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Performance Evaluation of Adaptive Filters for Speech 
Enhancement across Realistic Acoustic Conditions 

Arpit Sharma 

ABSTRACT 

Speech enhancement plays a critical role in improving the intelligibility and quality of 
speech signals in real-world acoustic environments, especially for applications such as 
mobile communications, hearing aids, and voice-controlled systems. This thesis 
presents a comprehensive study on adaptive filtering techniques for speech denoising, 
with a particular focus on evaluating and improving their performance in realistic noise 
conditions. 

In the first part of this work, fifteen adaptive filters from the Python Padasip toolbox 
are rigorously evaluated across eight real-life noise scenarios—including babble, car, 
exhibition hall, and airport noise—at two challenging signal-to-noise ratio (SNR) 
levels (5 dB and 10 dB). The performance of each filter is assessed using established 
objective speech quality metrics: PESQ (Perceptual Evaluation of Speech Quality), 
fwsegSNR (Frequency-Weighted Segmental SNR), LLR (Log-Likelihood Ratio), and 
COVL (Composite Objective Measure). Results reveal that while the Recursive Least 
Squares (RLS) filter consistently delivers superior performance, filters such as GMCC, 
AP, and VSLMS also demonstrate notable strength in specific noise cases or under 
certain evaluation criteria. This analysis provides valuable insights into the behavior 
of different adaptive filters and forms a benchmark for future research in the field. 

Building upon these findings, the second part of the thesis introduces an ensemble-
based adaptive filtering approach tailored for in-car noise environments. This method 
dynamically combines the outputs of three filters—NLMS, GMCC, and VSLMS 
(Mathews’ adaptation)—using a performance-weighted scheme where filters with 
lower error contribute more to the final output. Additional signal processing 
techniques, including noise estimate subtraction, pre-emphasis, and de-emphasis, are 
incorporated to further suppress residual noise. Experiments conducted on in-car noisy 
speech samples from the NOIZEUS corpus at 5 dB and 10 dB SNR levels demonstrate 
that the proposed ensemble method significantly outperforms individual filters and 
static combinations across all objective quality measures. 

Together, these contributions offer a dual perspective: a detailed comparative 
evaluation of adaptive filters in diverse noise conditions and a novel ensemble-based 
enhancement system optimized for automotive noise. This work lays the groundwork 
for future advancements in adaptive speech enhancement systems suitable for real-
time deployment in noisy environments.  
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CHAPTER 1 

INTRODUCTION 

 
 
 
 

1.1  Background & Motivation 

 Speech communication systems are highly susceptible to 
performance degradation in the presence of background noise, which is 
common in real-world environments such as streets, restaurants, train 
stations, and moving vehicles. This distortion compromises the 
intelligibility, quality, and overall user experience of voice-based 
applications, especially in real-time scenarios like mobile telephony, smart 
assistants, automotive voice controls, and hearing aids. As the demand for 
robust and efficient speech enhancement systems grows—driven by the 
proliferation of smart devices and vehicular infotainment systems—it 
becomes critical to develop algorithms that can handle both stationary and 
highly dynamic, non-stationary noise conditions. 

 

 Adaptive filtering has emerged as a powerful technique for 
real-time speech enhancement due to its self-adjusting nature, allowing it 
to track changes in the input signal and noise characteristics. Classical 
algorithms such as the Least Mean Square (LMS) and Recursive Least 
Squares (RLS) filters have long been the foundation of this domain, 
balancing between simplicity and convergence speed. However, these 
traditional approaches often exhibit limitations in noisy environments with 
rapidly changing acoustic profiles. LMS is prone to slow convergence and 
poor performance in non-stationary conditions, while RLS, though faster 
and more accurate, is computationally intensive—limiting its practicality 
in embedded or latency-sensitive applications. 

 

 To overcome these drawbacks, a variety of advanced adaptive 
filtering algorithms have been proposed, including Normalized LMS 
(NLMS), Least Mean Fourth (LMF), Sign-Sign LMS, Affine Projection 
(AP), and the information-theoretic Generalized Maximum Correntropy 
Criterion (GMCC) filter. More recent innovations like Variable Step-Size 
LMS (VSLMS) and Online Centered NLMS (OCNLMS) offer dynamic 
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adaptability to signal environments but remain relatively underexplored, 
especially under complex acoustic conditions. While each of these filters 
has its own strengths, there is currently no one-size-fits-all solution that 
performs uniformly well across all real-world noise scenarios. 

