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ABSTRACT 
 
 

Reversible steganography allows for exact reconstruction of the cover media after 

hidden data extraction, making it vital for applications such as content authentication, 

medical imaging, and military communications. Various reversible steganography 

techniques include histogram shifting, image interpolation, and difference expansion. 

Histogram shifting methods apply shifting to pixel-domain histograms or prediction 

error histograms. Prediction error histogram methods offer higher embedding capacity, 

but they are more complex, lack a guaranteed lower bound on PSNR, and are more 

susceptible to histogram-based steganalysis. Pixel-domain histogram shifting 

techniques, though simpler and more efficient with a theoretical PSNR bound, 

generally have lower embedding capacity.  

 

Under this project, experiments are conducted on pixel-domain histogram shifting-

based techniques. The capacity and histogram for varying number of non-overlapping 

image blocks and histogram blocks are analyzed. Experimental results show that 

embedding in image blocks does not significantly enhance the capacity compared to 

embedding in histogram blocks. Analysis of histogram blocks shows that embedding 

in two blocks yields the optimal results. A method is developed for making histogram 

shifting adaptive to payload size and a two layer embedding is developed for improved 

hiding capacity. Compared to previous methods, the two-layer embedding achieves 

higher capacity, better resistance to steganalysis, and maintains the PSNR acceptable 

for real-world applications. 

Quantum computing is an advancing field that offers significant speed advantages for 

certain computational tasks over classical computing. Notable examples include 

Shor’s algorithm, which efficiently solves integer factorization and discrete logarithm 

problems, and Grover’s algorithm, which accelerates the search process in 

unstructured databases. 

Quantum computing is based on quantum arithmetic operations where addition forms 

the core of all operations, as subtraction, multiplication, exponentiation, and division 



 ix 
 

can all be reduced to repeated or modified forms of addition. Experiments are 

conducted for performance analysis of quantum addition on quantum hardware. 

Development of quantum circuits for addition and comparison, including half adders, 

full adders, Toffoli-based adders, QFT-based adders (utilizing the Quantum Fourier 

Transform), and quantum comparators is carried out using IBM Qiskit. The circuits 

are first validated on ideal simulators to confirm correctness, followed by testing on 

noisy simulators to emulate real quantum hardware conditions. Final execution is 

carried out on IBM's Eagle 127-qubit Quantum Processing Unit (QPU). Results show 

that computation accuracy on actual hardware is limited by physical constraints such 

as short qubit coherence times and instability. A performance comparison shows that 

Toffoli-based adders outperform QFT-based adders in terms of accuracy, making them 

more reliable for precise arithmetic computations. 

Quantum image representation provides exponential efficiency in image storage and 

processing. It relies on the fundamental principles of superposition and entanglement. 

NEQR (Novel Enhanced Quantum Representation) is a lossless encoding method used 

to represent digital images on a quantum computer. It is widely applicable in domains 

such as quantum machine learning, image steganography, and quantum image 

analysis.  

This work introduces two enhancements to the NEQR framework: (1) Optimizing the 

decomposition of Multi-Controlled NOT (MCX) gates into Toffoli gates, and (2) 

Parallelizing the NEQR by parallel bit-plane encoding of the NEQR circuit, where the 

NEQR circuit is simultaneously constructed for each of the eight bit-planes of an 

image, thereby reducing overall circuit depth. Experimental results demonstrate that 

these enhancements lead to reduced circuit depth and faster execution, thereby 

mitigating decoherence-related errors. Additionally, quantum image processing 

operations that demonstrate exponential speedup over classical approaches — such as 

image negation, rotation, and intensity superposition — are also implemented and 

evaluated as part of this work. 
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CHAPTER 1 
 

 REVERSIBLE IMAGE STEGANOGRAPHY 
 
 

1.1. Introduction 

Steganography is the art and science of invisible communication. The term 

steganography emerged in late 15th century, but the idea has existed for thousands of 

years. Historically, secret messages were hidden beneath wax tablets, written on 

animal skins, or even tattooed onto the shaved heads of messengers. During wartime, 

especially for espionage, invisible ink was the popular method for covert 

communication. With advances in photographic processing, microdot and microfilm 

technology were developed and used during the Second World War.  

With advent of digital technology and the Internet, digital steganography has emerged 

as a method of embedding one data type within another. It is commonly used alongside 

cryptography, providing an additional layer of protection to encrypted data. The digital 

media used for hiding, known as cover media, include text, images, audio, and video 

files, where redundant data in pixels or frames can be used for hiding. Various image 

steganography tools are available on the Internet that use images as cover media. These 

tools include two core components: embedding and extraction. The embedding process 

hides secret data in cover image, resulting in a stego, which needs to be transmitted 

over an insecure channel like the Internet. The receiver then applies the extraction 

algorithm to recover the hidden information from the stego image.  

The modifications to cover during embedding are invisible to the human visual system 

and undetectable by statistical analysis. These modifications can either be reversible, 

allowing the cover to be restored after data extraction, or irreversible, preventing 

reconstruction of the cover. Based on this, image steganography is classified into two 

types: reversible and irreversible.  

Irreversible techniques are primarily used in applications such as secret 

communication, watermarking, and fingerprinting. Widely used irreversible methods 

include Least Significant Bit (LSB) replacement and Pixel Value Differencing (PVD)  
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in images [1]. In LSB substitution, LSBs of randomly chosen pixels of cover are 

replaced by message. Pixel choice is typically governed by a Random Number 

Generator (RNG), seeded with a secret stego key. Since there is no way to determine 

whether a particular pixel was modified during embedding, the process is irreversible, 

introducing permanent, albeit imperceptible, distortion to the cover image. Video 

steganography methods use video files as cover media, providing significantly higher 

capacity than images [2].  

Reversible steganography is used when the payload (data to be hidden) is associated 

with cover and reconstruction of cover is required for subsequent use. For instance, in 

medical images (CT scan, MRI, X-ray), diagnostic and patient details are embedded 

into the images and transmitted over the Internet among healthcare professionals, 

facilitating faster diagnosis and treatment while ensuring privacy. Watermarks are 

embedded in artwork images for copyright protection. Aerial images are embedded 

with relevant information. Military applications embed encrypted data within 

geographical maps. In these scenarios reversible steganography is useful for 

recovering the cover after data extraction. It is also known as lossless, invertible, or 

distortion-free steganography. Figure 1.1 shows a schematic of a reversible image 

steganographic system.  

 
Figure 1.1: Block diagram of a reversible image steganography system 
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The embedding process takes a cover image and a message as inputs, generating a 

stego as output. During extraction, the hidden information is extracted, and then the 

cover is reconstructed from the stego. Reversibility is achieved by preparing overhead 

information, embedding it along with payload, extracting it at the receiver, and using 

it to restore the original cover. A comprehensive review of the current advancements 

in reversible data hiding methods is presented in [3]. 

1.2. Performance Metrics for Steganography 

The important parameters for performance evaluation of a steganographic system are 

payload capacity, imperceptibility, undetectability, and security. These parameters are 

described as follows: 

1.2.1. Payload Capacity  

Payload capacity, measured in bits, is number of bits that can be hidden in an image. 

It depends on various parameters including the image size, format, and the 

steganographic technique applied. Bigger and coloured images have higher capacity 

as compared to smaller and gray images. Different techniques have different capacity. 

Techniques used for secret communication have higher capacity than techniques used 

for watermarking and fingerprinting. The theoretical capacity is expressed in bits per 

pixel (𝐵𝑃𝑃). The maximum number of bits that can be concealed, depends upon the 

technique used for hiding, and it is represented by 𝐿!"#. After computing 𝐿!"#, 𝐵𝑃𝑃 

is computed by using the following equation, equation (1.1) 

																																																	𝐵𝑃𝑃 =
𝐿!"#
𝑀 ×𝑁																																																																			(1.1)	 

Here 𝑀 ×𝑁 is the cover image size. To achieve higher capacity, a higher value of 

𝐵𝑃𝑃 is required. In LSB based technique, since LSB of every pixel is replaced with a 

data bit if enough bits are available for hiding. Therefore, payload capacity is 1 𝐵𝑃𝑃, 

which is 12.5% of the cover image size.  

1.2.2. Imperceptibility 

Imperceptibility is the absence of visual distortions into stego image created after 

embedding. It is the most important requirement for a practical steganographic 

technique. It is computed by measuring the distortion introduced into image during 
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data embedding. The distortion should be as low as possible. If the distortion is low 

imperceptibility is high. A steganographic algorithm with high imperceptibility is 

preferred over an algorithm with low imperceptibility. Methods that allow more data 

to be hidden introduce more distortion to the image, while those preserving image 

quality support lower data capacity.  

There are various methods for measurement of distortion into stego images with 

reference to cover. Commonly used methods are Mean Square Error (MSE), Peak 

Signal-to-Noise Ratio (PSNR), and Structured Similarity Index Measure (SSIM), each 

providing a different perspective on image quality and degradation.  

§ Mean Square Error  

It is a well-known metric to quantify the distortion introduced into the stego during 

embedding process. The difference between corresponding intensities of stego and 

cover image is known as error. The MSE is computed by the equation (1.2): 

																											𝑀𝑆𝐸	 = 	
1
𝑀𝑁44(𝑆(𝑖, 𝑗) − 𝐶(𝑖, 𝑗))$																																											(1.2)

%

&'(

)

*'(

 

Where 𝑆(𝑖, 𝑗) is the intensity of a pixel at index (𝑖, 𝑗) of the stego image 𝑆, and 𝐶(𝑖, 𝑗) 

is the intensity of a pixel at index (𝑖, 𝑗) of the cover 𝐶 where  0 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑗 ≤

	𝑁. The low value of MSE means that the distortions introduced by the 

steganographic algorithm during data hiding are minimal for detection by human 

visual system. 

§ Peak Signal-to-Noise Ratio   

PSNR is an important metric to measure the quality of a stego image. It represents the 

ratio of the maximum possible intensity (signal power) and MSE between two images.  

Due to the wide dynamic range of image signals, PSNR is measured in decibels (𝑑𝐵) 

using a logarithmic scale. It is computed using the equation (1.3): 

																																							𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ A
,!"#
$

)-.
B																																																										(1.3)                                          

Where 𝐶!"#$  is the maximum possible intensity in the cover. The largest possible value 

of 𝐶!"#$  for an 8-bit image is 255 and for double-precision floating-point 
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representation of an image is 1. A higher PSNR is desired for a practical 

steganographic technique. According to different studies [37, 38, 39], the techniques 

introducing PSNR below 30𝑑𝐵 are poor because the distortion is visible. The 

techniques with PSNR value between 30𝑑𝐵 to 40𝑑𝐵 are better and with PSNR value 

above 40𝑑𝐵 are excellent. 

§ Structured Similarity Index Measure  

It is used to measure the similarity between cover and the corresponding stego image. 

SSIM assesses image quality based on three key features: luminance, contrast, and 

structure. The formula for SSIM for images is computed by equation (1.4) as below: 

																																					𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝐿(𝑥, 𝑦)]a. [𝐶(𝑥, 𝑦)]b. [𝑆(𝑥, 𝑦)]g																					(1.4) 

Here 𝑥 and 𝑦 are the cover and stego images; 𝐿(𝑥, 𝑦), 𝐶(𝑥, 𝑦), and	𝑆(𝑥, 𝑦) are the 

comparison functions for luminance, contrast and structure respectively. These are 

computed by using the equation (1.5): 

																																											

𝐿(𝑥, 𝑦) = 	
2µ#µ/ + 𝐶1

µ#
$ + µ/

$ + 𝐶1

𝐶(𝑥, 𝑦) = 	
2s#s/ + 𝐶2

s#$ +  s/$ + 𝐶2

𝑆(𝑥, 𝑦) = 	
s#/ + 𝐶3

 s# s/ + 𝐶3
								

																																													(1.5) 

Here µ0 and µ1 are the average intensities for images 𝑥 and 𝑦 respectively;  s0, and 

 s1 are standard deviations of intensities for these images. s01 is the cross-covariance 

for images 𝑥 and 𝑦. For default values of exponents: a = 1, b = 1	𝑎𝑛𝑑	g = 1,	and 

default value of 𝐶3 = 0, the formula is given by equation (1.6): 

																			𝑆𝑆𝐼𝑀 =
(2µ#µ/ + 𝐶1)(2s#/ + 𝐶2)

(µ#
$ + µ/

$ + 𝐶1)(s#$ +  s/$ + 𝐶2)
																																								(1.6) 

𝐶1 and 𝐶2 are two stabilizing parameters, 𝐶1 = (𝑘(𝑙)$	; 			𝐶2 = (𝑘$𝑙)$; 			𝑘( =

0.01		𝑎𝑛𝑑		𝑘$ = 0.03	.  𝑙 is the range of intensities (2233 − 1	). SSIM values close to 

unity means that the hiding method is secure against visual analysis.  
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1.2.3. Undetectability  

Undetectability is the ability of a stego-system to prevent the detection of hidden data 

by unauthorized parties through statistical analysis, machine-learning and deep-

learning-based steganalysis. A steganographic method is considered undetectable if 

the modifications introduced to the cover image do not produce distinguishable 

patterns or anomalies that can be detected by any method of analysis. To ensure 

steganography remains undetected, it is crucial to keep the original cover medium 

confidential. If the cover image is publicly accessible, any direct comparison between 

cover and stego can easily reveal the presence of hidden information and further 

analysis may expose the steganographic method used. 

1.2.4. Security 

Security in cryptography is based on Kerckhoff's principle, introduced by Auguste 

Kerckhoff in the 19th century. This principle asserts that the strength of a 

cryptographic system should depend solely on secrecy of the key, not on 

confidentiality of the algorithm or its implementation, as these can be discovered, 

analyzed, or reverse-engineered by adversaries. Security of a cryptosystem may be 

defined as amount of computing power needed to break the system i.e. to extract the 

secret key. For high security systems this computing power is high. The same law 

applies to steganographic techniques, where stego key is needed to extract the data.  

1.3. Literature Review on Reversible Image Steganography 

The concept of reversibility was introduced by J. M. Barton in 1997 [4]. Since then, 

various reversible image steganographic techniques have been proposed, including 

those based on LSB compression [5, 6, 7],  histogram shifting [8, 9, 10, 11, 12, 13, 14] 

, image interpolation [15, 16, 17, 18, 19, 20], and Difference Expansion (DE)  [21, 22, 

23, 24, 25, 26, 27]. Each of these foundational methods has been further extended and 

refined through various enhancements to improve embedding capacity, 

imperceptibility, and reversibility. Each of these methods is based on distinct strategies 

to create embedding space while preserving reversibility. 

In the compression of LSB based methods, before replacing LSBs of pixels with secret 

message bits, whole LSB plane is recorded and compressed using a lossless 
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compression algorithm. The compressed data serves as a location map and is appended 

to the message, forming the total payload. This payload is then embedded into cover 

by modifying LSBs of randomly chosen pixels. At receiver, the embedded payload is 

extracted from the stego, and then the location map is separated from the secret 

message. The location map is subsequently decompressed, and original cover is then 

perfectly restored by replacing LSBs of the stego image with decompressed original 

LSB plane. 

Histogram shifting based method was introduced by Ni et al. in 2006 [8]. This method 

identifies peak and zero points in the intensity histogram of an image and shifts pixel 

intensities and creates a bin or space for embedding at peak point. The details of 

shifting of zero points are recorded for subsequent use for lossless recovery of cover 

file. Both data and overhead are embedded into the cover.  

To improve the capacity, several variants of basic scheme are presented in [9, 10, 11, 

12, 13]. These techniques divide the direct image pixels into image blocks and then 

apply histogram shifting on each block separately for data hiding. C. C. Chang et al. 

[14] further enhanced the capacity by using the first-order derivative of pixel 

intensities, with detection of higher peaks for data embedding. 

Several reversible techniques based on image interpolation are reported in [15, 16, 17, 

18, 19, 20]. The purpose of interpolation is to enlarge the cover before data embedding 

and divide pixels of the enlarged image into pivot and non-pivot pixels. The data is 

embedded into non-pivot pixels only. The reconstruction of the original image is 

achieved by using the pivot pixels only.  

Difference expansion based technique was introduced in 2003 by Jun Tian [21]. It  

used the difference between pixel pairs for data embedding. The difference between 

adjacent pixel intensities are computed, and specific pairs with expandable differences 

are chosen for embedding. The average of each pixel pair is maintained during this 

process to ensure reversibility. The image is divided into pixel pairs, and the overhead 

or location map is created to record the positions of expandable pairs. This overhead 

is embedded along with the secret payload. During extraction, the overhead is retrieved 
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and used to accurately reconstruct the original image. Various DE based methods  have 

been developed since its introduction [22, 23, 24, 25, 26, 27]. 

