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ABSTRACT 

 
Landslide Susceptibility Assessment (LSA) is crucial for understanding and mitigating 

landslide risks, especially in vulnerable regions like Solan District, Himachal Pradesh, 

where complex topography, diverse geological formations, and significant precipitation 

contribute to instability. This study integrates geospatial analysis with statistical 

modelling techniques to evaluate the influence of various landslide conditioning factors 

(LCFs), including slope, elevation, aspect, and lithology, on landslide occurrence. Using 

a landslide inventory of 845 recorded events and GIS-derived thematic layers were used 

to apply three statistical models: Information Value (IV), Shannon Entropy (SE), and 

Weight of Evidence (WoE). Among them, the Information Value (IV) model 

demonstrated the highest predictive accuracy (AUC = 0.737), followed by Shannon 

Entropy (SE) (AUC = 0.719), while Weight of Evidence (WoE) showed the lowest 

performance (AUC = 0.632), suggesting limited capability in capturing complex spatial 

relationships. The resulting susceptibility map categorizes the district into distinct risk 

zones, aiding in hazard mitigation and land-use planning. Model validation through AUC-

ROC analysis and success prediction rate curves confirmed the reliability and predictive 

accuracy of the applied techniques. This comparative study helps in underscores the 

importance of combining statistical models with geospatial tools for disaster risk 

management and infrastructure planning in Solan district. 
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CHAPTER 1 

 

INTRODUCTION 

 

 
The Solan district of Himachal Pradesh, situated in the southern part of the state, 

is highly prone to landslides and slope failures due to its intricate topography, varied 

geological structure, and substantial rainfall. Covering an area of approximately 1,936 

square kilometers, the district lies within the Shivalik Hills of the outer Himalayas, with 

altitudes ranging from 300 to 3,000 meters above sea level. The combination of steep 

slopes, rugged terrain, and intense monsoon rainfall often leads to soil erosion, rockfalls, 

and large-scale slope instability. These hazards pose significant threats to human life, 

infrastructure, and economic stability, highlighting the need for systematic landslide 

susceptibility assessment. 

As one of India’s most landslide-prone states, Himachal Pradesh faces increasing 

vulnerability due to both natural conditions and human interventions, such as 

deforestation, unregulated development, and road construction. In Solan, these challenges 

directly impact agriculture, tourism, and infrastructure, making the identification of 

landslide-prone zones essential for risk reduction and sustainable development. Landslide 

susceptibility mapping (LSM) offers crucial data to inform disaster management strategies 

and land-use planning. 

The advent of geospatial technologies like Geographic Information Systems (GIS) 

and Remote Sensing (RS) has revolutionized landslide assessment. These tools, combined 

with statistical and machine learning techniques, enable efficient analysis of spatial data 

and accurate susceptibility mapping. This study applies three statistical models—Shannon 

Entropy, Weight of Evidence (WoE), and Information Value (IV)—to evaluate landslide 

susceptibility in Solan. These models assign weights to various conditioning factors and 

determine their relative contributions to slope instability. Key conditioning factors used 

include slope, aspect, curvature, elevation, lithology, roughness, hillshade, distance to 

streams, and the topographic wetness index (TWI). Each factor was categorized based on 



2 

 

its influence on landslide occurrence, and corresponding weight values were computed to 

generate comprehensive susceptibility maps. The Solan landslide inventory, comprising 

845 recorded events sourced from NASA’s Landslide Catalog and Bhukosh (GSI), was 

validated using satellite imagery and field observations. The inventory formed the 

foundation for model training and testing. For spatial analysis, conditioning factors were 

classified into appropriate intervals—such as slope steepness or lithological stability—

and assigned weighted values reflecting their landslide potential. These weights were 

normalized in entropy-based models and directly used in IV and WoE methods to produce 

susceptibility outputs. Model accuracy was evaluated using Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC), through both success and prediction rate 

curves. 

The findings of this study provide practical insights for disaster mitigation and 

infrastructure development. High-risk zones identified in the susceptibility maps can 

guide slope stabilization, afforestation, and early warning system implementation. 

Overall, this research demonstrates the value of integrating geospatial tools with statistical 

modeling to assess landslide risk. It offers a robust methodological framework for 

understanding regional vulnerability and enhancing preparedness and sustainable 

planning in Solan district. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Kincal, C., & Kaycan, H. (2022). Investigates the preparation of a landslide 

susceptibility map in Izmir, Turkey, using four models: Logistic Regression (LR), 

Analytical Hierarchy Process (AHP), Frequency Ratio (FR), and Index of Entropy (IOE). 

The Combined Method (CM) achieved the highest accuracy with an AUC of 0.887, 

outperforming IOE (AUC = 0.841), AHP (AUC = 0.816), FR (AUC = 0.738), and LR 

(AUC = 0.727). The study identifies urban residential areas as more landslide-prone 

compared to rural areas 

Pattanaik, A., Singh, T. K., Saxena, M., & Prusty, B. G. (2019). Conducts a landslide 

susceptibility mapping study in the Mechuka Valley, Arunachal Pradesh, India, using the 

Analytical Hierarchy Process (AHP). Remote sensing and GIS techniques were utilized 

to analyze terrain factors such as elevation, slope, lineaments, drainage, land use, and 

wetness index. These factors were categorized, rated, and weighted to assess their impact 

on landslides, culminating in the creation of a Landslide Hazard Zonation (LHZ) map for 

the region. 

Lestari, S. F., & Suratman. (2022). Explores landslide susceptibility zones in Nagari 

Tanjung Sani and Nagari Sungai Batang, West Sumatra, using the Weight of Evidence 

(WOE) method. Nagari Sungai Batang exhibited translational and rotational landslides 

with moderate activity and risk, while Nagari Tanjung Sani showed rockfall and topple 

landslides with high activity and the highest risk. Statistical analysis was applied to 

identify and assess the susceptibility levels across both areas 

 

Askoy, H. (2023). Investigates the determination of landslide susceptibility using the 

Analytical Hierarchy Process (AHP) and examines the role of forest ecosystem services 

on landslide susceptibility. A landslide susceptibility map was developed and evaluated 



4 

 

using the ROC curve method, achieving an AUC value of 0.809. The study analyzed the 

influence of forest type, stand structure, development stage, crown closure, and stand age 

on landslide risk by overlaying forest type maps with the landslide susceptibility map 

using GIS techniques 

 

Miller, S., & Degg, M. (2012). Conducts landslide susceptibility mapping in North-East 

Wales, producing a comprehensive landslide inventory with 430 identified landslides. 

Using GIS tools and a multiple logistic regression approach, susceptibility models were 

developed. The study reveals that 8% of drift deposits and 12% of solid geology areas 

exhibit high or very high slope instability risk. 

 

Talaab, K., Cheng, T., & Zhang, Y. (2018). Applies the Random Forest algorithm to 

map landslide susceptibility and classify landslide types in Piedmont, Italy. The study 

produced highly accurate susceptibility and classification maps, achieving over 85% 

accuracy. The results demonstrate the effectiveness of the Random Forest algorithm for 

mapping landslide risks in large and diverse areas, providing detailed and user-friendly 

outputs. 

