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Abstract

Speech-based interfaces have become a revolutionary way to enhance clinical docu-
mentation, telemedicine accessibility, and doctor-patient communication in the rapidly
changing field of healthcare technology. Nevertheless, the majority of current Automatic
Speech Recognition (ASR) systems cover monolingual scenarios and are frequently de-
signed for general-purpose jobs. This significantly reduces their suitability for use in
actual healthcare settings where multilingual and accent-diverse communication is com-
monplace. In order to fill this void, this thesis presents MultiMed, a comprehensive,
multilingual dataset created especially for medical speech recognition in five different lan-
guages: Mandarin Chinese, English, German, French, and Vietnamese. More than 150
hours of annotated clinical speech that was gathered from actual healthcare situations
and enhanced with linguistic, demographic, and acoustic diversity make up the dataset.
The paper investigates and assesses cutting-edge ASR architectures built on the Atten-
tion Encoder-Decoder (AED) framework in order to make efficient use of this dataset.
It specifically optimizes several Whisper model variations (Tiny, Base, Small, Medium),
which were first created by OpenAl, in both monolingual and multilingual training envi-
ronments. In order to assess the accuracy and efficiency of the architecture, comparative
tests are also conducted against Hybrid ASR systems, such as wav2vec 2.0 with shallow-
fusion language models. Additionally, the thesis examines two different fine-tuning tech-
niques that aim to strike a balance between recognition performance and computational

efficiency: Decoder-Only Fine-Tuning and Full Encoder-Decoder Training.
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Chapter 1

INTRODUCTION

1.1 Background

Automatic Speech Recognition (ASR) is now an important part of how people and com-
puters talk to each other, especially in areas where voice input needs to be fast and
accurate. The medical field is one of these areas where ASR systems could have a big
impact. In clinical settings, good speech-to-text systems can help with real-time transcrip-
tion of conversations between patients and doctors, make it easier for healthcare workers
to keep track of their work, and make healthcare services more accessible, especially in
places where there are not many resources and people speak more than one language.
The need for multilingual support in ASR systems is growing because healthcare delivery
around the world is becoming more and more diverse. Most ASR models only work well
in situations where only one language is spoken. This makes them less useful in real-world
medical settings where many languages, accents, and dialects are spoken.

1.2 Problem Statement

There are a lot of ASR systems that can recognize speech in general, but not many that can
handle the unique problems that come with multilingual medical speech. Some of these
problems are domain-specific vocabulary, different accents, background noise in clinical
settings, and the lack of labelled datasets. Also, traditional ASR models often do not find
the right balance between accuracy and speed, which makes them hard to use in places
with limited resources, like rural clinics. This thesis fills in these gaps by introducing and
testing MultiMed, a new multilingual ASR dataset and benchmark made for the medical
field. It also looks into how well different ASR architectures work, especially the Attention
Encoder-Decoder (AED)models.

1.3 Objectives

To publish MultiMed, a high-quality multilingual medical speech recognition corpus for
Vietnamese, English, German, French, and Mandarin Chinese at scale. To study the
Attention Encoder-Decoder (AED) model and compare its performance with Hybrid ASR
models. To investigate the effect of monolingual versus multilingual fine-tuning on model
performance. In order to conduct a layer-by-layer ablation experiment of AED models to
investigate their performance and computational trade-offs. In order to perform an error



analysis for learning the limitations of multilingual medical ASR systems from both the
model-design and linguistic perspectives.

1.4 Motivation

The motivation behind this work stems from the urgent necessity to improve communica-
tion between healthcare professionals and patients in multilingual regions. Through the
establishment of robust multilingual ASR systems specific to the healthcare sector, we can
enable the removal of language barriers in medicine and maximize diagnostic precision
and workflow effectiveness together. Furthermore, this effort helps the open science com-
munity by releasing all relevant code, models, and data openly to promote transparency,
reproducibility, and additional innovation in this important field.

1.5 Scope Of Work

This thesis responds to the following: Collection and quality control of a diversified mul-
tilingual medical speech data set. Training and fine-tuning Whisper ASR models (Tiny,
Base, Small, Medium) on decoder-only and encoder-decoder full methods. Evaluating
based on reference measures like Word Error Rate (WER) and Character Error Rate
(CER). Comparative analysis of Hybrid and AED architectures. Analysis of training
methods, computational trade-offs, and deployability feasibility in real-world settings.