1.4. Histogram Shifting Based Reversible Image Steganography 

It is a widely used approach in reversible data hiding due to its simplicity and 

efficiency. Prior to embedding, the image histogram is scanned to identify the peak 

(most frequent intensity value) and zero or minimum (least frequent intensity value) 

points. The pixel values falling between these two points are moved by one step toward 

the zero point, creating an empty slot at the peak point. This empty space is then used 

for data embedding. 

Before moving the histogram towards left or right, the pixel coordinates having zero 

or minimum point are recorded as bookkeeping information, required during cover 

image extraction. In the following step, both the bookkeeping data and user payload 

are inserted into the histogram at peak point and vacant space nearby peak point. The 

payload capacity of this method depends on frequency of the peak and zero points in 

the cover histogram.  

1.4.1. Embedding Algorithm 

1. Scan the cover image 𝐼4 and construct its intensity histogram 𝐻(𝑋), where 𝑋 ∈

[0,255]. Identify peak and zero points in the histogram. The peak point, 𝑃 ∈

[0, 255], is the intensity with highest frequency, 𝐻(𝑃). The zero point, 𝑍 ∈

[0,255], is the intensity with lowest frequency, 𝐻(𝑍).   

2. The cover image is scanned sequentially to identify and record the indices of pixels 

with zero intensity value 𝑍. These indices are stored in a location map 𝐿, which is 

then converted into binary for embedding along with payload. 

3. Read the data to be embedded from a file and convert it into binary. Then, append 

the location map to the binary data to form the total payload for embedding. 

4. Shift the histogram between zero and peak point either to the left or to the right, 

based on the relation between intensity values at peak and zero points, as follows: 
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§ If (𝑃 < 𝑍):   

Shift the histogram 𝐻	(𝑋),	where 𝑋 ∈ [𝑃 + 1, 𝑍 − 1] one step to the right, 

creating an empty slot at index 𝑃 + 1, used for embedding. To prevent overflow 

(which occurs when  𝑍 = 255), the shifting range is restricted to 𝑍 − 1. 

§ If (𝑃 > 𝑍):  

Shift the histogram 𝐻(𝑋), where	𝑋 ∈ [𝑍 + 1, 𝑃] one step to the left and create 

an empty slot at index 𝑃 for embedding. To prevent underflow (which occurs 

when 𝑍 = 0), the shifting range is restricted to 𝑍 + 1.  

5. Scan the image again to embed the payload. For each pixel intensity, follow these 

steps: 

§ If (𝑃 < 𝑍):    

For every pixel with intensity 𝑃, if the data bit is ‘1’, increment the pixel 

intensity by 1. 

§ If (𝑃 > 𝑍):  

For every pixel with intensity 𝑃 − 1, if data bit is ‘1’, then increment the pixel 

intensity by 1. 

6. The image generated after embedding is referred to as the stego or marked image, 

denoted by 𝐼5. After completion of embedding, the peak point in the histogram 

typically vanishes, as its intensity values are modified to hide the data. 

The flowchart for the embedding process is shown by the Figure 1.2.  
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Figure 1.2: Flowchart of histogram-based embedding algorithm 

1.4.2. Extraction Algorithm 

1. The peak and zero point are required for extraction of the data. These values may 

be embedded in the image using a stego key. The stego key should be transmitted 

to the intended recipient through a secure and trusted communication channel. 

2. Scan the stego image 𝐼5 and perform following operations to extract total payload: 

§ If (𝑃 < 𝑍):   

If the pixel intensity is 𝑃 + 1 then extract a bit  ‘1’ and  if the pixel intensity is 

𝑃 then extract a bit ‘0’. Otherwise do nothing. 
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§ If (𝑃 > 𝑍):  If the pixel intensity is 𝑃 then extract a bit ‘1’ and if the pixel 

intensity is 𝑃 − 1 then extract a bit ‘0’. Otherwise do nothing. 

3. Split the total payload into hidden data (pure payload) and the location map, 𝐿.  

4. Scan the stego image and perform the following operations to reverse the 

histogram shift:  

§ If (𝑃 < 𝑍):  Shift the histogram 𝐻(𝑋)	one step to the left, where 𝑋 ∈ [𝑃 + 1, 𝑍].  

§ If (𝑃 > 𝑍): Shift the histogram 𝐻(𝑋) one step to the right, where	𝑋 ∈

[𝑍, 𝑃 − 1]. 

5. Replace the pixel intensities at the indices specified in the location map 𝐿 with 𝑍 

to recover the original image. The flowchart for extraction is shown by Figure 1.3.  

 
Figure 1.3: Flowchart of histogram-based extraction algorithm 
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1.4.3. Lower Bound on PSNR 

The theoretical minimum PSNR value between the stego image produced by this 

method and the original image exceeds 48	𝑑𝐵. During the embedding process, pixels 

with grayscale values lying between the minimum and maximum points are altered by 

either increasing or decreasing their values by 1. Consequently, in the worst-case 

scenario, all pixel intensities may be adjusted by ±1 during embedding. This implies 

that the error term (𝑆(𝑖, 𝑗) − 	𝐶(𝑖, 𝑗)) in MSE formula (equation 1.2) is at most 1 for 

each pixel. Therefore, MSE is at most 1, indicating minimal distortion introduced into 

the original image. By substituting 𝑀𝑆𝐸 = 1, and 𝐶!"# = 255, as the largest possible 

intensity value into the PSNR formula (equation 1.3), the lower bound on 𝑃𝑆𝑁𝑅 can 

be computed as below:  

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ Z
𝐶!"#$

𝑀𝑆𝐸[										 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+(255 × 255)	                                          

= 10 ∗ 4.8130					 

= 48	𝑑𝐵																 

This lower bound is validated through experimental results. 

1.4.4. Computational Complexity 

The algorithm maintains a relatively low computational load due to its operation 

entirely in the spatial domain. The main tasks are generating the histogram, identifying 

the zero and peak points, and adjusting intensities by ±1 only. As a result, the 

algorithm demonstrates a short execution time. The image needs to be scanned three 

times during the embedding/extraction process, resulting in a computational 

complexity of 𝑂(3𝑀𝑁) for an image of size 𝑀 ×𝑁.  

1.5. Image Interpolation Based Reversible Image Steganography 

Interpolation is a technique used to predict missing or intermediate values at unknown 

points based on known data points. Image interpolation is an upsampling technique 

commonly used to convert low-resolution images into higher-resolution versions by 

estimating pixel intensities at new locations. Conceptually, the process involves 

overlaying a finer grid onto the original image – one with reduced pixel spacing – and 
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assigning intensity to the new grid points using the surrounding pixels intensities. The 

interpolated grid is then expanded to the desired dimensions, resulting in a resampled 

image with enhanced resolution.  

Traditionally, three primary methods are used to assign intensities to interpolated 

pixels: nearest-neighbour, bilinear, and bicubic interpolation. Each of these methods 

represent a trade-off between computational efficiency and visual quality. Nearest-

neighbour assigns the intensity of the nearest original pixel to the newly created pixel. 

Although it is computationally efficient, it often introduces visual artifacts such as 

jagged edges and distortion. Bilinear interpolation improves visual quality by 

considering four nearest neighbours to estimate new pixel intensity, striking a balance 

between computational complexity and image clarity. Bicubic interpolation further 

refines the result by incorporating sixteen surrounding pixels, yielding smoother 

transitions and improved preservation of edges and fine details.  

In the context of reversible steganography, more sophisticated interpolation 

approaches have been explored, such as Neighbour Mean Interpolation [15], 

Interpolation by Neighbouring Pixels [16], and Left Vertex Interpolation [17].  

1.5.1. Neighbour Mean Interpolation 

The Neighbour Mean Interpolation (NMI) estimates the intensity of unassigned pixels 

by calculating the mean of a select set of neighbouring pixel values. Similar in concept 

to bilinear interpolation, NMI offers advantages such as reduced blurring and 

improved image resolution. A key feature of this method is its low computational 

requirement, which varies based on how many neighbouring pixels are involved in the  

process – more neighbours enhances accuracy but also increases processing overhead. 

The scaling-up coefficient is a factor by which the image needs to be enlarged. The 

generalized form of the NMI method for a given scaling factor 𝐾 is presented in 

equation (1.7). Here, 𝑃(𝑖, 𝑗) denotes intensity at (𝑖, 𝑗) in original image 𝑃, and 𝑃6(𝑖, 𝑗) 

represents the intensity at corresponding pixel in the interpolated image 𝑃6. If the 

original image has dimensions 𝑀 ×𝑁 then the interpolated image will have 

dimensions (𝐾(𝑀 − 1)) + 1) × (𝐾(𝑁 − 1) + 1). The original image pixels are 

uniformly mapped onto the larger grid of the interpolated image at position (𝑖, 𝑗) where 
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both 𝑖 and 𝑗 are integer multiples of 𝐾. These pixels are known as pivot pixels. 

Remaining pixels in the interpolated image are computed using these pivot pixels.  

 
Figure 1.4 illustrates the method using a scaling factor of 2. In this example, some of 

the interpolated image pixels such as 𝑃6(0,0), 	𝑃6(0,2), 	𝑃6(2,0), 𝑎𝑛𝑑	𝑃6(2,2) are 

directly taken from the original image pixels 𝑃(0,0), 𝑃(0,1), 𝑃(1,0), 𝑎𝑛𝑑	𝑃(1,1) 

respectively. The computations for all the interpolated pixels are presented by the 

equations in the figure.  

 
Figure 1.4:  Neighbour mean interpolation with K = 2 

1.5.2. Interpolation by Neighbouring Pixels 

Interpolation by Neighbouring Pixels is similar to NMI method. It uses the 

neighbouring pixels to compute the mean and assign it to the newly inserted pixels. 
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The generalized form of the INP method with a scaling factor 𝐾 is given in equation 

(1.8).  Here 𝑃(𝑖, 𝑗) is the intensity at position (𝑖, 𝑗) in the original image 𝑃, and 𝑃6(𝑖, 𝑗) 

is the intensity at pixel (𝑖, 𝑗) in the interpolated image 𝑃6. If the original image has 

dimensions 𝑀 ×𝑁 then the interpolated image will have dimensions (𝐾(𝑀 − 1)) +

1) × (𝐾(𝑁 − 1) + 1). The original pixels are uniformly distributed in the interpolated 

image at positions (𝑖, 𝑗) where 𝑖 and 𝑗 are integer multiples of 𝐾.  

 

Figure 1.5 illustrates an example with a scaling factor of 2, where the green pixels of 

the interpolated image 𝑃6 correspond to the original pixels 𝑃(0,0), 𝑃(0,1), 𝑃(1,0),

𝑎𝑛𝑑	𝑃(1,1) in the input image 𝑃. These pixels serve as reference point –– known as 

pivot pixels –– for computing the intensity of newly inserted pixels. 

 
Figure 1.5:  Interpolation by neighbouring pixels with K = 2 
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1.5.3. Left Vertex Interpolation  

Left Vertex Interpolation (LVI) replicates original image pixels into the interpolated 

image. If the scaling factor is 𝐾, and original image dimension is 𝑀 ×𝑁, then the size 

of the interpolated image becomes 𝐾𝑀 × 𝐾𝑁, where all the original image pixels are 

replicated 𝐾$ times. The generalized formula for replication is given by equation (1.9):   

	𝑃6(𝑖 ∗ 𝐾 + 𝑙, 𝑗 ∗ 𝐾 +𝑚) 	= 	𝑃(𝑖, 𝑗)				0 ≤ 𝑙,𝑚 < 𝐾; 	0 ≤ 𝑖 < 𝑀; 		0 ≤ 𝑗 < 𝑁				(1.9) 

The interpolated image can be viewed as consisting of 𝐾 × 𝐾 blocks, forming a total 

of 𝑀 ∗ 𝑁 such blocks across the image. All pixels in a block share the same intensity 

value. As the number of blocks in the interpolated image matches the number of pixels 

in the original image, each original pixel is replicated in one block in the enlarged 

image. For instance, the first pixel of the source image maps to the first block in the 

interpolated image, the second pixel maps to the second block, and so on. 

A schematic representation of LVI for 𝐾 = 2 is shown in Figure 1.6, where four pixels 

from the original image 𝑃 are mapped to four distinct blocks in the interpolated image 

𝑃′, with the correspondence indicated by colour coding.  

 
Figure 1.6: Left Vertex Interpolation with 𝐾 = 2 



 

 17 
 

1.5.4. Data Embedding and Extraction 

The flowchart for embedding and extraction of data is depicted by the Figure 1.7. The 

process begins with enlarging the cover image through interpolation. After 

interpolation, secret information is embedded into the newly generated pixels using a 

steganographic approach, such as the basic LSB method or its enhanced versions. The 

original image pixels –– pivot pixels –– are left unmodified to preserve the integrity 

of the cover. During extraction, once the embedded data has been retrieved from the 

stego, the cover can be reconstructed using the pivot pixels of the stego version. 

 
Figure 1.7: Schematic of the interpolation-based reversible data hiding 
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1.5.5. Payload Capacity 

This method offers a higher capacity compared to many other methods, because it 

increases the dimensions of the cover image through interpolation. For example, if a 

scaling factor of 2 is applied on a 256 × 256 cover image, the interpolated image of 

size 512 × 512 is obtained. If LSB modification is used for hiding, one bit of data can 

be hidden in each non-pivot pixel of interpolated image. The payload capacity of the 

image, denoted by Embedding Capacity (EC), is determined by computing the number 

of non-pivot pixels in the interpolated image as follows: 

𝑡𝑜𝑡𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛		𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒		 = 								512 × 512 = 262144 

																		𝑡𝑜𝑡𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛		𝑐𝑜𝑣𝑒𝑟	𝑖𝑚𝑎𝑔𝑒		 = 								256 × 256 = 65536 

𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 

𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 65536 

𝑛𝑜𝑛𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 262144 − 65536 = 196608 

𝐸𝐶 = 𝑛𝑜𝑛𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 196608	𝑏𝑖𝑡𝑠	 

																																																																											= 	192𝐾𝑏 

The embedding capacity, measured in 𝐵𝑃𝑃, is computed as 196608/262144 =

0.75𝐵𝑃𝑃. This is significantly higher than the capacity typically offered by histogram 

shifting-based techniques. Moreover, the embedded data consists entirely of the secret 

payload, as no auxiliary information is included during the embedding process.  

1.5.6. Lower Bound on PSNR 

During LSB embedding, each non-pivot pixel may be altered by either +1 or -1. As a 

result, the MSE introduced in the worst-case scenario does not exceed 0.75 for a 

scaling factor of 2. Using this MSE along with a maximum pixel intensity 𝐶!"# =

255 in the formula for 𝑃𝑆𝑁𝑅, the lower bound on 𝑃𝑆𝑁𝑅 is computed as below:  

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ Z
𝐶!"#$

𝑀𝑆𝐸[										 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ A
$77×$77
+.:7

B					     

										= 10 ∗ 𝑙𝑜𝑔(+(86700)                                      

	= 10 ∗ 4.9380					 

= 49𝑑𝐵																 
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1.6. Difference Expansion Based Reversible Image Steganography 

This method computes the differences between neighbouring pixels and selects a 

subset of these differences for data embedding. The selected differences are expanded 

in such a way that the average intensity of the neighbouring pixels remains unchanged 

after embedding. The locations of the pixel pairs used for difference expansion are 

recorded as a binary overhead embedded into the cover along with payload. This map 

is essential for the receiver to restore the original image.  

Mathematical preliminaries required for this method include reversible integer 

transform, expandable differences, changeable differences, and non-changeable 

differences. Specific conditions are imposed to prevent pixel intensity underflow and 

overflow, and to determine which pixel pairs are eligible for data hiding. 

1.6.1. Reversible Integer Transform 

It works by grouping the cover pixels into pairs and decomposing them into two parts: 

a low-pass component 𝐿, which stores the integer averages 𝑙, and a high-pass 

component 𝐻, which records the differences ℎ. The integer average and the difference 

for an pixel pair (𝑥, 𝑦), 𝑥, 𝑦	 ∈ 𝑍, 0 ≤ 𝑥, 𝑦 ≤ 255,	are computed by equation (1.10): 

																											𝑙	 = m
𝑥 + 𝑦
2 n 	,																						ℎ = 𝑥 − 𝑦																																															(1.10)	 

This transformation is reversible, meaning the original grayscale values 𝑥 and 𝑦 can 

be accurately reconstructed from the average 𝑙 and the difference ℎ  using the inverse 

operation outlined in equation (1.11): 

																	𝑥	 = 𝑙 + m
ℎ + 1
2 n 		,																							𝑦 = 𝑙 −		 m

ℎ
2n																																										(1.11) 

This process is known as the Integer Haar Wavelet, also referred to as the S-transform. 

