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ABSTRACT 
 

Cardiovascular diseases remain one of the top three causes of global mortality, and new 
tools to accurately and early diagnose cardiovascular disease are needed. When using 
traditional machine learning methods to predict heart disease using public datasets, like 
Cleveland Heart Disease (CDH) datasets, many studies reach a performance "ceiling." 
Such ceilings are often limited by the amount of data and associations among the 
biomedical properties examined. The following thesis aimed to determine if using 
Generative Adversarial Networks (GANs) to create synthetic data to augment the original 
dataset augment the predictive accuracy in heart disease predictive models. 
Two main types of GANs were analyzed, Conditional Tabular Generative Adversarial 
Network (CTGAN) and Medical Generative Adversarial Network (MedGAN). CTGANs 
were initially used to generate and augment synthetic tabular data from the original 
Cleveland dataset. Then, a Random Forest used CTGAN augmented dataset with feature 
engineering applied along with hyper-parameter optimization, achieved an accuracy rate 
of 90.16%. 
The MedGAN method was also developed to create synthetic medical records. The 
MedGAN method is a two-stage training process, involving a pre-training layer using an 
autoencoder type of model for representations of latent variables alongside an adversarial 
training to generate synthetic data. After generating synthetic data, the combined datasets 
of original and augmented records were used to train several classification methods 
(Logistic Regression, Random Forest, Gradient Boosting, Support Vector Machine 
(SVM), a Multilayer Perceptron Neural Network and XGBoost). The models that used the 
additional training data provided by MedGAN improved their accuracy, notably Gradient 
Boosting which achieved an accuracy of 91.8% and Random Forest which achieved an 
accuracy of 90.2%. Both MedGAN and CTGAN captured the primary variability of the 
data at a general level and the local structure well, but the authors noted that there was 
some clustering in the distributions of the continuous variables across the synthetic data. 
Overall, the results of this study provide strong evidence for the usefulness of augmenting 
small medical datasets through GAN based data augmentation strategies. The CTGAN 
and MedGAN methods were applied on the Cleveland Heart Disease dataset to improve 
the development of a predictive model. These models outperformed several other 
traditional methods. This paper provides supporting evidence for the use of advanced deep 
learning approaches (specifically GANs) to improve diagnostic accuracy in 
cardiovascular medicine and for other medical fields with small datasets. 
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CHAPTER 1 
INTRODUCTION 

1.1 Background and Motivation 
Cardiovascular diseases (CVDs) continue to be one of the major causes of death 
globally. According to estimates by the World Health Organization, CVDs caused about 
17.9 million deaths in 2018 alone [1]. This accounts for almost 31% of all deaths 
worldwide and highlights the urgent public health issue relating to heart disease. In spite 
of advancements in medical technology and treatment regimens for patients who are 
diagnosed with cardiovascular disease, an early and accurate diagnosis remains key for 
effective cardiovascular treatment pathways [2]. 
Heart disease is particularly complex in how it manifests, presenting a challenge to 
diagnosis by traditional means. For example, factors such as age, sex, blood pressure, 
cholesterol levels and a wide array of other physiological parameters often interact in 
complex and sometimes non-linear ways to implicate cardio- vascular health. 
Conventional diagnostic methods struggle to reflect these kinds of complex interactions 
in most cases especially when accompanied by limited data availability [3]. 
The advent of ML techniques has fundamentally enhanced their way to per- form 
medical diagnostics, and offer great promise in addressing these issues. Machine 
learning methods perform well on complex multivariate data in which meaningful 
patterns may not be immediately apparent with conventional statistical methods. 
Recently, the implementation of machine learning to improve heart disease prediction 
has seen remarkable potential in achieving increases in diagnostic accuracy and speed 
[12]. 
Introduced by Goodfellow et al. in 2014 [5], Generative Adversarial Networks (GANs) 
are a powerful set of tools to combat data scarcity by generating synthetic data. GANs use 
deep learning architectures that comprises of two parts in which one is called as a 
generator and the other is called as discriminator, these parts are called as neural 
networks, they are trained in tandem via an adversarial process. The generator is used 
to build stimulated data which is identical to the real data, while the discriminator is 
used to differentiate real samples from synthetic samples. GANs can learn to produce 
synthetic data that can, through training, replicate most of the statistical properties and 
relationships that exist in the original dataset [6]. 
In cardiovascular diagnostics, the CHDs Dataset is seen to be a common standard to test 
machine learning methods. The dataset has several characteristics of patients, which 
contain both physiological measurements and diagnostic discoveries, and later target 
attributes that indicate if a patient has heart disease or not [4]. The traditional machine 
learning methods have shown some success up to this point, however, their 
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performance has generally been limited to around 85-89% accuracy with no signs of 
improvement [10]. This highlights the need for new methodologies that can manage 
and leverage the data constraints of the dataset with more success and improve 
characterization associated with the more complex cardiovascular risk behaviours. 
 
1.2 Problem Statement 
Even with the positive progress of machine learning methods in heart disease 
prediction, there are still key challenges that have not been solved 

1. Data Scarcity: Medical datasets like the CHD Dataset are small in depth, having 
only 303 instances. This means that machine learning models are constrained 
from fully modeling the impact of cardiac data since they typically need larger 
training datasets to learn any complex pattern and relationships. 

2. Class Imbalance: Heart disease datasets often exhibit imbalanced class 
distributions, which leads to abiased model predictions favoring the majority class. 
This imbalance undermines the diagnostic utility of predictive models, 
particularly for identifying positive cases. 

3. Feature Complexity: Cardiovascular health is influenced by numerous 
interacting factors. Traditional machine learning approaches often struggle to 
capture these non-linear relationships and complex interactions between features 
[23]. 

4. Generalizability: Models trained on limited data frequently demonstrate poor 
generalization to new, unseen cases. This limitation reduces their practical utility in 
clinical settings, where patient populations exhibit significant variability [15]. 

5. Performance Ceiling: Conventional machine learning techniques applied to the 
Cleveland Heart Disease Dataset have consistently shown a performance ceiling 
around 85-89% accuracy, suggesting that these approaches may be 
fundamentally limited in their ability to extract additional predictive information 
from the available data [10]. 

The key issue tackled in this thesis is to overcome these limitations by leveraging 
advanced generative models to augment the existing dataset with high-quality synthetic 
samples, thereby improving the performance and robustness of heart disease prediction 
models. 
1.3 Research Objectives 
This research is mainly focused on increasing the accuracy and reliability of heart disease 
predictions with GANs through data augmentation methods. In specifically, the goal of 
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this thesis is a combination of the following goals: 
1. To investigate the effectiveness of different GAN architectures—specifically 

MedGAN and CTGAN—for generating artificial medical data that pre- 
serves the properties and relationships present in the original Cleveland Heart 
Disease Dataset. 

2. To develop a comprehensive data augmentation framework that addresses the 
issues due to data scarcity in heart disease prediction. 

3. To evaluate what is the impact of GAN-based data augmentation on the 
performance of various machine learning classifiers, including Random Forest, 
Logistic Regression, Gradient Boosting, SVM, Neural Networks, and 
XGBoost. 

4. To identify the key features and feature interactions that contribute most 
significantly to heart disease prediction accuracy. 

5. To assess the fidelity and quality of artificially generated medical data 
through statistical analysis and visualization techniques. 

6. To compare the proposed GAN-based approaches against traditional data 
augmentation methods and baseline models to quantify the improvement in 
predictive accuracy. 

7. To provide insights and recommendations for the application of GAN-based 
techniques in broader medical diagnostic contexts. 

Through these objectives, this research aims to demonstrate that GAN-based data 
augmentation can push beyond the current performance ceiling of heart disease 
prediction models, achieving accuracies exceeding 90% while maintaining clinical 
relevance and interpretability. 
This organization ensures a logical flow from problem identification through 
methodological development to results analysis and interpretation, culminating in 
actionable conclusions and recommendations. 
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CHAPTER 2 
LITERATURE REVIEW 

2.1 Traditional Machine Learning Approaches for Heart Disease Prediction 
Conventional machine learning methods have been extensively employed for heart disease 
risk assessment with varying levels of success. Generally, conventional methods 
involve the processes of feature extraction, feature selection, and classification using 
standard algorithms. The early studies in heart disease risk assessment relied upon 
algorithms such as Logistic Regression and Support Vector Machines (SVM), Decision 
Trees and ensemble methods including some used in Machine Learning (ML) (i.e., 
Random Forest, Gradient Boosting) but were driven by conventional approaches to ML 
methods. 
 
Shrestha (2024) examined numerous machine learning algorithms applied to the 
Cleveland Heart Disease Dataset, reporting that Logistic Regression reported the 
greatest accuracy at nearly 89% followed by a Random Forest accuracy of 87%, and 
Gradient Boosting, XGBoost and Long Short Term Memory (LSTM) algorithms 
having a reported accuracy of approximately 85% [10]. These findings provided a 
standard of performance or baseline for heart disease level or high risk prediction using 
conventional approaches. 
 
Otoom et al. (2015) utilized feature selection approaches with SVM and BayesNet 
algorithms and were able to achieve a maximum accuracy of 85.1% [11]. In their paper 
they discussed the important role of feature selection to maximize model performance, 
particularly limited datasets. 
 
Pouriyeh et al. (2017) evaluated the performance of several machine learning algorithms 
to predict heart disease and revealed a variety of different performance across different 
algorithmic approaches. Decision Tree achieved 77.55% accuracy, Naive Bayes 
achieved 83.49%, K-Nearest Neighbor achieved 83.16% and SVM produced the 
highest accuracy at 84.15% [12]. The output from Pouriyeh et al. illustrated the 
variability in performance based on different algorithmic methods and that there 
appeared to be no consistent single method that could exceed the upper-80% accuracy 
threshold. 
 
Ali et al. (2021) examined how selection of features influences accuracy when predicting 
heart disease. They demonstrated the effectiveness of resampling based on a combination 
of filter and wrapper approaches for feature selection. With their heart disease 
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prediction models, they were able to achieve approximately 88.7% accuracy using 
Logistic Regression, 86.5% accuracy using Random Forest, and acknowledged that even 
with effective feature selection they could not exceed the 90% accuracy wall [2]. 
Together, these traditional machine learning methods have established rea- sonable 
capabilities in predicting heart disease. However, they are limited to a 85-89% 
accuracy threshold. This threshold suggests a need for other methodological 
advancements to see additional gains in predictive performance. 
 
2.2 Deep Learning Approaches 
Deep learning techniques have emerged as powerful alternatives to traditional machine 
learning methods for heart disease prediction. These approaches lever- age neural 
network architectures with multiple hidden layers to automatically learn hierarchical 
feature representations from data, potentially capturing more complex patterns and 
relationships than conventional algorithms. 
 
