

ENHANCEMENT OF REVERSIBLE IMAGE
STEGANOGRAPHY AND OPTIMIZATION

OF QUANTUM IMAGE REPRESENTATION
USING THE NEQR MODEL

A Thesis Submitted

in Partial Fulfilment of the Requirements for the
Degree of

 MASTER OF TECHNOLOGY

in

INFORMATION TECHNOLOGY
by

SUMITRA SINGH
(Roll No. 2K23/ITY/26)

Under the Supervision of

Prof. (Dr.) Dinesh Kumar Vishwakarma
Head, Department of Information Technology

Department of Information Technology

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

May, 2025

MTech.
Thesis

May
2025

 i

CONTENTS

Candidate’s Declaration v

Certificate vi

Acknowledgement vii

Abstract viii

List of Figures x

List of Tables xiii

List of Abbreviation xiv

1. REVERSIBLE IMAGE STEGANOGRAPHY ………………....……….…. 01

1.1. Introduction 01

1.2. Performance Metrics for Steganography 03

1.2.1. Payload Capacity 03

1.2.2. Imperceptibility 03

1.2.3. Undetectability 06

1.2.4. Security 06

1.3. Literature Review on Reversible Image Steganography 06

1.4. Histogram Shifting Based Reversible Image Steganography 08

1.4.1. Embedding Algorithm 08

1.4.2. Extraction Algorithm 10

1.4.3. Lower Bound on PSNR 12

1.4.4. Computational Complexity 12

1.5. Image Interpolation Based Reversible Image Steganography 12

1.5.1. Neighbour Mean Interpolation 13

1.5.2. Interpolation by Neighbouring Pixels 14

1.5.3. Left Vertex Interpolation 16

1.5.4. Data Embedding and Extraction 17

1.5.5. Payload Capacity 18

1.5.6. Lower Bound on PSNR 18

1.6. Difference Expansion Based Reversible Image Steganography 19

1.6.1. Reversible Integer Transform 19

 ii

1.6.2. Expandable Difference Values 20

1.6.3. Changeable Difference Values 21

1.6.4. Embedding Algorithm 21

1.6.5. Extraction Algorithm 23

2. ANALYSIS OF HISTOGRAM SHIFTING BASED REVERSIBLE

IMAGE STEGANOGRAPHY ………………………………………………. 25

2.1. Review of Related Work 25

2.2. Capacity Analysis 27

2.2.1. Analysis for Histogram Partitioning 28

2.2.2. Analysis for Image Partitioning 30

2.3. Histogram Analysis 31

2.4. Experimental Results 32

2.4.1. Capacity for Histogram Partitions 32

2.4.2. Capacity for Image Partitions 33

2.4.3. Results for Histogram Analysis 35

2.5. Conclusion 36

3. TWO LAYER REVERSIBLE IMAGE STEGANOGRAPHY IN IMAGE

HISTOGRAMS...…....…. 37

3.1. Introduction 37

3.2. Payload Adaptive Histogram Shifting 37

3.3. Analysis of Lower Bound on PSNR 39

3.4. Two Layer Embedding Strategy 39

3.5. Robustness to Steganalysis 43

3.6. Performance Comparison 45

3.7. Conclusion 47

4. INTRODUCTION TO QUANTUM COMPUTING …………….…….……. 48

4.1. Background 48

4.2. Principles of Quantum Mechanics 51

4.2.1. Superposition 52

4.2.2. Entanglement 52

4.2.3. Decoherence 53

 iii

4.2.4. Interference 54

4.3. Quantum Logic Gates 54

4.3.1. Single-Qubit Gates 55

4.3.2. Multi-Qubit Gates 56

4.3.3. Universal Quantum Gates 58

4.4. Quantum Circuits 58

4.5. Experimental Methodology 59

4.5.1. Qiskit Installation 59

4.5.2. Quantum Circuit Creation 60

4.5.3. Ideal Simulation 60

4.5.4. Noisy Simulation 60

4.5.5. Execution on Quantum Hardware 61

5. QUANTUM ARITHMETIC OPERATIONS ………..……....….………..….63

5.1. Quantum Circuits for Half Adder and Full Adder 63

5.2. Quantum Circuits for Binary Adder 63

5.2.1. Toffoli-Based Adder 64

5.2.2. QFT-Based Adder 64

5.3. Quantum Comparator Circuit 65

5.4. Circuit Transpilation 65

5.5. Experimental Results 66

5.5.1. Half Adder and Full Adder Results 66

5.5.2. Toffoli-Based Adder Results 67

5.5.3. QFT-Based Adder Results 68

5.5.4. Quantum Comparator Results 69

5.6. Comparison of Toffoli and QFT Adders 70

5.7. Conclusion 71

6. OPTIMIZATION AND PARALLEL IMPLEMENTATION OF NEQR..…72

6.1. Quantum Image Representation 72

6.2. Algorithm for Circuit Development 74

6.3. Optimization of MCX Gate Decomposition 74

6.3.1. Decomposition Algorithm 75

 iv

6.3.2. Comparative Analysis 76

6.4. NEQR Circuit for a 2 × 2 Image 77

6.5. Parallel Bit-Plane NEQR 78

6.5.1. Quantum Representation 78

6.5.2. Circuit for a 2 × 2 Image 79

6.5.3. Circuit Complexity Analysis 80

6.6. Experimental Results 81

6.6.1. MNIST Dataset 81

6.6.2. Basic Operations on NEQR Images 81

6.6.3. Comparison of Sequential and Parallel NEQR 83

6.6.4. Quantum Image Obfuscation 90

6.7. Conclusion 91

REFERENCES………………………………….………………………….......92-99

Plagiarism Report .. 100

Publications ... 103

 v

DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Sumitra Singh, 2K23/ITY/26 student, hereby certify that the work which is being

presented in the thesis entitled “Enhancement of Reversible Image Steganography

and Optimization of Quantum Image Representation using the NEQR Model” in

partial fulfillment of the requirement for the award of the Degree of MASTER OF

TECHNOLOGY in INFORMATION TECHNOLOGY, submitted to the Department

of Information Technology, Delhi Technological University, Delhi is an authentic

record of my own work carried out during my degree under the supervision of

Professor Dinesh Kumar Vishwakarma.

The matter presented in this report/thesis has not submitted by me for the award of any

other degree of this or any other Institute/University.

Place: Delhi Sumitra Singh

Date: (2K23/ITY/26)

 vi

DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation “Enhancement of Reversible Image

Steganography and Optimization of Quantum Image Representation using the

NEQR Model”, submitted by Sumitra Singh, Roll No 23/ITY/26, to the Department

of Information Technology, Delhi Technological University, Delhi in partial

fulfilment of the requirements for the award of the Degree of Master of Technology,

is a record of the project work carried out by the student under my supervision. To the

best of my knowledge, the above work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere.

Place: Delhi Prof. Dinesh K. Vishwakarma

Date: (SUPERVISOR)

 vii

DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to Professor Dinesh Kumar Vishwakarma,

Head of the Department of Information Technology, Delhi Technological University,

for providing valuable support, guidance, consistent motivation, and supervision

throughout the course of this project.

I am also thankful to the Department of Information Technology at DTU for

providing the necessary infrastructure and laboratory facilities, which were

instrumental in conducting the research required for the successful completion of this

work.

In addition, I express my appreciation to the Defence Research and Development

Organization (DRDO) for sponsoring my studies at DTU and providing me with the

opportunity to pursue research in my area of interest.

Place: Delhi Sumitra Singh

Date: (2K23/ITY/26)

 viii

ABSTRACT

Reversible steganography allows for exact reconstruction of the cover media after

hidden data extraction, making it vital for applications such as content authentication,

medical imaging, and military communications. Various reversible steganography

techniques include histogram shifting, image interpolation, and difference expansion.

Histogram shifting methods apply shifting to pixel-domain histograms or prediction

error histograms. Prediction error histogram methods offer higher embedding capacity,

but they are more complex, lack a guaranteed lower bound on PSNR, and are more

susceptible to histogram-based steganalysis. Pixel-domain histogram shifting

techniques, though simpler and more efficient with a theoretical PSNR bound,

generally have lower embedding capacity.

Under this project, experiments are conducted on pixel-domain histogram shifting-

based techniques. The capacity and histogram for varying number of non-overlapping

image blocks and histogram blocks are analyzed. Experimental results show that

embedding in image blocks does not significantly enhance the capacity compared to

embedding in histogram blocks. Analysis of histogram blocks shows that embedding

in two blocks yields the optimal results. A method is developed for making histogram

shifting adaptive to payload size and a two layer embedding is developed for improved

hiding capacity. Compared to previous methods, the two-layer embedding achieves

higher capacity, better resistance to steganalysis, and maintains the PSNR acceptable

for real-world applications.

Quantum computing is an advancing field that offers significant speed advantages for

certain computational tasks over classical computing. Notable examples include

Shor’s algorithm, which efficiently solves integer factorization and discrete logarithm

problems, and Grover’s algorithm, which accelerates the search process in

unstructured databases.

Quantum computing is based on quantum arithmetic operations where addition forms

the core of all operations, as subtraction, multiplication, exponentiation, and division

 ix

can all be reduced to repeated or modified forms of addition. Experiments are

conducted for performance analysis of quantum addition on quantum hardware.

Development of quantum circuits for addition and comparison, including half adders,

full adders, Toffoli-based adders, QFT-based adders (utilizing the Quantum Fourier

Transform), and quantum comparators is carried out using IBM Qiskit. The circuits

are first validated on ideal simulators to confirm correctness, followed by testing on

noisy simulators to emulate real quantum hardware conditions. Final execution is

carried out on IBM's Eagle 127-qubit Quantum Processing Unit (QPU). Results show

that computation accuracy on actual hardware is limited by physical constraints such

as short qubit coherence times and instability. A performance comparison shows that

Toffoli-based adders outperform QFT-based adders in terms of accuracy, making them

more reliable for precise arithmetic computations.

Quantum image representation provides exponential efficiency in image storage and

processing. It relies on the fundamental principles of superposition and entanglement.

NEQR (Novel Enhanced Quantum Representation) is a lossless encoding method used

to represent digital images on a quantum computer. It is widely applicable in domains

such as quantum machine learning, image steganography, and quantum image

analysis.

This work introduces two enhancements to the NEQR framework: (1) Optimizing the

decomposition of Multi-Controlled NOT (MCX) gates into Toffoli gates, and (2)

Parallelizing the NEQR by parallel bit-plane encoding of the NEQR circuit, where the

NEQR circuit is simultaneously constructed for each of the eight bit-planes of an

image, thereby reducing overall circuit depth. Experimental results demonstrate that

these enhancements lead to reduced circuit depth and faster execution, thereby

mitigating decoherence-related errors. Additionally, quantum image processing

operations that demonstrate exponential speedup over classical approaches — such as

image negation, rotation, and intensity superposition — are also implemented and

evaluated as part of this work.

 x

List of Figures

Figure No. Figure Name Page No.

Figure 1.1 Block diagram of a reversible image steganography system 02

Figure 1.2 Flowchart of histogram-based embedding algorithm 10

Figure 1.3 Flowchart of histogram-based extraction algorithm 11

Figure 1.4 Neighbour mean interpolation with K = 2 14

Figure 1.5 Interpolation by neighbouring pixels with K = 2 15

Figure 1.6 Left Vertex Interpolation with 𝐾 = 2 16

Figure 1.7 Schematic of the interpolation-based reversible data hiding 17

Figure 1.8 Horizontal and vertical pixel pairing 22

Figure 2.1 Histograms of two 8 × 8 images 29

Figure 2.2 Embedding capacity for histograms of Figure 2.1 29

Figure 2.3 Histogram Blocks: (a) Two blocks (b) Three blocks 29

Figure 2.4 Algorithm for finding two blocks in an image histogram 30

Figure 2.5 (a) Image Blocks (b) Corresponding histograms 31

Figure 2.6 Histogram analysis for a 21-level gray-scale image 32

Figure 2.7 Standard test images for evaluation 33

Figure 2.8 Histogram variations after embedding in image blocks 35

Figure 2.9 Impact of embedding in 4 × 4 image blocks on histograms 36

Figure 3.1 Reduced block width in Lena image for 1000-bit embedding 38

Figure 3.2 Algorithm for finding payload adaptive peak 38

Figure 3.3 Payload adaptive PSNR for standard images 39

Figure 3.4 Stego images after multi-layer embedding 40

 xi

Figure 3.5 Stego image histograms after multi-layer embedding 40

Figure 3.6 Block diagram of two layer embedding 42

Figure 3.7 Algorithm for two layer embedding 43

Figure 3.8 Embedding rates for selected standard images 47

Figure 4.1 Quantum circuits for classical gates 59

Figure 5.1 Quantum circuits for half adder and full adder 63

Figure 5.2 Toffoli-based adder circuit for 7+7 64

Figure 5.3 QFT-based adder circuit for 3+3 64

Figure 5.4 Comparator circuits for (a) 2bit (b) 3bit (c) 4bit 65

Figure 5.5 Transpiled circuits for Toffoli and QFT adders for 1+1 65

Figure 5.6 Half adder and full adder results on simulator and QPU 66

Figure 5.7 Noisy simulator results for Toffoli-based adder 67

Figure 5.8 QPU results for Toffoli-based adder 68

Figure 5.9 Noisy simulator results for QFT-based adder 68

Figure 5.10 QPU results for QFT-based adder 69

Figure 5.11 Quantum comparator accuracy on simulator and QPU 70

Figure 5.12 Accuracy comparison of Toffoli- and QFT-based adders on
QPU 71

Figure 6.1 A 2 × 2 image and its quantum representation 73

Figure 6.2 Algorithm for quantum image representation using NEQR 74

Figure 6.3 Algorithm for MCX to CCX decomposition 75

Figure 6.4 Optimized decomposition of 3-CX and 4-CX gates 76

Figure 6.5 (a) Original circuit (b) Optimized circuit 76

 xii

Figure 6.6 Comparison of circuit depths in MCX decomposition 77

Figure 6.7 NEQR circuit for image of Figure 6.1 77

Figure 6.8 Parallel Bit-Plane NEQR circuit for image of Figure 6.1 80

Figure 6.9 Sample MNIST dataset 81

Figure 6.10 Circuits for basic operations on QIR of MNIST images 82

Figure 6.11 (a) Original (b) Negation (c) Rotation (d) Superposition 83

Figure 6.12 Circuit depth comparison for ideal simulation 86

Figure 6.13 Circuit depth comparison for noisy simulation 88

Figure 6.14 Quantum image obfuscation and recovery 91

 xiii

List of Tables

Table No. Title Page No.

Table 2.1 Hiding capacity for varying histogram blocks 34

Table 2.2 Hiding capacity for varying image blocks 34

Table 3.1 Theoretical PSNR for varying layers of embedding 39

Table 3.2 Hiding capacity for multi-layer embedding 41

Table 3.3 PSNR for multi-layer embedding 41

Table 3.4 Statistical steganalysis on SIPI database 44

Table 3.5 Statistical steganalysis on Petitcolas database 45

Table 3.6 Performance comparison on hiding capacity and PSNR 46

Table 3.7 Comparison of adaptive histogram shifting for Lena image 46

Table 3.8 Comparison with prior methods 46

Table 4.1 Two-qubit gates and their unitary matrices 57

Table 4.2 Unitary sets of Quantum gates 58

Table 5.1 Quantum comparator results 69

Table 5.2 Noisy simulator and QPU results for Toffoli and QFT adders 70

Table 6.1 Quantum gates for NEQR-based image representation 72

Table 6.2 Circuit depths for sequential and parallel NEQR for MNIST digits 85

Table 6.3 Simulation time for sequential and parallel NEQR on ideal
simulator 85

Table 6.4 Transpiled circuit depths for sequential and parallel NEQR on
noisy simulator 87

Table 6.5 Observations for sequential and parallel NEQR on QPU 89

 xiv

List of Abbreviations

BPP : Bits Per Pixel

LSB : Least Significant Bit

MSE : Mean Square Error

PSNR : Peak Signal-to-Noise Ration

SSIM : Structured Similarity Measure Index

NCC : Normalized Cross Correlation

QPU : Quantum Processing Unit

NISQ : Noisy Intermediate-Scale Quantum

QFT : Quantum Fourier Transform

QIR : Quantum Image Representation

NEQR : Novel Enhanced Quantum Representation

 1

CHAPTER 1

 REVERSIBLE IMAGE STEGANOGRAPHY

1.1. Introduction

Steganography is the art and science of invisible communication. The term

steganography emerged in late 15th century, but the idea has existed for thousands of

years. Historically, secret messages were hidden beneath wax tablets, written on

animal skins, or even tattooed onto the shaved heads of messengers. During wartime,

especially for espionage, invisible ink was the popular method for covert

communication. With advances in photographic processing, microdot and microfilm

technology were developed and used during the Second World War.

With advent of digital technology and the Internet, digital steganography has emerged

as a method of embedding one data type within another. It is commonly used alongside

cryptography, providing an additional layer of protection to encrypted data. The digital

media used for hiding, known as cover media, include text, images, audio, and video

files, where redundant data in pixels or frames can be used for hiding. Various image

steganography tools are available on the Internet that use images as cover media. These

tools include two core components: embedding and extraction. The embedding process

hides secret data in cover image, resulting in a stego, which needs to be transmitted

over an insecure channel like the Internet. The receiver then applies the extraction

algorithm to recover the hidden information from the stego image.

The modifications to cover during embedding are invisible to the human visual system

and undetectable by statistical analysis. These modifications can either be reversible,

allowing the cover to be restored after data extraction, or irreversible, preventing

reconstruction of the cover. Based on this, image steganography is classified into two

types: reversible and irreversible.

Irreversible techniques are primarily used in applications such as secret

communication, watermarking, and fingerprinting. Widely used irreversible methods

include Least Significant Bit (LSB) replacement and Pixel Value Differencing (PVD)

 2

in images [1]. In LSB substitution, LSBs of randomly chosen pixels of cover are

replaced by message. Pixel choice is typically governed by a Random Number

Generator (RNG), seeded with a secret stego key. Since there is no way to determine

whether a particular pixel was modified during embedding, the process is irreversible,

introducing permanent, albeit imperceptible, distortion to the cover image. Video

steganography methods use video files as cover media, providing significantly higher

capacity than images [2].

Reversible steganography is used when the payload (data to be hidden) is associated

with cover and reconstruction of cover is required for subsequent use. For instance, in

medical images (CT scan, MRI, X-ray), diagnostic and patient details are embedded

into the images and transmitted over the Internet among healthcare professionals,

facilitating faster diagnosis and treatment while ensuring privacy. Watermarks are

embedded in artwork images for copyright protection. Aerial images are embedded

with relevant information. Military applications embed encrypted data within

geographical maps. In these scenarios reversible steganography is useful for

recovering the cover after data extraction. It is also known as lossless, invertible, or

distortion-free steganography. Figure 1.1 shows a schematic of a reversible image

steganographic system.

Figure 1.1: Block diagram of a reversible image steganography system

 3

The embedding process takes a cover image and a message as inputs, generating a

stego as output. During extraction, the hidden information is extracted, and then the

cover is reconstructed from the stego. Reversibility is achieved by preparing overhead

information, embedding it along with payload, extracting it at the receiver, and using

it to restore the original cover. A comprehensive review of the current advancements

in reversible data hiding methods is presented in [3].

1.2. Performance Metrics for Steganography

The important parameters for performance evaluation of a steganographic system are

payload capacity, imperceptibility, undetectability, and security. These parameters are

described as follows:

1.2.1. Payload Capacity

Payload capacity, measured in bits, is number of bits that can be hidden in an image.

It depends on various parameters including the image size, format, and the

steganographic technique applied. Bigger and coloured images have higher capacity

as compared to smaller and gray images. Different techniques have different capacity.

