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Abstract

The widespread sharing and reuse of pre-trained deep convolutional neural networks

(CNNs) have raised serious concerns about model integrity and security. Malicious mod-

ifications such as backdoor and model-reuse attacks can compromise the trustworthiness

of these models without visibly affecting their performance, making integrity authenti-

cation a critical requirement in sensitive domains. While watermarking has emerged as

a prominent method for model verification, most existing techniques are irreversible and

alter the model’s internal structure permanently, making them unsuitable for integrity

validation. This research proposes a reversible watermarking scheme that enables the

embedding of authentication information into CNNs without any permanent modifica-

tion. The method leverages model pruning theory to identify less critical parameters with

low entropy, constructing an optimal host sequence for watermark insertion. Using a his-

togram shifting technique adapted from image watermarking, the watermark is embedded

in a manner that ensures full recovery of the original model parameters upon extraction.

Experimental validation is conducted across several popular CNN architectures, including

AlexNet, VGG19, ResNet152, DenseNet121, and MobileNet. The results show that the

reversible watermarking process has a negligible effect on model accuracy (within ±0.5%)

and demonstrates complete reversibility with zero reconstruction error. Lastly, if crypto-

graphic hash values are embedded, identity verification is possible: any modification to

the model will make the hash values differ between the original hash and the hash gener-

ated after each step. The researchers have made a new approach by reversing the process.

using watermarking to check that the structure of CNNs is not tampered with, presented

a way to protect sensitive models from deep learning by using secure parts For example,

healthcare, finance and defense. This methodology can still be broadened and improved

as we go. seen if LSTM is useful for other kinds of neural network structures. ability to

help restore models that have had changes made to them unauthorized alterations
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Chapter 1

INTRODUCTION

1.1 Overview

Working with CNNs has allowed artificial intelligence to achieve much better results in
image recognition. Using voice recognition, speech interpretation and operating indepen-
dently through systems. They have become famous mostly due to how successful they
are. Because ImageNet offered vast amounts of training images, ResNet and VGG were
designed and using pretrained networks became popular, deep learning progressed a lot.
Models that make it easier to implement change in multiple fields. But, having frequent
The worry is that reuse of these models might introduce tampering with the parameters
of the network. In healthcare and financial areas, this issue is an especially big concern.
Autonomous technologies are also at risk, since incorrect AI models can be extremely
dangerous. Because of this, confirming the legitimacy and integrity of distributed models
is now essential for securely using AI.

1.2 Security Concerns

Using pretrained CNNs is being adopted more and more. notable issues of security and
how they connect to maintaining the integrity of shared models. Improvements or alter-
ations may be made to these models while they are being distributed. possible changes
that can go unnoticed if you are unaware. The threat known as a backdoor attack is
managed by including malicious triggers. that can make the model produce wrong or
threatening results under some situations, all acting like normal even when being vali-
dated. There is also the threat of some other vectors. is the model-reuse attack which
is when compromised models are introduced unnoticed. transferring knowledge learned
from one system to another often leads to vulnerabilities appearing in other systems. Un-
like ordinary software, deep learning models are built in complicated ways that are hard
to see inside. Because of this, it is not easy to see or follow any unauthorized changes that
may occur. The absence of transparency makes it clear that we need strong methods to
confirm if a model is truthful. Authenticity and integrity must be tested and evaluated
before the system is used outside of test environments. Standard methods for detecting
problems are commonly used after something has happened. By comparison, this work
supports using reversible watermarking can help prevent tampering and catch changes to
documents. restoring an old model so that performance is not reduced.
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1.3 Need for Integrity Verification

As CNNs and other deep learning models are applied to areas such like healthcare, au-
tonomous vehicles, the military and financial risk assessment, their validity becomes
more important. Neural networks are not like traditional software systems because their
trainable features (weights and biases) which often remain mysterious and difficult in-
terpretable. This makes detecting unauthorized modifications especially difficult and
highlights the need for robust integrity verification mechanisms.

1.3.1 Risks of Tampered Models

Pre-trained models are commonly shared across research communities and deployed in
commercial applications. However, during distribution or deployment, models can be
illegally modified by third parties to embed malicious behavior, such as:

• Backdoors: Trigger-specific manipulations that cause the model to behave cor-
rectly under normal conditions but output incorrect or malicious predictions when
specific inputs are provided.