The equations (1.10) and (1.11) establish a one-to-one correspondence between pixel 

pairs (𝑥, 𝑦) and their transformed counterparts	(𝑙, ℎ). To ensure that the reconstructed 

values of 𝑥, 𝑦, remain in valid grayscale range [0, 255], the equation (1.12) must be 

satisfied: 

										0 ≤ 𝑙 + m
ℎ + 1
2 n ≤ 255,										𝑎𝑛𝑑									0 ≤ 𝑙 −		 m

ℎ
2n ≤ 255																					(1.12)	 
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 Given that both 𝑙	and ℎ are integers, the inequalities can be simplified to the equation 

(1.13):  

												|ℎ| ≤ 2(255 − 𝑙),																𝑎𝑛𝑑															ℎ ≤ 2𝑙 + 1																																					(1.13) 

The equation (1.13) can be simplified to the equation (1.14): 

																												p
|ℎ| ≤ 2(255 − 	𝑙),								𝑖𝑓						128 ≤ 𝑙 ≤ 255	

|ℎ| ≤ 2𝑙 + 1,																						𝑖𝑓						0 ≤ 𝑙 ≤ 127	
																													(1.14) 

1.6.2. Expandable Difference Values 

When a difference value ℎ is expandable, a message bit 𝑏 ∈ {0, 1} can be appended to 

LSB of ℎ. This process increases the bit-length of the difference value by one, and is 

thus referred to as difference expansion. During expansion, ℎ6 is computed using the 

equation (1.15):  

																																																					ℎ6 	= 2 × 	ℎ + 𝑏																																																											(1.15) 
To ensure that the reconstructed pixel intensities remain in the valid grayscale range, 

the expanded difference ℎ6  must meet the constraint specified by the equation (1.16) 

as below: 

																																			|ℎ6| ≤ min(2(255 − 	𝑙), 2𝑙 + 1)																																															(1.16) 

A difference ℎ′ is considered expandable if and only if the following inequality, given 

by equation (1.17), is satisfied for 𝑏 ∈ {0, 1}.  This is derived by substituting equation 

(1.15) into equation (1.16):  

							|2 × 	ℎ + 𝑏| ≤ min(2(255 − 	𝑙), 2𝑙 + 1) 									𝑓𝑜𝑟	𝑏 ∈ {0, 1}																								(1.17) 

If this condition is satisfied, ℎ can be expanded to ℎ6, and the intensities of new pixel 

pair (𝑥6, 𝑦6) are computed from 𝑙 and ℎ6  using the inverse integer transform as below: 

																	𝑥6 	= 𝑙 + v
ℎ6 + 1
2 w		,																 					𝑦6 = 𝑙 −		v

ℎ6

2 w																																							(1.18) 

This transformation guarantees that the new intensities remain in the valid grayscale 

range.   
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1.6.3. Changeable Difference Values 

If a difference ℎ is deemed changeable, a bit 𝑏 ∈ {0, 1} can be embedded by 

substituting the LSB of ℎ with 𝑏. As a result, a new value of ℎ, denoted by ℎ6 is 

computed as follows:  

																																													ℎ6 = 2 ×	m
ℎ
2n + 𝑏																																																																(1.19) 

Since LSB replacement is inherently lossy, the original LSBs of the difference values 

must be preserved and embedded along with the secret data to enable recovery of 

original image. To avoid underflow and overflow in the reconstructed pixels, the 

updated difference ℎ6 must satisfy the condition derived from equation (1.15),  

																																										|ℎ6| ≤ min(2(255 − 	𝑙), 2𝑙 + 1)																																							(1.20) 

Substituting the expression for ℎ6 from equation (1.19) into (1.20), the changeability 

condition for the difference ℎ under average 𝑙, is obtained as equation (1.21): 

														x2 ×	m
ℎ
2n + 𝑏x ≤ min(2(255 − 	𝑙), 2𝑙 + 1) 									𝑓𝑜𝑟	𝑏 ∈ {0, 1}											(1.21) 

If this condition holds, then ℎ is changed to ℎ6 and the new intensities of the pixel pair 

(𝑥6, 𝑦6)  are computed from 𝑙 and ℎ6 using the inverse transform defined as below: 

																				𝑥6 	= 𝑙 + v
ℎ6 + 1
2 w		,								 													𝑦6 = 𝑙 −		 v

ℎ6

2 w																																					(1.22) 

All expandable differences are inherently changeable, since meeting the expandability 

condition automatically ensures that the changeability condition is also fulfilled. A 

changeable difference continues to be changeable even after its LSB has been 

modified. On the other hand, an expandable difference might lose its expandability 

after embedding, but it still retains its changeability. Differences that do not meet the 

criteria for both the expandability and changeability are classified as non-changeable, 

meaning no data is embedded in these values. 

1.6.4. Embedding Algorithm 

§ Pixel Pairing  

The original image is divided into pairs of pixels. The pairing can be formed in various 

ways such as horizontally, vertically, or based on a pattern determined by a secret key. 
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The pairing can be applied to the whole image or to a portion of it, depending on the 

embedding scheme and size of data. Figure 1.8 illustrates the horizontal and vertical 

pixel pairings.  

 
Figure 1.8:  Horizontal and vertical pixel pairing 

§ Finding Averages and Differences 

After pairing of the cover image pixels, reversible integer transform is applied to these 

pairs for computing the average 𝑙 and difference ℎ for each pair. The average values 

are preserved before and after data embedding.  

§ Identify Expandable and Changeable Differences  

All the differences ℎ are arranged in a one-dimension list as {ℎ(, 	ℎ$, 	ℎ;, … ℎ<	} and 

examined for expandability. If the expandability condition is satisfied, it is marked as 

expandable difference. If it is not satisfied, then the difference is examined for 

changeability condition. If this condition is met, the difference is marked as 

changeable. Differences that satisfy neither condition are considered non-changeable 

and are not used for data hiding. 

§ Creating Location map  

A binary location map {𝐿 = 𝐿(, 𝐿$, 𝐿, … 𝐿<	} is created corresponding to the list of 

difference {ℎ(, ℎ$, ℎ;, … ℎ<	}. If a difference is expandable, a ‘1’ is placed, otherwise a 

‘0’ is stored at that position. This location map is embedded into the modified 
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differences along with actual payload. It assists the decoder during extraction in 

identifying expandable differences and then to recover the original values. 

§ Storing LSBs of Changeable Differences 

The original LSBs of changeable differences are extracted and lossless compressed 

and stored in 𝐶. These compressed bits, along with location map 𝐿, and actual payload, 

are embedded into the difference values. The purpose is to restore the LSBs of original 

changeable difference values and then to restore original cover image at receiver end.  

§ Embedding Data 

The location map 𝐿, compressed LSBs 𝐶, and actual payload 𝑃 are combined to make 

a bitstream 𝐵, for embedding. The bitstream is embedded into the eligible difference 

values either by appending to expendable difference or by replacing LSBs of 

changeable difference. One bit is embedded into one changeable or expandable 

difference. As a result, new difference values are computed, and then new intensities 

for the corresponding pixel pairs (𝑥6, 𝑦6)	are computing using inverse transform to 

obtain the stego image. 

1.6.5. Extraction Algorithm 

The embedded bitstream is extracted from LSBs of all changeable difference of the 

stego image and parsed into three components: the location map, the compressed 

original LSBs, and the pure payload. The location map enables correct identification 

and restoration of all expanded differences. The compressed original LSBs allow for 

reconstruction of the changeable differences. Once all the expandable and changeable 

differences are restored, the original image is reconstructed, ensuring reversibility. The 

steps are as follows: 

§ Pixel Pairing 

The stego image is first grouped into pairs of pixels using the same pattern that was 

used during embedding. This ensures synchronization between embedding and 

extraction processes. 
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§ Computing Averages and Differences 

The reversible integer transform is applied to all pixel pairs, computing the average 𝑙 

and difference ℎ6. The differences are used for data extraction. Then averages are used 

during cover reconstruction. 

§ Identifying Changeable Difference Values 

All the differences ℎ6 are arranged in a one-dimension list as {ℎ(6 , ℎ$6 , ℎ;6 , … ℎ<6 		} and 

each is examined for changeability by using the changeability condition. Expandability 

is not evaluated, since an expandable difference may no longer satisfy the 

expandability condition after embedding. However, it is guaranteed to remain 

changeable. In contrast, a changeable difference retains its changeable property after 

embedding. 

§ Collecting LSBs of Changeable Difference 

The embedded bitstream 𝐵 is obtained by extracting LSBs of all the Changeable 

differences. This bitstream contains three components: the location map 𝐿, the 

Compressed LSBs 𝐶 of the original changeable differences, and the actual payload 𝑃. 

The desired payload is obtained after parsing these components.  

§ Restoring the Original Difference 

When a value in the location map is ‘0’, the original difference ℎ was changeable. In 

such cases, ℎ is recovered by substituting the LSB of ℎ6 with the corresponding bit 

from the decompressed LSBs. If the map contains a ‘1’, this signifies that original 

difference was expandable, and it is restored using the following equation, equation 

(1.23): 

																																																					ℎ	 = 			 v
ℎ6

2 w																																																																					
(1.23) 

§ Reconstruction of Cover Image 

The inverse integer transform is applied to the transformed values – average 𝑙	and 

difference ℎ – to reconstruct the original pixel pairs. As a result, the original cover 

image is perfectly reconstructed. 
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CHAPTER 2 
 

 ANALYSIS OF HISTOGRAM SHIFTING BASED 
REVERSIBLE IMAGE STEGANOGRAPHY  

 
 

2.1.  Review of Related Work 

Histogram shifting based technique was introduced by Ni et al. in 2006 [8]. It identifies 

peak and zero points in the histogram, known as peak-zero pair. The peak point 

represents the most frequent intensity, while the zero point represents the least frequent 

intensity in the image. This pair defines a segment of the histogram that is moved 

before embedding. The key advantages of this approach are its simplicity, efficiency, 

low computational cost, and a theoretical lower bound on PSNR. It ensures that the 

PSNR, measured in decibels (𝑑𝐵), of the stego relative to the cover remains above 

48𝑑𝐵, preserving visual quality. However, there are areas for further enhancement in 

the scheme:  

• The PSNR remains constant regardless of the payload size. A payload-adaptive 

approach can be explored, where smaller payloads introduce lesser distortions. 

• It is assumed that increasing the number of peak-zero pairs enhances hiding 

capacity; however, this assumption cannot be generalized for all types of images. 

• Two peak-zero pairs in the histogram are identified by selecting zero points first 

and then determining their corresponding peak points, which may not always be 

global peaks. An alternative approach, where peak points may be identified first 

and their corresponding zero points being selected afterward, may improve the 

capacity for some images. 

The techniques presented in [9, 12, 13] hide in image blocks, where the image pixels 

are divided into blocks, and the embedding algorithm is applied independently to each 

block. The limitations of these techniques are following: 

• The side information required for data and cover extraction, i.e., the peak-zero 

pairs and overhead, increases with number of image blocks, as each block has its 

own histogram and corresponding peak-zero pair. 
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• More number of peak-zero pairs leads to higher modifications in the intensity 

distribution, making it detectable through histogram analysis. 

• Reversibility is not verified in the given scheme [13]. 

The scheme described in [10] is based on multilayer embedding with varying image 

block sizes (256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16, 𝑎𝑛𝑑		8 × 8), 

achieving exceptionally high embedding capacity. However, it is considered insecure 

for the following reason: 

• The scheme does not embed data into peak points, leaving them unaltered while 

using them for message extraction. This creates a vulnerability, as the peak 

intensity can be directly retrieved from the stego image, enabling unauthorized 

message extraction and compromising the security. 

The scheme [11] utilizes 32 × 32 image blocks for embedding. For instance, a 

512 × 512 image is divided into 256 blocks, each having 32 × 32 pixels. However, 

the scheme has following inherent flaws: 

• It does not provide a substantial increase in hiding capacity across different images. 

• It significantly increases the side information, requiring 256 peak-zero pairs.  

• The algorithm stores peak intensities at fixed locations, specifically in LSBs of the 

initial eight pixels of each block. Additionally, it stores an indicator in LSBs of the 

first block to specify whether a block contains hidden data. However, an adversary 

can easily reverse this process without requiring additional information. As a 

result, the algorithm violates Kerckhoff's principle, compromising the security of 

the system. 

In 2008, Fallahpour [28] introduced the Gradient Adjusted Predictor (GAP), a method 

based on embedding into prediction error histograms. Since then, various predictors 

have been proposed. For example, Capacity-Distortion Optimization [29] employs 

genetic algorithms to identify optimal peak and zero bins, while Skewed Histogram 

Shifting for Reversible Data Hiding [30] leverages extreme predictor pairs to decrease 

the distortion. Multiple Histogram-based framework [31] utilizes evolutionary 

algorithms for finding multiple histograms, and Pixel Residual Histogram based-



 

 27 
 

technique [32] extends Prediction Error Expansion-based schemes. However, these 

methods have certain drawbacks, as detailed below:    

Compute-Intensive: Predictors generate a prediction image from the cover by 

performing floating-point operations on neighbouring pixels for each pixel. The 

prediction error matrix is then obtained by subtracting predicted image from cover. 

The genetic algorithms used to identify optimal peak-zero pairs involve multiple 

iterations of floating-point computations, leading to significant computational 

overhead. Consequently, these methods demand extensive computations before data 

hiding and extraction, unlike pixel-domain histogram-based methods, which do not 

require such prior computations. 

No Theoretical Lower Limit on PSNR: Accuracy of a predictor impacts both the 

embedding capacity and the quality of a stego image. These methods do not guarantee 

a theoretical minimum PSNR value. In some cases, the PSNR falls below 40𝑑𝐵, 

rendering them unsuitable for practical applications. 

Embedding Traces: The prediction error histogram of an image typically follows 

Laplacian distribution, a bell-shaped distribution with peaks at zero for most 

predictors. After data embedding, this distribution deviates from the Laplacian model 

and becomes more irregular. As hiding capacity increases, the central peak flattens, 

making detection easier. An effective steganalysis method for prediction error 

histogram shifting is discussed in [33]. Although the schemes presented in [34] and 

[35] attempt to conceal these traces, but they result in reduced capacity and lower 

PSNR. 

2.2. Capacity Analysis 

The peak point in the histogram has a peak frequency, denoted as 𝑃𝐹, and the zero 

point has a zero frequency denoted as 𝑍𝐹. Since hiding occurs at the peak points, the 

capacity is equal to the peak frequency, representing the maximum embedding 

capacity. Pixel coordinates with zero intensity are recorded in the location map as 

overhead. The data to be embedded is pure payload. Total payload comprises the pure 

payload and the overhead. The size of embedding capacity and total payload, in 

number of bits, are shown by equation (2.1):  
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𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑃𝐹																			

𝑇𝑜𝑡𝑎𝑙	𝑃𝑎𝑦𝑙𝑜𝑎𝑑		 = 𝑃𝑢𝑟𝑒	𝑃𝑎𝑦𝑙𝑜𝑎𝑑	 + 	𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
																											(2.1) 

For successful embedding, payload must not exceed the embedding capacity, as shown 

by equation (2.2): 

																									
		𝑇𝑜𝑡𝑎𝑙	𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ≤ 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	

	𝑃𝑢𝑟𝑒	𝑃𝑎𝑦𝑙𝑜𝑎𝑑	 + 	𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑	 ≤ 𝑃𝐹				
																																				(2.2) 

Overhead size depends on frequency of zero points and on image size (𝑀 ×𝑁 pixels). 

It is given by equation (2.3), where 𝑏𝑖𝑡𝑠𝑝𝑒𝑟𝑖𝑛𝑑𝑒𝑥 is the bits required for a pixel index: 

																											
𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑍𝐹	 × 	𝑏𝑖𝑡𝑠𝑝𝑒𝑟𝑖𝑛𝑑𝑒𝑥

																			= 𝑍𝐹	 ×	 𝑙𝑜𝑔$(𝑀 × 𝑁)
																																																			(2.3) 

Pure capacity can be computed by equation (2.4). To maximize it, the peak frequency 

should be as high as possible, and the zero frequency should be as low as possible. 

