and various materials have been utilized to 

produce micromixers. The evaluation of the mixing process or particle separation for 

biomedical devices is an everyday use of soft lithography in university microfluidic 

labs nowadays. This technique makes use of polydimethylsiloxane (PDMS). PDMS 

is combined with carbon nanotubes or solid nanoparticles to achieve a range of 

thermal and electrical conductivities. During the molding process, nanoparticles can 

be dispersed throughout the polydimethyl sulfide (PDMS) to adjust the hydrophobic-

hydrophilic characteristics of the material. The 3D printing technique is inexpensive 
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for fabricating micromixers compared to moulding. Since the fabrication process is 

machine-controlled, this technology is more efficient, cost-effective, and faster than 

traditional lithography, making it a viable option for commercial applications. 

However, while 3D printing provides speed and affordability, PDMS-based products 

still achieve higher resolution and finer structural details, making them preferable for 

applications requiring precision (Gale et al. 2018). In addition, the technology of 3D 

printing is currently struggling to overcome the issue of fabricating chips made of 

many materials. 

2.5   Research Gaps 

Numerous researchers have explored various micromixer geometries, including T-

junction microchannels, O-type micromixers, H-type micromixers, spiral 

micromixers, curved microchannels, square wave microchannels, zigzag 

microchannels, teardrop micromixers, chain-1 micromixers, Y-junction micromixers, 

multi-wave micromixers, tree-shaped micromixers, and more. The primary objectives 

of these studies are to achieve an optimal mixing index and minimize pressure drop 

across a range of Reynolds numbers. 

Additionally, numerical analyses have examined the influence of several parameters, 

such as fluid properties, inlet velocities, microchannel cross-sectional dimensions, 

diffusion coefficients, and mixing angles, on mixing performance. Various studies 

have also plotted relationships such as Reynolds number vs. inlet velocity, Peclet 

number vs. mean inlet velocity, mixing length vs. inlet velocity, and mass fraction 

distributions at different sections of the mixing channel. 

Obstacle-based passive micromixers have also been proposed, incorporating 

structural elements such as cylindrical, square, rectangular, and triangular obstacles 

and microchannels with patterned grooves. Simulation results indicate that mixing 

efficiency improves with an increased number of obstacles. 

Despite extensive research, several gaps remain in the literature: 

i. Limited studies have focused on T-micromixers with bent and twist mixing 

channels and offset insertions in T-mixers with bend geometries. 

ii. Research on helical-spiral microchannels is relatively scarce. 



60 

 

iii. Limited studies on the influence of nanofluid in the micromixer performance 

2.6   Research Objectives 

The objectives of the research are described below: 

i. Numerical analysis of mixing in different microchannel models (such as twist 

and bend, helical spiral micromixer models). 

ii. Study of parameters that affect mixing, like inlet velocity and mixing angle (in 

TBM and HSTM). 

iii. Comparative study of Newtonian and non-Newtonian fluid in micromixer. 

iv. To investigate mixing index variation with nanoparticles. 
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Chapter 3      METHODOLOGY 

This chapter establishes the fundamental principles governing fluid flow and mixing 

in 3D micromixers, focusing on both Newtonian and non-Newtonian fluids. The study 

begins with the selection of micromixer geometries, including T-shaped, serpentine, 

and herringbone designs, followed by defining channel dimensions, inlet/outlet 

configurations, and boundary conditions. A structured meshing approach is employed, 

with a grid independence study to ensure numerical accuracy.  The governing 

equations, including the Navier-Stokes and continuity equations, are implemented to 

describe fluid flow, while viscosity models such as Power-law and Carreau are used 

to characterize non-Newtonian fluid behaviour. Mixing performance is evaluated 

using key metrics like the mixing index and pressure drop. 

Computational Fluid Dynamics (CFD) simulations are conducted using an appropriate 

solver, applying numerical discretization methods and varying Reynolds numbers to 

study flow characteristics. Validation of the numerical results is performed by 

comparing with experimental data or benchmark studies. To optimize micromixer 

performance, multiple strategies are employed. Geometric optimization involves 

refining channel structures to enhance mixing while minimizing energy losses. Multi-

objective optimization techniques, such as Moth flame optimization and Response 

Surface Methodology, are utilized to maximize mixing efficiency while reducing 

energy consumption. Additionally, the influence of nanofluids is analyzed by varying 

nanoparticle concentration and size to optimize fluid properties for enhanced mixing 

without significantly increasing viscosity. 
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Finally, a detailed performance evaluation is conducted by comparing different 

micromixer designs based on mixing efficiency and energy consumption. Sensitivity 

analysis examines the effects of design parameters, fluid rheology, and operating 

conditions on micromixer performance. A trade-off analysis between mixing 

efficiency, pressure drop, and power consumption helps identify the most effective 

micromixer configuration. This methodological framework ensures a systematic 

approach to computational analysis while integrating optimization techniques to 

improve micromixer efficiency. 

3.1   Transport Phenomena 

Micromixer transport processes may be analytically characterized at two fundamental 

levels: the molecule and continuum levels. These levels relate to many conventional 

length scales. The continuum model is well-suited for describing most transport 

phenomena in micromixers with length scales ranging from micrometers to 

centimeters, which align with typical practical applications. In contrast, molecular 

models characterize transport phenomena at minor length scales, specifically between 

one nanometer and one micrometer. Micromixers operating within this nanometer-to-

micrometer range are referred to as "nanomixers." 

Fluids are treated as continuous mediums at the continuum level, with their properties 

defined smoothly across space. This concept considers fluid qualities such as 

viscosity, density, and conductivity of material properties. Mass, energy conservation 

and momentum equations characterize transport phenomena. The governing equations 

in micromixer analysis are expressed as partial differential equations (PDEs), which 

must be solved to determine critical physical fields such as velocity, concentration, 

and temperature distributions. These equations describe the fundamental transport 

processes within the micromixer, including fluid flow, mass transfer, and heat transfer. 

Innovation in miniaturization technology has significantly decreased the dimensions 

of microdevices. As nanotechnology advances, scientists and engineers are 
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increasingly confronting phenomena at the molecular scale. At this size, transport 

phenomena are dictated by molecule structures and intermolecular forces.  

3.1.1    Molecular level 

The Chapman-Enskog theory is derived from the Boltzmann equation and provides a 

means of calculating macroscopic transport coefficients based on microscopic 

molecular interactions. It assumes that gas molecules undergo elastic collisions and 

that their motion can be described statistically. This theory bridges the gap between 

kinetic theory and classical fluid mechanics, making it a powerful tool for analyzing 

transport phenomena in microscale and nanoscale systems. 

To account for molecular interactions, particularly between nonpolar molecules, the 

Lennard-Jones (LJ) potential is commonly used. This empirical model describes the 

intermolecular forces governing the behaviour of gases and liquids. The Lennard-

Jones potential (φij) is mathematically expressed as: 

 φij(r) = 4ε �Cij(
σ
r

)12 − dij(
σ
r

)6�, (3.1) 

In this equation, σ signifies the molecular diameter, whereas r indicates the span 

separating the two interacting molecules. The parameter ε corresponds to the 

characteristic energy associated with the maximum attractive interaction between the 

molecules. The term (σ/r)12 accounts for the repulsive potential due to electron cloud 

overlap at short distances. In contrast, the term (σ/r)6 represents the attractive 

potential, primarily governed by van der Waals forces. The coefficients cij and dij 

depend on the types of molecules and are often assumed to have a value of 1. Table 

3.1 describes the properties of certain common gases. 

Table 3.1 Characteristic Energies with Diameters of Gases by Lennard-Jones 

Gas Energy (ε/κB) Diameter σ (nm) 

Air 97.00 0.3620 

N2 91.50 0.3680 
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CO2 190.00 0.4000 

O2 113.00 0.3430 

Ar 124.00 0.3420 

Boltzmann constant: κB=1.38*10^-23 J/K 

The characteristics of time define by the Lennard-Jones model: 

 τ = σ√(M ⁄ ε) (3.2) 

In this context, M represents the molar mass, while the characteristic time corresponds 

to the oscillation period between molecular attraction and repulsion. Additionally, this 

model facilitates the calculation of the dynamic viscosity of a pure monatomic gas. 

The force (Fij) between the molecules may be determined from the Lennard-Jones 

potential as follows: 

 
Fij = −

dφij(r)
dr

=
48ε
σ
�cij �

σ
r
�
13
− dij �

σ
r
�
7
� (3.3) 

The Knudsen number (Kn) represents the ratio of the mean free path to the 

characteristic length of a device, like the channel diameter, serving as an essential 

dimensionless parameter. Since the Knudsen number links the device's length scale to 

the interactions between fluid molecules, it is instrumental in selecting the appropriate 

model for describing transport phenomena. 

 
Kn =

λ
L

 (3.4) 

i. Kn<10−3Kn<10−3, the fluid can be treated as a continuous medium. 

ii. 10−3<Kn<10−1, an adjusted boundary conditions continuum model is 

suitable. 

iii. Kn>10−1, a free molecular flow model most accurately represents the fluid. 
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Molecular dynamics is a computational technique used to simulate the motion of 

individual molecules. Newton's second law of motion governs the interactions 

between molecules. A spherical particle with mass mmm is the most straightforward 

representation of a molecule. The pairwise interactions between molecules are 

typically described using the Lennard-Jones force. The motion of a given molecule is 

dictated by Newton’s second law, which provides a fundamental framework for 

analyzing molecular behaviour in dynamic systems: 

 
m

dri
dt

= � fij

N

j=1≢1

 (3.5) 

N denotes the total quantity of molecules in the modelled system. The essential steps 

of a molecular dynamics (MD) simulation are as follows: 

i. Defining the initial conditions and geometric parameters, 

ii. Calculating the interaction forces (Equation 3.3), and 

iii. Integrating the equations of motion (Equation 3.5). 

Due to its deterministic nature, MD simulations are highly demanding in terms of 

computational resources. A statistical approach can significantly reduce resource 

requirements. 

Direct Simulation Monte Carlo (DSMC) is an analytical technique for molecular-level 

modelling.  DSMC uses molecules aggregated and represented singular particles. 

While the motion of the particles is simulated in a deterministic manner, the statistical 

definitions of the interactions between molecules inside each particle are used. The 

core steps of the Direct Simulation Monte Carlo (DSMC) method include: 

i. Modelling the movement of particles, 

ii. Identifying and indexing particles, 

iii. Simulating collisions between particles, and 

iv. Sampling macroscopic properties for analysis. 
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3.1.2   Continuum Level 

Fundamental conservation equations, which regulate the behaviour of mass, 

momentum, and energy inside a fluid system, are used to describe transport 

phenomena at the continuum scale. These equations govern the phenomenon of 

transport. The complexity of turbulent flow modelling is avoided in micromixers, 

where fluid flow is predominantly laminar due to the small length scales and low 

Reynolds numbers. This simplification is advantageous, as turbulence is inherently 

chaotic and cannot be solved analytically, requiring complex numerical or empirical 

approaches. 

In laminar flow conditions, transport processes are primarily driven by molecular 

diffusion and convection, allowing for a more straightforward mathematical 

treatment. The three fundamental conservation equations that describe transport 

phenomena in micromixers are: 

i. Conservation of mass: Ensures that mass is conserved within the fluid domain, 

meaning that the net mass flux into a control volume equals the mass 

accumulation rate. 

ii. Conservation of momentum: Describe the motion of the fluid by relating the 

forces acting on the fluid elements to their acceleration. These equations 

account for viscous effects, pressure gradients, and external forces, making 

them essential for predicting velocity profiles and flow patterns. 

iii. Conservation of energy: Governs thermal energy transport within the fluid, 

incorporating heat conduction, convection, and, in some cases, heat 

generation. This equation is crucial when temperature variations influence 

fluid properties or mixing efficiency. 

By solving these equations, the primary variables are obtained: the velocity field (v), 

pressure field (p), and temperature field (T). Fluid properties such as density, 
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viscosity, thermal conductivity, and enthalpy, which are functions of the 

thermodynamic state (defined by pressure and temperature), can be determined from 

these variables and subsequently integrated into the conservation equations. 

3.1.2.1   Conservation of mass 

The general continuity equation is 

 Dρ
Dt

+ ρdiv∇= 0 (3.6) 

where ∇ is the nabla operator and D
Dt

 is the total derivative operator, which is defined 

as: 

 D
Dt

=
∂
∂t

+ u
∂
∂x

+ v
∂
∂y

+ w
∂
∂z

=
∂
∂t

+ (ν.∇ (3.7) 

Where ν = (u, v, w) is the velocity vector. 

3.1.2.2   Conservation of momentum 

Newton's second law governs momentum conservation: 

 ρ
Dv
Dt

= f = fbody + fsurface (3.8) 

At the microscale, surface forces—such as electrostatic, viscous, and surface stress—

play a dominant role, significantly outweighing bulk forces like gravity. When gravity 

is the only bulk force present, and surface forces result from pressure gradients and 

viscous effects under the assumption of constant viscosity and density, the Navier–

Stokes equation can be calculated from the conservation equation. This formulation 

provides a fundamental framework for describing fluid motion in microscale systems, 

where surface interactions dictate flow behaviour more than inertial or gravitational 

effects. 

 ρ
Dv
Dt

= ρg − ∇p + μ∇2v (3.9) 
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Ρ and μ represent the fluid's density and dynamic viscosity, respectively. In 

micromixers, pressure-driven flow in a straight microchannel is commonly 

encountered. Table 3.2 shows the solution for the microchannel's velocity and mean 

velocity distribution. The continuity equation is automatically satisfied for fully 

developed flow in the axial x-direction with v = w = 0 and ∂u/∂x=0. Under these 

conditions, the Navier–Stokes equation (3.10) simplifies to its two-dimensional form: 

 ∂2u
∂y2

+
∂2u
∂z2

=
1
μ

dp
dx

 (3.10) 

Table 3.2 Analytical Solution for Velocity Profile in the Microchannel 

Channel Type Solution 
Circle 

u∗(r) = 2(1 −
r2

r02
) 
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1
8μ

(−
dp
dx

)r2 

Ellipse 
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−

z2

b2
� 
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)
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3.1.2.3   Conservation of energy 

The first law of thermodynamics governs energy conservation: 

 dQ + dW = dEtotal (3.11) 

The energy equation can then be expressed in terms of the temperature T as: 
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 ρCp
DT
Dt

= βT
Dp
Dt

+ div(k∇T) + Φ (3.12) 

For a Newtonian fluid, the dissipation function arises due to viscous stress (Φ): 

 
Φ = μ �2(

δu
δx

)2 + 2(
δv
δy

)2 + 2(
δw
δz

)2 + (
δv
δx

+
δu
δy

)2

+ (
δw
δy

+
δv
δz

)2 + (
δw
δy

+
δu
δz

)2

+ (
δu
δz

+
δw
δx

)2� +
2
3
μ(
δu
δx

+
δv
δy

+
δw
δz

)2 

(3.13) 

The general energy conservation equation simplifies to the heat-convection equation 

under the assumptions of constant thermal conductivity, incompressible flow, and 

negligible variations in kinetic energy. This reduction occurs because, in the absence 

of significant kinetic energy changes, the dominant mechanisms governing heat 

transfer are conduction and convection rather than energy exchanges due to velocity 

fluctuations. 

 ρcp
DT
Dt

= k∇2T (3.14) 

3.1.2.4   Conservation of species 

The conservation of species leads to the derivation of the diffusion-convection 

equation: 

 Dc
Dt

= D∇2c + rg (3.15) 

Let c be the species' (solute) concentration; D be the species' diffusion coefficient 

inside the carrier fluid (solvent); and rg be the species' generating rate per unit volume. 

This formulation assumes that the diffusion coefficient is uniform and isotropic, 

meaning that molecular diffusion occurs equally in all directions without spatial 

dependence. This equation is fundamental in microfluidics, micromixers, and lab-on-

a-chip applications, where precise control over species transport and mixing is critical 

for achieving uniform concentration distributions and optimizing reaction kinetics. 
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3.2   Molecular Diffusion 

3.2.1      Brownian motion and random walk 

A particle's path as it moves through a series of steps, each done in a random direction, 

is called a random walk. Three key criteria must be followed to create a practical, 

simple, random walk.: 

i. The particle begins from a designated initial position. 

ii. Each step covers an equal distance, and 

iii. The direction between consecutive points is chosen randomly. 

Following these guidelines, a simple application may imitate a particle's random walk. 

In the case of a one-dimensional random walk along a line, the particle randomly 

chooses between two possible directions at each step. The distance covered in each 

step is considered to be s. The square location x(n) at step n may be expressed as: 

 
x(n)2 = � si2

n

i=1

= ns2 ∝ Dt (3.16) 

Here, Si denotes random step.  

The Brownian motion of particles in a liquid result from continuous and random 

collisions with surrounding liquid molecules. These molecular interactions create an 

instantaneous imbalance of forces acting on the particle, causing it to undergo erratic 

movement. This stochastic motion is a fundamental phenomenon in microscale and 

nanoscale transport processes, playing a crucial role in diffusion-driven mixing, 

colloidal stability, and particle transport in fluids. 

3.2.2    Stokes-Einstein model of diffusion 

The time-dependent motion of a Brownian particle can be described using a force 

equilibrium equation, in which the random or stochastic force exerted by surrounding 

liquid molecules is a key contributing factor. This equation accounts for the interplay 
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between random thermal forces and systematic forces acting on the particle, providing 

a comprehensive mathematical framework for modelling its trajectory over time. This 

formulation is known as the Langevin equation, which serves as a fundamental tool 

in statistical physics for describing the dynamics of particles subject to both 

deterministic and random forces: 

 
m

dv
dt

= βv + F(t) (3.17) 

where m is the particle's mass, β friction coefficient and F(t) represents the liquid 

molecules random force. At small timescales, inertial effects dominate the Langevin 

equation. Stokes' law for drag on a spherical particle with radius σp can determine the 

friction coefficient. 

