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ABSTRACT 

Brain-Computer Interfaces (BCIs) offer a revolutionary means of communication 

between the human brain and external systems, enabling individuals to control devices 

without the need for any muscular activity. This technology holds immense potential 

in various domains, particularly in neurorehabilitation, where it assists patients with 

motor impairments, and in assistive technologies, providing control over prosthetic 

limbs, wheelchairs, and communication devices. Among the various BCI paradigms, 

Motor Imagery (MI) has emerged as one of the most promising approaches. In MI-

based BCIs, users are trained to imagine specific movements—such as moving the left 

or right hand—without performing any actual physical motion. To monitor brain 

activity, Electroencephalography (EEG) is the most widely used modality in MI-based 

BCIs. EEG captures electrical activity from the scalp with high temporal resolution, 

making it particularly effective for tracking the fast neural dynamics associated with 

motor imagery. Additionally, EEG is non-invasive, portable, and cost-effective, 

offering significant advantages over other neuroimaging techniques such as fMRI and 

MEG. However, EEG signals are inherently high-dimensional and noise-prone, with 

artifacts stemming from muscle movement, eye blinks, and external interference. 

These challenges necessitate robust feature extraction and channel selection 

techniques to ensure accurate and efficient classification of MI tasks. Identifying the 

most informative channels and transforming the raw EEG into meaningful features are 

critical steps in reducing redundancy, improving signal quality, and enabling reliable 

real-time performance.  

In this work, we propose an enhanced EEG-based framework for binary motor imagery 

classification, focusing specifically on distinguishing left- vs. right-hand imagery. To 

extract discriminative features, we employ Advanced Graph Signal Processing 

(AGSP), a novel approach that treats EEG signals as data on a graph, where nodes 

represent EEG channels and edges capture functional connectivity between brain 

regions. This graph-based representation enables the extraction of features that 

incorporate both spatial and structural information, offering deeper insights into brain 

dynamics compared to traditional time-series analysis. AGSP leverages graph spectral 

transforms to highlight connectivity-driven neural patterns relevant to MI 

classification. To further improve system performance, we implement the Set-based 

Integer-coded Fuzzy Granular Evolutionary (SIFE) algorithm for intelligent channel 

selection. SIFE utilizes swarm intelligence to explore the search space and select the 

most informative subset of EEG channels, effectively reducing dimensionality while 

preserving key discriminative features. This not only boosts classification accuracy but 

also reduces computational cost and enhances the system’s real-time capabilities. For 

the final decision-making, we adopt an ensemble classification strategy by integrating 

multiple classifiers such as Random Forest, XG-Boost, and Ada-Boost. Ensemble 

learning enhances robustness and generalization by combining the strengths of 

individual models. The integration of AGSP for structural feature extraction, SIFE for 

optimized channel selection, and ensemble learning for robust classification results in 

a highly efficient and accurate framework for decoding binary motor imagery tasks 

from EEG signals. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 
1.1. OVERVIEW: 

 

Brain-computer interfaces (BCI) create a straight-forward communication 

channel between the brain and external equipment bypassing traditional 

output routes like the muscles or speech. BCIs are essential in many areas, 

especially in the areas of assistive technology and rehabilitation for people 

with motor impairments. Motor Imagery (MI) is a fundamental approach 

in BCIs [1]. The ability to mentally simulate movement without actually 

performing it physically is known as motor imagery. When a person 

imagines moving, their brain generates electrical patterns similar to those 

produced during actual motor execution. This makes MI a useful tool in 

BCIs, as it enables users to operate devices or communicate through the 

imagination of movement. This approach has found significant application 

in medical fields, especially in patients recovering from stroke, spinal cord 

injury, or other motor impairing illnesses  [2]. 

1.1.1. Motor Imagery in BCI:  

MI can be  [3]used to identify certain brain activity patterns and translate 

them into commands for operating external devices like computer cursors, 

robotic limbs, or exoskeletons. It has also demonstrated potential in 

controlling assistive technologies for severely disabled people, holding 

new promise for independence and interaction with environment  [4].  

1.1.2. Inputs for Motor Imagery Detection:  

Electroencephalography (EEG), which analyses the electrical activity of 

the brain, is the main input utilized to identify MI signals. EEG records 

brain activity in real time without intrusive procedures, capturing the 

neural impulses linked to motor imagery. These signals are then converted 

into control signals for BCI applications after being processed, examined, 

and evaluated  [5]. 

1.1.3. Why EEG Dominates Other Modalities in BCI: 
However, there are additional methods, including near-infrared 

spectroscopy (NIRS), functional magnetic resonance imaging (fMRI [6]), 

MEG [7], and ECoG for identifying brain activity  [8]. In BCI applications, 
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EEG continues to be the most used modality. This is because of several 

factors:  

 Non-invasive and Cost-effective: EEG does not require surgery or the 

use of expensive equipment, making it a more practical and affordable 

option. 

 High Temporal Resolution: EEG provides real-time data, allowing 

for immediate feedback and quick response times, which is crucial in BCI 

applications, especially for motor imagery.  

 Portability: EEG systems are generally lightweight and can be easily 

worn by users in various environments, which is particularly useful for 

both clinical and everyday BCI applications.  

Because of these benefits, EEG is the preferred method for 

tracking brain activity in MI-based BCIs, enabling the creation of 

accessible and efficient assistive devices. 

1.1.4. Electroencephalography: 

Brain activity generates a variety of signals, including electrical and 

magnetic impulses. This activity can be recorded in a variety of ways, 

which are often divided into non-invasive and invasive categories. 

Invasive approaches contain surgery to put a certain device in the brain, 

whereas non-invasive approaches do not contain any surgery. 

Electroencephalography [9, 10] is most frequently used non-invasive ways 

to capture brain signals.  EEG is a basic and easy way to capture brain 

electrical activity without having to cut into the brain. The activity is 

shown as voltage changes that happen when current flows through the 

neurons in the brain.  The electrodes on the scalp record EEG waves, which 

can be thought of as the signal over time.  EEG is a way to measure voltage 

over time.  The activity level of the cerebral cortex has a big effect on EEG 

characteristics.  The EEG signal is made up of a variety of waveforms, and 

it is usually grouped by its 1) frequency 2) Size 3) Shape of the wave 4) 

Distribution in space 5) Reactivity.  The most popular way to categorize 

EEG signals is by the frequency band of the EEG waveform, which can be 

broken down into five separate frequency bands. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

 
2.1. OVERVIEW:  

 

A summary of current studies in the area of motor imagery classification 

is given in this section. The focus is on feature extraction, channel 

selection, and classification—three crucial aspects that contribute 

significantly to the overall performance of MI systems. Identifying 

significant patterns in EEG data that correspond to various motor imagery 

tasks requires feature extraction. Channel selection methods are used to 

find the extremely pertinent EEG channels and eliminate noisy or 

redundant ones in order to improve efficiency and reduce computational 

complexity. Many studies have explored optimization-based approaches 

for this purpose. Based on the features that were retrieved, classification 

techniques are then applied to distinguish between different motor imagery 

states. A wide range of research efforts have been directed toward 

enhancing the accuracy, robustness, and real-time applicability of MI 

classification by integrating effective strategies across these stages. 

 In the area of BCI, MI has been extensively researched due to its potential 

in enabling communication and control without physical movement. 

Numerous studies  [11] [12] [13] [14] [15] have been conducted to improve 

MI-based systems' performance. Early research concentrated on finding 

recurring patterns in EEG readings and comprehending how the brain 

reacts to imagined actions. In order to better capture these patterns, the 

emphasis gradually turned to better signal processing methods. To make it 

simpler to differentiate between several mental tasks, feature extraction 

techniques have been established to represent the EEG signal. In order to 

enhance classification accuracy and reduce system complexity, 

researchers have also realized how important it is to choose the most useful 

EEG channels. Various methods have also been explored for classifying 

MI tasks, aiming for higher precision and faster response times. Overall, 

the literature demonstrates a consistent attempt to improve the 

dependability, speed, and usability of MI-based structures, making them 

suitable for practical uses including neurofeedback, assistive technology, 

and rehabilitation. 
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2.2. FEATURE EXTRACTION:  

 

Numerous feature extraction approaches have been investigated in a 

number of research in the literature to improve motor imagery (MI) 

categorization efficiency. The aim of these approaches is to capture the 

most informative patterns from EEG signals, which are essential for 

precisely differentiating between various imagined actions. The following 

studies discuss various feature extraction techniques employed in motor 

imagery (MI) classification. Study [16] developed a new dual-stream 

convolutional neural network (DCNN) by classifying tasks using the time 

and frequency-domain elements of EEG signal. This network can take 

inputs as both time and frequency domain signals, and it combines the time 

and frequency domain extracted features by linear weighting for training.  

DCNN could also learn the weight on its own.  The BCI II, III, and IV 2a 

dataset studies demonstrated that the model suggested in this works 

outperforms other standard methods.  The mechanism that utilized time-

frequency signals as inputs worked better than the model that solely 

utilized time or frequency domain signals.  Compared to models that 

simply used one signal as input, the accuracy of classification was better 

for each individual. 

To distinguish left- and right-hand imagery movement, they first extracted 

features characteristics from EEG motor actions utilizing Discrete Wavelet 

Transform (DWT), and then they categorized the EEG signal for 

application employing an Artificial Neural Network (ANN)  [17]. A pair 

of feature vectors from beta rhythm are employed as input by the feed-

forward neural network classifier. We noticed that using 3 input feature 

vectors—such as mean, peak power and standard deviation—improved 

our categorization performance by 80% as compared to 78% with 2 input 

feature vectors. Study [18] suggested that the optimum classification 

algorithm and feature extraction mechanism may be found by comparation 

of some most popular systems on a shared base dataset. DWT and cross 

correlation are two methods of feature extraction that researchers have also 

examined and compared. Following Five classifiers have been developed 

that are kernelled logistic regression (KLR), logistic regression (LR), 

probabilistic neural network (PNN), multilayer perceptron neural network 

(MLP), and least-square support vector machine (LSSVM). We used BCI 

IV-a dataset from the BCI-III as the fundamental database to test the 

classifiers. We used a 10-fold cross-validation (CV) technique to test the 

algorithms. From experimental findings, it has been observed that DWT 

with LSSVM classifier is superior to other procedures. Feature extraction 

mechanisms such as time domain, frequency domain, time-frequency-

domain examination have been widely used in MI-related classification, 

each contributing to capturing specific signal characteristics. While these 

approaches have shown promising results, Common Spatial Pattern (CSP) 
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methods have often achieved superior performance. This is primarily 

because CSP effectively enhances the discriminative spatial features 

between different motor imagery classes by maximizing the variance 

difference across EEG channels. By portraying the original EEG signals 

into a new spatial domain, CSP highlights the most relevant patterns 

associated with imagined movements, leading to improved classification 

accuracy. Spatial features try to find features from certain electrode located 

on the scalp, like CSP.  For MI-EEG data, the most prevalent ways to 

extract features are CSP and its derivatives.  The EEG recognition method 

in [6] was built using DWT, CSP, and extreme learning machine (ELM).  

CSP and DWT are employed together to extract features, which fixes the 

issues that classical CSP was too sensitive to noise.  Using ELM for 

categorization makes the BCI system work better in real time.  Our results 

demonstrate that the algorithm works well because it has a categorization 

accuracy of 90% and a categorization time of 0.012 seconds for BCI III 

2003 dataset. 

A number of researchers have proposed enhancing and generalizing the 

CSP approach. The Study [7] study suggested a new sparse CSP approach 

for choosing channels in EEG signal.  The suggested sparse common 

spatial pattern method was made to be an optimization method for picking 

the fewest channels although still keeping the accuracy of the classification 

high.  So, the suggested method could be changed to get the finest possible 

categorization accuracy by getting rid of the noisy and extra channels, or 

to keep the fewest channels without lowering the categorization accuracy 

of employing all the channels.  We tested the suggest sparse common 

spatial pattern method on two motor imaging databases, one with a small 

number of channels and one with a high number of channels.  The 

suggested SCSP channel selection worked well in both databases to 

minimize the channels and was more accurate at classifying than other 

methods like mutual information, fisher criterion, SVM, CSP, and RSCP.  

The suggested SCSP algorithm significantly increased the accuracy of 

classification by a mean of 10% when compared to using three channels 

such as C3, C4, and C-z. 