 

Orhan, O., Bilgilioglu, S. S., Kaya, Z., Ozcan, A. K., & Bilgilioglu, H. (2022). Assesses 

and maps landslide susceptibility using five machine learning methods: Artificial Neural 

Network (ANN), Logistic Regression (LR), Support Vector Machine (SVM), Random 

Forest (RF), and Classification and Regression Tree (CART). A landslide inventory of 

252 events was created, and 11 influencing factors were analyzed. The models were 

trained, their performances compared, and validated using metrics such as ROC, 

sensitivity, specificity, F-measure, accuracy, and the kappa index. 

 

Saha, S., Saha, A., Roy, B., Chaudhary, A., & Sarkar, R. (2024). Utilizes an Artificial 

Neural Network (ANN) and General Linear Model (GLM) ensemble approach to model 

landslide susceptibility in the Mirik region of West Bengal, India. A dataset of 373 
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landslide locations and 12 conditioning factors (LCFs) was analyzed, with 

multicollinearity tests ensuring the selection of suitable LCFs. The ensemble machine 

learning method was used to develop detailed and accurate landslide susceptibility maps 

(LSMs) for the region. 

 

Oliveira, S. C., Zêzere, J. L., Garcia, R. A. C., Pereira, S., Vaz, T., & Melo, R. (2024). 

Investigates uncertainties in rainfall-triggered, event-based landslide inventories for 

susceptibility assessment in a study area north of Lisbon, Portugal. The study uses two 

rainfall event-based inventories and a historical inventory to analyze representativeness, 

reliability, and validation appropriateness. Key findings reveal: (i) similar landslide types 

may occur under differing rainfall conditions but vary in size and predisposing factors like 

lithology and soil type; (ii) event-based susceptibility models are unreliable in this region; 

and (iii) incomplete and non-independent inventories introduce significant uncertainties. 

The research informs regional landslide susceptibility, early warning system design, and 

civil protection preparedness. 

 

Chen, S., Wu, L., & Miao, Z. (2022). Examines regional seismic landslide susceptibility 

by incorporating rock mass strength heterogeneity into permanent-displacement analysis. 

Traditional methods assign constant strength values per lithology, overlooking spatial 

heterogeneity and reducing reliability. This study develops an empirical model using a 

seismic landslide inventory and lithological data to quantify rock mass strength 

heterogeneity. Incorporating this heterogeneity into susceptibility assessments 

significantly improves reliability, as demonstrated in two case studies. The findings are 

crucial for enhancing earthquake emergency response and post-earthquake land use 

planning. 

 

Badvath, N., Sahoo, S., & Samal, R. (2024). Conducts landslide susceptibility mapping 

for the West-Jaintia Hills district, Meghalaya, by analyzing various causative factors such 

as rainfall, slope, geomorphology, elevation, lineament density, LULC, distance from 
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roads, NDWI, MSAVI, and NDVI. Historical landslide data were divided into training 

(75%) and testing (25%) samples to assess prediction efficiency. The study provides 

insights for better landslide risk management and mitigation in the region. 
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CHAPTER 3 

METHODOLOGY 

 

 

 

 

 

Figure 3.1 Methodology 
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CHAPTER 4 

DATA SOURCE 

 

 

TABLE 4.1 DATA SOURCE 

MAP DATA SOURCE 

INDIAN MAP 
https://onlinemaps.surveyofindia.gov.in/Digital_Product_Sho

w.aspx 

LANDSLIDE 

INVENTORY POINTS 

https://bhukosh.gsi.gov.in/Bhukosh/Public 

https://svs.gsfc.nasa.gov/4710 

DISTRICT AND SUB-

DISTRICT MAPS 

https://esriindia1.maps.arcgis.com/home/item.html?id=b89de1

9cafb94ea38552a55eb5b2d13d 

DIGITAL ELEVATION 

MODEL 
https://portal.opentopography.org/datasets 

DISTANCE FROM 

DRAINAGE 
https://www.hydrosheds.org/products/hydrorivers#downloads 

LITHOLOGY https://certmapper.cr.usgs.gov/data/apps/world-maps/ 

 

 

 

 

 

 

 

 

 

https://onlinemaps.surveyofindia.gov.in/Digital_Product_Show.aspx
https://onlinemaps.surveyofindia.gov.in/Digital_Product_Show.aspx
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://svs.gsfc.nasa.gov/4710
https://esriindia1.maps.arcgis.com/home/item.html?id=b89de19cafb94ea38552a55eb5b2d13d
https://esriindia1.maps.arcgis.com/home/item.html?id=b89de19cafb94ea38552a55eb5b2d13d
https://portal.opentopography.org/datasets
https://www.hydrosheds.org/products/hydrorivers#downloads
https://certmapper.cr.usgs.gov/data/apps/world-maps/
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CHAPTER 5 

 

STUDY AREA: SOLAN, HIMACHAL PRADESH 

 

Solan district is located in the southern part of Himachal Pradesh, India, and spans 

an area of approximately 1,936 square kilometers. Geographically, it lies between 

latitudes 30.05° N to 31.15° N and longitudes 76.42° E to 77.20° E. The district is situated 

within the Shivalik Hills, a subrange of the outer Himalayas, and exhibits a highly variable 

terrain with elevations ranging from 300 to 3,000 meters above sea level. Solan's 

topography includes steep slopes, rugged hills, and narrow valleys, contributing to its 

complex and dynamic landscape. 

The western and southern parts of the district—particularly the Nalagarh and Arki 

tehsils—are characterized by relatively low-lying terrain, while the central and 

northeastern areas, including Solan, Kasauli, and Kandaghat tehsils, feature higher 

altitudes and steeper gradients. The district experiences a sub-tropical to temperate 

climate, with heavy monsoonal rainfall during July to September, which often triggers soil 

erosion and slope instability. Rich in natural vegetation and biodiversity, the region is also 

marked by expanding urban and rural settlements. Due to its geomorphological diversity 

and climatic conditions, Solan district presents a significant area of interest for 

environmental and geospatial studies related to slope dynamics and terrain analysis. 

 
Figure 5.1 Study area 
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CHAPTER-6 

 

LANDSLIDE INVENTORY MAPS 

 

A Landslide Inventory Map (LIM) records past landslide events along with 

relevant topographical, geological, and meteorological details. It plays a crucial role in 

identifying the relationship between landslide occurrences and conditioning factors (CFs), 

aiding in susceptibility mapping and prediction.  

In this study, landslide data in polygon format were obtained from the Bhukosh 

portal and the NASA Landslide Catalog, both recognized for their authoritative national 

and global records. A total of 845 landslide points was extracted for the Solan district. 

Following common research practices, 70% of the data was used for model 

training and 30% for testing. These inventory points form the foundation of landslide 

susceptibility models by linking historical landslide events to environmental variables, 

enabling accurate identification of high-risk zones. 

 

Figure 6.1 Landslide Inventory Points 
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CHAPTER 7 

 

LANDSLIDE CONDITIONING FACTORS (LCF) 

 

7.1 SLOPE: 

 

Slope, a critical landslide conditioning factor (LCF), represents the steepness or 

inclination of a surface and plays a significant role in determining slope stability. Steeper 

slopes are generally more prone to landslides due to the increased gravitational force 

acting on the surface materials. In the context of Solan district, the slope map was derived 

from Digital Elevation Model (DEM) data using the spatial analyst tool in ArcGIS. The 

map was classified into five distinct slope categories, facilitating a detailed analysis of 

how varying degrees of slope contribute to landslide susceptibility. Understanding slope 

variations is crucial, as it helps identify areas with a higher likelihood of slope failure, 

thereby aiding in effective landslide risk assessment and management. 