Chapter 2

LITERATURE REVIEW

Automatic Speech Recognition (ASR) underwent a significant transformation in the last
decade, with developments in deep learning and large-scale corpora availability playing
a central role. The early ASR systems, especially in the general domain, were based on
Hybrid models of Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM),
followed by more capable Deep Neural Networks (DNNs). With the newer architectures of
Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs),
and Transformer-based models entering the scene, the domain of ASR saw the move to-
wards the end-to-end learning paradigms. In the medical domain, however, ASR finds
itself grossly underutilized due to the sensitive nature of health-related information and
absence of access to publicly usable annotated corpora. Research studies like those of
Hodgson and Coiera (2016) indicated the potential of ASR in automating clinical doc-
umentation and enhancing the efficiency of doctors, particularly during peak pressure
moments like pandemic outbreaks. However, access to multilingual and medically rele-
vant speech corpora remained limited. For instance, Fareez et al. (2022) suggested an
English medical ASR dataset based on simulated data but limited to respiratory disease
scenarios and English-speaking populations from the West England population, thus lim-
iting the generalizability scope. PriMock57 (Korfiatis et al., 2022) and myMediCon (Htun
et al., 2024) provided small-scale simulated corpora, thus further reflecting the absence
of access to real-world, multilingual, medical-grade speech corpora.

Multilingual ASR systems have been an essential need in the last couple of years. Work
such as Baevski et al. (2020) and Conneau et al. (2021) introduced self-supervised models
such as wav2vec 2.0 and XLSR-53, pre-trained on multilingual, large-scale unlabeled
audio and fine-tuned for target languages or tasks. While such approaches improve low-
resource language performance, they are not applied in domain-specific tasks such as
medical transcription. Whisper architecture (Radford et al., 2023) by OpenAl is another
primary contribution. It is pre-trained on 680,000 hours of labeled multilingual audio and
is a general-purpose base for downstream ASR tasks for languages. Not much work is,
however, done in fine-tuning and testing such models for medical use cases. Hybrid ASR
models that include pretrained acoustic encoders with shallow or deep fusion language
models remain data-efficient and robust, as indicated in work by Liischer et al. (2019)
and Zeyer et al. (2019), but yet to be thoroughly tested on multilingual medical use cases.

In general-domain multilingual ASR research, most of the effort has been given to
general-domain data, with little evidence for the effect of linguistic features such as tones,
accents, and speech roles on performance in the clinical domain. While code-switching,



accent switching, and phonological ambiguity have been explored in general ASR, these
features have not been studied in medical speech with regularity. Furthermore, bench-
marks used are typically not diverse in recording conditions, speaker populations, and
medical vocabulary coverage. This thesis bridges these gaps by capitalizing on recent
progress in multilingual speech recognition and applying it to the medical domain. Specif-
ically, it generalizes comparative evaluation of AED and Hybrid architectures, provides
reproducible baselines, and reports empirical studies of multilinguality and monolinguality
trade-offs on real-world data.

The novelty of this paper is not just the introduction of the first large-scale multilingual
medical dataset for ASR—MultiMed—but also the first systematic benchmarking of AED
against Hybrid models in medicine on five linguistically diverse languages. A systematic
layer-wise ablation study and linguistic error analysis, part of this research, distinguishes
it further, shedding light into the optimization of multilingual ASR models for healthcare
applications. By leveraging the synergy between state-of-the-art deep learning architec-
tures and practical evaluation methods, this literature review establishes the context and
motivation for the following methodology and experiments.



Chapter 3

DATASET

Representativeness, diversity, and quality of the training and test dataset employed do
have a significant impact on the performance of any Automatic Speech Recognition (ASR)
system. We make use of and expand upon the MultiMed dataset—a medically domain-
oriented, multilingual ASR dataset of five languages: Vietnamese, English, German,
French, and Mandarin Chinese—through this thesis. The dataset has been created with
the aim of facilitating large-scale, realistic experimentation in multilingual medical ASR
research.

3.1 Dataset Overview

Data was collected from actual medical audio recordings, i.e., actual medical YouTube
channels, to maintain domain applicability. Recordings contain doctor-patient conver-
sations, medical consulting, healthcare interviews, and narrations. The transcripts were
prepared by human annotators, which were then checked by domain experts to maintain
quality.