[8], introduced an approach named stationary Common Spatial Pattern (s-

CSP), that normalizes the classical CSP algorithm in the direction of 

stationary subspaces. In their research, it was shown that their approach 

yields much better classification accuracy, especially for individuals who 

struggle to operate a BCI system. Based on this work, [9] reviewed the 

existing spatial filter calculation techniques and suggested a generic 

framework based on divergence maximization. In the framework, the 

standard CSP algorithm was re-described as a divergence maximization 

task, providing a principled means for the implementation of diverse 

invariances as well as for the incorporation of additional subjects' 

information. Not only does the framework encompass many CSP 

variations but also allow for new spatial filtering techniques through using 

diverse divergences and regularization settings. Building upon these 
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concepts, [10] furnished CSP with a probabilistic interpretation and 

introduced the P-CSP framework. P-CSP represents the EEG in the spatial-

temporal domain and solves CSP's problem of over-fitting. Statistical 

inference techniques have been designed by the authors to overcome the 

problem of local optima. A computationally efficient algorithm for MAP 

estimation under isotropic noise was introduced through the use of Eigen 

decomposition. A variation inference solution was put forward for more 

complicated cases with the use of group-wise sparse Bayesian learning 

automatically adjusting the optimal model size.  

Filter bank CSP (FBCSP) is an expanded variant of the traditional CSP 

method which makes use of both the frequency data in MI-EEG signals 

and the spatial information in EEG channels.  FBCSP did the greatest job 

in classifying motor imagery out of all the other approaches which use 

manual feature extraction. Dataset 2a includes 4-class EEG data from 22 

channels across 9 subjects, while Dataset 2b contains 2-class EEG data 

from 3 bipolar channels across 9 subjects. Multi-class extensions— 

Divide-and-Conquer (DC), Pair-Wise (PW), and One-Versus-Rest 

(OVR)—were used for Dataset 2a. Two feature selection methods, MIBIF 

and MIRSR, were applied to Dataset 2b. Utilizing 10 × 10-fold cv and 

session-to-session transfer, FBCSP achieved the highest performance, 

with mean kappa values of 0.569 (2a) and 0.600 (2b), outperforming other 

BCI Competition IV submissions. 

2.3. OPTIMIZATION BASED CHANNEL SELECTION:  

 

In order to enhance signal quality and lower computing complexity in BCI 

related systems, channel selection [19] [20] is an essential step. Through 

choosing the most relevant EEG channels, BCI systems can enhance 

classification accuracy and reduce noise. There are filter-based approaches 

[21] (like correlation or mutual information), wrapper-based methods [22] 

(like Recursive Feature Elimination), and embedding methods [23] (like 

Lasso regression) that can help you choose a channel.  These algorithms 

find the channels that give the greatest information, which can be very 

important for things like classifying motor images.  Choosing the right 

channels helps improve performance, making BCI systems more useful 

and efficient in the real world. 

Optimization-based channel selection aims to identify the extremely 

beneficial EEG channels for motor imagery (MI) classification, improving 

both accuracy and computational efficiency. Metaheuristic algorithms, 

such as Genetic Algorithms (GA) [24], Particle Swarm Optimization 

(PSO) [25], and Grey Wolf Optimizer (GWO) [26], are commonly 

employed to choose the appropriate channels. These methods evaluate 

different channel subsets based on classification performance, enabling 

adaptive and subject-specific solutions. By refining the selection process, 

optimization techniques help to achieve higher accuracy while reducing 

computational complexity. Several studies have successfully applied 
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optimization-based channel selection to enhance MI classification, 

demonstrating its effectiveness in improving both performance and 

generalization across subjects. The following studies discuss various 

channel selection methods employed in MI classification. 

Study [15] proposed the Logistic S shaped Binary Jaya Optimization 

Algorithm (LS-BJOA), that merges a Jaya optimization algorithm with 

logistic map initialization for reducing the computational complexity from 

multiple EEG channels. By introducing stochasticity, the logistic map 

improves predictive accuracy. The method initialized three electrodes as 

candidates and iteratively selects the most relevant channels using a bi-

objective fitness function which maximizes accuracy and minimizes 

selected channels. The signals were preprocessed with a fifth-order 

bandpass filter and ICA for artifact reduction, Regularized Common 

Spatial Pattern (RCSP) used for feature extraction. Classification was 

performed using SVM, Linear Discriminant Analysis (LDA) and Naïve 

Bayes (NB). Tested on three public EEG datasets, their technique 

accomplished categorization accuracies of 83.59%, 89.02% and 82.09% 

with fewer channels, while reducing computational time. A MX-BBOA 

Algorithm named as Multi objective X shaped Binary Butterfly 

Optimization, was proposed in a study [27] for effective channel selection 

in motor imagery (MI) categorization. The technique mimics how 

butterflies forage for food in order to determine which channels are the 

most instructive. First, pertinent frequency responses are captured using a 

5th -order Butterworth bandpass filter. To remove artifacts the Independent 

Component Analysis (ICA) was used. Temporal-Spatial features are 

subsequently collected from the improved data signals employing the 

Multivariate Empirical Mode Decomposition (MEMD) method. Two 

sigmoid transfer functions are used to minimize the search space of 

continuous channel to a search space of binary in order to increase the 

diversity of the solutions. SVM was employed to classify the collected 

features in order to differentiate MI task pairs, including right hand, feet, 

left hand, and tongue. Validation on 3 available public EEG datasets (BCI 

IV-Dataset 1, BCI IV-IIA, and BCI III-Dataset IV-a) demonstrates that 

their technique accomplishes superior categorization accuracies of 

79.74%, 84.49%, and 84.55%, respectively, with fewer channels compared 

to state-of-the-art methods.   

In [17], introduced an optimization algorithm using the Fisher score for 

channel selection in EEG. Firstly, they derive the CSP features of the EEG 

data in various bands, compute each channel’s fisher score using these 

features and rank them. Then, they utilized an optimization algorithm for 

the final selection of the channels. On the BCI IV 2a dataset, their 

algorithm chooses on average 11 channels out of 4 bands with a mean 

accuracy of 79.37%. It is a development of 6.52% over the use of the entire 

22 channels. Their approach achieved comparable outcomes on their own 

dataset, which they recorded, with a mean accuracy of 76.95% and an 

increase of 24.20% using fewer than half of the channels. Nonetheless, the 
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optimization approach of channel selection can have limitations, for 

instance, in excluding the most crucial channel because of initialization 

using the wrong channels and not providing ideal performance because to 

the absence of an effective multi objective fitness function. To overcome 

these drawbacks, [18] introduced the MPJS (multi-objective prioritized 

jellyfish search algorithm) that has two major improvements. Firstly, 

domain specific initialization was utilized to choose the extremely crucial 

channels at the process of initialization in order not to exclude some 

important channels. Second, choosing the most helpful corresponding 

channels using a multi-objective fitness function rather than a single-

objective one makes sure that the chosen channels satisfy the number 

requirements while including candidate channels. They developed an 

enhanced double-branch EEGNET (DB-EEGNET) to attain the best 

results in 4-class Motor imagery detection. Their proposed MJPS channel 

selection and classification model DB-EEGNET algorithm outperformed 

the baseline approach on the BCI IV-IIA dataset, BCI IIIA dataset, and 

high gamma datasets, achieving accuracies of 83.9%, 84.46%, and 

94.78%, respectively. 

Feature extraction [28] is a crucial stage in the classification of motor 

imagery (MI) tasks because it transforms unprocessed EEG signals into 

meaningful representations. The first step in the procedure is pre-

processing the raw EEG data, which frequently include bandpass filtering 

to separate frequency bands [29] like Alpha (8–12 Hz) and Beta (12–30 

Hz), which are frequently linked to motor imagery. To capture the 

underlying brain activity, different features are retrieved from the pre-

processed data. Overall, these attributes can be splitted into 3 categories: 

time-domain [30] (like mean & standard deviation), frequency-domain 

(like band power and power spectral density [31] (PSD)), and time-

frequency (using wavelet transform or short-time Fourier transform [32] 

(STFT)). In this work we used FBCSP (Filter bank Common Spatial 

Pattern) [33] and AGSP (Advanced Graph Signal Processing) for feature 

extraction [34]. 

2.3.1. Filter Bank Common Spatial Pattern: 

An enhancement of the conventional Common Spatial Pattern (CSP) 

technique, Filter Bank Common Spatial Pattern (FBCSP) [33] [35] 

incorporates frequency-specific information to enhance feature extraction 

from EEG signals. By learning spatial filters that optimize the variance 

differences between 2 classes, CSP effectively improves the 

discriminability of EEG features. However, because it only uses one 

frequency band, it might not be able to capture the complex frequency-

dependent dynamics of brain activity. In order to overcome this restriction, 

FBCSP breaks down EEG signals into a number of different frequency 

bands utilizing a filter bank made up of numerous bandpass filters. In BCI 

applications, FBCSP has demonstrated highly beneficial, particularly for 

motor imagery classification, where subject-specific discriminative 

patterns may exist in many frequency bands depending on the subject and 
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the task. By leveraging multi-band decomposition, FBCSP improves 

robustness and classification accuracy, making it a standard approach in 

state-of-the-art EEG-related systems. 

2.3.2. Advanced Graph Signal Processing: 

An expansion of conventional Graph Signal Processing (GSP), Advanced 

Graph Signal Processing (AGSP) uses the graph representation of signals 

to do more complex and structured analyses. AGSP involves the 

application of graph-based techniques to model, process, and analyze 

signals that are inherently structured or relational in nature, such as those 

coming from brain networks in BCI systems. Key concepts of AGSP given 

below: 

 Graph Representation: AGSP uses a graph to describe data, with 

nodes standing for signals or data points and edges for dependencies or 

relationships between nodes. Each electrode (or set of electrodes) in an 

EEG can be represented as a node in the graph, and the connections 

between channels—such as those based on functional connectivity or 

spatial proximity—are modelled as edges. 

 Signal Processing on Graphs: AGSP aims to process these graph-

based signals by using techniques like graph convolution, graph Fourier 

transform (GFT), and spectral graph theory. This allows the incorporation 

of structural information, such as brain connectivity, when processing the 

signals.  

 Graph-based Features: AGSP techniques can record functional 

connectivity across brain regions in the context of EEG and motor 

imagery, illustrating the relationship between activity in one area of the 

brain and activity in another. Features derived from these graph-based 

representations can include measures of centrality, clustering, and 

community structure, that can then be used to classify different mental 

states. 

  Advantages: AGSP provides a way to process and analyse signals that 

have an inherent network or graph structure. This is particularly useful in 

neuroscience and BCI where brain activity is often interconnected, and 

modelling the brain as a network can provide richer insights than 

traditional signal processing methods. 

2.4. CLASSIFICATION: 

 

In systems that use motor imagery as a MI-BCI, classification was 

essential. Following the extraction of significant features from raw EEG 

signal, the categorization stage entails differentiating between various 

motor tasks, such as visualizing the movements of the tongue, left hand, 

right hand, or feet. The goal is to accurately map the extracted neural 

patterns to the corresponding motor imagery classes. The BCI system's 

performance heavily relies on the effectiveness of the classifier used, as it 
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directly impacts the system’s ability to interpret user intentions in real-

time. Various classifiers, ranging from traditional machine learning 

models to advanced ensemble and deep learning techniques, have been 

explored to enhance classification accuracy and generalization across 

subjects and sessions. The following studies discuss various classification 

methods employed in motor imagery (MI) classification. 

Study [19], employed ensemble classifier of optimized ELM. PSO was 

used for optimizing the ELM's hidden biases and input weights in order to 

overcome the Classification instabilities performance and randomness in 

case of using randomly generated parameters of the ELM and the 

categorization performances of the ensemble of base classifiers are 

combined using the majority voting technique in order to overcome the 

detrimental effect of the classification performance due to the use of 

locally optimal parameters of the ELM. Utilized two publicly available 

EEG datasets along with some previously published methods from the 

literature, the suggested approach was tested against four competing 

approaches. The outcomes suggested that the presented approach 

performed better than competitive approaches with notably higher 

categorization accuracies on both four-class and two-class MI data. 

Furthermore, in contrast to the current techniques, it also maintained 

higher mean accuracy performance of two-class categorization and 

achieved higher for the subjects with the lower accuracy performance on 

both four-class and two-class categorizations. Several end-to-end deep 

learning (DL) architectures have replaced handcrafted features in Motor 

Imagery EEG decoding in recent years. In addition, most of existing DL 

architectures are designed for the compensation of the limitation of 

traditional BCI mechanism and the promotion of Motor Imagery EEG 

decoding performance. CNN was commonly used in Motor imagery EEG 

classification due to its capable for learning informative features from the 

dataset. Despite the fact that these DL based methods performed better 

than traditional ML approaches, their advancements are limited and spatial 

or temporal variables are not completely utilized. Recently, various well-

thought-out DL architectures was created to fully extract Motor imagery 

EEG signals' multi-domain information and improve decoding 

performance. [20] created a multi-branch three-dimensional CNN for the 

new representation and developed a three-dimensional architecture of the 

motor imagery EEG data to preserve the spatial detail of the sampling 

electrodes. To integrate the spectral -temporal features and boost the 

accuracy of Motor imagery EEG classification, a temporal-spectral-based 

squeeze-and-excitation feature fusion network (TS-SEFFNet) had been 

suggested in 2021 [36] . Nevertheless, such networks only extract features 

from a specific time window of motor imagery EEG signals, disregarding 

the significance of motor imagery-based patterns throughout time, which 

contributes to poor classification performance. A variance layer was 

recently suggested by FBC-Net [37] for effectively obtaining features from 

multiple windows of the time series, and it accomplished extremely well 

on publicly available datasets. However, FBC-Net does not explore 
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temporal relationships among features; instead, it explores features in 

multiple time windows independently, which makes it insufficient for 

discriminative extraction of features. 