• Model-Reuse Attacks: Malicious models serve as parent models in transfer learn-
ing, causing inherited vulnerabilities to propagate into new applications.

Such tampering not only compromises performance but can also jeopardize user safety
and privacy, especially when these models are deployed in safety-critical environments.

1.3.2 Limitations of Traditional Detection Methods

Existing detection methods focus on analyzing model outputs, statistical patterns, or
internal activations to infer the presence of tampering. However, these methods are:

• Passive: They attempt to detect anomalies without confirming model integrity.

• Heuristic: Their effectiveness heavily depends on assumptions about attack be-
havior.

• Vulnerable to Evasion: Sophisticated attackers may design tampering methods
that evade these detection mechanisms.

Therefore, relying solely on detection is inadequate.

1.3.3 The Role of Integrity Authentication

Integrity authentication offers a proactive and formal mechanism to confirm whether
a model has been modified. This involves:

• Embedding a secure, hidden watermark into the model at deployment.

• Extracting and verifying this watermark later to ensure it matches the original.

If the watermark differs or cannot be extracted, it serves as evidence that the model has
been altered.

2



1.3.4 The Case for Reversible Watermarking

Most watermarking methods used in models today are irreversible, meaning they perma-
nently alter the model’s parameters, which compromises its original state. This is not
acceptable in high-stakes applications where:

• Regulatory compliance mandates the preservation of original model behavior.

• Security-sensitive applications demand that no permanent changes be made.

• Auditability requires exact reproduction of the model for validation and verifica-
tion.

Thus, a reversible watermarking approach is crucial. It enables:

• The embedding of watermark data without sacrificing model integrity.

• Full restoration of the model to its original form after verification.

1.4 Problem Statement

1.4.1 Core Challenge

Most existing model authentication and watermarking approaches are irreversible in na-
ture. That is, once a watermark is embedded into a model’s parameters, the original
weights cannot be recovered. While this might be sufficient for ownership verification or
intellectual property protection, it is not appropriate for integrity authentication, where
the ability to restore the model to its pristine state is paramount.

The fundamental problem lies in the trade-off between embedding information and
preserving the model’s integrity. When information is embedded (e.g., through modify-
ing weights), it introduces a deviation from the original parameter values. Even slight,
irreversible changes conflict with the requirements of systems where exact reproducibility
and structural purity are essential.

1.4.2 Formal Problem Definition

The goal is to develop a mechanism that allows a reversible watermark to be embedded
into a CNN model in such a way that:

• A predefined watermark (such as a digital signature or cryptographic hash) can be
embedded into the model without compromising its performance.

• After embedding, the modified model (called the marked model) should behave
identically or nearly identically to the original model in terms of inference accuracy.

• The embedded watermark can be extracted without requiring access to the
original model.

• Once the watermark is extracted, the original model must be fully restored,
ensuring that no permanent changes remain.

• The watermark should be sensitive to tampering—any unauthorized modification
to the model should result in a mismatch or corruption of the embedded watermark.

3



Mathematically, the problem can be represented as follows:
Let M be the original trained CNN model, and B be the watermark to be embedded.
The embedding and extraction functions must satisfy:

• M = Emb(M, B) → Embeds watermark B into model M, producing a water-
marked model M.

• (M, B) = Ext(M) → Extracts both the watermark B and reconstructs the original
model M from M.

Where Emb(·) and Ext(·) are reversible operations, meaning the original model M can
be perfectly recovered from M, and the integrity of B can be verified.

1.5 Research Objective

To address these limitations, the core objective of this research is to design a reversible
watermarking framework tailored specifically for CNNs that enables secure and efficient
integrity verification. This solution should be:

• Model-aware, leveraging the internal structure of CNNs.

• Fully reversible, ensuring complete recovery of original parameters.

• Tamper-evident, providing a reliable mechanism to detect modifications.

• Lightweight and non-invasive, with minimal computational overhead and perfor-
mance impact.

4



Chapter 2

LITERATURE REVIEW

This chapter reviews existing research and methodologies that form the foundation of
this work on reversible watermarking in CNNs for model integrity authentication. The
focus is placed on prior developments in model protection, watermarking strategies, and
reversible data embedding. The review highlights the strengths and limitations of various
approaches and identifies the research gaps this thesis aims to address.