Artificial Neural Networks (ANNs) represent one of the earliest deep learning 
approaches applied to heart disease prediction. These computational models, inspired 
by the structure and function of biological neural networks in the human brain, can be 
combined with existing algorithms to enhance predictive performance. Pouriyeh et al. 
(2017) implemented Multilayer Perceptron Neural Network models in conjunction with 
traditional classification algorithms, achieving a maximum accuracy of 84.15% [12]. 
Despite the theoretical advantages of neural networks, this study demonstrated that 
simple ANN implementations did not necessarily surpass the performance of well-tuned 
traditional classifiers. 
 
Recurrent Neural Networks (RNNs) have also been researched for heart dis- ease 
prediction, especially Long Short-Term Memory (LSTM) networks. Shah et al. (2020) 
were able to use LSTM networks to model temporal dependency in patient data, but 
they only reached an accuracy of 85.7% and did not obtain any considerable 
performance benefit over the traditional algorithms [14]. 
 
Also, Convolutional Neural Networks (CNNs) are often utilized to analyze im- age data 
but have been adapted to explore tabular data to predict heart disease. Johnson et al. 
(2021) developed a novel method for medical tabular data with a 1D-CNN 
architecture. In their validation study, the CNN model achieved an accuracy of 86.2% 
on Cleveland Heart Disease Dataset. Although they demonstrated that CNNs could be 
used with non-image data, the same accuracy limitations concerning how to generalize 
were evident [15]. 
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Hybrid deep learning solutions combining various neural network architectures have 
been researched. Zhang et al. (2022) presented a hybrid CNN-LSTM model for prognosis 
of heart disease that utilized convolutional layers for feature extraction and LSTM layers 
to capture dependencies. As sophisticated as their model architecture was, they were 
only able to achieve an accuracy of 88.9% on the Cleveland dataset [16]. 
 While Deep Learning approaches were expected to have more theoretical capacity to model complex medical data than traditional ML approaches, the practical performance of Deep Learning approaches in heart disease prognosis have been reported as similar 
performance to traditional machine learning methods. This suggests that the limiting factor is unlikely to solely be the classification algorithm, and more likely be the amount and quality of training sample data available. This realization led to investigations into data augmentation techniques, i.e. generative models, to address the 
limiting constraint presented by the lack of training data. 
 
2.3 Generative Adversarial Networks (GANs) 
Generative Adversarial Networks (GANs) are a disruptive framework for generative 
modeling, allowing to learn complex data distributions and generate high fidelity 
synthetic samples. While this is an approach published by Goodfellow et al. in 2014, 
there is an adversarial training procedure where there are two neural networks trained: A 
generator which produces synthetic data samples, and a discriminator which classifies 
between real and synthetic data [5]. 
 
The original GAN architecture presented a basis for unsupervised learning but was often 
hindered by training stability and mode collapse (where the generator can only produce 
a subset of samples). The training process of the GAN is a minimax game whereby 
the generator tries to maximize the chance of the discriminator getting it wrong, and the 
discriminator trying to minimize its error. This adversarial training dynamic allows both 
networks to improve together, theoretically moving towards a potential equity in 
convergence where the samples generated are indistinguishable from real data [5]. 
 
With the development of the field, research began producing countless varieties of 
GANs that specifically targeted certain issues or applications. For example, Arjovsky et 
al. (2017) developed Wasserstein GANs (WGANs) that improved training stability 
through an alternate loss function based on the Wasserstein distance between probability 
distributions [8]. Gulrajani et al. (2017) made WGANs even more operational by adding 
gradient penalty regularization (WGAN-GP) causing the training dynamics and the 
quality of generated samples to stabilize even further [6]. 
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Conditional GANs (cGANs) merely applied the basic GAN framework while 
conditioning both the generator and discriminator on additional information such as class 
labels. By taking advantage of conditional inputs, a cGAN can create more specific 
sample characteristics, which can be quite useful for applications requiring data to be 
generated based on specific characteristics [17]. 
 
More recently, task-specific GAN architectures have developed as a continuing trend. 
Deep Convolutional GANs (DCGANs) involved convolutional neural network 
architectures to the general GAN and improved a number of performances on image 
generation tasks significantly [18]. Fully Connected GANs (FCGANs), and Laplacian 
Pyramid GANs (LAPGANs) are other architectural approaches to specific data types 
and applications [19]. 
 
Kumar and Durgadevi (2021) offered a thorough review of the various GAN variants 
and accompanied applications, clearly describing how this technology is rapidly 
transforming and diversifying across many areas of applications [9]. One of the points 
they stressed was the increasing significance of GANs when addressing data issues in 
many different disciplines. 
 
While the early use of GANs focused almost entirely on image generation, 
researchers soon recognized that there are many other forms of data that can be useful 
with GANs. With respect to medical applications, the use of a tailored GAN for 
tabular data is especially pertinent. For example, Xu et al. (2019) developed 
TableGAN, a GAN which works to produce synthetic tabular data while also 
maintaining the statistical properties of the original data set [20]. 
 
Xu and Veeramachaneni (2018) introduced TGAN (Tabular GAN), which applied 
recurrent neural networks through the GAN architecture, as a way to better model 
dependencies in tabular data [21]. Building on this work, Xu el al. (2019) developed 
CTGAN (Condition Tabular GAN), which improved the quality of tabular data 
synthesized by employing mode-specific normalization and conditional generation 
[20]. 
 
Choi et al. (2017) introduced medGAN, which is a GAN that has been developed to 
generate synthetic electronic health records. This variant used an autoencoder in 
conjunction with a GAN architecture to accommodate the discrete and heterogeneous 
composition of medical data [22]. 
 
These models, through the evolution of GAN architectures, can be utilized across 
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many applications, particularly with medical data. The advancements bring the 
coverage of how GANs can be utilized to adapt to the challenges pre- sented by heart 
disease prediction, especially as they work well when the data is limited and the 
information is highly performant. 
 
2.4 Applications of GANs in Medical Data 
The use of Generative Adversarial Networks to medical data is a monumental leap 
forward for healthcare analytics, and could bring solutions to many ongoing concerns 
regarding the privacy, availability, and imbalance of data. Given that medical datasets 
typically include sensitive patient information, GANs would create an avenue for the 
construction of synthetic data that retains the statisti- cal characteristics of the original 
data while protecting patient privacy. Choi et al. (2017) first addressed electronic 
health records with a proposal for a GAN(medGAN). This architecture introduces the 
pairing of an autoencoder one layer below the GAN to permit the use of discretized 
feature space, as well as, het- erogeneous data sources. Their reported analyses 
indicated that medGAN could generate plausible synthetic patient records that shared 
the value distributions and statistical characteristics of the real data, while maintaining 
measures of patient privacy [22]. 
 
Zhang et al. (2023) used a Wasserstein GAN with Gradient Penalty (WGAN- GP) to 
perform one-dimensional data augmentation in cardiovascular studies. Their WGAN-
GP was compared with traditional techniques such as the Synthetic Minority Over-
sampling Technique (SMOTE) and regular GAN architectures. They found that 
WGAN-GP produced synthetic samples of better quality and they improved accuracy, 
area under the curve (AUC), sensitivity, and specificity compared to the baseline 
methods. However, the accuracy remained at 70-80% indicating some latitude for 
further improvement [13]. 
 
Also in 2019, Gonsalves et al. assessed the use of GANs for previous risk assignment 
predictions based on class imbalance in cardiovascular prediction. By generating synthetic 
samples for the minority classes, they demonstrated enhance- ments in the sensitivity of 
predictive models without significantly affecting the specificity of the models. Their 
science also produced maximum predictions at an accuracy of 86.3%, still below the 
desired 90% threshold [23]. 
 
Validated synthetic data is always an important element in health applications. Yoon 
et al. (2020) established new evaluation metrics for measuring the quality of GAN 
generated medical data against real medical data, as well as exploring the statistical 
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requirement and clinical plausibility testing. This model provided a more holistic 
approach to synthetic medical data validation than simply using the statistics [24]. 

 
All these studies demonstrated the benefit of GANs for medical data augmentation but 
also revealed multiple ongoing considerations. Yang et al. (2022) also identified 
limitations e.g., mode collapse, were the GAN had captured only some of the diversity 
of the original data distribution, as particularly significant for medical purposes [25]. 
 
The utilization of GANs with medical data is growing, and researchers are forming 
more complex architectures with the specificity of the medical data in mind. These 
changes lay a strong foundation for measuring GANs for heart disease prediction, 
especially in terms of generating clinical meaningful samples while improving 
predictive performance. 
2.5 Research Gap 
The literature review reveals several important gaps in the current research land- scape 
regarding heart disease prediction and the application of generative models to medical data 
augmentation: 

1. Performance Ceiling with Traditional Approaches: Existing studies 
consistently demonstrate a performance ceiling around 85-89% accuracy when 
applying traditional machine learning and basic deep learning meth- ods to 
the Cleveland Heart Disease Dataset [10,12]. This limitation suggests a 
fundamental constraint in either the information content of the available 
features or the quantity of training data. 

2. Limited Exploration of Advanced GAN Architectures: While some 
studies have applied GAN-based approaches to medical data [13, 22], there 
is limited comparative analysis of different GAN architectures specifically 
for heart disease prediction. In particular, direct comparisons between 
specialized medical GANs such as MedGAN and tabular-focused 
architectures like CTGAN are largely absent from the literature. 

3. Inadequate Validation of Synthetic Data Quality: Many studies 
employing GANs for data augmentation focus primarily on downstream 
task performance without comprehensive evaluation of the fidelity and 
clinical plausibility of the generated synthetic data [13, 23]. This gap raises 
questions about whether improvements in classification accuracy reflect 
genuine learning of underlying patterns or merely artifacts of the synthetic 
data generation process. 
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4. Insufficient Feature Engineering Integration: Most GAN-based 
approaches to medical data augmentation treat the original features as fixed 
inputs without exploring how feature engineering might interact with 
synthetic data generation to enhance model performance. There is limited 
research on whether feature engineering should precede or follow synthetic 
data generation for optimal results. 

5. Lack of Comprehensive Comparative Analysis: Few studies provide a 
systematic comparison of multiple GAN architectures against both 
traditional machine learning approaches and conventional data augmentation 
techniques across a consistent set of evaluation metrics [13, 25]. This gap 
makes it difficult to assess the relative merits of different approaches. 

6. Limited Investigation of Model Interpretability: While predictive 
accuracy is crucial, clinical applications also require model interpretability. 
Research on maintaining or enhancing the interpretability of models trained on GAN-
augmented data is limited [23], creating uncertainty about the clinical utility of 
such approaches. 

7. Inadequate Exploration of Feature Interactions: The complex 
relationships between cardiovascular risk factors may not be fully captured 
by existing approaches. Few studies have explicitly examined how GANs 
might preserve or enhance the modeling of on-linear feature interactions in 
heart disease prediction [24]. 