 

 

Figure 7.1 SLOPE 
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7.2 ASPECT: 

 

Aspect, an essential Landslide Conditioning Factor (LCF), refers to the direction 

a slope faces, typically measured in relation to the cardinal directions. It significantly 

influences environmental conditions such as sunlight exposure, wind patterns, and 

moisture retention, all of which affect slope stability. In the study of Solan district, the 

aspect map was generated using Digital Elevation Model (DEM) data and processed 

through ArcGIS. Variations in aspect can impact the susceptibility of slopes to landslides, 

as certain orientations may retain more moisture or be exposed to climatic factors that 

weaken the terrain. This analysis helps in identifying areas more vulnerable to landslides 

based on their slope orientation, contributing to more accurate susceptibility mapping and 

disaster management strategies. 

 

 

Figure 7.2 ASPECT 
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7.3 ROUGHNESS: 

 

Roughness, an important Landslide Conditioning Factor (LCF), refers to the 

irregularity or unevenness of the terrain surface, influencing slope stability and the 

likelihood of landslides. It plays a crucial role in determining water retention, soil 

movement, and the mechanical stability of slopes. Areas with higher surface roughness 

often indicate uneven terrain, which can lead to concentrated runoff, reduced vegetation 

stability, and an increased likelihood of rock fractures, all of which heighten landslide 

risk. In the case of Solan district, roughness was calculated using Digital Elevation Model 

(DEM) data within ArcGIS. Analyzing roughness helps identify areas more susceptible to 

slope failure, contributing significantly to the creation of accurate landslide susceptibility 

maps and the development of effective mitigation strategies. 

 

 

Figure 7.3 ROUGHNESS 
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7.4 DISTANCE TO STREAM: 

 

Distance to stream is a key Landslide Conditioning Factor (LCF) that measures 

the horizontal distance from a point on a slope to the nearest drainage channel or water 

body. This factor significantly influences slope stability, as proximity to streams can 

increase the risk of undercutting, erosion, and heightened moisture content in the slope 

material. In regions like Solan district, which experience substantial rainfall, high-velocity 

discharge and bank erosion near streams exacerbate the potential for slope failure. The 

distance-to-stream map for the study area was generated using the hydrology tool in 

ArcGIS. Understanding this factor is crucial for landslide susceptibility mapping, as it 

highlights the interplay between hydrological processes and terrain instability, thereby 

aiding in the identification of high-risk zones and effective disaster management planning. 

 

 

Figure 7.4 DISTANCE TO STREAM 
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7.5 CURVATURE: 

 

Curvature is a vital Landslide Conditioning Factor (LCF) that reflects the shape 

of the terrain and its influence on water flow and soil movement. It is derived from 

Digital Elevation Model (DEM) data and categorized into concave, convex, and planar 

surfaces. Concave areas tend to collect water, increasing soil saturation and the risk of 

slope failure, while convex areas promote water flow away, reducing the chances of 

accumulation. In the context of Solan district, curvature was analyzed using the 

curvature function in ArcGIS, providing insights into how terrain morphology affects 

landslide susceptibility. This factor helps identify zones prone to water concentration or 

erosion, contributing to a more accurate assessment of landslide risk and better planning 

of mitigation measures. 

 

 
Figure 7.5 CURVATURE 
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7.6 ELEVATION: 

 

Elevation is a fundamental Landslide Conditioning Factor (LCF) that significantly 

influences terrain stability and susceptibility to landslides. It impacts various 

environmental and geological processes, including slope steepness, vegetation 

distribution, weathering rates, and water flow patterns. Higher elevations are often 

associated with steeper slopes and greater erosion risks, making them more prone to 

landslides, while lower elevations may experience debris accumulation and increased 

water retention, which can also trigger slope failure. In Solan district, elevation varies 

widely, ranging from 300 to 3,000 meters above sea level. This variation was analyzed 

using Digital Elevation Model (DEM) data, aiding in the identification of areas with 

varying landslide susceptibility. Understanding elevation patterns is critical for accurate 

landslide mapping and implementing effective risk mitigation strategies. 

 

 

Figure 7. 6 ELEVATION 
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7.7 HILLSHADE: 

 

Hillshade is an important Landslide Conditioning Factor (LCF) that simulates how 

sunlight interacts with the terrain, highlighting the landscape's features by representing 

variations in light and shadow. It provides a detailed visualization of slope orientation and 

gradient, which are critical in understanding terrain stability. Shaded areas often retain 

more moisture, leading to higher soil saturation and a potential decrease in slope stability, 

while sunlit areas are generally drier, reducing landslide risk. In the study of Solan district, 

hillshade analysis was performed using Digital Elevation Model (DEM) data in ArcGIS, 

helping to identify zones with varying moisture retention and exposure. By incorporating 

hillshade into landslide susceptibility mapping, researchers can better understand the 

interplay between solar radiation, moisture distribution, and slope stability, contributing 

to more accurate risk assessments. 

 

 

Figure 7 HILLSHADE 



18 

 

7.8 LITHOLOGY: 

 

The India shapefile, sourced from the USGS, initially contained various rock types 

across the region. Upon further analysis and clipping to focus on the Solan district, five 

distinct rock types were identified. Each of these rock types has unique characteristics 

such as composition, strength parameters, and plasticity, which are crucial for 

understanding their stability. Lithology, which refers to the type and physical properties 

of rocks and soils in a given area, plays a significant role in landslide susceptibility. Harder 

rocks generally offer more stability, reducing the likelihood of landslides, whereas softer, 

more erodible rocks and clay-rich soils are more susceptible to failure due to their weaker 

structural integrity and higher vulnerability to erosion. These variations in lithology are 

essential in assessing and mapping landslide risks in the region. 

 

 

Figure 7.8 LITHOLOGY 
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7.9 TOPOGRAPHIC WETNESS INDEX (TWI): 

 

The Topographic Wetness Index (TWI) is a spatial index used to assess the relative 

wetness of a landscape by analyzing its topographic features, particularly the 

accumulation of water within an area. It is derived by combining several topographic 

factors, including elevation, slope, and contributing area (or drainage area), to determine 

how water flows and collects across the terrain. Areas with higher TWI values are 

typically more prone to water saturation, as they have a greater tendency to accumulate 

moisture due to their topography, which increases the potential for landslides. On the other 

hand, regions with lower TWI values are better drained, indicating less water 

accumulation and a reduced likelihood of saturation-induced landslide risks. TWI is a 

valuable tool in understanding and mapping the vulnerability of landscapes to landslides 

and other water-related hazards. 

 

 

Figure 7.9 TOPOGRAPHIC WETNESS INDEX 
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CHAPTER-8 

 

SHANNON ENTROPY 

 
8.1 Introduction: 

 

Shannon Entropy is a fundamental concept in information theory that measures 

the uncertainty or randomness in a system. It quantifies the amount of information 

required to describe a random variable, serving as a key tool for understanding the 

unpredictability of a system. In the context of spatial analysis and landslide susceptibility 

mapping (LSM), Shannon Entropy is applied to evaluate the relative contribution of 

various factors—such as slope, elevation, and lithology—to the occurrence of landslides. 