Study [23] suggested an ideal channel selection method for multiclass 

Motor imagery categorization via a fusion convolutional neural network 

with attention blocks (FCNNA). The authors established a CNN 

based model by combining layers of a convolutional blocks with various 

both temporal and spatial filters. Both spatial and temporal filters are 

especially developed to identify the signal distribution and correlations of 

signal characteristics amongst electrode locations and toward analyse how 

these characteristics change over time. To increase the feature extraction 

capability of the EEG signals, the Convolutional Block Attention Module 

(CBAM) was applied after these layers. While channel selection, the best 

combination of channels has been selected using a new approach with the 

help of the genetic algorithm to provide variable channels as well as fixed 

for all the subjects. The suggested methodology was verified with 6% 

increase in multiclass classification accuracy against majority of baseline 

models. Remarkably, we attained highest accuracy of 93.09% for the left-

hand and right-hand movement binary classes. Additionally, the cross-

subject approach for multiclass categorization achieved 68.87% accuracy. 

After channel selection, accuracy of multiclass classification was 

improved and reached 84%. Recent MI-BMI-net [24] proposed an 

automatic channel selection approach of EEG channels in terms of spatial 

filters for choosing most informative EEG channels towards Motor 

Imagery EEG decoding. In contrast, we focus on emphasizing the 

significance of temporal relationships between features in separate time 

intervals and attain additional accuracy of 2.3% compared to MI-BMI-net. 

These evidences suggest learning the temporal relationships between 

features of separate time intervals can enable capture of discriminative 

features as well as enhance performance of MI-EEG decoding. 

Traditional classifiers like K-Nearest Neighbors (KNN) [38] and Support 

Vector Machine (SVM) [39] are frequently used in EEG-related motor 

imagery classification because of their effectiveness and simplicity. To 

categorize patterns from EEG signals, these algorithms either use distance 

measures or learn decision boundaries. They may, however, find it difficult 

to handle the high dimensionality, noise, and fluctuation that are frequently 

found in EEG data. On other hand, ensemble classifiers including as 

Random Forest [40] (RF), XG-Boost [41], and Ada-Boost [42] combine 

the predictive capabilities of several base models to improve overall 

performance.
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CHAPTER 3 

 

 

PROBLEM STATEMENT & DEVELOPMENT PROCESS 

 

 

 

 
3.1. PROBLEM STATEMENT 

 

Accurate classification in MI-related BCI systems remain a challenging 

task because of the complexity, non-stationary behavior of EEG data and 

the presence of redundant or noisy channels. Traditional feature extraction 

and channel selection approaches frequently not be able to gather the 

underlying spatial and functional connectivity patterns crucial for 

decoding MI tasks. To address this, advanced signal processing and 

optimization strategies that can improve feature quality and channel 

matching are needed. In this work, we aim to extract the most 

discriminative and physiologically meaningful features using advanced 

Graph Signal Processing (AGSP), which effectively models the spatial 

relationships among EEG electrodes. 

Furthermore, to enhance the robustness and efficiency of the channel 

selection process, we incorporate Set-based Integer-coded Fuzzy Granular 

Evolutionary algorithm. SIFE mechanism for intelligent channel selection. 

SIFE utilizes swarm intelligence to discover the search space and select 

the most informative subset of EEG channels, effectively reducing 

dimensionality while preserving key discriminative features. This not only 

boosts categorization accuracy but also minimize computational cost and 

enhances the system’s real-time capabilities. This approach minimizes the 

dimensionality of the data and enhances classification accuracy by 

focusing on the most informative EEG channels. 

3.2. DEVELOPMENT PROCESS: 

 

3.2.1. REQUIREMENT ANALYSIS: 

Requirements are a system characteristic or definition of some activity that 

the system is able to do to satisfy the purpose of the system. It gives a 

mechanism for understanding correctly what is required by and wanted by 

the customer, for critiquing against need, determining feasibility, agreeing 

upon a feasible solution, describing the solution clearly, and checking and 

maintaining requirements as they get converted into an operating system. 
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3.2.2. PYTHON: 
Python is known for its extensive features that make it a versatile and 

powerful programming language. One of its standout features is the simple 

and readable syntax, which emphasizes clarity, making it easy to learn and 

use even for beginners. Python is an interpreted programming language 

that runs code line by line, permitting rapid debugging and testing without 

requiring for compilation. It is also dynamically typed, meaning you do 

not need to declare variable types explicitly; they are assigned at runtime, 

enhancing flexibility. Python's compatibility with multiple platforms 

enables it to execute effortlessly on different platforms such as Windows, 

macOS, and Linux. Additionally, it boasts a vast ecosystem of public 

library and frameworks (including Pandas for data analysis, NumPy for 

numerical computations, and Tensor Flow for machine learning), making 

it appropriate for a widespread range of applications, from data science to 

web development automation. These features have contributed to Python's 

popularity in both academia and industry. 

3.2.3. GOOGLE COLAB: 
Google Collab is a cloud-based Jupyter Notebook service offered by 

Google for free, intended for data science, machine learning, and deep 

learning applications. Google Collab makes powerful computing assets 

accessible to its users easily with GPUs and TPUs, accelerating 

computation significantly without incurring costly hardware costs. Collab 

is hosted completely in the cloud and does not require set-up; therefore, its 

users can start coding straight out of their web browsers. Collab is 

integrated with Google Drive so easily that file storage, access, and sharing 

become uncomplicated. Collab is pre-loaded with common Python 

packages such as NumPy, Pandas, Tensor Flow, and PyTorch so that it is 

all set for different data science workflows. Collab is also capable of real-

time collaboration so that multiple people can co-work on a single 

notebook simultaneously as is the case with Google Docs. With its 

convenience, affordability, and flexibility, Google Collab is a valuable 

utility for data science and machine learning for both amateurs and experts 

alike. 

3.2.4. RESOURCE REQUIREMENTS FOR GOOGLE COLAB: 
3.2.4.1. Internet Connection: 

Since Google Collab is a cloud-related service, accessing and using 

notebooks requires a consistent internet connection. 

3.2.4.2. Google Account:  

To use Collab, a Google account is required. This allows access to Google 

Drive for storing notebooks and data files.  

3.2.4.3. Browser: 

 Collab works on any current web browser, such as Mozilla Firefox, 

Google Chrome, or Microsoft Edge. It is optimized for these browsers and 

provides a smooth user experience.  
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3.2.4.4. Memory (RAM):  

Collab provides 12 GB of RAM for free-tier users, with the option to 

upgrade to 25 GB of RAM in some cases. However, this is dependent on 

the availability of resources, and heavy computations may require request 

more memory.  

3.2.4.5. CPU/GPU/TPU:  

For standard tasks, Collab uses CPU resources. For more intensive 

computations, you can access NVIDIA GPUs and Google TPUs (limited 

usage per day for free users). We can switch between CPU, GPU, and TPU 

through the runtime settings.  

3.2.4.6. Storage:  

Collab offers storage via Google Drive for your files, datasets, and 

notebooks. Free Google Drive accounts provide 15 GB of storage, with 

additional storage available through paid plans.  

3.2.4.7. Software Libraries:  

Collab supports various Python libraries by default, including NumPy, 

Pandas, Matplotlib, and PyTorch. We can also install additional libraries 

using pip or conda.
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CHAPTER 4 

 

 

DATASET DETAILS 

 

 

 

 
4.1. DETAILED DESCRIPTION OF BCI IV 2A DATASET: 

 

There are 9 participants in this data set [25] who had EEG recordings.  Four 

distinct motor imaging assignments were included in the cue-based BCI 

approach: class 1 involved visualizing moving the left hand, class 2 

involved the right hand, class 3 involved both feet, and class 4 involved 

the tongue.  Two sessions were recorded by each individual on two 

separate days.  There were short breaks between each of the six runs.  

There are 48 trials in each run, twelve for each of the four different classes. 

This means that there are 288 trials in each session.  To out how much the 

electrooculogram (EOG) affected the session, a recording of 

approximately 5 minutes was produced at the start of each.  There are three 

sections to the recording: 1. Observing a fixation cross on the screen for 2 

minutes with the eyes open, 2. 1 minute with eyes closed, & 3. 1 minute 

with eye activities.  Figure 4.1 shows the time plan for one session.  The 

participants were seated in an armchair facing a screen.  At the starting 

point of the trial, the fixation cross displayed on the dark screen (t = 0 

second).  There is also a short sound warning tone that plays.   

.  

 

Figure 4.1. Timing plan of one session 

After t = 2 s, an arrow pointing up, down, left, or right direction displayed 

on the computer screen for 1.25 seconds and told the subjects to do the 

target motor imagery action. One of the four motor imagery classes was 

displayed by the arrow: 1. Left hand, 2. right hand, 3. foot, or 4. tongue.  

There was no feedback provided.  The individuals were told to do the MI 

action till t = 6 seconds, if the fixation cross on the computer screen 
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disappeared.  After that, there was a short gap during which the screen 

went black again.  Figure 3.2 shows the model. 

 

Figure 4.2. The paradigm's timing scheme 

4.2. DATA RECORDING:   

 

The EEG signals was captured with 22 Ag/Ag-Cl electrodes that were 3.5 

cm apart. Figure 3.3 on the bottom shows how they were set up.   

  

 

Figure 4.3: Top: Montage of the three monopolar EOG channels' 

electrodes 

Bottom: Montage of electrodes in accordance with the international 10-

20 system 
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The bottom mastoid was employed as a reference point whereas the top 

mastoid was employed as ground for the monopolar recording of the EEG 

signals.  These signals were captured at 250 Hz and filtered to only let 

through frequencies range between 0.5 Hz and 100 Hz. The amplifier's 

sensitivity has been configured to 100 µV.  There was also a notch filter 

with 50 Hz on to get rid of line noise.  Apart from the 22 EEG channels, 

there were also 3 monopolar channels for vertical EOG that were gathered 

and it was sampled at 250 Hz (see the right side of Figure 4.3). The 3 EOG 

channels are not to be employed for categorization; rather, they are 

included for the later application of artefact correction techniques. 

Table 4.1: List of event types (the 1st column encompasses 

hexadecimal values and the 2nd column encompasses decimal values). 

Description Event 

Eye open  276 

Eyes closed 277 

Start of a new trial 768 

Class 1 (Cue onset left hand) 769 

Class 2 (Cue onset right hand) 770 

Class 3 (Cue onset foot) 771 

Class 4 (Cue onset tongue) 772 

Unknown Cue  783 

Rejected trial 1023 

Eye movements 1072 

Start of a new run 32766 

The workspace will hold two key components: a signal array s and a header 

structure h. Signal data includes 25 channels—22 for EEG records and the 

remaining 3 for EOG records. The header structure provides event-related 

data that outlines how the information evolves throughout time. Three 

main fields in the header are essential for evaluating the dataset:  

1. The type of evert – h.EVENT.TYP   

2. The sample position of the event – h.EVENT.POS  

3. The during of event– h.EVENT.DUR   

The event position is recorded in h.EVENT.POS, while h.EVENT.TYP 

indicates the event type, and h.EVENT.DUR shows how long the event 

duration lasts. Event types used in this dataset are given in both 

hexadecimal and decimal formats. It's important to note that the class 

labels (1 to 4 for event types 769 to 772) are available only in the training 

data. Trials identified by experts as containing artifacts are labelled with 

event type 1023. Additionally, h.Artifact Selection having lists of each trial 

as either clean (0) or containing an artifact (1).
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CHAPTER 5 

 

 

PROPOSED ALGORITHM FOR MOTOR IMAGERY 

CLASSIFICATION  

 

 

 

 
5.1. OBJECTIVE: 

  

 To use Advanced Graph Signal Processing (AGSP), which is 

specifically designed for motor imagery classification, to extract 

discriminative and informative features from EEG signals 

 To use the Set-based Integer-coded Fuzzy Granular Evolutionary 

(SIFE) channel selection algorithm to pick the best EEG channels, 

improving model accuracy and efficiency by minimizing redundancy 

 To ensure reliable and broadly applicable MI classification findings by 

enhancing classification performance with ensemble classifiers like XG-

Boost, Ada-Boost, and Random Forest. 