 β = 3πμσp (3.18) 

3.2.3      Diffusion coefficient 

3.2.3.1   Diffusion coefficient in gases 

Using kinetic theory, the diffusion coefficient between two gases i and j, expressed in 

meters squared per second, can be determined (Cussler 2009): 

 

D = Dij = Dji =

1.86 × 10−23T2/3� 1
Mi

+ 1
Mj

pσij2Ω
 

(3.19) 

M represents the gas molar weights, T temperature, and p pressure. The collision 

diameter σij is calculated as the mean of the diameters of the two gas molecules σi and 

σj: 

 σij =
σi + σj

2
 (3.20) 
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3.2.3.2   Diffusion coefficient in liquids 

Diffusion coefficients in gases are typically 10−5 m2/s, whereas in liquids, they are 

much smaller, around 10−9 m2/s. For large molecules, diffusion coefficients can be as 

low as 10−11 m2/s. The Stokes-Einstein equation can estimate the diffusion coefficient 

(Dij) of molecule I in a solvent with viscosity ηj. 

 
Dij =

kBT
3πμjσi

 (3.21) 

Here, σi represents the diameter of molecule i. In this equation, the numerator 

corresponds to the molecule's kinetic energy, while the denominator accounts for the 

frictional force acting on it. 

3.3   Chaotic Advection 

A phenomenon known as chaotic advection occurs when a fundamental Eulerian 

velocity field causes a chaotic distribution of a Lagrangian marker, such as a tracer 

particle. This phenomenon is referred to as chaotic advection. The term "advection" 

refers to the movement of species across fluids, and chaos can occur even under 

laminar flow situations. The generation of chaotic advection can happen in a two-

dimensional flow through the presence of time-dependent disturbances, or it can occur 

in a three-dimensional flow without such perturbations. 

It is essential to distinguish chaotic advection from turbulence. In chaotic advection 

without disturbances, the velocity components at a specific point in space remain 

constant over time, whereas turbulence features random velocity components. In 

steady chaotic advection, streamlines cross, causing particles to change paths, leading 

to exponential particle divergence and enhanced mixing of solvent and solute. In time-

periodic systems, chaotic behaviour occurs when streamlines intersect at two 

consecutive intervals. 

In these equations, x denotes the intensity of convection, y signifies the temperature 

variance among descending and ascending currents, and z reflects the deviation of the 

vertical temperature profile from linearity. 
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3.3.1     Chaotic advection examples 

3.3.1.1   Lorentz’s convection flow 

Lorenz developed a simplified set of equations to describe convection rolls in the 

atmosphere.  

 

⎩
⎪
⎨

⎪
⎧

dx
dt� = Pr(y − x)

dy
dt� = x �

Ra
Rac

− z� − y

dz
dt� = xy − βz

 (3.22) 

3.3.1.2   Dean flow in curved pipes 

Dean was the first to calculate the flow field within a curved pipe; a more detailed 

study can be found in (Ozen et al. 2006). Gratton later provided a detailed derivation 

(Zahn and Reddy 2006). In this model, the pipe has a diameter σ, and the coordinate 

system is defined using cylindrical coordinates. Here, s represents the coordinate 

along the centerline of the toroid, and q denotes the curvature. The metric for this 

coordinate system is expressed as follows: 

 (dq)2 = (1 +
r
R

sinθ)2(ds)2 + (ds)2 + (r)2(dθ)2 (3.23) 

Assuming laminar flow, changes in s are considered negligible. The velocity 

components u, v, and w correspond to the directions s, r, and θ, respectively. In this 

coordinate system, the continuity equation (Equation 3.11) and Navier–Stokes 

equations (Equation 3.14) are reformulated as: 

 ∂v
∂r

+
1
r
∂w
∂θ

+
v
r

+
vsinθ + wcosθ

R + rsinθ
= 0 

 

(3.24) 

To achieve adequate flow in a micromixer, it is essential to inject both the solute and 

the solvent from the right and left sides of the cross-section or the outer and inner 



74 

 

sides of the curved channel. This configuration captures the fluid particle paths on 

both channel sides. On the contrary, if the solute and the solvent are put in the 

channel's top and bottom halves, respectively, their routes will limit them to the 

channel's designated parts, prohibiting advective mixing. Regardless of whether they 

are introduced on the exterior or the inside of the curved channel, the trajectories 

display elliptic and homoclinic properties, demonstrating that they are stable. While 

longitudinal transport is advective, it remains orderly, indicating that the pathways do 

not intersect simultaneously. Because of this, it is impossible to generate chaotic 

advection using the Dean flow that was initially developed. 

This ratio is often close to unity in practical channel designs, making the secondary 

flows more pronounced. The Dean number characterises the flow, which depends on 

the Re. 

 
De = Re�

a
R

 (3.25) 

The Dean number assesses the balance of centrifugal and inertial forces. A significant 

Dean number, Decr=150, indicates a change in the secondary flow pattern. De<150 

detects just two counter-rotating vortices, as previously described. However, with 

higher Dean numbers (De>150), centrifugal force takes over, forming two more 

vortices along the outer channel wall. 

3.3.1.3   Flow in helical pipes 

In helical pipes, the flow experiences a rotational motion across the entire cross-

section as it moves along the central axis of the pipe, a phenomenon commonly 

denoted by q. This rotational effect arises due to the helical geometry, which 

introduces curvature and torsion into the system. When the torsion τ of the helical pipe 

remains constant, the angular rotation at a specific location s along the pipe’s length 

can be mathematically expressed as τs. 

Additionally, in a well-defined helical structure, the curvature κ, which describes the 

rate of change of the flow direction along the pipe, is given by (Germano 1982): 
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 (dq)2 = [1 − krsin(θ + τs)](ds)2 + (dr)2 + r2(dθ)2 (2.26) 

In this system of coordinates, the flow has a second-degree dependency on the torsion 

parameter τ. As a result, the velocity field solution for helical pipes is expressed as 

follows: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

dx
dt

= hcos(λs) +
h′

r
yxsin(λs) +

h′

r
y2 cos(λs) ,

dy
dt

= −�hsin(λs) +
h′

r
xycos(λs) +

h′

r
x2 sin(λs)�

ds
dt

= 1 − r2

 (3.27) 

Here, torsion and curvature are combined in the geometry parameter. 

3.3.1.4   Flow in twisted pipes 

In a straight channel, fluid motion is typically confined to a single dimension, meaning 

that the flow primarily follows the channel’s longitudinal axis with little to no 

movement in the transverse direction. However, when the channel is curved, the 

introduction of curvature induces additional velocity components in directions 

perpendicular to the main flow, resulting in a three-dimensional flow structure. This 

means that fluid motion is influenced both along the longitudinal axis and within the 

transverse cross-sectional plane, leading to the development of complex secondary 

flows. 

 

�
∆2u =

1
r

(
∂ψ
δr

∂u
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−
∂ψ
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�
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δ
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−
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δ
δr
� Δ2ψ + 2De2u(

sinθ
r

δu
δθ

− cosθ
δu
δr

)
 (3.28) 

3.4 Flow Computational Analysis  

3.4.1    Mixing Eulerian method 

The established assumptions formulate the simplified governing equations for flow 

dynamics in micromixers. 
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i. The surfaces are uniform and maintain a constant temperature. 

ii. The fluid flow exhibits characteristics of being incompressible and follows 

Newtonian principles. 

iii. The diffusion coefficient remains constant for both mixing fluids. 

iv. The tension on the wall surface is minimal. 

The continuity and Navier–Stokes equations are expressed as follows with the 

analysis of mixing with diffusion-advection model for the concentration species: 

 ∂Ui

∂xi
= 0 

 

(3.29) 

 
ρ �

δUi

δt
+ Uj

δUi

δxj
� = −

δp
δxi

+ μ
δ
δxj

��
δUi

δxj
+
δUj

δxi
�� (3.30) 

 δC
δt

+ Uj
δc
δxj

= D
δ2C
δ2xj

 (3.31) 

A common approach to evaluate micromixer performance is introducing a small 

quantity of dye into one of the fluids, which facilitates the visualization and 

quantification of the mixing process. The dye mass fraction, represented as C, is a key 

parameter in this analysis. In the underlying mixing model, the dyed and undyed fluids 

are assumed to have the same viscosity (μ) and density (ρ), assuming that variations 

in dye concentration do not affect these properties. 

The transport of the dye within the fluid is governed by an advection-diffusion 

equation, which describes the passive movement of the solute due to fluid velocity 

and molecular diffusion. To ensure accurate representation of experimental 

conditions, appropriate boundary conditions are applied: one inlet introduces a pure 

fluid (e.g., water) with a dye mass fraction of 0, while the second inlet supplies a dyed 

solution (e.g., water with a dissolved dye) with a mass fraction of both fluids enter at 
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uniform velocities. A condition of zero static pressure is upheld at the outlet, while a 

no-slip boundary condition is applied at the channel walls. 

The study of three-dimensional under constant viscosity and density laminar mixing 

has been extensively investigated and validated for various micromixer designs. 

However, when mixing involves fluids with differing densities and viscosities, a 

multi-component model may be utilized to predict local fluid properties based on mass 

fractions more accurately. This approach is particularly relevant for systems such as 

water-ethanol mixtures, where variations in density and viscosity significantly 

influence mixing behaviour. 

This modelling approach determines how viscosity (μ) and density (ρ) depend on 

species concentration. Rather than relying on linear relationships between species 

concentration and fluid properties, they obtained functional approximations for 

density and viscosity by fitting experimental data. They found that linear dependence 

worked well for density. A combination of glycerol and water was used in the research 

conducted by Wu et al. to explore mixing in a planar passive micromixer. Utilizing a 

linear connection derived from the mass fractions of glycerol and water, the density 

of the mixture was calculated. Conversely, the viscosity and diffusion coefficients 

were assessed by applying nonlinear relationships based on the mass percentage of 

glycerol. Contrast with experimental results, which showed that the nonlinear 

approach provided enhanced accuracy, positioning it as a more practical option for 

simulating viscous mixing than the linear method. In summary, it is crucial to 

accurately represent the relationship between fluid properties—like density, viscosity, 

and diffusion coefficients—and concentration in numerical models to ensure precise 

predictions of species concentration. 

Various studies have employed tetrahedral and hexahedral grids to explore flow and 

mixing dynamics in micromixers. Conducting a grid-sensitivity test is essential for 

determining appropriate grid cell sizes and dispersion, which is crucial for achieving 

precise predictions. This is true regardless of the grid system that is used. It is possible 

to obtain grid convergence for the velocity field; nevertheless, inconsistencies in the 

concentration field may still occur due to numerical (or false) diffusion, mainly when 

the Peclet numbers are high. Using a grid of poor quality might result in false 
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diffusion, leading to an overestimation of mixing. In a micromixer that Chen and 

Meiners had constructed, Liu experimented to determine the impact of false diffusion 

on tetrahedral and hexahedral grid materials. Based on the findings of the 

investigation, it was shown that tetrahedral cells exhibited a significantly higher level 

of erroneous diffusion compared to hexahedral cells, with the difference being 

approximately one order of magnitude. When doing mixing analysis, Liu suggested 

eliminating tetrahedral cells since hexahedral grids need fewer cells and greatly 

minimize the required computer work. 

The governing equations are converted into algebraic equations through a finite-

volume approach, with the discretization method chosen to influence the accuracy of 

the numerical solution. Further information on discretization techniques and solution 

strategies can be found in the studies by Patankar, Ferziger, and Perić. Liu 

demonstrated that higher-order discretization schemes have reduced susceptibility to 

numerical diffusion in the context of scalar mixing precision. The conventional 

upwind differencing method can generate considerable discretization errors in 

intricate flow calculations, but higher-order upwind techniques (second and third-

order accurate) mitigate numerical diffusion. (Kim, Kim, and Kim 2018) conducted 

flow and mixing investigations in various micromixers, employing a high-resolution 

method to discretize the advection terms in the governing equations. This approach 

reduced numerical discretization errors through an automated correction process. 

3.4.2      Mixing Lagrangian method 

Numerical diffusion causes discretization errors that affect the numerical solution of 

the advection-diffusion equation about the concentration field. Many researchers have 

employed Lagrangian particle tracking to address this issue by studying mixing in 

various micromixers. 

In the Lagrangian approach, many tracer particles are introduced at the micromixer’s 

inlet and individually tracked as they move through the flow field of the continuous 

phase. This method provides a particle-based perspective of fluid motion, enabling 

detailed insights into mixing efficiency, dispersion patterns, and transport phenomena 

within the micromixer. This formulation ensures that the particle's trajectory is 
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determined solely by the local velocity of the fluid, making it an effective technique 

for analyzing advection-dominated transport in microscale flows. 

 dxp
dt

= Vp (3.32) 

Bertsch et al employed particle tracking to provide a quantitative assessment of 

mixing alongside experimental data. Numerical research of mixing in a microchannel 

with patterned grooves was carried out by Wang et al. who utilized a particle tracking 

technique that was founded on a fourth-order adaptive Runge-Kutta integration 

scheme. To investigate the phenomena of chaotic advection, Poincaré maps were 

developed and analyzed on. The flow field for the continuous phase in a micromixer 

was computed using numerical simulations, which Aubin and colleagues carried out. 

Using a fourth-order Runge-Kutta scheme with an adjustable step size, they could 

monitor 2,480 equally dispersed particles and positioned on the right side of the mixer 

intake. To analyze mixing, the data collected from particle tracking were utilized. This 

study looked at the spatial arrangement of particulate in a descriptive plane, the 

maximum striation thickness, and the residence time profiles. 

3.4.3      Quantification of micromixers  

3.4.3.1    Direct statistical approach 

The distribution of intensity values within an image, represented by its histogram H(I), 

provides a quantitative measure for evaluating the degree of mixing in a micromixer. 

This approach leverages image processing techniques to analyze the spatial variation 

in concentration, offering a non-intrusive and effective method for assessing mixing 

efficiency. The standardized concentration is regarded as equivalent to the 

standardized intensity values. 

 c = I =
I − Imin

imax − Imin
 (3.33) 

The normalized deviation of the intensity value or concentrations can quantify 

homogeneity.  
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The mean concentration can normalize this standard deviation to compute the mixing 

index: 
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The mixing index thus ranges from 0 to 1. 

 

ηmixing = 1 − MI = 1 −�
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�
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 (3.36) 

3.4.3.2   Indirect methods 

Indirect approaches determine the extent of mixing by examining chemical reaction 

byproducts or changes in fluorescence intensity caused by pH differences in the 

combined fluids. 

3.5   Methodology for Newtonian Fluid 

This work correlates with Wang (Wang et al. 2012) (Dundi, Raju, and Chandramohan 

2021), we improve geometry using ML tools (Moth Flame Optimization (MFO)) for 

determining a global minimum. Thus, by applying this ML technique, we can 

determine the best geometrical parameter to attain the maximum mixing index (𝜑𝜑) 

and minimum pressure drops (ΔP). 

A hybrid T-geometry micromixer with the dimensions of channel length 3000µm, 

width 100 µm and depth 200 µm (Figure 3.1 & 3.2) was proposed for this work. A 

hybrid T-model with different twist and bend angle combinations with Re was 

designed for the analysis. Numerous simulations were done for twists and bend 
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angles, varying from 1 to 4 and 300, 500 and 700, respectively and Reynold numbers 

10 to 550. All findings support the improved mixing in these mixers. Optimizing 

micromixers with twist and bend was accomplished by using CFD and MFO. This 

main objective is to study the impact of the twist and bend angle of the micromixer 

with various Re, on η and ΔP. The investigation aimed to understand how these two 

factors affect the overall performance of the mixing process and determine their 

significance in optimizing the design and operation of mixing systems. As found in 

(Prakash, Zunaid, and Samsher 2021; Sinha and Zunaid 2022), η increases with twist 

and bend angle in a monotonic manner. Additionally, the results showed that both ΔP 

and mixing energy costs increase with increasing twist and bend values as the 

Reynolds number increases. This work uses ML tools to optimise the micromixer 

model, especially using ANN and MFO algorithms. All simulations were carried out 

using the finite volume analysis within the Ansys fluent 2022 software, designed for 

incompressible and stationary fluid flow analysis. The use of this software allowed 

for a detailed and accurate representation of the fluid flow behaviour and the impact 

of various parameters on the η. Flow is governed by Newtonian fluid law with 

constant properties and is solved using equations 3.37 and 3.38. In the simulation, the 

velocity at inlets 1 and 2 was set to be equal, but the mass concentrations of solute C 

were different. Inlet 1 had a concentration of C = 1 mol/m3, while inlet 2 was free of 

solute with a concentration of C = 0 mol/m3, and the channel wall had a no-slip 

condition. This setup was chosen to investigate the mixing behaviour of a uniform 

laminar flow with solute concentrations (equation 3.39) at the inputs. 