By calculating the entropy of these factors, it helps to assess how much each variable 

influences the spatial distribution of landslides, enabling more accurate and reliable 

predictions of landslide-prone areas. This approach aids in reducing uncertainty and 

improving the understanding of landslide risks. 

 

8.2 Formula: 

 

Where Pij from equation 8.1 represents frequency ratio and (Pij) from equation 8.2 

gives probability density value of each class 

 

Eij and Eijmax from equation 8.3 and 8.4 denote the entropy values for each class 

whereas nij is the number of classes in each factor. 

𝐸𝑖𝑗 = ∑(𝑃𝑖𝑗)

𝑛𝑗

𝑖=1

∗ log(𝑃𝑖𝑗) 9.3 

%𝐹𝑅 𝑃𝑖𝑗 =
% 𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

% 𝐶𝑙𝑎𝑠𝑠 𝑝𝑖𝑥𝑒𝑙𝑠
 8.1 

(𝑃𝑖𝑗) =
(𝑃𝑖𝑗)

(∑ 𝑃𝑖𝑗
𝑛
1 )

 8.2 
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𝐸𝑖𝑗𝑚𝑎𝑥 = log2(𝑛𝑖𝑗) 9.4 

 

The information coefficient, Ij, and the final weight index, Wj were evaluated using 

equations 8.5 and 8.6 respectively. 

𝐼𝑖𝑗 =
𝐻𝑗𝑚𝑎𝑥 − 𝐻𝑗

𝐻𝑗𝑚𝑎𝑥
 8.5 

𝑊𝑗 = 𝐼𝐽  × 𝑃𝑗  8.6 

 

8.3 Outcome: 

 

The outcome of using Shannon Entropy in landslide susceptibility mapping is the 

generation of normalized entropy values, which act as weights to quantify the influence 

of each landscape classification factor (LCF) on landslide susceptibility. These 

normalized entropy values indicate how strongly each factor, such as slope, aspect, or 

curvature, contributes to the likelihood of landslides occurring in a given area. By 

combining these weights with the different LCFs, a more refined and accurate landslide 

susceptibility map is created. This map highlights regions with varying levels of risk, 

offering a valuable tool for assessing areas that are more prone to landslides and assisting 

in risk management and mitigation strategies. 

 

8.4 Advantage:  

 

Shannon Entropy offers several advantages when used in landslide susceptibility 

mapping (LSM). It provides an objective and data-driven approach to quantify the 

influence of each landslide conditioning factor, reducing subjectivity in the weighting 

process. The method is particularly effective in handling uncertainty and variability within 

spatial datasets, making it suitable for complex terrains like the Solan district. It also 

integrates well with GIS platforms, allowing for efficient spatial analysis and map 

generation. Additionally, Shannon Entropy can be applied even in areas with limited 
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ground truth data, as it relies on the statistical relationships between landslide occurrences 

and environmental factors. By generating normalized weights, it enhances the accuracy 

and reliability of susceptibility maps, supporting better risk assessment and management 

strategies. 

. 

 

8.5 Application: 

 

Shannon Entropy is applied in landslide susceptibility mapping by combining a 

landslide inventory with various landslide conditioning factors (LCFs), such as slope, 

elevation, aspect, and lithology. The landslide inventory provides historical data of 

landslide occurrences, while the conditioning factors represent the environmental and 

topographical variables that influence landslide risks. By integrating these elements, 

Shannon Entropy helps quantify the uncertainty and relative importance of each factor in 

determining landslide susceptibility in a given study area. Beyond landslides, this 

approach is also used for assessing other natural hazards such as floods, soil erosion, and 

other environmental risks. In these applications, Shannon Entropy aids in creating risk 

maps that highlight areas vulnerable to such hazards, supporting effective disaster 

management and mitigation planning. 

 

8.6 Data table: 

 

Table 8.1 SHANNON ENTROPY CALCULATION 

Data Layer Classes 

Class 

pixels 

Landslide 

pixels 

% Class 

pixels 

% 

Landslide 

pixels FR FR(%) Pij Eij 1-Eij Wj 

SLOPE (in Degrees)  

0-6.98 1 372274 6 0.186 0.007 0.000016 0.040 0.005 -0.011   

6.98-14 2 338188 44 0.169 0.055 0.000130 0.323 0.037 -0.053   

14-20.3 3 409173 142 0.205 0.176 0.000347 0.861 0.098 -0.099   

20.3-26.4 4 385657 217 0.193 0.269 0.000563 1.396 0.159 -0.127   
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26.4-32.8 5 280540 191 0.140 0.237 0.000681 1.689 0.192 -0.138   

32.8-41 6 161733 166 0.081 0.206 0.001026 2.546 0.290 -0.156   

41-77.4 7 51448 40 0.026 0.050 0.000777 1.928 0.220 -0.145   

TOTAL  1999013 806   0.003541 8.781 1 0.727 0.273 0.082 

ASPECT  

-1 (Flat) 1 11282 2 0.005 0.002 0.000177 0.470 0.190 -0.137   

0-22.5 (North) 2 116611 40 0.054 0.050 0.000343 0.910 0.368 -0.160   

22.5-67.5 (North-

east) 3 261477 107 0.122 0.133 0.000409 1.086 0.439 -0.157   

67.5-112.5 (East) 4 246419 87 0.115 0.108 0.000353 0.001 0.001 -0.002   

112.5-157.5 (South-

east) 5 218320 77 0.102 0.095 0.000353 0.001 0.001 -0.002   

157.5-202.5 (South) 6 279443 102 0.131 0.126 0.000365 0.001 0.001 -0.002   

202.5-247.5 (South-

west) 7 339281 157 0.158 0.195 0.000463 0.001 0.000 -0.001   

247.5-292.5 (West) 8 310660 122 0.145 0.151 0.000393 0.001 0.000 -0.002   

292.5-337.5 (North-

west) 9 246277 78 0.115 0.097 0.000317 0.001 0.001 -0.002   

337.5-360 (North) 10 111116 35 0.052 0.043 0.000315 0.001 0.001 -0.002   

TOTAL  2140886 807    2.475  0.466 0.534 0.161 

ROUGHNESS            

0-11.7 1 425176 8 0.198 0.010 0.000019 0.050 0.006 -0.014   

11.7-24.5 2 585018 107 0.272 0.132 0.000183 0.485 0.063 -0.075   

24.5-36.3 3 596507 283 0.277 0.349 0.000474 1.258 0.162 -0.128   

36.3-50.1 4 377922 260 0.176 0.321 0.000688 1.825 0.235 -0.148   

50.1-71.5 5 143994 140 0.067 0.173 0.000972 2.579 0.333 -0.159   

71.5-272 6 22205 13 0.010 0.016 0.000585 1.553 0.200 -0.140   

TOTAL  2150822 811    7.749  0.664 0.336 0.101 

HILLSHADE  

0-86 1 114543 100 0.054 0.125 0.000873 2.323 0.363 -0.160   

86-131 2 312874 156 0.146 0.194 0.000499 1.327 0.208 -0.142   
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131-167 3 457373 163 0.214 0.203 0.000356 0.948 0.148 -0.123   