Techniques used for secret communication have higher capacity than techniques used

for watermarking and fingerprinting. The theoretical capacity is expressed in bits per

pixel (𝐵𝑃𝑃). The maximum number of bits that can be concealed, depends upon the

technique used for hiding, and it is represented by 𝐿!"#. After computing 𝐿!"#, 𝐵𝑃𝑃

is computed by using the following equation, equation (1.1)

																																																	𝐵𝑃𝑃 =
𝐿!"#
𝑀 ×𝑁																																																																			(1.1)	

Here 𝑀 ×𝑁 is the cover image size. To achieve higher capacity, a higher value of

𝐵𝑃𝑃 is required. In LSB based technique, since LSB of every pixel is replaced with a

data bit if enough bits are available for hiding. Therefore, payload capacity is 1 𝐵𝑃𝑃,

which is 12.5% of the cover image size.

1.2.2. Imperceptibility

Imperceptibility is the absence of visual distortions into stego image created after

embedding. It is the most important requirement for a practical steganographic

technique. It is computed by measuring the distortion introduced into image during

 4

data embedding. The distortion should be as low as possible. If the distortion is low

imperceptibility is high. A steganographic algorithm with high imperceptibility is

preferred over an algorithm with low imperceptibility. Methods that allow more data

to be hidden introduce more distortion to the image, while those preserving image

quality support lower data capacity.

There are various methods for measurement of distortion into stego images with

reference to cover. Commonly used methods are Mean Square Error (MSE), Peak

Signal-to-Noise Ratio (PSNR), and Structured Similarity Index Measure (SSIM), each

providing a different perspective on image quality and degradation.

§ Mean Square Error

It is a well-known metric to quantify the distortion introduced into the stego during

embedding process. The difference between corresponding intensities of stego and

cover image is known as error. The MSE is computed by the equation (1.2):

																											𝑀𝑆𝐸	 = 	
1
𝑀𝑁44(𝑆(𝑖, 𝑗) − 𝐶(𝑖, 𝑗))$																																											(1.2)

%

&'(

)

*'(

Where 𝑆(𝑖, 𝑗) is the intensity of a pixel at index (𝑖, 𝑗) of the stego image 𝑆, and 𝐶(𝑖, 𝑗)

is the intensity of a pixel at index (𝑖, 𝑗) of the cover 𝐶 where 0 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑗 ≤

	𝑁. The low value of MSE means that the distortions introduced by the

steganographic algorithm during data hiding are minimal for detection by human

visual system.

§ Peak Signal-to-Noise Ratio

PSNR is an important metric to measure the quality of a stego image. It represents the

ratio of the maximum possible intensity (signal power) and MSE between two images.

Due to the wide dynamic range of image signals, PSNR is measured in decibels (𝑑𝐵)

using a logarithmic scale. It is computed using the equation (1.3):

																																							𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ A
,!"#
$

)-.
B																																																										(1.3)

Where 𝐶!"#$ is the maximum possible intensity in the cover. The largest possible value

of 𝐶!"#$ for an 8-bit image is 255 and for double-precision floating-point

 5

representation of an image is 1. A higher PSNR is desired for a practical

steganographic technique. According to different studies [37, 38, 39], the techniques

introducing PSNR below 30𝑑𝐵 are poor because the distortion is visible. The

techniques with PSNR value between 30𝑑𝐵 to 40𝑑𝐵 are better and with PSNR value

above 40𝑑𝐵 are excellent.

§ Structured Similarity Index Measure

It is used to measure the similarity between cover and the corresponding stego image.

SSIM assesses image quality based on three key features: luminance, contrast, and

structure. The formula for SSIM for images is computed by equation (1.4) as below:

																																					𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝐿(𝑥, 𝑦)]a. [𝐶(𝑥, 𝑦)]b. [𝑆(𝑥, 𝑦)]g																					(1.4)

Here 𝑥 and 𝑦 are the cover and stego images; 𝐿(𝑥, 𝑦), 𝐶(𝑥, 𝑦), and	𝑆(𝑥, 𝑦) are the

comparison functions for luminance, contrast and structure respectively. These are

computed by using the equation (1.5):

																																											

𝐿(𝑥, 𝑦) = 	
2µ#µ/ + 𝐶1

µ#
$ + µ/

$ + 𝐶1

𝐶(𝑥, 𝑦) = 	
2s#s/ + 𝐶2

s#$ + s/$ + 𝐶2

𝑆(𝑥, 𝑦) = 	
s#/ + 𝐶3

 s# s/ + 𝐶3
								

																																													(1.5)

Here µ0 and µ1 are the average intensities for images 𝑥 and 𝑦 respectively; s0, and

 s1 are standard deviations of intensities for these images. s01 is the cross-covariance

for images 𝑥 and 𝑦. For default values of exponents: a = 1, b = 1	𝑎𝑛𝑑	g = 1,	and

default value of 𝐶3 = 0, the formula is given by equation (1.6):

																			𝑆𝑆𝐼𝑀 =
(2µ#µ/ + 𝐶1)(2s#/ + 𝐶2)

(µ#
$ + µ/

$ + 𝐶1)(s#$ + s/$ + 𝐶2)
																																								(1.6)

𝐶1 and 𝐶2 are two stabilizing parameters, 𝐶1 = (𝑘(𝑙)$; 			𝐶2 = (𝑘$𝑙)$; 			𝑘(=

0.01		𝑎𝑛𝑑		𝑘$ = 0.03	. 𝑙 is the range of intensities (2233 − 1). SSIM values close to

unity means that the hiding method is secure against visual analysis.

 6

1.2.3. Undetectability

Undetectability is the ability of a stego-system to prevent the detection of hidden data

by unauthorized parties through statistical analysis, machine-learning and deep-

learning-based steganalysis. A steganographic method is considered undetectable if

the modifications introduced to the cover image do not produce distinguishable

patterns or anomalies that can be detected by any method of analysis. To ensure

steganography remains undetected, it is crucial to keep the original cover medium

confidential. If the cover image is publicly accessible, any direct comparison between

cover and stego can easily reveal the presence of hidden information and further

analysis may expose the steganographic method used.

1.2.4. Security

Security in cryptography is based on Kerckhoff's principle, introduced by Auguste

Kerckhoff in the 19th century. This principle asserts that the strength of a

cryptographic system should depend solely on secrecy of the key, not on

confidentiality of the algorithm or its implementation, as these can be discovered,

analyzed, or reverse-engineered by adversaries. Security of a cryptosystem may be

defined as amount of computing power needed to break the system i.e. to extract the

secret key. For high security systems this computing power is high. The same law

applies to steganographic techniques, where stego key is needed to extract the data.

1.3. Literature Review on Reversible Image Steganography

The concept of reversibility was introduced by J. M. Barton in 1997 [4]. Since then,

various reversible image steganographic techniques have been proposed, including

those based on LSB compression [5, 6, 7], histogram shifting [8, 9, 10, 11, 12, 13, 14]

, image interpolation [15, 16, 17, 18, 19, 20], and Difference Expansion (DE) [21, 22,

23, 24, 25, 26, 27]. Each of these foundational methods has been further extended and

refined through various enhancements to improve embedding capacity,

imperceptibility, and reversibility. Each of these methods is based on distinct strategies

to create embedding space while preserving reversibility.

In the compression of LSB based methods, before replacing LSBs of pixels with secret

message bits, whole LSB plane is recorded and compressed using a lossless

 7

compression algorithm. The compressed data serves as a location map and is appended

to the message, forming the total payload. This payload is then embedded into cover

by modifying LSBs of randomly chosen pixels. At receiver, the embedded payload is

extracted from the stego, and then the location map is separated from the secret

message. The location map is subsequently decompressed, and original cover is then

perfectly restored by replacing LSBs of the stego image with decompressed original

LSB plane.

Histogram shifting based method was introduced by Ni et al. in 2006 [8]. This method

identifies peak and zero points in the intensity histogram of an image and shifts pixel

intensities and creates a bin or space for embedding at peak point. The details of

shifting of zero points are recorded for subsequent use for lossless recovery of cover

file. Both data and overhead are embedded into the cover.

To improve the capacity, several variants of basic scheme are presented in [9, 10, 11,

12, 13]. These techniques divide the direct image pixels into image blocks and then

apply histogram shifting on each block separately for data hiding. C. C. Chang et al.

[14] further enhanced the capacity by using the first-order derivative of pixel

intensities, with detection of higher peaks for data embedding.

Several reversible techniques based on image interpolation are reported in [15, 16, 17,

18, 19, 20]. The purpose of interpolation is to enlarge the cover before data embedding

and divide pixels of the enlarged image into pivot and non-pivot pixels. The data is

embedded into non-pivot pixels only. The reconstruction of the original image is

achieved by using the pivot pixels only.

Difference expansion based technique was introduced in 2003 by Jun Tian [21]. It

used the difference between pixel pairs for data embedding. The difference between

adjacent pixel intensities are computed, and specific pairs with expandable differences

are chosen for embedding. The average of each pixel pair is maintained during this

process to ensure reversibility. The image is divided into pixel pairs, and the overhead

or location map is created to record the positions of expandable pairs. This overhead

is embedded along with the secret payload. During extraction, the overhead is retrieved

 8

and used to accurately reconstruct the original image. Various DE based methods have

been developed since its introduction [22, 23, 24, 25, 26, 27].

1.4. Histogram Shifting Based Reversible Image Steganography

It is a widely used approach in reversible data hiding due to its simplicity and

efficiency. Prior to embedding, the image histogram is scanned to identify the peak

(most frequent intensity value) and zero or minimum (least frequent intensity value)

points. The pixel values falling between these two points are moved by one step toward

the zero point, creating an empty slot at the peak point. This empty space is then used

for data embedding.

Before moving the histogram towards left or right, the pixel coordinates having zero

or minimum point are recorded as bookkeeping information, required during cover

image extraction. In the following step, both the bookkeeping data and user payload

are inserted into the histogram at peak point and vacant space nearby peak point. The

payload capacity of this method depends on frequency of the peak and zero points in

the cover histogram.

1.4.1. Embedding Algorithm

1. Scan the cover image 𝐼4 and construct its intensity histogram 𝐻(𝑋), where 𝑋 ∈

[0,255]. Identify peak and zero points in the histogram. The peak point, 𝑃 ∈

[0, 255], is the intensity with highest frequency, 𝐻(𝑃). The zero point, 𝑍 ∈

[0,255], is the intensity with lowest frequency, 𝐻(𝑍).

2. The cover image is scanned sequentially to identify and record the indices of pixels

with zero intensity value 𝑍. These indices are stored in a location map 𝐿, which is

then converted into binary for embedding along with payload.

3. Read the data to be embedded from a file and convert it into binary. Then, append

the location map to the binary data to form the total payload for embedding.

4. Shift the histogram between zero and peak point either to the left or to the right,

based on the relation between intensity values at peak and zero points, as follows:

 9

§ If (𝑃 < 𝑍):

Shift the histogram 𝐻	(𝑋),	where 𝑋 ∈ [𝑃 + 1, 𝑍 − 1] one step to the right,

creating an empty slot at index 𝑃 + 1, used for embedding. To prevent overflow

(which occurs when 𝑍 = 255), the shifting range is restricted to 𝑍 − 1.

§ If (𝑃 > 𝑍):

Shift the histogram 𝐻(𝑋), where	𝑋 ∈ [𝑍 + 1, 𝑃] one step to the left and create

an empty slot at index 𝑃 for embedding. To prevent underflow (which occurs

when 𝑍 = 0), the shifting range is restricted to 𝑍 + 1.

5. Scan the image again to embed the payload. For each pixel intensity, follow these

steps:

§ If (𝑃 < 𝑍):

For every pixel with intensity 𝑃, if the data bit is ‘1’, increment the pixel

intensity by 1.

§ If (𝑃 > 𝑍):

For every pixel with intensity 𝑃 − 1, if data bit is ‘1’, then increment the pixel

intensity by 1.

6. The image generated after embedding is referred to as the stego or marked image,

denoted by 𝐼5. After completion of embedding, the peak point in the histogram

typically vanishes, as its intensity values are modified to hide the data.

The flowchart for the embedding process is shown by the Figure 1.2.

 10

Figure 1.2: Flowchart of histogram-based embedding algorithm

1.4.2. Extraction Algorithm

1. The peak and zero point are required for extraction of the data. These values may

be embedded in the image using a stego key. The stego key should be transmitted

to the intended recipient through a secure and trusted communication channel.

2. Scan the stego image 𝐼5 and perform following operations to extract total payload:

§ If (𝑃 < 𝑍):

If the pixel intensity is 𝑃 + 1 then extract a bit ‘1’ and if the pixel intensity is

𝑃 then extract a bit ‘0’. Otherwise do nothing.

 11

§ If (𝑃 > 𝑍): If the pixel intensity is 𝑃 then extract a bit ‘1’ and if the pixel

intensity is 𝑃 − 1 then extract a bit ‘0’. Otherwise do nothing.

3. Split the total payload into hidden data (pure payload) and the location map, 𝐿.

4. Scan the stego image and perform the following operations to reverse the

histogram shift:

§ If (𝑃 < 𝑍): Shift the histogram 𝐻(𝑋)	one step to the left, where 𝑋 ∈ [𝑃 + 1, 𝑍].

§ If (𝑃 > 𝑍): Shift the histogram 𝐻(𝑋) one step to the right, where	𝑋 ∈

[𝑍, 𝑃 − 1].

5. Replace the pixel intensities at the indices specified in the location map 𝐿 with 𝑍

to recover the original image. The flowchart for extraction is shown by Figure 1.3.

Figure 1.3: Flowchart of histogram-based extraction algorithm

 12

1.4.3. Lower Bound on PSNR

The theoretical minimum PSNR value between the stego image produced by this

method and the original image exceeds 48	𝑑𝐵. During the embedding process, pixels

with grayscale values lying between the minimum and maximum points are altered by

either increasing or decreasing their values by 1. Consequently, in the worst-case

scenario, all pixel intensities may be adjusted by ±1 during embedding. This implies

that the error term (𝑆(𝑖, 𝑗) − 	𝐶(𝑖, 𝑗)) in MSE formula (equation 1.2) is at most 1 for

each pixel. Therefore, MSE is at most 1, indicating minimal distortion introduced into

the original image. By substituting 𝑀𝑆𝐸 = 1, and 𝐶!"# = 255, as the largest possible

intensity value into the PSNR formula (equation 1.3), the lower bound on 𝑃𝑆𝑁𝑅 can

be computed as below:

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ Z
𝐶!"#$

𝑀𝑆𝐸[

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+(255 × 255)	

= 10 ∗ 4.8130					

= 48	𝑑𝐵																

This lower bound is validated through experimental results.

1.4.4. Computational Complexity

The algorithm maintains a relatively low computational load due to its operation

entirely in the spatial domain. The main tasks are generating the histogram, identifying

the zero and peak points, and adjusting intensities by ±1 only. As a result, the

algorithm demonstrates a short execution time. The image needs to be scanned three

times during the embedding/extraction process, resulting in a computational

complexity of 𝑂(3𝑀𝑁) for an image of size 𝑀 ×𝑁.

1.5. Image Interpolation Based Reversible Image Steganography

Interpolation is a technique used to predict missing or intermediate values at unknown

points based on known data points. Image interpolation is an upsampling technique

commonly used to convert low-resolution images into higher-resolution versions by

estimating pixel intensities at new locations. Conceptually, the process involves

overlaying a finer grid onto the original image – one with reduced pixel spacing – and

 13

assigning intensity to the new grid points using the surrounding pixels intensities. The

interpolated grid is then expanded to the desired dimensions, resulting in a resampled

image with enhanced resolution.

Traditionally, three primary methods are used to assign intensities to interpolated

pixels: nearest-neighbour, bilinear, and bicubic interpolation. Each of these methods

represent a trade-off between computational efficiency and visual quality. Nearest-

neighbour assigns the intensity of the nearest original pixel to the newly created pixel.

Although it is computationally efficient, it often introduces visual artifacts such as

jagged edges and distortion. Bilinear interpolation improves visual quality by

considering four nearest neighbours to estimate new pixel intensity, striking a balance

between computational complexity and image clarity. Bicubic interpolation further

refines the result by incorporating sixteen surrounding pixels, yielding smoother

transitions and improved preservation of edges and fine details.

In the context of reversible steganography, more sophisticated interpolation

approaches have been explored, such as Neighbour Mean Interpolation [15],

Interpolation by Neighbouring Pixels [16], and Left Vertex Interpolation [17].

1.5.1. Neighbour Mean Interpolation

The Neighbour Mean Interpolation (NMI) estimates the intensity of unassigned pixels

by calculating the mean of a select set of neighbouring pixel values. Similar in concept

to bilinear interpolation, NMI offers advantages such as reduced blurring and

improved image resolution. A key feature of this method is its low computational

requirement, which varies based on how many neighbouring pixels are involved in the

process – more neighbours enhances accuracy but also increases processing overhead.

The scaling-up coefficient is a factor by which the image needs to be enlarged. The

generalized form of the NMI method for a given scaling factor 𝐾 is presented in

equation (1.7). Here, 𝑃(𝑖, 𝑗) denotes intensity at (𝑖, 𝑗) in original image 𝑃, and 𝑃6(𝑖, 𝑗)

represents the intensity at corresponding pixel in the interpolated image 𝑃6. If the

original image has dimensions 𝑀 ×𝑁 then the interpolated image will have

dimensions (𝐾(𝑀 − 1)) + 1) × (𝐾(𝑁 − 1) + 1). The original image pixels are

uniformly mapped onto the larger grid of the interpolated image at position (𝑖, 𝑗) where

 14

both 𝑖 and 𝑗 are integer multiples of 𝐾. These pixels are known as pivot pixels.

Remaining pixels in the interpolated image are computed using these pivot pixels.

Figure 1.4 illustrates the method using a scaling factor of 2. In this example, some of

the interpolated image pixels such as 𝑃6(0,0), 	𝑃6(0,2), 	𝑃6(2,0), 𝑎𝑛𝑑	𝑃6(2,2) are

directly taken from the original image pixels 𝑃(0,0), 𝑃(0,1), 𝑃(1,0), 𝑎𝑛𝑑	𝑃(1,1)

respectively. The computations for all the interpolated pixels are presented by the

equations in the figure.

Figure 1.4: Neighbour mean interpolation with K = 2

1.5.2. Interpolation by Neighbouring Pixels

Interpolation by Neighbouring Pixels is similar to NMI method. It uses the

neighbouring pixels to compute the mean and assign it to the newly inserted pixels.

 15

The generalized form of the INP method with a scaling factor 𝐾 is given in equation

(1.8). Here 𝑃(𝑖, 𝑗) is the intensity at position (𝑖, 𝑗) in the original image 𝑃, and 𝑃6(𝑖, 𝑗)

is the intensity at pixel (𝑖, 𝑗) in the interpolated image 𝑃6. If the original image has

dimensions 𝑀 ×𝑁 then the interpolated image will have dimensions (𝐾(𝑀 − 1)) +

1) × (𝐾(𝑁 − 1) + 1). The original pixels are uniformly distributed in the interpolated

image at positions (𝑖, 𝑗) where 𝑖 and 𝑗 are integer multiples of 𝐾.

Figure 1.5 illustrates an example with a scaling factor of 2, where the green pixels of

the interpolated image 𝑃6 correspond to the original pixels 𝑃(0,0), 𝑃(0,1), 𝑃(1,0),

𝑎𝑛𝑑	𝑃(1,1) in the input image 𝑃. These pixels serve as reference point –– known as

pivot pixels –– for computing the intensity of newly inserted pixels.

Figure 1.5: Interpolation by neighbouring pixels with K = 2

 16

1.5.3. Left Vertex Interpolation

Left Vertex Interpolation (LVI) replicates original image pixels into the interpolated

image. If the scaling factor is 𝐾, and original image dimension is 𝑀 ×𝑁, then the size

of the interpolated image becomes 𝐾𝑀 × 𝐾𝑁, where all the original image pixels are

replicated 𝐾$ times. The generalized formula for replication is given by equation (1.9):

	𝑃6(𝑖 ∗ 𝐾 + 𝑙, 𝑗 ∗ 𝐾 +𝑚) 	= 	𝑃(𝑖, 𝑗)				0 ≤ 𝑙,𝑚 < 𝐾; 	0 ≤ 𝑖 < 𝑀; 		0 ≤ 𝑗 < 𝑁				(1.9)

The interpolated image can be viewed as consisting of 𝐾 × 𝐾 blocks, forming a total

of 𝑀 ∗ 𝑁 such blocks across the image. All pixels in a block share the same intensity

value. As the number of blocks in the interpolated image matches the number of pixels

in the original image, each original pixel is replicated in one block in the enlarged

image. For instance, the first pixel of the source image maps to the first block in the

interpolated image, the second pixel maps to the second block, and so on.