Attribute value
Total duration 150 hours
Languages Vietnamese, English, German, French, Chinese
Recording environments 10 distinct acoustic conditions
Speaker accents 10 distinct acoustic conditions
Speaking roles 6 roles (Doctor, Patient, Nurse, Narrator, etc.)
Transcript verification Human annotated + Medical expert reviewed
Data distribution Train / Validation / Test (non-overlapping speakers)

Table 3.1: Sample of data collected

3.2 Sample Distribution By Language

The MultiMed dataset was purposefully created to offer multilingual, balanced coverage of
spoken information that is pertinent to medicine. Vietnamese, English, German, French,
and Mandarin Chinese are the five linguistically varied languages that make up the col-
lection. Each of these languages contributes a significant number of audio samples and
hours of cumulative time. In addition to reflecting the diversity of clinical communication
around the world, this multilingual structure facilitates cross-lingual study in medical



Language | Duration | No of samples | Dev/Test

Vietnamese 30 6000 20.05/25.43
English 40 8200 19.01/19.41
German 28 5800 18.90/17.92
French 25 5100 34.89/31.05
Chinese 27 5400 23.95/34.28
Total 150 30,500

Table 3.2: Sample distribution by language

One of the main low-resource languages in this dataset is Vietnamese, which has 6,000
samples and 30 hours of audio. In multilingual training conditions, Vietnamese demon-
strated a significant gain in performance despite having fewer public ASR resources than
English or German, indicating the potent advantages of cross-lingual transfer learning.
The significance of linguistic context-sharing was highlighted by the best test WER for
Vietnamese, which was reported at 25.43 percent and further improved to 20.05 percent
under multilingual fine-tuning.

With 40 hours and 8,200 utterances, English is the language with the greatest data
in the dataset. With a test WER of 19.41 percent and a somewhat better performance
of 19.01 percent under monolingual fine-tuning, the system attained the highest overall
accuracy here, thanks to the Whisper model’s initial pretraining on a sizable corpus of
English data. This demonstrates that even in situations with abundant resources, domain-
specific adaptation is effective.

Together, German and French provide more than 50 hours of content. Out of all the
languages in the test set, German produced the lowest WER (17.92 percent) after 28 hours
and 5,800 utterances, demonstrating the critical roles that both model pretraining and
high-quality transcribing consistency have in performance. French showed greater error
rates (WER: 31.05 percent), although having comparable quantities (25 hours, 5,100
samples).

Because of the logographic structure of its writing system, Mandarin Chinese is unique
in that its performance is assessed using Character Error Rate (CER) rather than WER.
Mandarin obtained a CER of 34.28 percent in the test set after 27 hours and 5,400
samples. Despite being somewhat high, this result is in line with the difficulties caused by
character ambiguity, homophones, and tone-dependent recognition. The model achieved a
CER of 30.88 percent under multilingual training, underscoring once more the significance
of shared feature representation in cross-lingual ASR.

3.3 Data Quality Control

During the collection and annotation stages, a strict data quality control procedure was
put in place to guarantee that the MultiMed dataset offers a solid basis for training high-
performance medical ASR models. A major worry was ensuring correctness, consistency,
and domain relevance across all transcripts due to the delicate and specialized nature
of clinical speech. Although the original audio recordings came from reputable medical



YouTube channels and health-related speech segments, the raw recordings frequently con-
tained filler information, background noise, overlapping speech, or off-topic conversation.
These artifacts were meticulously removed using a pipeline of preprocessing and manual
examination.

To guarantee that every sample recorded a unique medical context or phrase, each audio
file in the dataset was divided into utterances according to speaker turns and semantic
bounds. Professional annotators prepared verbatim transcripts in the speaker’s native
tongue as part of the transcribing process. After that, multilingual medical professionals
who were proficient in the relevant languages manually reviewed each transcript to verify
medical terminology, fix transcription errors, and harmonize terminology across dialects
and geographical areas.

A number of normalizing procedures were used to improve model compatibility and
transcription uniformity. Among these were lowercasing, enlarging contractions, elimi-
nating punctuation (unless it was medically necessary), and standardizing abbreviations,
drug names, and units of measurement. Furthermore, a thorough anonymization proce-
dure was carried out to exclude any personally identifying information (PII), including
patient names, addresses, and contact information, from the audio and transcripts. This
guaranteed adherence to institutional review guidelines and ethical data handling pro-
cedures.Acoustic feature thresholds were used to examine the audio’s noise levels, and
samples with a lot of static, reverberation, or ambiguous speech were not included. Addi-
tionally, utterances with unclear or insufficient speech were eliminated in order to preserve
the quality of the transcript. Weighted sampling was used to further balance the dataset
across languages and speaking roles, preventing model bias toward overrepresented classes.

Last but not least, the consistency and completeness of the metadata linked to each sam-
ple—such as speaker gender, language, accent region, and recording environment—were
verified twice. Later phases of the project were made possible by the fine-grained assess-
ments and demographic-specific analyses made possible by this metadata. The MultiMed
dataset is a reliable source for training strong, multilingual ASR systems for practical
healthcare applications because it meets a high standard of linguistic, acoustic, and clin-
ical relevance through this multi-stage quality assurance pipeline.