																𝑃𝑢𝑟𝑒	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦	 = 𝑃𝐹 − (𝑍𝐹 ×		 𝑙𝑜𝑔$(𝑀 × 𝑁))																																							(2.4) 

2.2.1. Analysis for Histogram Partitioning 

Histogram partitioning divides an image histogram into non-overlapping blocks before 

embedding. It is assumed that increasing the number of histogram blocks increases the 

hiding capacity. However, analysis shows that the improvement is not universal and it 

depends on the intensity distribution in the image histogram. For instance, the 

histograms of two 8 × 8 images with 8 gray levels are presented in Figure 2.1 (a) and 

(b) respectively. Both images have the same capacity for a single block since they 

share the same peak frequency of 21 and the same zero frequency of 1. Splitting the 

histograms into two blocks creates two peak-zero pairs, one for each block, with the 

total capacity being the sum of the individual block capacities. In the figure, the green 

and blue regions represent the two non-overlapping histogram blocks. The blue block 

maintains the same peak and zero frequencies of 17 and 1, respectively, in both 

histograms. The green block has the same peak frequency of 21 in both the histograms, 

but differs in zero frequency: 3 in Figure 2.1(a) and 2 in Figure 2.1(b). Hence, Figure 

2.1(a) shows higher capacity for embedding in single block, whereas Figure 2.1(b) 

shows higher capacity for embedding in two blocks. The computations for both 



 

 29 
 

histograms for single block and two blocks are presented by Figure 2.2(a) and Figure 

2.2(b), respectively.  

 
Figure 2.1: Histograms of two 8 × 8 images  

 
Figure 2.2: Embedding capacity for histograms of Figure 2.1 

Figure 2.3(a) and Figure 2.3(b) show an histogram with two (b1, b2) and three non-

overlapping blocks (b1, b2 ,b3), respectively.  

 
Figure 2.3: Histogram Blocks: (a) Two blocks (b) Three blocks 

Experimental results show that identifying two non-overlapping blocks is generally 

feasible, whereas identifying three or more blocks often results in overlap. Even 
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without overlap, the capacity may not always increase since each added block has 

higher overhead due to its zero point having a higher frequency than the previous 

blocks. 

The algorithm for two-block histogram partitioning is presented in Figure 2.4.  

 
Figure 2.4: Algorithm for finding two blocks in an image histogram 

The algorithm differs slightly from the algorithm used in original method [8], which 

first selects global zero points and then identifies the corresponding peak points. In 

contrast, this method first selects the peak points, followed by the zero points. 

2.2.2. Analysis for Image Partitioning  

Image partitioning divides image pixels into non-overlapping blocks prior to 

embedding. As illustrated in Figure 2.5(a), a 2 × 2 partition splits the image into 4 

separate regions, with Figure 2.5(b) depicting corresponding histograms. The analysis 

of capacity shows that while increasing the number of image blocks may improve 

hiding capacity for some images, the improvement is often marginal. This is because 

partitioning the image decreases pixel counts per block, which in turn reduces both the 
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histogram height and the peak frequency, thereby reducing the space available for 

embedding.  

 
Figure 2.5: (a) Image Blocks (b) Corresponding histograms 

2.3.  Histogram Analysis 

A comparison of histograms before and after embedding shows that embedding 

modifies the distribution of three intensities for each peak-zero pair: the peak intensity, 

the zero intensity, and the intensity adjacent to the peak. Partitioning an image into 

four image blocks, each containing two peak-zero pairs, results in a total of eight pairs, 

altering the distribution of 24 intensities. Further partitioning into 16 blocks yields 32 

pairs, which may modify 96 intensities out of 256, a 37.5% change in the histogram. 

Thus, increasing the number of blocks makes the image more susceptible to detection 

through histogram analysis. During embedding, peak frequencies decrease, zero 

frequencies increase, and the frequencies of intensities adjacent to the peak become 

approximately half of the peak frequency, leading to histogram equalization.  

For example, a 21-level grayscale image, shown in Figure 2.6 as cover image, 

transforms into a 38-level stego image after embedding into 2 × 2 (4 image blocks), 

and a 42-level stego image after embedding into 4 × 4 (16 image blocks). The original 

histogram, along with the histograms after embedding into 2 × 2 and 4×4 blocks, are 

shown in the figure 
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Figure 2.6:  Histogram analysis for a 21-level gray-scale image  

2.4. Experimental Results 

Observations are presented for the standard 512 × 512 grayscale images shown in 

Figure 2.7, sourced from the USC-SIPI image database [36]. This dataset offers images 

with diverse intensity distributions, textures, and patterns, making it suitable for 

evaluating data hiding techniques under realistic conditions. The experiments are 

conducted on the images in lossless formats such as Portable Network Graphics (PNG) 

and Tagged Image File Format (TIFF).  

2.4.1.  Capacity for Histogram Partitions  

Hiding capacity observations on histogram partitioning are presented in Table 2.1. The 

findings from the table are as follows: 

• Splitting histogram into two blocks increases the hiding capacity over single-block 

use for all images except for the Moon.  

• Splitting into three blocks often results in violations of the non-overlapping 

constraints. In cases where three non-overlapping blocks are found, the overhead 

of third block exceeds the peak frequency, thereby negating the capacity gains 

(e.g., Barbara). Only Cat image shows a slight capacity improvement. 
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• The capacity does not increase consistently with number of blocks, and it is found 

that the optimal histogram block size is 2.   

 
Figure 2.7: Standard test images for evaluation   

2.4.2. Capacity for Image Partitions 

Table 2.2 presents the observations for varying image block sizes. The block size 

𝑛 × 𝑛 denotes the partitioning of images into 𝑛 blocks along both the horizontal and 

vertical axes. It is found that hiding capacity does not consistently increase with 

number of blocks. Furthermore, the optimal block size for maximum hiding capacity 

is image-dependent. For the analyzed images, the optimal block sizes were found to 

be 4 × 4, 8 × 8, or 16 × 16, with the corresponding maximum hiding capacities 

highlighted in bold in the table. 
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Table 2.1: Hiding capacity for varying histogram blocks 

 
Table 2.2: Hiding capacity for varying image blocks 

Image Name 𝟐 × 𝟐 𝟒 × 𝟒 𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔 𝟑𝟐 × 𝟑𝟐 𝟔𝟒 × 𝟔𝟒 

Barbara 3577 5961 7946 8069 5532 1988 

Pepper 3879 5671 7517 5716 430 0 

Baboon 2826 3432 3192 1107 5 0 

Lena 5725 8568 12087 12292 7718 2459 

Sailboat 4466 7436 8331 5970 1227 0 

Tiffany 6681 9273 12052 10890 3160 218 

Fishing boat 5931 7407 8410 5860 621 0 

Jet 12501 14991 18188 17848 9402 409 

Airplane 50740 74731 88315 90637 75278 6566 

 

Image Name 
Histogram Partitions 

1 block 2 blocks 3 blocks 

Barbara 2277 4456 Overhead 

Pepper 2686 5314 Overlapping 

Baboon 2699 5245 Overlapping 

Lena 3058 6129 Overlapping 

Sailboat 3766 7489 Overlapping 

Tiffany 3808 7343 Overlapping 

Fishing boat 5733 11322 Overlapping 

Jet 8249 15943 Overlapping 

Airplane 30393 59882 Overlapping 

Sunset 68105 68105 Overlapping 

Cat 96219 100963 105622 

Moon 122908 122908 Overlapping 
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2.4.3. Results for Histogram Analysis 

Image partitioning divides the image pixels into multiple blocks, creating more peak-

zero pairs than histogram partitioning and results in higher modifications to the 

histogram during embedding. Figure 2.8 presents a cover image and its histogram, 

partitioning of the image into 2 × 2 (four blocks) and corresponding stego image 

histogram, and partitioning of the image into 4 × 4 (16 blocks) and corresponding 

stego image histogram. The modifications in the stego histograms are visible in the 

figure, highlighting the impact of embedding on intensity distributions. 

  

 
Figure 2.8: Histogram variations after embedding in image blocks 

 

Figure 2.9 illustrates results for three images from the SIPI dataset. The first column 

shows the original images, the second column displays their corresponding 

histograms, and the third column depicts histograms after embedding into 4 × 4 image 

blocks. The results show that embedding into image blocks leads to localized 

histogram flattening, thereby increasing vulnerability to histogram-based steganalysis.  
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Figure 2.9: Impact of embedding in 4 × 4 image blocks on histograms 

2.5.  Conclusion 

This study analyzed reversible data hiding using histogram shifting for both image 

partitioning and histogram partitioning. The findings are that the optimal block size 

for image partitioning is image-dependent and cannot be generalized. Additionally, 

increasing the number of blocks results in more side information required for data 

extraction and cover restoration, further the more number of peak-zero pairs leads to 

increased histogram modifications, reducing resistance to steganalysis. For histogram 

partitioning, it was observed that dividing the histogram into two blocks provides the 

optimal hiding capacity. 
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CHAPTER 3 
 

 TWO LAYER REVERSIBLE IMAGE 
STEGANOGRAPHY IN IMAGE HISTOGRAMS 

 
 

3.1.  Introduction 

Multi-layer embedding in reversible image steganography aims to enhance data hiding 

capacity while preserving the ability to fully recover the original cover image. 

Although this layered approach can significantly improve payload capacity, it also 

introduces challenges such as managing side information, maintaining high PSNR, and 

ensuring that reversibility is not compromised. Therefore, multi-layer embedding must 

be carefully designed to balance capacity, distortion, and reversibility. 

3.2.  Payload Adaptive Histogram Shifting  

In this work, a novel payload-adaptive histogram shifting technique is developed, 

which dynamically adjusts the histogram shifting range based on the actual size of the 

data which needs to be embedded. Unlike traditional methods that use a fixed shifting 

range regardless of payload size, the proposed approach enhances both flexibility and 

embedding efficiency by tailoring the shifting range to the payload requirements. The 

shifting range is defined between peak and zero points. In this method, the global peak 

is updated by identifying a local peak with the minimum frequency that still satisfies 

the required payload size.  

Figure 3.1 illustrates this change, showing the original and updated blocks, with the 

latter having narrower widths for the Lena image at a payload size of 1000	bits. Since 

the updated peak point is closer to zero point than original peak, the width of histogram 

block defined by peak and zero points is reduced, resulting in decreased shifting of the 

histogram. 
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 Figure 3.1: Reduced block width in Lena image for 1000-bit embedding 

The algorithm, presented by Figure 3.2, begins by selecting the initial peak and zero 

intensity. It then scans from the zero intensity toward the global peak to locate a 

suitable local peak that can accommodate the data, thereby enabling an adaptive 

embedding process. 

 
Figure 3.2: Algorithm for finding payload adaptive peak 

Figure 3.3 presents the PSNR values for varying payload sizes for Baboon, Pepper, 

Lena and Sailboat images. The PSNR decreases with increase in payload size up to 

embedding capacity. 
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Figure 3.3: Payload adaptive PSNR for standard images 

3.3.  Analysis of Lower Bound on PSNR 

Theoretical lower bound on PSNR for embedding layers up to 7 is computed.  Each 

embedding layer shifts the histogram by one, resulting in a maximum pixel difference 

of 𝑛, and the MSE of 𝑛$, for 𝑛-layer embedding. Table 3.1 presents the MSE and 

PSNR, computed using equations (3.1) and (3.2), respectively. In these equations 

𝐶!"# = 255 is the maximum possible intensity, 𝐶 and 𝑆 are cover and stego images, 

and 𝑀 ×𝑁 is the image size.  

																																				𝑀𝑆𝐸		 = 				
1
𝑀𝑁44(𝑆(𝑖, 𝑗) − 𝐶(𝑖, 𝑗))$

%

&'(

)

*'(

																																			(3.1) 

																														𝑃𝑆𝑁𝑅						 = 			10 ∗ 	 log(+ Z
𝐶!"#$

𝑀𝑆𝐸
[																																																							(3.2) 

Table 3.1: Theoretical PSNR for varying layers of embedding 

Layer 1 2 3 4 5 6 7 

MSE 1 4 9 16 25 36 49 

PSNR 48.13 42.11 38.58 36.08 34.15 32.56 31.22 

3.4.  Two Layer Embedding Strategy 

Experiments are conducted for embedding up to five layers. Figure 3.4 shows the 

original image and corresponding stego images after each layer of embedding. Figure 

3.5 shows the original histogram and corresponding stego image histograms.  
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Figure 3.4:  Stego images after multi-layer embedding 

 
Figure 3.5: Stego image histograms after multi-layer embedding  

The hiding capacity and PSNR observations are presented by Table 3.2 and Table 3.3 

respectively. The capacity increases approximately linearly with each layer of 

embedding and the PSNR decreases gradually.  
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Table 3.2: Hiding capacity for multi-layer embedding 

Image Name 1-Layer 2-Layer 3-Layer 4-Layer 5-Layer 

Barbara 4456 8750 12888 16981 21041 

Pepper 5314 10377 14933 18653 21015 

Baboon 5245 10308 15229 20082 24679 

Lena 6129 11938 17526 23043 28239 

Sailboat 7489 14355 20851 26795 32597 

Tiffany 7343 14499 21558 28547 35478 

Fishing Boat 11322 21891 31691 40640 49277 

Jet 15943 30427 43785 56493 68954 

Airplane 59882 113241 162913 206093 238743 

Sunset 68105 107716 136146 152023 164514 

Cat 100963 197149 261144 309161 341770 

Moon 122908 190257 245757 282994 313459 
 

Table 3.3: PSNR for multi-layer embedding 

Image Name 1-Layer 2-Layer 3-Layer 4-Layer 5-Layer 

Barbara 53.45 47.24 43.16 39.90 38.64 

Pepper 48.17 42.26 38.76 36.34 34.99 

Baboon 48.22 42.27 38.77 36.33 34.47 

Lena 48.17 42.55 39.71 37.14 35.27 

Sailboat 48.19 42.26 38.82 37.62 37.20 

Tiffany 48.23 42.46 39.00 36.54 34.73 

Fishing Boat 48.21 42.60 39.23 36.84 35.02 

Jet 51.10 42.45 38.98 36.79 34.92 

Airplane 48.84 45.06 41.31 38.42 36.92 

Sunset 50.53 42.76 39.44 36.98 35.14 

Cat 49.81 47.89 45.77 44.09 41.64 

Moon 49.41 43.23 40.19 37.48 35.67 
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To ensure high quality stego images, a PSNR of 40𝑑𝐵 or higher is preferred [37, 38, 

39]. Three layer embedding reduces the PSNR below 40𝑑𝐵, while two layer 

embedding maintains it above 42𝑑𝐵. Therefore, two layer embedding is developed 

and analyzed for its robustness to steganalysis. It is shown by block diagram of Figure 

3.6. In the first layer, Data1 is embedded into cover, creating an intermediate stego 

image. In the second layer, Data2 is embedded into the intermediate stego, producing 

the final stego image.  

 
Figure 3.6: Block diagram of two layer embedding  

During extraction, the process is reversed: Data2 is extracted first, followed by 

restoration of the intermediate stego. Subsequently, Data1 is extracted, and the cover 

is restored.    

The pseudocode for two layer embedding is provided by Figure 3.7. The time 

complexity for single layer embedding is 𝑂(𝑚𝑛), where 𝑚 × 𝑛 is the image size. For 

multi-layer embedding, the time complexity scales linearly with number of layers, 

resulting in 𝑂(𝑙𝑚𝑛), where 𝑙 denotes the number of layers. The space complexity 

remains 𝑂(𝑚𝑛) and is independent of layers.  
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Figure 3.7: Algorithm for two layer embedding 

3.5.  Robustness to Steganalysis 

The security of the scheme is evaluated by conducting steganalysis on widely used 

datasets such as SIPI [36], watermarking images [40], and BOSSbase [41, 42]. These 

datasets include diverse image types including dark, bright, reduced colour, textured, 

smooth, and sharp-edged images, featuring aerial views, buildings, humans, animals, 

and objects. Statistical analysis results are presented in Table 3.4 for SIPI database and 

Table 3.5 for watermarking database.  
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Table 3.4: Statistical steganalysis on SIPI database 

Image 
Image Analysis Histogram Analysis RS Analysis 

SSIM NCC Mean Ratio Std. Ratio Entropy D RS Ratio 

1 0.999 0.999 0.996 0.983 0.004 0.995 

2 0.997 0.999 0.995 0.971 0.004 0.990 

3 0.997 0.999 0.997 0.962 0.004 0.997 

4 0.998 0.999 0.993 0.970 0.005 0.988 

5 0.996 0.999 0.992 0.979 0.006 0.996 

6 0.997 0.999 0.996 0.968 0.006 0.988 

7 0.995 0.999 0.996 0.973 0.010 0.987 

8 0.995 0.999 0.994 0.981 0.012 0.995 

9 0.997 0.999 0.993 0.979 0.053 0.972 

10 0.953 0.999 0.975 0.995 0.048 0.988 

11 0.994 0.999 0.990 0.994 0.081 0.993 

12 0.910 0.999 0.975 0.995 0.090 0.974 
 
Imperceptibility is evaluated by computing SSIM and Normalized Cross-Correlation 

(NCC) between cover and stego using equations (3.3) and (3.4) respectively, where µ 

and s  are mean and standard deviation, and 𝐶1, 𝐶2, 𝐶3 are constants to prevent the 

division by zero. The values approaching 1 confirm high similarity between original 

and stego images.   