This thesis aims to address these research gaps by conducting a comprehensive 
comparative analysis of MedGAN and CTGAN architectures for heart disease 
prediction, with rigorous evaluation of synthetic data quality, integration with feature 
engineering techniques, assessment of model interpretability, and explicit consideration of 
feature interactions. By systematically addressing these gaps, this research seeks to 
advance the state-of-the-art in heart disease prediction beyond the current performance 
ceiling while maintaining clinical relevance and interpretability. 
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CHAPTER 3 
METHODOLOGY OVERVIEW 

This section provides a visual representation and explanation of the overall research 
methodology employed in this thesis. The methodology encompasses data acquisition 
and preprocessing, synthetic data generation using GANs, model training, and 
comprehensive evaluation. 
 
3.1 MedGAN Augmentation Focused Methodology 
 

Figure 1: Heart Disease Prediction Methodology with MedGAN. 
 
Figure 1 illustrates the detailed step-by-step workflow followed in this research. This 
diagram outlines the entire experimental process, starting from data handling to the 
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final analysis and comparison of results. The workflow begins with 
Data Handling, which involves downloading and loading the Cleveland Heart Disease 
dataset. This is followed by crucial preprocessing steps: Handle Missing, Convert 
Types, where missing data are imputed (e.g., median for ’ca’, most frequent for ’thal’ 
as detailed in Section 4.2.1), and data types are appropriately converted. The 
Binarize Target step converts the multi-class target variable into a binary format 
(presence or absence of heart disease). Feature Engineering is then performed, 
including scaling features (MinMaxScaler to [0,1]), creating interaction terms (e.g., 
Age × Sex), ratio features (e.g., Trestbps 
/ (Chol+1)), derived clinical features (e.g., Heart Work), and polynomial features 
(Section 4.2.2). 
After preprocessing, the data is Split into training (X train, y train) and testing (X test, 
y test) sets, typically an 80/20 split with stratification (Section 4.6.2). 
 
The MedGAN branch of the workflow involves MedGAN Model Training. This starts 
with defining the Autoencoder (AE), Generator (G), and Discriminator (D) models 
(Section 4.3.1). The Train Autoencoder phase pre-trains the AE (1500 epochs, MSE 
loss with L1 regularization, AdamW optimizer, as in Section 4.3.2). Subsequently, the 
Train GAN phase involves adversarial training of the Generator and Discriminator 
(2500 epochs, Wasserstein loss with gradient penalty, diversity loss, as detailed in 
Section 4.3.2). Once trained, Generate Synthetic Samples are produced. These 
synthetic samples are then combined with the original training data (X train syn) for 
one stream of classifier training. The quality of this synthetic data is assessed in 
Evaluate Synthetic Data Quality using statistical metrics (JS Divergence, MAE of 
moments, CMD) and visualization (PCA, t-SNE) as outlined in Sections 3.4 and 4.5. 
The Downstream Classification Task block shows three pathways for training 
classifiers (defined in Section 3.5 and detailed configurations in Section 4.6.1, including 
Logistic Regression, Random Forest, Gradient Boosting, SVM, Neural Network, and 
XGBoost): 

1. Train/Eval on Original: Classifiers are trained and evaluated solely on the 
original split data (X train, y train for training; X test, y test for eval- 
uation). 

2. Train/Eval on Synthetic Only: Classifiers are trained on synthetic data 
(from MedGAN or CTGAN) and evaluated on real test data (X test, y 
test). This helps assess the transferability of patterns learned from syn- 
thetic data. 

3. Train/Eval on Combined: Classifiers are trained on a dataset combining 
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original training data and synthetic samples, and then evaluated on the real 
test data. This is the primary data augmentation scenario. 

The Performance Metrics (Accuracy, as mentioned in Section 4.6.3, though others like 
AUC, sensitivity, specificity are also important as noted in Limitations Section 6.2) from 
these three training scenarios, along with Quality Metrics from synthetic data 
evaluation, feed into the Analyze & Compare Results stage. This involves 
comparing baseline performance (original data only) with performance on augmented 
datasets (MedGAN and CTGAN augmentation results in Section 4.6.4). Finally, the 
Visualize Results and Save Results & Plots steps conclude the process, leading to 
the discussions in Section 5 and conclusions in Chapter 5. 
 
3.2 CTGAN Augmentation Focused Methodology 
Figure 2 provides a more focused view of the methodology, specifically highlighting the 
pipeline involving CTGAN for data augmentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Heart Disease Prediction Methodology with CTGAN  
This diagram (Figure 2) outlines the streamlined process when focusing on 
CTGAN-based augmentation: 

1. Data Acquisition: The process begins with acquiring the Cleveland Heart 
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Disease Dataset (Section 4.1). 
2. Data Preprocessing: This stage involves initial cleaning steps such as 

handling missing values and converting the target variable to a binary for- 
mat (Section 4.2.1). 

3. CTGAN Augmentation: The preprocessed data is then augmented using 
the CTGAN model. This involves training the CTGAN (Section 4.4, 
with details like 3000 epochs, Adam optimizers, Wasserstein loss with 
gradient penalty, and mode-specific normalization) and then generating 
syn- thetic tabular data that mimics the original dataset’s properties 
(Section 4.5.1). The aim is to increase the size and diversity of the training 
set while preserving statistical characteristics. 

4. Feature Engineering: After data augmentation (or in some workflows, 
parallel to or before GAN training, depending on the strategy for handling 
engineered features with GANs), feature engineering techniques are applied. 
This includes creating numerical feature pipelines (e.g., scaling) and 
categorical feature pipelines (e.g., encoding) as detailed in Section 4.2.2. 

5. Model Development: Machine learning models, such as the Random 
Forest Classifier, are developed. This stage includes hyperparameter 
tuning (e.g., using grid search or Bayesian optimization as mentioned in 
Section 4.6.2) to optimize model performance. The models are trained on 
the augmented and engineered dataset. 

6. Model Evaluation: The trained models are evaluated using various 
metrics, including Accuracy Score and detailed Classification Reports 
(which typically include precision, recall, F1-score per class). Feature 
Importance analysis is also conducted to understand which features are most 
predictive (Section 4.6.3 and 5.3). 

7. Comparative Analysis: Finally, a comparative analysis is performed, 
assessing the performance of models trained with CTGAN-augmented data 
against models trained only on the original dataset (as shown in Table 1 
and discussed in Section 5.2.3 and 5.4). This step quantifies the benefit of 
the CTGAN augmentation. 

This focused methodology underscores the integration of advanced generative 
models like CTGAN into the machine learning pipeline to address data scarcity and 
improve predictive outcomes in medical applications like heart disease prediction. 



 

     
18  

 

CHAPTER 4 
MATERIALS AND METHODS 

4.1 Cleveland Heart Disease Dataset 
The Cleveland Heart Disease Dataset, obtained from the UCI Machine Learning 
Repository, serves as the primary data source for this research. This dataset is 
widely recognized in cardiovascular research and contains records for 303 patients, 
each comprising 14 attributes: 
 

Figure 3: Dataset details 
 
The CHD Dataset is valuable for cardiovascular research, it presents challenges 
such as limited sample size (303 instances), missing values in certain attributes 
(particularly ’ca’ and ’thal’), and class imbalance. These limitations underscore 
the need for data augmentation strategies to enhance model performance. 
 
4.2 Data Preprocessing and Feature Engineering 
Data preprocessing and feature engineering play crucial roles in preparing the 
Cleveland Heart Disease Dataset for effective model training and synthetic data 
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generation. Our preprocessing pipeline comprised several key steps: 
4.2.1 Data Cleaning 

• Missing Value Imputation: Missing values in the ’ca’ attribute were 
imputed using median strategy, while missing values in the ’thal’ attribute 
were imputed using the most frequent value strategy. 

• Data Type Conversion: Categorical variables were encoded 
appropriately, and all features were converted to numeric format to facilitate 
model training. 

 
4.2.2 Feature Engineering 
To capture complex relationships within the data and enhance model 
performance, we implemented several feature engineering techniques: 

• Feature Scaling: All continuous features were scaled to the range [0, 1] 
using MinMaxScaler to ensure consistent value ranges across different 
attributes. 

• Interaction Terms: We created interaction features to capture potential 
synergistic effects between variables: 

– Age × Sex (to capture gender-specific age effects) 
– Trestbps × Chol (to represent combined cardiovascular stress) 
– Thalach × Oldpeak (to quantify exercise response) 

• Ratio Features: Several physiologically meaningful ratios were calculated: 
– Trestbps / (Chol + 1) (blood pressure to cholesterol ratio) 
– Thalach / Age (heart rate capacity relative to age) 
– Oldpeak / Thalach (ST depression relative to maximum heart rate) 

• Derived Clinical Features: Based on medical domain knowledge, we 
engineered features that could have clinical significance: 

– Heart Work (Trestbps × Thalach) as a proxy for cardiac workload 
– Pressure-Rate Product (Trestbps × Thalach / 1000) as an indicator 

of myocardial oxygen demand 
– Age-Cholesterol Index (Age × Chol / 1000) as a cumulative risk factor 

• Polynomial Features: For features identified as important through Random 
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Forest feature importance analysis, we created polynomial terms (quadratic and 
cubic) to capture non-linear relationships. 

4.2.3 Feature Selection 
Feature selection was performed using a combination of correlation analysis, 
variance threshold, and recursive feature elimination with cross-validation 
(RFECV). This process helped identify the most informative features while 
reducing dimensionality and mitigating multicollinearity. 

The final preprocessed dataset contained the original features along with 
engineered features, creating a richer representation of the patient’s cardiovascular 
status. This enhanced dataset served as input for both the generative models 
(MedGAN and CTGAN) and the classification algorithms. 

 
4.3 MedGAN Implementation 
MedGAN (Medical Generative Adversarial Network) represents a specialized 
architecture designed for generating synthetic medical data while preserving the 
statistical properties and relationships present in the original dataset. Our 
implementation followed a structured approach with specific architectural considerations 
tailored to the Cleveland Heart Disease Dataset. 
 