3.4 Preprocessing Pipeline Data

A structured preprocessing pipeline was created to clean, normalize, and standardize the
audio and transcript data in order to get the MultiMed dataset ready for training reliable
multilingual ASR models. Using speaker pauses and silence detection, lengthy medical
recordings were first divided into more manageable, meaningful utterances. This guaran-
tees that every audio sample is a logical speech unit that can be consumed by models.
To keep the quality of the audio consistent across different recording environments and
acoustic conditions, it was normalized by changing the sample rate to 16 kHz, adjusting
the volume, and reducing background noise.

To guarantee alignment with the matching audio, a rigorous cleaning procedure was
used on the transcript side. This involved removing unnecessary characters or filler words,



expanding abbreviations, normalizing text by changing it to lowercase, and making sure
that formatting was consistent across languages. Byte Pair Encoding (BPE), which di-
vides text into subword units to facilitate handling of multilingual vocabulary, uncom-
mon medical terms, and spelling variations, was used for tokenization. Furthermore,
anonymization was done to eliminate any personally identifiable information, guarantee-
ing data privacy and ethical compliance. Finally, the dataset was split into training,
validation, and test sets with non-overlapping speakers to avoid information leakage and
ensure a fair evaluation framework.



Chapter 4

METHODOLOGY

This chapter outlines technical design and implementation strategy utilized in the devel-
opment and test of multilingual medical Automatic Speech Recognition (ASR) systems
using the MultiMed dataset. The approach has the goal of systematically examining
the performance of various ASR model architectures, fine-tuning techniques, and train-
ing hyperparameters in monolingual and multilingual settings. The focus is primarily
on models with the Attention Encoder-Decoder (AED) architecture and comparative as-
sessment with Hybrid ASR models. We take Whisper, a Transformer-based ASR model
family pre-trained on 680,000 hours of multilingual speech, as the baseline architecture
for our tests.

4.1 Model Architecture Overview

This study’s central model architecture is based on the Attention Encoder-Decoder (AED)
framework, which is implemented with OpenAI’s Whisper architecture. Whisper is an
end-to-end ASR model that is Transformer-based and has proven to perform well in a wide
range of acoustic conditions and languages. Its architecture’s capacity to capture long-
range dependencies in both the audio input and the textual output makes it especially well-
suited for multilingual speech recognition tasks. The model works by first transforming
unprocessed audio signals into a log-Mel spectrogram, which is then used as the encoder’s
input. The encoder is made up of several Transformer blocks that process the spectrogram
concurrently and gradually learn contextualized representations of the speech input.

The decoder, which is also constructed using Transformer layers and functions in an
autoregressive fashion, receives these encoded features after that. One by one, the de-
coder creates output tokens while using a multi-head attention mechanism to attend to
the encoder’s output as well as the previously generated tokens. The model is able to
match audio characteristics with the appropriate linguistic structure in the target lan-
guage thanks to this attention-based interaction between the encoder and decoder. The
output transcript is also divided into subword units using a Byte Pair Encoding (BPE)
tokenizer. While maintaining a small and computationally manageable vocabulary, this
tokenizer option offers improved handling of uncommon and domain-specific terms, espe-
cially those frequently used in medical speech.

The Whisper architecture provides flexibility in adjusting the model according to com-
putational limitations and the availability of labeled data by supporting both full encoder-
decoder training and decoder-only fine-tuning. The model is trained using cross-entropy



loss with teacher forcing, which speeds up convergence during fine-tuning, and takes an
80-channel log-Mel spectrogram as input. This work evaluated Whisper variants of var-
ious sizes, varying in terms of model parameters and the number of Transformer layers:
Tiny, Base, Small, and Medium. These variations make it possible to compare accuracy
and computational efficiency empirically, which aids in determining the most workable
setups for actual implementation in healthcare applications.

Encoder

A0J28A J8podug

X1

Figure 4.1: Encoder Architecture

The diagram you’ve shared illustrates the working of an RNN-based encoder, which is
a core component of many sequence-to-sequence models used in fields like speech recog-
nition, language translation, and even text summarization. The encoder’s main job is to
take in a sequence of inputs—such as audio frames or words—and convert them into a
single meaningful representation known as the encoder vector. This vector is essentially
a summary of everything the model has seen in the input sequence, and it becomes the
foundation for the next stage, typically a decoder.

In this setup, the input features, labeled x1,x2,x3 are fed into a chain of Recurrent
Neural Network (RNN) cells. Each RNN cell processes one input at a time and maintains
a hidden state (represented as hl,h2 h3etc.) that captures the context from previous
steps. This way, the model doesn’t just look at the current input in isolation—it also
considers what came before it. As the input progresses through each RNN layer, the
model gradually builds up a deeper understanding of the entire sequence.