 𝛻𝛻�⃗ . 𝑢𝑢���⃑ = 0, (3.37) 

 
𝜌𝜌
𝐷𝐷𝑢𝑢�⃗
𝐷𝐷𝐷𝐷

= 𝛻𝛻�⃗ 𝜌𝜌 + 𝜇𝜇𝛻𝛻2𝑢𝑢�⃗ , (3.38) 

 𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝛾𝛾𝛻𝛻2𝐶𝐶 (3.39) 

The variables 𝑢𝑢�⃗ , C and p define the velocity, concentration, and pressure, respectively, 

of fluid. Similarly, μ, γ, and ρ represent the fluid diffusion coefficient, viscosity, and 

density. These parameters play an important role in fluid mechanics and describe 

fluid's movement, behaviour and interaction in a system. 
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Figure 3.1 Dimension of the Proposed Hybrid with twists and bend Passive mixer 

 

Figure 3.2 Offset Twists and Bend Passive Micromixer 

The input and output boundary conditions were gauze pressure and coupled with 

pressure-velocity methods with a pressure-based solver using the SIMPLEC 

algorithm. The viscosity, coefficient of diffusion, and density are μ= 1*10-03 Pa·s, D= 

2*10-09 m 2 /s, respectively and ρ= 998.2 kg/m3. 
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3.6   Methodology for non-Newtonian Fluid  

A helical spiral micromixer with an axial channel length of 3000 µm, base diameter 

of 300 µm, and inlet cross-section of 100* 100 µm (shown in Figure 3.3) was proposed 

for this work. Their non-Newtonian nature makes modelling the fluids used in 

hydraulic fracturing and remediation considerably more difficult. The non-linear shear 

stress-strain relationship in non-Newtonian fluids is characterized by 

 𝜏𝜏 = 𝜇𝜇(𝛾̇𝛾)𝛾̇𝛾 (3.40) 

 𝛾̇𝛾 = [∇𝑢𝑢 + (∇𝑢𝑢)𝑇𝑇] (3.41) 

and the dynamic viscosity, or μ, depends on the shear rate (𝛾̇𝛾 = �𝛾̇𝛾: 𝛾̇𝛾). Research on 

the flow characteristics of non-Newtonian fluids within micromixers predominantly 

centers on power-law fluids. The behaviour of certain fluids can be adequately 

characterized by the power law model within a limited range of shear rates. However, 

the majority of non-Newtonian fluids exhibit more intricate behaviour that is more 

accurately represented by alternative models, such as the Cross model, which is 

defined as follows Equation 3.42: 

 𝜇𝜇 =
𝜇𝜇0 − 𝜇𝜇∞

1 + (𝑘𝑘𝛾̇𝛾)𝑛𝑛 + 𝜇𝜇∞ (3.42) 

where k and n are fluid-specific parameters, 𝜇𝜇0 zero-shear viscosity, and 𝜇𝜇∞ infinite 

shear viscosity. Across a spectrum of shear rates, cross-model fluids exhibit behaviour 

akin to power-law fluids; outside this spectrum, they transition to regions of constant 

viscosity. The majority of biochemical fluids exhibit non-Newtonian characteristics. 

The non-Newtonian fluid does not adhere to the Newtonian law governing the 

relationship between stress and strain rate. Figure 3.4 shows how the Cross-model 

fluids and power law fluids differ. Few research studies have used Cross-model 

rheology, particularly in 3D systems, because the rheological model's increased 

complexity makes flow modelling in porous medium systems more complex. 

This study employs the C-Y model for blood, taking into account the shear-thinning 

effect, as expressed below equation 3.43 (Chen and Chen 2024): 
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 𝜇𝜇(𝛾̇𝛾) = 𝜇𝜇∞ + (𝜇𝜇0 − 𝜇𝜇∞)[1 + (𝜆𝜆𝛾̇𝛾)𝑎𝑎]
(𝑛𝑛−1)

𝑎𝑎�  (3.43) 

where 𝜇𝜇∞, and 𝜇𝜇0 indicates infinite and zero shear-rate viscosity; a, n, and λ are 

constant parameters (Abraham, Behr, and Heinkenschloss 2005) gives. 

The ANSYS Fluent 2022 R1 program was utilized to solve the mathematical 

framework based on finite volume. The pressure-velocity coupling scheme 

COUPLED, the pressure interpolation equations of types PRESTO (Pressure 

Staggering Option), and the momentum interpolation equations QUICK (Quadratic 

Upstream Interpolation for Convective Kinematics) were employed. The convergence 

requirements were 10-06 for mass, 10-08 for momentum, and 10-10 for species 

concentration. 

 

 

Figure 3.3 Details of the proposed spirally helical micromixer model with mesh of 

3.2M tetrahedron elements 
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Figure 3.4 Comparison of (a) cross-flow model vs (b) power-law model 

Using the modified Cross model, one can set the C-Y model easily 

 
𝑓𝑓 = �1 + �

𝐴𝐴𝛼𝛼𝑇𝑇𝛾̇𝛾
𝜏𝜏∗

�
1−𝑛𝑛

� (3.44) 

The Carreau-Yasuda model is continuous for all 𝛾𝛾 ≥ 0̇ . The parameters 

α, 𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆control how the fluid behaves in the non-Newtonian regime between these 

asymptotic viscosities. The persistence of this model at low shear rates facilitates 

simpler integration into numerical modeling frameworks. 

Here, variable values are taken as follows 𝜇𝜇0 = 0.1600 𝑃𝑃𝑃𝑃. 𝑠𝑠, 𝜇𝜇∞ = 0.0035 𝑃𝑃𝑃𝑃. 𝑠𝑠, 

𝜆𝜆 = 8.2 𝑠𝑠, 𝑎𝑎 = 0.64, and 𝑛𝑛 = 0.218 from (Abraham et al. 2005).   

The concentration distribution governing equation is defined as follows: 

 𝑢𝑢.∇𝑐𝑐 = 𝐷𝐷∇2𝑐𝑐 (3.45) 

Here c denotes the concentration of species, D is the diffusion coefficient (1 ∗

10−10𝑚𝑚2/𝑠𝑠). The conditions of boundary for domain of the micromixer model system 

are as follows: 

 

�

𝑢𝑢 = 𝑢𝑢0, 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢 = 0, 𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑝𝑝 = 0, 𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑐𝑐 = 𝑐𝑐0, 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (3.46) 
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The concentration distribution levels along the length of the primary channel can serve 

to evaluate the extent of fluid blending within micromixers. In the mixing process, 

mixing performance can calculated from the following equation: 

 
𝜂𝜂 = 1 −�

𝜎𝜎2

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚2  (3.47) 

 𝜎𝜎 
2 = � (𝑐𝑐 − 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑑𝑑Γ

 

Γ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 (3.48) 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚2 = � (1 − 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑑𝑑Γ
 

Γ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 (3.49) 

The equations that control the system are resolved by incorporating them into the 

commercially available finite element analysis software Ansys Fluent. The CFD and 

Transport of Diluted Species modules compute the fluid flow and concentration 

issues. In this study, all fields representing state variables, specifically u, p, and c, are 

discretized employing parametric finite elements. The governing equations are 

analyzed using the FEM. The objective function and constraints are subsequently 

resolved. 

The design parameter ‘Mixing energy cost’ was defined by (Ortega-Casanova 2017) 

as follows in equation 3.50. 

 𝑀𝑀𝑀𝑀𝑀𝑀 =
∆𝑃𝑃
𝜂𝜂

 (3.50) 

Minimizing the MeC improves both the mixing rate and pressure differential at a 

constant flow rate. This paper also examines the system's performance in terms of η, 

ΔP, and MeC. 

These steps are repeated until the specified criterion for the objective function value 

is achieved while also fulfilling the constraints: 
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�
𝐽𝐽𝑁𝑁 − 𝐽𝐽𝑁𝑁−1

𝐽𝐽𝑁𝑁
� <∈ (3.51) 

Here, the exponent N denotes the count of iterations performed during the 

optimization process, and ∈=1e-10 for this study. Should the criteria be met, the 

process concludes; otherwise, it persists. The design factor is modified through a 

method that utilizes the progression of equilibrium points. 

The Batchelor scale can further assess the reliability of the mesh dependence analysis. 

The size of a fluid droplet is influenced by the duration required for energy dissipation 

in an eddy of scale χ (Maionchi, Ainstein, dos Santos, and Maurcio Bezerra de Souza 

Júnior 2022). Using the Batchelor scale, we may forecast the minimal scale of the 

concentration field and estimate the finest concentration structures using the equation 

3.52. 

 𝜆𝜆𝐵𝐵 =
χ
√𝑆𝑆𝑆𝑆

 (3.52) 

χ, λB, and Sc represent the Kolmogorov length scale, the finest concentration structure, 

and the Schmidt number. In this study on viscous flow, the microchannel diameter of 

100 µm can be used to approximate χ. Based on these parameters, the value of λB is 

0.6174 µm. The grid of 2,751,890 cells has a maximum edge length of 0.0714 µm, 

accurately predicting concentration distribution. 

3.7   Methodology for Nanofluid 

Figure 3.2 shows the schematics of the proposed micromixer model for the 

investigation. The proposed model has dimensions of 100, 200, and 3000 µm as depth, 

width, and axial distance, respectively, with the oddest dimension of 50 µm. The 

governing equations' assumptions are 3D fluid flow, laminar and incompressible, 

steady and irrotational, and thermos-physical properties that are temperature-

dependent for nanofluid. 

The finite volume mathematical framework was solved using ANSYS Fluent 2022 

R1. The pressure-velocity coupling technique COUPLED, pressure interpolation 
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equations PRESTO (Pressure Staggering Option), and momentum interpolation 

equations QUICK were used. The convergence criteria were 10-06 mass, 10-08 

momentum, and 10-10 species concentration. 

The thermos-physical properties of nanofluids have been determined using the 

following equations (Bezaatpour and Goharkhah 2020; Islami, Dastvareh, and 

Gharraei 2013): 

 𝜌𝜌𝑛𝑛𝑛𝑛 = (1 − ∅)𝜌𝜌𝑓𝑓 + ∅𝜌𝜌𝑛𝑛𝑛𝑛 (3.53) 

 (𝜌𝜌𝐶𝐶𝑝𝑝)𝑛𝑛𝑛𝑛 = (1 − ∅)�𝜌𝜌𝐶𝐶𝑝𝑝�𝑓𝑓 + ∅(𝜌𝜌𝐶𝐶𝑝𝑝)𝑛𝑛𝑛𝑛 (3.54) 

 𝜇𝜇𝑛𝑛𝑛𝑛 = 𝜇𝜇𝑓𝑓(1 + 2.5∅) (3.55) 

Here, the indices f, np, and nf represent the base fluid, nanoparticle, and nanofluid, 

respectively. Additionally, the thermal conductivity is determined using the following 

equation. 

 𝑘𝑘𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (3.56) 

 
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑓𝑓 �

�𝑘𝑘𝑛𝑛𝑛𝑛 + 2𝑘𝑘𝑓𝑓� − 1∅(𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑛𝑛𝑛𝑛)
�𝑘𝑘𝑛𝑛𝑛𝑛 + 2𝑘𝑘𝑓𝑓� + ∅(𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑛𝑛𝑛𝑛)

� (3.57) 

 
𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 5 ∗ 104 𝛽𝛽∅𝜌𝜌𝑓𝑓𝐶𝐶𝑝𝑝,𝑓𝑓�

𝑘𝑘𝑘𝑘
𝜌𝜌𝑛𝑛𝑛𝑛𝐷𝐷𝑛𝑛𝑛𝑛

𝑔𝑔(∅,𝑇𝑇) (3.58) 

Here, 𝑘𝑘 = 1.38 ∗ 10−23 𝐽𝐽/𝐾𝐾 and 𝛽𝛽 is a liquid fraction with the particle g(T, ∅) is 

model function as below; 

 𝑔𝑔 = (−6.04∅ + 0.4705)𝑇𝑇 + 1.722.3∅ − 134.63 (3.59) 

The ferrous oxide nanoparticles, with a diameter of 15 nm, are assumed to have a 

density of ρ = 4950 kg/m³. Additionally, their thermal conductivity and specific heat 

are considered k = 7 W/m·K and Cp = 640 J/kg·K, respectively. 
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3.7.1     Governing equations 

i. Navier-Stokes Equation (Incompressible Flow) 

 
𝜌𝜌𝑛𝑛𝑛𝑛 �

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

+ 𝑢𝑢.∇𝑢𝑢� = −∇𝑃𝑃 + 𝜇𝜇𝑛𝑛𝑛𝑛∇2𝑢𝑢 (3.60) 

ii. Energy Equation 

 
𝜌𝜌𝑛𝑛𝑛𝑛𝐶𝐶𝑝𝑝,𝑛𝑛𝑛𝑛 �

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

+ 𝑢𝑢.∇T� = 𝑘𝑘𝑛𝑛𝑛𝑛∇2𝑇𝑇 (3.60) 

iii. Transport Model 

 𝜕𝜕𝜕𝜕
𝛿𝛿𝛿𝛿

+ 𝑢𝑢.∇φ = ∇. (𝐷𝐷𝐵𝐵∇𝜑𝜑 + 𝐷𝐷𝑇𝑇∇𝑇𝑇) (3.61) 

iv. Diffusion Coefficient 

 
𝐷𝐷𝐵𝐵 =

𝑘𝑘𝐵𝐵𝑇𝑇
3𝜋𝜋𝜇𝜇𝑛𝑛𝑛𝑛𝑑𝑑𝑝𝑝

 (3.62) 

3.8   Design Optimization of Micromixers 

The shape of a passive micromixer's flow pathways significantly impacts mixing 

performance. As a result, it is crucial to identify the optimal configuration that 

maximizes mixing efficiency. However, in some micromixers, improving mixing 

performance can lead to an increase in pressure drop. Therefore, exploring different 

configurations that balance the mixing index and pressure drop is essential. Numerical 

optimization methods, combined with CFD models for flow and mixing, have proven 

effective for the design of micromixers. This encompasses single- and multi-objective 

optimization techniques for shape optimization. 
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3.8.1    Micromixers Optimization Technique 

In passive micromixers, shape modifications can significantly influence the flow and 

mixing kinetics within the channel, affecting device performance. Many studies have 

investigated the influence of geometry and flow factors on mixing performance, 

creating viable micromixer designs. More advanced methods like design optimization 

have created more efficient designs. Various approaches to micromixer design include 

parametric studies, layout optimization through variational optimization, and 

systematic optimization approaches. 

Aubin et al. investigated the influence of geometrical factors on an SHM employing 

particle tracing and CFD. They tested three design stipulations: groove depth, width 

and the number of grooves per cycle, quantifying mixing through maximum striation 

thickness and residence time for different parameter combinations. Their study 

provided insights into the secondary flow behaviour within the microchannel. 

Furthermore, the study examined the mixing performance of three types of grooved 

micromixers—SHM, slanted groove, and barrier-embedded micromixers—

employing the "coloured particle tracking method" for qualitative and quantitative 

evaluations. 

(Hossain et al. 2010) employed a variational optimization approach to design passive 

micromixers by solving a layout optimization problem. They used Navier–Stokes and 

convection-diffusion equations as constraints, with mixing performance as the 

objective function. Their numerical results demonstrated the success of the layout 

optimization method in achieving efficient mixing, and experiments confirmed its 

effectiveness in the conceptual design of micromixers. 

Numerical optimization techniques, particularly those based on CFD evaluation, have 

helped design resilient and effective passive micromixers. The optimization 

objective(s) can include performance metrics like mixing index, pressure loss, and 

residence time. For micromixers, mixing efficiency and pressure loss are key 

parameters, with mixing efficiency being crucial for performance and pressure loss 

affecting pumping power requirements. Optimization might be single- or multi-

objective (e.g., optimizing mixing efficiency while reducing pressure loss). 
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Given that optimization procedures often require numerous evaluations of objective 

functions, conventional methods can be computationally expensive. To address this, 

surrogate models build a functional link between the inputs and outputs, resulting in 

a credible approximation of the simulation paradigm. Surrogate-based optimization 

has been widely applied in various fields, including aerospace, to reduce 

computational costs. 

Unlike single-objective, multi-objective incorporates many competing design goals. 

There are two primary methods for addressing a multi-objective optimization issue. 

The first way integrates numerous objectives into a single objective function by giving 

weights to each target, which are determined by the designer's preferences. A 

micromixer with a Tesla structure was modified and optimized using weighted 

average surrogate models. In this approach, the mixing index and pressure drop were 

linearly combined using a weighting factor to create a single objective variable 

(Hossain et al. 2010). 

The second method utilizes multi-objective evolutionary algorithms (MOEAs) to 

produce multiple barter solutions for different objectives. Recent developments in 

MOEAs include the implementation of Pareto algorithms, Pareto archived 

evolutionary techniques, and elitist, non-dominated sorting genetic algorithms. Multi-

objective problems produce a set of solutions, known as Pareto-optimal solutions, 

which allow designers to analyze the trade-offs between different design choices. 

The authors (Hossain et al. 2010) used multi-objective genetic algorithms (MOGA) 

for the geometry optimization of SHMs, with mixing degree and pressure drop as the 

objective functions. This research aimed to construct a Pareto-optimal front, which 

optimized the trade-off between most excellent mixing efficiency and least pressure 

loss.  Another piece of research was carried out by Cortes-Quiroz and colleagues, in 

which they sought to achieve Pareto-optimal designs by doing multi-objective 

optimization on a passive micromixer that had fin-shaped baffles and was placed in a 

T-channel. 

Additionally, Afzal and Kim carried out multi-objective optimizations of several 

different micromixers. These included a SAR micromixer, a Sigma micromixer with 

convergent-divergent sinusoidal walls, and an SHM. RSA and RBNN are two 
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surrogate models that approximate the goal functions: the mixing efficacy and the 

non-dimensional pressure drop. After that, these surrogate models were put into 

MOGA to produce the Pareto-optimal front. It illustrates the barter between the 

mixing performance and the pressure drop. By the criteria that are unique to them, 

designers can select a solution along the Pareto-optimal front. Mixing effectiveness 

was the method that Afzal and Kim utilized to choose the optimum design from among 

the accessible Pareto-optimal options. 