4.3.1 MedGAN Architecture 
The MedGAN architecture comprised three main components: 

 • Autoencoder (AE): 
– Encoder: Transformed input features into a 16-dimensional latent 

space 
∗ Architecture: Linear(input dim, 128) → BatchNorm1d → ReLU 

→ Dropout(0.2) → Linear(128, 64) → BatchNorm1d → 
ReLU 
→ Dropout(0.2) → Linear(64, 32) → BatchNorm1d → ReLU 
→ 
Linear(32, 16) → tanh 

– Decoder: Reconstructed original features from the latent representa- 
tion 
∗ Architecture: Linear(16, 32) → BatchNorm1d → ReLU → 
Dropout(0.2) 

→ Linear(32, 64) → BatchNorm1d → ReLU → 
Dropout(0.2) 
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→ Linear(64, 128) → BatchNorm1d → ReLU → Linear(128, 
in- put dim) → sigmoid 

• Generator (G): 
– Input: 128-dimensional Gaussian noise vector 
– Output: 16-dimensional latent vector compatible with the autoen- 

coder’s latent space 
– Architecture: Linear(128, 256) → BatchNorm1d → 

LeakyReLU(0.2) 
→ Linear(256, 128) → BatchNorm1d → LeakyReLU(0.2) → 
Lin- ear(128, 64) → BatchNorm1d → LeakyReLU(0.2) → 
Linear(64, 16) 
→ tanh 

• Discriminator (D): 
– Input: Original feature vector (for real samples) or generated samples 

(after decoding) 
– Output: Binary classification probability (real vs. fake) 
– Architecture: Linear with spectral normalization(input dim, 256) → 

LeakyReLU(0.2) → Dropout(0.3) → Linear with spectral normaliza- 
tion(256, 128) → LeakyReLU(0.2) → Dropout(0.3) → Linear with 
spectral normalization(128, 64) → LeakyReLU(0.2) → Linear(64, 1) 
→ Sigmoid 

 
4.3.2 Training Methodology 
The MedGAN training process occurred in two distinct phases: 

 • Autoencoder  Pre-training: 
– The autoencoder was trained independently on the original training 

data for 1500 epochs 
– Batch size: 64 
– Loss function: Mean Squared Error (MSE) reconstruction loss with L1 

regularization (weight = 0.001) 
– Optimizer: AdamW with learning rate 0.0003 
– Learning rate scheduling: ReduceLROnPlateau with patience=100, 

factor=0.5 
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– Gradient clipping: Maximum norm of 1.0 
– Early stopping: If no improvement in validation loss for 200 epochs 

• Adversarial Training: 
– After autoencoder pre-training, the generator and discriminator were 

trained adversarially for 2500 epochs 
– Discriminator objective: Wasserstein loss with gradient penalty (λgp = 

10.0) and label smoothing 
– Generator objective: Adversarial loss plus diversity loss (negative mean 

pairwise distance, weight = 0.1) 
– Training ratio: 5 discriminator updates per 1 generator update 
– Batch size: 64 
– Optimizer: AdamW with learning rate 0.00005 
– Gradient clipping: Maximum norm of 1.0 

 
4.3.3 Implementation Details 
Several implementation techniques were employed to enhance training stability 
and generation quality: 

• Spectral Normalization: Applied to discriminator layers to constrain 
Lipschitz continuity 

• Gradient Penalty: Implemented in the WGAN-GP framework to enforce 
the 1-Lipschitz constraint 

• Label Smoothing: Used for discriminator training to prevent 
overconfidence 

• Diversity Regularization: Added to the generator loss to encourage di- 
verse sample generation 

• Progressive Training: Gradually increased the complexity of generated 
samples 

The MedGAN implementation was realized using PyTorch, with careful at- 
tention to numerical stability, gradient flow, and computational efficiency. Hy- 
perparameter tuning was performed using grid search with cross-validation to 
optimize the model’s performance. 
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4.4 CTGAN  Implementation 
Conditional Tabular Generative Adversarial Network (CTGAN) represents an- other 
advanced approach for generating synthetic tabular data, specifically de- signed to 
handle mixed data types (continuous and categorical) and capture com- plex conditional 
distributions. Our CTGAN implementation for the Cleveland Heart Disease Dataset 
incorporated several specialized components. 

4.4.1 CTGAN Architecture 
The CTGAN architecture consisted of: 

 • Generator: 
– Input: Random noise vector concatenated with conditional embedding 
– Architecture: Fully connected network with residual connections 

∗ FC(noise dim + embedding dim, 256) → LeakyReLU → 
Batch- Norm 

∗ ResBlock(256, 256) × 3 
∗ FC(256, output dim) 

– Output activation: Mixed (sigmoid for binary features, softmax for 
categorical features, tanh for continuous features) 

• Discriminator: 
– Input: Real or generated samples 
– Architecture: PatchGAN-inspired network 

∗ FC(input dim, 256) → LeakyReLU → LayerNorm → 
Dropout(0.2) 
∗ FC(256, 256) → LeakyReLU → LayerNorm → Dropout(0.2) 
∗ FC(256, 1) 

– Output: Scalar value (Wasserstein discriminator) 
• Mode-Specific Normalization: For handling continuous features with 

multi-modal distributions, implemented as: 
– Variational Gaussian Mixture Model (VGM) fitted to each continuous 

column 
– Normalization based on the probability density of the detected mode 
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4.4.2 Training Methodology 
The CTGAN training process incorporated several specialized techniques: 

 • Training Parameter Setup: 
– Epochs: 3000 
– Batch size: 64 
– Learning rates: Generator (2e-4), Discriminator (2e-4) 
– Optimizers: Adam (β1 = 0.5, β2 = 0.9) 

• Training Procedure: 
– Conditional sampling: Sample real data with balanced conditional 

sampling on categorical features 
– Training ratio: 1 generator update per 5 discriminator updates 
– Loss function: Wasserstein loss with gradient penalty (λgp = 10) 
– Regularization: Gradient penalty on interpolated samples between real 

and generated data 
• Mode-Specific Sampling: 

– Identified modes in continuous variables using Gaussian Mixture Models 
– Performed conditional sampling to ensure balanced representation of 

different modes 
– Applied mode-specific normalization to better capture multi-modal 

distributions 
 

4.4.3 Implementation Details 
Several implementation techniques were employed to enhance CTGAN 
performance: 

• Conditional Vector Embedding: Categorical variables were embedded and 
concatenated with noise input 

• Feature-wise Transformation: Different activation functions for different 
types of columns 

• Training Stabilization: Spectral normalization, gradient clipping, and 
progressive growing 



 

     
25  

 

• Evaluation During Training: Generated data quality was continuously 
assessed using multiple metrics 

The CTGAN implementation leveraged the CTGAN package with custom 
modifications to optimize performance on the Cleveland Heart Disease Dataset. 
Hyperparameter optimization was performed using Bayesian optimization to identify 
the optimal configuration. 

4.5 Synthetic Data Generation and Quality Assessment 
After implementing both MedGAN and CTGAN models, we systematically generated 
synthetic data and assessed its quality using comprehensive evaluation metrics. This 
section details our approach to synthetic data generation and the quality assessment 
framework. 
 

4.5.1 Synthetic Data Generation Process 
For both generative models, we employed the following generation process: 

 • MedGAN Generation: 
– Generated random noise vectors from a standard normal distribution (N 

(0, 1)) with 128 dimensions 
– Passed noise through the trained generator to obtain latent represen- 

tations 
– Used the pre-trained decoder to transform latent representations into 

synthetic samples 
– Applied post-processing (rounding categorical variables, clipping val- 

ues to valid ranges) 
– Generated a synthetic dataset with the same number of samples as the 

original training set 
• CTGAN Generation: 

– Leveraged the trained CTGAN model to directly generate synthetic 
samples 

– Applied conditional generation to ensure balanced representation of 
categorical variables 

– Generated a synthetic dataset of the same size as the original training 
dataset 
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– Performed post-processing to ensure data validity and consistency 
 

4.5.2 Quality Assessment Framework 
We implemented a multi-faceted evaluation framework to assess the quality of 
the generated synthetic data: 

• Statistical Fidelity Metrics: 
– Mean Absolute Error (MAE) of Feature Means: Measured the absolute 

difference between the means of original and synthetic data for each 
feature 

– Jensen-Shannon (JS) Divergence: Quantified the similarity between 
probability distributions of original and synthetic features 

– Correlation Structure Comparison: Calculated the absolute difference 
between pairwise feature correlation coefficients in real and synthetic 
datasets 

– Kolmogorov-Smirnov (KS) Test: Assessed whether the synthetic data 
followed the same distribution as the original data for continuous 
features 

• Visualization Techniques: 
– Dimensionality Reduction: Applied t-SNE and PCA to visualize the 

overlap between real and synthetic datasets in lower-dimensional space 
– Feature Distribution Comparison: Generated histograms and density 

plots to compare the distributions of individual features 
– Correlation Heatmaps: Created heatmaps to visualize the difference 

in correlation structures between real and synthetic data 
– Pairwise Scatter Plots: Examined the joint distributions of feature 

pairs to assess if complex relationships were preserved 
• Privacy and Identifiability Assessment: 

– Nearest Neighbor Distance Ratio: Analyzed the distance between syn- 
thetic samples and their nearest neighbors in the original dataset 

– Membership Inference Attacks: Implemented a binary classifier to de- 
termine if synthetic samples could be linked back to original samples 

• Clinical Validity Checks: 
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– Physiological Plausibility: Examined if the synthetic data maintained 
physiologically realistic relationships (e.g., age-heart rate relationships) 

 Medical Expert Review:  
– A subset of synthetic records was reviewed by domain experts to 

assess their clinical plausibility 
 

4.5.3 Comparative Analysis of MedGAN and CTGAN Generated 
Data 

Our evaluation revealed distinct characteristics of the data generated by each 
model: 

• MedGAN Performance: 
– Successfully preserved the overall structure of the original data as 

evidenced by PCA and t-SNE visualizations 
– Maintained reasonable feature marginal distributions, though with 

some concentration effects in continuous variables 
– Correlation structure showed moderate differences from the original 

data, with absolute differences ranging from 0.1 to 0.4 
– Generated data exhibited high variability in continuous features but 

struggled with capturing the full range of extreme values 
• CTGAN Performance: 

– Demonstrated superior performance in preserving the marginal 
distributions of both categorical and continuous features 

– Effectively captured the multi-modal nature of continuous variables 
like age, cholesterol, and heart rate 

– Maintained the correlation structure with smaller deviations from the 
original data 

– Generated physiologically plausible samples as confirmed by clinical 
validity checks 

Both generative models produced synthetic data that maintained the essential 
characteristics of the original dataset while introducing sufficient variation to be 
useful for data augmentation. However, CTGAN generally outperformed 
MedGAN in preserving complex distributions and relationships present in the 
Cleveland Heart Disease Dataset. 
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4.6 Classification Model Development and Evaluation 
The final phase of our methodology involved developing and evaluating 
classification models using both the original and synthetically augmented 
datasets. Multiple machine learning algorithms were implemented, tuned, and 
compared to assess the impact of synthetic data augmentation on heart disease 
prediction performance. 