167-203 4 797037 180 0.373 0.224 0.000226 0.601 0.094 -0.097   

203-254 5 455090 204 0.213 0.254 0.000448 1.193 0.187 -0.136   

TOTAL  2136917 803    6.392  0.657 0.343 0.103 

CURVATURE  

-33.2- (-0.05) 1 1024400 356 0.476 0.440 0.000348 0.923 0.463 -0.155   

-0.05 - 0.05 3 1126293 454 0.524 0.560 0.000403 1.070 0.537 -0.145   

0.05-43.7 43 1 0 0.000 0.000 0.000000 0.000 0.000 0.000   

TOTAL  2150694 810    1.993  0.300 0.700 0.211 

Distance to stream(in 

m)  

-250 1 137976 75 0.064 0.093 0.000544 1.443 0.273 -0.154   

500 2 130169 54 0.061 0.067 0.000415 1.102 0.208 -0.142   

750 3 126049 45 0.059 0.056 0.000357 0.948 0.179 -0.134   

1000 4 125443 39 0.058 0.048 0.000311 0.826 0.156 -0.126   

>3000 5 1631179 597 0.758 0.737 0.000366 0.972 0.184 -0.135   

TOTAL  2150816 810    5.290  0.691 0.309 0.093 

TWI  

-2.14 - 5.36 1 857299 508 0.400 0.629 0.000593 1.572 0.504 -0.150   

5.36-6.96 2 764390 235 0.357 0.291 0.000307 0.816 0.262 -0.152   

6.96-9.34 3 348557 52 0.163 0.064 0.000149 0.396 0.127 -0.114   

9.34-13 4 130468 10 0.061 0.012 0.000077 0.203 0.065 -0.077   

13-23.7 5 40172 2 0.019 0.002 0.000050 0.132 0.042 -0.058   

TOTAL  2140886 807    3.119  0.552 0.448 0.135 

Elevation (in m)  

-276 - 493 1 377656 12 0.176 0.015 0.000032 0.084 0.010 -0.021   

493-717 2 175695 42 0.082 0.052 0.000239 0.635 0.079 -0.087   

717-915 3 281750 101 0.131 0.125 0.000358 0.952 0.118 -0.110   

915-1095 4 366162 163 0.170 0.201 0.000445 1.182 0.147 -0.122   

1095-1276 5 350282 186 0.163 0.230 0.000531 1.410 0.175 -0.132   
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1276-1470 6 302770 139 0.141 0.172 0.000459 1.219 0.151 -0.124   

1470-1708 7 201440 142 0.094 0.175 0.000705 1.872 0.232 -0.147   

1708-2259 8 94808 25 0.044 0.031 0.000264 0.700 0.087 -0.092   

TOTAL  2150563 810    8.053  0.836 0.164 0.050 

Lithology  

undivided 

Precambrian rocks 1 619067 320 0.291 0.395 0.000517 1.356 0.142 -0.120   

Neogene sedimentary 

rock 2 502911 49 0.236 0.060 0.000097 0.256 0.027 -0.042   

Neogene sedimentary 

rock 3 67033 9 0.032 0.011 0.000134 0.352 0.037 -0.053   

undivided 

Precambrian rocks 4 296289 84 0.139 0.104 0.000284 0.744 0.078 -0.086   

Neogene sedimentary 

rock 5 309429 114 0.145 0.141 0.000368 0.966 0.101 -0.101   

undivided 

Precambrian rocks 7 169239 60 0.080 0.074 0.000355 0.930 0.097 -0.098   

Paleogene 

sedimentary rock 8 113902 144 0.054 0.178 0.001264 3.316 0.347 -0.159   

Mesozoic and 

Paleozoic intrusive 

and metamorphic 

rocks 9 49467 31 0.023 0.038 0.000627 1.644 0.172 -0.131   

TOTAL  2127337 811    9.564  0.791 0.209 0.063 
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CHAPTER-9 

 

WEIGHT OF EVIDENCE 

 

9.1 Introduction: 

 

Weight of Evidence (WoE) is a Bayesian statistical technique that quantifies the 

influence of conditioning factors on landslide occurrence. For each class of a factor (e.g., 

a specific slope range), WoE computes two weights:  

Positive weight (W⁺) measures how much more likely a landslide is in that class compared 

to the study area overall. Negative weight (W⁻) measures how much less likely a landslide 

is in that class. The difference between positive and negative weights (W⁺ − W⁻) indicates 

the factor’s contribution to susceptibility. In GIS-based mapping, these weights are 

applied to spatial layers to produce a landslide susceptibility index, effectively 

highlighting high-risk zones.  

 

9.2 Formula: 

 

It calculates the relationship between landslide occurrences and various conditioning 

factor classes using statistical weights. It assigns a positive weight (W⁺) for areas where 

landslides are present and a negative weight (W⁻) for areas without landslides. Equation 

9.1 and 9.2 gives positive weight and negative weight formulas as given below. 

𝑊𝑖
+ = log𝑒 [

𝑃(𝐿|𝑆𝑖)

𝑃(𝐿)
] 9.1 

𝑊𝑖
− = log𝑒 [

𝑃(−𝐿|𝑆𝑖)

𝑃(𝐿)
] 9.2 

The contrast weight (C), which indicates the overall influence of a factor class, is obtained 

by subtracting the negative weight from the positive weight. A higher contrast value 

suggests a stronger association with landslide occurrence. Equation 9.3 illustrates the 

expression for contrast weight. 
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𝐶 = 𝑊𝑖
+ + 𝑊𝑖

− 9.3 

 

9.3 Outcome: 

 

 Weight of Evidence (WoE) method in this study provided a clear and quantifiable 

understanding of how each conditioning factor contributes to landslide susceptibility. By 

assigning positive and negative weights to various classes of factors such as slope, 

lithology, and elevation, the method highlighted areas with higher probabilities of 

landslide occurrence. The contrast values derived from these weights allowed for the 

identification of strong correlations between certain terrain features and past landslide 

events. The resulting susceptibility map effectively categorized the study area into zones 

of varying risk levels. 

 

9.4 Application: 

 

 The Weight of Evidence (WoE) method is a widely applied statistical approach in 

landslide susceptibility mapping, as it effectively evaluates the relationship between past 

landslide events and various conditioning factors. Using a Bayesian framework, WoE 

assigns weights to different classes within each factor—such as slope, lithology, or 

elevation—based on the presence or absence of landslides. These weights indicate the 

influence of each class on landslide occurrence. When combined in a GIS environment, 

these weighted layers help generate detailed susceptibility maps that highlight areas with 

different risk levels. WoE is valued for its simplicity, clarity, and ability to handle multiple 

spatial variables, making it a practical tool for landslide hazard analysis and risk planning. 

 

9.5 Advantages: 

 

 The Weight of Evidence (WoE) method offers several advantages in landslide 

susceptibility mapping. It is a straightforward, data-driven approach that relies on 

statistical relationships between landslide occurrences and conditioning factors, reducing 

subjectivity in the analysis. WoE allows for easy interpretation of results through positive 
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and negative weights, which clearly indicate how each factor class contributes to or resists 

landslides. It performs well in GIS environments, making it efficient for handling large 

spatial datasets. Additionally, WoE can incorporate multiple variables without complex 

calculations, making it suitable for regional-scale studies. Its ability to produce reliable 

susceptibility maps with minimal data makes it a practical and widely used method in 

landslide risk assessment. 