3.8.2    Surrogate Model vs Convention- Based Optimization 

Researchers have utilized various techniques to optimize systems with specific inputs 

and responses. One of the easiest methods is a parametric study, which systematically 

analyses the effect of particular design parameters on the system's behaviour while 

keeping all other factors constant. However, a more advanced and comprehensive 

approach involves applying design of experiments (DOE) methodologies. DOE 

techniques allow for the simultaneous variation of multiple parameters to assess their 

collective impact on system performance, leading to more efficient optimization. 

Standard DOE methods include factorial designs, which systematically evaluate 

interactions between parameters, and Latin hypercube sampling, which ensures a 

well-distributed exploration of the input space for improved statistical accuracy. These 

approaches enable researchers to gain deeper insights into system dynamics and 

optimize performance more effectively. 

While these approaches can help identify acceptable or feasible designs, finding the 

optimal design remains crucial. Using appropriate algorithms, optimization makes it 

possible to thoroughly investigate the whole design space to maximize or decrease a 

system's response. This procedure may be carried out using gradient-based methods, 

which are helpful for restricted and unconstrained optimization, or heuristic 

approaches, such as particle swarm optimization, which are helpful for complicated, 

nonlinear, or high-dimensional search spaces. Both of these methods are effective for 

solving optimization problems effectively. By selecting the appropriate optimization 

technique, engineers and researchers can enhance system performance, improve 

efficiency, and achieve desired outcomes more effectively. 
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Two optimization strategies: conventional and surrogate-based optimization. When 

evaluating the objective function(s) for fluid and thermal system optimizations, one 

of the most important steps is analyzing the underlying physical processes by 

employing the Navier–Stokes equations and the transport equations for heat and mass 

transfer while applying the proper boundary conditions. The traditional and advanced 

optimization methodologies use this analysis as a vital component. The manner in 

which the numerical model interacts with the optimization algorithm is the 

fundamental factor that differentiates these two methodological approaches. Because 

the numerical model is directly integrated with the algorithm in traditional 

optimization, it is necessary to do multiple simulations for each design iteration. This 

may be a time-consuming and computationally costly process. A significant 

disadvantage of this approach is the high computational cost associated with running 

the model repeatedly throughout the optimization process. 

The use of surrogate modelling helps to alleviate this problem by lowering the amount 

of computer resources required and by providing a trustworthy approximation of the 

simulation data. A final surrogate model is generated by employing a suitable process 

that comprises training, testing, and validation, primarily when neural networks are 

utilized. This method is based on the results of the CFD simulation. Once validated, 

the surrogate model is used as a fitness function in the optimization algorithm, 

enabling faster and more efficient identification of the optimal design. To ensure the 

best results, the effectiveness of the surrogate model is evaluated in terms of its ability 

to explore the design space globally and exploit it locally before being coupled with 

the optimizer. Surrogate-based optimization has become widely used in the design 

optimization of micromixers. 

3.8.3    Design of Experiment (DOE) 

Investigation of the design variable space is accomplished through the use of Design 

of Experiments (DOE) methodologies. It is done to optimize the quantity of 

information obtained by determining the relationship between the multiple 

components that impact a process and the outcome of that process. In the optimisation 

process, the DOE techniques are utilized to generate design points, which are 

subsequently used in creating a surrogate model. When it comes to fitting different 
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models, having a sample blueprint that is adequately built is quite necessary. Latin 

hypercube sampling, often known as LHS, is a type of stratified sampling that can be 

applied to a wide range of variables. It is one of the DOE methods that is utilized the 

most commonly. 

3.8.4   Latin Hypercube Sampling (LHS) 

LHS is a stratified variant of Monte Carlo sampling. The sampling zone is 

systematically partitioned by segmenting the range of each x component. We will 

exclusively examine the scenario in which the parts of x are independent or may be 

converted into an independent basis. Furthermore, generating samples for coupled 

components with a Gaussian distribution is readily attainable. As previously outlined, 

LHS functions to produce a sample size N from the variables 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, ..., 𝑥𝑥𝑥𝑥. The 

range of each variable is divided into N non-overlapping intervals with equal 

probability size 1/𝑁𝑁. A value is randomly picked from each interval according to the 

probability density inside that interval. The N values acquired for 𝑥𝑥1 are randomly 

matched with the N values of 𝑥𝑥2. N pairings are randomly paired with the N values of 

𝑥𝑥3 to create N-triplets, and this process continues until a collection of N-tuples is 

established. This collection of N-tuples constitutes the Latin hypercube sample. 

Therefore, for specified values of N and n, there are (𝑁𝑁!) 𝑛𝑛−1 potential interval 

combinations for an LHS. A 10-run Latin Hypercube Sampling (LHS) for three 

normalized variables (range [0, 1]) utilizing a uniform probability density function is 

presented below. The values separated at equal probabilities are 0, ..., 0.8, 1. 

3.8.5    Surrogate Modelling 

In optimising thermo-fluid, numerous numerical analyses are needed to assess 

objective function(s). Still, each simulation can be time-consuming due to the 

complexity of the non-linear governing differential equations. To reduce this burden, 

surrogate modelling is used to create approximation models that closely replicate the 

behaviour of the simulation model. Surrogate modelling's key advantages are its 

computing efficiency in assessing the goal function(s) and its correctness in reflecting 

the design space features. Both of these advantages are associated with surrogate 
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modelling. In the following discussion, the mathematical formulas for a variety of 

surrogate models are presented. 

3.8.5.1    Response surface approximation (RSM) 

A mathematical model, often a polynomial equation, is used in RSM. This model is 

used to characterize the connection between the input variables and the response 

variable(s) that are of interest (Equation 3.63). The model is fitted to experimental 

data from a series of designed experiments. A factorial design is often utilized in the 

execution of these studies. In this design, many combinations of input variables are 

evaluated to assess the influence that these combinations have on the response 

variable. 

 
𝑌𝑌 = 𝑏𝑏𝑜𝑜 + �𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖

3

𝑖𝑖=1

+ �𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖2
3

𝑖𝑖=1

+ � 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

3

𝑖𝑖=1𝑗𝑗=1

 (3.63) 

 

𝑑𝑑𝑛𝑛 =

⎣
⎢
⎢
⎡

0                        𝑛𝑛 < 𝐿𝐿𝑛𝑛
𝑛𝑛 − 𝐿𝐿𝑛𝑛
𝐺𝐺𝑛𝑛 − 𝐿𝐿𝑛𝑛

          𝐿𝐿𝑛𝑛 < 𝑛𝑛 < 𝐺𝐺𝑛𝑛

1                         𝑛𝑛 > 𝐺𝐺𝑛𝑛 ⎦
⎥
⎥
⎤
 (3.64) 

 

𝑑𝑑𝑛𝑛 =

⎣
⎢
⎢
⎡

0                        𝑛𝑛 > 𝐻𝐻𝑛𝑛
𝑛𝑛 − 𝐻𝐻𝑛𝑛
𝐺𝐺𝑛𝑛 − 𝐻𝐻𝑛𝑛

          𝐺𝐺𝑛𝑛 < 𝑛𝑛 < 𝐻𝐻𝑛𝑛

1                         𝑛𝑛 < 𝐺𝐺𝑛𝑛 ⎦
⎥
⎥
⎤
 (3.65) 

 Desirability = [π(dnwn)]
1
w (3.66) 

Here, n, Gn, Ln, Hn, and rn the forecast value, the target value, the lower suitable value, 

the higher suitable value, and the desirability function weight when it comes to the 

nth output, respectively. The variable wn is used to denote the significance of the nth 

output, and the value of W is equal to the sum of wn. The value of the desirability 

factor can range from 0 to 1, with 1 indicating the ideal choice that is desired the most 

and 0 indicating the one that is desired the least. 

RSM aims to determine the optimal input variables for maximising or minimising the 

output variable(s) within a specified range. ANOVA was used to assess the relevance 
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of each input variable's role in influencing output responses and the model's 

dependability. From the 3D response surface plot, the interaction influence of input 

parameters on output was observed. 

Using RSM in conjunction with a desirability function, one may locate the best 

possible answer for a response with several objectives. According to the framework 

of the desirability approach, the solution that is considered to be the best alternative 

is the one that holds the highest combined desire factor. The equation (3.64) is used 

to determine the individual desirability (dn) for an output parameter that is intended 

to maximize the output, whereas the equation (3.65) is utilized to minimize the output. 

The combined desirability is determined as described in Equation (3.66). 

The simulation results are statistically analysed using ANOVA, a method based on the 

principle of general variance, employed to assess differences among all the findings 

in a sample. Using ANOVA is quite helpful and illuminating when comparing data 

across many categories. The p-value, F-value, R2, Adj R2, and Pred R2 values in the 

ANOVA test, which represent the variance of the data from the mean, are indications 

of the validity and quality of the results. 

3.8.5.2    Artificial neural network (ANN) 

An analytical tool called ANN is used to validate the correlation between input and 

output variables and verify the data's predictive regression. The multilayer perceptron 

(MLP) neural network architecture and the backpropagation technique are used in this 

ANN study. MATLAB R2020a is used for coding and execution. MLP planning, as 

shown in Figure 3.5, is in the format of A-H1-H2-Z, where A and Z indicate the input 

and output layers, and H1 and H2 are hidden layers. For each output, a network is 

built to train the DOE findings. Each hidden layer neuron in the network ranges from 

1 to 10, and many neuron combinations are used during training. Then, the neuronal 

pairings with the lowest RMSE are chosen. The best neuron combination discovered 

is then utilised to build a new network for each output. Mean square error (MSE) was 

used as the performance function, while Levenberg Marquardt (trainlm) was used as 

the training function. The hidden layer uses the Tan-sigmoid, and the output layer is 
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handled by Log-sigmoid functions of transfer, respectively. From datasets, train 

network 70%, test 15%, and the rest to validate was used. 

3.8.5.3   Moth flame optimization (MFO) 

The MFO algorithm was modelled after moths' navigational strategy (Mirjalili 2015). 

Moths have a highly efficient mechanism for flying at night that maintains their 

orientation relative to the moon and makes them move long distances in a straight 

line. Solutions proposed for the MFO method are moths and the variables in the space. 

The moths may change their location vectors and fly in 1-D, 2-D, 3-D, or 

multidimensional space. The population-based nature of the MFO method requires 

the pair of moths to be described in a matrix (equation (3.67)) as mentioned below: 

 

Figure 3.5 ANN Schematic 

   
𝑀𝑀 = �

𝑚𝑚1,1 ⋯ 𝑚𝑚1,𝑑𝑑
⋮ ⋱ ⋮

𝑚𝑚𝑛𝑛,1 ⋯ 𝑚𝑚𝑛𝑛,𝑑𝑑

� (3.67) 

 𝑆𝑆�𝑀𝑀𝑖𝑖 ,𝐹𝐹𝑗𝑗� = 𝐷𝐷𝑖𝑖 . 𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋) + 𝐹𝐹𝑗𝑗 (3.68) 



98 

 

Here, n is the moth number, d is the variable, S is the spiral function, Mi and Fj are ith 

moth and jth flame and D is the distance of ith moth and jth flame; equation (3.68) 

shows the spiral moth path simulations, as depicted in Figure 3.7 (a). The variable t 

indicates the adjacent position of the moth to the flame (𝑡𝑡 = −1 is proximate and 𝑡𝑡 =

1 is farthest), displayed in Figure 3.7 (b).  

By increasing moths, the probability of finding the global minimum is higher. 

However, it has been shown that 30 is an appropriate number of months for resolving 

optimisation issues. 

3.8.5.4   Harris hawk optimization (HHO) 

HHO is a metaheuristic optimization algorithm inspired by the hunting behaviour of 

Harris's hawks, a species of raptors. The algorithm mimics these birds' cooperative 

hunting strategy to search for and capture Prey. 

In HHO, the optimization problem is represented as a population of hawks. Every 

Hawk symbolises a prospective solution to the problem, and its location within the 

search space corresponds to the values of the decision variables. The Hawks 

collaborate and share information to improve the overall search process. Given that 

HHO is a population-based, gradient-free optimization method, any optimization 

issue may be addressed with it with the correct formulation. All of the HHO stages 

are depicted in Figure 5.4. They are discussed in the following sections (Heidari et al. 

2019). 

i. Exploration phase 

Here, hawks explore and trail prey using their instinct. The Harris hawks in HHO 

huddle at isolated spots and use one of two methods to watch for Prey to appear. 

 𝑋𝑋(𝑡𝑡 + 1)

= �
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑟𝑟1|𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 2𝑟𝑟2𝑋𝑋(𝑡𝑡)|                   𝑞𝑞 ≤ 0.5
𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝑋𝑋𝑚𝑚(𝑡𝑡) − 𝑟𝑟3�𝐿𝐿𝐿𝐿 + 𝑟𝑟4(𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿)�              𝑞𝑞 < 0.5 

(3.69) 
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X(t+1) denote the Hawks position vector for iteration. Xprey denotes prey location, 

X(t) symbolises hawks' current location, and r1, r2, r3, r4, and q are arbitrary numbers 

between [0,1], which changes with iteration. Ub and Lb symbolise variables of upper 

and lower bonds. Xrandom(t) is the arbitrarily chosen Hawk's location and Xm is the 

average current location of the hawks’ population. 

 
𝑋𝑋𝑚𝑚(𝑡𝑡) =

1
𝑁𝑁
�𝑋𝑋𝑗𝑗(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

 (3.70) 

Xi(t) is every hawk location in iteration, and N is the total hawk. 

 

Figure 3.6 Optimization Flow Chart 
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Figure 3.7 (a) Moth mechanism on the flame (b) Possible logarithmic spiral path of 

the moth with flame (Mirjalili 2015) 

The transformation from exploration to exploitation 

The HHO technique exploits Prey's behaviour to escape. Hence, the energy of Prey 

diminishes. The energy of Prey is represented by equation 3.71 to illustrate this step: 

 𝐸𝐸 = 2𝐸𝐸𝑜𝑜(1 −
𝑡𝑡
𝑇𝑇

) (3.71) 

E denotes the energy of Prey fleeing, and Eo is the initial energy state. 

ii. Exploitation phase 

When Hawk attacks Prey, they try to escape, and the probability of fleeing is |𝑟𝑟| <

0.5, getting caught |𝑟𝑟| ≥ 0.5.  

iii. Soft besiege  

Here 𝑟𝑟 ≥ 0.5 and |𝐸𝐸| ≥ 0.5, Prey jumps arbitrarily here and there to flee. This action 

can be explained in the following equations 3.72 and 3.73. 

 𝑋𝑋(𝑡𝑡 + 1) = ∆𝑋𝑋(𝑡𝑡) − 𝐸𝐸�𝐽𝐽𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝑋𝑋(𝑡𝑡)� (3.72) 
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 ∆𝑋𝑋(𝑡𝑡) = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝐸𝐸[∆𝑋𝑋(𝑡𝑡)] (3.73) 

Equation 5.10 and Equation 5.11 depict the exploits of this model. ΔX(t) indicates the 

distinction between the prey location and the current location of iteration t. 

iv. Hard besiege 

Here 𝑟𝑟 ≥ 0.5 and  |𝐸𝐸| < 0.5, Prey wear out and its present location is depicted in 

equation 3.74. 

 𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝐸𝐸[∆𝑋𝑋(𝑡𝑡)] (3.74) 

 

v. Soft besiege with progressive dive 

In this stage, |𝐸𝐸| ≥ 0.5 and 𝑟𝑟 < 0.5, Prey has sufficient energy to flee. Hawks’ 

movement is described by equation 3.75 

 𝑌𝑌 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝐸𝐸�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝑋𝑋(𝑡𝑡)� (3.75) 

vi. Hard besiege with progressive dives. 

Here |𝐸𝐸| < 0.5 and 𝑟𝑟 < 0.5 prey not able to prey, hawk ambush and kill the Prey. For 

this challenging besiege, conditions are described in equations 3.76, 3.77 and 3.78 

 𝑋𝑋(𝑡𝑡 + 1) = �
𝑌𝑌   𝑖𝑖𝑖𝑖 𝐹𝐹(𝑌𝑌) < 𝐹𝐹(𝑡𝑡)
𝑍𝑍  𝑖𝑖𝑖𝑖 𝐹𝐹(𝑍𝑍) < 𝐹𝐹(𝑡𝑡)  (3.76) 

 𝑌𝑌 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝐸𝐸�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − 𝑋𝑋𝑚𝑚(𝑡𝑡)� (3.77) 

 𝑍𝑍 = 𝑌𝑌 + 𝑆𝑆 ∗ 𝐿𝐿𝐿𝐿 (3.78) 
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3.9  Multi-Objective Optimization 

A multi-objective optimization issue is one in which numerous objectives are 

optimized at the same time. Figure 3.6 shows the flow chart for multi-objective 

optimization. This instance illustrates this approach in the following equation 3.79: 

 

Figure 3.8 Various Stages of HHO (Heidari et al. 2019) 
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⎩
⎪
⎨

⎪
⎧
𝑀𝑀𝑀𝑀𝑀𝑀: ɳ = 𝑓𝑓𝑓𝑓1(𝑅𝑅𝑅𝑅,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵.𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
𝑀𝑀𝑀𝑀𝑀𝑀: ∆𝑃𝑃 = 𝑓𝑓𝑓𝑓2(𝑅𝑅𝑅𝑅.𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:
0.05 ≤ 𝑅𝑅𝑅𝑅 ≤ 450

30° ≤ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤ 70°

1 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 4

 (3.79) 

The term "Pareto-optimal solutions" refers to the various solutions that are generated 

by a problem that has several objectives. Within the context of a multi-objective 

optimization problem, solutions can be categorized as either dominated or non-

dominated, depending on whether or not they are viable sets of solutions. When 

determining dominance, the following requirements are considered: a design x1 is 

considered superior to another design x2 if it is superior to x2 in all goals and is 

superior to x2 in at least one objective. The Pareto-optimal set is comprised of all 

designs that are not dominated by any other design. The Pareto-optimal set's 

representation in functional space is called the Pareto-optimal front. It illustrates the 

trade-offs among conflicting objectives, allowing analysis of the compromises 

between designs. Since each solution in the Pareto-optimal set is globally optimal, 

none is superior to the others across all objectives. Therefore, selecting a Pareto-

optimal solution that meets specific requirements depends on the designer's judgment. 