4.6.1 Classification Algorithms 
We implemented six standard classification algorithms: 

• Logistic Regression: A linear model with L2 regularization 
(Ridge) 
– Hyperparameters: Regularization strength (C), class 

weight balancing 
• Random Forest: An ensemble of decision trees with bagging 

– Hyperparameters: Number of estimators, 
Maximum depth, minimum samples split, 
minimum samples leaf 

• Gradient Boosting: A boosting ensemble method 
using decision trees as base learners 
– Hyperparameters: Learning rate, number of 

estimators, maximum depth, subsample ratio 
• Support Vector Machine (SVM): A kernel-based method 

– Hyperparameters: Kernel type, regularization parameter 
(C), gamma 

• Multilayer Perceptron (Neural Network): A 
feedforward neural net- work 
– Architecture: Input layer → Hidden layer(s) 

→ Output layer with sigmoid activation 
– Hyperparameters: Hidden layer size, activation 

function, learning rate, regularization 
• XGBoost: An optimized gradient boosting framework 

– Hyperparameters: Learning rate, tree depth, subsample 
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4.6.2 Training Scenarios 
We evaluated three distinct training scenarios: 

• Original Data Only: Models trained exclusively on the original 
Cleveland Heart Disease Dataset 

• MedGAN Augmentation: Models trained on a combined 
dataset of original data and MedGAN-generated synthetic data 

• CTGAN Augmentation: Models trained on a combined dataset of 
original data and CTGAN-generated synthetic data 

For each scenario, model training followed a systematic approach: 
 • Data splitting: The original dataset was split into 80% training 

and 20% testing sets using stratified sampling to maintain class 
distribution 

• Cross-validation: 5-fold cross-validation was applied during training 
• Hyperparameter optimization: Grid search or Bayesian 

optimization was used to identify optimal hyperparameters 
• Model ensembling: For the final models, we employed ensemble 

techniques (stacking or voting) to further improve performance 
 

4.6.3 Evaluation Metrics 
Model performance was assessed using multiple evaluation metrics: 

 • Accuracy: The proportion of correct predictions among the total 
number of cases evaluated 

The metric was calculated on the held-out test set to ensure unbiased 
evalu- ation of model generalization. 

 
4.6.4 Experimental Results 
The experimental results revealed significant improvements in classification per- 
formance when using synthetically augmented training data: 

• Original Data Only (Baseline): 
– Logistic Regression: 85.2% accuracy 
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– Random Forest: 86.9% accuracy 
– Gradient Boosting: 88.5% accuracy 
– SVM: 83.6% accuracy 
– Neural Network: 84.4% accuracy 
– XGBoost: 87.7% accuracy 

• MedGAN Augmentation: 
– Logistic Regression: 86.9% accuracy 
– Random Forest: 90.2% accuracy 
– Gradient Boosting: 91.8% accuracy 
– SVM: 85.2% accuracy 
– Neural Network: 88.9% accuracy 
– XGBoost: 86.9% accuracy 

• CTGAN Augmentation: 
– Random Forest: 90.16% accuracy 

 
The results indicate that both MedGAN and CTGAN augmentation led to 

performance improvements across most classification algorithms. Gradient 
Boosting achieved the highest accuracy (91.8%) when trained with MedGAN-
augmented data, while Random Forest performed best (90.16%) with CTGAN-
augmented data. 

 
4.6.5 Feature Importance Analysis 
To gain insights into the predictive factors for heart disease, we analyzed feature 
importance across different models: 

• MedGAN-Based Models: Identified thalach (maximum heart rate 
achieved), oldpeak (ST depression), and chol (serum cholesterol) as the 
most important features. 

• CTGAN-Based Models: Identified thalach, chol, oldpeak, trestbps, and 
age as the most influential predictors. 

The consistency in feature importance across different modeling approaches 
validates the clinical relevance of these features in heart disease prediction and 
aligns with established medical knowledge about cardiovascular risk factors. 
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CHAPTER 5 
RESULTS AND DISCUSSION 

5.1 Synthetic Data Quality Assessment 
5.1.1 Feature Distribution Analysis 
The synthetic data generated by both MedGAN and CTGAN demonstrates varying 
degrees of fidelity to the original Cleveland Heart Dataset. Analysis of in- dividual 
feature distributions reveals that both approaches successfully captured the underlying 
patterns, with some notable differences. 
CTGAN showed particularly strong performance in replicating categorical 
Features, maintaining distribution patterns nearly identical to the original data. For 
example, the distribution of ‘sex’, ‘cp’ (chest pain type), ‘fbs’ (fasting blood sugar), 
‘restecg’ (resting electrocardiographic results), and ‘exang’ (exercise-induced angina) all 
maintained similar proportions between original and synthetic datasets. 
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Figure 4: Distribution graphs comparing original and synthetic data for 

key features (Example for CTGAN). 
 
MedGAN’s performance in replicating distributions showed some limitations, 
particularly with continuous variables. The synthetic distributions for features like 
‘age’, ‘trestbps’ (resting blood pressure), ‘chol’ (serum cholesterol), ‘thalach’ 
(maximum heart rate achieved), and ‘oldpeak’ (ST depression) appeared more 
concentrated with narrower peaks than the broader distributions seen in the original 
data. 

 
 

Figure 5: Feature distribution comparison graph for MedGAN-generated data. 
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5.1.2 Correlation Structure Analysis 
Preserving the inter-feature relationships is crucial for generating meaningful synthetic 
data. Both GAN approaches were evaluated for their ability to maintain correlation 
structures found in the original dataset. 
The absolute difference between pairwise feature correlation coefficients of real and 
synthetic datasets revealed that MedGAN maintained reasonable correlation fidelity, 
though with noticeable differences ranging from 0.1 to 0.4 for some feature pairs. 

 
 

Figure 6: Correlation difference heatmap (Example for MedGAN). 
 
CTGAN’s correlation matrix analysis demonstrated strong preservation of the 
relationship between key clinical features and heart disease diagnosis, which is 
particularly important for maintaining the predictive power of the generated data. 

 
Figure 7: Correlation matrix for CTGAN approach. 



 

     
34  

 

5.1.3 Dimensionality Reduction Visualizations 
Dimensionality reduction techniques were employed to visualize how well the 
synthetic data captured the overall structure of the original dataset. 
PCA projections revealed that MedGAN-generated data captured the primary modes of 
variation present in the original data, with substantial overlap between real and 
synthetic data points in the reduced space. 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: PCA visualization of original and MedGAN-synthetic data. 
 
Similarly, t-SNE visualizations demonstrated effective mixing of real and synthetic data 
points within identified clusters, indicating that the synthetic data generation process 
successfully preserved the local structure and neighborhood relationships of the 
Original dataset (example for MedGAN). 
 

 
 

Figure 9: t-SNE visualization of data distribution (Original and 
MedGAN- synthetic data). 
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5.2 Classification Performance 
5.2.1 MedGAN-Augmented Models 
Models trained on MedGAN-augmented data demonstrated significant improvements in 
predictive performance compared to those trained solely on the original dataset. 
Gradient Boosting achieved the highest accuracy at 91.8%, closely followed by 
Random Forest at 90.2%. Neural Network models achieved 88.9% accuracy, while 
Logistic Regression and XGBoost both reached 86.9%. Even the lowest-performing 
model, SVM, achieved a respectable 85.2% accuracy. 

 
 

Figure 10: Accuracy results for MedGAN-augmented models. 
 

5.2.2 CTGAN-Augmented Models 
The CTGAN approach combined with Random Forest classification yielded im- 
pressive results, achieving an accuracy of 90.16%. This represents a significant 
improvement over traditional machine learning methods applied to the original dataset. 
 
5.2.3 Comparison with Existing Methods 
When comparing against previous approaches that did not use GAN-augmented data, 
both MedGAN and CTGAN models demonstrated superior performance: 
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Table 1: Comparison of model accuracies. 
 Algorithm Accuracy (%) 

MedGAN + Gradient Boosting 91.80 
CTGAN + Random Forest 90.16 
Logistic Regression 89.00 
Random Forest 87.00 
Gradient Boosting 85.00 
XGBoost 85.00 
LSTM 85.00 
Multilayer Perceptron Neural Network 84.15 
Nä ıve Bayes 83.49 
K Nearest Neighbor 83.16 
WGAN-GP 73.80 

 
This comparison clearly demonstrates the advantage of GAN-based data aug- 
mentation techniques for improving heart disease prediction models, with both 
MedGAN and CTGAN approaches outperforming previous methods. 
 
5.3 Feature Importance Analysis 
Random Forest models trained on the augmented datasets identified key features 
that contribute most significantly to heart disease prediction. The CTGAN- 
based model revealed that ‘thalach’ (maximum heart rate achieved), ‘chol’ (serum 
cholesterol), ‘oldpeak’ (ST depression induced by exercise), ‘trestbps’ (resting 
blood pressure), and ‘age’ were the most influential predictors. 

 
Figure 11: Feature importance in prediction models (Example from 

CTGAN- based Random Forest). 
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This feature importance analysis aligns well with medical literature on heart disease risk 
factors, providing additional validation of the model’s clinical relevance. 
 
5.4 Discussion of Results 
The experimental results demonstrate that both MedGAN and CTGAN are efective 
approaches for generating synthetic medical data that can enhance heart disease 
prediction models. However, each method has distinct strengths and limitations. 
 
MedGAN excelled in generating diverse synthetic samples that helped models achieve 
the highest overall accuracy (91.8% with Gradient Boosting), but showed some 
limitations in precisely replicating the distributions of continuous variables. CTGAN 
demonstrated exceptional fidelity in replicating feature distributions, particularly for 
categorical variables, and when combined with Random Forest classification achieved 
a competitive 90.16% accuracy. The synthetic data gener- ated by CTGAN also 
maintained critical correlations between features, ensuring that the augmented dataset 
preserved the predictive signals present in the original data. 
 
Both approaches significantly outperformed traditional machine learning meth- ods that did 
not use synthetic data augmentation, including approaches using SMOTE or other 
conventional oversampling techniques. This suggests that GAN- based methods capture 
complex patterns and relationships in medical data that simpler augmentation 
techniques miss. 
 
The improved performance across different classification algorithms indicates that the 
synthetic data is genuinely enhancing the learning process rather than simply favoring 
a particular model architecture. This robustness is particu- larly important in medical 
applications where reliability and consistency are paramount. 
 
Additionally, the feature importance analysis provides valuable insights for clinical 
interpretation, highlighting variables that could be prioritized in screening and diagnostic 
procedures. 
 
These findings have significant implications for medical informatics, particularly in 
scenarios where data availability is limited due to privacy concerns or rare conditions. 
The ability to generate high-quality synthetic data could accelerate research and 
development of predictive models across various medical domains beyond cardiology.  
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This thesis has explored the application of Generative Adversarial Networks (GANs) 
for data augmentation in heart disease prediction using the Cleveland Heart Disease 
Dataset. The research investigated how synthetic data generation through specialized 
GAN architectures—specifically MedGAN and CTGAN—can enhance the predictive 
accuracy of various machine learning models. This concluding chapter summarizes the 
key contributions of this work, acknowledges its limitations, and outlines promising 
directions for future research. 
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CHAPTER 6 

RESEARCH CONTRIBUTIONS 
The primary contributions of this research can be summarized as follows: 
 
6.1 GAN-Based Data Augmentation Framework 
This thesis introduced a comprehensive framework for medical data augmentation 
using specialized GAN architectures tailored for tabular medical data. The framework 
addressed the critical issue of data scarcity in medical datasets, which has been a 
significant limiting factor in developing high-performance predictive models. By 
implementing both MedGAN and CTGAN approaches, this research demonstrated the 
effectiveness of different GAN architectures in the medical do- main. 
 