2.1 Early Foundations of Reversible Watermarking

(2003–2006)

Watermarking that can be reversed started with the developments in digital image pro-
cessing. In 2003, Tian (2003) published an important method which includes data in an
image and still makes it possible to restore the original image perfectly. information was
gathered [1]. It was proved with this method that one could remove added information
from the files without altering the original files. On this basis, Ni et al. (2006) introduced
a histogram shifting method that earned much attention because of its easy use and low
distortion [2]. This technique makes space for hiding data by modifying pixel values
which supports both high volume and high quality. They formed the basis for the later
progress in reversible data hiding which spread into medical imaging, military messages
and machine learning studies.

2.2 Advances in Reversible Techniques and Image

Embedding (2009–2012)

After the first progress was made, researchers started using different techniques to improve
reversible watermarking. The method suggested by Sachnev et al. (2009) uses both sorting
and prediction to cut down on the distortions usually seen in watermarking [3]. Choosing
to predict image pixels and add data to prediction errors, their technique improved how
well the images hide data and how useful the technique is. After that, Zhang et al. (2012)
proposed optimized binary cover codes, letting the data use the space in the host medium
better while keeping reversibility [4]. By making these advances, data hiding methods
could store more information without losing the ability to decode the image back to its
original state, so their usefulness was greatly expanded.
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2.3 Rise of Deep Neural Networks (2012–2016)

The arrival of AlexNet by Krizhevsky et al. (2012) opened new doors for computer
vision since it was the first to use deep CNNs and achieved the best results in big image
classification contests such as ImageNet [5]. As a result of this discovery, founded use
of deep learning being adopted by many different fields. Following this success, He and
others (2016) offered the ResNet architecture which employed residual connections to solve
the vanishing gradient issue and successfully trained much deeper networks [6]. At about
the same time as these advances in model architecture, researchers continued to improve
reversible data hiding as well. Shi et al. (2016) have discussed changes in techniques over
the past two decades. Research covers how these watermarking methods can be used with
both images and more types of digital media such as audio and video as well [7].

2.4 Model Vulnerabilities and Security Threats

(2017–2018)

As more deep learning tools became available and easy to use, people began to worry about
how secure and reliable they are. Gu et al. (2017) pointed out that backdoor attacks
are possible, where changing certain inputs causes a neural network to make errors, but
standard tests will show normal results [8]. Another survey by Song et al. (2017) revealed
that using least significant bit replacement (LSBR) can embed watermarks so that the
model performs differently, causing worries about information being revealed and model
credibility [9]. According to Ji et al. It was also found in (2018) that using the same
model in transfer learning can result in unnoticed vulnerabilities migrating from one field
to another which is known in the field as model-reuse attacks [10]. Various techniques
for defense have been suggested because of these growing risks. By using Fine-Pruning,
Liu et al. (2018) achieved stronger models, since it removes neural connections that
appear unnecessary, therefore improving performance [11]. Similarly, Chen et al. (2018)
introduced Activation Clustering to spot irregular activation in the neural networks that
can be a sign of infected training samples [12].

2.5 Watermarking in Neural Networks (2017–2018)

During these days, more studies begun focusing on using watermarking techniques for
neural networks. Uchida and colleagues (2017) were the first to propose watermarking
methods by automatically putting signals into the weights during model training [13].
Built on these ideas, Adi and his team (2018) introduced a new way to use backdoors as
“signatures” to confirm if a copyrighted model was used by a different person [14]. Also at
this time, Rouhani, Abe and others (2018) introduced DeepSigns, inserting watermarks
into the internal workings of neural networks to avoid their misuse and unauthorized
copying [15]. At the same time, Zhang et al. (2018) looked into various approaches for
producing key images for black-box watermarking. They help to check model accuracy
by testing incidents, without accessing the inner workings of the model [16]. All this led
to other improvements that resulted in the development of secure and tamper-resistant
models in the quickly emerging AI field.
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2.6 Extension to Modern Architectures and Applica-

tions (2017–2020)

At this point, several new architectures in convolutional neural networks (CNNs) were
created and played a big role in deep learning development. DenseNet, created by Huang
et al. (2017), ensures every layer shares features directly with the others which im-
proves training and the quality of gradients [17]. Also, Sandler et al. (2018) introduced
MobileNetV2, a model designed mainly for mobile and embedded systems by making
operations less complex and using inverted residuals [18]. Such diverse architectures re-
sulted in both difficulties and new chances for watermarking. In order to stay robust and
invisible to the eye while still having top performance, watermarking had to conform to
the particular layer and compression structures of transformers.