5.2. WORKFLOW OF PROPOSED METHODOLOGY USING FBCSP-

PSO: 
 

In this section, we discuss the classification strategy employed for BCI MI 

tasks. This approach integrates FBCSP for effective feature extraction and 

PSO for optimal channel selection. The combination of FBCSP and PSO 

improves the discriminative ability of the extracted features while reducing 

redundancy by selecting the most informative EEG channels. This 

optimized feature set is then used to train various classifiers, enabling 

accurate identification of motor imagery classes and ensuring improved 

performance in BCI applications. 

Figure 5.1 shows general block diagram of FBCSP-PSO methods. 

Initially, the EEG dataset underwent preprocessing to ensure data quality 

and suitability for feature extraction. Since FBCSP was utilized for feature 

extraction, the data was decomposed into nine distinct frequency bands: 

4–8 Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, 20–24 Hz, 24–28 Hz, 28–32 Hz, 

and 32–40 Hz. Then, CSP algorithm [43] was employed to each band to 

extract discriminative spatial features corresponding to motor imagery 

tasks. Following feature extraction, channel selection was performed using 
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the PSO algorithm to reduce dimensionality and retain the most 

appropriate EEG channels for categorization. The optimized feature set 

was then classified using machine learning approaches such as Support 

Vector Machine (SVM), Random Forest (RF) and K-Nearest Neighbors 

(KNN), to evaluate and compare their efficiency in identifying motor 

imagery intentions. 

 

Figure.5.1. General Diagram of the FBCSP-PSO method 

5.2.1. FILTER BANK COMMON SPATIAL PATTERN (FBCSP): 

FBCSP [44] is an advanced feature extraction technique widely used in 

BCI related applications, especially for motor imagery classification. It 

extends the CSP technique by applying it across numerous frequency sub-

bands using a filter bank, thus capturing richer discriminative information 

from different brain rhythms. Working procedure was given below: 

5.2.1.1.Band-pass Filtering (Filter Bank Stage): 

EEG signals contain multiple oscillatory components corresponding to 

distinct brain activity tasks. In this stage, the raw EEG data is passed via a 

filter bank consisting of multiple band-pass filters to separate it into 

distinct frequency bands. For example, the signal is split into 9 overlapping 

or non-overlapping bands: [ 4 – 8 ] , [ 8 – 12 ] , [ 12 – 16 ] , [ 16 – 20 ] , [ 

20 – 24 ] , [ 24 – 28 ] , [ 28 – 32 ] , [ 32 – 36 ] , [ 36 – 40 ] Hz [4–8],[8–
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12],[12–16],[16–20],[20–24],[24–28],[28–32],[32–36],[36–40] Hz Each 

band focuses on different brain rhythms (like theta, alpha, beta), enhancing 

the extraction of frequency-specific information.  

5.2.1.2.Common Spatial Pattern (CSP) for Each Band: 

For each filtered sub-band, the Common spatial pattern method is used to 

construct spatial filters which maximize variation for one class and 

minimize for the other. Let  𝑋𝑏 ∈  ℝ
𝐶 𝑥 𝑇 be the EEG signal in the 𝑏𝑡ℎ band 

(C = channels, T = time points). The spatial filters 𝑊𝑏 are tackling a 

general eigenvalue challenge: 

 𝑅1𝑊 = 𝜆𝑅2𝑊                                                                    (5.1) 

Where 𝑅1  and 𝑅2 are covariance matrices of the two different classes. The 

resulting matrix 𝑊 contains spatial filters that project the EEG data into a 

new space with maximized class separability. 

5.2.1.3.Feature Computation:  

After projection, the EEG signal is transformed as: 

𝑍b = 𝑊𝑏
𝑇𝑋𝑏                                                                        (5.2) 

The feature for each component is computed using log-variance: 

𝑓i = log (
𝑣𝑎𝑟(𝑍b,i)

∑ 𝑣𝑎𝑟(𝑍b,i)
𝑚
𝑗=1

)                                                       (5.3) 

Where 𝑍b,i  is the 𝑖𝑡ℎ component of the projected signal in band 𝑏, and  𝑚 

is the number of spatial filters. 

5.2.1.4.Feature Concatenation Across Bands:  

Once features are extracted from all possible bands, they are concatenated 

to create the final feature vector: 

𝐹 = [𝑓1, 𝑓2, 𝑓3, … . 𝑓𝐵]                                                   (5.4) 

Here, 𝑓𝑏 is the feature vector from the 𝑏𝑡ℎ frequency band, and 𝐵 is the 

total number of bands. 

5.2.2. PARTICLE SWARM OPTIMIZATION CHANNEL SELECTION 

ALGORITHM: 

 

In BCI related applications, not all EEG channels contribute equally to 

classification. Some may contain noisy or redundant information. Hence, 

channel selection is crucial to minimize dimensionality, enhance 

categorization accuracy, and reduce computational cost. PSO is the one 

effective method to address channel selection problem. Algorithm 4.1 

represent the pseudocode of Particle Swarm Optimization (PSO) channel 

selection algorithm.  

Algorithm 5.1. PSO channel selection algorithm 
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Input: Total number of channels: N, Population size: P, Inertia weight: w, 

Maximum iterations: max_iter, Social and cognitive constants: c1, c2, 

FBCSP features extracted data 

Output Optimal channel subset  

𝐵𝑒𝑔𝑖𝑛 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑤𝑎𝑟𝑚 𝑤𝑖𝑡ℎ 𝑃 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒: 

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑢𝑠𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑎𝑠 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 
𝑏𝑒𝑠𝑡 (𝑝𝐵𝑒𝑠𝑡) 

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 (𝑔𝐵𝑒𝑠𝑡) 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
𝐹𝑜𝑟 𝑖𝑡𝑒𝑟 =  1 𝑡𝑜 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 𝑑𝑜: 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 𝑖𝑛 𝑠𝑤𝑎𝑟𝑚: 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑗 𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒: 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 

[𝑖][𝑗]  =  𝑤 ∗  𝑣[𝑖][𝑗]  +  𝑐1 ∗  𝑟𝑎𝑛𝑑1 ∗  (𝑝𝐵𝑒𝑠𝑡[𝑖][𝑗]  

−  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖][𝑗])  +  𝑐2 ∗  𝑟𝑎𝑛𝑑2 ∗  (𝑔𝐵𝑒𝑠𝑡[𝑗]  
−  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖][𝑗]) 

𝐴𝑝𝑝𝑙𝑦 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑡𝑜 𝑔𝑒𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 
𝑝𝑟𝑜𝑏 =  1 / (1 +  𝑒𝑥𝑝(−𝑣[𝑖][𝑗])) 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑏𝑖𝑛𝑎𝑟𝑦): 

𝐼𝑓 𝑟𝑎𝑛𝑑 ()  <  𝑝𝑟𝑜𝑏: 
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖][𝑗]  =  1 

𝐸𝑙𝑠𝑒: 
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖][𝑗]  =  0 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠: 
 𝐼𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 >  𝑝𝐵𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠: 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝐵𝑒𝑠𝑡[𝑖]  =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
 𝐼𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 >  𝑔𝐵𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠: 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝐵𝑒𝑠𝑡 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
𝑅𝑒𝑡𝑢𝑟𝑛 𝑔𝐵𝑒𝑠𝑡 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) 

𝐸𝑛𝑑 

 

In this study, PSO [45] is utilized as a channel/feature selection method to 

identify the extremely beneficial EEG channels that contribute to effective 

motor imagery classification. Motivated by social habit patterns of fish 

schooling and bird flocking, PSO works by initializing a population of 

particles where each search agent signifies a possible solution—in this 

case, a binary vector indicating the selection status of EEG channels. A 

value of '1' signifies that the channel is selected, whereas '0' indicates it is 

not. Each particle explores the search space and is evaluated using a fitness 

function, which is primarily based on the categorization accuracy achieved 
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utilizing only the selected EEG channels. To enhance efficiency, the 

fitness function can also incorporate a penalty term to minimize the 

selected number of channels, thus balancing performance and 

computational cost.  

During each iteration, each particles update their positions and velocities 

using current best-known position (p-Best or personal best) and the global 

best position (g-Best) discovered by any particle in the swarm. The 

velocity updated by three components: inertia, cognitive influence, and 

social influence. The new positions are determined using a sigmoid 

function that transforms continuous velocity values into binary decisions, 

enabling the particle to select or deselect individual channels. This process 

continues iteratively, with the swarm converging towards an optimal 

subset of channels that yield the highest classification performance. By 

selecting only, the most relevant channels, PSO not only reduces 

dimensionality but also accelerates the classification process and improves 

model generalization. The main advantages of PSO include its global 

search capability, compatibility with any classifier (such as SVM, KNN, 

or RF), and its ability to achieve high accuracy with fewer features. We 

used SVM classifier. However, its performance is sensitive to parameter 

tuning and the computational cost may be significant due to repeated 

classifier evaluations for each particle across generations. 

5.3. WORKFLOW OF PROPOSED METHODOLOGY USING AGSP-SIFE 

ALGORITHM:  
 

In this section, we discuss the classification strategy employed for BCI MI 

tasks. The approach integrates AGSP (Advanced Graph Signal Processing) 

for effective feature extraction and SIFE (Set-based Integer-coded Fuzzy 

granular Evolutionary) [46] ) for optimal channel selection. The 

combination of AGSP and SIFE improves the discriminative ability of the 

extracted features while reducing redundancy by selecting the most 

informative EEG channels. This optimized feature set is then used to train 

various classifiers, enabling accurate identification of motor imagery 

classes and ensuring improved performance in BCI applications. 

Initially, the dataset was pre-processed to extract EEG data components in 

the frequency range between 4 to 40 Hz, which are known to capture key 

neural oscillations relevant to motor imagery tasks. Following this, an 

advanced signal graph processing technique was employed to convert the 

filtered EEG signals into graph representations. These graph signals were 

then processed to extract a rich set of statistical features that encapsulate 

both spatial and topological characteristics of the EEG signal. After feature 

extraction, channel selection was performed utilizing the SIFE method to 

find the extremely appropriate channels contributes to accurate 

categorization. Finally, the selected features were used for classification 

using an ensemble ML classifier, such as Extreme Gradient Boosting (XG-

Boost), Ada-Boost and Random Forest (RF). These ensemble methods 
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enhance the reliability and accuracy of the ML model by combining 

multiple learners to make final decisions. The General diagram of the 

AGSP-SIFE channel selection method given in Figure 4.2.  

 

 

Figure.5.2. General Diagram of the AGSP-SIFE channel selection 

method 

Benefits of Extracting EEG Signals in the 4–40 Hz Range: The 

frequency range between 4–40 Hz encompasses several important EEG 

bands that are highly appropriate for MI tasks. These include the theta (4–

8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and low gamma (30–40 Hz) 

bands. Each of these bands contributes uniquely to brain activity while 

motor imagination and planning:  
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Table 5.1. Bands contributes uniquely to brain activity during motor 

planning and imagination: 

Theta θ  

(4–8 Hz) 

Linked with cognitive processing and sensorimotor 

integration, which can play a role in MI tasks involving 

attention and mental effort. 

Alpha α  

(8–13 Hz) 

Typically observed while relaxed wakefulness, alpha 

rhythms, especially in the sensorimotor cortex (mu rhythm), 

are known to desynchronize during MI, indicating brain 

activation. 

Beta β 

(13–30 Hz) 

Linked with motor control and active concentration. Beta 

rhythms show characteristic event-related synchronization 

(ERS) and event related desynchronization (ERS) while 

motor imagery and execution. 

Low 

Gamma γ  

(30–40 Hz) 

Reflects higher-order cognitive processes and is often 

involved in sensorimotor coordination, making it valuable 

for enhancing MI-related feature representation. 

 

 

5.3.1. ADVANCED GRAPH SIGNAL PROCESSING (AGSP): 

Graph Signal Processing (GSP) [47] is an emerging framework that 

extends traditional signal processing to data defined over irregular 

domains such as graphs. In the context of EEG data examination, GSP is 

particularly powerful due to the spatially distributed nature of brain data 

captured from multiple electrodes positioned on the scalp. Each electrode 

may be considered a node in a graph, and edges signify spatial, functional, 

or statistical relationships between them. By employing GSP, signals may 

be examined not just in time & frequency domains, but also in the graph 

spectral domain, revealing insights about spatial dynamics and inter-

electrode connectivity patterns. 