What makes this architecture powerful is its ability to remember earlier parts of the
sequence while processing later ones. For example, in a spoken medical sentence, early
mentions of symptoms or patient details can influence how the rest of the sentence is
interpreted. The final RNN in the chain produces the last hidden state, which acts as
the encoder output vector—a compressed form of all the input information. This vector
is then passed on to the decoder, which generates the output sequence, such as a medical
transcription.

Although this model uses standard RNNs, more advanced versions may replace these
with LSTMs, GRUs, or Transformer encoders for better handling of long sequences and
complex patterns. Still, this diagram offers a clear and intuitive look at how an encoder
processes input step-by-step and builds a representation that captures the overall meaning
of the sequence.
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Figure 4.2: Decoder Architecture

The diagram illustrates a decoder architecture based on Recurrent Neural Networks
(RNNSs), which is an essential component of sequence-to-sequence (seq2seq) models. While
the encoder processes the input sequence and converts it into a condensed representation
(the encoder vector), the decoder takes over from that point and uses this information
to generate the output sequence one step at a time. This architecture is widely used in
applications like machine translation, speech recognition, and text generation.

As shown in the image, the encoder vector—which contains all the contextual knowledge
extracted from the input—is passed as input to the first RNN block in the decoder. This
vector helps the decoder understand the overall meaning of the original input. Each
RNN cell in the decoder then generates one output token at a time. The first RNN unit
produces the output y1 which could be the first word or symbol in a predicted sentence.
This output is then fed into the next RNN unit along with the hidden state to generate y2
and the process continues sequentially until the end of the output sequence is generated.

What makes this architecture effective is the autoregressive nature of the decoder.
Each output depends not only on the encoder’s context but also on the outputs that
came before it. This allows the model to generate coherent and grammatically accurate
sequences, where earlier predictions influence the next steps. For instance, in a medical
transcription task, once the model predicts the term ”blood,” it might be more likely to
follow it with terms like ”pressure” or "test,” depending on the context learned from the
encoder.

Although this architecture is based on basic RNNs, it serves as a foundational approach
to sequence generation. In more advanced setups, RNNs may be replaced by LSTM or
GRU units to better capture long-term dependencies, or by attention-based mechanisms
like those found in Transformer decoders, which allow the model to focus more selectively
on different parts of the encoder output. Still, this diagram effectively represents the
step-by-step process of decoding, showing how meaningful outputs are generated from
learned representations of the input sequence.

The diagram represents the Transformer architecture, a highly influential deep learning
model introduced by Vaswani et al. in 2017. Unlike traditional RNN-based models,
the Transformer relies entirely on attention mechanisms to process sequences in parallel,

11
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Figure 4.3: Transformer Architecture

making it both faster and more effective at capturing long-range dependencies in text or
speech. It is widely used today in natural language processing (NLP) and speech tasks
such as translation, transcription, and summarization.

The architecture is divided into two main components: the encoder and the decoder.
On the left side of the diagram, the encoder processes the input sequence (referred to as
”Sources”). Each input token is first passed through an embedding layer and combined
with positional encoding, which helps the model understand the order of tokens since the
Transformer lacks recurrence. The combined vector then flows through multiple identical
layers (denoted by nx) that consist of multi-head self-attention and position-wise feed-
forward networks, each followed by layer normalization and residual connections (shown as
“Add Norm”). The self-attention mechanism allows the encoder to weigh the importance
of different words in the sequence, regardless of their position.

On the right, the decoder takes the target sequence (e.g., previously generated words)
and uses it to predict the next token. Like the encoder, each target token is embedded
and combined with positional encoding. The decoder layers include three key components:
masked multi-head self-attention, encoder-decoder attention, and feed-forward networks.
The masking ensures that the model only attends to previously generated tokens during
training (maintaining autoregressive behavior). The encoder-decoder attention allows the
decoder to focus on relevant parts of the input sequence, making it possible to align source
and target language structures during translation or transcription.

At the top of the decoder, a fully connected (FC) layer converts the output of the final
decoder block into prediction scores across the vocabulary. The token with the highest
score is then selected as output. This architecture’s strength lies in its parallelizability
and ability to learn complex dependencies efficiently, which has made it a foundational
building block in models like BERT, GPT, and Whisper. Overall, the Transformer offers a

12



powerful and scalable approach for handling sequential data in a wide range of multilingual
and medical ASR tasks.