Optimization of the micromixer is derived from meta-heuristic algorithms that were 

selected and coded in MATLAB software: Response Surface Methodology (RSM) 

and Haris Hawk Optimization (HHO), whose steps are shown in Figure 3.8 as a 

flowchart. 

3.10  Summary of Methodology 

This chapter presents the computational framework and offers an in-depth analysis of 

numerical methods for studying flow and mixing in micromixers. The flow and 

mixing analyses are carried out using the Eulerian and Lagrangian approaches, 

discussing each approach's relative advantages, disadvantages, and suitability for 

different mixing scenarios. The chapter also covers various aspects of numerical 

schemes, including discretization errors and grid requirements. Since many studies 

rely on commercial CFD software, relevant details about mixing problems are 

provided in these packages. The chapter concludes by discussing the technique for 
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characterizing mixing using concentration data from a computational grid, laying the 

foundation for evaluating the performance of different micromixer designs. The 

chapter is divided into three sections: Section 3.4.1 covers the Eulerian approach, 

including mixing models, boundary conditions, and the numerical methods used to 

solve the governing equations; Section 3.4.2 presents the Lagrangian approach; and 

the final section discusses methods for quantifying mixing. 

Multi-objective evolutionary algorithms (MOEA) aim to find the best trade-offs 

between conflicting objectives. However, real-world optimization problems (e.g., in 

engineering, finance, and AI) often involve expensive simulations or experiments. 

Surrogate modelling helps make MOEA more efficient by approximating complex 

functions. 
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Chapter 4      RESULTS AND DISCUSSION 

The mechanics of molecular diffusion and advection are two of the most crucial mass 

transport mechanisms, as discussed in Chapter 3. It is via advection that mixing is 

improved in fluid flows with low Reynolds numbers. Advection occurs typically in 

the primary flow direction in most passive micromixers that rely on molecular 

diffusion. This means that the transverse transport of chemicals completely depends 

on molecular diffusion. Advection that follows a three-dimensional trajectory, on the 

other hand, has the potential to create secondary transversal transport and make 

mixing far more effective. The fundamental design principle for generating advection 

involves altering the channel geometry to stretch, fold, and disrupt laminar flow. As 

noted, these processes are chaotic. Chaos requires that streamlines intersect at 

different times, a phenomenon observed in time-periodic or spatially periodic flows. 

The former can be achieved through boundary motion, while the latter arises from 

periodic variations in geometry. Chaotic advection has been observed across various 

Reynolds numbers depending on the geometrical configuration. As a result, 

micromixer designs utilizing chaotic advection are classified based on their operating 

Reynolds number ranges. A Reynolds number (Re) above 100 is considered high, 

while the intermediate range falls between 10 and 100, and Re below 10 is classified 

as low. The following section focuses on various passive micromixers studied in my 

work that rely on chaotic advection. 

4.1   Validation and Grid Sensitivity Test 

4.1.1    Newtonian Fluid 

As observed in Figure 4.1, the computationally generated findings displayed high 

levels of accuracy to the experimental data (Figure 4.1 shows graphically whereas 

Figure 4.3 displays comparison at outlet ‘mass fraction’). A micromixer's estimated 

mixing performance is mesh-dependent. So, grid convergence research was carried 

out to identify the ideal mesh. The scale of the finest concentration formations can be 

roughly calculated using λc = λv/√Sc, where λv the most minor velocity structures' 

length scale (Rahmannezhad and Mirbozorgi 2019). The velocity length scale, which 

represents the smallest distance over which velocity variations occur, could be 
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estimated using the parameter λv. This approximation provides a convenient way of 

quantifying the length scale of velocity variations in the system. Given the value of 

Sc, approximately 890, λc, which is about 6.7 μm. This estimation was based on the 

relationship between Sc and λc, and provides a quantitative measure of the most 

miniature length scale at which concentration variations occur in the system. The 

mesh used for the simulations was designed with a grid size of approximately five 

μm, smaller than the estimated concentration length scale, λc. This was done to ensure 

high accuracy and resolution in the simulations. The mesh contained 1556088 nodes, 

allowing for an adequate system representation. A coarser mesh with 3254784 nodes 

and a refined mesh with a grid of 2060740 nodes were employed for mesh analysis, 

as shown in Figure 4.3. All of them were used in simulations, producing results for 

the first two nearly identical meshes. 

 

Figure 4.1 Validation of TBM with numerical and experimental (Dundi et al. 2021) 
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Figure 4.2 The mass fraction at the outlet for a) Experimental and b) Numerical 

 

Figure 4.3 The mass fraction at the outlet for different numbers of elements (a) 

1000688, (b) 1556088, (c) 2060740, and (d) 3254784. 

4.1.2    Non-Newtonian  

The validation is based on the earlier findings of (Afzal and Kim 2014) using the 

identical governing parameters and mixing unit model. This study first establishes the 
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mixing quality for Newtonian fluid to evaluate the earlier work objectively. Figure 3.4 

illustrates the HSTM micromixer schematic. The primary mixing unit, the design 

domain, is housed in the micromixer. Two inlets supplying a different 1 mol/m3 

concentration or 0 mol/m3 allow fluid flow into the micromixer. The primary goal is 

to increase mixing efficiency in the design domain by modifying the flow channel's 

geometry. At the outflow, the combined fluid is finally received. 

It observes the consistency between the results in Figure 4.5. There is a more 

significant difference in the low-concentration zone. The numerical simulation 

expected a value near 0.15. Numerous factors, like the numerical mesh, discretization 

methods, or experimental technique, may be responsible for this discrepancy.  The 

studies of Mainochi et al. and Rahmannezhad and Mirbozorgi also discussed this 

distinction. It is significant to remember that more mixing is indicated by a flatter 

profile, which has a more negligible concentration difference (lower standard 

deviation). The global numerical result agrees well with the experimental findings. 

For Wang et al. and the current work, the results for mixing percentage were 39.1% 

and 41.7%, respectively. 

 

Figure 4.4 Verification of present study with (Afzal and Kim 2014). 
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To effectively arrange the mesh and capture the flow around the barriers, a prism 

(inflation) structure was also included. The value chosen for the element size is based 

on the value used in the Batchelor's Scale methodology-based studies by (Maionchi, 

Ainstein, dos Santos, and Maurício Bezerra de Souza Júnior 2022; Rahmannezhad 

and Mirbozorgi 2019). Applying this technique results in an element size value 

estimate of no more than 6 μm for the works under consideration. 

Therefore, the current study employed the value of 2.75 μm as a reference for 

estimating the mesh element size and applied the GCI approach from this value to suit 

the specifications of the mentioned research. The pressure differential (ΔP) between 

the micromixer's inlets and outlet and the mixing percentage (η) values in the outlet 

portion were subjected to the GCI test. Given that the most significant value obtained 

in the test (GCIΔP) was 0.701%, demonstrating that the impact of mesh on this 

variable is minor, it is evident that ΔP is not much affected by mesh refinements. On 

the other hand, the effect of mesh on η is considerably more significant, amounting to 

4.216%. This impact, connected to the techniques used to determine the pressure drop 

and mixing %, has been noted in earlier research in the literature (Maionchi, Ainstein, 

dos Santos, and Maurício Bezerra de Souza Júnior 2022). The pressure drop is 

computed as the area average of a primal variable, the pressure. The meshes may be 

converged for this variable as they are very well adjusted. However, more points often 

yield more dispersed findings since the mixing % is determined using the data set's 

mean and standard deviation. As a result, the solution is more widely dispersed, and a 

more refined mesh contains more components, which affects how the mixing 

percentage is determined.  

4.2   Numerical Analysis of Twist and Bend Mixing Channel (TBM) 

Figure 4.4 shows three TBM simulation cases in Ansys fluent 2022 R1, with 240 total 

cases (shown in table 4.1 for twist 1 and similarly for twist 2, 3 and 4)) formed with 

this combination. The training of a neural network was carried out using the 

TensorFlow library and the findings from the simulations. The global optimization 

procedure may be carried out using new configurations (changing twist and bend 

angle) predicted by this NN. This train NN can predict the values of ΔP + 1/η and η 
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as output variables, using Re, twist angle and bend angle as input variables. This 

allows the NN to understand the relationship between these variables and produce 

accurate predictions based on the input data it was trained on. This NN has two hidden 

layers: [8 3] for the target and [7 4] for target 2 neurons using the 'relu' activation 

function. The training process involved fitting the data to a specific functional form, 

representing the relationship between the input and output variables. This application 

form is used to make predictions based on new inputs and can provide a valuable tool 

for understanding the underlying relationships in the data. It captures the underlying 

relationship between the variables and provides a mathematical representation, 

allowing predictions based on input values. The optimization was carried out with a 

suitable neural network model to maximise φ and minimize ΔP+1/η. The MFO was 

used for the multi-objective functions. The entire optimization process is depicted in 

a flow chart in Figure 3.6. The numerical analysis shows the mass fraction, pressure 

and velocity profiles in Figures 4.6, 4.7 and 4.8. 

 

Figure 4.5 Proposed model of hybrid with twists and bend Passive mixer (TBM) with 
(a) 300 bend & 1 twist (b) 70° bend & 2 twists (c) 70° bend & 3 twists and (d) 50° bend 
& 4 twists 

Table 4.1 DOE for Twist 1 

Bend Re Bend Re Bend Re 

30° 10 50° 10 70° 10 
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30° 50 50° 50 70° 50 

30° 100 50° 100 70° 100 

30° 150 50° 150 70° 150 

30° 200 50° 200 70° 200 

30° 300 50° 300 70° 300 

30° 350 50° 350 70° 350 

30° 400 50° 400 70° 400 

30° 450 50° 450 70° 450 

30° 500 50° 500 70° 500 

 

Figure 4.6 Mass Fraction of water and dye of TBM at bend 500, twist four and Re 10 
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Figure 4.7 Pressure contour of TBM at bend 300, twist four and Re 10 

 

Figure 4.8 Velocity contour from inlet 1 of TBM at bend 50°, twist four and Re 10 

The outcomes demonstrate that the simulated findings and the experimental outcomes 

are consistent. Furthermore, a comparison is drawn for the transverse velocity, cap 

region, and flow lines. The computationally generated findings once more displayed 
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high accuracy in the experimental data. Using equation 3.36, the mixing efficiency 

(η) was calculated to be 31.5% based on experimental data from (Dundi et al. 2021) 

and 34.5% based on numerical data obtained in this study. Despite the inherent 

limitations and disparity in methodology betwixt experiments and simulations, the 

results obtained from both approaches can be considered to be in reasonably good 

agreement. The results suggest that the simulations accurately reflect the behaviour 

and key features of the system and agree with experimental observations, 

demonstrating the robustness and consistency of the results. 

4.2.1    Simulation results 

TBM model micromixer simulation results were used to calculate both σ, ΔP and η. 

These results provide valuable insights into the performance of the micromixer and 

its ability to mix the solute effectively. These values were then compared to those 

reported in the literature, and the results showed good agreement and consistency with 

the expected values. This indicates that the simulations accurately capture the system's 

behaviour and that the values obtained align with previous studies and system 

understanding. Interestingly, with twist and bend, η, ΔP, and ΔP+1/η tend to increase, 

owing to chaotic diffusion. Figures 4.9 and 4.10 depict the correlation of ΔP and script 

η vs Re for bend and twist, respectively., that is being optimized. 

4.2.2    Artificial Neural Network (ANN) 

The results in Figures 4. 8 and 4.9 served as the input data for training ANN, creating 

a predictive model. This model allows for the estimation of the ΔP, η, and ΔP + 1/η, 

based on a given geometry. This model leverages the relationships revealed in the 

results to make predictions, providing a valuable tool for understanding the behaviour 

of the system The data obtained from the simulations were organized and prepared 

for use in the neural network by including the twist and bend angle as input variables 

and η and ΔP as output variables. The data was divided into three sets for the training 

process, with 70% used for training, 15% for testing, and 15% for validation. In 

addition, the data values were normalized and mapped to a range of 0 to 1. This 

normalization ensures that all input and output variables have equal influence on the 

model and are treated equally during training. Table 4.4 shows that the results are 
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almost the same by varying the weightage of the objective function (η, ΔP). The data 

architect, trained by ANN, shown in Figures 4.11 (a) and 4.12 (a) for ΔP and η, this 

data corresponds to better ANN train results with test and validation curves; it is 

confirmed by error histogram Figure 4.11 (c) and 4.12 (c); training is done until the 

4th epoch, with a value of 0.050547 for ΔP, and the 3rd epoch, with values of 0.32049 

for η; Figures 4.11 (b) and 4.12 (b) shows validation performance; Figures 4.11 (d) 

and  4.12 (d) show ANN training state with gradient values of 1.8422e-10 at 3rd epoch 

and 317.322 at 6th epoch for ΔP and η, respectively. 

Creating the neural network (NN) involved defining its architecture, for which an 

artificial neural network was selected. Monitoring the model for overfitting is crucial, 

which is a higher training error than a validation error can identify. This can be done 

by observing the training and validation curves. Once the model is trained, test data 

can be used to validate the performance of the NN. The results showed a mean square 

error of less than 3% for the pressure drop prediction and less than 1% for the 

prediction of η. The results from the simulations performed using Ansys fluent 2022 

r1 and the values predicted by the neural network based on twist and bend values. 

The evolutionary algorithm is run after the appropriate objective function has been 

specified. It is crucial to clearly define the parameters for this algorithm, including the 

population size and the number of iterations, as they play a significant role in 

determining the algorithm's performance and overall outcome. To find the maxima of 

the objective function, one only needs to invert the output signal by making it 

negative. 

4.2.2.1   Optimization and validation with simple T-Micromixer 

The optimization process started with MFO (Multi-Objective Function Optimization), 

which enables the definition of multi-objective functions. Three optimization cases 

were considered, involving maximizing and minimizing (i) η, (ii) ΔP, and (iii) ΔP + 

1/η. The objective function used with the neural network model developed was a 

combination of ΔP and 1/η, represented mathematically as ΔP + 1/η. This function 

was chosen as the target to optimize for the desired outcome. This objective function 

was selected based on various factors, such as the nature of the problem being solved, 
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the available data and resources, and the system or application requirements. This 

objective function aims to balance two opposing factors, ΔP and 1/η, representing the 

inverse of the golden ratio, to reach a compromise solution that optimizes 

performance. This objective function has proven effective in obtaining accurate and 

reliable results from the developed neural network model. A penalty value is added to 

the function's output if the relationship between the inputs and outputs is unsatisfied. 

The penalty should be significantly more significant than those typically achieved at 

the exit to guarantee that this condition is far from the function's minimum. 

 

Figure 4.9 Simulation results η vs Re for bend at a) Twist 1 b) Twist 2 c) Twist 3 and 

d) Twist 4. 
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Table 4.2 Optimization results with the highest value 

Obfn Maximum η ΔP 

(Pa) 

Twist Bend 

Angle 

Re 

η 79.76 79.76 - 3 70° 550 

ΔP (Pa) 1043 - 1043 4 70° 550 

ΔPs+1/ηs 5.3971 61.551 19.78 4 70° 10 

 

Figure 4.10. Simulation results η vs ΔP for twist at (a) bend 30°, (b) bend 50° and (c) 

bend 70° 

The optimisation results, including the values of the objective functions and the 

corresponding twist and bend values, are displayed in Tables 4.2 and 4.3. It was 

observed that the maximum values for twist and bend are almost identical for all three 
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objective functions, namely η, ΔP, and ΔP+1/η, with the values being four and 70°. 

However, it is worth noting that the values for η and ΔP are significantly lower 

compared to the value of ΔP+1/η, which was found to be 17.9687. This implies that 

minima of ΔP+1/φ lead to nadir value for both ΔP and η, but not for maxima. Thus, 

we can apply the objective function to achieve the high value for η and a nadir value 

of ΔP simultaneously, as the maximum value of ΔP+1/η does not result in nadir values 

for both ΔP and η. 

Table 4.3. Optimization results with the lowest value 

Obfn Minimum η ΔP 

(Pa) 

Twis

t 

Bend 

Angle 

Re 

η 51.302 51.30 - 1 10° 10 

ΔP (Pa) 17.25 - 17.25 2 15° 10 

ΔPs+𝟏𝟏/𝛈𝛈s 17.96 55.71 17.95 3 15° 15 

The optimization process utilized a Multi-objective Function Optimization (MFO) 

approach, which allowed the definition of multiple objectives. Three different 

optimization scenarios were considered, each focusing on either maximizing (i) 

mixing percentage (η), (ii) pressure drop (ΔP), or (iii) ΔP+1/η. For example, ΔP+1/φ 

was selected as the objective function, and the developed neural network model was 

used to predict the values of twist and bend as inputs, with the outputs serving as the 

function's objective. A penalty value was added to the function's output if the desired 

relationship between inputs and outputs was unmet. The optimization results refer to 

the application of the objective, either 1/η, ΔP, or ΔP+1/η. It was observed from the 

results of Figures 4.8 and 4.9 that both η and ΔP increase with the increase in the 

values of twist and bend. 