5.3.1.1. Adaptive Graph Construction: 

In Graph Signal Processing (GSP), adaptive graph construction refers to            

dynamically generating the graph topology based on data-driven 

relationships between signal nodes, instead of depending on exclusively 

on fixed anatomical or geometric layouts. For EEG signals, each channel 

or electrode is considered a node in the graph, and edges show connectivity 

or correlation. Adaptive graphs improve accuracy by capturing context-

specific interactions between electrodes. Steps in Adaptive Graph 

Construction: 

 Step 1: Define Nodes: Each and every EEG channel is treated as a 

node 𝑣𝑖 in the graph  

𝑮 = (𝑉, 𝐸)                                                                  (5.5) 
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 Step 2: Compute Edge Weights: Edges 𝑒𝑖,𝑗 are formed based on 

pairwise similarity or functional relationships: 

𝒘𝒊,𝒋 = exp(−
(𝑥𝑖−𝑥𝑗)

2

𝜎2
)                                          (5.6) 

 Step 3: Form the Adjacency Matrix A: A symmetric matrix 

representing pairwise edge weights. 

 Step 4: Compute Graph Laplacian L: Either combinatorial or 

normalized: 

𝑳 = 𝑫 − 𝑨                                                           (5.7) 

Where D is the degree matrix. 

5.3.1.2. Graph Signal Construction: 
Once the graph is constructed, EEG data is represented as a graph signal: 

 Let 𝑥𝜖ℝ𝑁be a signal defined on the graph, where 𝑥𝑖 is the value at node 

i (e.g., EEG amplitude at a channel). 

 Each time segment or epoch from EEG is treated as a separate signal 

on this graph. 

This process converts spatial EEG data into a form suitable for graph-

based spectral analysis. 

5.3.1.3. Applying Graph Fourier Transform (GFT): 
The Graph Fourier Transform [48] enables transformation of graph signals 

into the spectral domain based on graph Eigen structure. Steps were given 

below: 

1. Eigen Decomposition of Laplacian: 

𝑳 = 𝑼𝚲𝑼𝑻                                                            (5.8) 

Where: 

 U is the eigenvectors matrix (graph Fourier basis) 

 𝚲 is the eigenvalues diagonal matrix (graph frequencies) 

2. Graph Fourier Transform: 

𝒙 = 𝑼𝑻𝒙                                                                (5.9) 

Transforms the spatial signal 𝒙 into spectral coefficients 𝒙̂,   indicating 

how the signal varies over graph frequencies. 

5.3.1.4. Graph Spectral Filtering: 

In this study, graph spectral filtering is employed to enhance feature 

extraction from EEG signals by leveraging the heat kernel filter [49], a 

powerful smooth spectral filter inspired by the diffusion of heat over a 

graph. This approach enables the suppression of noisy or non-informative 

high-frequency components while preserving meaningful structural and 
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spatial characteristics of the EEG data. The heat kernel filter is a low-pass 

filter that models the diffusion of heat across a graph. It emphasizes 

smooth variations in graph signals, making it particularly effective for 

EEG, where neighboring electrodes often exhibit correlated activity. The 

heat kernel is stated in the spectral domain as:  

𝑔(𝜆) = 𝑒𝑥𝑝(−𝜏𝜆)                                                 (5.10) 

Where: λ is the graph Laplacian eigenvalue (graph frequency), τ is the 

diffusion time parameter (controls the degree of smoothing), 𝑔(𝜆)is the 

spectral response of the filter. 

5.3.1.5. Statistical feature extraction: 

After filter signal extraction we calculated the mean, standard deviation 

(SD), variance (Var), root mean square (RMS), skewness, and kurtosis 

[50]. These statistical features provide understandings into the distribution, 

central tendency, variability, and shape of the EEG signals, helping to 

describe the underlying temporal patterns effectively. 

 Mean: The signal's average [51] value, or mean, gives an indication of 

its central tendency. The presence of specific cognitive states or variations 

in brain activity can be indicated by changes in mean values in EEG 

analysis, 

𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑆𝑛
𝑁
𝑛=1                                             (5.11) 

Where the total number of data points is N, and each data point is 

represented by 𝑆𝑛   

 Variance (Var): Variance [51] quantifies how much the data points 

deviate from the mean, revealing the variability of the signal. A signal with 

low variation is steadier and more reliable, whereas one with high variance 

may imply erratic signal fluctuations or higher brain activity. 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁
∑ (𝑆𝑛 −𝑀𝑒𝑎𝑛)2 𝑁
𝑛=1                     (5.12) 

Where 𝑆𝑛  is each data point, and 𝑀𝑒𝑎𝑛 is the mean value of the signal. 

 Standard deviation (SD) :Standard deviation [50] measures how 

much the signal varies or disperses. The variance's square root is what it 

is.  

𝑠𝑡𝑑 = √
1

𝑁
∑ (𝑆𝑛 −𝑀𝑒𝑎𝑛)2 𝑁
𝑛=1                            (5.13) 

It measures the degree of deviation of the signal values from the mean. In 

EEG, higher standard deviation values can indicate more dynamic brain 

activity, such as during periods of heightened cognitive or emotional 

engagement. 
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 Root mean square (RMS):It gives a measurement [52] of the signal's 

strength, indicating its total magnitude. It is particularly useful in 

quantifying the strength of the EEG signal.  

𝑟𝑚𝑠 = √
1

𝑁
∑ 𝑆𝑛

2 𝑁
𝑛=1                                              (5.14) 

Higher RMS values typically indicate stronger brain activity, and it can be 

used to differentiate between active and resting states. 

 Skewness: Skewness [53] quantifies the distributional asymmetry of 

the signal. It helps in understanding whether the data points are more 

concentrated on one side of the mean. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑁
∑ (𝑆𝑛−𝑀𝑒𝑎𝑛)4 𝑁
𝑛=1

(√
1

𝑁
∑ (𝑆𝑛−𝑀𝑒𝑎𝑛)2 𝑁
𝑛=1 )

2                      (5.15) 

When skewness is negative, the left tail is longer, and when it is positive, 

the right tail is longer. This feature is useful for detecting irregularities or 

shifts in brain action patterns, that can be related to specific mental states 

or cognitive processes. 

 Kurtosis: Kurtosis [54] measures the "tailed-ness" or the peaked-ness 

of the signal's distribution. It helps in identifying the presence of outliers 

or extreme values in the data.  

Kurtosis =
1

𝑁
∑ (𝑆𝑛−𝑀𝑒𝑎𝑛)3 𝑁
𝑛=1

(√
1

𝑁
∑ (𝑆𝑛−𝑀𝑒𝑎𝑛)2 𝑁
𝑛=1 )

3                            (5.16) 

High kurtosis suggests the presence of sharp peaks and potentially 

abnormal brain activity, while low kurtosis indicates a flatter, more evenly 

distributed signal. It is useful in detecting epileptic spikes or other 

abnormalities in the EEG signals. 

5.3.2.  SET-BASED INTEGER-CODED FUZZY GRANULAR   

EVOLUTIONARY ALGORITHMS FOR CHANNEL SELECTION: 

SIFE [55] is an evolutionary algorithm that combines concepts from set 

theory with fuzzy granulation wrapper techniques. By integrating fuzzy 

granulation, it simplifies how the population is initialized. This approach 

helps creation of a varied population over multiple iterations and reduces 

the need for repeated fitness evaluations by acting as an alternative 

evaluation method. 

Feature selection methodologies focus on finding 𝑠∗ ⊆ 𝛺, where 𝑠∗ = 𝑓1∗, 

𝑓2∗, …, 𝑓𝐾∗ represents the most optimal and concise subset from the 

possible feature set 𝛺 = 𝑓1, 𝑓2, …, 𝑓𝑛𝐹. In this situation, 𝑛𝐹 indicates the 

total number of features, while 𝐾 defines the optimal feature count. 

Algorithm 5.2 provides SIFE implementation pseudocode. 
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Algorithm 5.2: SIFE Channel selection 

𝑆𝑒𝑡 𝑁, 𝑣𝑡 , 𝑛𝐶, 𝑛𝑀, 𝑛𝜇, 𝛺, 𝑡 ←  0, 𝑡𝑚𝑎𝑥  
 𝑃 ←  𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑢𝑧𝑧𝑦 𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑁,  𝑣𝑡)  
 𝑃𝑜𝑜𝑙 ←  𝑃  
 𝑊ℎ𝑖𝑙𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑛𝑜𝑡 𝑚𝑒𝑡 𝑑𝑜  

𝑡 ←  𝑡 +  1  
𝑠𝑒𝑙𝑒𝑐𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠 𝑏𝑦 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒 − 𝑤ℎ𝑒𝑒𝑙  
𝑃𝐶  ←  𝑐𝑎𝑙𝑙 𝑛𝑐 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 − 𝑝𝑎𝑟𝑒𝑛𝑡 𝑈𝐼_𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟  
𝑠𝑒𝑙𝑒𝑐𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦  
𝑃𝑀  ←  𝑐𝑎𝑙𝑙 𝑛𝑚 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝐶_𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛  
 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ←  𝑃𝐶  ∪  𝑃𝑀   
 𝑓𝑜𝑟 1 𝑡𝑜 ∣  𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ∣  𝑑𝑜  

 𝑠𝑖  ←  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔  
𝑀𝑠  ←  𝐹𝑢𝑧𝑧𝑦 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑃𝑜𝑜𝑙, 𝑠𝑖)  
𝑖𝑓 𝑀𝑠  >   𝑣𝑡    

ℱ(𝑠𝑖)  ←  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑖𝑡𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙  
 𝑒𝑙𝑠𝑒  

ℱ(𝑠𝑖)  ←  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
   𝑃𝑜𝑜𝑙 ←  𝑃𝑜𝑜𝑙 ∪  { 𝑠𝑖 ;  ℱ(𝑠𝑖 )}  

 𝑒𝑛𝑑 𝑖𝑓  
 𝑒𝑛𝑑 𝑓𝑜𝑟  
𝑠𝑜𝑟𝑡 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙 𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒  𝑣𝑡 𝑏𝑦 (3)  
𝑃(𝑡)  ←  𝑟𝑒𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑁 𝑓𝑖𝑟𝑠𝑡 𝑔𝑟𝑎𝑛𝑢𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙  
 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒  
𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑡𝑚𝑎𝑥  𝑎𝑠 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑡 𝑠 ∗ 

 

Algorithm 5.3 outlines the initial step for creating the repulsive fuzzy 

granular population by iteratively generating a random individual 𝑠𝑖 within 

the search space. This process continues until a total of 𝑁 individuals form 

the starting population 𝑃. The commonly used “roulette-wheel” method is 

applied to maintain accurate issue representation using integer coding. 

Recombination or crossover, is crucial for effective convergence. The total 

amount of request made to the three-parent UI crossover is   𝑛𝑐  =  𝑃𝐶  ∗

 
𝑁

2
, where the crossover probability probability is  𝑃𝐶 , 𝑁 is the population 

size. It establishes the size of the population of offspring. To ensure 

population diversity and avoid settling into local optima, a complement 

mutation (C-Mutation) is used. The complement feature set 𝑠 ̅𝑖, which 

includes all the attributes from the universal set (𝛺) that are not present in 

the currently chosen individual 𝑠𝑖, is used in this mutation to induce 

randomization. A new offspring is created by randomly selecting 𝑛𝜇 

features (genes) from 𝑠̅𝑖 and replacing them with 𝑛𝜇 features from 𝑠𝑖. A 

new produced offspring is given as by 𝑛𝑚 = 𝑝𝑀 ∗ 𝑁, where 𝑝𝑀 is the 

mutation probability. A collection of fuzzy granules is subsequently 

created by fuzzy granulation—representations of people who have 
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previously been evaluated. These granules compete, according to a 

similarity metric, to absorb and evaluate newly created solution 𝑠𝑖. 

Algorithm 5.3: Repulsive Fuzzy Granular Initialization (N, ϑ) 

1. 𝑖 ←  1, 𝑃 ←
 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑡. 

2. 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤  𝑁 𝑑𝑜 

𝑠ᵢ ←  𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 
𝑀ₛ ←  𝐹𝑢𝑧𝑧𝑦𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑃, 𝑠ᵢ) (𝑠𝑒𝑒 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.5) 
𝐼𝑓 𝑀ₛ <  𝜗 𝑡ℎ𝑒𝑛 ⟶  𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑟𝑒𝑠𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 
  𝐹(𝑠ᵢ)  ←  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠ᵢ 
  𝑃 ←  𝑃 ∪  {𝑠ᵢ, 𝐹(𝑠ᵢ)}, 𝑖 ←  𝑖 +  1 
𝐸𝑛𝑑 𝑖𝑓 

3. 𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
4. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑃 𝑎𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Algorithm 5.3 describes how to initialize the repulsive fuzzy granular 

population by repeatedly generating random individuals in the search 

space. A fuzzy similarity metric is used to assess each individual, and only 

those that differ from all previously created individuals are added to the 

original population. This process continues until the initial population P 

reaches the desired size of 𝑁 individuals. 