 

9.6 Data table: 

 

Table 9.1 WEIGHT OF EVIDENCE CALCULATION 

 

LCF 

Total 

area of 

Solan 

2370336 
Landslide 

point area 
761400 P(L) 0.3212 P(-L) 0.679  

Data Layer Classes 
Landslide 

pixels area 
Area pixels P(Si) P(L/Si) P(-L/Si) W+ W- 

Weight of 

contrast 

SLOPE (in 

degrees) 
         

0-10 1 10800 484382 0.242 0.022 0.978 -2.668 0.365 -3.033 

10'-20 2 154800 597620 0.299 0.259 0.741 -0.215 0.088 -0.303 

20-30 3 307800 582647 0.291 0.528 0.472 0.497 -0.364 0.861 

30-40 4 207900 271185 0.136 0.767 0.233 0.870 -1.068 1.938 

40-50 5 42300 54787 0.027 0.772 0.228 0.877 -1.091 1.968 

50-60 6 900 6765 0.003 0.133 0.867 -0.881 0.245 -1.126 

60-78 7 900 1627 0.001 0.553 0.447 0.544 -0.418 0.962 

Total   725400 1999013       

ASPECT  

-1 (Flat) 1 1800 11282 0.005 0.160 0.840 -0.700 0.214 -0.913 

0-22.5 (North) 2 36000 116611 0.054 0.309 0.691 -0.040 0.018 -0.058 

22.5-67.5 

(North-east) 
3 96300 261477 0.122 0.368 0.632 0.137 -0.072 0.209 

67.5-112.5 

(East) 
4 78300 246419 0.115 0.318 0.682 -0.011 0.005 -0.016 

112.5-157.5 

(South-east) 
5 69300 218320 0.102 0.317 0.683 -0.012 0.006 -0.017 

157.5-202.5 

(South) 
6 91800 279443 0.131 0.329 0.671 0.022 -0.011 0.033 

202.5-247.5 

(South-west) 
7 141300 339281 0.158 0.416 0.584 0.260 -0.151 0.411 
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247.5-292.5 

(West) 
8 109800 310660 0.145 0.353 0.647 0.096 -0.049 0.144 

292.5-337.5 

(North-west) 
9 70200 246277 0.115 0.285 0.715 -0.119 0.052 -0.171 

337.5-360 

(North) 
10 31500 111116 0.052 0.283 0.717 -0.125 0.054 -0.179 

Total   726300 2140886       

CURVATURE  

(-33.2- -0.05) 1 320400 1024400 0.476 0.313 0.687 -0.027 0.012 -0.039 

(-0.05-0.05) 2 29700 125635 0.058 0.236 0.764 -0.307 0.118 -0.424 

(0.05-43.7) 3 378900 1000659 0.465 0.379 0.621 0.164 -0.088 0.253 

Total   729000 2150694       

ROUGHNESS  

0-15 1 12600 561146 0.261 0.022 0.978 -2.661 0.365 -3.025 

15-30 2 198000 757619 0.352 0.261 0.739 -0.206 0.085 -0.291 

30-45 3 308700 531533 0.247 0.581 0.419 0.592 -0.482 1.074 

45-60 4 151200 206615 0.096 0.732 0.268 0.823 -0.929 1.752 

60-75 5 50400 78406 0.036 0.643 0.357 0.694 -0.642 1.336 

75-272 6 9000 15503 0.007 0.581 0.419 0.592 -0.481 1.073 

Total   729900 2150822       

HILLSHADE  

0-75 1 55800 77860 0.036 0.717 0.283 0.802 -0.874 1.676 

75-116 2 127800 213161 0.100 0.600 0.400 0.624 -0.528 1.152 

116-148 3 117000 326983 0.153 0.358 0.642 0.108 -0.055 0.163 

148-176 4 108000 457823 0.214 0.236 0.764 -0.309 0.118 -0.427 

176-206 5 141300 647608 0.303 0.218 0.782 -0.387 0.141 -0.528 

206-254 6 172800 413482 0.193 0.418 0.582 0.263 -0.154 0.417 

Total   722700 2136917       

ELEVATION  

293-493 1 10800 377656 0.176 0.029 0.971 -2.419 0.358 -2.777 

493-717 2 37800 175695 0.082 0.215 0.785 -0.401 0.145 -0.546 

717-915 3 90900 281750 0.131 0.323 0.677 0.004 -0.002 0.006 

915-1095 4 146700 366162 0.170 0.401 0.599 0.221 -0.124 0.345 

1095-1276 5 167400 350282 0.163 0.478 0.522 0.397 -0.262 0.660 

1276-1470 6 125100 302770 0.141 0.413 0.587 0.252 -0.146 0.397 

1470-1708 7 127800 201440 0.094 0.634 0.366 0.681 -0.619 1.299 

1708-2259 8 22500 94808 0.044 0.237 0.763 -0.303 0.117 -0.419 

Total   729000 2150563       

DISTANCE 

FROM 

STREAM (in 

m) 
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250 1 67500 137976 0.064 0.489 0.511 0.421 -0.284 0.705 

500 2 48600 130169 0.061 0.373 0.627 0.150 -0.080 0.230 

750 3 40500 126049 0.059 0.321 0.679 0.000 0.000 0.000 

1000 4 35100 125443 0.058 0.280 0.720 -0.138 0.059 -0.197 

>3000 5 537300 1631179 0.758 0.329 0.671 0.025 -0.012 0.037 

Total   729000 2150816       

LITHOLOGY  

pC 1 288000 599067 0.282 0.481 0.519 0.403 -0.268 0.671 

N 2 44100 452911 0.213 0.097 0.903 -1.194 0.285 -1.479 

N 3 8100 67033 0.032 0.121 0.879 -0.978 0.259 -1.236 

pC 4 75600 296289 0.139 0.255 0.745 -0.230 0.093 -0.323 

N 5 102600 309429 0.145 0.332 0.668 0.032 -0.015 0.047 

pC 7 54000 169239 0.080 0.319 0.681 -0.007 0.003 -0.010 

Pg 8 129600 183902 0.086 0.705 0.295 0.786 -0.832 1.618 

MzPz 9 27900 49467 0.023 0.564 0.436 0.563 -0.443 1.006 

Total   729900 2127337       

TWI  

2.14-4.3 1 339300 568068 0.265 0.597 0.403 0.620 -0.522 1.142 

4.93-6.12 2 248400 719519 0.336 0.345 0.655 0.072 -0.036 0.108 

6.12-7.47 3 100800 464101 0.217 0.217 0.783 -0.391 0.143 -0.534 

7.47-9.25 4 27000 213126 0.100 0.127 0.873 -0.930 0.252 -1.182 

9.25-11.6 5 9000 103064 0.048 0.087 0.913 -1.302 0.296 -1.599 

11.6-14.8 6 900 54815 0.026 0.016 0.984 -2.974 0.371 -3.345 

14.8-23.7 7 900 18189 0.008 0.049 0.951 -1.871 0.337 -2.207 

Total   726300 2140882       
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CHAPTER-10 

 

INFORMATION VALUE 

 

10.1 Introduction: 

 

 The Information Value (IV) method is a bivariate statistical technique used in 

landslide susceptibility mapping to evaluate the link between landslide events and 

conditioning factors. It assigns weights to each factor class based on landslide frequency, 

indicating their contribution to landslide risk. Simple, interpretable, and effective, IV 

helps identify key influencing factors and, when used with GIS, supports the creation of 

accurate susceptibility maps for hazard planning. 