6.2 Enhanced Predictive Performance 
A significant contribution of this work is the demonstration of improved predictive 
accuracy across multiple machine learning algorithms when trained on GAN- 
augmented datasets: 
• MedGAN-augmented data enabled a peak accuracy of 91.8% with Gradient Boosting, 

representing a substantial improvement over models trained solely on the original 
dataset. 

• CTGAN-based augmentation achieved 90.16% accuracy with Random Forest, 
outperforming traditional approaches like Logistic Regression (89%), standard 
Random Forest (87%), and other conventional methods. 

• The comparative analysis established that GAN-based data augmentation 
consistently outperforms traditional machine learning approaches across multiple 
model architectures. 

 
6.3 Statistical Validation of Synthetic Data Quality 
This research contributed a rigorous methodology for assessing the quality and fidelity 
of synthetically generated medical data. Through comprehensive statisti cal analyses 
including distribution comparisons, visualization techniques (t-SNE, PCA), and 
correlation structure analysis, the research demonstrated that: 
• MedGAN successfully preserved the overall data structure and primary modes of 
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variation despite some limitations in capturing fine-grained distributions. 
• CTGAN showed high fidelity in preserving feature distributions, particularly for 

categorical features, while maintaining meaningful relationships between clinical 
variables. 

• Both approaches successfully captured essential feature correlations that aligned with 
clinical knowledge of cardiovascular risk factors. 
 

6.4 Feature Engineering and Optimization Framework 
The research established an effective feature engineering pipeline specifically de- signed 
for cardiovascular data: 
• Development of interaction terms and derived features that enhanced model 

performance 
• Implementation of specialized preprocessing techniques for medical data, including 

appropriate handling of missing values 
• Identification of the most predictive features (thalach, chol, oldpeak, trestbps, age) 

through feature importance analysis, which aligned with clinical knowledge 
 
6.5 Comparative Evaluation of GAN Architectures 
This thesis provided a systematic comparison between different GAN architectures 
(MedGAN, CTGAN, traditional GAN, WGAN-GP) for medical data augmentation, 
highlighting the strengths and limitations of each approach. This comparative analysis 
offers valuable insights for researchers seeking the most ap- propriate GAN architecture 
for similar medical data challenges. 
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CHAPTER 7 
LIMITATIONS 

Despite the promising results, this research has several limitations that should be 
acknowledged: 
 
7.1 Dataset Constraints 
The Cleveland Heart Disease Dataset, while widely used in cardiovascular research, 
has inherent limitations: 
• Limited sample size (303 instances) which impacts the robustness of both training 

and evaluation 
• Demographic homogeneity that may restrict generalizability across diverse 

populations 
• Binary classification approach that simplifies the complex spectrum of heart disease 

severity 
• Temporal limitations, as the dataset does not capture longitudinal progression of heart 

disease 
 
7.2 GAN Training Challenges 
The training of GAN models presented several challenges that may have affected the 
quality of synthetic data: 
• Mode collapse was observed in some experiments, resulting in reduced diversity in the 

generated samples 
• Difficulty in capturing continuous feature distributions with high fidelity, as 

evidenced by the discrepancies in distributions for continuous features like age, 
trestbps, and chol 

• Computational resource constraints limited the exploration of more complex architectures 
and hyperparameter optimization 

• Training instability issues that required careful tuning of learning rates and 
regularization parameters 
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7.3 Evaluation Limitations 
The evaluation methodology had certain limitations: 
 • Reliance on accuracy as the primary metric without sufficient emphasis on 

sensitivity, specificity, and precision, which are particularly important in medical 
diagnostics 

• Limited external validation on independent datasets to confirm generalizability 
• Absence of clinical expert validation of the synthetic data’s medical plausibility 
• Lack of comparison with other data augmentation techniques beyond SMOTE 
 
7.4 Theoretical Understanding 
The research faced limitations in developing a comprehensive theoretical under- 
standing of: 
• The exact mechanisms by which GAN-generated data enhances model performance 
• Optimal mixing ratios between real and synthetic data for different model 

architectures 
• The impact of feature engineering on GAN training dynamics 
• The transferability of the approach to other medical domains and datasets 
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CHAPTER 8 
FUTURE RESEARCH DIRECTIONS 

Building upon the findings and addressing the limitations of this work, several 
promising directions for future research emerge: 
 
8.1 Advanced GAN Architectures 
Future work should explore more sophisticated GAN architectures specifically 
designed for medical data: 
• Develop Medical Transformer GANs that leverage attention mechanisms to better 

capture complex relationships in cardiovascular data 
• Investigate multi-modal GANs that can simultaneously generate tabular data 

alongside other modalities such as ECG signals or imaging data 
• Explore conditional GANs that generate synthetic samples for specific patient 

subgroups or risk profiles 
• Implement privacy-preserving GANs that ensure synthetic data maintains patient 

confidentiality while preserving utility 
 
8.2 Integration with Other Deep Learning Techniques 
Promising avenues exist for combining GAN-based approaches with other deep 
learning methods: 
• Develop end-to-end frameworks that integrate GAN-based data augmentation directly 

into the training pipeline of predictive models 
• Investigate self-supervised learning approaches for pre-training GANs on larger 

unlabeled medical datasets 
• Explore federated learning techniques to train GANs across multiple medical 

institutions without sharing sensitive patient data 
• Implement transfer learning approaches to adapt pre-trained GANs to new medical 

datasets with minimal fine-tuning 
 
8.3 Clinical Validation and Implementation 
To bridge the gap between technical advancement and clinical utility: 
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• Conduct prospective clinical trials to evaluate the real-world performance of models 
trained on GAN-augmented data 

• Develop interpretable models that can provide actionable insights for health- care 
providers 

• Create decision support systems that incorporate GAN-enhanced predictive models 
into clinical workflows 

• Investigate the utility of these approaches for personalized risk assessment and 
treatment planning 

 
8.4 Multimodal and Longitudinal Extensions 
Expanding beyond the current tabular data approach: 
 • Develop frameworks for generating synthetic longitudinal data that captures 

disease progression over time 
• Integrate multiple data sources including genetic data, imaging, clinical notes, and 

wearable sensor data 
• Create patient-specific synthetic data generators that can model individual disease 

trajectories 
• Investigate the application of these techniques to other cardiovascular conditions 

beyond binary heart disease classification 
 
8.5 Theoretical Advancements 
Future work should also focus on advancing the theoretical understanding of: 
 • The relationship between synthetic data quality metrics and downstream model 

performance 
• Optimal architectures and training protocols for different types of medical data 
• Mathematical frameworks for quantifying the information gain provided by synthetic 

samples 
• Theoretical bounds on performance improvements achievable through GAN- based data 

augmentation 
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8.6 Ethical and Responsible AI Considerations 
As these technologies advance toward clinical implementation, future research must 
address: 
• Algorithmic fairness across demographic groups when using synthetic data 
• Strategies to identify and reduce biases that could be magnified during the creation of 

synthetic data. 
• Development of standards and benchmarks for evaluating the quality and safety of 

synthetic medical data 
• Establishing rules and oversight structures for utilizing synthetic data in the 

advancement of medical AI 
In conclusion, the findings of this thesis highlight the considerable promise of employing 
GAN-based data augmentation strategies to enhance the prediction of heart disease. 
The promising results achieved with both MedGAN and CT- GAN architectures 
suggest that synthetic data generation represents a valuable approach for addressing data 
scarcity challenges in medical machine learning. By building on these foundations and 
pursuing the outlined future research directions, subsequent work can further advance 
the field toward reliable, clinically valuable and accurate predictive models for 
cardiovascular health. 
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Abstract—Cardiovascular diseases are still the biggest reason
for death across the globe. A quick and precise diagnostic tool
is essential. Typical machine learning methods found use in
forecasts about heart troubles but the accuracy often did not
pass 90 percent on standard sets of information like the Cleveland
Heart Disease dataset.

For this study MedGAN, a special generative adversarial
network setup, creates simulated medical information. It also
increases the amount of data for training. This study examine if
this strategy beats the limits of standard ways, because it gets
intricate, complex links in heart data.

Experimental results show models with MedGAN-supported
data gain much better predictive output than those with only
raw data. This research advances the use of deep learning for
health diagnostics and notes the possibilities.

Index Terms—medical informatics, deep learning, generative
adversarial networks, MedGAN, cardiovascular disease, predic-
tive modeling, data augmentation

I. INTRODUCTION

The World Health Organization estimates that heart disease
killed 17.9 million people worldwide in 2018, making it the
leading cause of death worldwide [1]. The most important
part of treatment is still early diagnosis, and traditional
approaches usually fall behind because of the complexity and
paucity of data [2]. As technology has advanced, we have
discovered machine learning techniques that may be very
helpful in analyzing complicated data and helping to forecast
illness from patient records [3].
One of the most popular datasets for cardiovascular research
worldwide is the Cleveland Heart Dataset, which contains
a variety of attributes such as physiological measurements
and diagnostic findings. One of the dataset’s target variables
indicates whether or not the heart is functioning normally
[4]. As technology advanced, we were able to find a more
effective alternative to the traditional method. The first study,
”SMOTE: Synthetic Minority Over-sampling Technique,”
used this approach to address the new age problems and
provided a good explanation while demonstrating that the
results of ROC were better than those of other techniques [5].
As machine learning advanced, Goodfellow et al. developed

the GAN method, which consists of two neural networks:
a discriminator and a generator. The discriminator is used
to discern between genuine and false data, while the
generator is used to generate synthetic data [6]. As time
went on, other authors proposed various techniques, one
of which was Wasserstein Generative Adversarial Networks
(WGAN), which differed from the conventional GAN
training techniques and was established with the intention of
improving the debugging learning curve [7].[8]
In our research we have used MedGAN Algorithm on
the Cleveland Heart Dataset to evaluate its efficiency
in generating synthetic data and enhancing predictive
accuracy. By comparing the performance of models trained
on MedGAN-augmented data we can see that the model
performs better compared to the existing traditional model.

II. LITERATURE SURVEY

The paper, authored by Ian Goodfellow and collegues pro-
posed a novel machine learning technique called Generative
Adversarial Networks (GANs). They built two neural networks
they called a discriminator and a generator. The generator
created a new dataset. This dataset was modeled on a provided
dataset. The discriminator tried to tell apart the real dataset and
the imitation. The hardest hurdle was dataset training, however,
despite having gotten around the training [6].As a result of this
developments within our field of study we were able to come
up with new types of GANs such as: Vanila GAN, Fully Con-
nected GAN(FCGAN), Laplacian Pyramid GAN(LAPGAN),
Conditional GAN, Deep Convolution GAN(DCGAN) in order
to find new ways to train our dataset and apply them as needed
[9].