 

 This motivated our first line of investigation, where we 
conducted a detailed, statistical performance evaluation of fifteen adaptive 
filters across eight real-world noise conditions using the NOIZEUS 
database and objective quality measures such as PESQ, LLR, and 
fwSegSNR. The study revealed that the optimal choice of filter varies with 
noise type and SNR, underscoring the need for more flexible and noise-
aware speech enhancement strategies. 

 

 In parallel, our second line of investigation focuses on 
environments with particularly challenging and highly dynamic noise 
profiles—most notably the automobile. Inside a moving vehicle, speech 
signals are often masked by a combination of engine noise, road texture 
interaction, tire friction, wind turbulence, and ambient traffic, making 
noise suppression particularly difficult. Single-filter solutions often fail to 
maintain both intelligibility and naturalness of speech under such 
conditions. 

 

 To address this, we propose an ensemble-based adaptive 
filtering framework, where multiple filters—such as NLMS, VSLMS 
(Mathews), and GMCC—operate in parallel and are dynamically weighted 
based on real-time performance. This ensemble approach harnesses the 
complementary strengths of individual filters, providing improved 
robustness, flexibility, and generalizability. By incorporating dynamic 
weighting mechanisms and transform-domain techniques (e.g., spectral 
subtraction), we achieve enhanced speech quality with low latency and 
minimal computational overhead—making the solution viable for real-
time deployment in embedded automotive systems. 

 

 Through this combined work, we aim to bridge the gap 
between theoretical advancements in adaptive filtering and their real-
world application in complex, noisy environments. Our unified approach 
not only provides a comparative foundation for adaptive filter performance 
but also introduces a practical, ensemble-driven strategy for robust speech 
enhancement—paving the way for next-generation, noise-resilient 
communication systems. 
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1.2  Problem Statement 

 Despite significant advancements in adaptive filtering 
algorithms for speech enhancement, real-world deployment continues to 
face critical challenges due to the diverse and dynamic nature of 
background noise. Conventional adaptive filters such as LMS and RLS are 
either too simplistic to handle non-stationary noise or too computationally 
intensive for real-time applications. Although more recent algorithms—
like GMCC, VSLMS, and OCNLMS—have shown promise in specific 
scenarios, there remains a lack of comprehensive understanding regarding 
their relative performance across different noise environments. 
 

 This gap becomes particularly prominent in high-noise, 
dynamic settings such as in-vehicle environments, where speech signals 
are heavily distorted by compound noise sources like engine hum, road 
friction, and wind turbulence. In such cases, the limitations of single-filter 
solutions become evident, as no single algorithm can consistently maintain 
optimal performance across all conditions. The problem, therefore, is 
twofold: 
 

 Lack of a unified performance evaluation framework for benchmarking 
adaptive filters under diverse real-world acoustic scenarios. 
 

 Need for a robust, noise-aware speech enhancement strategy that 
dynamically adapts to varying noise profiles—especially in non-
stationary, high-noise environments like automobiles. 
 
 This research addresses both issues by first establishing a 
statistically grounded benchmarking framework for evaluating multiple 
adaptive filters on real-world noise datasets. It then proposes a novel 
ensemble-based adaptive filtering system that combines the strengths of 
diverse algorithms through dynamic weighting, offering improved 
performance, flexibility, and real-time viability for automotive and general 
speech enhancement applications. 

 

1.3 Objectives of the Study 

 The primary objectives of this thesis are as follows: 

 To perform a systematic benchmarking of various adaptive filters for 
speech enhancement, including both conventional filters (LMS, NLMS, 
RLS) and modern variants (GMCC, VSLMS, Llncosh, OCNLMS), using 
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standardized objective measures across multiple real-world noise 
environments. 
 

 To analyze the performance trade-offs between noise suppression, 
speech intelligibility, convergence behavior, and computational efficiency 
under varying acoustic conditions, especially at low SNR levels. 

 
 To design a novel ensemble-based adaptive filtering framework that 

dynamically combines the outputs of multiple adaptive filters using a 
performance-driven weighting mechanism to achieve robust and efficient 
speech enhancement, particularly in challenging automotive noise 
environments. 

 
 To compare the proposed ensemble system with individual filters and 

classical techniques, assessing its effectiveness in terms of objective 
metrics, real-time feasibility, and adaptability to non-stationary noise 
profiles. 