												𝑆𝑆𝐼𝑀 =
2µ4µ5 + 𝐶1

µ4
$ + µ5

$ + 𝐶1 .
2 s4 s5 + 𝐶2

s4$ +  s5$ + 𝐶2
.
s45 + 𝐶3

 s4s5 + 𝐶3
																										(3.3)		 

																										N𝐶𝐶 =
∑ ∑ (𝑆(𝑖, 𝑗) × 𝐶(𝑖, 𝑗))%

&'(
)
*'(

∑ ∑ 𝑆(𝑖, 𝑗)$%
&'(

)
*'(

																																																		(3.4)		 

Histogram analysis shows a mean and a standard deviation ratio for cover to stego near 

1, with minimal changes in brightness and contrast due to embedding. Additionally, 

negligible changes in histogram entropy after embedding suggest negligible alteration 

to the histogram. RS steganalysis [43] shows that the regular-singular group ratio 

remains similar for cover and stego images, ensuring robustness against detection.  
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Table 3.5 Statistical steganalysis on Petitcolas database 

Image 
Image Analysis Histogram Analysis RS Analysis 

SSIM NCC Mean Ratio Std. Ratio Entropy D RS Ratio 

1 0.998 0.999 0.996 0.968 0.004 0.995 

2 0.998 0.999 0.999 0.984 0.005 0.987 

3 0.996 0.999 0.997 0.962 0.006 0.997 

4 0.997 0.999 0.993 0.975 0.009 0.993 

5 0.999 0.999 0.991 0.998 0.001 0.978 

6 0.995 0.999 0.985 0.990 0.009 0.999 

7 0.999 0.999 0.985 0.991 0.008 0.950 

8 0.993 0.998 0.994 0.952 0.014 0.994 

9 0.998 0.999 0.984 0.996 0.014 0.968 

10 0.993 0.997 0.991 0.951 0.016 0.995 

11 0.999 0.999 0.988 0.991 0.022 0.983 

12 0.994 0.999 0.982 0.988 0.026 0.962 
 
The BOSSbase dataset, consisting of 10,000 grayscale images, was used to generate 

cover-stego pairs with the this method. Classification accuracy – using both the Spatial 

Rich Model (SRM) [44] and the Steganalysis Residual Network (SRNet) [45] – ranged 

between 49% and 51%, – a result comparable to random guessing, demonstrating the 

method’s robustness against machine-learning and deep-learning based steganalysis. 

3.6.  Performance Comparison 

Reversibility is validated by computing PSNR and SSIM between original and 

reconstructed cover, with all experiments yielding 𝑃𝑆𝑁𝑅 = ∞ and 𝑆𝑆𝐼𝑀 = 1, 

confirming reconstruction of cover. Empirical observations comparing the new 

method with prior methods are presented in Tables from 3.6 to 3.8. Table 3.6 compares 

the capacity and PSNR with methods [8], [9] where the new method offers up to 82% 

higher capacity. Table 3.7 shows that the adaptive histogram shifting yields improved 

PSNR values relative to methods reported in [8] [12]. 
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Table 3.6: Performance comparison on hiding capacity and PSNR 

Image Name 
Capacity PSNR 

[8] [9] Proposed % ↑ over 
[9] [8] [9] Proposed 

Baboon 5412 5892 10308 74.94 48.20 48.35 42.27 

Pepper 5449 9499 10377 09.24 48.20 48.06 42.26 

Lena 5460 9571 11938 24.73 48.20 47.30 42.55 

Sailboat 7301 9039 14355 58.81 48.20 51.50 42.26 

Fishing Boat 7301 12018 21891 82.15 48.10 47.85 42.61 

Jet 16171 24421 30427 24.59 48.30 48.54 45.45 

Airplane 59979 99099 113233 14.26 48.70 48.80 42.45 
 

Table 3.7: Comparison of adaptive histogram shifting for Lena image 

Method Payload Embedding Pixel moves PSNR 

[8] 1000bits Full Image 79482 49.88 

[12] 1000bits 

Block1 16681 60.38 

Block2 23588 58.22 

Block3 11336 62.05 

Block4 26892 57.73 

Proposed 1000bits 
Block1 6544 80.18 

Block2 6864 79.77 
 
Table 3.8 provides a comparative summary of PSNR, selected peak-zero pairs, and 

resistance to steganalysis against methods [8, 9, 10, 11].  

Table 3.8: Comparison with prior methods 

Hiding Method PSNR Peak-Zero pairs Resistance to 
analysis 

Ni. et al. [8] >48 2 High 

Fallahpour [9] >48 8-32 Low 

Z. Pan et al. [10] >48 Peak unaltered Not secure 

Murthy et al. [11] >48 256 Not secure 

Proposed >42 4 High 
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While the PSNR of two-layer embedding is comparatively lower, it consistently 

exceeds the acceptable threshold of 40𝑑𝐵. 

Figure 3.8 depicts that new method achieves higher embedding rates than methods 

presented in [8, 9, 11]  for Baboon, Pepper, Boat, and Jet images, measured in bits per 

pixel (𝑏𝑝𝑝) with embedding rates observed from 0.02𝑏𝑝𝑝 to 0.75𝑏𝑝𝑝. 

 
Figure 3.8: Embedding rates for selected standard images 

3.7. Conclusion 

The experiments are conducted using Python in Jupyter Notebook on MacBook Air 

with an Apple M1 chip and 8𝐺𝐵 of RAM. Each embedding layer in the multi-layer 

embedding requires approximately 0.15 to 0.20 seconds of processing time and 2𝑀𝐵 

of memory for 512 × 512 images. The scheme’s simplicity, efficiency, high 

embedding capacity, and robustness to steganalysis make it well-suited for 

applications such as medical imaging, copyright protection, lossless image 

compression, cropping, etc. The scheme can be directly applicable to encrypted images 

when lightweight encryption methods such as affine ciphers, permutation-based 

(transposition) techniques, or substitution ciphers are used as these encryption methods 

preserve the overall histogram structure required for histogram shifting and making 

space for data embedding. Since video files consist of a sequence of images as frames, 

the scheme can be extended to videos by embedding data into individual frames. 

Applying the same embedding technique across multiple frames significantly 

enhances the overall embedding capacity. 
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CHAPTER 4 
 

 INTRODUCTION TO QUANTUM COMPUTING 
 
 

4.1.  Background  

A quantum computer is a machine that can receive inputs in a coherent superposition 

of multiple states, process these states and compute results into a superposition of 

possible outcomes. The idea of quantum computing was introduced by Richard 

Feynman in 1982 to address the limitations of existing computers in simulating 

quantum systems [46]. He suggested that a machine utilizing quantum bits (qubits) can 

simulate these systems more efficiently (with exponential speedup) than classical 

systems.  

In 1985 David Deutsch proposed the concept of Quantum Turing Machine capable of 

simulating any physical system. He introduced the Deutsch algorithm, demonstrating 

that certain problems could be solved faster on quantum computers than classical 

computers [47]. The Deutsch-Jozsa algorithm was later developed as a generalization 

for 𝑛-bit inputs. It offers an exponential speedup over classical algorithms for 

determining whether a Boolean function is constant or balanced, under the promise 

that it is one of the two [48].  

In 1994, Peter Shor published a quantum algorithm [49], and provided a detailed 

theoretical analysis of the algorithm [50], fundamentally challenging the security of 

the systems over the Internet. It showed that two problems considered hard for classical 

computers — integer factorization and the discrete logarithm problem — could be 

efficiently solved using a quantum computer. Since these problems underpin many 

cryptographic protocols, Shor's algorithm marked a major breakthrough, highlighting 

the practical impact of quantum computing in number theory, cryptography, and 

information security.  

 In 1995, Lov Grover demonstrated [51] that quantum computers could accelerate the 

searching in unstructured database, providing quadratic speed-up over classical 
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methods. Its broad applicability to search-based tasks generated significant interest in 

its potential. 

Experimental progress began in 1998 with successful implementation of Deutsch-

Jozsa algorithm using Nuclear Magnetic Resonance (NMR) [52]. In 2001, IBM 

researchers achieved a significant breakthrough by demonstrating the first 

experimental realization of Shor's algorithm on a 7-qubit NMR machine [53] by 

factoring 15, a milestone in quantum computing.  

In 2012, John Preskill investigated the entanglement as an underlying principle that 

can be harnessed for computational advantage to surpass the capabilities of classical 

systems [54]. In 2018, Preskill came with the concept of the Noisy Intermediate-Scale 

Quantum (NISQ) devices [55], emphasizing challenges and potential of quantum 

devices with 50-100 qubits. These near-term processors, despite being affected by 

noise and imperfections, are capable of addressing practical problems.  

In 2019, Google showcased quantum supremacy using its Sycamore processor, which 

contains 53 superconducting qubits. The processor accomplished a computational task 

in 200 seconds, a task that would have taken 10,000 years on classical supercomputers 

[56]. Although errors in the hardware led to accurate outputs only once in every 500 

runs, repeating the experiment millions of times in just a few minutes gave statistically 

meaningful results.  

IBM Quantum has pioneered quantum computing advancements [57], making 

quantum hardware accessible via IBM Cloud since 2016. The 127-qubit IBM Eagle 

processor is available for access since 2021. In 2023, IBM introduced Condor, a 1,121-

qubit superconducting quantum processor. IBM's Qiskit SDK stands as the most 

widely adopted quantum development platform, enabling seamless execution on 

IBM’s QPUs through Qiskit Runtime service. The release of Qiskit SDK 1.x in 2024, 

a comprehensive full-stack solution,  marked a significant milestone. It now 

encompasses middleware software and services for developing and optimizing 

quantum circuits, and executing the developed circuits on IBM's state-of-the-art 

quantum systems. 
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Quantum computing relies on quantum arithmetic operations, ranging from addition 

to modular exponentiation, which require additional memory to store intermediate 

results. The construction of quantum networks with optimal auxiliary memory usage 

was first explored in 1995 [58]. The Quantum Fourier Transform (QFT) offers a 

unique approach to performing arithmetic operations on quantum computers. Thomas 

G. Draper introduced a QFT-based method for quantum addition, reducing the number 

of qubits needed by eliminating temporary carry bits [59].  

QFT-based circuits have since been developed for various operations, including 

controlled weighted sums for computing the inner product of two data vectors [60], 

modular and non-modular arithmetic with signed integers [61], and quantum 

comparators [62]. Ripple-carry adders were introduced in 2004 as a foundational 

design for quantum addition circuits  [63].  

Toffoli-based adder circuits are developed using controlled-NOT gates and Toffoli 

gates. In [64], it was shown that five two-qubit gates are required to simulate a Toffoli 

gate. Additionally, a transformation of QFT addition circuits into Toffoli-based adders 

was presented in [65] offering an alternative approach to quantum arithmetic. 

Quantum Image Processing (QIP) is an emerging field that involves performing image 

processing operations on quantum images, with the potential to achieve exponential 

computational speedup over classical methods [66]. Quantum algorithms designed for 

edge detection can achieve significant computational advantage [67]. QIP is built upon 

three key elements: encoding of images in quantum states, application of quantum 

algorithms on quantum images, and quantum measurement. To facilitate quantum 

computation for imaging tasks, various encoding techniques have been developed to 

map classical image data onto quantum states [68]. 

The Flexible Representation of Quantum Images (FRQI) is the first image encoding 

framework representing grayscale images using a single-qubit for intensity encoding 

and multi-qubit for positional encoding [69]. The pixel positions are mapped to a 

superposition of states, while intensities are encoded as quantum rotation angles. 

While FRQI offers a compact and simple image representation, it has notable 

drawbacks. Encoding intensities as rotation angles introduces computational 
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complexity, as retrieval often requires inverse trigonometric operations. The 

probabilistic nature of measurements and limited precision due to angle quantization 

reduce accuracy, making FRQI less suitable for high-fidelity image processing tasks. 

To overcome these limitations, researchers have developed improved models that 

enhance efficiency and reduce circuit depth [70]. Expanding on the FRQI framework, 

the RGB Multichannel Quantum Image (MCQI) representation is introduced to encode 

colour images by separately representing red, green, and blue channels using quantum 

states [71]. A quantum algorithm for scrambling of the images using MCQI model is 

reported [72], highlighting its potential for secure image processing and encryption. 

NEQR is a framework [73] that represents both pixel positions and intensities using 

multiple qubits, offering improvements over FRQI. Since it directly maps intensity 

values to computational basis states, it allows for lossless image reconstruction, 

making it suitable for quantum image steganography, quantum machine learning, and 

other operations on quantum images. Several image processing techniques have been 

developed based on the NEQR, including methods for line detection [74], grayscale-

to-binary image conversion [75], and guided quantum filtering [76]. The Novel 

Quantum Representation of Color Digital Images (NCQI) builds upon NEQR by using 

24 qubits to represent Red, Green, and Blue channels [77] for colour images. NEQR 

based steganographic techniques are reported in [78, 79, 80], quantum image 

encryption techniques are proposed in [81, 82, 83], and image scrambling techniques 

are presented in [84, 85]. 

4.2.  Principles of Quantum Mechanics 

The fundamental principles of quantum mechanics are superposition, entanglement, 

decoherence, and interference, offering profound insights into the behaviour of matter 

and energy at sub-atomic level. Quantum computers utilize these foundational 

quantum phenomena to perform calculations in a probabilistic and quantum-

mechanical manner. When fully developed, they will be capable of solving highly 

complex problems at speeds exponentially greater than today's classical computers, 

offering unprecedented computational power. 
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4.2.1. Superposition 

Quantum mechanical systems do manifest all the possible states that they can assume 

at the same time, such as electrons or photons can be in a combination of states. This 

phenomenon is called superposition. A quantum state in superposition represents a 

linear combination of multiple states where the combination is a new, valid state. A 

single-qubit quantum system is mathematically expressed by equation (4.1): 

																																							|𝛹⟩ = 		a+|0⟩ 		+ 		a(|1⟩																																																										(4.1) 

Here the coefficients a+ and a( are complex numbers known as probability amplitudes 

associated with basis states |0⟩ and |1⟩, respectively.  

When a measurement is made, the superposition reduces to a single, definite state, with 

basis states probabilities given by |a+|$	𝑎𝑛𝑑	|a(|$. These probabilities always sum to 

one, satisfying the condition |a+|$ +	|a(|$ = 1.  

A two-qubit system is in a superposition of the four basis states, with probability 

amplitudes being a++, 	a+(, 	a(+, and a(( respectively, and |a++|$ +	|a+(|$ +

|a(+|$ +	|a((|$ = 1.  

Ket notation for a superposition state in this system is given by equation(4.2):  

																									|𝛹⟩ = a++|00⟩ 	+	a+(|01⟩ 	+	a(+|10⟩ 	+	a((|11⟩																										(4.2) 

Or by vector notation presented in equation (4.3): 

																																																																	�

a++
a+(
a(+
a((

�																																																																		(4.3) 

Similarly, an n-qubits system can be in a superposition of 2< states ranging from 

|000. . .0⟩ to |111. . .1⟩. A quantum computer can process all these states 

simultaneously, making computations faster. 

4.2.2. Entanglement 

Entanglement represents the intrinsic non-locality of quantum mechanics, manifesting 

when the state of two or more subsystems in a quantum system cannot be decomposed 

into individual local states of the subsystems. In an entangled system, the state of each 
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individual particle cannot be defined on its own without considering the states of the 

other particles. Although the system as a whole is in a definite state, the individual 

components do not possess well-defined separate states. For instance, if two particles 

are generated with a total spin of zero, measuring the spin of one particle immediately 

determines that the spin of the second particle will be opposite of the spin of first 

particle, even if the two particles are far apart. 