A schematic representation of LVI for 𝐾 = 2 is shown in Figure 1.6, where four pixels

from the original image 𝑃 are mapped to four distinct blocks in the interpolated image

𝑃′, with the correspondence indicated by colour coding.

Figure 1.6: Left Vertex Interpolation with 𝐾 = 2

 17

1.5.4. Data Embedding and Extraction

The flowchart for embedding and extraction of data is depicted by the Figure 1.7. The

process begins with enlarging the cover image through interpolation. After

interpolation, secret information is embedded into the newly generated pixels using a

steganographic approach, such as the basic LSB method or its enhanced versions. The

original image pixels –– pivot pixels –– are left unmodified to preserve the integrity

of the cover. During extraction, once the embedded data has been retrieved from the

stego, the cover can be reconstructed using the pivot pixels of the stego version.

Figure 1.7: Schematic of the interpolation-based reversible data hiding

 18

1.5.5. Payload Capacity

This method offers a higher capacity compared to many other methods, because it

increases the dimensions of the cover image through interpolation. For example, if a

scaling factor of 2 is applied on a 256 × 256 cover image, the interpolated image of

size 512 × 512 is obtained. If LSB modification is used for hiding, one bit of data can

be hidden in each non-pivot pixel of interpolated image. The payload capacity of the

image, denoted by Embedding Capacity (EC), is determined by computing the number

of non-pivot pixels in the interpolated image as follows:

𝑡𝑜𝑡𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛		𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒		 = 								512 × 512 = 262144

																		𝑡𝑜𝑡𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛		𝑐𝑜𝑣𝑒𝑟	𝑖𝑚𝑎𝑔𝑒		 = 								256 × 256 = 65536

𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 65536

𝑛𝑜𝑛𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 262144 − 65536 = 196608

𝐸𝐶 = 𝑛𝑜𝑛𝑝𝑖𝑣𝑜𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒 = 196608	𝑏𝑖𝑡𝑠	

																																																																											= 	192𝐾𝑏

The embedding capacity, measured in 𝐵𝑃𝑃, is computed as 196608/262144 =

0.75𝐵𝑃𝑃. This is significantly higher than the capacity typically offered by histogram

shifting-based techniques. Moreover, the embedded data consists entirely of the secret

payload, as no auxiliary information is included during the embedding process.

1.5.6. Lower Bound on PSNR

During LSB embedding, each non-pivot pixel may be altered by either +1 or -1. As a

result, the MSE introduced in the worst-case scenario does not exceed 0.75 for a

scaling factor of 2. Using this MSE along with a maximum pixel intensity 𝐶!"# =

255 in the formula for 𝑃𝑆𝑁𝑅, the lower bound on 𝑃𝑆𝑁𝑅 is computed as below:

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ Z
𝐶!"#$

𝑀𝑆𝐸[

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔(+ A
$77×$77
+.:7

B					

										= 10 ∗ 𝑙𝑜𝑔(+(86700)

	= 10 ∗ 4.9380					

= 49𝑑𝐵																

 19

1.6. Difference Expansion Based Reversible Image Steganography

This method computes the differences between neighbouring pixels and selects a

subset of these differences for data embedding. The selected differences are expanded

in such a way that the average intensity of the neighbouring pixels remains unchanged

after embedding. The locations of the pixel pairs used for difference expansion are

recorded as a binary overhead embedded into the cover along with payload. This map

is essential for the receiver to restore the original image.

Mathematical preliminaries required for this method include reversible integer

transform, expandable differences, changeable differences, and non-changeable

differences. Specific conditions are imposed to prevent pixel intensity underflow and

overflow, and to determine which pixel pairs are eligible for data hiding.

1.6.1. Reversible Integer Transform

It works by grouping the cover pixels into pairs and decomposing them into two parts:

a low-pass component 𝐿, which stores the integer averages 𝑙, and a high-pass

component 𝐻, which records the differences ℎ. The integer average and the difference

for an pixel pair (𝑥, 𝑦), 𝑥, 𝑦	 ∈ 𝑍, 0 ≤ 𝑥, 𝑦 ≤ 255,	are computed by equation (1.10):

																											𝑙	 = m
𝑥 + 𝑦
2 n 	,																						ℎ = 𝑥 − 𝑦																																															(1.10)	

This transformation is reversible, meaning the original grayscale values 𝑥 and 𝑦 can

be accurately reconstructed from the average 𝑙 and the difference ℎ using the inverse

operation outlined in equation (1.11):

																	𝑥	 = 𝑙 + m
ℎ + 1
2 n 		,																							𝑦 = 𝑙 −		 m

ℎ
2n																																										(1.11)

This process is known as the Integer Haar Wavelet, also referred to as the S-transform.

The equations (1.10) and (1.11) establish a one-to-one correspondence between pixel

pairs (𝑥, 𝑦) and their transformed counterparts	(𝑙, ℎ). To ensure that the reconstructed

values of 𝑥, 𝑦, remain in valid grayscale range [0, 255], the equation (1.12) must be

satisfied:

										0 ≤ 𝑙 + m
ℎ + 1
2 n ≤ 255,										𝑎𝑛𝑑									0 ≤ 𝑙 −		 m

ℎ
2n ≤ 255																					(1.12)	

 20

 Given that both 𝑙	and ℎ are integers, the inequalities can be simplified to the equation

(1.13):

												|ℎ| ≤ 2(255 − 𝑙),																𝑎𝑛𝑑															ℎ ≤ 2𝑙 + 1																																					(1.13)

The equation (1.13) can be simplified to the equation (1.14):

																												p
|ℎ| ≤ 2(255 − 	𝑙),								𝑖𝑓						128 ≤ 𝑙 ≤ 255	

|ℎ| ≤ 2𝑙 + 1,																						𝑖𝑓						0 ≤ 𝑙 ≤ 127	
																													(1.14)

1.6.2. Expandable Difference Values

When a difference value ℎ is expandable, a message bit 𝑏 ∈ {0, 1} can be appended to

LSB of ℎ. This process increases the bit-length of the difference value by one, and is

thus referred to as difference expansion. During expansion, ℎ6 is computed using the

equation (1.15):

																																																					ℎ6 	= 2 × 	ℎ + 𝑏																																																											(1.15)
To ensure that the reconstructed pixel intensities remain in the valid grayscale range,

the expanded difference ℎ6 must meet the constraint specified by the equation (1.16)

as below:

																																			|ℎ6| ≤ min(2(255 − 	𝑙), 2𝑙 + 1)																																															(1.16)

A difference ℎ′ is considered expandable if and only if the following inequality, given

by equation (1.17), is satisfied for 𝑏 ∈ {0, 1}. This is derived by substituting equation

(1.15) into equation (1.16):

							|2 × 	ℎ + 𝑏| ≤ min(2(255 − 	𝑙), 2𝑙 + 1) 									𝑓𝑜𝑟	𝑏 ∈ {0, 1}																								(1.17)

If this condition is satisfied, ℎ can be expanded to ℎ6, and the intensities of new pixel

pair (𝑥6, 𝑦6) are computed from 𝑙 and ℎ6 using the inverse integer transform as below:

																	𝑥6 	= 𝑙 + v
ℎ6 + 1
2 w		,																 					𝑦6 = 𝑙 −		v

ℎ6

2 w																																							(1.18)

This transformation guarantees that the new intensities remain in the valid grayscale

range.

 21

1.6.3. Changeable Difference Values

If a difference ℎ is deemed changeable, a bit 𝑏 ∈ {0, 1} can be embedded by

substituting the LSB of ℎ with 𝑏. As a result, a new value of ℎ, denoted by ℎ6 is

computed as follows:

																																													ℎ6 = 2 ×	m
ℎ
2n + 𝑏																																																																(1.19)

Since LSB replacement is inherently lossy, the original LSBs of the difference values

must be preserved and embedded along with the secret data to enable recovery of

original image. To avoid underflow and overflow in the reconstructed pixels, the

updated difference ℎ6 must satisfy the condition derived from equation (1.15),

																																										|ℎ6| ≤ min(2(255 − 	𝑙), 2𝑙 + 1)																																							(1.20)

Substituting the expression for ℎ6 from equation (1.19) into (1.20), the changeability

condition for the difference ℎ under average 𝑙, is obtained as equation (1.21):

														x2 ×	m
ℎ
2n + 𝑏x ≤ min(2(255 − 	𝑙), 2𝑙 + 1) 									𝑓𝑜𝑟	𝑏 ∈ {0, 1}											(1.21)

If this condition holds, then ℎ is changed to ℎ6 and the new intensities of the pixel pair

(𝑥6, 𝑦6) are computed from 𝑙 and ℎ6 using the inverse transform defined as below:

																				𝑥6 	= 𝑙 + v
ℎ6 + 1
2 w		,								 													𝑦6 = 𝑙 −		 v

ℎ6

2 w																																					(1.22)

All expandable differences are inherently changeable, since meeting the expandability

condition automatically ensures that the changeability condition is also fulfilled. A

changeable difference continues to be changeable even after its LSB has been

modified. On the other hand, an expandable difference might lose its expandability

after embedding, but it still retains its changeability. Differences that do not meet the

criteria for both the expandability and changeability are classified as non-changeable,

meaning no data is embedded in these values.

1.6.4. Embedding Algorithm

§ Pixel Pairing

The original image is divided into pairs of pixels. The pairing can be formed in various

ways such as horizontally, vertically, or based on a pattern determined by a secret key.

 22

The pairing can be applied to the whole image or to a portion of it, depending on the

embedding scheme and size of data. Figure 1.8 illustrates the horizontal and vertical

pixel pairings.

Figure 1.8: Horizontal and vertical pixel pairing

§ Finding Averages and Differences

After pairing of the cover image pixels, reversible integer transform is applied to these

pairs for computing the average 𝑙 and difference ℎ for each pair. The average values

are preserved before and after data embedding.

§ Identify Expandable and Changeable Differences

All the differences ℎ are arranged in a one-dimension list as {ℎ(, 	ℎ$, 	ℎ;, … ℎ<	} and

examined for expandability. If the expandability condition is satisfied, it is marked as

expandable difference. If it is not satisfied, then the difference is examined for

changeability condition. If this condition is met, the difference is marked as

changeable. Differences that satisfy neither condition are considered non-changeable

and are not used for data hiding.

§ Creating Location map

A binary location map {𝐿 = 𝐿(, 𝐿$, 𝐿, … 𝐿<	} is created corresponding to the list of

difference {ℎ(, ℎ$, ℎ;, … ℎ<	}. If a difference is expandable, a ‘1’ is placed, otherwise a

‘0’ is stored at that position. This location map is embedded into the modified

 23

differences along with actual payload. It assists the decoder during extraction in

identifying expandable differences and then to recover the original values.

§ Storing LSBs of Changeable Differences

The original LSBs of changeable differences are extracted and lossless compressed

and stored in 𝐶. These compressed bits, along with location map 𝐿, and actual payload,

are embedded into the difference values. The purpose is to restore the LSBs of original

changeable difference values and then to restore original cover image at receiver end.

§ Embedding Data

The location map 𝐿, compressed LSBs 𝐶, and actual payload 𝑃 are combined to make

a bitstream 𝐵, for embedding. The bitstream is embedded into the eligible difference

values either by appending to expendable difference or by replacing LSBs of

changeable difference. One bit is embedded into one changeable or expandable

difference. As a result, new difference values are computed, and then new intensities

for the corresponding pixel pairs (𝑥6, 𝑦6)	are computing using inverse transform to

obtain the stego image.

1.6.5. Extraction Algorithm

The embedded bitstream is extracted from LSBs of all changeable difference of the

stego image and parsed into three components: the location map, the compressed

original LSBs, and the pure payload. The location map enables correct identification

and restoration of all expanded differences. The compressed original LSBs allow for

reconstruction of the changeable differences. Once all the expandable and changeable

differences are restored, the original image is reconstructed, ensuring reversibility. The

steps are as follows:

§ Pixel Pairing

The stego image is first grouped into pairs of pixels using the same pattern that was

used during embedding. This ensures synchronization between embedding and

extraction processes.

 24

§ Computing Averages and Differences

The reversible integer transform is applied to all pixel pairs, computing the average 𝑙

and difference ℎ6. The differences are used for data extraction. Then averages are used

during cover reconstruction.

§ Identifying Changeable Difference Values

All the differences ℎ6 are arranged in a one-dimension list as {ℎ(6 , ℎ$6 , ℎ;6 , … ℎ<6 		} and

each is examined for changeability by using the changeability condition. Expandability

is not evaluated, since an expandable difference may no longer satisfy the

expandability condition after embedding. However, it is guaranteed to remain

changeable. In contrast, a changeable difference retains its changeable property after

embedding.

§ Collecting LSBs of Changeable Difference

The embedded bitstream 𝐵 is obtained by extracting LSBs of all the Changeable

differences. This bitstream contains three components: the location map 𝐿, the

Compressed LSBs 𝐶 of the original changeable differences, and the actual payload 𝑃.

The desired payload is obtained after parsing these components.

§ Restoring the Original Difference

When a value in the location map is ‘0’, the original difference ℎ was changeable. In

such cases, ℎ is recovered by substituting the LSB of ℎ6 with the corresponding bit

from the decompressed LSBs. If the map contains a ‘1’, this signifies that original

difference was expandable, and it is restored using the following equation, equation

(1.23):

																																																					ℎ	 = 			 v
ℎ6

2 w																																																																					
(1.23)

§ Reconstruction of Cover Image

The inverse integer transform is applied to the transformed values – average 𝑙	and

difference ℎ – to reconstruct the original pixel pairs. As a result, the original cover

image is perfectly reconstructed.

 25

CHAPTER 2

 ANALYSIS OF HISTOGRAM SHIFTING BASED
REVERSIBLE IMAGE STEGANOGRAPHY

2.1. Review of Related Work

Histogram shifting based technique was introduced by Ni et al. in 2006 [8]. It identifies

peak and zero points in the histogram, known as peak-zero pair. The peak point

represents the most frequent intensity, while the zero point represents the least frequent

intensity in the image. This pair defines a segment of the histogram that is moved

before embedding. The key advantages of this approach are its simplicity, efficiency,

low computational cost, and a theoretical lower bound on PSNR. It ensures that the

PSNR, measured in decibels (𝑑𝐵), of the stego relative to the cover remains above

48𝑑𝐵, preserving visual quality. However, there are areas for further enhancement in

the scheme:

• The PSNR remains constant regardless of the payload size. A payload-adaptive

approach can be explored, where smaller payloads introduce lesser distortions.

• It is assumed that increasing the number of peak-zero pairs enhances hiding

capacity; however, this assumption cannot be generalized for all types of images.

• Two peak-zero pairs in the histogram are identified by selecting zero points first

and then determining their corresponding peak points, which may not always be

global peaks. An alternative approach, where peak points may be identified first

and their corresponding zero points being selected afterward, may improve the

capacity for some images.

The techniques presented in [9, 12, 13] hide in image blocks, where the image pixels

are divided into blocks, and the embedding algorithm is applied independently to each

block. The limitations of these techniques are following:

• The side information required for data and cover extraction, i.e., the peak-zero

pairs and overhead, increases with number of image blocks, as each block has its

own histogram and corresponding peak-zero pair.

 26

• More number of peak-zero pairs leads to higher modifications in the intensity

distribution, making it detectable through histogram analysis.

• Reversibility is not verified in the given scheme [13].

The scheme described in [10] is based on multilayer embedding with varying image

block sizes (256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16, 𝑎𝑛𝑑		8 × 8),

achieving exceptionally high embedding capacity. However, it is considered insecure

for the following reason:

• The scheme does not embed data into peak points, leaving them unaltered while

using them for message extraction. This creates a vulnerability, as the peak

intensity can be directly retrieved from the stego image, enabling unauthorized

message extraction and compromising the security.

The scheme [11] utilizes 32 × 32 image blocks for embedding. For instance, a

512 × 512 image is divided into 256 blocks, each having 32 × 32 pixels. However,

the scheme has following inherent flaws:

• It does not provide a substantial increase in hiding capacity across different images.

• It significantly increases the side information, requiring 256 peak-zero pairs.

• The algorithm stores peak intensities at fixed locations, specifically in LSBs of the

initial eight pixels of each block. Additionally, it stores an indicator in LSBs of the

first block to specify whether a block contains hidden data. However, an adversary

can easily reverse this process without requiring additional information. As a

result, the algorithm violates Kerckhoff's principle, compromising the security of

the system.

In 2008, Fallahpour [28] introduced the Gradient Adjusted Predictor (GAP), a method

based on embedding into prediction error histograms. Since then, various predictors

have been proposed. For example, Capacity-Distortion Optimization [29] employs

genetic algorithms to identify optimal peak and zero bins, while Skewed Histogram

Shifting for Reversible Data Hiding [30] leverages extreme predictor pairs to decrease

the distortion. Multiple Histogram-based framework [31] utilizes evolutionary

algorithms for finding multiple histograms, and Pixel Residual Histogram based-

 27

technique [32] extends Prediction Error Expansion-based schemes. However, these

methods have certain drawbacks, as detailed below:

Compute-Intensive: Predictors generate a prediction image from the cover by

performing floating-point operations on neighbouring pixels for each pixel. The

prediction error matrix is then obtained by subtracting predicted image from cover.

The genetic algorithms used to identify optimal peak-zero pairs involve multiple

iterations of floating-point computations, leading to significant computational

overhead. Consequently, these methods demand extensive computations before data

hiding and extraction, unlike pixel-domain histogram-based methods, which do not

require such prior computations.

No Theoretical Lower Limit on PSNR: Accuracy of a predictor impacts both the

embedding capacity and the quality of a stego image. These methods do not guarantee

a theoretical minimum PSNR value. In some cases, the PSNR falls below 40𝑑𝐵,

rendering them unsuitable for practical applications.

Embedding Traces: The prediction error histogram of an image typically follows

Laplacian distribution, a bell-shaped distribution with peaks at zero for most

predictors. After data embedding, this distribution deviates from the Laplacian model

and becomes more irregular. As hiding capacity increases, the central peak flattens,

making detection easier. An effective steganalysis method for prediction error

histogram shifting is discussed in [33]. Although the schemes presented in [34] and

[35] attempt to conceal these traces, but they result in reduced capacity and lower

PSNR.

2.2. Capacity Analysis

The peak point in the histogram has a peak frequency, denoted as 𝑃𝐹, and the zero

point has a zero frequency denoted as 𝑍𝐹. Since hiding occurs at the peak points, the

capacity is equal to the peak frequency, representing the maximum embedding

capacity. Pixel coordinates with zero intensity are recorded in the location map as

overhead. The data to be embedded is pure payload. Total payload comprises the pure

payload and the overhead. The size of embedding capacity and total payload, in

number of bits, are shown by equation (2.1):

 28

																								
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑃𝐹																			

𝑇𝑜𝑡𝑎𝑙	𝑃𝑎𝑦𝑙𝑜𝑎𝑑		 = 𝑃𝑢𝑟𝑒	𝑃𝑎𝑦𝑙𝑜𝑎𝑑	 + 	𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
																											(2.1)

For successful embedding, payload must not exceed the embedding capacity, as shown

by equation (2.2):

																									
		𝑇𝑜𝑡𝑎𝑙	𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ≤ 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	

	𝑃𝑢𝑟𝑒	𝑃𝑎𝑦𝑙𝑜𝑎𝑑	 + 	𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑	 ≤ 𝑃𝐹				
																																				(2.2)

Overhead size depends on frequency of zero points and on image size (𝑀 ×𝑁 pixels).

It is given by equation (2.3), where 𝑏𝑖𝑡𝑠𝑝𝑒𝑟𝑖𝑛𝑑𝑒𝑥 is the bits required for a pixel index:

																											
𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑍𝐹	 × 	𝑏𝑖𝑡𝑠𝑝𝑒𝑟𝑖𝑛𝑑𝑒𝑥

																			= 𝑍𝐹	 ×	 𝑙𝑜𝑔$(𝑀 × 𝑁)
																																																			(2.3)

Pure capacity can be computed by equation (2.4). To maximize it, the peak frequency

should be as high as possible, and the zero frequency should be as low as possible.