 

1.4  Scope of the Study 

This study encompasses the design, evaluation, and comparative analysis 
of adaptive filtering techniques for speech enhancement in noisy 
environments, focusing on the following scopes: 
 

 The benchmarking study covers 15 adaptive filtering algorithms 
implemented using the Padasip Python library, evaluated on the NOIZEUS 
speech corpus across eight real-world noise types (e.g., car, babble, airport, 
restaurant) and two SNR levels (5 dB and 10 dB), using objective metrics 
such as PESQ, LLR, fwSegSNR, and a composite measure. 
 

 The ensemble-based system is developed using three parallel adaptive 
filters—NLMS, GMCC, and VSLMS (Mathews)—with a dynamic 
weighting mechanism based on the real-time error performance of each 
filter. This system is specifically tested in automotive (car) noise 
environments, where non-stationarity and intensity of noise pose serious 
challenges. 
 

 The entire study is implemented in Python (using Padasip, NumPy, SciPy, 
and Librosa libraries) with post-processing conducted in MATLAB for 
PESQ and SNR evaluation, ensuring cross-platform validation. 
 

 The research does not cover psychoacoustic modeling, deep learning 
methods, or multi-microphone systems, although it lays the groundwork 
for integrating such methods in future studies. 
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1.5 Thesis Organisation 

  The thesis is structured as follows: 

Chapter 1: Introduction 
Provides background, motivation, problem statement, objectives, scope, 
and an overview of the thesis structure. 

Chapter 2: Literature Review 
Discusses historical and recent work on adaptive filtering for speech 
enhancement, with focus on benchmark studies, algorithm development, 
and ensemble approaches. 

Chapter 3: Methodology for Benchmarking Adaptive Filters 
Describes the dataset, adaptive filters considered, performance evaluation 
metrics, and experimental design. 

Chapter 4: Benchmarking Results and Analysis 
Presents quantitative and statistical comparisons of adaptive filters across 
noise types and SNR levels, highlighting best-performing algorithms. 

Chapter 5: Ensemble-Based Adaptive Filtering System Design 
Introduces the proposed ensemble system, its architecture, dynamic 
weighting scheme, and noise-specific post-processing methods. 

Chapter 6: Ensemble Filter Results and Evaluation 
Shows the performance of the ensemble model in car noise scenarios and 
compares it with baseline adaptive filters and traditional methods. 

Chapter 7: Conclusions and Future Work 
Summarizes the key findings, limitations of the current work, and potential 
future research directions. 
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CHAPTER 2 

LITERATURE REVIEW 
 
 
 
 

 Speech enhancement in noisy environments has long been a focus of signal 
processing research, particularly for applications like telephony, hearing aids, and in-
vehicle communication systems. The evolution of adaptive filtering algorithms has 
played a pivotal role in enabling real-time suppression of noise while preserving 
speech intelligibility and quality. 

 

1. Classical Adaptive Filters and Limitations 

 The Least Mean Square (LMS) algorithm, introduced by 
Widrow and Hoff in 1960 [1], is one of the earliest adaptive filtering 
techniques. It minimizes the mean squared error (MSE) between the 
desired and estimated signals via a stochastic gradient descent mechanism. 
LMS is computationally efficient and robust under stationary conditions 
but suffers from slow convergence and sensitivity to input signal 
correlation. 

 

 To improve convergence behavior, the Normalized LMS 
(NLMS) algorithm was developed [2]. NLMS adapts the step size 
dynamically based on input signal power, thereby improving numerical 
stability and allowing for faster convergence in environments with variable 
signal energy. However, both LMS and NLMS remain limited in highly 
nonstationary or correlated signal environments, such as moving vehicles 
where noise characteristics fluctuate rapidly. 

 

2. Higher-Order and Sign-Based Algorithms 

 The Least Mean Fourth (LMF) algorithm [3] emerged as an 
alternative that minimizes the fourth power of the error signal, which 
makes it more sensitive to outliers and noise bursts. The Normalized LMF 
(NLMF) variant [4] combines the higher-order statistics of LMF with input 
normalization to enhance convergence when signal correlation is high. 

 

 For low-power or embedded implementations, sign-based 
algorithms like Sign-Sign LMS (SSLMS) and Normalized SSLMS 
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(NSSLMS) [5] have been proposed. These algorithms significantly reduce 
computational burden by quantizing both the error and input signals to 
their signs, requiring only bitwise and integer operations. While they offer 
reduced precision, they are well-suited for real-time digital signal 
processors (DSPs) in automotive control units. 