Two entangled qubits are correlated and the measurement outcome of one of the qubits 

instantly determines the measurement outcome of another qubit. This phenomenon is 

explained by Bell states, which can be represented as follows by equation (4.4): 

																								|Φ±⟩ =
|00⟩ ± |11⟩

√2
	,							 |Ψ±⟩ =

|01⟩ ± |10⟩
√2

																																			(4.4)	 

Entanglement gives quantum computing an advantage over classical computing by 

enabling faster algorithms, enhancing secure communication, and aiding in 

development of fault-tolerant quantum systems. 

4.2.3. Decoherence  

Decoherence is a key phenomenon in which fragile superpositions in a quantum 

system break down, transforming from quantum behaviour to classical behaviour. This 

happens when the system interacts with its surroundings or undergoes measurement. 

Since the system behaves classically after decoherence, this is important for allowing 

quantum states to produce observable outcomes and interface with classical systems. 

However, environmental interactions that induce decoherence lead to disruption of  

quantum superposition or entangled states, introducing errors and information loss in 

qubits. The timescale of decoherence depends on the underlying qubit technology and 

the degree of isolation from the external environment. More isolated systems exhibit 

longer coherence times. Mitigating decoherence is a major research challenge, and 

maintaining quantum coherence is essential for performing accurate and reliable 

computations. 
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4.2.4. Interference  

In a quantum system, particles are represented as probability waves that indicate a 

range of possible positions. These probability waves can interact with one another, 

resulting in an interference pattern that influences the likelihood of different 

measurement outcomes. Specifically, when these waves reinforce each other, the 

phenomenon is referred to as constructive interference, leading to an increased 

probability of certain outcomes. Conversely, when the waves cancel each other out, 

this is termed destructive interference, resulting in a decreased likelihood of particular 

measurement results. 

Interference enables quantum algorithms to manipulate the probabilities associated 

with various possible outcomes, guiding the system toward the correct solution. 

Constructive interference enhances the likelihood of measuring the correct outcome, 

while destructive interference effectively reduces the probability of incorrect 

outcomes. This manipulation of interference is essential for implementation of many 

quantum algorithms, as it enhances both the efficiency and precision of the algorithms. 

4.3.  Quantum Logic Gates 

A qubit is a fundamental unit of quantum information and computation, governed by 

quantum mechanical principles like superposition, entanglement, and interference. A 

qubit can exist in a superposition of two basis states of |0⟩  and |1⟩ and can also become 

entangled with other qubits. A single-qubit quantum system is defined as shown by 

equation (4.5): 

																																											|0⟩ = �
1

0
�,								 |1⟩ = �

0

1
�																																																				(4.5) 

A qubit in superposition has some probability of being |0⟩ and some probability of 

being |1⟩, and this can be represented by equation (4.6) : 

																																			|𝛹⟩ = 𝑎|0⟩ + 	𝑏|1⟩ = �
𝑎

𝑏
�																																																												(4.6) 

where 𝑎 and 𝑏 are complex numbers representing the amplitudes of component states 

in the superposition state |𝛹⟩,	with |𝑎|$ +	|𝑏|$ = 1. 
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Quantum logic gates [86] are the operations used to control and change the states of 

qubits, similar to how classical gates (AND, OR, and NOT) are used to manipulate 

bits. Key Characteristics of quantum gates include: 

• Gate Size: Quantum gates act on single or multiple qubits, enabling complex 

operations and interactions between qubits. 

• Unitary: Quantum gates are inherently reversible operators. An operator 𝑈 is 

unitary if the inverse of the operator is equivalent to its conjugate transpose, 

meaning 	𝑈>( = 𝑈?. For an 𝑛-qubit quantum gate, the matrix size is 2< × 2<. 

• Superposition: Gates can operate on the qubits which are in superposition and can 

process all possible states simultaneously. 

• Entanglement: Some gates create entanglement, establishing required 

correlations between qubits.  

4.3.1. Single-Qubit Gates 

Single-qubit gates operate on individual qubits. The Hadamard gate (𝐻) is essential 

for creating superposition, converting a qubit from standard basis states into an equal 

superposition of both, and can also reverse this transformation.  

The Pauli gates form a core set, represented by Pauli matrices, and perform operations 

like flipping, rotating, or inverting qubits. The set includes the 𝑋, 𝑌, 𝑍 gates, each 

corresponding to a rotation of the qubit around respective axes of the Bloch sphere by 

π radian. The 𝑋 gate flips the qubit between |0⟩ and |1⟩. The 𝑌 gate performs both a 

bit and a phase flip on the qubit. The 𝑍 gate does not change the state |0⟩ while it flips 

the phase of the |1⟩. The unitary matrices for Hadamard gate and Pauli gates are 

represented by equation (4.7): 

	𝐻 =
1
√2

�
1 1

1 −1
� 	,			𝑋 = �

0 1

1 0
� ,				𝑌 = �

0 −𝑖

𝑖 0
� ,					𝑍 = �

1 0

0 −1
�											(4.7) 

The phase shift  is a set of gates that transform the basis state |1⟩	to	𝑒*@|1⟩, leaving the 

measurement probabilities unchanged. Special phase shift gates include the S and the 

T gates, applying a phase shift of  𝜋/2 and 𝜋/4 , respectively, to state |1⟩.  

The unitary matrices for these gates are shown in equation (4.8): 
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						𝑃ℎ(𝜑) = �
1 0

0 𝑒*@
� ,											𝑆 = �

1 0

0 𝑖
� ,																	𝑇 = �

1 0

0 𝑒*A/C
�																							(4.8) 

Rotation gates are the most commonly used parametric gates. They apply a rotation 

around one of the axes on the Bloch sphere (X, Y, or Z), with the rotation angle serving 

as the parameter. These gates perform operations allowing for more flexibility and 

control in quantum algorithms, especially in quantum machine learning, variational 

quantum algorithms, and quantum optimization. The unitary matrices for these gates 

are shown in the equations (4.9), (4.10) and (4.11), respectively : 

																							𝑹#(𝜃) =

⎣
⎢
⎢
⎢
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																					𝑹D(𝜃) = ¥
𝑒
>*E
$ 0

0 𝑒
*E
$

¦																																																																				(4.11) 

4.3.2. Multi-Qubit Gates 

Multi-qubit gates operate on multiple qubits simultaneously, harnessing the complete 

potential of qubit interactions using entanglement. The commonly used two qubit gates 

are SWAP, CNOT, CZ and CP, shown in Table 4.1 with their unitary matrices and 

outputs of their application on the basis states |00⟩, 	|01⟩, 	|10⟩, 𝑎𝑛𝑑	|11⟩.  

The SWAP gate interchanges states of two qubits. The CNOT gate operates by using 

the first qubit as control and second qubit as target. The target qubit is flipped only if 

the control qubit is |1⟩. The CZ gate applies a phase flip to the target qubit under the 

same condition. The CP gate is a generalization of CZ gate, introducing a phase shift 

of 𝑒*@ on the target qubit when the control qubit is in the |1⟩ state. These gates are 

used for performing controlled quantum phase rotations and are fundamental to 

interference-based quantum algorithms.  
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Table 4.1: Two-Qubit gates and their unitary matrices 

Gate Unitary Matrix Application on Basis States 

SWAP �

	 	
1 0
0 0

	 	
0 0
1 0

0 1
0 0

0 0
0 1

� |00⟩ 	
-FG3
§⎯⎯© |00⟩, |01⟩ 	

-FG3
§⎯⎯© |10⟩ 

|10⟩ 	
-FG3
§⎯⎯© |01⟩, |11⟩ 	

-FG3
§⎯⎯© |11⟩ 

CNOT �

	 	
1 0
0 1

	 	
0 0
0 0

0 0
0 0

0 1
1 0

� |00⟩ 	
,%HI
§⎯⎯© |00⟩, |01⟩

,%HI
§⎯⎯© |01⟩ 

|10⟩ 	
,%HI
§⎯⎯© |11⟩, |11⟩ 	

,%HI
§⎯⎯© |10⟩ 

CZ �

	 	
1 0
0 1

	 	
0 0		
0 0			

0 0
0 0

1 0		
0 −1

� |00⟩ 	
,J
§© |00⟩, |01⟩ 		

,J
§©	|01⟩ 

|10⟩ 	
,J
§© |10⟩, |11⟩ 	

,J
§© −|11⟩ 

CP �

	 	
1 0
0 1

	 	
0 0
0 0

0 0
0 0

1 0
0 𝑒*@

� |00⟩ 		
,3
§© |00⟩, |01⟩ 	

,3
§© |01⟩ 

|10⟩ 	
,3
§© |10⟩, |11⟩ 	

,3
§© 𝑒*@|11ª 

 
The Toffoli or CCNOT is a three-qubit gate. It flips the third qubit, target qubit, if the 

first two qubits, known as control qubits, are |1⟩. It is a reversible counterpart to the 

classical AND gate when considering the third output, making it an important gate for 

reversible and quantum computing. The unitary matrix and its application on basis 

states is shown by equation (4.10):  

				𝑇𝑜𝑓𝑓𝑜𝑙𝑖					 = 						 ⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

|000⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |000⟩, |001⟩ 	

IKLLKM*
§⎯⎯⎯⎯© |001⟩

|010⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |010⟩, |011⟩

IKLLKM*
§⎯⎯⎯⎯©	|011⟩

|100⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |100⟩, |101⟩ 	

IKLLKM*
§⎯⎯⎯⎯© |101⟩

|110⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |111⟩, |111⟩ 	

IKLLKM*
§⎯⎯⎯⎯© |110⟩

																				(4.10) 
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4.3.3. Universal Quantum Gates 

Any quantum computation can be implemented by a universal set of quantum gates. 

Several examples of these sets are presented in Table 4.2. Clifford gates preserve the 

Pauli operators (𝑋, 𝑌, 𝑍) by mapping to other Pauli operators. Pauli matrices are all 

involutions (𝑋$ = 𝑌$ = 𝑍$ = 𝐼), and the relations between them are shown by 

equation (4.11). Well-known Clifford gates are Pauli (𝑋, 𝑌, 𝑍), Hadamard, CNOT 

and SWAP gate.  

 

Table 4.2: Unitary sets of Quantum gates 

Sr. No. Universal Gate Set Common Examples 

1. Clifford with T {	𝐶𝑙𝑖𝑓𝑓𝑜𝑟𝑑	𝐺𝑎𝑡𝑒𝑠, 𝑇} 

2. Single qubit gates with CNOT {𝐻, 𝑆, 𝑇, 𝐶𝑁𝑂𝑇} 

3. Rotation based gates with 
CNOT 

«𝑅#(𝛼), 				𝑅/(𝛽),			𝐶𝑁𝑂𝑇	® 

«	𝑅/(𝛽), 				𝑅D(𝛾),			𝐶𝑁𝑂𝑇	® 

{𝑅#(𝛼), 						𝑅D(𝛾),			𝐶𝑁𝑂𝑇	} 
 

4.4. Quantum Circuits 

Quantum algorithms are implemented using quantum circuits. A quantum circuit 

consists of a sequence of quantum gates applied to qubits to carry out the desired 

computations. It is represented as a diagram where qubits are shown as horizontal 

lines, and quantum gates are placed along these lines. The circuit execution sequence 

is from left to right, with each gate applying a specific operation to the input qubits.  

Since quantum operations must be reversible, classical logic gates are adapted into 

reversible quantum circuits by including extra qubits to store output information. The 

circuits implementing the logic of AND, OR, and XOR gates for all possible input 

combinations are shown in Figure 4.1.  
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The circuit structure changes with the input to preserve reversibility and accurately 

reflect the corresponding classical logic functionality. All the quantum circuits were 

developed using Qiskit's QuantumCircuit module. 

 
Figure 4.1: Quantum circuits for classical gates 

4.5. Experimental Methodology 

The experiments in this study were conducted using Qiskit, a Python-based SDK for 

developing and simulating quantum circuits, and the IBM Quantum platform for 

executing them on IBM quantum hardware. The detailed step-by-step procedure is 

described below: 

4.5.1. Qiskit Installation 

To begin, Qiskit was installed. Python and pip, the Python package manager, were pre-

installed. A virtual environment was set up to isolate the dependencies of Qiskit and 

then it was installed using: “pip install qiskit”. To enable execution on QPUs, the IBM 

Runtime module was installed using: “pip install qiskit-ibm-runtime”. Detailed 

installation instructions can be found in [87]. 
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4.5.2. Quantum Circuit Creation 

Quantum circuits were developed by using Qiskit's QuantumCircuit module. The basic 

steps for development of quantum circuits are as below:  

• Initialization of quantum and classical registers. 

• Construction of the quantum circuit. 

• Addition of gates to the circuit for carrying out the computations. 

• Measurements to map quantum states to classical bits, facilitating result 

extraction. 

4.5.3. Ideal Simulation 

To debug the circuits and verify the correctness of the implementation, the Basic 

Simulator was used. This is a local noiseless simulator, supporting up to 24 qubits. The 

steps for simulations are as follows: 

 

4.5.4. Noisy Simulation 

To emulate real hardware, IBM’s noisy quantum simulators were used. These 

simulators incorporate noise models to predict performance on actual quantum 

devices. The steps include: 

• Import the simulator: “from qiskit.providers.fake_provider import 

GenericBackendV2” 

• Initialize the backend: “backend=GenerivBackendV2(num_of_qubits)” 

• Transpile the circuit:  

“from qiskit import transpile” 

“circuit1=transpile(circuit, backend)”   

• Execute the circuit: “job=backend.run(circuit1)” 

• Retrieve the results: “results=job.result()” 
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4.5.5. Execution on Quantum Hardware 

Quantum circuits were executed on IBM Quantum physical devices to assess 

performance in real-world conditions, including noise, decoherence, and scalability 

challenges. The procedure included: 

a) User Account Creation: 

Users register on the IBM Quantum platform and receive an API token for 

authentication. User under the Open Plan are granted access to QPUs for up to 10 

minutes per month. 

b) Service and Backend Initialization: 

The QiskitRuntimeService class was used to interface with IBM Quantum services. 

The backends that can be accessed under the Open Plan are “ibm_brisbane”, 

“ibm_kyiv”, and “ibm_sherbrooke”. The python code for this is as follows: 

 

c) Circuit Transpilation:  

The quantum circuit was transpiled to the optimized and compatible circuit for the 

selected backend: 

“qc_transpiled=transpile(qc, backend, optimization_level = 3)” 

d) Job Submission:  

The transpiled circuit was submitted to the backend using the SamplerV2 primitive, 

which generates a unique job ID for future reference: 
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e) Result Extraction and Post-Processing:  

After job execution, the results were retrieved and measurement counts were 

visualized as histograms:  

 

The methodology presents the process of designing, validating, and executing circuits 

using Qiskit. 
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CHAPTER 5 
 

QUANTUM ARITHMETIC OPERATIONS 
 
 

Quantum arithmetic operations are essential for performing computations. These 

operations are implemented using quantum algorithms with reversible and unitary 

gates that preserve quantum information. Addition forms the core of all arithmetic 

operations because the operations of subtraction, multiplication, exponentiation, and 

division can be decomposed to repeated forms of addition. Efficient realization of 

quantum addition circuits is therefore fundamental, serving as the building block for 

higher-level quantum arithmetic.  

5.1.  Quantum Circuits for Half Adder and Full Adder 

A half adder circuit performs the addition of two single-bit numbers and outputs a sum 

bit and a carry bit. By combining two half adders, a full adder is formed, which adds 

three binary inputs (two data bits and one carry-in bit) and generates a sum and a carry-

out bit. Quantum circuits for these operations are illustrated in Figure 5.1. 

 
Figure 5.1: Quantum circuits for half adder and full adder 

5.2.  Quantum Circuits for Binary Adder 

A binary adder refers to a circuit that adds multiple bits, extending the full adder 

concept. Adding two 𝑛-bit numbers requires 𝑛 full adders. In classical computing, 

binary adders are built using irreversible logic gates, whereas quantum computation 

requires all operations to be unitary and thus reversible. Quantum adders are generally 

classified into two main types: based on Toffoli gates and based on the QFT. 
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5.2.1. Toffoli-Based Adder 

Toffoli-based quantum adders simulate classical binary addition using reversible 

quantum logic gates such as the Toffoli (CCNOT), CNOT, and NOT gates. The adders 

were developed for adding 1-bit to 6-bit numbers.  Figure 5.2 shows a circuit for adding 

two 3-bit numbers (7+7).  