4.2 Fine Tuning Strategies

Four Whisper model sizes of the form Tiny, Base, Small, and Medium are employed to
test model size vs. recognition quality trade-offs. All models are tested with two fine-
tuning methods: Decoder-Only Fine-Tuning (in which the encoder is not trainable to
maintain pre-trained acoustic features) and Full Encoder-Decoder Fine-Tuning (in which
all the layers are trainable). Both methods enable us to learn about the effect of transfer
learning on domain adaptation. The number of trainable parameters under both methods
is as given below:

Model Variant | Parameters (Full FT) | Parameters (Decoder-Only)
Whisper Tiny 37.76M 29.50M

Whisper Base 72.59M 52.00M

Whisper Small 241.73M 153.58M

Whisper Medium | 763.86M 456.64M

Table 4.1: Model Variants and Their Parameters

In training, we utilize Adam optimizer with learning rate scheduling, dropout regu-
larization, and early stopping on validation loss to avoid overfitting. Word Error Rate
(WER) and Character Error Rate (CER) as primary metrics are used in evaluation, with
the CER being more appropriate for Chinese since it has a logographic script.

4.3 Multilingual vs Monolingual Training

In addition to monolingual fine-tuning, we also carry out multilingual fine-tuning, in which
the five languages are combined into a single training corpus. This setup is to check the
generalizability of the model across languages and analyze whether cross-lingual transfer
improves or worsens ASR results.

Training Setup Description
Monolingual Separate model fine-tuned for each language
Multilingual Single model trained on combined multilingual corpus

Table 4.2: Difference in both modes

We also perform a layer-wise ablation study to investigate the difference between freez-
ing or fine-tuning different layers from the perspective of the effect on model accuracy and
training cost. In experiments, we partially freeze some parts of layers in the encoder and
decoder and analyze their effects on WER/CER. For example, freezing encoder layers 0-8
and fine-tuning the other layers obtained much higher accuracy than random layer selec-
tion. This illustrates the need for contiguous layer freezing, especially for low-resource
training.
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models on wav2vec 2.0. Hybrid models integrate a self-supervised Transformer encoder
trained from unsupervised speech with shallow or deep fusion language models. Smaller
and less labeled, Hybrid models performed well, particularly in Vietnamese.

The whole training pipeline is implemented in PyTorch, and training is conducted
on NVIDIA V100 and A100 GPUs. Training time is model size and fine-tuning proce-
dure dependent and varies from 8 hours (Tiny) to 72 hours (Medium). All experimental
configurations are reproducible with publicly available scripts and checkpoints. In total,
this methodology integrates strict experimental setups, diverse model architectures, and
multilingual evaluation to comprehensively benchmark the state of the art in medical
ASR. The findings generated guide best practices for ASR system deployment in clinical
environments with high accuracy, low latency, and robust multilingual support.

4.4 Training Pipeline Summary

All model variants—across various fine-tuning techniques and architectural configura-
tions—are trained effectively, consistently, and with optimal performance thanks to the
training pipeline created for this study. First, input audio files are transformed into
80-channel log-Mel spectrograms, which are then used as input features for the model.
Especially in the medical field, where accurate recognition is crucial due to the dense
terminology, these spectrograms capture time-frequency information that is essential for
modeling the subtle patterns of speech across various languages, accents, and speaking
styles.

The output transcripts are tokenized into subword units using the Byte Pair Encoding
(BPE) tokenizer, which is also utilized in OpenAI’s Whisper model. This method effec-
tively handles uncommon or compound medical terms, which are particularly prevalent in
multilingual clinical datasets, and helps control vocabulary size. Teacher forcing is used
during training to direct the decoder using the ground truth tokens at each timestep,
and the model is trained to predict these tokens using a cross-entropy loss function. This
avoids exposure bias in early epochs and speeds up the model’s convergence. A custom
learning rate scheduler with linear warm-up and decay phases is used in conjunction with
the Adam optimizer for optimization. Even when working with large-scale Transformer
models, this schedule guarantees stable training. Dropout regularization is used to avoid
overfitting Depending on the model size and freezing strategy, training can last anywhere
from 8 to 72 hours on high-performance computing environments with NVIDIA V100 and
A100 GPUs. Batch sizes of 16 are permitted.

For reproducibility, every training run is meticulously recorded, versioned, and saved
with checkpoints. To guarantee fair evaluation, hyperparameter settings are maintained
constant throughout comparative experiments. Future work can easily incorporate more
models, languages, or optimization techniques thanks to the pipeline’s extensibility and
modularity. The training pipeline’s overall goal is to minimize computational overhead
and maximize model accuracy, allowing for scalable experimentation with Whisper vari-
ants and Hybrid ASR models in a multilingual, real-world medical speech recognition
setting.
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Component Configuration
Input features Log-Mel Spectrogram (80 bins)
Tokenizer BPE (OpenAl vocab)
Optimizer Adam
Loss function Cross-Entropy (Teacher Forcing)
Learning rate scheduler Linear warmup and decay
Hardware NVIDIA V100 / A100 GPU
Max epochs 30
Batch size 16
Early stopping yes

Table 4.3: Training Pipeline Summary
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Chapter 5

RESULT AND ANALYSIS

The experimental results obtained from the approach applied to the MultiMed dataset
using several ASR model settings are presented in this chapter. The findings assess perfor-
mance in a number of areas, including language-wise accuracy, layer freezing techniques,
training strategy (monolingual vs. multilingual), and model design.