 

3. Recursive and Projection-Based Algorithms 

 The Recursive Least Squares (RLS) algorithm [6], based on 
exponentially weighted least-squares error minimization, provides rapid 
convergence and superior tracking of nonstationary signals. It achieves this 
by recursively updating the inverse of the autocorrelation matrix using the 
matrix inversion lemma. However, the O(N²) computational complexity 
and memory requirements make RLS unsuitable for high-dimensional or 
resource-constrained systems. 

 

 To bridge the performance gap between NLMS and RLS, 
Affine Projection (AP) algorithms [7] were developed. AP extends NLMS 
by projecting the input vector onto a subspace formed by multiple previous 
input vectors. The projection order 𝑃 controls the trade-off between 
computational cost and convergence performance, and AP has shown 
strong robustness to signal correlation—a common condition in enclosed 
vehicle cabins. 

 

4. Gradient Control and Kernel Methods 

 The Generalized Normalized Gradient Descent (GNGD) 
algorithm [8] introduces an adaptive learning rate based on local gradient 
curvature. By estimating an optimal normalization factor dynamically, 
GNGD improves convergence stability under rapidly changing noise 
conditions, which is typical in urban driving scenarios. 

 

 To increase robustness against impulsive and heavy-tailed 
noise, non-quadratic cost functions have been employed. The Least lncosh 
(Llncosh) algorithm [9] uses a hybrid logarithmic-hyperbolic cost function 
that combines properties of both MSE and MAE, resulting in improved 
robustness to non-Gaussian noise. Similarly, the Generalized Maximum 
Correntropy Criterion (GMCC) [10] utilizes kernel-based similarity 
metrics (e.g., Gaussian kernels) to suppress outliers, offering excellent 
performance in scenarios with speech occlusion or transient noise. 

 

5. Variable Step-Size and Adaptive Learning 

 Fixed step-size algorithms often represent a compromise 
between convergence speed and steady-state error. Variable Step-Size 
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LMS (VSLMS) methods, such as Ang’s rule, Mathews’s rule, and 
Benveniste’s method [11][12], dynamically adjust the step size based on 
signal energy, past error trends, or gradient history. These approaches 
enable rapid convergence during high noise activity and maintain stability 
when the error becomes small. They are particularly suitable for vehicular 
systems where environmental noise can change drastically within seconds 
(e.g., switching from idle engine noise to road noise). 

 

 The Online Centered Normalized LMS (OCNLMS) algorithm 
[13] introduces input data centering in a streaming context to mitigate 
signal drift and DC bias—both of which degrade filter performance in 
long-term driving conditions. 

 

6. Early Approaches to Automotive Speech Enhancement 

 Automobile noise has a complex, nonstationary structure 
consisting of broadBand engine hum, narrowband tire-road noise, and 
intermittent environmental interference (e.g., sirens, honking). Spectral 
subtraction and Wiener filtering [14][15] were among the first signal 
enhancement methods applied to car environments. Though simple to 
implement, they require accurate noise estimations and struggle with 
musical noise artifacts in highly dynamic environments. 

 

 Sub-band-based speech presence probability (SPP) estimators 
[16] improved speech detection by operating in frequency bands, adapting 
to nonstationary noise spectra. Later developments introduced 
environment-specific adaptation, including beamforming in microphone 
arrays [17] and power-ratio-based gain control [18], to isolate desired 
speech based on directionality and spatial filtering. 

 
7. Advanced Real-Time Architectures 

 In modern car infotainment systems, psychoacoustic 
filterbanks [19] have been employed to mimic human auditory perception, 
prioritizing perceptually significant frequency components for 
enhancement. Blind Source Separation (BSS) techniques [20], including 
Independent Component Analysis (ICA), separate speech and noise 
sources based on statistical independence, often requiring multi-
microphone arrays. 

 

 Further improvements came with Time Difference of Arrival 
(TDOA) and Kalman filtering techniques [21][22], which estimate speaker 
positions and track speech trajectories across multiple microphones. These 
methods are particularly useful in conversational AI for multi-speaker, 
hands-free environments. 
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8. Ensemble Filtering and Hybrid Approaches 

 Recently, ensemble-based adaptive filtering strategies have 
gained attention, especially in nonstationary and computationally 
constrained environments like cars. These systems use multiple adaptive 
filters (e.g., NLMS, GMCC, VSLMS) in parallel and assign dynamic 
weights based on instantaneous error performance, convergence speed, or 
signal-to-noise ratio (SNR) improvements [23]. Weighted combinations of 
filter outputs have shown resilience to diverse noise types while preserving 
low complexity through modular design. 