 
Figure 5.2: Toffoli-based adder circuit for 7+7 

5.2.2. QFT-Based Adder 

QFT-based adders implement binary addition through the Quantum Fourier Transform, 

which enables operations in the phase domain. QFT-based adder encodes numbers in 

quantum phase space and performs addition by applying controlled phase rotations. 

After addition, the inverse QFT is applied to revert the result back to the computational 

basis. Circuits were developed for adding 1-bit to 6-bit numbers. Figure 5.3 depicts 

the circuit for adding two 2-bit numbers (3+3).  

 
Figure 5.3: QFT-based adder circuit for 3+3 
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5.3.  Quantum Comparator Circuit 

Comparator circuits for 1-bit to 6-bit numbers were developed. The circuits for 2-bit, 

3-bit, and 4-bit comparators are shown by Figures 5.4 (a), (b) and (c), respectively.  

 
Figure 5.4: Comparator circuits for (a) 2bit  (b) 3bit (c) 4bit 

5.4.  Circuit Transpilation 

The circuits are transpiled to match the topology of a quantum simulator or hardware. 

Figure 5.5(a) is the transpiled circuit for Toffoli adder for 1+1, and Figure 5.5(b) is the 

transpiled circuit for QFT adder for 1+1. Transpilation increases the circuit depth. 

 
Figure 5.5: Transpiled circuits for Toffoli and QFT adders for 1+1 
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5.5.  Experimental Results 

The quantum circuits were initially simulated on IBM’s BasicSimulator to verify the 

correctness of implementation. Then, simulations were performed on the noisy 

backend to emulate the quantum hardware noise. Finally, the circuits were executed 

on IBM's 127-qubit Eagle quantum processor, using the ibm_brisbane and ibm_kyiv 

backends via the SamplerV2 primitive in Qiskit Runtime. Each circuit was executed 

for 1000 shots. The results are visualized using histograms, where X-axis represents 

possible outcomes, and the Y-axis represents frequencies associated with outcomes. 

5.5.1.  Half Adder and Full Adder Results 

Figure 5.6(a) illustrates the results for half-adder, where the sum and carry are 

measured with inputs in a maximal superposition of states. During ideal simulation, 

all possible outcomes are observed except the outcome 11. This aligns with the 

expected outcomes for all inputs: 0 + 0 = 00, 0 + 1 = 01, 1 + 0 = 01, 1 + 1 = 10. 

The small frequency of measuring 11 in the noisy simulation and execution on actual 

hardware, is attributed to the noise introduced by decoherence.    

 
Figure 5.6:  Half adder and full adder results on simulator and QPU 
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Figure 5.6 (b) presents the results for full-adder. The results on ideal simulator align 

precisely with theory. The results from noisy simulator incorporate quantum noise 

models to simulate the effects of decoherence and gate imperfections. The 

experimental results on the QPU via ibm_brisbane are comparable to noisy simulator 

results. It is noted that the results on QPU are reliable.  

5.5.2. Toffoli-Based Adder Results 

Figure 5.7 presents the measurement results for the Toffoli-based adder circuit 

executed on noisy simulator for input sizes ranging from 1-bit to 6-bits, with 

corresponding output sizes ranging from 2-bit to 7-bits. Subfigures (a) to (f) illustrate 

the results for input pairs: (1 + 1), (3 + 3), (7 + 7), (15 + 15), (31 + 31),

𝑎𝑛𝑑	(63 + 63), respectively.  

 
Figure 5.7:  Noisy simulator results for Toffoli-based adder 

Figure 5.8 presents the results of executing the same circuit on IBM’s QPU via 

ibm_brisbane. A comparison of results on noisy simulator and QPU shows that the 

noise increases significantly with input size on the QPU compared to the simulator. 
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Figure 5.8:  QPU results for Toffoli-based Adder 

5.5.3. QFT-Based Adder Results 

Figures 5.9 and 5.10 present the results for QFT-based adder on noisy simulator and 

IBM QPU respectively, using the same input cases as in Figures 5.7 and 5.8. The noisy 

simulator consistently yields correct outputs with highest frequency, demonstrating 

stable performance (Figure 5.9). 

 
Figure 5.9:  Noisy simulator results for QFT-based adder 
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However, on QPU via ibm_brisbane, the noise impact increases with input size, where 

beyond 2-bit inputs (subfigures (c) to (f) in Figure 5.10) , the results become unreliable. 

These observations are attributed to quantum decoherence and hardware 

imperfections. 

 
Figure 5.10:  QPU results for QFT-based adder 

5.5.4. Quantum Comparator Results 

Table 5.1 presents the frequency of correct outcomes over 1000 executions of the 

circuit for quantum comparator on IBM’s noisy simulator and QPU (ibm_brisbane) 

for input sizes ranging from 1-bit to 6-bit numbers. Figure 5.11 visualizes accuracy 

across both the backends, showing a decline on the QPU as input size grows, especially 

beyond 3 bits, due to quantum noise and hardware limitations. 

Table 5.1: Quantum comparator results 

Input size(#bits) 1 2 3 4 5 6 

Simulator 997 990 988 979 978 953 

QPU 985 905 877 539 534 479 
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Figure 5.11: Quantum comparator accuracy on simulator and QPU  

5.6.  Comparison of Toffoli and QFT adders 

Table 5.2 presents the accuracy of both the adders on the noisy simulator, Eagle 

processor accessed via ibm_brisbane, and accessed via ibm_kyiv. The observations 

presented in the table demonstrate that the Toffoli-based adder outperforms the QFT-

based adder across all simulations. On QPUs, the Toffoli-based adder shows correct 

outcomes with higher frequency among all results for input sizes up to 5-bit numbers. 

In contrast, for QFT-based adder, this trend is observed only up to 2-bit inputs. The 

bar graph of Figure 5.12 shows the higher accuracy of Toffoli adder. 

Table 5.2: Noisy simulator and QPU results for Toffoli and QFT adders 

Input 
size 

(#bits) 

Noisy Simulator QPU (ibm_brisbane) QPU (ibm_kyiv) 

Toffoli 
adder 

QFT  
adder 

Toffoli 
adder 

QFT 
adder 

Toffoli 
adder 

QFT 
adder 

1 976 969 862 902 927 842 

2 947 903 660 469 700 539 

3 885 809 447 35 370 82 

4 843 703 129 19 312 49 

5 831 661 93 19 143 15 

6 771 528 54 8 62 9 
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Figure 5.12: Accuracy comparison of Toffoli- and QFT-based adders on QPU 

5.7.  CONCLUSION 

The performance of quantum arithmetic operations was evaluated on IBM QPUs, 

analysing the impact of circuit depth and noise on computational accuracy. Results 

showed that circuit depths and noise levels increase with input size, resulting in 

frequent incorrect outcomes. For 𝑛-bit numbers, the Toffoli-based circuit requires 

3𝑛 + 1 qubits, the QFT-based adder requires 2𝑛 + 1	qubits, and the comparator circuit 

needs 2𝑛 qubits. The Toffoli-based adder achieves lower circuit depth than QFT-based 

adder, as the latter introduces additional complexity by incorporating the QFT at the 

beginning and its inverse at the end of computations. Therefore, the Toffoli-based 

adders demonstrated higher accuracy for input sizes up to 5 bits, while the QFT-based 

adders maintained accuracy only for inputs up to 2 bits. Since increased circuit depth 

leads to execution times longer than the qubit coherence times and hence introducing 

errors. These findings highlight scalability challenges in quantum arithmetic on current 

quantum hardware and the need for noise-mitigation strategies to enhance 

computational reliability on quantum computers. 
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CHAPTER 6 

 
 OPTIMIZATION AND PARALLEL 

IMPLEMENTATION OF NEQR 
  
 
6.1.  Quantum Image Representation  

Quantum Image Representation (QIR) relies on fundamental principles of 

superposition and entanglement. NEQR (Novel Enhanced Quantum Representation) 

is a method to represent digital images on a quantum computer. In NEQR, a binary 

representation of pixel positions and intensities is stored in the computational basis 

states of quantum bits, enabling efficient image processing operations. This 

representation is suitable for reversible operations and is useful for tasks like edge 

detection, encryption, and watermarking. Table 6.1 summarizes the quantum gates for 

NEQR implementation. It presents the gate types, symbols, Qiskit methods, and their 

unitary matrices, essential for encoding classical images into quantum images. 

Table 6.1: Quantum gates for NEQR-based image representation 

Name Type Circuit 
Symbol Qiskit method Unitary 

Hadamard 
(H) 

Single-
qubit  

qc. h(q) 
1
√2

81 1
1 −19 

NOT 
(X) 

Single-
qubit  

qc. x(q) 80 1
1 09 

CNOT 
(CX) 

Two-
qubit 

 

qc. cx(q0, q1) ;

	 	
1 0
0 1

	 	
0 0
0 0

0 0
0 0

0 1
1 0

< 

TOFFOLI 
(CCX) 

Three-
qubit 

 

qc. ccx(q0, q1, q2) 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Measure Variable
-size 

 
qc.measure(q, c) (Collapses quantum state to 

classical bit) 
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An image is mathematically described as a function 𝑓(𝑋, 𝑌),  where 𝑋 and 𝑌 are spatial 

coordinates. The value of function at each coordinate (𝑋, 𝑌), represents image 

intensity, commonly denoted as 𝐼(𝑋, 𝑌). The NEQR method uses two qubit sequences 

for encoding digital image pixels into quantum states, one for encoding the spatial 

coordinates or pixel positions, and the other for encoding the intensity values. Both the 

sequences are encoded in computational basis states.  

The number of qubits is determined by both the image size and the range of gray levels 

present in the image. For instance, for an image of size 2< × 2<, 2𝑛 qubits are allocated 

for pixel position encoding, with 𝑛	for rows and 𝑛 for columns. If the image contains 

2! gray levels, then 𝑚 qubits are required for intensity encoding, resulting in a total 

of 2𝑛 +𝑚 qubits. To preserve the pixel-to-intensity mapping the two qubit sequences 

encoding pixel positions and intensity values are entangled.  

Figure 6.1 displays a 2  ×  2 grayscale image, where each pixel is annotated with its 

intensity in both decimal and 8-bit binary formats, and position in binary format. The 

corresponding quantum state representation, denoted as |QI⟩ is also presented in the 

figure. The representation encodes the image using position and intensity qubits using 

the NEQR model. 

 
Figure 6.1: A 2 × 2 image and its quantum representation 

The quantum state of an image of size 2< × 2<	with 256 intensity levels is given by 

equation (6.1): 

																											

|𝑄𝐼⟩ 		= 			
1
2<
	 4 	4 	|𝐼(𝑋, 𝑌)⟩	|𝑋𝑌⟩

$%>(

N'+

$%>(

O'+ 	

																	= 		
1
2< 	

4 	4 	´	µ𝐼ONP ª
:

P'+

	
$%>(

N'+

$%>(

O'+

|𝑋𝑌⟩

																																								(6.1) 



 

 
 

74 
 

6.2. Algorithm for Circuit Development 

Algorithm presented in Figure 6.2 outlines the procedure for constructing a quantum 

circuit that transforms a classical image into its quantum counterpart using the NEQR 

method on the IBM Qiskit framework. The algorithm provides a step-by-step method 

for mapping classical image pixel data onto quantum registers, namely position 

register and intensity register. The position register is initialized into a superposition 

state, allowing simultaneous representation of all the pixel locations. The position 

register is then entangled with the intensity register, which encodes pixel intensity 

values into quantum states. The entanglement links each pixel's position with its 

corresponding intensity, enabling a correct quantum image representation and 

facilitating efficient operations on the quantum image. 

 
Figure 6.2: Algorithm for quantum image representation using NEQR 

6.3.  Optimization of MCX Gate Decomposition 

In NEQR, the position register functions as the control, and intensity register as the 

target or working register. Entanglement is established from control register to target 
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register, binding pixel positions to their corresponding intensity values. This is 

implemented using multi-controlled X (MCX) gates, which require decomposition 

into elementary gates — specifically Toffoli (CCNOT) gates — for compatibility with 

current quantum hardware. Therefore, a 𝑘-controlled X (𝑘-CNOT) gate, where 𝑘 

denotes the number of qubits in position register, is decomposed into multiple Toffoli 

gates to enable practical realization of the circuit on existing quantum processors.   

6.3.1. Decomposition Algorithm   

The decomposition method proposed in [73] requires 4𝑘 − 8 Toffoli gates with a 

circuit depth of 4𝑘 − 8. The method is optimized reducing the number of Toffoli gates 

to 2𝑘 − 3, achieving a circuit depth of 2𝑘 − 3. In quantum computing, the circuit 

depth serves a role analogous to time complexity in classical computing, hence a 

reduction in circuit depth enhances the computational efficiency. The algorithm for 

decomposition is presented by Figure 6.3.  

 
Figure 6.3: Algorithm for MCX to CCX decomposition 

Illustrative examples of 3-controlled and 4-controlled X gate decompositions using the 

algorithm are presented by Figure 6.4(a) and Figure 6.4(b) , respectively. 



 

 
 

76 
 

 
Figure 6.4: Optimized decomposition of 3-CX and 4-CX Gates 

6.3.2. Comparative Analysis   

The decomposition of a 4-controlled X (4-CX) gate into multiple Toffoli (CCX) gates, 

as described in [73], has been redrawn and is presented in Figure 6.5 (a) for 

comparison. The corresponding optimized version of this decomposed circuit is shown 

in Figure 6.5 (b). A comparison of these two circuits demonstrates a significant 

reduction in circuit depth, with the original circuit having a depth of 8, whereas the 

optimized circuit having a reduced depth of 5. 

 
Figure 6.5:  (a) Original circuit   (b) Optimized circuit 

Figure 6.6 presents the comparative analysis of circuit depths between the original and 

optimized methods using line graphs. The X-axis denotes the number of control qubits, 

and the Y-axis represents the circuit depth after decomposition. The blue line 

illustrates the depth associated with the original method, and the green line depicts the 

depth associated with optimized method. As the number of control qubits increases, 

the optimized method consistently achieves a lower circuit depth, highlighting its 
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scalability and efficiency. This reduction in depth contributes to faster execution and 

improved resilience against quantum decoherence, thereby enhancing overall 

computational reliability.  

 
Figure 6.6: Comparison of circuit depths in MCX decomposition 

6.4. NEQR Circuit for a 𝟐 × 𝟐 Image   

Figure 6.7 shows the optimized NEQR circuit for quantum image representation of the 

image of Figure 6.1. Since the image size is 2 × 2, the position register utilizes 2 qubits 

to encode the spatial coordinates. The intensity values range from 0 to 255, requiring 

8 qubits for the intensity register.  

 
Figure 6.7: NEQR circuit for image of Figure 6.1 

Therefore, a total of 10 qubits are required to encode the image into quantum form. 

The circuit depth, which varies based on image content, is 20 for this particular 
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example. The encoding of each of the four pixels is delineated by barriers shown by 

gray lines for improving understandability of the intensity encoding process. 

6.5. Parallel Bit-Plane NEQR 

The Parallel Bit-Plane NEQR is an extension of the sequential NEQR representation 

to enhance the efficiency of encoding classical images into quantum states. A bit-plane 

refers to a binary layer extracted from the binary representation of pixel intensities, 

where each intensity, typically represented using 8 bits, contributes one bit to each of 

the eight bit-planes. The parallel model decomposes the image into its constituent bit-

planes, with each plane independently and concurrently encoded using a dedicated 

quantum circuit. Parallelizing the encoding process reduces the circuit depth compared 

to the sequential NEQR approach. The reduction in depth not only improves the 

execution speed on quantum hardware but also minimizes quantum noise due to 

shorter coherence windows. The use of separate quantum circuits for each bit-plane 

enhances scalability and allows more flexible manipulation of image features at 

different intensity and significance levels, thereby supporting advanced quantum 

image processing such as filtering, compression, and segmentation. 