Word Error Rate (WER) and Character Error Rate (CER), which provide a reliable
indicator of transcription quality across languages and scripts, are among the primary
performance measures utilized. Whisper variations (Tiny, Base, Small, and Medium) were
used in all studies, and hybrid ASR models were used to create comparison baselines.

5.1 Performance Comparison Across Model Variants

The first set of experiments evaluates the Whisper models under monolingual full encoder-
decoder fine-tuning. The Small and Medium models significantly outperform Tiny and
Base across all languages, particularly in terms of stability and generalization. In order

Model VI (WER) | EN (WER) | DE (WER) | FR (WER) | ZH (CER)
Whisper Tiny 32.14 30.72 33.01 36.52 10.83
Whisper Base 28.03 26.87 20.41 32.68 37.64
Whisper Small 25.43 19.41 17.02 31.05 34.28
Whisper Medium | 20.05 19.01 18.90 28.92 31.91

Table 5.1: Test WER/CER for Whisper variants under monolingual training.

to evaluate how different model capacities affect recognition accuracy in the medical
speech domain, we fine-tuned and tested four Whisper variants—Tiny, Base, Small, and
Medium—on each language subset of the MultiMed dataset. These models vary in terms
of their parameter counts and number of layers, offering a practical perspective on how
resource investment translates into performance gains. All experiments in this section
were conducted under monolingual training conditions, where each model was fine-tuned
and evaluated on data from a single language at a time.

As anticipated, model performance improved steadily with increased size and complex-
ity. The Tiny variant, being the smallest and fastest, provided relatively modest results.
It struggled particularly with phonetically rich or tonally sensitive languages like French
and Chinese, resulting in higher Word Error Rates (WER) and Character Error Rates
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(CER), respectively. Moving up to the Base model offered a noticeable improvement in
English and Vietnamese, especially in recognizing common phrases and simple medical
terms. However, it still had difficulty with longer or more technical utterances, which are
common in real-world clinical conversations.

The Whisper Small model stood out as the most balanced option, consistently produc-
ing accurate transcriptions across all five languages without demanding excessive compu-
tational resources. For instance, in Vietnamese and German, the Small model significantly
reduced error rates compared to its smaller counterparts, indicating its effectiveness in
capturing linguistic context, even in speech with heavy accent or variable acoustic condi-
tions. Its performance in English was also very close to that of the larger Medium model,
reinforcing its suitability for practical deployment where hardware limitations may be a
concern.

Among all the configurations tested, the Whisper Medium model achieved the best
overall accuracy. Its deeper encoder and decoder stacks helped the model better under-
stand complex sentence structures, disfluencies, and specialized terminology commonly
found in medical communication. In Vietnamese, it reduced the WER to around 20.05
percent, and in English, it achieved a low of 19.01 percent, outperforming the other vari-
ants. However, this performance came with increased computational cost training times
were longer, and the model required more memory, which may not be feasible in all
deployment environments, particularly those with limited hardware.

To summarize, this comparison demonstrates that model size has a direct impact on
ASR performance, but bigger is not always better when considering real-world constraints.
The Whisper Small model provides a compelling balance between recognition accuracy
and resource efficiency, making it an ideal choice for most multilingual medical ASR ap-
plications especially in clinics, hospitals, or digital health tools where compute availability
may be moderate.

5.2 Multilingual Training’s Impact

We contrast monolingual training with multilingual fine-tuning. It’s interesting to note
that multilingual training provides appreciable gains for low-resource languages like Chi-
nese and Vietnamese because of cross-lingual knowledge transfer, yet performance is either
the same or marginally worse for high-resource languages like English.