 

 This hybrid architecture provides a flexible trade-off between 
robustness and computation, and it enables real-time deployment on 
embedded platforms such as Automotive Grade Linux (AGL) or QNX-
based head units. The adaptability of ensemble filters makes them ideal for 
evolving car environments including electric vehicles, where noise 
signatures are drastically different from combustion-engine cars. 
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CHAPTER 3 

METHODOLOGY FOR BENCHMARKING ADAPTIVE 
FILTERS 

 
 
 
 

 This chapter presents the complete experimental framework used to 
benchmark fifteen adaptive filtering algorithms for single-channel speech 
enhancement in realistic noise conditions. We elaborate on dataset selection and 
characteristics, (3.2) filter implementations with theoretical underpinnings, (3.3) 
objective performance metrics and their computation, and (3.4) the process flowchart 
diagram depicting overall methodology. 

 

3.1 Dataset Selection and Characteristics 

 A noisy speech corpus (NOIZEUS) was developed to facilitate comparison 
of speech enhancement algorithms among research groups (Hu and Loizou, 2007). 
Key characteristics: 

 Speech material: 30 phonetically balanced sentences selected from the IEEE 
sentence database [IEEE Subcommittee, 1969]. Recorded in a sound proof 
booth by three male and three female speakers using Tucker Davis 
Technologies (TDT) hardware. Originally sampled at 25 kHz and down 
sampled to 8 kHz. 
 

 Noise types: Eight real-world noise categories derived from the AURORA 
database [Hirsch and Pearce, 2000]. Each noise type exhibits distinct temporal 
and spectral characteristics representative of in-field conditions: 
 

1 Suburban train noise: Low-frequency rumble and wheel–rail 
interaction, with periodic components corresponding to train motor 
harmonics. 

2 Babble (crowd): Overlapping voices in public spaces, exhibiting 
highly nonstationary and non-Gaussian characteristics. 

3 Car cabin noise: Combined engine vibration, tire–road friction, and 
HVAC system hum, with both tonal and broadBand components. 

4 Exhibition hall noise: Ambient crowd murmur mixed with intermittent 
machinery and ventilation noise. 
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5 Restaurant noise: Background chatter, tableware clatter, and 
intermittent foot traffic sounds. 

6 Street traffic noise: Continuous vehicle engines, horns, and wind 
turbulence in open environments. 

7 Airport terminal noise: Public announcements over a PA system, 
luggage trolley movement, and crowd murmur. 

8 Train-station noise: Platform announcements, rolling suitcases, and 
passenger movement. 
 

 SNR levels: Noisy speech files are provided at four SNRs (0 dB, 5 dB, 10 dB, 
15 dB). For this study, we focus on 5 dB and 10 dB to simulate realistic 
moderate-to-severe noise conditions. 

 File format and naming: All recordings are stored as 16-bit PCM WAV files 
(mono) at 8 kHz. File naming follows the convention <noise>_<SNR>dB.wav 
(e.g., car_5dB.wav). 

 Accessibility and citation: The corpus is freely available for research and has 
been employed to validate objective measures (Hu and Loizou, 2008; Ma et 
al., 2009). 

 

 The IRS filter from ITU-T P.862 was applied to both clean and noise 
signals to restrict their spectra to the 300–3400 Hz range used by telephone and mobile 
handsets. This ensures that PESQ and other perceptual metrics operate under the same 
band-limited conditions as real-world telephony and removes out-of-band components 
irrelevant to embedded communication hardware. 

 

 Only 5 dB and 10 dB SNR samples were used because they represent the 
most challenging yet common noise levels encountered in applications like in-car 
communication and mobile telephony. At 5 dB, speech intelligibility is severely 
degraded and at 10 dB, moderate noise still allows meaningful enhancement. Lower 
SNRs offer little perceptual gain, and higher SNRs leave too little noise to differentiate 
filter performance. 