The aim is to find the twist and bend simultaneously in order of optimized conditions 

of maximum mixing performance (η), and minimum pressure drop (ΔP) that can't be 

achieved through the method mentioned earlier. To address this, a multi-objective 

optimization algorithm based on MFO was used with the help of the Platypus library 

in Python. The three objective functions (maximizing η, minimizing ΔP, and 
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minimizing ΔP+1/η) were defined and considered, along with the previously used 

restriction condition. To determine the range of potential values for the input 

variables, the restriction on the output of the objective function was updated while 

also considering the number of objective functions, input variables, and restrictions. 

Finally, a feasible solution was processed by eliminating odd ones. 

 

Figure 4.11 ANN Training plots for η: (a) regression Performance for trained ANN 

(b) variation of error with epochs (c) Error histogram plot (d) training state of ANN. 

The correlation between φ max and ΔP max was found. Similarly, the relationship 

between ΔP min and the lowest value of φ was discovered. In this study, we consider, 

besides the optimal point obtained from the minimum of ΔP + 1/η, the points with the 

minimum of ΔP + 1/η and the maximum of η. The twist and bend values 

corresponding to the minimum ΔP + 1/η were obtained. In this region, ΔP decreases 
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while η remains high, as previously reported in (Dundi et al. 2021). This optimized 

geometry aligns with the expected results, with the twist and bend values. 

 

Figure 4.12 ANN Training plots for ΔP: (a) regression Performance for trained ANN 

(b) variation of error with epochs (c) Error histogram plot (d) training state of ANN. 

The results of the optimization showed that the errors for the prediction of η, ΔP, and 

ΔP+1/η were found to be 0.56%, 2.78%, and 3.63%, respectively, for the optimized 

case. These results are highly accurate, particularly for the optimized case, where the 

predicted values of η and ΔP are very close to the actual values. The error in the 

maximum and minimum cases is as follows: 
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Table 4.4 Comparing values obtained from optimization and simulation for TBM. 

 Twist Bend Re η ΔP 

(Pa) 

ΔP+1/η 

Simulation 4 70° 10 79.31% 17.426 17.32 

Optimal 4 70° 15 79.76% 17.925 17.98 

attributed to the limitations of the multi-variable optimization method used. A 

comparison of best data obtained from simulation and optimization for η and ΔP is 

summarized in Table 4.4. Table 4.5 shows the influence of the weight function of the 

objective for the optimized results. 

Table 4.5 Optimization results with weightage to output variable for TBM model. 

 Weightage  Optimized Result 

Cases η ΔP Twist Bend 

(o) 

Re η (%) ΔP (Pa) 

1 0.5 0.5 4 70° 11.858 61.408 17.952 

2 0.4 0.6 4 70° 10 61.2927 17.952 

3 0.3 0.7 4 70° 10 61.2927 17.952 

4 0.7 0.3 4 70° 16.995 61.7078 17.952 

5 0.6 0.4 4 70° 14.320 61.551 17.952 

4.3   Numerical Analysis of Offset Twist and Bend Micromixer 

In this study, numerical simulations of OMTB micromixers (Figure 4.13) built for Re 

in the range of 0.05 to 450 at various geometric parameters were carried out. 

4.3.1 Effect of Re on 𝛈𝛈 

The most crucial parameter in the microchannel is the velocity with which the fluids 

were fed, which is considered as the Reynolds number, η at different Reynolds values, 

which is displayed through the micromixer in Figure 4.14. 

Due to the low velocity at Re = 0.05, there is a significant residence time. Only 

molecular diffusion (NA) can mix fluid particles. When the molecule diffusion 

channel is shortened, mixing is greatly accelerated. For Re = 5, the molecular diffusion 
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process still produces mixing, but because the residence period is shorter than it is for 

Re = 0.05, molecular diffusion slowed down.  

 

Figure 4.13 Proposed model with different combinations of bend and twist a) 1 twist 
and 300 bend b)2 twists and 500 bend c) 3 twist and 300 bend d) 4 twist and 700 bend 

Rapid mixing results from the convection process and inertial force defeating 

molecular diffusion from Re 5. Re can be increased as much as possible without 

affecting the mixing rate. Because molecular diffusion is reduced at Re = 1 and mixing 

is diminished. As a result, the mixing region between the two fluids is smaller, which 

accounts for the difference between mixing at Re = 0.05 and Re = 5. 

While achieving a favourable η at high Reynolds numbers is favourable, the 

significant ΔP associated with these values is undesirable. Surprisingly, mixing 

performance for Reynolds numbers of 0.05 and 100 is nearly identical. 

4.3.2    Effect of bend and twists on mixing performance   

This research aims to determine how a twisted mixing channel with a bend affects an 

offset T-junction micromixer's performance. Micromixer models that have offsets 

with varied turns in twist along mixing channels (1 - 4) and bend angles (30° to 70°). 

For higher Lm Dh⁄ = 20,, the simple T-channel exhibits negligible secondary flow. 

Still, the channel having the bend and twist exhibits secondary flow that is detectable 
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and increases with twist and bend. Bends can cause centrifugal forces that push fluids 

toward the outer edge of the curve, creating secondary flow patterns that enhance 

mixing across different fluid layers. Conversely, twists can induce rotational or helical 

flows, which help stretch and fold fluid interfaces, increasing the interfacial area and 

improving mixing efficiency. These effects are more pronounced in microfluidic 

environments, where laminar flow dominates, and even slight geometric changes can 

lead to significant mixing enhancements due to the increased influence of viscous 

forces over inertial ones. 

The analysis of ∆P is of utmost importance as it signifies the pumping energy needed 

to sustain the flow within the micromixer. A low ∆P is essential for ensuring an 

efficient micromixer. Figure 4.14 compares ∆P and presents the results for each 

micromixer at various Re. It is observed that in all the micromixers, the ∆P increases 

with Re. 

Figure 4.16 illustrates the mass fraction along the micromixer. The fluid flow of 

particles along the micromixer for the offset geometries is depicted in Figure 4.17. 

The tracking line, however, begins to bend around the micromixer after twisting is 

included. The impulsiveness intensifies as the bend and twist of mixing channels rise. 

Figure 4.18 shows the mass fraction at the outlet of OMTB, such as for (a, b and c) 

for bend 30°, (d, e and f) for 50°, and (g, h and i) for 70°, for twists 2, 3, 4, respectively. 

Convective and diffusion mass transfer are the primary mixing mechanisms in the 

passive micromixer. Diffusion would be the primary factor controlling mixing 

performance without the secondary flow the twisted mixing channel creates in the 

micromixer. Convective mass transfer becomes essential for the micromixers with 

bend and twist because of the increased secondary flow, which eventually leads to 

more excellent mixing performance. 
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Figure 4.14 𝜂𝜂 vs Re for Twists (a) 1, (b) 2, (c) 3 and (d) 4. 

As demonstrated, micromixers with twisted mixing channels perform better than their 

counterparts with no twist, especially between Reynolds numbers of 0.05 and 100. 

The mixing index shows a pronounced improvement in the range of Re from 0.05 to 

450. Additionally, the twisting and bending-induced secondary flow is prominent 

here, mimicking the improved blending of micromixers. 

Increased twist in a flow leads to more significant disruptions, resulting in improved 

mixing rates due to the addition of advective effects to laminar flow. ∆P in the 

micromixers increase after the introduction of whirling, which also improves mixing. 

the ΔP and associated η were investigated for the microchannel with twists and bend 
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channels at the specified Re. The rate of pressure decrease is only minimal despite the 

significant improvement in the η for Re at its mid-range. 

  

Figure 4.15 ∆𝑃𝑃 vs Re for Twists (a) 1, (b) 2, (c) 3 and (d) 4. 

Increased twist in a flow leads to more significant disruptions, resulting in improved 

mixing rates due to the addition of advective effects to laminar flow. ∆P in the 

micromixers increase after the introduction of whirling, which also improves mixing. 

the ΔP and associated η were investigated for the microchannel with twists and bend 

channels at the specified Re. The rate of pressure decrease is only minimal despite the 

significant improvement in the η for Re at its mid-range. 
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Figure 4.16 Mass fraction contour of OMTB 

Consequently, especially for the micromixer with an increased number of twists, a 

notable enhancement in performance is observed within the intermediate range of Re 

(betwixt 0.05 and 450). This performance improvement index correlates with the 

mixing magnification achieved per unit increase in ΔP penalty. As demonstrated, 

introducing bending and twisting to micromixer channels can sometimes improve the 
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performance index by more than three times, suggesting the potential of OMTB 

microchannel applications in the industry.  

 

Figure 4.17 Velocity Streamline across OMTB 

The results indicate no recirculation downstream due to the low inertia in the flow, 

with a Reynolds number (Re) of 0.5. The curve occurs due to twists and bends in the 

streamlines, which causes a change in velocity direction. This phenomenon is crucial 

for effectively mixing substances, as it facilitates the movement of one material 

towards another. Table 4.6 compares the TBM micromixer with offset and without 
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offset and it is clear that with offset mixing efficiency is more and pressure drop is 

less. 

Table 4.6 Comparison of model with and without offset Micromixer model 

 Twist Bend Re 𝛈𝛈 ΔP 
(Pa) 

ΔP/𝛈𝛈 

No Offset 
(Mustafa, 
Zunaid, 
and 
Gautam 
2023) 

4 50° 450 85.512% 998.06 1167.15 

With 
Offset  

4 60° 400 87.76% 974.20 1109.86 

The concentration profiles at the micromixer's intake suggest that the mixing between 

the two fluids is adequate close to the channel's inlet, according to the data. Upon 

reaching the first twist, a minor disruption in the flow ensues, resulting in an 

augmentation of its viscosity. The intensity of this process increases as the mixture 

passes through the "mixing unit" (a configuration of barriers), resulting in increasingly 

pronounced disruptions in the flow. At the second twist, the mixing is more substantial 

than the first, indicating the impact of the impediments on the species mixing. 

Observing the outlet area shows that the central axis interface is green, which signifies 

a complete mixing process (100%). In contrast to the original region, there are no 

longer distinct areas consisting solely of one species (red or dark blue). Instead, there 

is now a gradient of mixed species across the cross-section of the channel. 

The disparity between the η and ΔP values acquired at the ideal locations from the 

response surfaces through simulation is minimal, particularly for η. In contrast, ΔP 

Although it remains satisfactory, it exhibits more pronounced disparities, even when 

employing more accurate measurements, as depicted in Figure 4.11. The schematic 

demonstrates that the channel length of each micromixer design varies according to 

the increased twists and bends. Thus, the localised pressure dips are more evenly 

spread.  
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Figure 4.18 Mass fraction contour of OMTB at the outlet 

4.3.3    Optimization 

The goal is to concurrently determine the twist and bend that will provide the best 

possible circumstances for optimal mixing performance (η) and minimal pressure 

drop (ΔP), which cannot be attained using the previously outlined technique. The 

Python Platypus package implemented a multi-objective optimization technique 

based on HHO. Along with the previously employed limitation condition, the three-

goal functions (maximising η, minimising (ΔP and ΔP η� )) were defined and 

considered. With output limitation from the objective, the number of objectives and 

constraints are considered to calculate the various input variables. Finally, by 

removing the strange ones, a workable answer was developed. 
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4.3.3.1   RSM modelling 

RSM subsequently helps to equate the impact of variables and their relationships on 

the outcomes. The upper and lower limits of the input parameters are presented to the 

RSM, along with the selection parameters shown in Table 4.7. The recursive 

behaviour between the variables for bend and twists and how they impacted the η and 

ΔP is shown in Figures 4.19 and 4.20. For all bend and twist values, the η increases 

with increasing Re. By analysing the charts in Figure 4.14, it can be deduced that a 

decrease in Re in all values of bend and twist leads to a fall in ΔP and that reducing 

bends and twists also prevents the pressure drop from growing, which is the optimum 

situation for micromixers. Figure 4.20 shows the objective desirability with the input 

variable (twist, bend and Re). 

 

Figure 4.19 Surface response effect for 𝜂𝜂 a) Re & bend b) Bend & twist c) Re & twist 

 

Figure 4.20 Surface response for ∆P a) Re & bend b) Bend & twist c) Re & twist 

The ANOVA Table 4.8 model for the output parameter is statistically significant, with 

P-values less than 0.05 for both the model and the current inputs. All output responses 

had high R2 and adjusted R2 values, indicating that the model provides data that is 

very similar to the experimental data. The adj. R2 and Predicted (Pred.) R2 values 
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were less than 2% for all replies, showing high prediction reliability. The lack of fit is 

insignificant as the P value is more prominent than 0.05. 

 

Figure 4.21 All factors desirability of RSM 

Table 4.7 DOE with responses 

Twists Bends Re 𝛈𝛈 ΔP 

4 70° 10 57.8 16.78301 

2.5 70° 255 52.2336 696.8079 

2.5 50° 255 55.9549 362.1438 

1 30° 450 70.92 1020.14 

1 30° 10 58.3499 12.7164 

4 70° 450 89.02 528.6035 
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2.5 50° 255 55.9549 362.1438 

1 50° 255 82.2306 447.0021 

2.5 50° 10 69.5533 12.71834 

4 30° 10 63.12 12.73183 

4 50° 255 87.3669 680.9073 

1 70° 10 58.36 12.81532 

2.5 30° 255 71.2162 402.6061 

2.5 50° 450 82.6814 477.5227 

1 70° 450 76.3117 532.9106 

4 30° 450 80.3 479.4351 

Table 4.8 ANOVA F-value and p-value for 𝜂𝜂 and ΔP 

Source 𝛈𝛈 ΔP 

 F-value p-value F-value p-value 

Model 458.48 < 0.0001 64.91 < 0.0001 

A-Twist 245.70 < 0.0001 6.31 < 0.0001 

B-Bend 20.59 < 0.0001 1.80 < 0.0001 

C-Re 1240.73 < 0.0001 537.55 < 0.0001 

AB 14.08 0.1386 2.59 0.1386 

AC 7.48 0.0211 7.46 0.0211 

BC 164.58 0.3472 0.9728 0.3472 

Std. Dev. 0.7160 36.69 

Mean 69.12 316.15 

C.V % 1.04 11.60 
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R2 0.9976 0.9832 

Adjusted 
R2 

0.9954 0.9680 

Adequate 
Precision 

78.9605 28.4307 

4.3.3.2   Artificial neural network (ANN) 

The dataset was formed using the simulation results shown in Figures 4.14 and 4.15 

for ANN training, creating a prediction model. The twist and bend angles were 

included as input variables, and η and ΔP were included as output variables to organise 

and prepare the data collected from the simulations for use in the neural network. The 

data was split into three sets for the training process, with 70% being utilised for 

training, testing 15%, and validation 15%. This distribution makes the input and 

output variables handled similarly during the training process with an equal impact on 

the model. Figures 4.22 and 4.23 show the linear fitting with R2 values 0.95529 and 

0.97209 for η and ΔP, respectively. Linear fit graphs show the link between observed 

and expected values. In our case, observed values are taken from simulations, while 

predicted data are gathered from the HHO response surface. The proximity of our 

observation sets to this line indicates good accuracy in responding to areas. 

4.3.3.3   HHO modelling 

The HHO optimization process involves five phases: Initial Population, Fitness 

function, Selection, Crossover, and Mutation. The HHO is responsible for evaluating 

and choosing the solution based on the objective function derived from the ANN. 

With a trained dataset (using ANN), multi-objective function optimization was 

enabled using HHO. Mainly, three obfn were formulated for optimization, i.e., i) 1 η⁄ , 

ii) ΔP, iii) 1 η� + ∆P and iv) ΔP η� . The performance index (PI), denoted as ΔP η� , is a 

measure that specifically pertains to the cost associated with mixing, also known as 

the mixing cost (mc). With the availability of data and resources, the system or 

application requirements were considered while choosing this objective function. The 

created neural network model has produced accurate and trustworthy results using this 
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objective function. A penalty value is imposed on the function's output if the link 

between the inputs and outputs is unmet. The penalty must be much higher than those 

generally obtained at the exit to ensure this condition is far from the function's 

minimum. The proper goal function is first provided, and then the evolutionary 

algorithm is executed. The sample size and the number of iterations for this method 

must be precisely specified since they substantially impact its overall performance. 

There was shown to be a link between max η and ∆P. Similarly, the connection 

between ∆P min and the smallest value η was found. In this study, in addition to the 

optimal point determined by the minimum of ΔP η� , we also consider the points with 

a minimum of ΔP η�  and a maximum of η. We obtained the twist and bend values that 

match the minimum of ΔP η� . As was previously documented, ΔP declines while η 

stays high in this location juxtaposes the findings of the present research with other 

published works. The dotted lines indicate the pressure differential, while the solid 

lines represent the mixing index. It is essential to mention that (Cortes-Quiroz, 

Azarbadegan, and Zangeneh 2014; Solehati, Bae, and Sasmito 2014) optimised their  

 

Figure 4.22 Linear fit plot for 𝜂𝜂. 
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Figure 4.23 Linear fit plot for ΔP. 

mixer only for a given Re. The graph illustrates that the present study exhibits a greater 

η at the Reynolds number than prior published works. The simulations performed 

better in fitting ΔP than η, suggesting that the mixing performance is more responsive 

to the formulation. Ultimately, the models achieved satisfactory metrics to determine 

the extent of the task. The table in Table 4.9 and 4.10 displays the most favourable 

values of η and their corresponding ΔP. 