																𝑃𝑢𝑟𝑒	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦	 = 𝑃𝐹 − (𝑍𝐹 ×		 𝑙𝑜𝑔$(𝑀 × 𝑁))																																							(2.4)

2.2.1. Analysis for Histogram Partitioning

Histogram partitioning divides an image histogram into non-overlapping blocks before

embedding. It is assumed that increasing the number of histogram blocks increases the

hiding capacity. However, analysis shows that the improvement is not universal and it

depends on the intensity distribution in the image histogram. For instance, the

histograms of two 8 × 8 images with 8 gray levels are presented in Figure 2.1 (a) and

(b) respectively. Both images have the same capacity for a single block since they

share the same peak frequency of 21 and the same zero frequency of 1. Splitting the

histograms into two blocks creates two peak-zero pairs, one for each block, with the

total capacity being the sum of the individual block capacities. In the figure, the green

and blue regions represent the two non-overlapping histogram blocks. The blue block

maintains the same peak and zero frequencies of 17 and 1, respectively, in both

histograms. The green block has the same peak frequency of 21 in both the histograms,

but differs in zero frequency: 3 in Figure 2.1(a) and 2 in Figure 2.1(b). Hence, Figure

2.1(a) shows higher capacity for embedding in single block, whereas Figure 2.1(b)

shows higher capacity for embedding in two blocks. The computations for both

 29

histograms for single block and two blocks are presented by Figure 2.2(a) and Figure

2.2(b), respectively.

Figure 2.1: Histograms of two 8 × 8 images

Figure 2.2: Embedding capacity for histograms of Figure 2.1

Figure 2.3(a) and Figure 2.3(b) show an histogram with two (b1, b2) and three non-

overlapping blocks (b1, b2 ,b3), respectively.

Figure 2.3: Histogram Blocks: (a) Two blocks (b) Three blocks

Experimental results show that identifying two non-overlapping blocks is generally

feasible, whereas identifying three or more blocks often results in overlap. Even

 30

without overlap, the capacity may not always increase since each added block has

higher overhead due to its zero point having a higher frequency than the previous

blocks.

The algorithm for two-block histogram partitioning is presented in Figure 2.4.

Figure 2.4: Algorithm for finding two blocks in an image histogram

The algorithm differs slightly from the algorithm used in original method [8], which

first selects global zero points and then identifies the corresponding peak points. In

contrast, this method first selects the peak points, followed by the zero points.

2.2.2. Analysis for Image Partitioning

Image partitioning divides image pixels into non-overlapping blocks prior to

embedding. As illustrated in Figure 2.5(a), a 2 × 2 partition splits the image into 4

separate regions, with Figure 2.5(b) depicting corresponding histograms. The analysis

of capacity shows that while increasing the number of image blocks may improve

hiding capacity for some images, the improvement is often marginal. This is because

partitioning the image decreases pixel counts per block, which in turn reduces both the

 31

histogram height and the peak frequency, thereby reducing the space available for

embedding.

Figure 2.5: (a) Image Blocks (b) Corresponding histograms

2.3. Histogram Analysis

A comparison of histograms before and after embedding shows that embedding

modifies the distribution of three intensities for each peak-zero pair: the peak intensity,

the zero intensity, and the intensity adjacent to the peak. Partitioning an image into

four image blocks, each containing two peak-zero pairs, results in a total of eight pairs,

altering the distribution of 24 intensities. Further partitioning into 16 blocks yields 32

pairs, which may modify 96 intensities out of 256, a 37.5% change in the histogram.

Thus, increasing the number of blocks makes the image more susceptible to detection

through histogram analysis. During embedding, peak frequencies decrease, zero

frequencies increase, and the frequencies of intensities adjacent to the peak become

approximately half of the peak frequency, leading to histogram equalization.

For example, a 21-level grayscale image, shown in Figure 2.6 as cover image,

transforms into a 38-level stego image after embedding into 2 × 2 (4 image blocks),

and a 42-level stego image after embedding into 4 × 4 (16 image blocks). The original

histogram, along with the histograms after embedding into 2 × 2 and 4×4 blocks, are

shown in the figure

 32

Figure 2.6: Histogram analysis for a 21-level gray-scale image

2.4. Experimental Results

Observations are presented for the standard 512 × 512 grayscale images shown in

Figure 2.7, sourced from the USC-SIPI image database [36]. This dataset offers images

with diverse intensity distributions, textures, and patterns, making it suitable for

evaluating data hiding techniques under realistic conditions. The experiments are

conducted on the images in lossless formats such as Portable Network Graphics (PNG)

and Tagged Image File Format (TIFF).

2.4.1. Capacity for Histogram Partitions

Hiding capacity observations on histogram partitioning are presented in Table 2.1. The

findings from the table are as follows:

• Splitting histogram into two blocks increases the hiding capacity over single-block

use for all images except for the Moon.

• Splitting into three blocks often results in violations of the non-overlapping

constraints. In cases where three non-overlapping blocks are found, the overhead

of third block exceeds the peak frequency, thereby negating the capacity gains

(e.g., Barbara). Only Cat image shows a slight capacity improvement.

 33

• The capacity does not increase consistently with number of blocks, and it is found

that the optimal histogram block size is 2.

Figure 2.7: Standard test images for evaluation

2.4.2. Capacity for Image Partitions

Table 2.2 presents the observations for varying image block sizes. The block size

𝑛 × 𝑛 denotes the partitioning of images into 𝑛 blocks along both the horizontal and

vertical axes. It is found that hiding capacity does not consistently increase with

number of blocks. Furthermore, the optimal block size for maximum hiding capacity

is image-dependent. For the analyzed images, the optimal block sizes were found to

be 4 × 4, 8 × 8, or 16 × 16, with the corresponding maximum hiding capacities

highlighted in bold in the table.

 34

Table 2.1: Hiding capacity for varying histogram blocks

Table 2.2: Hiding capacity for varying image blocks

Image Name 𝟐 × 𝟐 𝟒 × 𝟒 𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔 𝟑𝟐 × 𝟑𝟐 𝟔𝟒 × 𝟔𝟒

Barbara 3577 5961 7946 8069 5532 1988

Pepper 3879 5671 7517 5716 430 0

Baboon 2826 3432 3192 1107 5 0

Lena 5725 8568 12087 12292 7718 2459

Sailboat 4466 7436 8331 5970 1227 0

Tiffany 6681 9273 12052 10890 3160 218

Fishing boat 5931 7407 8410 5860 621 0

Jet 12501 14991 18188 17848 9402 409

Airplane 50740 74731 88315 90637 75278 6566

Image Name
Histogram Partitions

1 block 2 blocks 3 blocks

Barbara 2277 4456 Overhead

Pepper 2686 5314 Overlapping

Baboon 2699 5245 Overlapping

Lena 3058 6129 Overlapping

Sailboat 3766 7489 Overlapping

Tiffany 3808 7343 Overlapping

Fishing boat 5733 11322 Overlapping

Jet 8249 15943 Overlapping

Airplane 30393 59882 Overlapping

Sunset 68105 68105 Overlapping

Cat 96219 100963 105622

Moon 122908 122908 Overlapping

 35

2.4.3. Results for Histogram Analysis

Image partitioning divides the image pixels into multiple blocks, creating more peak-

zero pairs than histogram partitioning and results in higher modifications to the

histogram during embedding. Figure 2.8 presents a cover image and its histogram,

partitioning of the image into 2 × 2 (four blocks) and corresponding stego image

histogram, and partitioning of the image into 4 × 4 (16 blocks) and corresponding

stego image histogram. The modifications in the stego histograms are visible in the

figure, highlighting the impact of embedding on intensity distributions.

Figure 2.8: Histogram variations after embedding in image blocks

Figure 2.9 illustrates results for three images from the SIPI dataset. The first column

shows the original images, the second column displays their corresponding

histograms, and the third column depicts histograms after embedding into 4 × 4 image

blocks. The results show that embedding into image blocks leads to localized

histogram flattening, thereby increasing vulnerability to histogram-based steganalysis.

 36

Figure 2.9: Impact of embedding in 4 × 4 image blocks on histograms

2.5. Conclusion

This study analyzed reversible data hiding using histogram shifting for both image

partitioning and histogram partitioning. The findings are that the optimal block size

for image partitioning is image-dependent and cannot be generalized. Additionally,

increasing the number of blocks results in more side information required for data

extraction and cover restoration, further the more number of peak-zero pairs leads to

increased histogram modifications, reducing resistance to steganalysis. For histogram

partitioning, it was observed that dividing the histogram into two blocks provides the

optimal hiding capacity.

 37

CHAPTER 3

 TWO LAYER REVERSIBLE IMAGE
STEGANOGRAPHY IN IMAGE HISTOGRAMS

3.1. Introduction

Multi-layer embedding in reversible image steganography aims to enhance data hiding

capacity while preserving the ability to fully recover the original cover image.

Although this layered approach can significantly improve payload capacity, it also

introduces challenges such as managing side information, maintaining high PSNR, and

ensuring that reversibility is not compromised. Therefore, multi-layer embedding must

be carefully designed to balance capacity, distortion, and reversibility.

3.2. Payload Adaptive Histogram Shifting

In this work, a novel payload-adaptive histogram shifting technique is developed,

which dynamically adjusts the histogram shifting range based on the actual size of the

data which needs to be embedded. Unlike traditional methods that use a fixed shifting

range regardless of payload size, the proposed approach enhances both flexibility and

embedding efficiency by tailoring the shifting range to the payload requirements. The

shifting range is defined between peak and zero points. In this method, the global peak

is updated by identifying a local peak with the minimum frequency that still satisfies

the required payload size.

Figure 3.1 illustrates this change, showing the original and updated blocks, with the

latter having narrower widths for the Lena image at a payload size of 1000	bits. Since

the updated peak point is closer to zero point than original peak, the width of histogram

block defined by peak and zero points is reduced, resulting in decreased shifting of the

histogram.

 38

 Figure 3.1: Reduced block width in Lena image for 1000-bit embedding

The algorithm, presented by Figure 3.2, begins by selecting the initial peak and zero

intensity. It then scans from the zero intensity toward the global peak to locate a

suitable local peak that can accommodate the data, thereby enabling an adaptive

embedding process.

Figure 3.2: Algorithm for finding payload adaptive peak

Figure 3.3 presents the PSNR values for varying payload sizes for Baboon, Pepper,

Lena and Sailboat images. The PSNR decreases with increase in payload size up to

embedding capacity.

 39

Figure 3.3: Payload adaptive PSNR for standard images

3.3. Analysis of Lower Bound on PSNR

Theoretical lower bound on PSNR for embedding layers up to 7 is computed. Each

embedding layer shifts the histogram by one, resulting in a maximum pixel difference

of 𝑛, and the MSE of 𝑛$, for 𝑛-layer embedding. Table 3.1 presents the MSE and

PSNR, computed using equations (3.1) and (3.2), respectively. In these equations

𝐶!"# = 255 is the maximum possible intensity, 𝐶 and 𝑆 are cover and stego images,

and 𝑀 ×𝑁 is the image size.

																																				𝑀𝑆𝐸		 = 				
1
𝑀𝑁44(𝑆(𝑖, 𝑗) − 𝐶(𝑖, 𝑗))$

%

&'(

)

*'(

																																			(3.1)

																														𝑃𝑆𝑁𝑅						 = 			10 ∗ 	 log(+ Z
𝐶!"#$

𝑀𝑆𝐸
[(3.2)

Table 3.1: Theoretical PSNR for varying layers of embedding

Layer 1 2 3 4 5 6 7

MSE 1 4 9 16 25 36 49

PSNR 48.13 42.11 38.58 36.08 34.15 32.56 31.22

3.4. Two Layer Embedding Strategy

Experiments are conducted for embedding up to five layers. Figure 3.4 shows the

original image and corresponding stego images after each layer of embedding. Figure

3.5 shows the original histogram and corresponding stego image histograms.

 40

Figure 3.4: Stego images after multi-layer embedding

Figure 3.5: Stego image histograms after multi-layer embedding

The hiding capacity and PSNR observations are presented by Table 3.2 and Table 3.3

respectively. The capacity increases approximately linearly with each layer of

embedding and the PSNR decreases gradually.

 41

Table 3.2: Hiding capacity for multi-layer embedding

Image Name 1-Layer 2-Layer 3-Layer 4-Layer 5-Layer

Barbara 4456 8750 12888 16981 21041

Pepper 5314 10377 14933 18653 21015

Baboon 5245 10308 15229 20082 24679

Lena 6129 11938 17526 23043 28239

Sailboat 7489 14355 20851 26795 32597

Tiffany 7343 14499 21558 28547 35478

Fishing Boat 11322 21891 31691 40640 49277

Jet 15943 30427 43785 56493 68954

Airplane 59882 113241 162913 206093 238743

Sunset 68105 107716 136146 152023 164514

Cat 100963 197149 261144 309161 341770

Moon 122908 190257 245757 282994 313459

Table 3.3: PSNR for multi-layer embedding

Image Name 1-Layer 2-Layer 3-Layer 4-Layer 5-Layer

Barbara 53.45 47.24 43.16 39.90 38.64

Pepper 48.17 42.26 38.76 36.34 34.99

Baboon 48.22 42.27 38.77 36.33 34.47

Lena 48.17 42.55 39.71 37.14 35.27

Sailboat 48.19 42.26 38.82 37.62 37.20

Tiffany 48.23 42.46 39.00 36.54 34.73

Fishing Boat 48.21 42.60 39.23 36.84 35.02

Jet 51.10 42.45 38.98 36.79 34.92

Airplane 48.84 45.06 41.31 38.42 36.92

Sunset 50.53 42.76 39.44 36.98 35.14

Cat 49.81 47.89 45.77 44.09 41.64

Moon 49.41 43.23 40.19 37.48 35.67

 42

To ensure high quality stego images, a PSNR of 40𝑑𝐵 or higher is preferred [37, 38,

39]. Three layer embedding reduces the PSNR below 40𝑑𝐵, while two layer

embedding maintains it above 42𝑑𝐵. Therefore, two layer embedding is developed

and analyzed for its robustness to steganalysis. It is shown by block diagram of Figure

3.6. In the first layer, Data1 is embedded into cover, creating an intermediate stego

image. In the second layer, Data2 is embedded into the intermediate stego, producing

the final stego image.

Figure 3.6: Block diagram of two layer embedding

During extraction, the process is reversed: Data2 is extracted first, followed by

restoration of the intermediate stego. Subsequently, Data1 is extracted, and the cover

is restored.

The pseudocode for two layer embedding is provided by Figure 3.7. The time

complexity for single layer embedding is 𝑂(𝑚𝑛), where 𝑚 × 𝑛 is the image size. For

multi-layer embedding, the time complexity scales linearly with number of layers,

resulting in 𝑂(𝑙𝑚𝑛), where 𝑙 denotes the number of layers. The space complexity

remains 𝑂(𝑚𝑛) and is independent of layers.

 43

Figure 3.7: Algorithm for two layer embedding

3.5. Robustness to Steganalysis

The security of the scheme is evaluated by conducting steganalysis on widely used

datasets such as SIPI [36], watermarking images [40], and BOSSbase [41, 42]. These

datasets include diverse image types including dark, bright, reduced colour, textured,

smooth, and sharp-edged images, featuring aerial views, buildings, humans, animals,

and objects. Statistical analysis results are presented in Table 3.4 for SIPI database and

Table 3.5 for watermarking database.

 44

Table 3.4: Statistical steganalysis on SIPI database

Image
Image Analysis Histogram Analysis RS Analysis

SSIM NCC Mean Ratio Std. Ratio Entropy D RS Ratio

1 0.999 0.999 0.996 0.983 0.004 0.995

2 0.997 0.999 0.995 0.971 0.004 0.990

3 0.997 0.999 0.997 0.962 0.004 0.997

4 0.998 0.999 0.993 0.970 0.005 0.988

5 0.996 0.999 0.992 0.979 0.006 0.996

6 0.997 0.999 0.996 0.968 0.006 0.988

7 0.995 0.999 0.996 0.973 0.010 0.987

8 0.995 0.999 0.994 0.981 0.012 0.995

9 0.997 0.999 0.993 0.979 0.053 0.972

10 0.953 0.999 0.975 0.995 0.048 0.988

11 0.994 0.999 0.990 0.994 0.081 0.993

12 0.910 0.999 0.975 0.995 0.090 0.974

Imperceptibility is evaluated by computing SSIM and Normalized Cross-Correlation

(NCC) between cover and stego using equations (3.3) and (3.4) respectively, where µ

and s are mean and standard deviation, and 𝐶1, 𝐶2, 𝐶3 are constants to prevent the

division by zero. The values approaching 1 confirm high similarity between original

and stego images.

												𝑆𝑆𝐼𝑀 =
2µ4µ5 + 𝐶1

µ4
$ + µ5

$ + 𝐶1 .
2 s4 s5 + 𝐶2

s4$ + s5$ + 𝐶2
.
s45 + 𝐶3

 s4s5 + 𝐶3
																										(3.3)		

																										N𝐶𝐶 =
∑ ∑ (𝑆(𝑖, 𝑗) × 𝐶(𝑖, 𝑗))%

&'(
)
*'(

∑ ∑ 𝑆(𝑖, 𝑗)$%
&'(

)
*'(

																																																		(3.4)		

Histogram analysis shows a mean and a standard deviation ratio for cover to stego near

1, with minimal changes in brightness and contrast due to embedding. Additionally,

negligible changes in histogram entropy after embedding suggest negligible alteration

to the histogram. RS steganalysis [43] shows that the regular-singular group ratio

remains similar for cover and stego images, ensuring robustness against detection.

 45

Table 3.5 Statistical steganalysis on Petitcolas database

Image
Image Analysis Histogram Analysis RS Analysis

SSIM NCC Mean Ratio Std. Ratio Entropy D RS Ratio

1 0.998 0.999 0.996 0.968 0.004 0.995

2 0.998 0.999 0.999 0.984 0.005 0.987

3 0.996 0.999 0.997 0.962 0.006 0.997

4 0.997 0.999 0.993 0.975 0.009 0.993

5 0.999 0.999 0.991 0.998 0.001 0.978

6 0.995 0.999 0.985 0.990 0.009 0.999

7 0.999 0.999 0.985 0.991 0.008 0.950

8 0.993 0.998 0.994 0.952 0.014 0.994

9 0.998 0.999 0.984 0.996 0.014 0.968

10 0.993 0.997 0.991 0.951 0.016 0.995

11 0.999 0.999 0.988 0.991 0.022 0.983

12 0.994 0.999 0.982 0.988 0.026 0.962

The BOSSbase dataset, consisting of 10,000 grayscale images, was used to generate

cover-stego pairs with the this method. Classification accuracy – using both the Spatial

Rich Model (SRM) [44] and the Steganalysis Residual Network (SRNet) [45] – ranged

between 49% and 51%, – a result comparable to random guessing, demonstrating the

method’s robustness against machine-learning and deep-learning based steganalysis.

3.6. Performance Comparison

Reversibility is validated by computing PSNR and SSIM between original and

reconstructed cover, with all experiments yielding 𝑃𝑆𝑁𝑅 = ∞ and 𝑆𝑆𝐼𝑀 = 1,

confirming reconstruction of cover. Empirical observations comparing the new

method with prior methods are presented in Tables from 3.6 to 3.8. Table 3.6 compares

the capacity and PSNR with methods [8], [9] where the new method offers up to 82%

higher capacity. Table 3.7 shows that the adaptive histogram shifting yields improved

PSNR values relative to methods reported in [8] [12].