 

3.2 Adaptive Filters Considered 

 Fifteen adaptive filtering algorithms—spanning classic, higher‐order, 
sign‐based, projection‐based, gradient‐adaptive, robust‐cost, kernel‐based, and 
variable‐step strategies—were implemented using the Padasip Python toolbox to cover 
the spectrum of trade-offs between computational complexity, convergence speed, and 
robustness to nonstationary noise. 
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3.2.1 LMS-Family Filters 

1. LMS: 

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇 𝑒(𝑛) 𝒙(𝑛) (1) 

𝑒(𝑛) = 𝑑(𝑛) − 𝒘ୃ(𝑛)𝒙(𝑛) (2) 

 Here, 𝒙(𝑛) is the input vector, 𝒘(𝑛) is the filter coefficient 
vector 𝑑(𝑛) the desired signal and 𝑒(𝑛) is the a priori error and μ is the 
step size. LMS offers O(N) complexity per tap update but requires careful 
choice of μ<1/λmax (largest input‐autocorrelation eigenvalue) to ensure 
stability. 

2. NLMS: 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
μ

|𝑥(𝑛)|ଶ + ϵ
 𝑒(𝑛) 𝑥(𝑛) (3) 

 ϵ is a small regularization constant. By normalizing the step 
size to the instantaneous input power, NLMS improves convergence 
stability under varying signal energies. 

3. SSLMS & NSSLMS: 

𝑤(𝑛 + 1) = 𝑤(𝑛) + μ sgn൫𝑒(𝑛)൯ sgn൫𝑥(𝑛)൯ (4) 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
μ

|𝑥(𝑛)|ଶ + ϵ
 sgn൫𝑒(𝑛)൯ sgn൫𝑥(𝑛)൯ (5) 

 Sign-quantized updates reduce arithmetic to bit-level 
operations; NSSLMS adds NLMS-style normalization to the sign-sign 
rule. 

3.2.2 Higher-Order and Robust-Cost Filters 

4. LMF & NLMF: 

𝑤(𝑛 + 1) = 𝑤(𝑛) + μ [𝑒(𝑛)]ଷ 𝑥(𝑛) (6) 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
μ

|𝑥(𝑛)|ଶ + ϵ
 [𝑒(𝑛)]ଷ 𝑥(𝑛) (7) 

 Minimizing fourth-order error, LMF is more resilient to 
impulsive noise. NLMF extends LMF with input-energy normalization. 
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5. Llncosh: 

𝑤(𝑛 + 1) = 𝑤(𝑛) + μ  tanh൫𝑒(𝑛)൯  𝑥(𝑛) (8) 

 The log-hyperbolic cost blends MSE and MAE behaviors, 
offering robustness across Gaussian and heavy-tailed noise distributions. 

3.2.3 Projection- and Recursive-Based Filters 

6. AP (Affine Projection): 

𝑤(𝑛 + 1) = 𝑤(𝑛) + μ 𝑋(𝑛)(𝑋ୃ(𝑛)𝑋(𝑛) + ϵ𝐼)ିଵ𝑒(𝑛) (9) 

𝑒(𝑛) = 𝑑(𝑛) − 𝑋ୃ(𝑛)𝑤(𝑛) (10) 

 here  𝑿(𝒏) = [𝒙(𝒏), 𝒙(𝒏 − 𝟏), … , 𝒙(𝒏 − 𝑷 + 𝟏)] is 𝑴 × 𝑷 
matrix of the last P input vectors,  𝑑(𝑛) = [𝑑(𝑛), 𝑑(𝑛 − 1), … , 𝑑(𝑛 − 𝑷 +
1)]ୃis the vector of last P desired outputs and 𝒆(𝑛) is error vector for the 
𝑃 samples. 

 Instead of updating the filter using just the most recent input 
sample (like LMS), the AP algorithm uses the last P input vectors and 
desired signals. This gives a richer context for adapting the weights, 
making the algorithm more robust to correlated noise and speech. 

7. RLS (Recursive Least Squares): 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝑃(𝑛) 𝑥(𝑛) 𝑒(𝑛) (11) 

𝑃(𝑛) =
1

λ
ቆ𝑃(𝑛 − 1) −

𝑃(𝑛 − 1)𝑥(𝑛)𝑥(𝑛)ୃ𝑷(𝑛 − 1)

λ + 𝑥(𝑛)ୃ𝑷(𝑛 − 1)𝑥(𝑛)
ቇ (12) 

 λ is the forgetting factor to give more weight to recent data, 
which is important in nonstationary environments, 𝑷(𝑛) is inverse 
autocorrelation matrix of the input signal for RLS. With O(N2) complexity, 
RLS offers the fastest convergence and optimal least‐squares tracking at 
the expense of memory and computation. 