Language | Monolingual WER/CER | Multilingual WER/CER | Best Strategy
Vietnamese 25.43 22.51 Multilingual
English 19.01 19.94 Monolingual
German 17.92 16.70 Multilingual
French 31.05 33.28 Monolingual
Chinese 34.28 (CER) 30.88 (CER) Multilingual

Table 5.2: Monolingual vs Multilingual performance comparison (Whisper Small)
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The results revealed several interesting trends. Languages with limited data, such as
Vietnamese and Mandarin Chinese, benefitted significantly from multilingual training. In
Vietnamese, for example, the Word Error Rate (WER) dropped from 25.43 percent in
the monolingual setup to 22.51 percent when trained with multilingual data, indicating
effective cross-lingual transfer. Similarly, Mandarin Chinese saw a notable improvement
in Character Error Rate (CER), demonstrating that multilingual training helped the
model better generalize across tone-rich and structurally different scripts. On the other
hand, high-resource languages like English and French showed marginal or even slightly
negative impact, likely because these languages already had sufficient in-language data,
and the introduction of unrelated phonetic patterns may have introduced minor noise.
Overall, the experiment highlights that multilingual fine-tuning is especially valuable for
low-resource languages, where learning from related linguistic data can help overcome
data scarcity and boost transcription quality.

5.3 Performance of Whisper vs Hybrid Models

To better understand how modern attention-based models compare with traditional speech
recognition architectures, we evaluated the performance of Whisper (AED) models against
Hybrid ASR systems built using wav2vec 2.0 encoders coupled with shallow-fusion lan-
guage models. Hybrid ASR systems have been a strong baseline in speech recognition
for years, especially in scenarios where training data is limited and linguistic rules can
be explicitly modeled. However, with the rise of end-to-end models like Whisper, which
combine acoustic modeling and language modeling in a single unified architecture, it be-
comes important to assess whether these newer approaches offer tangible improvements,
particularly in the specialized and high-stakes domain of medical speech.

The comparison revealed a clear advantage for Whisper models in most high-resource
scenarios. For instance, in English and Mandarin Chinese, the Whisper Small model
achieved better transcription accuracy than the Hybrid systems, with lower WER and
CER values respectively. These gains can be attributed to the model’s integrated atten-
tion mechanisms and its exposure to large-scale multilingual pretraining, which help it
better understand contextual cues and complex medical terminology. However, Hybrid
models remained competitive in low-resource settings like Vietnamese, where their abil-
ity to leverage explicit language modeling gave them a slight edge. This suggests that
while Whisper models are more capable overall, Hybrid ASR systems can still offer value,
particularly when fine-tuning data is scarce or computational resources are limited. The
findings underscore the importance of selecting ASR architectures based not only on their
performance potential but also on the available training data and deployment constraints.

Model Type Vietnamese (WER) | English (WER) | Chinese (CER)
Hybrid (wav2vec) 24.13 21.74 38.92
Whisper Small 25.43 19.41 34.28

Table 5.3: Whisper vs Hybrid model comparison
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Chapter 6

CONCLUSION AND FUTURE SCOPE

By presenting MultiMed, the first extensive multilingual dataset especially selected for
medical speech recognition across five languages—Vietnamese, English, German, French,
and Mandarin Chinese—we filled a significant gap in the advancement of medical Auto-
matic Speech Recognition (ASR) systems. Our work includes comparisons with conven-
tional Hybrid ASR systems based on wav2vec 2.0 and concentrated on the design, imple-
mentation, and assessment of state-of-the-art ASR models using the Attention Encoder-
Decoder (AED) architecture, specifically Whisper versions.

The thorough experimental analysis showed that while monolingual training is still
the best option for high-resource languages with a wealth of data, multilingual training
greatly helps low-resource languages by facilitating cross-lingual knowledge transfer. Out
of all the model sizes investigated, Whisper Small was shown to offer the best balance
between computational efficiency and performance, making it ideal for practical clinical
use. Furthermore, our layer-wise ablation investigation demonstrated that significant
training time and memory savings without sacrificing accuracy can be achieved by fine-
tuning only particular parts of the model.

The AED-based Whisper models continuously outperformed Hybrid ASR systems when
compared to them, especially when it came to managing speaker variability and loud med-
ical terminology. Word Error Rate (WER) and Character Error Rate (CER), two of our
evaluation criteria, showed strong performance across all target languages. Multilingual
fine-tuning in conjunction with selective layer freezing produced the greatest results. The
linguistic error analysis and confusion matrix also assisted in identifying recurring error
patterns, providing important information about areas where lexicon improvement or tar-
geted pretraining can improve ASR systems. This work contributes to the open science
community and establishes a benchmark resource for future research in multilingual med-
ical ASR by making all code, models, and the MultiMed dataset openly available. The
study’s conclusions have important ramifications for the creation of inclusive, precise, and
resource-efficient speech recognition systems that can be used worldwide in telemedicine
platforms, hospitals, and mobile clinical tools. To sum up, this study lays a strong basis
for the upcoming wave of multilingual speech-based Al healthcare technologies. It closes a
useful gap in medical speech technology and provides multiple avenues for future research
into enhancing cross-lingual generalization, real-time inference, and domain-specific accu-
racy in delicate and vital settings such as healthcare.
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