 46

Table 3.6: Performance comparison on hiding capacity and PSNR

Image Name
Capacity PSNR

[8] [9] Proposed % ↑ over
[9] [8] [9] Proposed

Baboon 5412 5892 10308 74.94 48.20 48.35 42.27

Pepper 5449 9499 10377 09.24 48.20 48.06 42.26

Lena 5460 9571 11938 24.73 48.20 47.30 42.55

Sailboat 7301 9039 14355 58.81 48.20 51.50 42.26

Fishing Boat 7301 12018 21891 82.15 48.10 47.85 42.61

Jet 16171 24421 30427 24.59 48.30 48.54 45.45

Airplane 59979 99099 113233 14.26 48.70 48.80 42.45

Table 3.7: Comparison of adaptive histogram shifting for Lena image

Method Payload Embedding Pixel moves PSNR

[8] 1000bits Full Image 79482 49.88

[12] 1000bits

Block1 16681 60.38

Block2 23588 58.22

Block3 11336 62.05

Block4 26892 57.73

Proposed 1000bits
Block1 6544 80.18

Block2 6864 79.77

Table 3.8 provides a comparative summary of PSNR, selected peak-zero pairs, and

resistance to steganalysis against methods [8, 9, 10, 11].

Table 3.8: Comparison with prior methods

Hiding Method PSNR Peak-Zero pairs Resistance to
analysis

Ni. et al. [8] >48 2 High

Fallahpour [9] >48 8-32 Low

Z. Pan et al. [10] >48 Peak unaltered Not secure

Murthy et al. [11] >48 256 Not secure

Proposed >42 4 High

 47

While the PSNR of two-layer embedding is comparatively lower, it consistently

exceeds the acceptable threshold of 40𝑑𝐵.

Figure 3.8 depicts that new method achieves higher embedding rates than methods

presented in [8, 9, 11] for Baboon, Pepper, Boat, and Jet images, measured in bits per

pixel (𝑏𝑝𝑝) with embedding rates observed from 0.02𝑏𝑝𝑝 to 0.75𝑏𝑝𝑝.

Figure 3.8: Embedding rates for selected standard images

3.7. Conclusion

The experiments are conducted using Python in Jupyter Notebook on MacBook Air

with an Apple M1 chip and 8𝐺𝐵 of RAM. Each embedding layer in the multi-layer

embedding requires approximately 0.15 to 0.20 seconds of processing time and 2𝑀𝐵

of memory for 512 × 512 images. The scheme’s simplicity, efficiency, high

embedding capacity, and robustness to steganalysis make it well-suited for

applications such as medical imaging, copyright protection, lossless image

compression, cropping, etc. The scheme can be directly applicable to encrypted images

when lightweight encryption methods such as affine ciphers, permutation-based

(transposition) techniques, or substitution ciphers are used as these encryption methods

preserve the overall histogram structure required for histogram shifting and making

space for data embedding. Since video files consist of a sequence of images as frames,

the scheme can be extended to videos by embedding data into individual frames.

Applying the same embedding technique across multiple frames significantly

enhances the overall embedding capacity.

 48

CHAPTER 4

 INTRODUCTION TO QUANTUM COMPUTING

4.1. Background

A quantum computer is a machine that can receive inputs in a coherent superposition

of multiple states, process these states and compute results into a superposition of

possible outcomes. The idea of quantum computing was introduced by Richard

Feynman in 1982 to address the limitations of existing computers in simulating

quantum systems [46]. He suggested that a machine utilizing quantum bits (qubits) can

simulate these systems more efficiently (with exponential speedup) than classical

systems.

In 1985 David Deutsch proposed the concept of Quantum Turing Machine capable of

simulating any physical system. He introduced the Deutsch algorithm, demonstrating

that certain problems could be solved faster on quantum computers than classical

computers [47]. The Deutsch-Jozsa algorithm was later developed as a generalization

for 𝑛-bit inputs. It offers an exponential speedup over classical algorithms for

determining whether a Boolean function is constant or balanced, under the promise

that it is one of the two [48].

In 1994, Peter Shor published a quantum algorithm [49], and provided a detailed

theoretical analysis of the algorithm [50], fundamentally challenging the security of

the systems over the Internet. It showed that two problems considered hard for classical

computers — integer factorization and the discrete logarithm problem — could be

efficiently solved using a quantum computer. Since these problems underpin many

cryptographic protocols, Shor's algorithm marked a major breakthrough, highlighting

the practical impact of quantum computing in number theory, cryptography, and

information security.

 In 1995, Lov Grover demonstrated [51] that quantum computers could accelerate the

searching in unstructured database, providing quadratic speed-up over classical

49

methods. Its broad applicability to search-based tasks generated significant interest in

its potential.

Experimental progress began in 1998 with successful implementation of Deutsch-

Jozsa algorithm using Nuclear Magnetic Resonance (NMR) [52]. In 2001, IBM

researchers achieved a significant breakthrough by demonstrating the first

experimental realization of Shor's algorithm on a 7-qubit NMR machine [53] by

factoring 15, a milestone in quantum computing.

In 2012, John Preskill investigated the entanglement as an underlying principle that

can be harnessed for computational advantage to surpass the capabilities of classical

systems [54]. In 2018, Preskill came with the concept of the Noisy Intermediate-Scale

Quantum (NISQ) devices [55], emphasizing challenges and potential of quantum

devices with 50-100 qubits. These near-term processors, despite being affected by

noise and imperfections, are capable of addressing practical problems.

In 2019, Google showcased quantum supremacy using its Sycamore processor, which

contains 53 superconducting qubits. The processor accomplished a computational task

in 200 seconds, a task that would have taken 10,000 years on classical supercomputers

[56]. Although errors in the hardware led to accurate outputs only once in every 500

runs, repeating the experiment millions of times in just a few minutes gave statistically

meaningful results.

IBM Quantum has pioneered quantum computing advancements [57], making

quantum hardware accessible via IBM Cloud since 2016. The 127-qubit IBM Eagle

processor is available for access since 2021. In 2023, IBM introduced Condor, a 1,121-

qubit superconducting quantum processor. IBM's Qiskit SDK stands as the most

widely adopted quantum development platform, enabling seamless execution on

IBM’s QPUs through Qiskit Runtime service. The release of Qiskit SDK 1.x in 2024,

a comprehensive full-stack solution, marked a significant milestone. It now

encompasses middleware software and services for developing and optimizing

quantum circuits, and executing the developed circuits on IBM's state-of-the-art

quantum systems.

50

Quantum computing relies on quantum arithmetic operations, ranging from addition

to modular exponentiation, which require additional memory to store intermediate

results. The construction of quantum networks with optimal auxiliary memory usage

was first explored in 1995 [58]. The Quantum Fourier Transform (QFT) offers a

unique approach to performing arithmetic operations on quantum computers. Thomas

G. Draper introduced a QFT-based method for quantum addition, reducing the number

of qubits needed by eliminating temporary carry bits [59].

QFT-based circuits have since been developed for various operations, including

controlled weighted sums for computing the inner product of two data vectors [60],

modular and non-modular arithmetic with signed integers [61], and quantum

comparators [62]. Ripple-carry adders were introduced in 2004 as a foundational

design for quantum addition circuits [63].

Toffoli-based adder circuits are developed using controlled-NOT gates and Toffoli

gates. In [64], it was shown that five two-qubit gates are required to simulate a Toffoli

gate. Additionally, a transformation of QFT addition circuits into Toffoli-based adders

was presented in [65] offering an alternative approach to quantum arithmetic.

Quantum Image Processing (QIP) is an emerging field that involves performing image

processing operations on quantum images, with the potential to achieve exponential

computational speedup over classical methods [66]. Quantum algorithms designed for

edge detection can achieve significant computational advantage [67]. QIP is built upon

three key elements: encoding of images in quantum states, application of quantum

algorithms on quantum images, and quantum measurement. To facilitate quantum

computation for imaging tasks, various encoding techniques have been developed to

map classical image data onto quantum states [68].

The Flexible Representation of Quantum Images (FRQI) is the first image encoding

framework representing grayscale images using a single-qubit for intensity encoding

and multi-qubit for positional encoding [69]. The pixel positions are mapped to a

superposition of states, while intensities are encoded as quantum rotation angles.

While FRQI offers a compact and simple image representation, it has notable

drawbacks. Encoding intensities as rotation angles introduces computational

51

complexity, as retrieval often requires inverse trigonometric operations. The

probabilistic nature of measurements and limited precision due to angle quantization

reduce accuracy, making FRQI less suitable for high-fidelity image processing tasks.

To overcome these limitations, researchers have developed improved models that

enhance efficiency and reduce circuit depth [70]. Expanding on the FRQI framework,

the RGB Multichannel Quantum Image (MCQI) representation is introduced to encode

colour images by separately representing red, green, and blue channels using quantum

states [71]. A quantum algorithm for scrambling of the images using MCQI model is

reported [72], highlighting its potential for secure image processing and encryption.

NEQR is a framework [73] that represents both pixel positions and intensities using

multiple qubits, offering improvements over FRQI. Since it directly maps intensity

values to computational basis states, it allows for lossless image reconstruction,

making it suitable for quantum image steganography, quantum machine learning, and

other operations on quantum images. Several image processing techniques have been

developed based on the NEQR, including methods for line detection [74], grayscale-

to-binary image conversion [75], and guided quantum filtering [76]. The Novel

Quantum Representation of Color Digital Images (NCQI) builds upon NEQR by using

24 qubits to represent Red, Green, and Blue channels [77] for colour images. NEQR

based steganographic techniques are reported in [78, 79, 80], quantum image

encryption techniques are proposed in [81, 82, 83], and image scrambling techniques

are presented in [84, 85].

4.2. Principles of Quantum Mechanics

The fundamental principles of quantum mechanics are superposition, entanglement,

decoherence, and interference, offering profound insights into the behaviour of matter

and energy at sub-atomic level. Quantum computers utilize these foundational

quantum phenomena to perform calculations in a probabilistic and quantum-

mechanical manner. When fully developed, they will be capable of solving highly

complex problems at speeds exponentially greater than today's classical computers,

offering unprecedented computational power.

52

4.2.1. Superposition

Quantum mechanical systems do manifest all the possible states that they can assume

at the same time, such as electrons or photons can be in a combination of states. This

phenomenon is called superposition. A quantum state in superposition represents a

linear combination of multiple states where the combination is a new, valid state. A

single-qubit quantum system is mathematically expressed by equation (4.1):

																																							|𝛹⟩ = 		a+|0⟩ 		+ 		a(|1⟩																																																										(4.1)

Here the coefficients a+ and a(are complex numbers known as probability amplitudes

associated with basis states |0⟩ and |1⟩, respectively.

When a measurement is made, the superposition reduces to a single, definite state, with

basis states probabilities given by |a+|$	𝑎𝑛𝑑	|a(|$. These probabilities always sum to

one, satisfying the condition |a+|$ +	|a(|$ = 1.

A two-qubit system is in a superposition of the four basis states, with probability

amplitudes being a++, 	a+(, 	a(+, and a((respectively, and |a++|$ +	|a+(|$ +

|a(+|$ +	|a((|$ = 1.

Ket notation for a superposition state in this system is given by equation(4.2):

																									|𝛹⟩ = a++|00⟩ 	+	a+(|01⟩ 	+	a(+|10⟩ 	+	a((|11⟩																										(4.2)

Or by vector notation presented in equation (4.3):

																																																																	�

a++
a+(
a(+
a((

�																																																																		(4.3)

Similarly, an n-qubits system can be in a superposition of 2< states ranging from

|000. . .0⟩ to |111. . .1⟩. A quantum computer can process all these states

simultaneously, making computations faster.

4.2.2. Entanglement

Entanglement represents the intrinsic non-locality of quantum mechanics, manifesting

when the state of two or more subsystems in a quantum system cannot be decomposed

into individual local states of the subsystems. In an entangled system, the state of each

53

individual particle cannot be defined on its own without considering the states of the

other particles. Although the system as a whole is in a definite state, the individual

components do not possess well-defined separate states. For instance, if two particles

are generated with a total spin of zero, measuring the spin of one particle immediately

determines that the spin of the second particle will be opposite of the spin of first

particle, even if the two particles are far apart.

Two entangled qubits are correlated and the measurement outcome of one of the qubits

instantly determines the measurement outcome of another qubit. This phenomenon is

explained by Bell states, which can be represented as follows by equation (4.4):

																								|Φ±⟩ =
|00⟩ ± |11⟩

√2
	,							 |Ψ±⟩ =

|01⟩ ± |10⟩
√2

																																			(4.4)	

Entanglement gives quantum computing an advantage over classical computing by

enabling faster algorithms, enhancing secure communication, and aiding in

development of fault-tolerant quantum systems.

4.2.3. Decoherence

Decoherence is a key phenomenon in which fragile superpositions in a quantum

system break down, transforming from quantum behaviour to classical behaviour. This

happens when the system interacts with its surroundings or undergoes measurement.

Since the system behaves classically after decoherence, this is important for allowing

quantum states to produce observable outcomes and interface with classical systems.

However, environmental interactions that induce decoherence lead to disruption of

quantum superposition or entangled states, introducing errors and information loss in

qubits. The timescale of decoherence depends on the underlying qubit technology and

the degree of isolation from the external environment. More isolated systems exhibit

longer coherence times. Mitigating decoherence is a major research challenge, and

maintaining quantum coherence is essential for performing accurate and reliable

computations.

54

4.2.4. Interference

In a quantum system, particles are represented as probability waves that indicate a

range of possible positions. These probability waves can interact with one another,

resulting in an interference pattern that influences the likelihood of different

measurement outcomes. Specifically, when these waves reinforce each other, the

phenomenon is referred to as constructive interference, leading to an increased

probability of certain outcomes. Conversely, when the waves cancel each other out,

this is termed destructive interference, resulting in a decreased likelihood of particular

measurement results.

Interference enables quantum algorithms to manipulate the probabilities associated

with various possible outcomes, guiding the system toward the correct solution.

Constructive interference enhances the likelihood of measuring the correct outcome,

while destructive interference effectively reduces the probability of incorrect

outcomes. This manipulation of interference is essential for implementation of many

quantum algorithms, as it enhances both the efficiency and precision of the algorithms.

4.3. Quantum Logic Gates

A qubit is a fundamental unit of quantum information and computation, governed by

quantum mechanical principles like superposition, entanglement, and interference. A

qubit can exist in a superposition of two basis states of |0⟩ and |1⟩ and can also become

entangled with other qubits. A single-qubit quantum system is defined as shown by

equation (4.5):

																																											|0⟩ = �
1

0
�,								 |1⟩ = �

0

1
�																																																				(4.5)

A qubit in superposition has some probability of being |0⟩ and some probability of

being |1⟩, and this can be represented by equation (4.6) :

																																			|𝛹⟩ = 𝑎|0⟩ + 	𝑏|1⟩ = �
𝑎

𝑏
�																																																												(4.6)

where 𝑎 and 𝑏 are complex numbers representing the amplitudes of component states

in the superposition state |𝛹⟩,	with |𝑎|$ +	|𝑏|$ = 1.

55

Quantum logic gates [86] are the operations used to control and change the states of

qubits, similar to how classical gates (AND, OR, and NOT) are used to manipulate

bits. Key Characteristics of quantum gates include:

• Gate Size: Quantum gates act on single or multiple qubits, enabling complex

operations and interactions between qubits.

• Unitary: Quantum gates are inherently reversible operators. An operator 𝑈 is

unitary if the inverse of the operator is equivalent to its conjugate transpose,

meaning 	𝑈>(= 𝑈?. For an 𝑛-qubit quantum gate, the matrix size is 2< × 2<.

• Superposition: Gates can operate on the qubits which are in superposition and can

process all possible states simultaneously.

• Entanglement: Some gates create entanglement, establishing required

correlations between qubits.

4.3.1. Single-Qubit Gates

Single-qubit gates operate on individual qubits. The Hadamard gate (𝐻) is essential

for creating superposition, converting a qubit from standard basis states into an equal

superposition of both, and can also reverse this transformation.

The Pauli gates form a core set, represented by Pauli matrices, and perform operations

like flipping, rotating, or inverting qubits. The set includes the 𝑋, 𝑌, 𝑍 gates, each

corresponding to a rotation of the qubit around respective axes of the Bloch sphere by

π radian. The 𝑋 gate flips the qubit between |0⟩ and |1⟩. The 𝑌 gate performs both a

bit and a phase flip on the qubit. The 𝑍 gate does not change the state |0⟩ while it flips

the phase of the |1⟩. The unitary matrices for Hadamard gate and Pauli gates are

represented by equation (4.7):

	𝐻 =
1
√2

�
1 1

1 −1
� 	,			𝑋 = �

0 1

1 0
� ,				𝑌 = �

0 −𝑖

𝑖 0
� ,					𝑍 = �

1 0

0 −1
�											(4.7)

The phase shift is a set of gates that transform the basis state |1⟩	to	𝑒*@|1⟩, leaving the

measurement probabilities unchanged. Special phase shift gates include the S and the

T gates, applying a phase shift of 𝜋/2 and 𝜋/4 , respectively, to state |1⟩.

The unitary matrices for these gates are shown in equation (4.8):

56

						𝑃ℎ(𝜑) = �
1 0

0 𝑒*@
� ,											𝑆 = �

1 0

0 𝑖
� ,																	𝑇 = �

1 0

0 𝑒*A/C
�																							(4.8)

Rotation gates are the most commonly used parametric gates. They apply a rotation

around one of the axes on the Bloch sphere (X, Y, or Z), with the rotation angle serving

as the parameter. These gates perform operations allowing for more flexibility and

control in quantum algorithms, especially in quantum machine learning, variational

quantum algorithms, and quantum optimization. The unitary matrices for these gates

are shown in the equations (4.9), (4.10) and (4.11), respectively :

																							𝑹#(𝜃) =

⎣
⎢
⎢
⎢
⎡ 𝑐𝑜𝑠

𝜃
2¡ −𝑖𝑠𝑖𝑛

𝜃
2¡

−𝑖𝑠𝑖𝑛
𝜃
2¡

𝑐𝑜𝑠
𝜃
2¡ ⎦

⎥
⎥
⎥
⎤
																																																(4.9)

																					𝑹/(𝜃) =

⎣
⎢
⎢
⎢
⎡𝑐𝑜𝑠

𝜃
2¡ −𝑠𝑖𝑛

𝜃
2¡

𝑠𝑖𝑛
𝜃
2¡

𝑐𝑜𝑠
𝜃
2¡ ⎦

⎥
⎥
⎥
⎤
																																																			(4.10)

																					𝑹D(𝜃) = ¥
𝑒
>*E
$ 0

0 𝑒
*E
$

¦																																																																				(4.11)

4.3.2. Multi-Qubit Gates

Multi-qubit gates operate on multiple qubits simultaneously, harnessing the complete

potential of qubit interactions using entanglement. The commonly used two qubit gates

are SWAP, CNOT, CZ and CP, shown in Table 4.1 with their unitary matrices and

outputs of their application on the basis states |00⟩, 	|01⟩, 	|10⟩, 𝑎𝑛𝑑	|11⟩.

The SWAP gate interchanges states of two qubits. The CNOT gate operates by using

the first qubit as control and second qubit as target. The target qubit is flipped only if

the control qubit is |1⟩. The CZ gate applies a phase flip to the target qubit under the

same condition. The CP gate is a generalization of CZ gate, introducing a phase shift

of 𝑒*@ on the target qubit when the control qubit is in the |1⟩ state. These gates are

used for performing controlled quantum phase rotations and are fundamental to

interference-based quantum algorithms.