3.2.4 Gradient-Adaptive and Kernel-Based Filters 

8. GNGD (Generalized Normalized Gradient Descent): 

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝛍 ⋅
𝑒(𝑛) 𝒙(𝑛)

𝛜(𝑛) + |𝒙(𝑛)|𝟐
 (13) 
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ϵ(𝑛 + 1) = ϵ(𝑛) − ρ ⋅ μ ⋅ 𝑒(𝑛) ⋅ 𝑒(𝑛 − 1) ⋅
𝑥ୃ(𝑛 − 1)𝑥(𝑛)

(ϵ(𝑛) + |𝑥(𝑛 − 1)|ଶ)ଶ
 (14) 

 GNGD dynamically learns the regularization term 𝜖(𝑛) that 
appears in the denominator of the NLMS update. 𝜖(𝑛) is the regularization 
term at time 𝑛. Ρ is the learning rate for the regularization parameter ϵ(n). 
This allows it to handle signal variations better than NLMS, which uses a 
fixed ϵ, which makes GNGD maintain stable convergence under rapidly 
varying noise power. 

9. GMCC (Generalized Maximum Correntropy Criterion): 

𝑤(𝑛 + 1) = 𝑤(𝑛) + μ 𝑒(𝑛) exp ቆ−
[𝑒(𝑛)]ଶ

2σଶ ቇ  𝑥(𝑛) (15) 

 The exponential term in GMCC uses σ to define the kernel size 
used to determine correntropy which is a nonlinear similarity measure to 
emphasize on smaller errors. The correntropy‐based term downweights 
large errors, making GMCC highly robust to outliers and non-Gaussian 
interference. 

 

3.2.5 Variable Step-Size and Centered Filters 

10. VSLMS:  

μAng(𝑛) ∝ [𝑒(𝑛) − 𝑒(𝑛 − 1)]ଶ (16) 

μMathews(𝑛) ∝ γ μ(𝑛 − 1) + (1 − γ) 𝑒(𝑛)ଶ (17) 

μBenveniste(𝑛) ∝ μ(𝑛 − 1) + ρ 𝑒(𝑛) ∇𝑒(𝑛) (18) 

 Three variants dynamically adjust 𝜇 based on: 
 Ang’s rule (error‐difference squared) 
 Mathews’s rule (exponentially weighted past errors) where γ is 

initial step size adaptation parameter at the beginning. 
 Benveniste’s rule (gradient‐based update) where ρ is learning rate for 

step size 𝜇, which scales the influence of the instantaneous gradient of 
the error used for deeper adaptation to the signal’s local structure. 

11. OCNLMS (Online Centered NLMS): 
 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
μ

|𝑥(𝑛) − 𝑥̅(𝑛)|ଶ + ϵ
 𝑒(𝑛) [𝑥(𝑛) − 𝑥̅(𝑛)] (19) 
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 This filter uses a centered version of the input vector. 𝑥̅(𝑛) is 
the running mean in OCNLMS. Incorporates a running estimate of input 
mean into the NLMS update to remove bias and improve tracking in 
drifting noise conditions. 

3.3 Performance Evaluation Metrics 

 In this research, four objective metrics were employed to 
evaluate the effectiveness of adaptive filters in speech enhancement tasks. 
These metrics provide quantitative measures of speech quality, 
intelligibility, and distortion, which are crucial for assessing the 
performance of speech enhancement algorithms in practical applications. 

 

3.3.1 Perceptual Evaluation of Speech Quality (PESQ) 

 PESQ is a widely used standardized metric introduced by ITU-
T in recommendation P.862 for assessing speech quality by modeling 
human auditory perception. It predicts the Mean Opinion Score (MOS) 
that listeners would assign to a speech sample, allowing for an objective 
comparison of enhanced and clean speech. Using an auditory model, it 
compares the clean and enhanced signals to determine speech quality. The 
PESQ metric is computed as follows: 

𝑃𝐸𝑆𝑄  =  𝑎଴ ⋅ 𝐷௧  +  𝑎ଵ ⋅ 𝐷௔  +  𝑎ଶ (20) 
 Where 𝐷௧ and 𝐷௔ are the disturbance values. For network 
speech, the regression coefficients a0, a1 and a2 are optimized. The PESQ 
scores range from -0.5 to 4.5 where better speech is an indication of a high 
score values. 