Luo and Wu (2017) applied entropy-based channel pruning for model compression,
a technique later leveraged in the current study to construct host sequences for water-
mark embedding [19]. Willems and Kalker (2003) earlier established theoretical capacity
bounds for reversible embedding under distortion constraints, providing a framework still
referenced today [20].

2.7 Recent Watermarking Frameworks and Integrity

Approaches (2020)

Zhang et al. (2020) offered a black-box framework for image processing networks, ad-
dressing use cases where only API access is available [21]. In the same year, the authors
of the current paper built upon these foundations to propose a reversible watermarking
framework tailored for CNNs, focusing on integrity authentication by exploiting model
pruning theory and histogram shift techniques.

2.8 Summary of Literature Review

Over the past two decades, reversible watermarking has evolved from basic image em-
bedding techniques to sophisticated applications in deep learning models. Early methods
like difference expansion and histogram shift were crucial in establishing the foundational
concepts of lossless data embedding in digital images. These techniques enabled exact
recovery of the original content, making them highly suitable for sensitive applications.

With the rise of deep learning, particularly convolutional neural networks (CNNs),
new challenges and opportunities emerged. Researchers began to explore vulnerabilities
in shared models, such as backdoor and model-reuse attacks, which posed significant
threats to model integrity.

Therefore, neural networks started using watermarking to improve security. At first,
approaches within networks were made irreversible and concentrated on proving owner-
ship. robustness is preferred to how realistic the model seems. In many cases, using
traditional watermarking means the model’s parameters are permanently altered which
makes it hard to use these techniques for integrity assessment. For overcoming this limi-
tation, researchers came up with reversible watermarking that is designed for CNNs. The
technique uses practices like removing data using entropy and histogram shifting to make
authentication possible modify things in a way that does not change the model’s core
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structure. This way, the original model parameters can be completely recovered which is
why it is used in sensitive industries like healthcare, defense and finance to prove model
integrity and accuracy.

Using image-based watermarking was common in earlier years, but this field has now
progressed to methods made for working with neural networks. It indicates the ongo-
ing growth of collaboration between machine learning security and digital watermarking
because unique solutions are required. The issues that arise when trying to protect AI
models.

8



Chapter 3

METHODOLOGY

3.1 Introduction

The chapter presents the detailed framework for reversible watermarking to develop con-
volutional neural networks (CNNs) for checking the integrity of our models. The approach
is made so that all the original model settings can be completely restored after removing
the embedded watermark. It also lets you find any unapproved changes that can take place
during the distribution or deployment process. Principles from entropy-guided pruning,
reversible data embedding and histogram shift are used together in this approach and all
are chosen to fit the particular structure and characteristics of deep networks.

3.2 Overview of the Framework

The reversible watermarking procedure is divided into two fundamental stages:

• Embedding Stage: A binary watermark is inserted into specific parameters of a
CNN in a way that preserves the model’s original performance.

• Extraction Stage: The embedded watermark is recovered, and the network is
reverted precisely to its initial, unaltered state.

These stages operate through a structured methodology composed of five key components,
each tailored to maintain reversibility and integrity throughout the process.

Figure 3.1: Framework of Reversible Watermarking

9



1. Host sequence construction

2. Data preprocessing and digit extraction

3. Reversible embedding using histogram shifting

4. Embedding of auxiliary metadata

5. Watermark extraction and model restoration

3.3 Workflow

In this chapter, the way to insert and confirm an image reversible watermark on a picture
is shown. The function of a convolutional neural network (CNN) is covered. We want to
make sure that we find any changes to the model and we can still restore it to its original
form.

Figure 3.2: Flow Chart For Reversible Watermarking

3.3.1 Step 1: Select CNN Layer

To initiate the watermark embedding process, a specific convolutional layer of the neural
network is selected. This layer acts as the embedding target. Typically, deeper layers are
preferred because they are less sensitive to minor changes in weights, thus reducing the
risk of performance degradation.