 

10.2 Formula: 

 

 The Information Value (IV) method calculates the contribution of each class of a 

conditioning factor to landslide occurrence using a logarithmic formula and ratio of 

conditional probability and prior probability as per equation 10.1 and 10.2. 

 

 Using 10.1 and 10.2, we can calculate the information value of each class as given 

below in equation 10.3. 

 

 

𝑃𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =
𝑁𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑁𝐶𝑙𝑎𝑠𝑠 𝑝𝑖𝑥𝑒𝑙𝑠
 10.1 

𝑃𝑃𝑟𝑖𝑜𝑟 =
𝑁𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑁𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 𝑝𝑖𝑥𝑒𝑙𝑠
 10.2 

𝐼𝑉 = log𝑒

𝑃𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

𝑃𝑝𝑟𝑖𝑜𝑟
 

10.3 
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10.3 Outcome: 

 

The use of the Information Value (IV) method in landslide susceptibility mapping 

provided the most accurate results among the models applied in this study. By assigning 

statistical weights based on the frequency of landslides within different classes of 

conditioning factors, the IV method effectively highlighted the factors most strongly 

associated with slope failures. The resulting susceptibility map clearly delineated areas of 

low to very high landslide risk, offering valuable insights for hazard assessment and land-

use planning  

 

10.4 Application: 

 

 The Information Value (IV) method is applied in landslide susceptibility mapping 

to assess the influence of various conditioning factors by assigning weights based on 

landslide frequency. It helps identify which factors contribute most to landslide 

occurrences and supports the classification of areas into different risk zones. IV is 

particularly useful for generating data-driven susceptibility maps in a GIS environment, 

aiding in hazard assessment, land-use planning, and targeted risk mitigation. It can also 

be used alongside other models for comparative analysis of predictive performance. 

 

10.5 Advantages: 

 

 The Information Value (IV) method offers several advantages in landslide 

susceptibility mapping. It is simple to apply and easy to interpret, making it suitable for a 

wide range of users. IV effectively quantifies the influence of each conditioning factor 

based on landslide frequency, allowing for objective and data-driven analysis. It performs 

well with large datasets and integrates easily with GIS tools for spatial mapping. 

Additionally, IV helps identify the most significant contributing factors, improving the 

accuracy of susceptibility maps and supporting informed decision-making in hazard 
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assessment and land-use planning. 

 

11.0 Data Table: 

 

Table 10.1 INFORMATION VALUE CALCULATION  

  

Total area 

of Solan 2370336   

Landslide 

area pixels 761400 
 

Data Layer Classes 

Area 

pixels 

Landslide 

pixels area 

Conditional 

probability 

Prior 

probabilty Cp/Pp 

INFORMATION 

VALUE 

SLOPE (in 

degrees) 
       

0-10 1 484382 10800 0.022 0.363 0.061 -1.212 

10'-20 2 597620 154800 0.259 0.363 0.714 -0.146 

20-30 3 582647 307800 0.528 0.363 1.456 0.163 

30-40 4 271185 207900 0.767 0.363 2.113 0.325 

40-50 5 54787 42300 0.772 0.363 2.128 0.328 

50-60 6 6765 900 0.133 0.363 0.367 -0.436 

60-78 7 1627 900 0.553 0.363 1.524 0.183 

Total   1999013 725400 
    

ASPECT 
       

-1 (Flat) 1 11282 1800 0.160 0.339 0.470 -0.328 

0-22.5 (North) 2 116611 36000 0.309 0.339 0.910 -0.041 

22.5-67.5 (North-

east) 3 261477 96300 0.368 0.339 1.086 0.036 

67.5-112.5 (East) 4 246419 78300 0.318 0.339 0.937 -0.028 

112.5-157.5 

(South-east) 5 218320 69300 0.317 0.339 0.936 -0.029 

157.5-202.5 

(South) 6 279443 91800 0.329 0.339 0.968 -0.014 

202.5-247.5 

(South-west) 7 339281 141300 0.416 0.339 1.228 0.089 

247.5-292.5 

(West) 8 310660 109800 0.353 0.339 1.042 0.018 

292.5-337.5 

(North-west) 9 246277 70200 0.285 0.339 0.840 -0.076 

337.5-360 (North) 10 111116 31500 0.283 0.339 0.836 -0.078 

Total   2140886 726300 
    

CURVATURE 
       

(-33.2- -0.05) 

Concave 1 1024400 320400 0.313 0.339 0.923 -0.035 
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(-0.05-0.05) 2 125635 29700 0.236 0.339 0.697 -0.157 

(0.05-43.7) 3 1000659 378900 0.379 0.339 1.117 0.048 

Total   2150694 729000 
    

ROUGHNESS 
       

0-15 1 561146 12600 0.022 0.339 0.066 -1.179 

15-30 2 757619 198000 0.261 0.339 0.770 -0.113 

30-45 3 531533 308700 0.581 0.339 1.711 0.233 

45-60 4 206615 151200 0.732 0.339 2.156 0.334 

60-75 5 78406 50400 0.643 0.339 1.894 0.277 

75-272 6 15503 9000 0.581 0.339 1.711 0.233 

Total   2150822 729900 
    

HILLSHADE 
       

0-75 1 77860 55800 0.717 0.338 2.119 0.326 

75-116 2 213161 127800 0.600 0.338 1.773 0.249 

116-148 3 326983 117000 0.358 0.338 1.058 0.024 

148-176 4 457823 108000 0.236 0.338 0.698 -0.156 

176-206 5 647608 141300 0.218 0.338 0.645 -0.190 

206-254 6 413482 172800 0.418 0.338 1.236 0.092 

Total   2136917 722700 
    

ELEVATION 
       

293-493 1 377656 10800 0.029 0.339 0.084 -1.074 

493-717 2 175695 37800 0.215 0.339 0.635 -0.197 

717-915 3 281750 90900 0.323 0.339 0.952 -0.021 

915-1095 4 366162 146700 0.401 0.339 1.182 0.073 

1095-1276 5 350282 167400 0.478 0.339 1.410 0.149 

1276-1470 6 302770 125100 0.413 0.339 1.219 0.086 

1470-1708 7 201440 127800 0.634 0.339 1.872 0.272 

1708-2259 8 94808 22500 0.237 0.339 0.700 -0.155 

Total   2150563 729000 
    

DISTANCE 

FROM 

STREAM (in m) 
       

250 1 137976 67500 0.489 0.339 1.443 0.159 

500 2 130169 48600 0.373 0.339 1.102 0.042 

750 3 126049 40500 0.321 0.339 0.948 -0.023 

1000 4 125443 35100 0.280 0.339 0.826 -0.083 

>3000 5 1631179 537300 0.329 0.339 0.972 -0.012 

Total   2150816 729000 
    

LITHOLOGY 
       

pC 1 599067 288000 0.481 0.343 1.401 0.146 

N 2 452911 44100 0.097 0.343 0.284 -0.547 

N 3 67033 8100 0.121 0.343 0.352 -0.453 
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pC 4 296289 75600 0.255 0.343 0.744 -0.129 