Algorithm 5.4: Three-parent UI_Crossover (s₁, s₂, s₃) 

1.  𝑂₁ ←  𝑠₁ ∩  𝑠₂ ⟶  𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
2.  𝐽₁ ←  𝑠₁ ∩  𝑠₃ 
3.  𝐽₂ ←  𝑠₂ ∩  𝑠₃ 
4.  𝑂₂ ←  𝑂₁ ∪  𝐽₁ ∪  𝐽₂ ⟶  𝑢𝑛𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
5.  𝐼𝑓 𝑂₁ =  ∅ 𝑡ℎ𝑒𝑛 ⟶  𝑂₁ ←  𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 
6.  𝐼𝑓 𝑂₂ =  ∅ 𝑡ℎ𝑒𝑛 ⟶  𝑂₂ ←  𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 
7.  𝑅𝑒𝑡𝑢𝑟𝑛 𝑂₁, 𝑂₂ 𝑎𝑠 𝑡𝑤𝑜 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 

 

Crossover, also known as recombination, is essential for ensuring the 

algorithm converges accurately and for leveraging the diversity in the 

solution’s population. In this case, a new three-parent UI crossover method 

was introduced, which combines the set theory concepts of 'union' and 

'intersection,' as described in Algorithm 5.4. Three parents are used—two 

selected using the roulette wheel method and one randomly picked to 

maintain diversity. Using these, 2 new offspring were developed by 

employing the intersection and union operations. These offspring inherit 
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the most desirable traits from their parents. The intersection operation 

keeps only shared genes, helping to minimize the number of features, 

following a greedy or contraction-based approach. On the other hand, the 

union operation retains all valuable attributes while eliminating 

redundancy, thus enabling a broader search. This crossover method avoids 

random elements that could mislead the search process. By relying on 

union and intersection, it minimizes the chances of destroying good 

solutions and provides more information transfer than traditional crossover 

techniques. By using three parents to create more productive offspring, it 

also shares more information than traditional crossover techniques. The 

created offspring population size is determined by the crossover 

probability 𝑃𝐶, and the total amount of request made to the three-parent UI 

crossover is 𝑛𝑐  =  𝑃𝐶  ∗  
𝑁

2
, where N is the population size. 

Algorithm 5.5: 𝑪_𝑴𝒖𝒕𝒂𝒕𝒊𝒐𝒏(𝒔ᵢ, 𝜴, 𝒏ᵤ) 

1.  𝑠 ᵢ ←  𝛺 −  𝑠ᵢ ⟶  𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
2.  𝑖𝑛𝑑𝑥 ←  𝑠𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑛ᵤ 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑓𝑟𝑜𝑚 𝑠 ᵢ 
3.  𝑖𝑑𝑀 ←  𝑠𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑛ᵤ 𝑔𝑒𝑛𝑒𝑠 𝑓𝑟𝑜𝑚 𝑠ᵢ 
4.  𝑠ᵢ(𝑖𝑑𝑀)  ←  𝑠 ᵢ(𝑖𝑛𝑑𝑥) 
5.  𝑅𝑒𝑡𝑢𝑟𝑛 𝑠ᵢ 𝑎𝑠 𝑡ℎ𝑒 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

Algorithm 5.6: 𝑭𝒖𝒛𝒛𝒚𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚(𝒑𝒐𝒐𝒍, 𝒔ᵢ) 

1.  𝐹𝑜𝑟 𝑗 =  1 𝑡𝑜 |𝑝𝑜𝑜𝑙| 𝑑𝑜 
2.   𝑠ⱼ ←  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗ᵗʰ 𝑔𝑟𝑎𝑛𝑢𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙 

3.   𝜇ⱼ ←  𝑒𝑥𝑝(−(𝑠ᵢ −  𝑠ⱼ)²)  ⟶  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 
4.   𝜇 ⱼ ←  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝜇ⱼ 𝑜𝑣𝑒𝑟 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
5.  𝐸𝑛𝑑 𝑓𝑜𝑟 
6.  𝑀ₛ ←  𝑚𝑎𝑥(𝜇 ⱼ) 
7.  𝑅𝑒𝑡𝑢𝑟𝑛 𝑀ₛ 𝑎𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙 𝑎𝑛𝑑 𝑠ᵢ 

 

The Mutation is a vital component in evolutionary algorithms, helping the 

system escape local optima during the search process. In this work, we 

introduce a complement mutation (C-Mutation) operator that enhances 

population diversity and avoids getting stuck in suboptimal solutions, as 

detailed in Algorithm 5.5. This operator increases unpredictability by 

using a complement feature set  𝑠ᵢ, which includes every features from the 

universal set (Ω) that are missing in the currently chosen individual 𝑠ᵢ. 

One major obstacle in using metaheuristic algorithms, particularly for 

large-scale optimization problems, is the high computational cost. While 



 

31 
 

efficient coding techniques and variation operators can help, these 

methods still face significant limitations in very high-dimensional (VHD) 

scenarios. To address this, we apply fuzzy granulation (FG) to reduce the 

computational load during the search. FG operates by linking an 

individual's fitness to how similar it is to another person whose level of 

fitness is already recognized. It develops a database of fuzzy granules, 

which are representations of solutions that have already been assessed. As 

detailed in Algorithm 5.6, if a new solution is generated, these granules in 

the pool compete to integrate the newcomer based on a fuzzy similarity 

score. The similarity between 𝑠𝑖 and 𝑠𝑗 (𝑠𝑗 is 𝑗𝑡ℎ granule) is calculated as: 

𝜇𝑗  =  𝑒𝑥𝑝 (−(𝑠𝑖  −  𝑠𝑗)
2
)                                                    (5.17) 

The average similarity or mean 𝜇 ̅𝑗 is computed across all the variables. The 

extreme similarity between the pool and 𝑠𝑖 is defined as 𝑀𝑠 = max (𝜇̅𝑗), 
computed as:  

ℱ(𝑠𝑖 )  = {
𝐹𝑠                𝑖𝑓 𝑀𝑠 >  𝑣𝑡 

ℱ(𝑠𝑖 )         𝑖𝑓 𝑀𝑠 ≤  𝑣𝑡
                                       (5.18) 

 If this similarity 𝑀𝑠 is below a predefined threshold 𝑣𝑡, the new solution 

is evaluated and added to the pool, initializing its count at 1. Otherwise, 

the existing granule (𝐹𝑠) inherits the new solution's fitness value. The count 

mechanism filters out granules that no longer correspond to current 

solutions, thus avoiding excessive memory usage and unnecessary 

computation. Adaptive threshold  𝑣𝑡 is given by:  

 𝑣𝑡  =  𝜌 ∗  𝑚𝑒𝑎𝑛 𝐹(𝑃(𝑡 −  1))/𝑚𝑎𝑥 𝐹(𝑃(𝑡 −  1))       (5.19) 

Above threshold is governed by a balancing parameter 𝜌, which ranges 

between 0 and 1 to maintain an effective balance between algorithm’s 

central performance and iteration efficiency. The population at any 

generation 𝑡 is denoted as P (t). FG relies on the principle that similar 

solutions yield similar results, a concept it leverages to skip redundant 

evaluations and boost efficiency—particularly if this opinion holds true in 

a provided optimization scenario. 

5.4.  TRADITIONALS CLASSIFIERS: 

 

Classification is a fundamental task in ML that includes sharing data into 

predefined classes based on feature of input. Traditional machine learning 

algorithms like SVM, KNN, and RF have been widely used for their 

efficiency in pattern recognition tasks including as signal categorization 

and medical diagnosis. These models learn from labelled training data to 

distinguish between different classes with high accuracy. Ensemble 

learning methods, such as Ada-Boost, XG-Boost, and bagging-based 

techniques, combine the classification of different base classifiers to 
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enhance overall efficiency. In this study, task classification was performed 

using SVM, KNN, Ada-Boost, XG-Boost, and Random Forest.  

5.4.1. Support Vector Machine (SVM):  
SVM [56] is a robust supervised ML method that is mostly utilized for 

categorization problems, while it may also be used for regression 

problems.  SVM works by finding the best hyperplane which is divides the 

data into multiple groups.  In two-dimensional space, this hyperplane is 

only a line. In higher dimensions, it turns into a plane or manifold.  The 

main goal is to make the margin as big as possible. The created margin is 

the space between the nearby data points of each class and the hyperplane, 

which are termed support vectors.  A bigger margin means that the model 

can better handle new data.  SVM employs kernel functions (such 

polynomial [57], RBF [58], or sigmoid [59]) to move the feature into a 

higher dimensional space that separates hyperplane which can be 

identified for data that can't be separated by a straight line. 

Advantages of SVM:  

 Even when there are more dimensions than samples, it is still efficient 

in high dimensional settings. 

 Effective if that is a distinct gap between classes. 

 Memory-efficient since it makes decisions based solely on support 

vectors. 

 Versatile, as different kernels can be applied depending on the data 

nature.  

Disadvantages of SVM:  

 Not suitable for large datasets, because it requires high training time.  

 Less effective when the data is very noisy or overlapping.  

 Choosing the right kernel and tuning parameters like C and gamma can 

be complex and computationally expensive.  

 Difficult to interpret, especially when using non-linear kernels. 

5.4.2. K-Nearest Neighbours (KNN):  

KNN is a simple instance-based supervised ML technique which can be 

employed for classification and regression [60]. It operates on the tenet 

that comparable data points can be found nearby in feature space. Working 

of KNN discussed below: 

 KNN examines the "K" nearest neighbours (data features) in the dataset 

of training when a new data point needs to be classified 

 It then allocates the most mutual class (in categorization) or computes 

the mean value (in regression) among those K neighbours.  
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 Distance is usually calculated using Euclidean distance, though other 

metrics like Manhattan or Minkowski distance can also be used. 

Advantages of KNN: 

 Easy to comprehend and apply.  

 It is a lazy learner because there is no training phase.  

 Adaptable to several-class problems.  

 Naturally handles non-linear decision boundaries. 

Disadvantages of KNN:  

 Slow prediction time for large datasets (since it calculates distance to 

all training samples).  

 Memory intensive, as it stores the entire dataset.  

 Sensitive to irrelevant features and the scale of the data.  

 Choosing the right K value is critical and can impact performance. 

5.4.3. Random Forest: 
An ensemble ML approach namely Random Forest [61] is employed to 

both classification and regression problems. During training, it builds a 

number of decision trees and outcomes either the majority vote (for 

classification) or the average prediction (for regression). Working of 

random forest discussed below: 

 Bootstrap Sampling (Bagging): It generates a number of bootstrap 

samples, which are random portions of the early training dataset with 

replacement. A different decision tree is trained for each subset. 

 Feature Randomness: To determine the optimal split, a decision tree 

chooses a random portion of features at each node rather than taking into 

account every feature. This increases diversity among the trees and reduces 

correlation and improving overall performance. 

 Tree Building: Each decision tree is grownup independently and to the 

maximum depth (usually unpruned). Trees are trained on different data and 

features.  

 Prediction: Random Forest predicts the class based on majority voting 

across all trees.  

 

Advantages of Random Forest:  

 High Accuracy: Combines multiple decision trees for better prediction 

performance.  
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 Robust to Overfitting: Randomization and averaging reduce 

overfitting compared to a single tree.  

 Handles High Dimensionality: Works well even with large numbers 

of features.  

 Feature Importance: Provides understandings into which features are 

extremely influential in prediction.  

 Handles Missing Values & Outliers: Performs well even with 

imperfect data.  

Disadvantages of Random Forest:  

 Less Interpretability: While individual decision trees are easy to 

interpret, a forest of many trees is not.  

 Computational Cost: Training many trees can be time and resource-

intensive.  

 Slower Predictions: Especially with many deep trees, prediction can 

be slower than simpler models.  

 Storage Complexity: Requires more memory due to multiple trees 

being stored. 

5.5. ENSEMBLE CLASSIFIERS: 

 

Ensemble learning [62] methods, such as Ada-Boost, XG-Boost, and 

bagging-based techniques, combine the classifications of multiple base 

classifiers to enhance overall performance [63]. These approaches enhance 

robustness and accuracy by reducing overfitting and leveraging the 

strengths of various learners. In EEG signal analysis or biomedical 

applications, combining machine learning with ensemble methods often 

leads to more reliable and generalizable classification results. In this study, 

task classification was performed using SVM, KNN, Ada-Boost, XG-

Boost, and Random Forest. 