57

Table 4.1: Two-Qubit gates and their unitary matrices

Gate Unitary Matrix Application on Basis States

SWAP �

	 	
1 0
0 0

	 	
0 0
1 0

0 1
0 0

0 0
0 1

� |00⟩ 	
-FG3
§⎯⎯© |00⟩, |01⟩ 	

-FG3
§⎯⎯© |10⟩

|10⟩ 	
-FG3
§⎯⎯© |01⟩, |11⟩ 	

-FG3
§⎯⎯© |11⟩

CNOT �

	 	
1 0
0 1

	 	
0 0
0 0

0 0
0 0

0 1
1 0

� |00⟩ 	
,%HI
§⎯⎯© |00⟩, |01⟩

,%HI
§⎯⎯© |01⟩

|10⟩ 	
,%HI
§⎯⎯© |11⟩, |11⟩ 	

,%HI
§⎯⎯© |10⟩

CZ �

	 	
1 0
0 1

	 	
0 0		
0 0			

0 0
0 0

1 0		
0 −1

� |00⟩ 	
,J
§© |00⟩, |01⟩ 		

,J
§©	|01⟩

|10⟩ 	
,J
§© |10⟩, |11⟩ 	

,J
§© −|11⟩

CP �

	 	
1 0
0 1

	 	
0 0
0 0

0 0
0 0

1 0
0 𝑒*@

� |00⟩ 		
,3
§© |00⟩, |01⟩ 	

,3
§© |01⟩

|10⟩ 	
,3
§© |10⟩, |11⟩ 	

,3
§© 𝑒*@|11ª

The Toffoli or CCNOT is a three-qubit gate. It flips the third qubit, target qubit, if the

first two qubits, known as control qubits, are |1⟩. It is a reversible counterpart to the

classical AND gate when considering the third output, making it an important gate for

reversible and quantum computing. The unitary matrix and its application on basis

states is shown by equation (4.10):

				𝑇𝑜𝑓𝑓𝑜𝑙𝑖					 = 						 ⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

|000⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |000⟩, |001⟩ 	

IKLLKM*
§⎯⎯⎯⎯© |001⟩

|010⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |010⟩, |011⟩

IKLLKM*
§⎯⎯⎯⎯©	|011⟩

|100⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |100⟩, |101⟩ 	

IKLLKM*
§⎯⎯⎯⎯© |101⟩

|110⟩ 	
IKLLKM*
§⎯⎯⎯⎯© |111⟩, |111⟩ 	

IKLLKM*
§⎯⎯⎯⎯© |110⟩

																				(4.10)

58

4.3.3. Universal Quantum Gates

Any quantum computation can be implemented by a universal set of quantum gates.

Several examples of these sets are presented in Table 4.2. Clifford gates preserve the

Pauli operators (𝑋, 𝑌, 𝑍) by mapping to other Pauli operators. Pauli matrices are all

involutions (𝑋$ = 𝑌$ = 𝑍$ = 𝐼), and the relations between them are shown by

equation (4.11). Well-known Clifford gates are Pauli (𝑋, 𝑌, 𝑍), Hadamard, CNOT

and SWAP gate.

Table 4.2: Unitary sets of Quantum gates

Sr. No. Universal Gate Set Common Examples

1. Clifford with T {	𝐶𝑙𝑖𝑓𝑓𝑜𝑟𝑑	𝐺𝑎𝑡𝑒𝑠, 𝑇}

2. Single qubit gates with CNOT {𝐻, 𝑆, 𝑇, 𝐶𝑁𝑂𝑇}

3. Rotation based gates with
CNOT

«𝑅#(𝛼), 				𝑅/(𝛽),			𝐶𝑁𝑂𝑇	®

«	𝑅/(𝛽), 				𝑅D(𝛾),			𝐶𝑁𝑂𝑇	®

{𝑅#(𝛼), 						𝑅D(𝛾),			𝐶𝑁𝑂𝑇	}

4.4. Quantum Circuits

Quantum algorithms are implemented using quantum circuits. A quantum circuit

consists of a sequence of quantum gates applied to qubits to carry out the desired

computations. It is represented as a diagram where qubits are shown as horizontal

lines, and quantum gates are placed along these lines. The circuit execution sequence

is from left to right, with each gate applying a specific operation to the input qubits.

Since quantum operations must be reversible, classical logic gates are adapted into

reversible quantum circuits by including extra qubits to store output information. The

circuits implementing the logic of AND, OR, and XOR gates for all possible input

combinations are shown in Figure 4.1.

59

The circuit structure changes with the input to preserve reversibility and accurately

reflect the corresponding classical logic functionality. All the quantum circuits were

developed using Qiskit's QuantumCircuit module.

Figure 4.1: Quantum circuits for classical gates

4.5. Experimental Methodology

The experiments in this study were conducted using Qiskit, a Python-based SDK for

developing and simulating quantum circuits, and the IBM Quantum platform for

executing them on IBM quantum hardware. The detailed step-by-step procedure is

described below:

4.5.1. Qiskit Installation

To begin, Qiskit was installed. Python and pip, the Python package manager, were pre-

installed. A virtual environment was set up to isolate the dependencies of Qiskit and

then it was installed using: “pip install qiskit”. To enable execution on QPUs, the IBM

Runtime module was installed using: “pip install qiskit-ibm-runtime”. Detailed

installation instructions can be found in [87].

60

4.5.2. Quantum Circuit Creation

Quantum circuits were developed by using Qiskit's QuantumCircuit module. The basic

steps for development of quantum circuits are as below:

• Initialization of quantum and classical registers.

• Construction of the quantum circuit.

• Addition of gates to the circuit for carrying out the computations.

• Measurements to map quantum states to classical bits, facilitating result

extraction.

4.5.3. Ideal Simulation

To debug the circuits and verify the correctness of the implementation, the Basic

Simulator was used. This is a local noiseless simulator, supporting up to 24 qubits. The

steps for simulations are as follows:

4.5.4. Noisy Simulation

To emulate real hardware, IBM’s noisy quantum simulators were used. These

simulators incorporate noise models to predict performance on actual quantum

devices. The steps include:

• Import the simulator: “from qiskit.providers.fake_provider import

GenericBackendV2”

• Initialize the backend: “backend=GenerivBackendV2(num_of_qubits)”

• Transpile the circuit:

“from qiskit import transpile”

“circuit1=transpile(circuit, backend)”

• Execute the circuit: “job=backend.run(circuit1)”

• Retrieve the results: “results=job.result()”

61

4.5.5. Execution on Quantum Hardware

Quantum circuits were executed on IBM Quantum physical devices to assess

performance in real-world conditions, including noise, decoherence, and scalability

challenges. The procedure included:

a) User Account Creation:

Users register on the IBM Quantum platform and receive an API token for

authentication. User under the Open Plan are granted access to QPUs for up to 10

minutes per month.

b) Service and Backend Initialization:

The QiskitRuntimeService class was used to interface with IBM Quantum services.

The backends that can be accessed under the Open Plan are “ibm_brisbane”,

“ibm_kyiv”, and “ibm_sherbrooke”. The python code for this is as follows:

c) Circuit Transpilation:

The quantum circuit was transpiled to the optimized and compatible circuit for the

selected backend:

“qc_transpiled=transpile(qc, backend, optimization_level = 3)”

d) Job Submission:

The transpiled circuit was submitted to the backend using the SamplerV2 primitive,

which generates a unique job ID for future reference:

62

e) Result Extraction and Post-Processing:

After job execution, the results were retrieved and measurement counts were

visualized as histograms:

The methodology presents the process of designing, validating, and executing circuits

using Qiskit.

63

CHAPTER 5

QUANTUM ARITHMETIC OPERATIONS

Quantum arithmetic operations are essential for performing computations. These

operations are implemented using quantum algorithms with reversible and unitary

gates that preserve quantum information. Addition forms the core of all arithmetic

operations because the operations of subtraction, multiplication, exponentiation, and

division can be decomposed to repeated forms of addition. Efficient realization of

quantum addition circuits is therefore fundamental, serving as the building block for

higher-level quantum arithmetic.

5.1. Quantum Circuits for Half Adder and Full Adder

A half adder circuit performs the addition of two single-bit numbers and outputs a sum

bit and a carry bit. By combining two half adders, a full adder is formed, which adds

three binary inputs (two data bits and one carry-in bit) and generates a sum and a carry-

out bit. Quantum circuits for these operations are illustrated in Figure 5.1.

Figure 5.1: Quantum circuits for half adder and full adder

5.2. Quantum Circuits for Binary Adder

A binary adder refers to a circuit that adds multiple bits, extending the full adder

concept. Adding two 𝑛-bit numbers requires 𝑛 full adders. In classical computing,

binary adders are built using irreversible logic gates, whereas quantum computation

requires all operations to be unitary and thus reversible. Quantum adders are generally

classified into two main types: based on Toffoli gates and based on the QFT.

64

5.2.1. Toffoli-Based Adder

Toffoli-based quantum adders simulate classical binary addition using reversible

quantum logic gates such as the Toffoli (CCNOT), CNOT, and NOT gates. The adders

were developed for adding 1-bit to 6-bit numbers. Figure 5.2 shows a circuit for adding

two 3-bit numbers (7+7).

Figure 5.2: Toffoli-based adder circuit for 7+7

5.2.2. QFT-Based Adder

QFT-based adders implement binary addition through the Quantum Fourier Transform,

which enables operations in the phase domain. QFT-based adder encodes numbers in

quantum phase space and performs addition by applying controlled phase rotations.

After addition, the inverse QFT is applied to revert the result back to the computational

basis. Circuits were developed for adding 1-bit to 6-bit numbers. Figure 5.3 depicts

the circuit for adding two 2-bit numbers (3+3).

Figure 5.3: QFT-based adder circuit for 3+3

65

5.3. Quantum Comparator Circuit

Comparator circuits for 1-bit to 6-bit numbers were developed. The circuits for 2-bit,

3-bit, and 4-bit comparators are shown by Figures 5.4 (a), (b) and (c), respectively.

Figure 5.4: Comparator circuits for (a) 2bit (b) 3bit (c) 4bit

5.4. Circuit Transpilation

The circuits are transpiled to match the topology of a quantum simulator or hardware.

Figure 5.5(a) is the transpiled circuit for Toffoli adder for 1+1, and Figure 5.5(b) is the

transpiled circuit for QFT adder for 1+1. Transpilation increases the circuit depth.

Figure 5.5: Transpiled circuits for Toffoli and QFT adders for 1+1

66

5.5. Experimental Results

The quantum circuits were initially simulated on IBM’s BasicSimulator to verify the

correctness of implementation. Then, simulations were performed on the noisy

backend to emulate the quantum hardware noise. Finally, the circuits were executed

on IBM's 127-qubit Eagle quantum processor, using the ibm_brisbane and ibm_kyiv

backends via the SamplerV2 primitive in Qiskit Runtime. Each circuit was executed

for 1000 shots. The results are visualized using histograms, where X-axis represents

possible outcomes, and the Y-axis represents frequencies associated with outcomes.

5.5.1. Half Adder and Full Adder Results

Figure 5.6(a) illustrates the results for half-adder, where the sum and carry are

measured with inputs in a maximal superposition of states. During ideal simulation,

all possible outcomes are observed except the outcome 11. This aligns with the

expected outcomes for all inputs: 0 + 0 = 00, 0 + 1 = 01, 1 + 0 = 01, 1 + 1 = 10.

The small frequency of measuring 11 in the noisy simulation and execution on actual

hardware, is attributed to the noise introduced by decoherence.

Figure 5.6: Half adder and full adder results on simulator and QPU

67

Figure 5.6 (b) presents the results for full-adder. The results on ideal simulator align

precisely with theory. The results from noisy simulator incorporate quantum noise

models to simulate the effects of decoherence and gate imperfections. The

experimental results on the QPU via ibm_brisbane are comparable to noisy simulator

results. It is noted that the results on QPU are reliable.

5.5.2. Toffoli-Based Adder Results

Figure 5.7 presents the measurement results for the Toffoli-based adder circuit

executed on noisy simulator for input sizes ranging from 1-bit to 6-bits, with

corresponding output sizes ranging from 2-bit to 7-bits. Subfigures (a) to (f) illustrate

the results for input pairs: (1 + 1), (3 + 3), (7 + 7), (15 + 15), (31 + 31),

𝑎𝑛𝑑	(63 + 63), respectively.

Figure 5.7: Noisy simulator results for Toffoli-based adder

Figure 5.8 presents the results of executing the same circuit on IBM’s QPU via

ibm_brisbane. A comparison of results on noisy simulator and QPU shows that the

noise increases significantly with input size on the QPU compared to the simulator.

68

Figure 5.8: QPU results for Toffoli-based Adder

5.5.3. QFT-Based Adder Results

Figures 5.9 and 5.10 present the results for QFT-based adder on noisy simulator and

IBM QPU respectively, using the same input cases as in Figures 5.7 and 5.8. The noisy

simulator consistently yields correct outputs with highest frequency, demonstrating

stable performance (Figure 5.9).

Figure 5.9: Noisy simulator results for QFT-based adder

69

However, on QPU via ibm_brisbane, the noise impact increases with input size, where

beyond 2-bit inputs (subfigures (c) to (f) in Figure 5.10) , the results become unreliable.

These observations are attributed to quantum decoherence and hardware

imperfections.

Figure 5.10: QPU results for QFT-based adder

5.5.4. Quantum Comparator Results

Table 5.1 presents the frequency of correct outcomes over 1000 executions of the

circuit for quantum comparator on IBM’s noisy simulator and QPU (ibm_brisbane)

for input sizes ranging from 1-bit to 6-bit numbers. Figure 5.11 visualizes accuracy

across both the backends, showing a decline on the QPU as input size grows, especially

beyond 3 bits, due to quantum noise and hardware limitations.

Table 5.1: Quantum comparator results

Input size(#bits) 1 2 3 4 5 6

Simulator 997 990 988 979 978 953

QPU 985 905 877 539 534 479

70

Figure 5.11: Quantum comparator accuracy on simulator and QPU

5.6. Comparison of Toffoli and QFT adders

Table 5.2 presents the accuracy of both the adders on the noisy simulator, Eagle

processor accessed via ibm_brisbane, and accessed via ibm_kyiv. The observations

presented in the table demonstrate that the Toffoli-based adder outperforms the QFT-

based adder across all simulations. On QPUs, the Toffoli-based adder shows correct

outcomes with higher frequency among all results for input sizes up to 5-bit numbers.

In contrast, for QFT-based adder, this trend is observed only up to 2-bit inputs. The

bar graph of Figure 5.12 shows the higher accuracy of Toffoli adder.

Table 5.2: Noisy simulator and QPU results for Toffoli and QFT adders

Input
size

(#bits)

Noisy Simulator QPU (ibm_brisbane) QPU (ibm_kyiv)

Toffoli
adder

QFT
adder

Toffoli
adder

QFT
adder

Toffoli
adder

QFT
adder

1 976 969 862 902 927 842

2 947 903 660 469 700 539

3 885 809 447 35 370 82

4 843 703 129 19 312 49

5 831 661 93 19 143 15

6 771 528 54 8 62 9

71

Figure 5.12: Accuracy comparison of Toffoli- and QFT-based adders on QPU

5.7. CONCLUSION

The performance of quantum arithmetic operations was evaluated on IBM QPUs,

analysing the impact of circuit depth and noise on computational accuracy. Results

showed that circuit depths and noise levels increase with input size, resulting in

frequent incorrect outcomes. For 𝑛-bit numbers, the Toffoli-based circuit requires

3𝑛 + 1 qubits, the QFT-based adder requires 2𝑛 + 1	qubits, and the comparator circuit

needs 2𝑛 qubits. The Toffoli-based adder achieves lower circuit depth than QFT-based

adder, as the latter introduces additional complexity by incorporating the QFT at the

beginning and its inverse at the end of computations. Therefore, the Toffoli-based

adders demonstrated higher accuracy for input sizes up to 5 bits, while the QFT-based

adders maintained accuracy only for inputs up to 2 bits. Since increased circuit depth

leads to execution times longer than the qubit coherence times and hence introducing

errors. These findings highlight scalability challenges in quantum arithmetic on current

quantum hardware and the need for noise-mitigation strategies to enhance

computational reliability on quantum computers.

72

CHAPTER 6

 OPTIMIZATION AND PARALLEL

IMPLEMENTATION OF NEQR

6.1. Quantum Image Representation

Quantum Image Representation (QIR) relies on fundamental principles of

superposition and entanglement. NEQR (Novel Enhanced Quantum Representation)

is a method to represent digital images on a quantum computer. In NEQR, a binary

representation of pixel positions and intensities is stored in the computational basis

states of quantum bits, enabling efficient image processing operations. This

representation is suitable for reversible operations and is useful for tasks like edge

detection, encryption, and watermarking. Table 6.1 summarizes the quantum gates for

NEQR implementation. It presents the gate types, symbols, Qiskit methods, and their

unitary matrices, essential for encoding classical images into quantum images.

Table 6.1: Quantum gates for NEQR-based image representation

Name Type Circuit
Symbol Qiskit method Unitary

Hadamard
(H)

Single-
qubit

qc. h(q)
1
√2

81 1
1 −19

NOT
(X)

Single-
qubit

qc. x(q) 80 1
1 09

CNOT
(CX)

Two-
qubit

qc. cx(q0, q1) ;

	 	
1 0
0 1

	 	
0 0
0 0

0 0
0 0

0 1
1 0

<

TOFFOLI
(CCX)

Three-
qubit

qc. ccx(q0, q1, q2)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Measure Variable
-size

qc.measure(q, c) (Collapses quantum state to

classical bit)

73

An image is mathematically described as a function 𝑓(𝑋, 𝑌), where 𝑋 and 𝑌 are spatial

coordinates. The value of function at each coordinate (𝑋, 𝑌), represents image

intensity, commonly denoted as 𝐼(𝑋, 𝑌). The NEQR method uses two qubit sequences

for encoding digital image pixels into quantum states, one for encoding the spatial

coordinates or pixel positions, and the other for encoding the intensity values. Both the

sequences are encoded in computational basis states.

The number of qubits is determined by both the image size and the range of gray levels

present in the image. For instance, for an image of size 2< × 2<, 2𝑛 qubits are allocated

for pixel position encoding, with 𝑛	for rows and 𝑛 for columns. If the image contains

2! gray levels, then 𝑚 qubits are required for intensity encoding, resulting in a total

of 2𝑛 +𝑚 qubits. To preserve the pixel-to-intensity mapping the two qubit sequences

encoding pixel positions and intensity values are entangled.

Figure 6.1 displays a 2  ×  2 grayscale image, where each pixel is annotated with its

intensity in both decimal and 8-bit binary formats, and position in binary format. The

corresponding quantum state representation, denoted as |QI⟩ is also presented in the

figure. The representation encodes the image using position and intensity qubits using

the NEQR model.

Figure 6.1: A 2 × 2 image and its quantum representation

The quantum state of an image of size 2< × 2<	with 256 intensity levels is given by

equation (6.1):

																											

|𝑄𝐼⟩ 		= 			
1
2<
	 4 	4 	|𝐼(𝑋, 𝑌)⟩	|𝑋𝑌⟩

$%>(

N'+

$%>(

O'+ 	

																	= 		
1
2< 	

4 	4 	´	µ𝐼ONP ª
:

P'+

	
$%>(

N'+

$%>(

O'+

|𝑋𝑌⟩

																																								(6.1)

74

6.2. Algorithm for Circuit Development

Algorithm presented in Figure 6.2 outlines the procedure for constructing a quantum

circuit that transforms a classical image into its quantum counterpart using the NEQR

method on the IBM Qiskit framework. The algorithm provides a step-by-step method

for mapping classical image pixel data onto quantum registers, namely position

register and intensity register. The position register is initialized into a superposition

state, allowing simultaneous representation of all the pixel locations. The position

register is then entangled with the intensity register, which encodes pixel intensity

values into quantum states. The entanglement links each pixel's position with its

corresponding intensity, enabling a correct quantum image representation and

facilitating efficient operations on the quantum image.

Figure 6.2: Algorithm for quantum image representation using NEQR

6.3. Optimization of MCX Gate Decomposition

In NEQR, the position register functions as the control, and intensity register as the

target or working register. Entanglement is established from control register to target

75

register, binding pixel positions to their corresponding intensity values. This is

implemented using multi-controlled X (MCX) gates, which require decomposition

into elementary gates — specifically Toffoli (CCNOT) gates — for compatibility with

current quantum hardware. Therefore, a 𝑘-controlled X (𝑘-CNOT) gate, where 𝑘

denotes the number of qubits in position register, is decomposed into multiple Toffoli

gates to enable practical realization of the circuit on existing quantum processors.

6.3.1. Decomposition Algorithm

The decomposition method proposed in [73] requires 4𝑘 − 8 Toffoli gates with a

circuit depth of 4𝑘 − 8. The method is optimized reducing the number of Toffoli gates

to 2𝑘 − 3, achieving a circuit depth of 2𝑘 − 3. In quantum computing, the circuit

depth serves a role analogous to time complexity in classical computing, hence a

reduction in circuit depth enhances the computational efficiency. The algorithm for

decomposition is presented by Figure 6.3.

Figure 6.3: Algorithm for MCX to CCX decomposition

Illustrative examples of 3-controlled and 4-controlled X gate decompositions using the

algorithm are presented by Figure 6.4(a) and Figure 6.4(b) , respectively.