N 5 309429 102600 0.332 0.343 0.966 -0.015 

pC 7 169239 54000 0.319 0.343 0.930 -0.032 

Pg 8 183902 129600 0.705 0.343 2.054 0.313 

MzPz 9 49467 27900 0.564 0.343 1.644 0.216 

Total   2127337 729900 
    

TWI 
       

2.14-4.3 1 568068 339300 0.597 0.339 1.761 0.246 

4.93-6.12 2 719519 248400 0.345 0.339 1.018 0.008 

6.12-7.47 3 464101 100800 0.217 0.339 0.640 -0.194 

7.47-9.25 4 213126 27000 0.127 0.339 0.373 -0.428 

9.25-11.6 5 103064 9000 0.087 0.339 0.257 -0.589 

11.6-14.8 6 54815 900 0.016 0.339 0.048 -1.315 

14.8-23.7 7 18189 900 0.049 0.339 0.146 -0.836 

Total   2140882 726300 
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CHAPTER 11 

 

RESULTS 

 

11.1 Discussion: 

 

 Landslide Susceptibility Maps were created using three different methods: 

Shannon Entropy (SE), Information Value (IV), and Weight of Evidence (WoE). These 

models assist in detecting areas at risk of landslides by evaluating environmental factors 

like slope, elevation, aspect, and lithology. 

 Each method uses a distinct approach to assign weights to the contributing factors, 

leading to varying classifications of landslide susceptibility.  

Shannon Entropy (SE): It quantifies the uncertainty associated with each factor 

classes to determine its influence on landslide occurrence.  

Weight of Evidence (WoE): a Bayesian approach statistical technique which 

calculates positive and negative weights based on the presence or absence of landslides 

and relating them to different factor classes. 

 Information Value (IV): It is a bivariate statistical method which assigns weights 

based on the frequency of landslide events within each class of a conditioning factor. 

These models facilitated a comparative evaluation of landslide-prone areas by 

highlighting how each method interprets the influence of environmental factors, thereby 

offering insights into the strengths and differences in their susceptibility classifications. 

Based on AUC-ROC values, Information value (IV) (AUC= 0.737) showed the 

highest predictive accuracy, followed by Shannon Entropy (SE) (AUC= 0.719) and 

Weight of Evidence WoE (AUC= 0.632), highlighting the varying effectiveness of each 

method in classifying risk areas. Both models showed high predictive performance, 

emphasizing the reliability and effectiveness of statistical, data-driven methods in 

landslide susceptibility assessment. However, WoE model provides lower AUC value 
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indicating limitation in weight assignment, data quality and broad classification of LCF 

classes. This comparison provides insight into model performance and supports the 

selection of appropriate approaches for future susceptibility mapping. 
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Figure 11.1 Landslide susceptibility map using Shannon Entropy 
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Figure 11.2 Landslide susceptibility map using Weight of Evidence 
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Figure 11.3 Landslide susceptibility map using Information Value 
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11.2 Validation: 

 

 Validation plays a key role in evaluating the accuracy and reliability of a predictive 

model. It confirms that the model not only fits the training data well but also performs 

effectively on new, unseen data. In landslide susceptibility mapping and similar 

applications, validation helps assess how accurately the model distinguishes between 

susceptible and non-susceptible areas. Techniques like k-fold cross-validation, hold-out 

validation, AUC-ROC and various statistical metrics are commonly used to measure 

model performance.  

 During validation, success rate curve is one of the most important things because 

it helps us understand how accurately the model identifies landslide-prone areas based on 

past data. If most landslides fall within the zones the model marks as high-risk, it means 

the model is performing well. A steep curve indicates that the model correctly identifies 

high-susceptibility zones early in the ranking. This helps researchers trust that the model 

is reliability and suitability. 

 
Figure 11.4 Success rate curve 

  



42 

 

Similarly, the Prediction Rate Curve assesses how well the model can predict landslide 

occurrences using an independent testing dataset. It evaluates the model’s ability to 

generalize beyond the data it was trained on. A high prediction rate suggests that the model 

performs reliably on unseen data, indicating strong generalization and making it suitable 

for real-world applications in hazard assessment and planning. 

 

Figure 11.5 Prediction rate curve 

In evaluating the performance of a landslide susceptibility model using AUC-ROC, the 

classification outcomes are essential. True Positives (TP) represent areas where landslides 

were correctly predicted, while True Negatives (TN) are areas correctly identified as safe. 

False Positives (FP) occur when the model wrongly classifies a safe area as landslide-

prone, and False Negatives (FN) are instances where actual landslides were missed by the 

model. These classifications directly affect key performance metrics. Accuracy measures 

the overall correctness of the model, combining both correct predictions (TP and TN). 

Sensitivity (or recall) reflects the model’s ability to correctly identify actual landslide 

areas, relying on TP and FN. Specificity evaluates how well the model identifies non-

landslide areas, based on TN and FP. Together, these values shape the ROC curve, and 
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the Area Under the Curve (AUC) summarizes the model’s reliability. A higher AUC 

indicates that the model consistently distinguishes between landslide and non-landslide 

areas, making it more dependable for real-world application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

CHAPTER-12 

CONCLUSION AND FUTURE FOCUS 

12.1 Conclusion: 

 

This study focused on landslide susceptibility mapping in the Solan district of 

Himachal Pradesh using three statistical models: Shannon Entropy (SE), Information 

Value (IV), and Weight of Evidence (WoE). Landslide susceptibility maps were generated 

for each model, and their performance was evaluated using both training (70%) and testing 

(30%) datasets. The generated susceptibility maps were validated using Area Under the 

Curve (AUC) values for the training data were achieved from Information Value (IV) 

(AUC=0.737), followed closely by Shannon Entropy (SE) (AUC=0.719), and Weight of 

Evidence (WoE) had (AUC=0.632). These results indicate that both SE and IV 

demonstrated strong predictive capabilities, while WoE showed limitations, likely due to 

its assumption of factor independence during weight assignment. 

Success Rate and Prediction Rate curves were also developed to assess how well 

each model fit the training data and how accurately it predicted new landslide events. The 

findings clearly suggest that SE and IV outperform WoE in identifying landslide-prone 

zones. As a result, these two models can be considered more reliable for practical 

applications such as disaster risk reduction, land-use planning, and the development of 

future infrastructure in landslide-prone regions like Solan. 

 

12.2 Future focus: 

 

The comparative study between Information Value (IV), Shannon Entropy (SE), 

and Weight of Evidence (WoE) has been efficiently done, showcasing that the models IV 

and SE perform better than WoE in landslide susceptibility mapping. Future research can 

explore the integration of machine learning techniques such as Decision Tree, Random 

Forest, Support Vector Machines, and Deep Learning to improve prediction accuracy. 

Incorporating additional environmental variables like soil moisture, vegetation indices, 

and rainfall variability can further enhance model precision.  
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Technical advancements may also include the development of hybrid models that 

combine statistical, analytical, and machine learning methods for more robust 

susceptibility mapping. Conducting temporal analyses can reveal how landslide patterns 

evolve over time, while on-ground field validation will help ensure the models reflect real-

world conditions. These enhancements will contribute to the creation of more adaptive, 

accurate, and data-driven models, ultimately strengthening disaster preparedness and 

landslide risk mitigation in vulnerable areas. 
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