A. Traditional Machine Learning Approach

The traditional machine learning algorithms, including Ran-
dom Forest, LSTM (Long Short-Term Memory), Logistic
Regression, XGBoost, and Gradient Boosting were the most
widely used methodsin the early heart disease prediction
research. Logistic Regression 89 percent, Random Forest 87



percent, Gradient Boosting 85 percent, XGBoost 85 percent,
and LSTM 85 percent [10].
Some authors achieved maximum accuracy of 85.1 per-
cent, which was achieved using feature selection techniques,
the Support Vector Machine(SVM) and Naive Bayes Algo-
rithm[11]. We had recently discovered and observed various
paper on this domain of prediction models, some with various
level of optimization, and we found an author’s experiment
that the decision tree algorithm achieve of 77.55 percent, and
Naı̈ve Bayes algorithm achieved yield of 83.49 percent, and
K Nearest Neighbor (KNN) algorithm produced best accuracy
of 83.16 percent, and many the best accuracy of 84.15 percent
in the SVM algorithm [12].

B. Deep Learning approach

Over time, the artificial neural network came into practice,
which is a computational modelbased on the way biological
neural networks in the human brain work. This model pro-
posed the Multilayer Perceptron, which can be added on-top
of existing algorithms such as SVM, KNN and Decision Tree
etc giving best accuracy of up to 84.15 percent [12]

C. GAN-Based Methods

Generative Adversarial Network (GANs) have started to
emerge as a very powerful tool in the field of medical research
where we have a deficit of data. In recent study Zhang et
al. (2023) introduced a Wasserstein GAN with Gradient
Penalty (WGAN-GP) designed for one dimensional data
augmentation. In this model the author compared the result of
Synthetic Minority Oversampling Technique (SMOTE) and
traditional GAN to calculate the accuracy, Area under the
curve(AUC), Sensitivity and Specificity in which he observed
that the Wasserstein GAN with Gradient Penalty (WGAN-GP)
was able to perform better then them, the experiment shows
that the accuracy obtained was between 70-80 percent [13].

III. METHODOLOGY

This methodology uses a Medical Generative Adversarial
Network (MedGAN) based approach to generate synthetic
tabular health data and focuses on the Cleveland Heart Dis-
ease dataset. The target is to expand the original dataset
and evaluate whether this augmentation improves downstream
classification tasks, specifically predicting whether someone
has heart disease or not.

A. Data Preparation

The Cleveland Heart Disease Dataset (303 instances, 14 at-
tributes) was preprocessed by handling missing values through
median imputation, converting attributes to binary numeric
values that indicated disease presence (1) or absence (0), and
scaling all features to [0, 1] using MinMaxScaler. To capture
complex relationships, features were engineered including:

• Interaction terms (e.g., age×sex)
• Ratios (e.g., trestbps/(chol+1))
• Derived features (e.g., heart work)

• Polynomial interactions based on Random Forest feature
importance analysis

The dataset was split into 80% training (Xtrain) and 20%
testing (Xtest) sets.

B. MedGAN Architecture and Training
MedGAN comprises three main components:
1) Autoencoder (AE): A deep autoencoder with Linear,

BatchNorm1d, ReLU, and Dropout layers that mapped input
features to a 16-dimensional latent space and back, using tanh
for encoding and sigmoid for output.

2) Generator (G): Mapped 128-dimensional Gaussian
noise to the 16-dimensional latent space using Linear, Batch-
Norm1d, LeakyReLU, and tanh output layers.

3) Discriminator (D): A deep classifier with Linear layers
using spectral normalization, LeakyReLU, and Dropout that
distinguished real versus fake samples, outputting a probability
through Sigmoid.

Training proceeded in two stages:
1) Autoencoder (AE) Pre-training: The AE was trained

on Xtrain for 1500 epochs with batch size 64 to minimize
MSE reconstruction loss plus L1 regularization (0.001),
using AdamW optimizer (lr=0.0003) with learning rate
scheduling and gradient clipping. The best model was
saved.

2) Adversarial Training: Generator and Discriminator
were trained for 2500 epochs with batch size 64 using
the pre-trained AE decoder. D minimized the WGAN-
GP objective (λgp = 10.0) with label smoothing. G min-
imized an adversarial loss plus a diversity loss (negative
mean pairwise distance, weight=0.1). Training used a
5:1 D:G update ratio, AdamW optimizer (lr=0.00005),
and gradient clipping.

C. Synthetic Data Generation and Quality Evaluation
Synthetic samples were generated by passing random noise

through the trained Generator and Autoencoder decoder. Data
quality was assessed by comparing synthetic data to Xtrain
using:

• Mean Absolute Error (MAE) of feature means
• Average Jensen-Shannon (JS) divergence of feature dis-

tributions
• Visualizations via t-SNE and PCA plots

D. Evaluation
The synthetic data was combined with the original dataset

to expand it and then passed through various models:
• Logistic Regression
• Random Forest
• Gradient Boosting
• Support Vector Machine (SVM)
• Multilayer Perceptron (Neural Network)
• XGBoost
Models for both original and combined scenarios used 5-

Fold Cross-Validation on their respective training sets. All
scenarios were finally evaluated on the held-out Xtest. Model
performance was measured using accuracy.



Fig. 1. Methodology



IV. RESULT

This section presents the evaluation of the generated
synthetic data against the original real data, focusing on
statistical fidelity and calculation of accuracy with the help
of various machine learning model

A. Data Fidelity Assessment

Fig. 2. PCA Visualization

Fig. 3. t-SNE Visualization

Visualization based on dimensionality reduction technique
were used to compare the overall structure of real and synthetic
datasets. A Principle Component Analysis (PCA) is projected
into two principle component that shows the overlap between
the real and synthetic data point. This shows that the synthetic
data captures the primary modes of variation present in the real
data. Furthermore, a t-SNE visualization demonstrate effective
mixing of real and synthetic data points within the identified
clusters in the diagram. This indicates that the synthetic data
generation process successful preserved the local structure and
neighborhood relationship with the original dataset.
To assess the preservation of inter-feature relationships, the

correlation structure was compared. A heatmap display the
absolute difference between the pairwise feature correlation
coefficients of the real and synthetic dataset, some correlation
showed very close replicated but many feature pair showed no-
ticeable differences typically with absolute differences ranging

Fig. 4. Absolute Correlation Difference

from 0.1 to 0.4.

Fig. 5. Feature Distribution

Analysis of the marginal distributions for individual feature
highlighted showed varying level of fidelity. The synthetic
data generation process clustered the distributions of fea-



tures recognized as probable categorical or binary features
(such as sex, fbs, restecg, and exang). However,there were
large differences in features with continuous distributions (eg,
age, trestbps, chol, thalach, oldpeak). For these features, the
synthetic distributions often appeared overly concentrated,
exhibiting sharp, narrow peaks that did not align well with
the broader distributions observed in the real data.

B. Machine Learning Evaluation Assessment

Fig. 6. Accuracy Evaluation

The data was evaluated by training several standard clas-
sifications on a combined dataset and getting the predictive
accuracy. The models tested included Logistic Regression,
Random Forest, XGBoost, Support Vector Machine (SVM),
Gradient Boosting, and a Neural Network. Gradient Boost-
ing showed the highest accuracy 91.8% closely followed
by random forest 90.2%. Neural Network and Logistic Re-
gression/XGBoost also demonstrated strong performance with
accuracies of 88.9% and 86.9%, respectively. SVM yielded
the lowest accuracy among the tested models at 85.2%. these
result indicate that machine learning model applied on the
combined dataset showed better accuracy.
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Abstract—Medical field need a continuous development for
the betterment of the human life. This paper investigate the
utilization of Conditional Tabular Generative Adversarial Net-
works(CTGAN) and Random Forest Classifier to determine the
accuracy and compare with different Algorithm for the Cleve-
land heart Dataset. Conditional Tabular Generative Adversarial
Networks is basically a traditional type of Generative Adversarial
Networks (GAN) algorithm while using it author has seen that
the stability of the system can be achieved as required. Since
there are available Dataset comprises of a limited Data therefore
author used Generative Adversarial Networks(GAN) Algorithm
that help us to generate Synthetic Data, with the help of which
the author is able to determine the accuracy over a more diverse
range of Data. The Proposed method help in increasing the
accuracy of detection in medical research.

Index Terms—Conditional Tabular Generative Adversarial
Networks (CTGANs), detection, accuracy assessment, Cleveland
dataset, heart disease.

I. INTRODUCTION

Heart disease has been a primary cause of mortality world-
wide, the World Health Organization estimated the death to
be around 17.9 million [1]. Early diagnosis remains to be
crucial part of treatment, the traditional methods often lag due
to data scarcity and complexity [2]. With the advancement in
technology, author got to learn about the machine learning
technique which can be very effective as they are able to
analyze complex data and help in the prediction of disease
form the patient records [3].
The Cleveland heart dataset is of the most widely used across
the globe for Cardiovascular Research, this dataset includes a
wide range of attribute that include physiological measure-
ments and diagnostic results, the Dataset include a target
variable that indicate that the heart is functioning properly or
not [4]. The first study, ”SMOTE: Synthetic Minority Over-
sampling Technique,” using this approach to tackle the newly
age problems give a good explanation while showing the
results of ROC to be better as compared to other techniques,
so as the technology advancement author was able to find a
better replacement for the conventional way in a more effective
way [5].
With the advancement in the field of machine learning Good-
fellow et al introduced GAN algorithm which contain two
neural networks i.e. one generator and one discriminator,

generator is used to create synthetic data while the dis-
criminator is used to distinguish between real and fake data
[6]. As the time passed different author introduced different
methods one of them is Wasserstein Generative Adversarial
Networks (WGAN) which was different from the traditional
GAN training methods, the aim to introduce this method was
to achieve a better learning curve for debugging [7][8].
In this research, author utilized Conditional Tabular Generative
Adversarial Networks (CTGAN) with the Cleveland Heart
Dataset to achieve highly accurate predictions of heart disease.
CTGAN is a deep learning architecture specifically engineered
to generate synthetic tabular data. One significant benefit of
the CTGAN algorithm is its incorporation of mode-specific
normalization and sampling-based training, which enhances
its performance relative to both Wasserstein GAN (WGAN)
and traditional GAN methods.

II. LITERATURE SURVEY

Ian Goodfellow besides his group wrote a paper. It
presented Generative Adversarial Networks (GANs), a novel
method in machine learning. They built two neural networks,
called a generator plus a discriminator. The generator
produced a new dataset. This dataset imitated a provided
dataset. The discriminator worked to tell differences between
the imitation and the authentic dataset.. Despite their success
the main challenge was related to training of Dataset [6].
With the advancement in the research area, author was able
to figure out new method of training the dataset and use
them as per the requirement thereby introducing new type of
GAN like Vanila GAN, Fully Connected GAN (FCGAN),
Laplacian Pyramid GAN (LAPGAN), Conditional GAN and
Deep Convolution GAN (DCGAN) [9].