Table 4.9 The highest value of Optimization results 

Obf Max 𝛈𝛈 (%) ΔP Twists Bend Re 

𝛈𝛈(%) 87.76 87.76 - 4 60° 400 

ΔP 

(Pa) 

1094.55 - 1094.55 3 70° 450 

𝚫𝚫𝚫𝚫 𝛈𝛈�  1280.02 85.51 1094.55 3 70° 450 
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Table 4.10 Lowest value of Optimization value 

Obf Min 𝛈𝛈 ΔP Twists Bend Re 

𝛈𝛈 50.64 50.64 - 2 70° 0.05 

ΔP 

(Pa) 

13.28 - 13.28 Pa 3 30° 0.05 

𝚫𝚫𝚫𝚫 𝛈𝛈�  26.22 52.86 13.28 Pa 3 30° 0.05 

The optimization findings revealed that the optimised case's errors for the prediction 

of η, ∆P, and ∆P η�  were 0.378 %, 1.4%, and 1.9%, respectively. These values are 

accurate to the actual value. The restrictions of the multi-variable optimization 

approach utilised may be to blame for the mistake in the maximum and lowest 

situations. Table 4.11 compares the best results from simulation and optimization for 

the variables, while Table 4.12 compares the optimized results between RSM and 

HHO. 

Table 4.11 Comparison of Simulation and Optimised Results for OMTB. 

 Twists Bends Re 𝛈𝛈 ΔP (Pa) ΔP/𝛈𝛈 

Simulation 4 50° 450 85.512% 998.06 1167.15 

Optimal 4 60° 400 87.76% 974.20 1109.86 

Table 4.12 Comparison of RSM and HHO Optimality for OMTB 

 Twist Bend Re 𝛈𝛈 ΔP (Pa) ΔP/𝛈𝛈 

RSM 4 48° 450 79.31% 998.65 1259.17 

HHO 4 60° 400 87.76% 974.20 1109.86 

4.4    Numerical Analysis of Spiral Helical Micromixer Using C-Y Model 

This study focuses on geometries with three levels of autonomy: base, spiral, and twist 

(Figure 4.24). Geometries are evaluated using two response variables: mixing 

percentage (η) and pressure differential (ΔP) measured at the micromixers' output. 

Generally, the hypotheses fit ΔP better than η, suggesting that the mixing percentage 

is more susceptible to the model. The models acquired enough metrics to define the 
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work's scope. Table 4.13 shows the optimal η values and their corresponding ΔP 

obtained from LHS. The primary channel's standard element size was the foundation 

for developing the numerical mesh. 

The concentration contours in the micromixer's inlet area indicate a minute mixing 

layer between two fluids at the channel inlet. When it reaches the first spiral, the flow 

is somewhat disturbed, leading to an increase in thickness. The process becomes more 

intense when the mixture enters the "mixing unit," causing severe flow disruptions. 

The concentration layer thickens in the second spiral, indicating more species mixing. 

Adding spirals to the flow enhances the mixing rate by introducing advective effects 

to sluggish flows. 

 

 

Figure 4.24 Proposed model design of helically spiral micromixer (HSM) with a) 

Spiral 2 b) Spiral 1. 

Figure 4.25 exhibits the streamlines determined by the mass fraction of the species for 

the HSTM at the minimum blood flow rate examined in this study (≈0.00004 kg/hr). 
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The visualization shows that the HSTM achieves superior species diffusion because 

of its longer mixing length, which offers mass diffusion to occur within the stated 

time. The lengthened mixing length is the singular means of mass transportation, 

resulting in considerable mixing despite low mass loading. 

For the η attained at the outlet, STM attains 34.5%, whereas HSTM achieves a 

substantially higher 98%. During low mass flow rates, the fluid streams move through 

the microchannel smoothly without signifying vortex formation. Nevertheless, as the 

𝑚𝑚 ̇ is raised, the fluid streams exit the mixer more rapidly, leading to a decrease in 

mixing, as demonstrated in Figure 4.27. While both micromixers exhibit a decline in 

their η with an upsurge in flow rate., HSTM outperforms STM (17.01%) with a higher 

percentage of 55.4% within a shorter axial distance. 

Figure 4.26 illustrates how the η of STM and HSTM is affected by the blood mass 

flow rate across a wide range of flow rates. For the conventional STM, there is a 

constant reduction in the mixing efficiency, whereas, for HSTM, the mixing 

efficiency curve demonstrates a decreasing pattern. As previously mentioned, 

regarding STM, the high viscous nature of blood at high mass loading cannot sustain 

secondary flow or swirling motion due to the high viscous forces, resulting in the 

absence of an engulfment zone, even at higher 𝑚𝑚 ̇. Because of the intense viscous 

forces, highly viscous blood cannot generate secondary flow or swirling motion even 

when carrying a high mass load. This results in the absence of an engulfment zone in 

STM. The lowest level of mixing achieved in STM is as low as 1.41% at the elevated 

mass flow rate (𝑚𝑚 ̇ = 0.095 kg/hr), whereas the highest mixing achieved (34.5%) at the 

nadir mass flow rate, owing to enough time is there for diffusion. In contrast, the 

HSTM outperforms the STM in terms of mixing efficiency at all mass flow rates, with 

complete mixing of streams (97%) at the nadir mass flow rate of 𝑚𝑚 ̇ = 0.00004 kg/hr. 

The η decreases considerably until the 𝑚𝑚 ̇ reaches 0.00165 kg/hr. Beyond this point, 

stronger centrifugal forces drive the intertwining streams toward the helical spiral 

channel's wall, which increases secondary flow. As a result, the fluid experiences 

faster stretching, folding, and rotation, with improvement in η. As a result, the η 

increases significantly from 55.4% at a 𝑚𝑚 ̇=0.00165 kg/hr to 78.6% at 0.095 kg/hr, 

demonstrating the benefits of HSTM for blending shear-thinning fluids at both 
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minima and maxima mass flow rate (mfr), like blood. Figure 4.27 depicts the η of the 

HSTM at different positions through the direction of the flow axially for different 

blood 𝑚𝑚 ̇. 

 

Figure 4.25 Mass fraction of Blood in HSTM 

Figure 4.26 depicts a gradual decline in mixing efficiency in conventional STM as the 

flow of blood 𝑚̇𝑚 rises. This is explained by the fact that very viscous blood cannot 
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support secondary flow or whirling motion under high mfr due to severe viscous 

forces. 

Table 4.13 Population Design Variable obtained by LHS 1st Generation 

Spiral Re 𝛈𝛈 ΔP MeC 

1.5 0.6 76.4004 14267.91 186.7518 

1.5 0.6 76.4004 14267.91 186.7518 

1 1 79.67148 11105.62 139.3926 

1.5 0 60.65619 2631.646 43.38628 

1.5 0.09 63.55696 2589.621 40.74488 

1.5 0.03 61.64639 2555.353 41.45178 

1.5 0.06 62.61323 2538.148 40.53693 

2 0.06 71.53906 2430.77 33.97822 

2 0.03 70.87201 1968.938 27.7816 

1.5 0.03 61.64639 2555.353 41.45178 

2 0.06 71.53906 2430.77 33.97822 

1 0.03 58.26413 1679.461 28.82495 

2 0.09 72.18432 2862.576 39.65648 

2 0.09 72.18432 2862.576 39.65648 

1.5 0.06 62.61323 2538.148 40.53693 

1.5 0 60.65619 2631.646 43.38628 

1.5 0.03 61.64639 2555.353 41.45178 

1.5 0.03 61.64639 2555.353 41.45178 

1 0.09 60.30039 2355.81 39.0679 

1.5 0.09 63.55696 2589.621 40.74488 

2 0.06 71.53906 2430.77 33.97822 

1 0.03 58.26413 1679.461 28.82495 
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1.5 0.06 62.61323 2538.148 40.53693 

1 0.03 58.26413 1679.461 28.82495 

1.5 0.03 61.64639 2555.353 41.45178 

1 0.06 59.29582 2017.383 34.02236 

2 0.03 70.87201 1968.938 27.7816 

1.5 0.06 62.61323 2538.148 40.53693 

1 0.09 60.30039 2355.81 39.0679 

1.5 0.06 62.61323 2538.148 40.53693 

 

Figure 4.26 Comparison of STM and HSTM 𝜂𝜂 for 𝑚̇𝑚. 

With a minimal η of 1.21% at the highest mass flow rate of 0.095 kg/hr, poor mixing 

quality is consequently seen at higher mass loading values. In contrast, HSTM 

demonstrates better η across all 𝑚𝑚 ̇, achieving complete mixing even at the lowest 𝑚𝑚 ̇ 

of 0.00004 kg/hrs. The η of HSTM shows a decline until a 𝑚𝑚 ̇ of 0.00165 kg/hr, beyond 

which the centrifugal forces increase and cause rotation, stretching, and folding of the 
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particles in fluids. This leads to a noticeable improvement in the η. At a 𝑚𝑚 ̇ of 0.00165 

kg/hr, the η of HSTM decreases, but it starts to increase again as the centrifugal forces 

increase and cause folding, stretching and rotation of the fluid. This enhancement in 

the mixing efficiency results in a sharp rise in the mixing index from 55.4% to 78.6% 

as the 𝑚𝑚 ̇ is increased to 0.095 kg/hrs.  

The distribution of species mass fraction at various locations along the microchannel 

is shown in Figure 4.26 to visualize the extent of mixing in the system, with each 

plane located at a different distance from the T-junction. The η experiences the most 

significant increase from the beginning to the end of the micromixer for the smallest 

𝑚𝑚 ̇ (0.00004 kg/hr). A considerable rise in the η from 8.46% to 97% indicates complete 

mixing. The η curves obtained at different mass flow rates, namely, 0.0004 kg/hr, 

0.00165 kg/hr, and 0.0065 kg/hr, show a linear trend to the axial distance of the 

micromixer. For axial distances less than 450 mm, the η remains relatively constant. 

A negligible change is noticed on planes after X = 500 mm. When the 𝑚𝑚 ̇ is increased 

to 0.045 kg/hr and 0.095 kg/hr, the mixing curve's slope increases quickly until X = 

450 mm. However, the η gradually increases on the subsequent planes, with a 

maximum value of 78.6% achieved at the outlet. 
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Figure 4.27  𝜂𝜂 at various axial lengths (𝜇𝜇𝜇𝜇). 

Additionally, the interaction between the interfaces and the mixing mechanism is 

examined. At a 𝑚𝑚 ̇ 0.00004 kg/hr, the fluid streams' interface appears linear at the 

helical microchannel's beginning. However, at 450 mm, the interface becomes 

diagonal, increasing the thickness of the diffusion zone and, therefore, a higher η. At 

low mfr, the fluid is thoroughly mixed at the micromixer outlet. However, the 

intersection becomes smaller in size as the 𝑚̇𝑚 increases (0.0004 kg/hr and 0.0024 

kg/hr). As a result, there is a noticeable drop in η and less mixed fluid at the exit 

portion. When the 𝑚𝑚 ̇ is 0.038 kg/hr, the conformity of the fluid intersection is 

disrupted at the plane of the inlet. This leads to an increase in the intersectional area, 

which enhances the mass diffusion transport. The mixing performance improves due 

to the chaotic flow that enhances the mixing mechanism. The η rises after reaching 

0.0014 kg/hr. 

4.4.1    Effect of variation of geometric parameters of the micromixer on η and ΔP 

The cases studied here represent geometries with two degrees of freedom: twists (T) 

and base diameter (B) with a constant axial length of 3000µm.  The pressure 

differential (ΔP) and mixing percentage (η), measured at the micromixers' outlet 

section, are the response variables utilized to analyze the geometries. 

A rapid rise in mass flow rates causes a corresponding rise in pressure drop. At the 

maximum mass loading, 92.32 KPa is the pressure decrease that can be measured 

(Figure 4.28). With 𝑚̇𝑚 = 0.09 Kg/hr, it is clear that increasing the amount of energy 

needed to drive the flow is a constant trade-off for better mixing performance.  

Simulated optimum points show minimal difference between η and ΔP, particularly 

for η. In contrast, ΔP exhibits more substantial changes, even with more exact 

measures. 

4.4.1.1   Mixing energy cost: A performance index 

The mixing energy cost (MeC) in micromixers is primarily influenced by fluid 

properties, micromixer design, and operating conditions. Passive micromixers are 

energy-efficient but may require high-pressure gradients. The Mixing Energy Cost 
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evaluates system performance based on η and ΔP response variables. Table 4.12 

assesses the MeC of optimal configurations achieved with the i-GWO, highlighting 

the significance of high mixing percentage and minimal pressure drop.  

CFD may be used to assess pressure difference in micromixers; however, 

experimental verification is still needed. Even with low microscale pressure, MeC is 

crucial for assessing micromixer designs. 

Micromixers are used as reactors to create nanoparticles. As particles collect in slow-

flowing areas, fluid passage becomes more challenging and energy-intensive. 

Designing with reduced resistance to flow (ΔP) can help alleviate this impact. This 

concept aligns with the Constructional theory perspective of enabling flow and 

maintaining system survival. 

 

Figure 4.28 HSTM ΔP at various blood flow rates 

4.4.1.2   Optimization techniques 

This study included optimization approaches, including a design of the experiment, 

response surface method, sensitivity analysis, and a multi-objective i-GWO 
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algorithm using Python and ANSYS 2022 R1. Figure 3.4 presents an overview of the 

optimization approach employed in this study. To accomplish this, two alternative 

methodologies are used for the optimization process. The initial method emphasized 

enhancing MI, whereas the subsequent one aimed to optimize η and reduce ΔP. i-

GWO is an evolutionary algorithm that produces a randomly initialized population. 

This population undergoes evolution via crossover and mutations. The crossover 

operator amalgamates attributes from both progenitors to generate a unique child, 

whereas the mutation operator instigates random modifications to an individual's traits 

to produce a new organism. The parent and offspring populations are combined, 

evaluated, and organized into Pareto fronts according to dominance criteria. 

Individuals are evaluated to ascertain dominance. Dominated persons hurt at least one 

aim without improving in any others. The sample is rated, and top recipients are 

picked as parents for the ones to come. More significant numbers are preferred as they 

are more distributed in the solution space. This approach evolves the population 

around the best possible outcomes. Table 4.12 summarizes the optimization outcomes 

for various Re numbers. To illustrate optimization impacts, we show MI and pressure 

changes compared to the basic scenario. 

Table 4.14 Comparison of Simulation and Optimised Results for HSTM 

 Spiral Re 𝛈𝛈 ΔP (Pa) ΔP/𝛈𝛈 

Simulation 1 0.09 60.30039 2355.81 39.0679 

Optimal 1.4 0.09 78.22 2438.2 31.17 

4.5 Comparative Study of Newtonian and non-Newtonian Fluid 

Newtonian and non-Newtonian fluids exhibit distinct flow behaviours due to 

differences in their viscosity response to shear stress. Their characteristics, governing 

equations, and real-world applications vary significantly. In microfluidic systems, 

particularly in micromixers, the behaviour of fluids significantly impacts mixing 

efficiency. Newtonian and non-Newtonian fluids exhibit different flow characteristics, 
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which influence the choice of micromixer design and operational parameters. Below 

is a comparison of these two fluid types in the context of micromixing Table 4.15: 

i. Newtonian fluids rely primarily on diffusion and advection for mixing, often 

requiring high Reynolds numbers or active mixing techniques. 

ii.  Non-Newtonian fluids can exhibit unique flow behaviors (such as shear-

thinning and elasticity) that enhance mixing in certain micromixer designs, 

even at low Reynolds numbers. 

Table 4.15 Comparison between Newtonian and non-Newtonian 

Aspect Newtonian Non-Newtonian 

Definition Fluids with constant 

viscosity independent of 

shear rate. 

Fluids with viscosity that 

varies based on shear rate or 

stress. 

Flow Behaviour Follows linear shear-stress 

vs. shear-rate relationship. 

Exhibits shear-thinning 

(pseudoplastic), shear-

thickening (dilatant), or 

yield-stress behaviour. 

Mixing mechanism Diffusion-dominated at low 

Reynolds numbers (Re). 

Complex flow patterns due 

to shear-dependent viscosity, 

aiding mixing in some cases. 

Reynold number influence Mixing efficiency increases 

with higher Re as inertial 

effects become significant. 

Mixing efficiency is highly 

dependent on the viscosity 

model; some non-Newtonian 

fluids mix better at low Re 

due to elasticity effects. 

Pressure drop Relatively predictable and 

proportional to flow rate. 

Higher or lower depending 

on fluid properties and 

micromixer design. 
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Performance in Passive 

Micromixers 

Limited mixing at low Re 

due to laminar flow nature. 

Exhibit improved mixing due 

to secondary flow effects in 

shear-thinning or 

viscoelastic fluids. 

Application in 

Micromixers 

Used in applications 

requiring predictable flow 

behavior, such as chemical 

and pharmaceutical mixing. 

Essential in biomedical, 

food, and polymer 

processing industries where 

complex fluid properties 

must be considered. 

4.6 Numerical Analysis of OTMB with Nanofluids 

A numerical investigation of water's flow and mixing characteristics and a nanofluid 

including ferrous oxide nanoparticles within a T-shaped microchannel. The Reynolds 

number fluctuated between 10 and 400, whilst the nanoparticle volume concentration 

ranged from 2% to 5% (properties described in Table 4.16). Nanofluids with particle 

dimensions ranging from 20 to 100 nm were examined. The viscosity coefficient of 

the nanofluid, derived from experimental data, was consistently more significant than 

that of water. The viscosity was affected by nanoparticle concentration and particle 

size, with smaller particles leading to increased viscosity. The research delineated 

various flow regimes, encompassing steady irrotational flow, steady vortex flow 

characterized by two horseshoe vortices, and steady flow exhibiting two vortices 

within the mixing channel. 