5.5.1. Ada-Boost (Adaptive Boosting): 

An ensemble learning method called Ada-Boost [64] develops a powerful 

classifier by merging several weak learners, usually decision trees. It trains 

weak learners iteratively, with each new model focusing more on the cases 

that the earlier models misclassified. The main concept is to give 

misclassified samples more weights in order to encourage future classifiers 

to focus more on these more challenging cases. Working of adaboost 

discussed below: 

 Initialization: All training samples are initially assigned equal weights.  

 Sequential Learning: Using the dataset, a weak learner—such as a 

decision stump—is trained. This weak learner's mistake rate is computed. 
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The next learner concentrates more on challenging cases by increasing the 

weights of misclassified samples. This procedure is carried out repeatedly 

until performance stabilizes or for a certain number of rounds. 

 Final Prediction: The accuracy of each weak learner’s output is used 

to weight it. A weighted aggregate (for regression) or weighted majority 

vote (classification) is the ultimate forecast. 

Advantages of Ada-Boost:  

 Improved Accuracy: Converts weak learners into a strong ensemble 

with better performance.  

 Simple and Versatile: Can be used with various base learners (though 

decision stumps are common).  

 Focuses on Difficult Cases: Learns from errors by emphasizing 

misclassified samples.  

 Less Overfitting: Often generalizes well when not over-trained.  

Disadvantages of Ada-Boost:  

 Sensitive to Noisy Data: Focuses on hard samples, which can include 

outliers or mislabelled data.  

 Requires Careful Tuning:  Learning rate and the number of weak 

learners affect model efficiency. 

 Not Parallelizable: Since each and every learner depends on the 

previous one, training can’t be parallelized easily.  

 Less Interpretability: As with many ensemble methods, difficult to 

understand the model’s decision path. 

5.5.2. XG-Boost (Extreme Gradient Boosting): 

XG-Boost [41] [65] is an advanced implementation of gradient boosting 

that is highly efficient and scalable. It builds an ensemble of decision trees 

by optimizing a specific loss function using gradient descent. XG-Boost 

introduces regularization parameters to reduce overfitting and improves 

speed with parallel processing. Working of Ada-boost discussed below: 

 Boosting Framework: XG-Boost successively constructs an ensemble 

of decision trees, just like Ada-Boost. By minimizing a loss function, each 

new tree is trained to correct the errors (residuals) of the previous 

ensemble. 

 Gradient Descent: The loss function is minimized by the model using 

gradient descent. Instead of updating weights like Ada-Boost, XG-Boost 

uses gradients (first and second-order) to optimize the model. 

 Regularization: Includes L1 and L2 regularization to avoid overfitting, 

which makes it more robust compared to traditional boosting.  
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 Tree Pruning: Uses max depth and leaf-wise tree growth, which 

makes it faster and more efficient.  

 Handling Missing Data: It can instantly acquire the ability to deal with 

missing values during training. 

Advantages of XG-Boost:  

 High Accuracy: Often achieves state-of-the-art performance.  

 Speed: Optimized for parallel computation and fast execution.  

 Regularization: Reduces overfitting through L1/L2 penalties.  

 Flexible: Works with different loss functions and supports 

classification, regression, and ranking.  

 Robust: Handles missing values well and supports early stopping.  

Disadvantages of XG-Boost:  

 Complexity: More difficult to understand and tune compared to 

simpler models like KNN or SVM.  

 Requires Parameter Tuning: Needs careful tuning of hyper-

parameters for optimal performance.
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION    

 

 

 

            
6.1. DATA VISUALIZATION:         

 

The process is implemented with the BCI - IV - 2A dataset using python 

coding in the Google Collab Notebook. In this work, there are few steps 

which we have to follow during the data preprocessing. The raw EEG data 

sample and preprocessed signal shown in Figure 6.1 and 6.2 respectively.  

 

Figure 6.1. Sample of Raw EEG signal 
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Figure 6.2. After preprocessing (4 - 40Hz signal)   

6.2. PERFORMANCE METRICS:  

 

The accuracy, recall, precision, F1 score, AUC curve, and confusion 

matrix were among the metrics utilized in this study to evaluate the 

classification models' efficiency:  

6.2.1. Accuracy:  
Accuracy is defined as the percentage of accurate classifications, whether 

negative or positive.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+ 𝐹𝑁
                                          (6.1) 

Where TPs: True Positives, FPs: False Positives, TNs: True 

Negatives and FNs: False Negatives. 

6.2.2. Precision:  
Shows the percentage of TP predictions out of all positive predictions, 

evaluating how well the model finds pertinent examples.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
                                                      (6.2) 

6.2.3. Recall (Sensitivity):  

Calculates the ratio of TPs to the sum of TPs and TNs, which evaluates the 

model's accuracy in identifying all pertinent events 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝑇𝑁
                                                           (6.3) 
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6.2.4. F1 Score:  

F1 score is a harmonic mean of precision and recall that measure 

a balancing FPs and FNs. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                            (6.4) 

6.2.5. Kappa score:  

A statistical metric known as the Kappa Score assesses the degree of 

agreement between genuine labels and anticipated classifications while 

also taking chance agreement into consideration. It is especially helpful for 

datasets that are unbalanced where simple accuracy might be misleading. 

Generally, the Kappa score ranges between -1 to 1:  

𝐾𝑎𝑝𝑝𝑎 = 2 × 
𝑝𝑎−𝑝𝑒

1−𝑝𝑒
                                             (6.5) 

Where 𝑝𝑎 observed agreement (actual accuracy), and 𝑝𝑒 expected 

agreement by chance. 

6.2.6.  Area Under the Curve (AUC):  

The capacity of a model to differentiate among classes is measured by its 

AUC. It is based on the ROC curve and has a range between 0 to 1, with 

0.5 representing random prediction and 1 representing accurate 

classification. Better overall performance is indicated by a higher AUC 

score, which is particularly helpful for datasets that are unbalanced. 

6.2.7. Confusion Matrix:  

A matrix indicating the total number of true positives (TPs), true negatives 

(TNs), false positives (FPs), and false negatives (FNs) provides an 

overview of the classification model's performance, offering a detailed 

insight into prediction errors. 

6.3. RESULTS AND DISCUSSION FOR FBCSP-PSO & AGSP-SIFE        

CHANNEL SELECTION USING MACHINE LEARNING:  
 

Table 6.1 presents the selected EEG channels for each subject using two 

distinct channel selection approaches: FBCSP-PSO and AGSP-SIFE. The 

table highlights how each method identifies subject-specific subsets of 

EEG channels that are most informative for MI categorization. The 

FBCSP-PSO method typically selects a larger set of channels, often 

including both central and peripheral regions, suggesting that it captures a 

broader spatial representation of motor-related brain activity. For example, 

Subject 2 has 16 channels selected under FBCSP-PSO, indicating its 

tendency to retain diverse spatial features that may contribute to improved 

classification accuracy. In contrast, the AGSP-SIFE method generally 

selects a more refined and minimal subset of channels while maintaining 

performance. This is evident in subjects like S3 and S8, where AGSP-SIFE 

significantly reduces the number of selected channels compared to 

FBCSP-PSO. 
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Table 6.1: Selected channel list of FBCSP-PSO & AGSP-SIFE channel selection 

method  

Sub FBCSP-PSO AGSP-SIFE 

1 [0,1,2,5,6,7,8,9,12,14,15,17,18,20,21] 
[5 , 6,  7,  9, 10 ,15, 16 ,18, 20 

,21] 

2 [0,3,4,5,6,7,9,10,11,13,14,15,16,17,19,21] 
[ 0 , 3  ,7 , 9, 10, 13, 14, 17, 18 

,20, 21] 

3 [0,2,3,7,8,10,13,14,15,17,20,21] [ 2 , 4 , 6 , 8 , 9 ,10 ,12] 

4 [0,1,2,5,6,7,8,10,11,12,14,17,18,19,20] 
[ 0,  1 , 2  ,6,  7, 11 ,14, 16, 20, 

21] 

5 [1,2,4,7,8,17,18,21] 
[ 0  ,1 , 2 , 5 , 8, 10 ,12, 13, 14 

,18, 19, 21] 

6 [0,1,2,3,4,5,9,10,12,13,15,16,17,18,21] 
[ 1 , 2 , 4 , 6 , 9 ,12, 13, 17 ,18, 

19] 

7 [2,3,4,6,7,8,9,11,12,14,15,16,17,18,20] 
[ 0 , 1,  2 , 3,  5,  6 , 8 , 9 ,10, 

11, 13, 14 ,15 ,16] 

8 [1,3,4,7,8,9,10,12,13,14,16,17,19,21] [ 1 , 6  ,9 ,10, 14, 17 ,18] 

9 [0,2,3,6,7,8,9,10,11,12,13,21] 
[ 0 , 1,  2,  3 , 4,  5,  8, 10, 17 

,18, 19] 

This reduction reflects AGSP-SIFE’s focus on maximizing discriminative 

power through advanced signal processing and spectral graph theory, 

resulting in compact yet effective channel sets. Channels like 10, 14, 17, 

and 21 are consistently selected across many subjects in both methods, 

underlining their significance in motor imagery tasks. These frequently 

selected channels are located near the sensorimotor cortex, which is critical 

for MI signal detection. Overall, this comparison demonstrates that while 

FBCSP-PSO offers a comprehensive channel selection, AGSP-SIFE 

enhances efficiency by selecting fewer, more targeted channels—making 

it highly appropriate for real-time and resource-constrained BCI related 

applications without compromising classification accuracy. 

Table 6.2: Performance analysis of FBCSP-PSO & AGSP-SIFE channel 

selection method using Machine learning classifiers on for all 9 subjects 

Sub Metrics 

FBCSP-

PSO 

SVM 

FBCSP-

PSO 

RF 

FBCSP-

PSO 

KNN 

AGSP-

SIFE-

RF 

AGSP-

SIFE-

XGB 

AGSP-

SIFE-

ADA 

S1 

Accuracy 90.85 86.62 80.99 90.14 99.3 99.3 

Precision 97.1 87.34 94.74 96.72 98.31 98.61 

Recall 85.9 88.46 69.23 83.1 100 100 

F1 Score 91.16 87.9 80 89.39 99.3 99.3 

Kappa 0.82 0.73 0.63 0.8 0.99 0.99 

AUC 0.91 0.86 0.82 0.9 0.99 0.99 

S2 
Accuracy 80.99 74.65 83.1 92.96 99.3 99.3 

Precision 75.64 76.27 79.45 96.92 98.61 98.61 
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Recall 88.06 67.16 86.57 88.73 100 100 

F1 Score 81.38 71.43 82.86 92.65 99.3 99.3 

Kappa 0.62 0.49 0.66 0.86 0.99 0.99 

AUC 0.81 0.74 0.83 0.93 0.99 0.99 

S3 

Accuracy 92.25 88.73 86.62 97.89 99.3 98.59 

Precision 94.52 89.47 90.14 100 100 100 

Recall 90.79 89.47 84.21 95.77 98.59 97.18 

F1 Score 92.62 89.47 87.07 97.84 99.29 98.57 

Kappa 0.84 0.77 0.73 0.96 0.99 0.97 

AUC 0.92 0.89 0.87 0.98 0.99 0.99 

S4 

Accuracy 90.14 83.8 83.8 91.55 90.85 95.07 

Precision 95.31 85.51 87.69 91.55 100 92.11 

Recall 84.72 81.94 79.17 91.55 81.69 98.59 

F1 Score 89.71 83.69 83.21 91.55 89.92 95.24 

Kappa 0.8 0.68 0.68 0.83 0.82 0.9 

AUC 0.9 0.84 0.84 0.92 0.91 0.95 

S5 

Accuracy 93.66 92.25 92.965 94.37 94.37 95.77 

Precision 95.59 94.12 92.96 100 100 100 

Recall 91.55 90.14 92.963 88.73 88.73 91.55 

F1 Score 93.55 92.09 92.963 94.03 94.03 95.59 

Kappa 0.87 0.85 0.86 0.89 0.89 0.92 

AUC 0.94 0.92 0.93 0.94 0.94 0.96 

S6 

Accuracy 88.57 80 85.71 81.88 96.38 94.93 

Precision 85.53 79.17 82.05 78.21 100 100 

Recall 92.64 81.43 91.43 88.41 92.75 89.86 

F1 Score 89.04 80.28 86.49 82.99 96.24 94.66 

Kappa 0.77 0.6 0.71 0.64 0.93 0.9 

AUC 0.89 0.8 0.86 0.82 0.96 0.95 

S7 

Accuracy 88.03 85.21 85.21 81.69 86.62 86.62 

Precision 81.94 76.25 77.63 80.82 85.14 91.94 

Recall 93.65 96.836 93.65 83.1 88.73 80.28 

F1 Score 87.41 85.31 84.89 81.94 86.9 85.71 

Kappa 0.76 0.71 0.71 0.63 0.73 0.73 

AUC 0.89 0.86 0.86 0.82 0.87 0.87 

S8 

Accuracy 94.37 83.8 85.92 96.48 94.37 82.39 

Precision 94.03 79.73 85.07 100 94.37 91.07 

Recall 94.03 88.06 85.07 92.96 94.37 71.83 

F1 Score 94.03 83.69 85.07 96.35 94.37 80.31 

Kappa 0.89 0.68 0.72 0.93 0.89 0.65 

AUC 0.94 0.84 0.86 0.96 0.94 0.82 

S9 

Accuracy 81.69 77.46 78.17 86.62 92.25 93.66 

Precision 77.03 73.61 75.36 84.21 87.5 91.89 

Recall 86.36 80.3 78.79 90.14 98.59 95.77 

F1 Score 81.43 76.81 77.04 87.07 92.72 93.79 

Kappa 0.63 0.55 0.56 0.73 0.85 0.87 
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AUC 0.82 0.78 0.78 0.87 0.92 0.94 

 
Mean 

accuracy 
88.95 83.61 84.72 90.39 94.74 95.95 

 

Table 6.2 presents a comprehensive performance evaluation of two 

channel selection methods—FBCSP-PSO and AGSP-SIFE—across nine 

subjects using various ML classifiers such as SVM, K-Nearest Neighbors 

(KNN), Random Forest (RF), XG-Boost (XGB), and Ada-Boost (ADA). 