6.5.1. Quantum Representation 

For quantum representation of an image of size 2 × 2, pixel positions (𝑋, 𝑌) require 2 

qubits, representing four position states as below: 

|𝑋𝑌⟩ 	= 	 |00⟩, 		|01⟩, 		|10⟩, 		|11⟩ 

The intensity of these pixels is represented by 8 qubits, corresponding to 8-bit binary 

value of the intensity. In the parallel bit-plane NEQR, each of these intensity bits is 

entangled with a dedicated position register, allowing for parallel construction of 

quantum circuit for each bit-plane. The composite quantum state for the entire 2 × 2 

image is expressed by equation (6.2): 
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Expanding the formulation to represent individual pixels along with their 

corresponding 8-bit intensity values, the quantum state can be expressed by equation 

(6.3) as follows: 

where 

• |𝑋𝑌⟩P represents the 2-qubit pixel encoding for the 𝑘QR	intensity qubit 

• µ𝐼ONP ª is the 𝑘QR qubit of the intensity value at pixel (𝑋, 𝑌) 

Thus, the quantum state for an individual bit-plane for a 2< × 2< image can be defined 

as equation (6.4): 

																																|𝑄𝐼P⟩ 		= 			
1
2< 4 4µ𝐼ONP ª
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The full quantum state, representing all bit-planes of the image, is expressed by 

equation (6.5): 
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6.5.2. Circuit for a 𝟐 × 𝟐 Image   

Figure 6.8 presents the quantum circuit for the 2 × 2 image depicted in Figure 6.1, 

using the parallel bit-plane NEQR. Pixel positions are encoded using a 2-qubit register. 

As the image contains 8 bit-planes, the circuit requires 8 separate position registers – 

one for each bit-plane – resulting in a total of 16 position qubits. Including the 8 qubits 

required for intensity encoding, the complete quantum image representation requires 

24 qubits. Compared to sequential NEQR, the circuit depth is reduced from 20 to 11, 

demonstrating improved efficiency. The encoding of individual pixels is delineated by 

barriers (dotted gray lines) in the circuit diagram shown in the Figure 6.8. 
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Figure 6.8: Parallel Bit-Plane NEQR circuit for image of Figure 6.1 

6.5.3. Circuit Complexity Analysis  

In quantum computing, circuit depth is analogous to time complexity in classical 

computing, while circuit width (the number of qubits used) is analogous to space 

complexity. The original NEQR has a low space complexity of only 2𝑛 +𝑚 qubits 

for an image of size 2< × 2<  with 2! intensity levels. The time complexity or circuit 

depth of NEQR grows as O(8 ∗ 2$<). Given that circuit depth has a direct impact on 

quantum decoherence and the fidelity of computation, minimizing it is essential for 

practical implementations on NISQ devices. 

The parallel Bit-Plane NEQR reduces the circuit depth (i.e., time complexity) over 

sequential NEQR by enabling simultaneous encoding and processing of bit-planes. 

Although it requires higher number of qubits, 16𝑛 +𝑚, compared to the sequential 
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NEQR. This trade-off aligns with current trends in quantum hardware development, 

where increasing the number of qubits is generally more feasible than extending 

coherence times to support deeper circuits. Recent advances in superconducting and 

ion-trap technologies have enabled scalable architectures with hundreds of qubits, yet 

coherence time remains a critical bottleneck due to environmental noise and physical 

limitations of quantum systems. 

6.6. Experimental Results 

6.6.1. MNIST Dataset 

The MNIST dataset [88], shown by Figure 6.9, comprises thousands of 28 × 28 

images representing handwritten digits from 0 to 9. It serves as a standard benchmark 

for evaluating and training models in image classification and pattern recognition 

tasks. This dataset is selected due to its small size (28 × 28) and grayscale nature, 

requiring less number of qubits and lower circuit depths enabling efficient encoding. 

Although larger images can also be encoded by dividing the image into smaller 

subblocks and then encoding each block separately. The MNIST dataset can be 

simulated without such division.  

 
Figure 6.9: Sample MNIST dataset 

6.6.2. Basic Operations on NEQR Images 

The optimized NEQR method was implemented and applied on original MNIST 

dataset. The original images in this dataset were encoded and image operations were 

applied to the encoded images, with an exponential speedup over classical image 

processing. Basic image operations such as image negation, rotation, and intensity 
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superposition are applied on the images as illustrated by Figure 6.10. For image 

negation, a NOT gate (X) is applied to the intensity qubits, inverting pixel intensity 

values. For image rotation, the corresponding qubits in the row and column quantum 

registers are swapped using SWAP gate, followed by the application of NOT gate to 

the column register. Similarly, for intensity superposition, Hadamard gate (H) is 

applied to the intensity register, obfuscating the image, and preventing its direct 

retrieval.  

 
Figure 6.10: Circuits for basic operations on QIR of MNIST images 

Quantum images must be measured to observe the results of processing operations, as 

they exist in superposition and require collapse into a classical form. This step is 

crucial for extracting meaningful information and visualizing transformations.  

The measured outcomes, shown in Figure 6.11, illustrate the effects of operations like 

image negation, rotation, and intensity superposition. In classical computing, the time 

complexity for image processing operations on an 2< × 2<  image is 𝑂(2< × 2<). On 

quantum computers, this complexity is reduced to 𝑂(1) because all pixels exist in 
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superposition, allowing simultaneous manipulation of all intensity values in a single 

operation, regardless of image size.  

These operations on quantum images were performed using an ideal quantum 

simulator provided by IBM Qiskit's AerSimulator backend. The simulator was 

initialized with the ‘matrix_product_state’ method, which enables efficient simulation 

of quantum circuits up to 63 qubits, when the circuit exhibits limited entanglement. 

The backend is as follows: 

from qiskit_aer import AerSimulator 

backend = AerSimulator(method='matrix_product_state') 

 
Figure 6.11:  (a) Original (b) Negation (c) Rotation (d) Superposition 

6.6.3. Comparison of Sequential and Parallel NEQR  

Both sequential and parallel bit-plane NEQR were implemented and simulated on 

MNIST dataset – both in ideal (noiseless) and noisy environments – and executed on 

quantum hardware. The images were down sampled to smaller sizes such as 16 × 16, 

8 × 8 and 4 × 4 for conducting performance comparisons with different resolutions. 

Abstract circuit depths and simulation times were calculated using an ideal simulator, 
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transpiled circuit depths were obtained on a noisy simulator. Execution times and 

circuit depths were measured on the IBM Eagle quantum processor. 

§ Ideal Simulation  

Ideal simulation isolates algorithmic performance from hardware-induced noise, 

enabling an evaluation of theoretical designs. Its primary objective is to verify 

implementation correctness and facilitate algorithmic analysis by observing theoretical 

principles in a controlled, noise-free environment.  

Circuits for both the original sequential NEQR and the Parallel Bit-Plane NEQR 

method are developed and simulated on MNIST dataset to compare their circuit 

depths. The correctness of the implementation is validated by quantum encoding of an 

image, followed by quantum measurement and classical post-processing, for lossless 

reconstruction. To ensure reliable reconstruction, the number of shots per simulation 

should exceed the total number of pixels. In this study for ideal simulations, a shot 

count equal to eight times the image size was used to achieve lossless reconstruction.  

Post-processing involves extracting pixel intensity values from the measured intensity 

qubits and pixel position values from the position qubits. The image is then 

reconstructed by mapping the extracted intensities to their corresponding positions in 

the classical image array. Under ideal simulation conditions, a correctly implemented 

circuit yields a MSE of zero between original and reconstructed images. It was 

observed that both the sequential and parallel methods achieved an MSE of zero for 

images with resolutions of 4 × 4, 8 × 8, and 16 × 16, thereby confirming the 

correctness of the implementations. 

Table 6.2 reports the circuit depths for these implementations for images with 

resolutions of 4 × 4, 8 × 8 and 16 × 16, with comparative analysis shown by Figure 

6.12. The results show that parallel NEQR achieves lower circuit depths across all 

images when compared to sequential NEQR. The gap between the two models widens 

with increase in image size.  
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Table 6.2: Circuit depths for sequential and parallel NEQR for MNIST digits 

MNSIT 
Digits 

𝟒 × 𝟒 Images 𝟖 × 𝟖 Images 𝟏𝟔 × 𝟏𝟔 Images 

Sequential  Parallel  Sequential  Parallel  Sequential  Parallel  

0 215 89 1404 435 5937 1842 

1 188 54 1020 349 3456 1009 

2 330 99 1361 404 7835 1983 

3 260 92 1470 437 6490 1763 

4 235 75 1398 464 5765 1646 

5 315 87 1279 433 6271 1759 

6 215 73 1182 415 4696 1434 

7 225 82 1101 380 4467 1342 

8 315 99 1457 433 6921 1939 

9 220 75 1226 413 4945 1505 

Table 6.3 reports the simulation times for the MNIST images with resolutions of 4 × 4, 

8 × 8 and 16 × 16 with 128, 512, 2048 shots respectively.  

Table 6.3: Simulation time for sequential and parallel NEQR on ideal simulator 

MNSIT 
Digits 

𝟒 × 𝟒 (𝟏𝟐𝟖 shots) 
(milliseconds) 

𝟖 × 𝟖  (𝟓𝟏𝟐 shots) 
(milliseconds) 

𝟏𝟔 × 𝟏𝟔 (𝟐𝟎𝟒𝟖 shots) 
(seconds) 

Sequential  Parallel  Sequential  Parallel  Sequential  Parallel  

0 73 85 796 394 24.10 2.17 

1 56 90 394 343 04.11 1.60 

2 90 93 634 377 33.80  2.37 

3 79 99 756 399 26.70 2.15 

4 62 88 690 381 18.40 2.11 

5 75 97 672 336 24.50 2.22 

6 72 99 619 339 13.80 1.95 

7 50 86 507 355 10.10 2.06 

8 84 94 957 393 33.40 2.19 

9 62 89 671 369 14.50 2.01 
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The results demonstrate that the performance gain is modest for low-resolution images 

(e.g., at 4 × 4, simulation times are slightly higher for the parallel model due to parallel 

overhead), the benefits become significant with image size. For 8 × 8  images, the 

parallel model consistently outperforms the sequential counterpart, reducing 

simulation times by over 40–50% on average. Most notably, for 16 × 16 images, the 

parallel approach achieves more than a tenfold reduction in simulation time, lowering 

execution from over 20 seconds in the sequential model to under 2.5 seconds.  

 
Figure 6.12: Circuit depth comparison for ideal simulation 
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§ Noisy Simulation  

For noisy simulation, the implementations were simulated using IBM Qiskit’s 

Fake127QPulseV1 backend, which is part of the FakeBackendV2 series. It emulates 

the noise of a 127-qubit IBM quantum processor. The circuits were transpiled to match 

the backbend’s qubit layout and error model, using a fixed seed (42) to ensure 

reproducibility. Transpilation, similar to classical compilation, increases circuit depth. 

The final simulations were executed using the AerSimulator: 

 

Table 6.4 reports the circuit depths on noisy simulator for both sequential and parallel 

NEQR implementations, with circuit depths shown by bar graphs in Figure 6.13.  

Table 6.4: Transpiled circuit depths for sequential and parallel NEQR on noisy 
simulator 

MNSIT 
Digits 

𝟒 × 𝟒 Images 𝟖 × 𝟖 Images 𝟏𝟔 × 𝟏𝟔 Images 

Sequential  Parallel  Sequential  Parallel  Sequential  Parallel  

0 3508 1517 28079 10230 108401 39467 

1 3005 1353 17623 7505 62033 25034 

2 5554 1824 24138 9876 145050 41967 

3 4249 1930 25482 11699 115305 43963 

4 3913 1496 24176 10635 105477 40473 

5 5334 1615 22673 9795 113426 42025 

6 3523 1472 20770 8223 84302 33735 

7 3688 1283 18547 9083 78647 31721 

8 5312 1742 26133 10640 124394 44304 

9 3413 1470 21673 8964 89627 38982 
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A comparison of the transpiled circuit depths for sequential and parallel NEQR 

implementations demonstrates that the parallel Bit-Plane NEQR model achieves 

significantly lower circuit depths. On average, the parallel model reduces the circuit 

depth by approximately 50%–70%, with the improvement becoming more substantial 

as image resolution increases. 

 
Figure 6.13: Circuit depth comparison for noisy simulation  

§ Eagle Processor Results 

To compare the performance of both the sequential and parallel models on quantum 

hardware, the implementations were executed on Eagle processor via IBM Quantum 

platform. The QiskitRuntimeService was  used to interface with IBM Quantum 
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services using API token provided during user registration. The backend 

“ibm_brisbane” was selected for circuit execution. The python code for backend 

initialization is as follows: 

The quantum circuit was transpiled to the optimized circuit compatible to the backend: 

qc_transpiled=transpile(qc, backend, optimization_level = 3) 

depth=qc_transpiled.depth() 

The transpiled circuit was submitted to the backend using the SamplerV2 primitive, 

which generates a unique job ID for future reference: 

 

The circuits were applied to a subset of 8 × 8 MNIST digit images (digits 0–6).  Circuit 

depts and execution times are presented in Table 6.5.  

Table 6.5: Observations for Sequential and Parallel NEQR on QPU 

MNSIT 
Digits 
(𝟖 × 𝟖) 

Transpiled Circuit 
depth Depth 

reduction 
(%) 

Execution time 
(seconds) Time 

reduction 
(%) Sequential Parallel Sequential Parallel 

0 66361 21181 68 49 18 63 

1 44039 15332 65 33 13 61 

2 64018 22209 65 48 19 60 

3 66076 23314 65 50 19 62 

4 68515 23364 66 52 20 62 

5 54518 23155 58 41 19 54 

6 58139 22562 61 42 19 55 
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The results demonstrate that the parallel Bit-Plane NEQR model significantly reduces 

circuit depth and execution time compared to the sequential NEQR model across all 

tested digits. The reduction in circuit depths is observed from 58% to 68% , and the 

reduction in execution time is observed from 54% to 63%.  

6.6.4. Quantum Image Obfuscation 

Quantum image obfuscation offers significantly enhanced security compared to 

classical image obfuscation by leveraging key quantum principles of superposition, 

entanglement, and no-cloning theorem. Unlike classical methods like pixel scrambling 

or standard encryption, NEQR-based obfuscation generates a quantum state with 

exponentially larger state space, thereby making unauthorized reconstruction highly 

challenging. The use of unitary quantum gates ensures that the process remains fully 

reversible, allowing accurate de-obfuscation when the appropriate inverse operations 

are applied. In this study, the Hadamard operation is used as the core mechanism. 

Despite its simplicity, the Hadamard gate serves as a powerful tool for obfuscation. 

When applied to qubits encoding pixel positions or intensity values, it transforms 

computational basis states into uniform superpositions, dispersing image information 

and effectively concealing both position and intensity-related features. 

Figure 6.12 presents the block diagram of quantum image obfuscation and recovery. 

The process starts with encoding a 128 × 128 grayscale image into a quantum state 

using the parallel-bit-plane NEQR representation. Due to resource constraints – 

hardware as well as simulator constraints – it is not feasible to process the entire image 

simultaneously. Therefore, the image is divided into smaller blocks (16 × 16), and 

quantum operations are applied independently to each block. The resulting blocks are 

then recombined to reconstruct the complete obfuscated image. To perform 

obfuscation, Hadamard gate is applied to all intensity qubits, converting their 

computational basis states into uniform superpositions and thereby scrambling the 

image information in the quantum domain. The obfuscated quantum state can then be 

transmitted securely. At receiver, the original image is recovered by applying 

Hadamard transformation to the intensity qubits followed by quantum measurement. 

The symmetric use of Hadamard operations ensures a reversible and lossless recovery 

of the original image. 
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Figure 6.14: Quantum image obfuscation and recovery  

6.7.  Conclusion 

In this work, the NEQR was first optimized by reducing the circuit depth for 

decomposition of multi-controlled quantum gates. Then, to further improve efficiency, 

a parallel version of NEQR was implemented that operates on the bit-planes of an 

image reducing the circuit depth. Experimental results showed that the parallel NEQR 

reduces circuit depth and execution time, thereby minimizing quantum errors 

associated with decoherence.  

Quantum image processing demonstrates exponential speedup over classical 

approaches for fundamental operations. For instance, image negation is achieved by 

applying a NOT gate to the intensity qubits, requiring only a circuit depth of 1. Image 

rotation is accomplished by swapping the row and column qubits, followed by a NOT 

gate on the column register, resulting in a circuit depth of only 2. Similarly, quantum 

image obfuscation is implementable with a circuit depth of 1. Quantum circuits applied 

to NEQR encoded images enable advanced tasks such as quantum steganography, 

steganalysis, and image encryption using lightweight schemes with enhanced 

efficiency and security compared to classical methods. Additionally, quantum 

techniques for edge detection and filtering can be leveraged to improve feature 

extraction, facilitating more effective quantum image classification. 
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