The FVM is utilized to solve the governing equations, incorporating predefined 

boundary conditions to achieve a precise mixing index for OTMB. A non-uniform 

structured grid is used for the analysis, as demonstrated in Figure 3.2. 

The viscosity of the fluids in question is a crucial determinant of their flow and mixing 

behaviour. Experiments and modelling utilizing the molecular dynamics technique 

have shown that the viscosity of nanofluids is markedly more significant than that of 

the carrier fluid. This has been confirmed to have a satisfactory level of dependability. 

Furthermore, it relies not only on the concentration of nanoparticles but also on their 
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sizes and materials. Figure 4.29a shows the mass fraction and Figure 29b shows the 

velocity streamline of the OMTB. 

The study results shown in Table 4.14 indicate that the nanofluid differs from the 

essential fluid in two significant aspects. Initially, it exhibits a greater density that 

increases proportionally with the volume concentration of nanoparticles, and at the 

peak concentration, it exceeds the density of water by thirty percent. Conversely, the 

viscosity of fluids increases nonlinearly with concentration and considerably exceeds 

the density of water. Thus, the presence of these two components will markedly 

modify the flow properties of fluids combined in the micromixer. The density of the 

nanofluid is independent of the nanoparticle size. However, the viscosity of the 

nanofluid is contingent upon the nanoparticle size. Consequently, it is prudent to 

examine the effects of nanoparticle volume concentration and size on flow and mixing 

regimes independently (Figure 4.32). 

 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 135 + 0.25∅ + 1.25∅2 (4.1) 

Within this particular case, combining a conventional fluid (water) with nanofluid 

leads to the production of distinguishing properties that result from nanoparticle 

diffusion. At the beginning of the procedure, one of its inlets will inject water into the 

micromixer, which has a concentration of nanoparticles equal to zero. In addition, a 

nanofluid that has a particular volume concentration of particles, which is represented 

by the symbol ∅, is being injected by the other inlet. Under the condition that the T-

shaped microchannel is entirely mixed, it will be possible to generate a nanofluid with 

a particular medium concentration. If the flow rates at the inlet are the same, the 

concentration of the created mixed nanofluid will be equivalent to the square root of 

∅. Consequently, the mixing process might be shown by how the volume 

concentration of nanoparticles is altered (Figure 4.30). 

Under these conditions, the mixing of the fluid and the nanofluid is minimal, and it 

can only be seen on the contact line that separates the two fluid bodies. Even if the 

diffusion coefficient decreases due to the rise in the viscosity coefficient, a minor 

improvement in mixing occurs as the concentration of nanoparticles increases. 
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Table 4.16 Nanofluids viscosity and density at various fraction and diameter  

Volume Fraction 

(∅, %) 

0 2 5 

Viscosity (Pa.s) 10e-03 0.000923 0.00054 

ρ (kg/m3) 998 1159 1235 

 

Figure 4.29 Mass Fraction of the OTMB with 4 Twists and Bend 50° (a) Mass Fraction 
(b) Velocity Streamline. 

This forms a pair of symmetric horseshoe vortices within the mixer, which arises as 

the Reynolds number increases. These vortices, which begin close to the wall on the 

left side of the mixer, expand out into the mixing channel as they go through the mixer. 

When referring to these vortices, it is common practice to call them Dean vortices. 

They come into existence due to the creation of secondary flows, which are brought 

about by the action of the centripetal acceleration, which turns the flow. The 

simulation findings made it possible to determine the degree to which the critical 
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Reynolds number of the flow conditions depends on the concentration of 

nanoparticles. Figure 4.31 illustrates this dependence on the variable for the pressure 

drop. Nanofluids offer enhanced mixing properties in micromixers but introduce a 

higher pressure drop due to increased viscosity, particle-fluid interactions, and 

potential aggregation effects. In this context, the term "critical Reynolds number" 

refers to the value of the Reynolds number at which the flow undergoes a "turn-over," 

which means that instead of two vortices in the mixing channel, two single vortices 

start to exist. The critical  

 

Figure 4.30 Mixing effect with Re at ∅ 1%, 2% and 3%. 

Reynolds number will increase in a monotonic fashion as the concentration of 

nanoparticles increases. There is a correlation (Equation 4.1) of the type that can 

adequately represent the calculated dependency of the critical Reynolds number on 

the concentration of nanoparticles (Figure 4.32). Table 4.17 shows the design variable 

variation for different parameters for a 2 % volume fraction of ferrous oxide in the 

nanofluid effects on mixing index and pressure drops.  

Table 4.17 Design variable 1st generation with the response for 2% Volume Fraction 

of Fe3O4 
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Twists Bend Velocity 

(m/s) 

Mixing 

Index 

Pressure 

Drop (Pa) 

1 30° 2 67 % 198 

1 30° 1 65.1 % 98 

1 30° 0.5 64.5 % 49.5 

2 30° 2 74.4 % 268 

2 30° 1 72 % 201.5 

2 30° 0.5 70.5 % 61 

4 50° 2 79 % 269 

4 50° 1 77.7 % 123 

4 50° 0.5 77.5 % 61.25 

Under the findings of an investigation into the impact that the concentration of 

nanoparticles has on the flow, the "turn-over" regime of the flow undergoes a 

transition toward more significant Reynolds values as the volume concentration of 

nanoparticles increases. As an illustration, it has been established that the shift occurs 

at a Reynolds number of around 150 when the concentration of nanoparticles is 2%. 

On the other hand, the shift takes place at a Reynolds number of around 180 when the 

concentration is 5%. These phenomena may be explained by the fact that there is an 

increase in the viscosity of the nanofluid that takes place whenever there is an increase 

in the volume concentration of nanoparticles in the nanofluid. The findings of this 

investigation indicated that as the viscosity of one of the fluids is raised, the "turn-

over" of the flow tends toward more significant Re values. 
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Figure 4.31 Pressure drop (kPa) dependency with Re at volume fractions 1%, 2% and 
3%. 

 

Figure 4.32 Critical Re at volume fraction of nanoparticles 
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Chapter 5      CONCLUSIONS, FUTURE SCOPE 

AND SOCIAL IMPACT 

5.1   Conclusions 

5.1.1      Numerical Analysis and Optimization of TBM Model 

We have examined the performance of a T-junction micromixer with a twisted and 

bent mixing channel using computational analysis and a metaheuristic algorithm. 

According to our research, the radial secondary flow rises as the mixing channel's 

number of turns and bend angle increases, enhancing mixing efficiency. Based on the 

findings of the study, the following conclusions are made: 

i. Additionally, we have shown that the twisted mixing channel performs best 

for Reynolds values between 10 and 550 since it significantly raises the mixing 

index while having a negligible influence on the pressure drop. 

ii. A combination of simulations was run to assess the effect of twist and bend 

parameters on a micromixer channel. The collected data was capitalized to test 

and train a neural network, resulting in more than 99% accuracy for η and 97% 

for ΔP predictions. The nonlinearity of the TBM model may be captured using 

neural networks. 

iii. A global optimization approach with the parameters of twist and bend was 

performed to get the optimal model. The MFO algorithm resulted in ‘twists of 

4 and a bend of 70° at a Reynolds number 10. 

iv. Upon verification of the optimized TBM model through simulation, the 

resulting values of η (79.76%) and ΔP (17.925 Pa) showed minor errors of 

0.56% and 2.78%, respectively. This indicates that the optimization process 

led to a micromixer design with accurate values of both η and ΔP. 
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Our process is significantly faster than that of CFD simulation-based optimization.  

5.1.2    Optimizing Offset Passive Micromixer 

In this study utilised the principles of constructal theory to undertake an evolutionary 

design of passive micromixers. The constructal design method, in conjunction with 

the RSM, HHO and CFD, serves as a framework for improving the performance of a 

given configuration by gradually introducing additional degrees of freedom and 

progressing towards more optimal designs. In this investigation, the best values of 

parameters impacting the performance of the micromixer were explored with CFD 

simulations and metaheuristic algorithms to obtain the maximum 𝜂𝜂 and minimal Δ𝑃𝑃. 

A neural network was trained and tested using the gathered data, and the results 

showed more than 99% accuracy for predictions 𝜂𝜂 and 98.5% for Δ𝑃𝑃 predictions. A 

global optimization strategy based on the twist and bend parameter was used to obtain 

the ideal model. 

The optimised OMTB model's simulation-based verification revealed slight 

inaccuracies of 0.378% and 1.4% in the calculated values of max 𝜂𝜂 (87.76%) and min 

ΔP (13.28 Pa). It shows a micromixer with precise 𝜂𝜂 and ΔP values from this 

optimization procedure.  

The findings of this investigation led to the following conclusions. 

i. The CFD simulations indicate that mixing is enhanced at low and very high 

Reynolds numbers (Re). However, pressure drops increase at high Re, 

countering the optimization goal. This occurs due to elevated transverse 

velocities within the channel bends and twists, which enhance mixing. A 

higher transverse velocity factor intensifies chaotic convection, increasing 

mixing efficiency (η) while aiming to minimize pressure drop (ΔP). 

ii. The response surfaces also demonstrated that, after crossing the threshold 

point, the mixing improved with increasing Re in all values of bend and twists. 

With an overall desirability of 0.898 for a micromixer with bends and twists 



154 

 

with η = 79.31% and ΔP = 988.65 Pa, at input variable of Re = 450, bend =

48°, and twists = 4 was obtained. 

iii. HHO outperformed RSM, optimizing for optimal parameters. The preferred 

design, with parameters, are Re = 400, bend = 60°, and twist = 4, was 

determined for optimality, having η= 87.76% and ΔP = 974.20 Pa. 

iv. A better ratio of the Δ𝑃𝑃 𝜂𝜂�  achieved using RSM rather than through 

optimization with HHO. HHO and RSM came up with results of 1109.86 and 

1259.17, respectively. The best input factor values from the RSM and HHO 

approaches were used in the CFD simulation. 

5.1.3    Numerical Analysis of HSTM with C-Y Model 

The study found that the HSTM performs better than the STM in η for non-Newtonian 

fluid blood across all examined mass flow rates. To investigate the relationship 

between mixing performance and 𝑚𝑚 ̇, the study presents several types of analysis, such 

as streamlines and graphs for fluids at different planes. The results indicate that the 

HSTM design demonstrates superior η over the STM design across a broad range of 

mass flow rates. Specifically, at the lowest mass flow rate of 𝑚𝑚 ̇ = 0.00004 Kg/hrs, the 

HSTM shows a significant improvement in η of 62.5% compared to the STM. Even 

at the highest mass flow rate of 𝑚𝑚 ̇=0.095 Kg/hrs, the HSTM outperforms the STM, 

achieving a remarkable η of 78.6% versus a mere 1.21% for the STM. These findings 

suggest the proposed HSTM design has great potential for practical use in various 

applications. 

5.1.4    Numerical Analysis of OTMB with Nanofluids 

The simulation data demonstrated that the flow conditions observed in mixing a 

typical fluid and a nanofluid are qualitatively identical to those observed in mixing 

two normal fluids. These flow conditions include steady irrotational flow, steady 

vortex flow with two horseshoe vortices, a stepwise change in the flow structure (turn-

over), and steady flow with two vortices in the mixing channel. When the flow 
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transitions from a regime with two vortices to a flow regime with two single vortices, 

it has been demonstrated that the mixing efficiency increases several times. However, 

the shift from one regime to another is not as simple to forecast as one might think. 

This is because the viscosity of nanofluids significantly increases, and the density is 

also significantly higher. Further, the viscosity of a substance is determined by the 

particle size, and it rises as the particle size decreases. According to equation 4.61, the 

diffusion coefficient is inversely proportional to the particle diameter and the viscosity 

coefficient, which depends on the particle size. On the other hand, the particle size has 

a complex relationship with the diffusion coefficient since it depends on the particle 

size. The critical value of the Reynolds number of the transition of flow regimes has 

been determined to be dependent on the concentration of nanoparticles as a result of 

the analysis of the calculation data. This was discovered as a result of the findings of 

the discussion. Increasing the concentration of nanoparticles has been demonstrated 

to increase the critical value of the Reynolds number. The crucial value of the 

Reynolds number is dependent on the size of the nanoparticles once this dependence 

has been established. It has also been demonstrated that the crucial value of the 

Reynolds number decreases as the average size of nanoparticles grows. This is 

something that has been proven from previous research. Therefore, it is possible to 

modify the flow and mixing regimes in the micromixer by adjusting the nanoparticle 

concentration and the particles' size. 

i. Under the suggested micromixers, the hydrodynamic behaviour of Newtonian 

flow was enhanced by the effects of generalized Reynolds numbers. 

ii. If there is a high concentration of nanofluids, the micromixer will produce 

robust secondary flows to enhance the mixing quality throughout the process.  

iii. The micromixer is designed to produce strong secondary flows, improving the 

mixing quality regardless of the nanofluid concentration. 

iv. The higher amount of disorder in the system suggested by increased entropy 

generation can be advantageous in specific applications where efficiency is 

crucial. 
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5.2      Future Scope 

i. Exploring Alternative Passive Designs 

Passive micromixers leverage channel geometry and fluid dynamics to 

enhance mixing without external energy sources. Future studies could 

investigate various channel shapes, bifurcations, and curvatures to optimize 

mixing efficiency while maintaining low energy consumption. 

ii. Introducing Pillars or Obstacles 

Incorporating obstacles such as pillars, ridges, or baffles into micromixer 

designs can improve fluid mixing. These structures induce secondary flows 

(e.g., vortices, chaotic advection), enhancing fluid diffusion and overall 

performance in microfluidic systems. 

iii. Multi-Objective Optimization Algorithms 

Future research could utilize MOEA to refine micromixer designs by 

balancing key parameters: 

Cost – Considering material and fabrication expenses. 

iv. Expanding to Non-Newtonian and Complex Fluids 

Most studies focus on Newtonian fluids, but many applications involve non-

Newtonian fluids (e.g. polymers and suspensions) with complex behaviours 

like shear-thinning or viscoelastic effects. Investigating these fluids could 

expand micromixer applications in biomedical, pharmaceutical, and chemical 

industries. 
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5.3   Application and Social Impact of Micromixers 

Microfluidic micromixers have a wide range of applications, particularly in fields 

requiring precise and efficient mixing of fluids at a microscale. Here are some key 

applications: 

i. Chemical Synthesis: Micromixers enable precise control over reaction 

parameters, such as temperature and concentration, at the microscale. This 

results in higher yields, reduced waste, and quicker reaction times. They are 

used in synthesizing nanoparticles, polymers, and other fine chemicals with 

consistent quality. 

ii. Clinical Diagnostics: In diagnostic devices, micromixers are crucial for 

mixing patient samples with reagents. This ensures uniform reactions, leading 

to accurate detection of biomarkers, pathogens, or disease indicators. For 

instance, micromixers are integrated into point-of-care testing devices for 

rapid and reliable results. 

iii. DNA Analysis: Micromixers are used in processes like DNA extraction, 

amplification (e.g., PCR), and sequencing. Efficient mixing helps in preparing 

DNA samples by blending them with enzymes, primers, or dyes, which is 

essential for high-quality data in genetic research or forensic analysis. 

iv. Pharmaceutical Applications: In drug development and testing, micromixers 

play a role in formulating and testing drug candidates. They allow precise 

control over reagent mixing, aiding in enzyme assays, protein folding studies, 

and the production of liposomes or drug delivery systems. 

v. Biochemical Assays: Micromixers facilitate complex biochemical processes, 

such as enzyme kinetics studies or immunoassays. They enable rapid and 
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efficient dilution, reaction, or detection steps, saving time and resources in 

laboratory workflows. 

5.3.1      Micromixers Application in the Industry 

5.3.1.1   Micromixers as Microreactors 

i. Micromixers are crucial in the chemical industry due to their rapid mixing 

process. 

ii.  They facilitate the synthesis of novel, unattainable products in significant 

reactors. 

iii. The efficiency of the micromixer directly impacts the overall reaction rate. 

5.3.1.2   Homogeneous Reactions 

i. Micromixers can serve as microreactors for homogeneous liquid-phase 

reactions. 

ii. They are effective platforms for synthesizing solid microparticles, offering 

control over particle size and shape. 

iii. They are well-suited for combinatorial chemistry, particularly in synthesising 

proteins for drug discovery. 

5.3.1.3  Heterogeneous Reactions 

i. Micromixers allow for the incorporation of solid catalysts in the form of beads 

or porous materials within the mixing channel. 

ii. They can generate microdroplets that create a large interfacial area, enabling 

high-efficiency synthesis reactions between organic and aqueous phases. 
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5.3.1.4    Chemical Sensitivity Enhancement 

i. Micromixers can control chemical selectivity, the relative preference for 

forming specific products. 

ii. The influence of selectivity is shaped by competing reactions that can take 

place in parallel or sequentially. 

iii. Micromixers effectively regulate selectivity in kinetics-driven reactions, but 

they do not affect selectivity controlled by thermodynamic stability. 

5.3.1.5    Biochemical Sensors and Preconcentration and Purification 

i. Micromixers with chaotic advection enhance analyte transport to surface-

immobilized receptors. 

ii. This method enables efficient and controlled binding between antibodies and 

immobilized protein. 

iii. The level of chaotic advection plays a critical role in determining detection 

quality. 

5.3.1.6    Preconcentration and Purification 

i. DNA sample preconcentration and purification are crucial for accurate and 

reliable pathogen detection. 

ii. Micromixers allow for precise control over buffer concentrations and facilitate 

the generation of chaotic advection. 

iii. Examples include serpentine micromixers for DNA purification and di-

electrophoresis (DEP). 
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