A. Traditional Machine Learning Approach

Early heart disease prediction research primarily used
traditional machine learning algorithms like Random Forest,
Long Short-Term Memory (LSTM), Logistic Regression,
XGBoost and Gradient Boosting. Logistic Regression was
able to achieve an accuracy of 89 pervent,Random Forest was
able to achieve 87 percent, Gradient Boosting method was
able to achieve and accuracy of 85 percent, XGBoost was



able to achieve 85 percent and LSTM was able to achieve 85
percent [10].
Some of the authors used Feature selection methods and
applying Support Vector Machine(SVM) and BayesNet
algorithm in which they were able to achieve an accuracy of
85.1 percent at the best [11].
Some of the authors used different algorithm and achieved
different results like decision tree and achieved 77.55
percent, Naı̈ve Bayes and achieved 83.49 percent, K Nearest
Neighbor(KNN) getting the best accuracy as 83.16 percent
and many other algorithms while getting the best accuracy as
84.15 percent in SVM algorithm [12].

B. Deep Learning approach

As the time advanced there was introduction of Artificial
Neural Network, this was the model that was inspired from
the structure and function of the biological Neural Network in
the human brain, thereby introducing Multilayer Perceptron
which can be combined with the existing algorithm like
SVM, KNN, Decision Tree and many other in this case the
author got the best accuracy of 84.15 percent [12].

C. GAN-Based Methods

Generative Adversarial Network (GANs) have started
to emerge as a very powerful tool in the field of medical
research where there is a deficit of data. In recent study Zhang
et al. (2023) introduced a Wasserstein GAN with Gradient
Penalty (WGAN-GP) designed for one dimensional data
augmentation. In this model the author compared the result of
Synthetic Minority Oversampling Technique (SMOTE) and
traditional GAN to calculate the accuracy, Area under the
curve(AUC), Sensitivity and Specificity in which he observed
that the Wasserstein GAN with Gradient Penalty (WGAN-GP)
was able to perform better then them, the experiment shows
that the accuracy obtained was between 70-80 percent [13].

III. METHODOLOGY

This study offers a machine learning framework. It targets
heart disease prediction with the Cleveland heart dataset. The
method relies on basic elements. These elements cooperate to
provide precise predictions.

A. Data Acquisition and Preprocessing

The Clevland Heart Dataset was obtained from UCI Ma-
chine Learning Repository. The Dataset include 14 primary
attributes for 303 patients with a target variable that indicate
whether there is a presence of heart disease.
Initial Preprocessing includes converting the target variable to
binary classification i.e. 0 = no disease and 1 = disease and
identifying categorical features like Number of major vessels
colored by fluoroscopy(ca), Chest pain type(cp), sex, rest-
ing electrocardiographic results (restecg), fasting blood sugar

(fbs), Exercise-induced angina (exang), Thalassemia(thal) and
numerical features like ST depression induced by exercise
(oldpeak),Serum cholesterol (mg/dl) (chol), Resting blood
pressure (mmHg) (trestbps), Maximum heart rate achieved
(thalach), age.

B. Data Augmentation Strategy

To enhance model performance the author
implemented Conditional Tabular Generative Adversarial
Netwroks(CTGAN) for synthetic data Generation. The
strategy used were as follow, Conditional Tabular Generative
Adversarial Networks (CTGAN) was trained on the original
training data with 3000 epochs and the obtained Augmented
dataset was then combined with the original dataset to expand
the dataset.

C. Feature Engineering Pipeline

A two-stream preprocessing pipeline was constructed:
1) Numerical features: Missing value imputation with me-

dian strategy followed by standardization. This is done for
the feature number named as major vessels colored by fluo-
roscopy(ca).

2) Categorical features: Missing value imputation with
most frequent strategy followed by one-hot encoding. This is
done for the feature named as thalassemia blood disorder(thal).

D. Model Development

A random forest Classifier was used along with the Hyper-
parameter optimization. The Hyperparameter was performed
using GridSearchCV. After the model was developed, it was
applied to calculate parameter like accuracy and compare it
with other model that were used in the previous time.

Fig. 1. Heart Disease Prediction Methodology.

IV. RESULT

The primary goal of this study is to determine if a patient
is likely to develop heart disease. Earlier the authors used tra-
ditional machine learning technique to compute the accuracy
but since there was data limitation, the author’s were not able



to get more accurate result therefore in this algorithm in this
research the author has used Conditional Tabular Generative
Adversarial Network (CTGAN) to mitigate the data limitation
by generating high quality synthetic data and combining it
with the Random Forest Classifier to get the better result.
By optimizing the code, the author was able to achieve an
accuracy of 90.16 percent.

A. Feature Target Correlation Analysis

The correlation matrix is able to identify the relation
between the key clinical feature and heart disease diagnosis.
These results give a more meaningful prediction between the
clinical understanding and cardiovascular risk factor.

Fig. 2. Correlation Matrix.

Figure 2 displays a correlation matrix for various heart
disease features, visualized in the form of a matrix.
It illustrates the linear relationships between pairs of features,
showing both the strength and direction of correlation.
It ranges from -1 that shows strong negative correlation,
shown in blue to +1 that shows strong positive correlation,
shown in red, with values near 0 indicating weak or no linear
correlation.

B. Synthetic Data Generation with CTGAN

CTGAN generated synthetic data demonstrates high fidelity
to the original dataset.

Fig. 3. Distribution of age between original and synthetic data.

Figure 3 shows the distribution of age in the synthetic data
(orange line) followed by distribution of original data (blue
line), peaking around late 50s and early 60s.

Fig. 4. Distribution of sex between original and synthetic data.

Figure 4 shows the bar chart that compares the proportion
of sex in which 1 means male while 0 means female. The
synthetic data are represented by an orange bar, and the
original data are represented by a blue bar.

Fig. 5. Distribution of cp between original and synthetic data.

Figure 5 shows the bar chart of the distribution across
different types of chest pain i.e. 1, 2, 3, 4. The synthetic data
match each type of chest pain as per the original data.

Fig. 6. Distribution of trestbps between original and synthetic data.



Figure 6 shows the distribution of resting blood pressure
which is centered about 120-140 mmHg.

Fig. 7. Distribution of chol between original and synthetic data.

Figure 7 shows the distribution of serum cholesterol with
a peak at 200-250 mg/dl. It can be seen that the blue line
represents original data while orange represents synthetic data.

Fig. 8. Distribution of fbs between original and synthetic data.

Figure 8 represent a bar chart that shows the fasting blood
sugar which is greater than 120 mm/dl indicated by binary
means that shows 0 for false and 1 for true.

Fig. 9. Distribution of restecg between original and synthetic data.

Figure 9 represent a bar chart that displays the distributions
across different ECG result categories.

Fig. 10. Distribution of thalach between original and synthetic data.

Figure 10 represent the density plot that shows maximum
heart rate achieved by the synthetic and original dataset, the
plot peaks at 150-160 bpm.

Fig. 11. Distribution of exang between original and synthetic data.

Figure 11 is a bar plot showing whether exercise induced
symptoms of angina, where 0 indicates ’no’ and 1 indicates
’yes’.

Fig. 12. Distribution of oldpeak between original and synthetic data.

Figure 12 represents density plot that shows that the graph
is right skewed, the graph shows the ST depression induced
by exercise relative to rest. It can be seen that most values
are concentrated about near 0.



Fig. 13. Distribution of slope between original and synthetic data.

Figure 13 represents the bar graph that shows the slope of
the peak exercise ST segment, it also compares the distribu-
tions across different slope categories.

Fig. 14. Distribution of ca between original and synthetic data.

Figure 14 represents the bar chart that shows the number of
major vessels colored by fluoroscopy, the bar chart shows the
distribution for the number of major vessels as 0, 1, 2, 3 and
4.

Fig. 15. Distribution of thal between original and synthetic data.

Figure 15 represents the bar chart that compares the dis-
tributions across different Thalassemia types (likely coded
categories).

C. Feature Importance and Model Interpretability

The Random forest Classifier identifies thalach, chol ,
oldpeak (ST depression induced by exercise), trestbps and age
as the most influential predictors. This prioritization aligned
with the correlation finding make the classifier very much
sufficient to calculate the accuracy very precisely.

Fig. 16. Feature importance derived from Random Forest.

Figure 16 displays the relative importance of various
features, likely used in a machine learning model. The
y-axis lists the feature names, and the x-axis represents the
importance score, ranging from 0.00 to 0.15.
Features like ’thalach’, ’chol’, ’oldpeak’, ’trestbps’, and ’age’
are shown to be the most significant contributors, while ’fbs’
and ’sex’ have the least impact according to obtained data.

D. Comparision between Models

The paper proposes a model combining CTGAN for syn-
thetic data generation with a Random Forest Classifier. This
proposed model is compared against several other machine
learning algorithms.

TABLE I
ALGORITHM ACCURACY COMPARISON

S.No. Algorithm Accuracy (%)
1. Logistic Regression 89.00
2. Random Forest 87.00
3. Gradient Boosting 85.00
4. XGBoost 85.00
5. LSTM 85.00
6. Naı̈ve Bayes 83.49
7. K Nearest Neighbor 83.16
8. Multilayer Perceptron Neural Network Model 84.15
9. WGAN-GP 73.80
10. CTGAN + Random Forest (Proposed Model) 90.16

V. CONCLUSION

The overall aim is to define a new technique that integrate
CTGAN with the Random forest Classifier, The Conditional
Tabular Generative Adversarial Networks (CTGAN) Algo-
rithm is used to expand the Cleveland Heart Dataset addressing
the issue of data insufficiency. By generating realistic synthetic
samples, the augmented data provided a more reliable data



distibution, thereafter the use of Random Forest technique was
used to give a predictive analysis.
Methodology demonstate that the use of synthetic dataset
significantly enhanced the feature variability.
Comparative analysis indicates that this approach performed
better as compared to other traditional method like Random
Forest, K Nearest Neighbor, Gradient Boosting, Long Short-
Term Memory(LSTM), Logistic Regression, Naive Bayes,
Multilayer Perceptron Neural Network Model, XGBoost, and
Wasserstein Generative Adversarial Network(WGAN) with
Gradient penalty that rely on the origional dataset.The en-
hanced model achieved an accuracy of 90.16 percent, which
indicated ab etter performance compared to the preceding
methods. These findings indicate the potential of Conditional
Tabular Generative Adversarial Networks (CTGAN) as a ro-
bust tool for data augmentation in healthcare analytics. This
improved predictive model is particularly valuable for early
detection and risk assessment in cardiac care.
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