The analysis covers several performance metrics including Accuracy, 

Cohen’s Kappa, Recall, Precision, F1 Score, and AUC. The outcomes 

represents that the AGSP-SIFE technique consistently beats the traditional 

FBCSP-PSO technique across all classifiers and subjects. Notably, AGSP-

SIFE combined with ensemble classifiers (XGB and ADA) achieves the 

highest accuracy for most subjects, with mean accuracies of 94.74% and 

95.95% respectively. In contrast, the FBCSP-PSO method records a 

comparatively lower average accuracy, with 88.95% using SVM, 83.61% 

using RF, and 84.72% using KNN.  
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Figure 6.3. Confusion matrices of FBCSP-PSO-SVM for all 9 subjects 

Subject-wise investigation illustrations that AGSP-SIFE-ADA 

accomplishes the uppermost performance for several subjects (Sub 1, Sub 

2, Sub 3, Sub 5, and Sub 9) in terms of both F1 score and accuracy, 

reaching 99.3% accuracy for S1 and S2. Even in more challenging cases 

like S6 and S7, AGSP-SIFE maintains robust performance, outperforming 

FBCSP-PSO in terms of AUC and Kappa values. The superiority of 

AGSP-SIFE can be attributed to its ability to extract spatially informative 

features more effectively, which enhances the discriminative power of the 

classifiers.  

Among the classifiers, Ada-Boost and XG-Boost, when paired with 

AGSP-SIFE, demonstrate better generalization across subjects due to their 

ensemble nature, which reduces bias and variance. On the other hand, 

FBCSP-PSO shows reasonably good performance with SVM, particularly 

in subjects like S3, S4, and S5, but fails to maintain consistent performance 

across the entire subject pool. In summary, the experimental outcomes 

strongly recommend that the AGSP-SIFE technique, especially when used 

with Ada-Boost or XG-Boost, is a highly effective method for channel 

selection and classification in EEG-related tasks. Using this technique not 

only improves classification performance but also enhances robustness, as 

evidenced by high Kappa and AUC values across all subjects. 
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Figure 6.4. Confusion matrices of AGSP-SIFE-XGB for all 9 subjects 

Figure 6.3 and 6.4 shows confusion matrix of FBCSP-PSO and AGSP-

SIFE channel selection algorithms. The confusion matrices for FBCSP-

PSO and AGSP-SIFE methods reveal insightful details about each model’s 

classification behavior across the nine subjects. Each confusion matrix is 

representing the count of true positives, false negatives, false positives, 

and true negatives respectively. This allows us to assess the balance 

between recall and specificity. For Subject 1, FBCSP-PSO misclassified 2 

positive and 11 negative samples, resulting in slightly lower performance, 

whereas AGSP-SIFE nearly perfectly classified the samples with only one 

false negative and zero false positives, demonstrating very high recall and 

specificity. 

In Subjects 2 and 3, FBCSP-PSO showed a higher number of false 

negatives (19 and 4 respectively) and some false positives (8 and 7), 

suggesting some imbalance in detecting both classes. However, AGSP-

SIFE again demonstrated a near-perfect classification, with only one false 

negative and no false positives, highlighting its robustness and reliability. 

A slight exception appears in Subject 4, where AGSP-SIFE had 13 false 

positives compared to FBCSP-PSO's 11, indicating a trade-off in precision 

despite having more true positives (71 vs. 67). This pattern is also seen in 

Subject 5, where both methods performed well, but AGSP-SIFE still 

showed slightly better classification for the positive class. For Subject 6, 

AGSP-SIFE reduced both false negatives and false positives compared to 

FBCSP-PSO, resulting in a more balanced confusion matrix. Similarly, for 

Subject 7, AGSP-SIFE still misclassified more negatives than FBCSP-

PSO (11 vs. 13), but made fewer false positives (8 vs. 4), showing better 

positive class detection. In Subject 8, both methods exhibited nearly 



 

45 
 

identical classification performance, with AGSP-SIFE providing slightly 

more balanced predictions (equal false positives and negatives) compared 

to FBCSP-PSO, which favored the positive class more. Finally, Subject 9 

shows one of the largest improvements from FBCSP-PSO to AGSP-SIFE. 

FBCSP-PSO had 17 false negatives and 9 false positives, significantly 

lowering its F1 score. In contrast, AGSP-SIFE misclassified only one 

positive and 10 negatives, clearly showing superior detection of the target 

class. Overall, the confusion matrices confirm that AGSP-SIFE 

consistently improves true positive rates and significantly reduces false 

classifications compared to FBCSP-PSO. This directly supports the 

performance gains observed in classification metrics such as accuracy, F1 

score, and AUC, making AGSP-SIFE a more reliable and effective 

channel selection approach for EEG signal classification tasks. 

6.4. PERFORMANCE ANALAYSIS OF OPTIMIZATION-BASED 

VARIOUS CHANNEL SELECTION TECHNIQUES: 
 

To estimate the efficiency of the proposed FBCSP-PSO-SVM and AGSP-

SIFE-XGB methods, we conducted a comparative examination with 

several existing state-of-the-art methods: MX-BBOA-SVM, LS-BJOA-

SVM, FCNNA, and MI-BMInet across nine subjects. Table 6.3 represents 

the performance analysis of FBCSP-PSO - SVM, AGSP-SIFE-XGB with 

various existing channel selection method using Machine learning 

classifiers on for all 9 subjects. The evaluation metric used is classification 

accuracy (%), and the outcomes obviously illustrate the dominance of our 

proposed methods, especially AGSP-SIFE-XGB. Figure 6.5 shows 

accuracy comparison of many channel selection algorithms. Among all 

methods, AGSP-SIFE-XGB consistently achieved the highest accuracy, 

scoring above 99% in subjects 1 to 3, and maintaining strong performance 

across all other subjects. Its average accuracy is 94.75%, which is 

significantly higher than the others.  

Table 6.3: Performance analysis of various channel selection method using 

Machine learning classifiers on for all 9 subjects in term of accuracy 

Sub 

FBCSP-

PSO-

SVM 

AGSP-

SIFE-

XGB 

MX-

BBOA-

SVM 

LS-

BJOA-

SVM 

FCNNA 
MI-

BMInet 

1 90.85 99.3 84.33 78.42 88.65 86.98 

2 80.99 99.3 78.2 78.42 88.03 72.65 

3 92.25 99.3 91.33 83.33 98.54 94.95 

4 90.14 90.85 83.02 88.46 90.52 76.66 

5 93.66 94.37 87.66 91.89 97.78 93.84 

6 88.57 96.38 80.04 77.1 89.81 81.11 

7 88.03 86.62 82.3 80.15 91.43 91.17 

8 94.37 94.37 94.28 86.33 100 98.27 
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Figure 6.5. Accuracy comparison of various channel selection algorithms  

This demonstrates the robustness and generalizability of AGSP-SIFE-

XGB across varied EEG signal patterns and conditions. The FBCSP-PSO-

SVM method also performs strongly, ranking second in terms of mean 

accuracy with 88.95%, consistently outperforming existing methods like 

MX-BBOA-SVM (84.49%) and LS-BJOA-SVM (83.59%). This indicates 

that integrating Particle Swarm Optimization (PSO) with FBCSP 

effectively enhances feature selection, contributing to better classification 

results. Among the existing methods, FCNNA shows competitive 

performance with a mean accuracy of 93.09%, particularly excelling in 

subjects 3, 5, and 8 (with 98.54%, 97.78%, and 100% respectively), which 

suggests its deep learning architecture can effectively capture non-linear 

EEG signal patterns in certain cases. However, it shows variability across 

other subjects, lowering its overall reliability. 

MI-BMInet, while showing good results in some subjects (especially 3, 5, 

8, and 9), has a lower mean accuracy of 87.65%, indicating inconsistency 

in performance. MX-BBOA-SVM and LS-BJOA-SVM perform 

moderately well, but neither approach crosses the 90% threshold 

9 81.69 92.25 79.33 77.18 93.08 93.23 

Mean 88.95 94.74889 84.49 83.59 93.09 87.65 
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consistently, making them less suitable for applications requiring high 

accuracy. In conclusion, this comparison strongly supports the efficacy 

and stability of the proposed AGSP-SIFE-XGB method, which not only 

outperforms all existing algorithms in terms of average accuracy but also 

delivers highly consistent results among different subjects. This outcome 

validate that the intelligent feature extraction and selection strategies 

embedded in our approach offer substantial improvements over both 

traditional and deep learning-based classifiers.
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CHAPTER 7 

 

 
CONCLUSION AND FUTURE SCOPE 

 

 

 

 

7.1. CONCLUSION: 

 

In this work, we presented an efficient approach for MI categorization 

using advanced feature extraction and channel selection techniques. 

Compared to traditional CSP-based feature extraction, our method—based 

on AGSP—demonstrated superior performance. AGSP performed better 

than conventional feature extraction approaches by leveraging the brain's 

network structure, capturing spatial and functional relations between EEG 

channels. Unlike time or frequency domain techniques that treat signals 

independently, AGSP treats EEG as signals on graphs—allowing 

extraction of more informative, structured features that reflect underlying 

neural dynamics, leading to better classification performance in tasks like 

motor imagery. For effective channel selection, the SIFE outperformed 

standard methods like Particle Swarm Optimization (PSO). SIFE utilizes 

repulsive fuzzy-based initialization to enhance population diversity, while 

the three-parent crossover and complement mutation ensure a stable trade-

off between exploitation and exploration. We evaluated the selected 

channels using classifiers such as XG-Boost, Ada-Boost, and Random 

Forest (RF). Among these, XG-Boost achieved the highest performance, 

while RF lagged slightly behind. Specifically, the AGSP-SIFE framework 

attained accuracies of 90.39%, 94.74%, and 93.95% using RF, XG-Boost, 

and Ada-Boost, respectively. Overall, our method outperformed two 

existing approaches, FCNNA and MI-MBInet, with accuracy 

improvements of 1.77% and 8.08%, respectively.  

7.2. FUTURE SCOPE: 

 

In future research, we aim to extend our study toward multiclass motor 

imagery classification, which involves distinguishing between multiple 

types of imagery actions including left hand, right hand, feet and tongue. 

Unlike binary classification, multiclass scenarios introduce greater 

complexity due to the overlapping and subtle nature of EEG patterns 

across different motor tasks. To tackle this challenge, we plan to explore 

advanced deep learning architectures such as CNNs, RNNs, and hybrid 

models. Such models are capable of automatically learning hierarchical 
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and spatiotemporal features from original EEG signal, which can 

significantly improve classification performance. Additionally, we will 

consider methods like data augmentation, attention mechanisms, and 

domain adaptation to improve the architecture's robustness and 

generalizability across subjects and sessions. 

7.3. SOCIAL IMPACT:  

 

The progress of accurate and effective BCI structures for motor imaging 

has broad social consequences, especially for those with physical 

disabilities or motor impairments. Such technologies can restore a sense of 

independence by letting people to control prostheses, wheelchairs, or 

computers only by thinking. This improves quality of life, encourages 

inclusion, and decreases dependency on caretakers.
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