76

Figure 6.4: Optimized decomposition of 3-CX and 4-CX Gates

6.3.2. Comparative Analysis

The decomposition of a 4-controlled X (4-CX) gate into multiple Toffoli (CCX) gates,

as described in [73], has been redrawn and is presented in Figure 6.5 (a) for

comparison. The corresponding optimized version of this decomposed circuit is shown

in Figure 6.5 (b). A comparison of these two circuits demonstrates a significant

reduction in circuit depth, with the original circuit having a depth of 8, whereas the

optimized circuit having a reduced depth of 5.

Figure 6.5: (a) Original circuit (b) Optimized circuit

Figure 6.6 presents the comparative analysis of circuit depths between the original and

optimized methods using line graphs. The X-axis denotes the number of control qubits,

and the Y-axis represents the circuit depth after decomposition. The blue line

illustrates the depth associated with the original method, and the green line depicts the

depth associated with optimized method. As the number of control qubits increases,

the optimized method consistently achieves a lower circuit depth, highlighting its

77

scalability and efficiency. This reduction in depth contributes to faster execution and

improved resilience against quantum decoherence, thereby enhancing overall

computational reliability.

Figure 6.6: Comparison of circuit depths in MCX decomposition

6.4. NEQR Circuit for a 𝟐 × 𝟐 Image

Figure 6.7 shows the optimized NEQR circuit for quantum image representation of the

image of Figure 6.1. Since the image size is 2 × 2, the position register utilizes 2 qubits

to encode the spatial coordinates. The intensity values range from 0 to 255, requiring

8 qubits for the intensity register.

Figure 6.7: NEQR circuit for image of Figure 6.1

Therefore, a total of 10 qubits are required to encode the image into quantum form.

The circuit depth, which varies based on image content, is 20 for this particular

78

example. The encoding of each of the four pixels is delineated by barriers shown by

gray lines for improving understandability of the intensity encoding process.

6.5. Parallel Bit-Plane NEQR

The Parallel Bit-Plane NEQR is an extension of the sequential NEQR representation

to enhance the efficiency of encoding classical images into quantum states. A bit-plane

refers to a binary layer extracted from the binary representation of pixel intensities,

where each intensity, typically represented using 8 bits, contributes one bit to each of

the eight bit-planes. The parallel model decomposes the image into its constituent bit-

planes, with each plane independently and concurrently encoded using a dedicated

quantum circuit. Parallelizing the encoding process reduces the circuit depth compared

to the sequential NEQR approach. The reduction in depth not only improves the

execution speed on quantum hardware but also minimizes quantum noise due to

shorter coherence windows. The use of separate quantum circuits for each bit-plane

enhances scalability and allows more flexible manipulation of image features at

different intensity and significance levels, thereby supporting advanced quantum

image processing such as filtering, compression, and segmentation.

6.5.1. Quantum Representation

For quantum representation of an image of size 2 × 2, pixel positions (𝑋, 𝑌) require 2

qubits, representing four position states as below:

|𝑋𝑌⟩ 	= 	 |00⟩, 		|01⟩, 		|10⟩, 		|11⟩

The intensity of these pixels is represented by 8 qubits, corresponding to 8-bit binary

value of the intensity. In the parallel bit-plane NEQR, each of these intensity bits is

entangled with a dedicated position register, allowing for parallel construction of

quantum circuit for each bit-plane. The composite quantum state for the entire 2 × 2

image is expressed by equation (6.2):

																															= 			´¶
1
2	4 	4 	µ𝐼ONP ª	

(

N'+

(

O'+

|𝑋𝑌⟩P·
:

P'+

																																																(6.2)

79

Expanding the formulation to represent individual pixels along with their

corresponding 8-bit intensity values, the quantum state can be expressed by equation

(6.3) as follows:

where

• |𝑋𝑌⟩P represents the 2-qubit pixel encoding for the 𝑘QR	intensity qubit

• µ𝐼ONP ª is the 𝑘QR qubit of the intensity value at pixel (𝑋, 𝑌)

Thus, the quantum state for an individual bit-plane for a 2< × 2< image can be defined

as equation (6.4):

																																|𝑄𝐼P⟩ 		= 			
1
2< 4 4µ𝐼ONP ª

$%>(

N'+

$%>(

O'+

|𝑋𝑌⟩P																																																(6.4)

The full quantum state, representing all bit-planes of the image, is expressed by

equation (6.5):

											|𝑄𝐼T*Q>UM"<Vª = 	´	|𝑄𝐼P⟩
:

P'+

																																					

																																					|𝑄𝐼T*Q>UM"<Vª 	= 	´¸
1
2< 4 4µ𝐼ONP ª

$%>(

N'+

$%>(

O'+

|𝑋𝑌⟩P¹
:

P'+

																(6.5)

6.5.2. Circuit for a 𝟐 × 𝟐 Image

Figure 6.8 presents the quantum circuit for the 2 × 2 image depicted in Figure 6.1,

using the parallel bit-plane NEQR. Pixel positions are encoded using a 2-qubit register.

As the image contains 8 bit-planes, the circuit requires 8 separate position registers –

one for each bit-plane – resulting in a total of 16 position qubits. Including the 8 qubits

required for intensity encoding, the complete quantum image representation requires

24 qubits. Compared to sequential NEQR, the circuit depth is reduced from 20 to 11,

demonstrating improved efficiency. The encoding of individual pixels is delineated by

barriers (dotted gray lines) in the circuit diagram shown in the Figure 6.8.

80

Figure 6.8: Parallel Bit-Plane NEQR circuit for image of Figure 6.1

6.5.3. Circuit Complexity Analysis

In quantum computing, circuit depth is analogous to time complexity in classical

computing, while circuit width (the number of qubits used) is analogous to space

complexity. The original NEQR has a low space complexity of only 2𝑛 +𝑚 qubits

for an image of size 2< × 2< with 2! intensity levels. The time complexity or circuit

depth of NEQR grows as O(8 ∗ 2$<). Given that circuit depth has a direct impact on

quantum decoherence and the fidelity of computation, minimizing it is essential for

practical implementations on NISQ devices.

The parallel Bit-Plane NEQR reduces the circuit depth (i.e., time complexity) over

sequential NEQR by enabling simultaneous encoding and processing of bit-planes.

Although it requires higher number of qubits, 16𝑛 +𝑚, compared to the sequential

81

NEQR. This trade-off aligns with current trends in quantum hardware development,

where increasing the number of qubits is generally more feasible than extending

coherence times to support deeper circuits. Recent advances in superconducting and

ion-trap technologies have enabled scalable architectures with hundreds of qubits, yet

coherence time remains a critical bottleneck due to environmental noise and physical

limitations of quantum systems.

6.6. Experimental Results

6.6.1. MNIST Dataset

The MNIST dataset [88], shown by Figure 6.9, comprises thousands of 28 × 28

images representing handwritten digits from 0 to 9. It serves as a standard benchmark

for evaluating and training models in image classification and pattern recognition

tasks. This dataset is selected due to its small size (28 × 28) and grayscale nature,

requiring less number of qubits and lower circuit depths enabling efficient encoding.

Although larger images can also be encoded by dividing the image into smaller

subblocks and then encoding each block separately. The MNIST dataset can be

simulated without such division.

Figure 6.9: Sample MNIST dataset

6.6.2. Basic Operations on NEQR Images

The optimized NEQR method was implemented and applied on original MNIST

dataset. The original images in this dataset were encoded and image operations were

applied to the encoded images, with an exponential speedup over classical image

processing. Basic image operations such as image negation, rotation, and intensity

82

superposition are applied on the images as illustrated by Figure 6.10. For image

negation, a NOT gate (X) is applied to the intensity qubits, inverting pixel intensity

values. For image rotation, the corresponding qubits in the row and column quantum

registers are swapped using SWAP gate, followed by the application of NOT gate to

the column register. Similarly, for intensity superposition, Hadamard gate (H) is

applied to the intensity register, obfuscating the image, and preventing its direct

retrieval.

Figure 6.10: Circuits for basic operations on QIR of MNIST images

Quantum images must be measured to observe the results of processing operations, as

they exist in superposition and require collapse into a classical form. This step is

crucial for extracting meaningful information and visualizing transformations.

The measured outcomes, shown in Figure 6.11, illustrate the effects of operations like

image negation, rotation, and intensity superposition. In classical computing, the time

complexity for image processing operations on an 2< × 2< image is 𝑂(2< × 2<). On

quantum computers, this complexity is reduced to 𝑂(1) because all pixels exist in

83

superposition, allowing simultaneous manipulation of all intensity values in a single

operation, regardless of image size.

These operations on quantum images were performed using an ideal quantum

simulator provided by IBM Qiskit's AerSimulator backend. The simulator was

initialized with the ‘matrix_product_state’ method, which enables efficient simulation

of quantum circuits up to 63 qubits, when the circuit exhibits limited entanglement.

The backend is as follows:

from qiskit_aer import AerSimulator

backend = AerSimulator(method='matrix_product_state')

Figure 6.11: (a) Original (b) Negation (c) Rotation (d) Superposition

6.6.3. Comparison of Sequential and Parallel NEQR

Both sequential and parallel bit-plane NEQR were implemented and simulated on

MNIST dataset – both in ideal (noiseless) and noisy environments – and executed on

quantum hardware. The images were down sampled to smaller sizes such as 16 × 16,

8 × 8 and 4 × 4 for conducting performance comparisons with different resolutions.

Abstract circuit depths and simulation times were calculated using an ideal simulator,

84

transpiled circuit depths were obtained on a noisy simulator. Execution times and

circuit depths were measured on the IBM Eagle quantum processor.

§ Ideal Simulation

Ideal simulation isolates algorithmic performance from hardware-induced noise,

enabling an evaluation of theoretical designs. Its primary objective is to verify

implementation correctness and facilitate algorithmic analysis by observing theoretical

principles in a controlled, noise-free environment.

Circuits for both the original sequential NEQR and the Parallel Bit-Plane NEQR

method are developed and simulated on MNIST dataset to compare their circuit

depths. The correctness of the implementation is validated by quantum encoding of an

image, followed by quantum measurement and classical post-processing, for lossless

reconstruction. To ensure reliable reconstruction, the number of shots per simulation

should exceed the total number of pixels. In this study for ideal simulations, a shot

count equal to eight times the image size was used to achieve lossless reconstruction.

Post-processing involves extracting pixel intensity values from the measured intensity

qubits and pixel position values from the position qubits. The image is then

reconstructed by mapping the extracted intensities to their corresponding positions in

the classical image array. Under ideal simulation conditions, a correctly implemented

circuit yields a MSE of zero between original and reconstructed images. It was

observed that both the sequential and parallel methods achieved an MSE of zero for

images with resolutions of 4 × 4, 8 × 8, and 16 × 16, thereby confirming the

correctness of the implementations.

Table 6.2 reports the circuit depths for these implementations for images with

resolutions of 4 × 4, 8 × 8 and 16 × 16, with comparative analysis shown by Figure

6.12. The results show that parallel NEQR achieves lower circuit depths across all

images when compared to sequential NEQR. The gap between the two models widens

with increase in image size.

85

Table 6.2: Circuit depths for sequential and parallel NEQR for MNIST digits

MNSIT
Digits

𝟒 × 𝟒 Images 𝟖 × 𝟖 Images 𝟏𝟔 × 𝟏𝟔 Images

Sequential Parallel Sequential Parallel Sequential Parallel

0 215 89 1404 435 5937 1842

1 188 54 1020 349 3456 1009

2 330 99 1361 404 7835 1983

3 260 92 1470 437 6490 1763

4 235 75 1398 464 5765 1646

5 315 87 1279 433 6271 1759

6 215 73 1182 415 4696 1434

7 225 82 1101 380 4467 1342

8 315 99 1457 433 6921 1939

9 220 75 1226 413 4945 1505

Table 6.3 reports the simulation times for the MNIST images with resolutions of 4 × 4,

8 × 8 and 16 × 16 with 128, 512, 2048 shots respectively.

Table 6.3: Simulation time for sequential and parallel NEQR on ideal simulator

MNSIT
Digits

𝟒 × 𝟒 (𝟏𝟐𝟖 shots)
(milliseconds)

𝟖 × 𝟖 (𝟓𝟏𝟐 shots)
(milliseconds)

𝟏𝟔 × 𝟏𝟔 (𝟐𝟎𝟒𝟖 shots)
(seconds)

Sequential Parallel Sequential Parallel Sequential Parallel

0 73 85 796 394 24.10 2.17

1 56 90 394 343 04.11 1.60

2 90 93 634 377 33.80 2.37

3 79 99 756 399 26.70 2.15

4 62 88 690 381 18.40 2.11

5 75 97 672 336 24.50 2.22

6 72 99 619 339 13.80 1.95

7 50 86 507 355 10.10 2.06

8 84 94 957 393 33.40 2.19

9 62 89 671 369 14.50 2.01

86

The results demonstrate that the performance gain is modest for low-resolution images

(e.g., at 4 × 4, simulation times are slightly higher for the parallel model due to parallel

overhead), the benefits become significant with image size. For 8 × 8 images, the

parallel model consistently outperforms the sequential counterpart, reducing

simulation times by over 40–50% on average. Most notably, for 16 × 16 images, the

parallel approach achieves more than a tenfold reduction in simulation time, lowering

execution from over 20 seconds in the sequential model to under 2.5 seconds.

Figure 6.12: Circuit depth comparison for ideal simulation

87

§ Noisy Simulation

For noisy simulation, the implementations were simulated using IBM Qiskit’s

Fake127QPulseV1 backend, which is part of the FakeBackendV2 series. It emulates

the noise of a 127-qubit IBM quantum processor. The circuits were transpiled to match

the backbend’s qubit layout and error model, using a fixed seed (42) to ensure

reproducibility. Transpilation, similar to classical compilation, increases circuit depth.

The final simulations were executed using the AerSimulator:

Table 6.4 reports the circuit depths on noisy simulator for both sequential and parallel

NEQR implementations, with circuit depths shown by bar graphs in Figure 6.13.

Table 6.4: Transpiled circuit depths for sequential and parallel NEQR on noisy
simulator

MNSIT
Digits

𝟒 × 𝟒 Images 𝟖 × 𝟖 Images 𝟏𝟔 × 𝟏𝟔 Images

Sequential Parallel Sequential Parallel Sequential Parallel

0 3508 1517 28079 10230 108401 39467

1 3005 1353 17623 7505 62033 25034

2 5554 1824 24138 9876 145050 41967

3 4249 1930 25482 11699 115305 43963

4 3913 1496 24176 10635 105477 40473

5 5334 1615 22673 9795 113426 42025

6 3523 1472 20770 8223 84302 33735

7 3688 1283 18547 9083 78647 31721

8 5312 1742 26133 10640 124394 44304

9 3413 1470 21673 8964 89627 38982

88

A comparison of the transpiled circuit depths for sequential and parallel NEQR

implementations demonstrates that the parallel Bit-Plane NEQR model achieves

significantly lower circuit depths. On average, the parallel model reduces the circuit

depth by approximately 50%–70%, with the improvement becoming more substantial

as image resolution increases.

Figure 6.13: Circuit depth comparison for noisy simulation

§ Eagle Processor Results

To compare the performance of both the sequential and parallel models on quantum

hardware, the implementations were executed on Eagle processor via IBM Quantum

platform. The QiskitRuntimeService was used to interface with IBM Quantum

89

services using API token provided during user registration. The backend

“ibm_brisbane” was selected for circuit execution. The python code for backend

initialization is as follows:

The quantum circuit was transpiled to the optimized circuit compatible to the backend:

qc_transpiled=transpile(qc, backend, optimization_level = 3)

depth=qc_transpiled.depth()

The transpiled circuit was submitted to the backend using the SamplerV2 primitive,

which generates a unique job ID for future reference:

The circuits were applied to a subset of 8 × 8 MNIST digit images (digits 0–6). Circuit

depts and execution times are presented in Table 6.5.

Table 6.5: Observations for Sequential and Parallel NEQR on QPU

MNSIT
Digits
(𝟖 × 𝟖)

Transpiled Circuit
depth Depth

reduction
(%)

Execution time
(seconds) Time

reduction
(%) Sequential Parallel Sequential Parallel

0 66361 21181 68 49 18 63

1 44039 15332 65 33 13 61

2 64018 22209 65 48 19 60

3 66076 23314 65 50 19 62

4 68515 23364 66 52 20 62

5 54518 23155 58 41 19 54

6 58139 22562 61 42 19 55

90

The results demonstrate that the parallel Bit-Plane NEQR model significantly reduces

circuit depth and execution time compared to the sequential NEQR model across all

tested digits. The reduction in circuit depths is observed from 58% to 68% , and the

reduction in execution time is observed from 54% to 63%.

6.6.4. Quantum Image Obfuscation

Quantum image obfuscation offers significantly enhanced security compared to

classical image obfuscation by leveraging key quantum principles of superposition,

entanglement, and no-cloning theorem. Unlike classical methods like pixel scrambling

or standard encryption, NEQR-based obfuscation generates a quantum state with

exponentially larger state space, thereby making unauthorized reconstruction highly

challenging. The use of unitary quantum gates ensures that the process remains fully

reversible, allowing accurate de-obfuscation when the appropriate inverse operations

are applied. In this study, the Hadamard operation is used as the core mechanism.

Despite its simplicity, the Hadamard gate serves as a powerful tool for obfuscation.

When applied to qubits encoding pixel positions or intensity values, it transforms

computational basis states into uniform superpositions, dispersing image information

and effectively concealing both position and intensity-related features.

Figure 6.12 presents the block diagram of quantum image obfuscation and recovery.

The process starts with encoding a 128 × 128 grayscale image into a quantum state

using the parallel-bit-plane NEQR representation. Due to resource constraints –

hardware as well as simulator constraints – it is not feasible to process the entire image

simultaneously. Therefore, the image is divided into smaller blocks (16 × 16), and

quantum operations are applied independently to each block. The resulting blocks are

then recombined to reconstruct the complete obfuscated image. To perform

obfuscation, Hadamard gate is applied to all intensity qubits, converting their

computational basis states into uniform superpositions and thereby scrambling the

image information in the quantum domain. The obfuscated quantum state can then be

transmitted securely. At receiver, the original image is recovered by applying

Hadamard transformation to the intensity qubits followed by quantum measurement.

The symmetric use of Hadamard operations ensures a reversible and lossless recovery

of the original image.

91

Figure 6.14: Quantum image obfuscation and recovery

6.7. Conclusion

In this work, the NEQR was first optimized by reducing the circuit depth for

decomposition of multi-controlled quantum gates. Then, to further improve efficiency,

a parallel version of NEQR was implemented that operates on the bit-planes of an

image reducing the circuit depth. Experimental results showed that the parallel NEQR

reduces circuit depth and execution time, thereby minimizing quantum errors

associated with decoherence.

Quantum image processing demonstrates exponential speedup over classical

approaches for fundamental operations. For instance, image negation is achieved by

applying a NOT gate to the intensity qubits, requiring only a circuit depth of 1. Image

rotation is accomplished by swapping the row and column qubits, followed by a NOT

gate on the column register, resulting in a circuit depth of only 2. Similarly, quantum

image obfuscation is implementable with a circuit depth of 1. Quantum circuits applied

to NEQR encoded images enable advanced tasks such as quantum steganography,

steganalysis, and image encryption using lightweight schemes with enhanced

efficiency and security compared to classical methods. Additionally, quantum

techniques for edge detection and filtering can be leveraged to improve feature

extraction, facilitating more effective quantum image classification.

92

REFERENCES

[1] A. K. Sahu and G. Swain, “A Review on LSB Substitution and PVD Based Image

Steganography Techniques,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 2, no. 3, p. 712, 2016.

[2] D. Kumar, V. K. Sudha, N. Manikandan, and others, “Efficient three layer secured

adaptive video steganography method using chaotic dynamic systems,” Sci Rep,

vol. 14, p. 18301, 2024.

[3] S. Kumar, A. Gupta, and G. S. Walia, “Reversible data hiding: A contemporary

survey of state-of-the-art, opportunities and challenges,” Applied Intelligence, vol.

52, pp. 7373–7406, 2021.