10



3.3.2 Step 2: Compute Entropy and Select Channels

Using a validation dataset, the entropy of each channel within the selected layer is cal-
culated. Entropy reflects the information content or variability of a channel’s activation
maps.

• Low-entropy channels are less significant to model accuracy and are thus ideal for
embedding.

• Channels are ranked, and the least informative ones are selected for watermarking.

This approach is inspired by entropy-based pruning techniques, ensuring minimal impact
on model behavior.

3.3.3 Step 3: Host Sequence Creation

From the selected low-entropy channels, the corresponding kernel weights are extracted
and organized into a flat or two-dimensional structure known as the host sequence. This
sequence serves as the embedding medium, analogous to pixels in image watermarking.

The size and shape of the host sequence depend on the number of selected filters and
the dimensionality of the convolution kernels.

3.3.4 Step 4: Convert Floats to Significant Digits

CNN weights are stored as floating-point numbers. To facilitate reversible embedding,
each value in the host sequence is:

• Converted into its significant decimal digits.

• A fixed number of significant digits (typically two) are extracted..

• An offset is added to bring the values into a uniform, positive integer range

This step ensures that the data is discrete and bounded, making it suitable for histogram-
based embedding methods.

3.3.5 Step 5: Embed Using Histogram Shifting

The prepared integer sequence is subjected to histogram analysis, where:

• A peak value (most frequent) and a zero or least-used point are identified.

• The watermark bits (e.g., a cryptographic hash) are embedded by slightly shifting
values around the peak.

Only a portion of the weights is altered, preserving the majority of the host data. The
changes are structured such that they can be fully reversed using the same histogram.

11



3.3.6 Step 6: Store Metadata and Deploy Model

In addition to the watermark, certain metadata is needed to extract and reverse the
embedding, including:

• Index of selected channels

• Offset value used for digit shifting

• Position of embedded bits

This metadata is either embedded into unused parts of the model (e.g., LSBs) or stored
securely elsewhere. Once completed, the watermarked model is deployed for usage or
sharing.

3.3.7 Step 7: Watermark Extraction and Model Integrity Veri-
fication

When a model is retrieved or suspected of tampering, the embedded watermark is:

• Extracted using the stored or retrieved metadata.

• Compared against the expected value (e.g., a SHA-256 hash).

If the extracted watermark is missing, altered, or mismatched, it indicates unautho-
rized modification. In cases where the watermark is intact, the model’s original
parameters can be completely restored, confirming integrity and allowing continued
usage.

3.4 Summary

This methodology ensures:

• Minimal change to the model’s accuracy

• Full reversibility of watermark embedding

• Reliable detection of model tampering

By combining entropy analysis, digit-based data transformation, and histogram shifting,
this framework provides a secure and non-destructive way to authenticate CNN
models.
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Chapter 4

EXPERIMENTAL SETUP AND RESULTS

4.1 Experimental Setup

4.1.1 Models Used

The framework was tested on several widely adopted CNN architectures to demonstrate
generalizability:

• AlexNet

• VGG19

• ResNet152

• DenseNet121

4.1.2 Dataset

All models were evaluated using the ImageNet validation dataset, which consists of 50,000
color images across 1,000 classes. A subset of these images was used for entropy calcula-
tions during host sequence construction.

4.1.3 Parameters and Configurations

• Number of selected channels N for watermarking varied by model/layer.

• Offset value V=128 was used to shift significant digits into a usable range.

• Digit selection for embedding: second and third significant digits.

• Watermark: Random binary sequence or SHA-256 hash (256 bits).

4.2 Results

4.2.1 Classification Accuracy Comparison

To evaluate whether embedding reversible watermarking affects model performance, the
Top-5 classification accuracy was measured before and after embedding the water-
mark. The results demonstrate that the embedding process causes negligible or no ac-
curacy degradation. Across all models, the observed difference in classification accuracy
after embedding is well within acceptable bounds (±0.5

13



Model Clean Accuracy (%) Watermarked Accuracy (%) Change (%)
AlexNet 75.9 75.7 -0.2
VGG19 81.1 81.1 ±0.0
ResNet152 85.9 85.7 -0.2
DenseNet121 80.4 80.3 -0.1
MobileNet 76.8 76.6 -0.2

Table 4.1: Accuracy Before and After Watermark Embedding

4.2.2 Reversibility Verification

A core aspect of the proposed method is its ability to fully reverse the watermark embed-
ding process, restoring the model to its original state. This was confirmed by computing
the reconstruction error rate between the original and restored models.