[4] J. M. Barton, “Method and apparatus for embedding authentication information

within digital data,” Jul. 1997.

[5] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Reversible Data Hiding,” in

Proceedings of the International Conference on Image Processing (ICIP),

Rochester, NY, USA, 2002.

[6] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless generalized-LSB

data embedding,” IEEE Transactions on Image Processing, vol. 14, no. 2, pp. 253–

266, 2005.

[7] K. F. Rafat and S. M. Sajjad, “Advancing Reversible LSB Steganography:

Addressing Imperfections and Embracing Pioneering Techniques for Enhanced

Security,” IEEE Access, vol. 12, pp. 143434–143457, 2024.

[8] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 16, no. 3, pp.

354–362, 2006.

[9] M. Fallahpour and M. H. Sedaaghi, “High capacity lossless data hiding based on

histogram modification,” IEICE Electronics Express, vol. 4, no. 7, pp. 205–210,

Apr. 2007.

[10] Z. Pan, S. Hu, X. Ma, and others, “Reversible data hiding based on local histogram

shifting with multilayer embedding,” J Vis Commun Image Represent, vol. 31,

2015.

93

[11] K. S. R. Murthy and M. V Manikandan, “A Block-wise Histogram Shifting based

Reversible Data Hiding Scheme with Overflow Handling,” in 11th International

Conference on Computing, Communication and Networking Technologies

(ICCCNT), Kharagpur, India, 2020.

[12] J. Hao, P. Ping, X. Peng, and others, “Reversible data hiding scheme based on

image partitioning and histogram shifting,” in IEEE 8th International Conference

on Big Data Computing Service and Applications, Newark, CA, USA, 2022, pp.

27–34.

[13] S. K. Khudhair, M. Sahu, R. K. R., and others, “Secure Reversible Data Hiding

Using Block-Wise Histogram Shifting,” Electronics (Basel), vol. 12, p. 1222, 2023.

[14] C. C. Chang, W. L. Tai, and K. N. Chen, “Lossless Data Hiding Based on

Histogram Modification for Image Authentication,” in IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing, 2008, pp. 506–511.

[15] K. H. Jung and K. Y. Yoo, “Data Hiding Method using image interpolation,”

Comput Stand Interfaces, vol. 31, no. 2, pp. 465–470, 2009.

[16] C. F. Lee and Y. L. Huang, “An efficient image interpolation increasing payload in

reversible data hiding,” Expert Syst Appl, vol. 39, no. 8, pp. 6712–6719, 2012.

[17] H. Ye, K. Su, X. Cheng, and others, “Research on reversible image steganography

of encrypted image based on image interpolation and difference histogram shift,”

IET Image Process, vol. 16, pp. 1959–1972, 2022.

[18] A. Benhfid, E. B. Ameur, and Y. Taouil, “Reversible steganographic method based

on interpolation by bivariate linear box-spline on the three directional mesh,”

Journal of King Saud University – Computer and Information Sciences, vol. 32,

pp. 850–859, 2020.

[19] F. S. Hassan and A. Gutub, “Novel embedding secrecy within images utilizing an

improved interpolation-based reversible data hiding scheme,” Journal of King Saud

University - Computer and Information Sciences, vol. 34, no. 5, pp. 2017–2030,

2022.

[20] R. Punia, A. Malik, Aruna, and S. Singh, “Innovative image interpolation based

reversible data hiding for secure communication,” Discover Internet of Things,

2023.

94

[21] J. Tian, “Reversible Data Embedding Using a Difference Expansion,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 13, no. 8, pp.

890–896, 2003.

[22] A. M. Alattar, “Reversible watermark using the difference expansion of a

generalized integer transform,” IEEE Transactions on Image Processing, vol. 13,

no. 8, pp. 1147–1156, 2004.

[23] D. M. Thodi and J. J. Rodríguez, “Expansion Embedding Techniques for

Reversible Watermarking,” IEEE Transactions on Image Processing, vol. 16, no.

8, pp. 721–730, 2007.

[24] A. Arham and O. S. Riza, “Reversible Data Hiding Using Hybrid Method of

Difference Expansion on Medical Image,” JITEKI, vol. 6, no. 1, pp. 11–19, 2020.

[25] C. Chang, Y. Huang, and T. Lu, “A difference expansion based reversible

information hiding scheme with high stego image visual quality,” Multimed Tools

Appl, 2017.

[26] A. Arham and H. A. Nugroho, “Enhanced reversible data hiding using difference

expansion and modulus function with selective bit blocks in images,”

Cybersecurity, vol. 7, p. 61, 2024.

[27] S. Kumar, G. S. Walia, and A. Gupta, “An efficient separable reversible data hiding

method based on bit pair difference at pixel level,” The Imaging Science Journal,

pp. 1–14, 2024, doi: 10.1080/13682199.2024.2430874.

[28] M. Fallahpour, “Reversible image data hiding based on gradient adjusted

prediction,” IEICE Electronics Express, vol. 5, no. 20, pp. 870–876, 2008.

[29] J. Wang, J. Ni, and X. Zhang, “Rate and Distortion Optimization for Reversible

Data Hiding Using Multiple Histogram Shifting,” IEEE Trans Cybern, vol. 47, no.

2, pp. 315–326, 2017.

[30] S. Kim, X. Qu, V. Sachnev, and others, “Skewed histogram shifting for reversible

data hiding using a pair of extreme predictions,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 29, no. 11, pp. 3236–3246, 2019.

[31] J. Wang, X. N. J. Chen, N. Mao, and others, “Multiple histograms-based reversible

data hiding: Framework and realization,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 30, no. 8, pp. 2313–2328, 2020.

95

[32] M. Xiao, X. Li, Y. Zhao, and others, “A Novel Reversible Data Hiding Scheme

Based on Pixel-Residual Histogram,” ACM Transactions on Multimedia

Computing, Communications, and Applications, vol. 19, no. 1, 2023.

[33] L. Wang, Y. Huang, Y. Zhang, and others, “An effective steganalysis algorithm for

histogram-shifting based reversible data hiding,” Computers, Materials &

Continua, vol. 64, no. 1, 2020.

[34] L. Dong, J. Zhou, W. Sun, and others, “First steps toward concealing the traces left

by reversible image data hiding,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 67, no. 5, pp. 951–955, 2020.

[35] H. Shi, B. Hu, J. Geng, and others, “Trace Concealment Histogram-Shifting-Based

Reversible Data Hiding with Improved Skipping Embedding and High-Precision

Edge Predictor,” Mathematics, vol. 10, p. 4249, 2022.

[36] USC Signal and I. P. Institute, “The USC-SIPI Image Database,” 1997.

[37] S. N. V. J. D. Kosuru, A. Pradhan, K. A. Basith, and others, “Digital Image

Steganography With Error Correction on Extracted Data,” IEEE Access, vol. 11,

pp. 80945–80957, 2023.

[38] L. Y. Por, D. Beh, T. F. Ang, and others, “An enhanced mechanism for image

steganography using sequential colour cycle Algorithm,” International Arab

Journal of Information Technology, vol. 10, 2013.

[39] R. Al-Jawry and H. Alshrebaty, “High PSNR Using Fibonacci Sequences in

Classical Cryptography and Steganography Using LSB,” International Journal of

Intelligent Engineering and Systems, 2023.

[40] F. Petitcolas, “Watermarking Image Database.”

[41] P. Bas, T. Filler, and T. Pevný, “Break Our Steganographic System: The Ins and

Outs of Organizing BOSS,” in International Workshop on Information Hiding,

Springer, 2011, pp. 59–70.

[42] Kaggle, “BOSSBase & BOWS2 Dataset,” 2023.

[43] J. Fridrich, M. Goljan, and R. Du, “Reliable detection of LSB steganography in

color and grayscale images,” in Proceedings of 2001 Workshop on Multimedia and

Security, 2001, pp. 27–30.

[44] P. Wang, Z. Wei, and L. Xiao, “Pure spatial rich model features for digital image

steganalysis,” Multimed Tools Appl, vol. 75, 2016.

96

[45] M. Boroumand, M. Chen, and J. Fridrich, “Deep Residual Network for Steganalysis

of Digital Images,” IEEE Transactions on Information Forensics and Security, vol.

14, no. 5, pp. 1181–1193, May 2019.

[46] R. P. Feynman, “Simulating physics with computers,” International Journal of

Theoretical Physics, vol. 21, no. 6, pp. 467–488, 1982, doi: 10.1007/BF02650179.

[47] D. Deutsch, “Quantum theory, the Church–Turing principle and the universal

quantum computer,” Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, vol. 400, no. 1818, pp. 97–117, 1985, doi:

10.1098/rspa.1985.0070.

[48] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,”

Proc R Soc Lond A Math Phys Sci, vol. 439, no. 1907, pp. 553–558, 1992, doi:

10.1098/rspa.1992.0167.

[49] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and

factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer

Science, Santa Fe, NM, USA: IEEE, 1994, pp. 124–134. doi:

10.1109/SFCS.1994.365700.

[50] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer,” SIAM Journal on Computing, vol. 26, no.

5, pp. 1484–1509, 1997, doi: 10.1137/S0097539795293172.

[51] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in

Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC),

ACM, 1996, pp. 212–219. doi: 10.1145/237814.237866.

[52] J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear

magnetic resonance quantum computer,” J Chem Phys, vol. 109, no. 5, pp. 1648–

1653, 1998, doi: 10.1063/1.476739.

[53] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and

I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm

using nuclear magnetic resonance,” Nature, vol. 414, pp. 883–887, 2001, doi:

10.1038/414883a.

[54] J. Preskill, “Quantum computing and the entanglement frontier,” 2012. doi:

10.48550/arXiv.1203.5813.

[55] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p.

79, 2018, doi: 10.22331/q-2018-08-06-79.

97

[56] F. Arute and others, “Quantum supremacy using a programmable superconducting

processor,” Nature, vol. 574, pp. 505–510, 2019, doi: 10.1038/s41586-019-1666-

5.

[57] M. AbuGhanem, “IBM quantum computers: evolution, performance, and future

directions,” Journal of Supercomputing, vol. 81, p. 687, 2025, doi:

10.1007/s11227-025-07047-7.

[58] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary arithmetic

operations,” Phys Rev A (Coll Park), vol. 54, no. 1, pp. 147–153, 1995, doi:

10.1103/PhysRevA.54.147.

[59] T. Draper, “Addition on a quantum computer,” 2000. doi: 10.48550/arXiv.quant-

ph/0008033.

[60] L. Ruiz-Perez and J. C. Garcia-Escartin, “Quantum arithmetic with the quantum

Fourier transform,” Quantum Inf Process, vol. 16, p. 152, 2017, doi:

10.1007/s11128-017-1603-1.

[61] E. Şahin, “Quantum arithmetic operations based on quantum Fourier transform on

signed integers,” International Journal of Quantum Information, vol. 18, no. 6,

2020, doi: 10.1142/S0219749920500355.

[62] Y. Yuan, C. Wang, B. Wang, Z.-Y. Chen, Y. Wu, and G.-P. Guo, “An improved

QFT-based quantum comparator and extended modular arithmetic using one ancilla

qubit,” New J Phys, vol. 25, 2023, doi: 10.1088/1367-2630/acfd52.

[63] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new quantum

ripple-carry addition circuit,” 2004. doi: 10.48550/arXiv.quant-ph/0410184.

[64] N. Yu, R. Duan, and M. Ying, “Five two-qubit gates are necessary for

implementing Toffoli gate,” Phys Rev A (Coll Park), vol. 88, p. 010304(R), 2013,

doi: 10.1103/PhysRevA.88.010304.

[65] A. Paler, “Quantum Fourier addition simplified to Toffoli addition,” Phys Rev

A (Coll Park), vol. 106, p. 42444, 2022, doi: 10.1103/PhysRevA.106.042444.

[66] Z. Wang, M. Xu, and Y. Zhang, “Review of Quantum Image Processing,” Archives

of Computational Methods in Engineering, vol. 29, no. 2, pp. 737–761, 2022, doi:

10.1007/s11831-021-09599-2.

[67] X. W. Yao, H. Wang, Z. Liao, and others, “Quantum image processing and its

application to edge detection: theory and experiment,” Phys Rev X, vol. 7, p. 31041,

2017, doi: 10.1103/PhysRevX.7.031041.

98

[68] J. Su, X. Guo, C. Liu, and others, “A New Trend of Quantum Image

Representations,” IEEE Access, vol. 8, pp. 214520–214537, 2020, doi:

10.1109/ACCESS.2020.3039996.

[69] P. Q. Le, F. Dong, and K. Hirota, “A flexible representation of quantum images for

polynomial preparation, image compression, and processing operations,” Quantum

Inf Process, vol. 10, no. 1, pp. 63–84, 2011, doi: 10.1007/s11128-010-0177-y.

[70] A. Geng, A. Moghiseh, C. Redenbach, and others, “Improved FRQI on

superconducting processors and its restrictions in the NISQ era,” Quantum Inf

Process, vol. 22, p. 104, 2023, doi: 10.1007/s11128-023-03838-0.

[71] B. Sun, A. Iliyasu, F. Yan, and others, “An RGB Multi-Channel Representation for

Images on Quantum Computers,” Journal of Advanced Computational Intelligence

and Intelligent Informatics, vol. 17, no. 3, pp. 404–417, 2013, doi:

10.20965/jaciii.2013.p0404.

[72] F. Yan, Y. Guo, A. Iliyasu, and others, “Multi-Channel Quantum Image

Scrambling,” Journal of Advanced Computational Intelligence and Intelligent

Informatics, vol. 20, pp. 163–170, 2016, doi: 10.20965/jaciii.2016.p0163.

[73] Y. Zhang, K. Lu, Y. Gao, and others, “NEQR: a novel enhanced quantum

representation of digital images,” Quantum Inf Process, vol. 12, pp. 2833–2860,

2013, doi: 10.1007/s11128-013-0567-z.

[74] T. Li, P. Zhao, Y. Zhou, and others, “Quantum Image Processing Algorithm Using

Line Detection Mask Based on NEQR,” Entropy, vol. 25, no. 5, p. 738, 2023, doi:

10.3390/e25050738.

[75] S. Du, K. Luo, Y. Zhi, and others, “Binarization of grayscale quantum image

denoted with novel enhanced quantum representations,” Results Phys, vol. 39,

2022, doi: 10.1016/j.rinp.2022.105710.

[76] J. Mu, X. Li, X. Zhang, and others, “Quantum implementation of the classical

guided image filtering algorithm,” Sci Rep, vol. 15, p. 493, 2025, doi:

10.1038/s41598-024-84211-8.

[77] J. Sang, S. Wang, and Q. Li, “A novel quantum representation of color digital

images,” Quantum Inf Process, vol. 16, p. 42, 2017, doi: 10.1007/s11128-016-

1463-0.

99

[78] Z. Qu, Z. Cheng, and X. Wang, “Matrix Coding-Based Quantum Image

Steganography Algorithm,” IEEE Access, vol. 7, pp. 35684–35698, 2019, doi:

10.1109/ACCESS.2019.2894295.

[79] G. Luo, R. G. Zhou, and W. Hu, “Efficient quantum steganography scheme using

inverted pattern approach,” Quantum Inf Process, vol. 18, p. 222, 2019, doi:

10.1007/s11128-019-2341-3.

[80] S. Zhao, F. Yan, K. Chen, and others, “Interpolation-Based High Capacity

Quantum Image Steganography,” International Journal of Theoretical Physics,

vol. 60, pp. 3722–3743, 2021, doi: 10.1007/s10773-021-04891-0.

[81] X. Liu, D. Xiao, and Y. Xiang, “Quantum Image Encryption Using Intra and Inter

Bit Permutation Based on Logistic Map,” IEEE Access, vol. 7, pp. 6937–6946,

2019, doi: 10.1109/ACCESS.2018.2889896.

[82] V. Verma and S. Kumar, “Quantum image encryption algorithm based on 3D-BNM

chaotic map,” Nonlinear Dyn, vol. 113, pp. 3829–3855, 2025, doi:

10.1007/s11071-024-10403-6.

[83] T. S. Gururaja and P. Pravinkumar, “Enhanced quantum image encryption using

DNA–QTRNG and Sattolo-RQFT shuffling,” Journal of Supercomputing, vol. 81,

p. 667, 2025, doi: 10.1007/s11227-025-07085-1.

[84] S. Heidari, M. Vafaei, M. Houshmand, and others, “A dual quantum image

scrambling method,” Quantum Inf Process, vol. 18, p. 9, 2019, doi:

10.1007/s11128-018-2122-4.

[85] V. K. Sharma, P. C. Sharma, H. Goud, and others, “Hilbert quantum image

scrambling and graph signal processing-based image steganography,” Multimed

Tools Appl, vol. 81, pp. 17817–17830, 2022, doi: 10.1007/s11042-022-12426-w.

[86] C. P. Williams, “Quantum gates,” in Explorations in Quantum Computing, in Texts

in Computer Science. , London: Springer, 2011. doi: 10.1007/978-1-84628-887-

6_2.

[87] IBM Quantum Documentation, “Install Qiskit,” 2025.

[88] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine

Learning Research [Best of the Web],” IEEE Signal Process Mag, vol. 29, no. 6,

pp. 141–142, 2012, doi: 10.1109/MSP.2012.2211477.

100

DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-110042

PLAGIARISM VERIFICATION

Title of Thesis : Enhancement of Reversible Image Steganography and

 Optimization of Quantum Image Representation using

 the NEQR Model

Total Pages : 99

Name of Scholar : Sumitra Singh

Supervisor : Professor Dinesh Kumar Vishwakarma

Department : Information Technology

This is to report that the above thesis was scanned for similarity detection. Process and

outcome is given below:

Software used: TURNITIN, Similarity Index: 10%, Total Word Count: 20,764

Date: 29/05/2025

Candidate’s signature Signature of supervisor(s)

101

Delhi Technological University

final-thesis-plag-23ITY26.docx
Sumitra Singh

Document Details

Submission ID
trn:oid:::27535:98300560

Submission Date
May 29, 2025, 10:52 AM GMT+5:30

Download Date
May 29, 2025, 10:59 AM GMT+5:30

File Name
final-thesis-plag-23ITY26.docx

File Size
12.0 MB

99 Pages

20,764 Words

117,548 Characters

Page 1 of 114 - Cover Page Submission ID trn:oid:::27535:98300560

Page 1 of 114 - Cover Page Submission ID trn:oid:::27535:98300560

102

10% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report
Bibliography

Match Groups
226Not Cited or Quoted 10%
Matches with neither in-text citation nor quotation marks
2 Missing Quotations 0%
Matches that are still very similar to source material
2 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources
6% Internet sources
7% Publications
7% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review
No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 114 - Integrity Overview Submission ID trn:oid:::27535:98300560

Page 2 of 114 - Integrity Overview Submission ID trn:oid:::27535:98300560

103

PUBLICATIONS

S. No. Paper Status

1.

Title: Analysis of Reversible Steganography in Image
 Histograms

Authors: Sumitra Singh, Dinesh Kumar Vishwakarma

Conference: International Conference on Innovations in
 Intelligence Systems: Advancements in
 Computing, Communications, and Cyber-
 Security, (ISAC3-2025), 25-26 July 2025

Accepted

2.

Title: Efficient Quantum Image Representation via
 Optimized NEQR: Experiments on MNIST
 Dataset

Authors : Sumitra Singh, Dinesh Kumar Vishwakarma

Conference: Emerging Trends in Defence Technology
 (ETDT-2025), 20-22 August 2025

Accepted

3.

Title: Performance Analysis of Quantum Arithmetic
 Circuits on IBM Eagle Processor

Authors: Sumitra Singh, Dinesh Kumar Vishwakarma

Journal: Defence Science Journal

Under Review

4.

Title: Enhancing Reversible Steganography in Image
 Histograms via Two-Layer Embedding

Authors: Sumitra Singh, Dinesh Kumar Vishwakarma

Journal: Multidimensional Systems and Signal
 Processing

Communicated

5.

Title: Parallel Bit-Plane NEQR for Efficient Quantum
 Image Representation

Authors: Sumitra Singh, Dinesh Kumar Vishwakarma

Journal: Journal of Supercomputing

Communicated