Model Layers Embedded Reconstruction Error (%)
AlexNet I, II, III 0%
VGG19 I, II, III 0%
ResNet152 I, II, III 0%
DenseNet121 I, II, III 0%
MobileNet I, II, III 0%

Table 4.2: Model Reconstruction Error After Extraction

In all tested configurations, the reconstructed models are bit-for-bit identical to their
original counterparts, demonstrating the perfect reversibility of the watermarking method.

4.2.3 Watermark Embedding Capacity

Another key performance factor is the number of bits that can be embedded in the model
parameters. The embedding capacity depends on the layer size, number of selected chan-
nels, and host sequence configuration.

Model Embedded Layer(s) Watermark
Size (bits)

AlexNet Layers I, II, III 22,118 – 49,766
VGG19 Layers I, II, III 88,474 each

ResNet152 Layers I, II, III 88,474 each
DenseNet121 Layers I, II, III 5,530 – 16,590
MobileNet Layers I, II, III 46,080 – 70,416

Table 4.3: Watermark Capacity by Model and Layer

4.2.4 Integrity Authentication Results

To validate the integrity verification function, the SHA-256 hash of the original model
was embedded as the watermark. Then, two scenarios were tested:

• Unmodified Model: Watermark extracted successfully, and matches the hash of
the reconstructed model → Integrity confirmed.
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• Tampered Model: Some weights manually altered → Extracted watermark did
not match the expected value → Tampering detected.

4.2.5 Summary of Results

The proposed reversible watermarking framework was validated through a series of con-
trolled experiments, demonstrating:

• High fidelity: Negligible or zero loss in model accuracy.

• Perfect reversibility: Complete restoration of original parameters.

• Scalability: Effective for both single and multi-layer watermarking.

• Adequate capacity: Sufficient for embedding secure authentication data.

• Security and robustness: Capable of detecting even minor unauthorized modifi-
cations.

15



Chapter 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

The increasing reliance on deep neural networks in sensitive and mission-critical domains
has amplified the need for robust model integrity verification mechanisms. This thesis ad-
dressed this emerging challenge by proposing and implementing a reversible watermarking
framework for convolutional neural networks (CNNs), with a specific focus on ensuring
model integrity while preserving original functionality.

The key contributions of this research can be summarized as follows:

• A novel problem space was explored—embedding reversible watermarks in CNN
models to detect unauthorized modifications while maintaining the ability to fully
recover the original model.

• An entropy-based method was developed to select host parameters with minimal
impact on performance, thus enabling low-risk embedding.

• A histogram shifting technique, adapted from image watermarking, was successfully
applied to CNN weight matrices for lossless data embedding.

• A complete watermarking and extraction framework was implemented, incorporat-
ing auxiliary metadata for accurate restoration.

• Experimental results across multiple CNN architectures, including AlexNet, VGG19,
ResNet152, DenseNet121, and MobileNet, demonstrated that:

– Model accuracy was unaffected (change ±0.5

– Reversibility was perfect, with zero reconstruction error.

– Embedded watermarks were sufficient in capacity for authentication.

– Tampering was reliably detected through watermark mismatches.

This work provides a secure, non-invasive, and effective method to address the growing
concern of model tampering in AI ecosystems. By combining principles from neural
network optimization, reversible data hiding, and cryptographic hashing, the proposed
framework lays a strong foundation for future research in trustworthy AI systems.
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5.2 Future Scope

Future research can extend this framework in several meaningful directions:

• Localized Tamper Detection: Enhancing the method to pinpoint the exact
layers or weights modified during tampering.

• Broader Network Support: Adapting the framework for transformer and graph
neural networks.

• Real-Time Application: Streamlining the process for edge computing and em-
bedded systems.

• Secure Audit Trails: Integrating blockchain to maintain model version history
and authenticity.

These directions aim to enhance the robustness and applicability of reversible watermark-
ing across AI ecosystems.

17
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