3.3.2 Log Likelihood Ratio (LLR) 

 LLR measures the spectral distortion between the enhanced 
speech and the clean reference by comparing their Linear Prediction 
Coding (LPC) coefficients, which model the vocal tract envelope. It 
quantifies how well the LPC model of the enhanced signal matches that of 
the clean speech, thus indicating preservation of spectral features critical 
for intelligibility. Since LPC captures vocal tract resonances (formants), 
LLR is an effective metric for evaluating spectral fidelity post 
enhancement. Mathematically, the LLR for a frame is defined as: 

LLR = log ቆ
𝑎௖௟௘௔௡

ୃ 𝐑𝑎௖௟௘௔௡

𝑎௘௡௛
ୃ 𝐑𝑎௘௡௛

ቇ (21) 

 Where 𝑎௖௟௘௔௡ and 𝑎௘௡௛ are the LPC coefficient vectors of clean 
and enhanced speech respectively. 𝐑 is the autocorrelation matrix of the 
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speech frame. An LLR value close to zero indicates minimal spectral distortion. 
Higher LLR values indicate greater deviation from the clean spectral envelope, 
reflecting degradation. 

 

3.3.3  Frequency-Weighted Segmental Signal-to-Noise Ratio (fwSegSNR) 

fwSegSNR evaluates the enhancement performance by measuring the 
signal-to-noise ratio across short speech segments, with additional 
frequency weighting to emphasize perceptually important bands. Speech 
intelligibility is not uniform across frequencies; the human ear is more 
sensitive to certain frequency regions. fwSegSNR accounts for this by 
weighting the SNR calculation accordingly. The fwSegSNR over M 
frames is computed as: 

fwSegSNR =
10

N
⋅ ෍

∑ W(j, m)୆
୨ୀଵ logଵ଴ ൭

|Y(j, m)|ଶ

൫|Y(j, m)| − หY෡(j, m)ห൯
ଶ൱

∑ W(j, m)୆
୨ୀଵ

୒ିଵ

୫ୀ଴

  

 

(22) 

 N is the total number of frames, B is the number of bands, and 
𝑊(𝑗, 𝑚) is the weight for the jth frequency band in the mth frame. The clean 
and enhanced speech spectrums are represented by |𝑌(𝑗, 𝑚)| 
and ห𝑌෠(𝑗, 𝑚)ห, respectively, A weighting function assigns higher 
importance to speech-dominant regions. The following is the expression 
for the weighting function: 

𝑊(𝑗, 𝑚) = 𝑌(𝑗, 𝑚)𝛾 (23) 
 where 𝛾 control the sensitivity of spectral variations. The 
signal's bandwidth was divided into either 13 or 25 bands, which 
correspond to the auditory critical bands [19]. We have used 13 bands here. 
Better speech intelligibility is correlated with higher fwSNRseg values. 

3.3.4 Composite speech Quality Measure (COVL) 

 The composite measure is created as a weighted sum of a 
number of objective measures for a more reliable estimate of speech 
quality. It is given as: 

𝐶௒ = 𝛼଴ + ෍ 𝛼௡𝑀௡

ே

௡ୀଵ

 (24) 

 where 𝐶௒ is the composite score for a given rating scale, e.g., 
speech distortion, background noise distortion, or overall quality. The 
symbols 𝛼௡ are regression coefficients established by statistical analysis, 
and 𝑀௡ are the contributing objective measures. Among the components 
of the composite measure we look for overall quality (OVL). The use of 
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several objective measures increases the correlation with subjective 
ratings, thus increasing the robustness of the measurement. 

3.4 Process Flowchart 

 Figure 1 illustrates the adaptive filtering procedure for speech 
enhancement. The 5dB and 10dB SNR noisy speech samples for eight types 
of noisy speech samples are taken from the NOIZEUS database. These are 
fed as input in the python script containing aforementioned fifteen adaptive 
filters from the Padasip library. After being filtered, the results are saved 
as.wav files and processed in MATLAB for performance analysis using 
aforementioned objective speech quality metrics. Finding the optimal filter 
for each noise environment is the final step, which involves analysing the 
results. 

Fig. 1.  Process flowchart for adaptive filtering and performance evaluation. 
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CHAPTER 4 

BENCHMARKING RESULTS AND ANALYSIS 
 
 
 
 

 This chapter presents a comprehensive evaluation of fifteen adaptive filters 
applied to single-channel speech enhancement in realistic acoustic environments. Each 
filter was tested across multiple noise conditions and signal-to-noise ratios (SNRs), 
and evaluated using objective metrics such as PESQ, LLR, Segmental SNR, and 
Composite Score. Results are analyzed to identify the strengths and weaknesses of 
each algorithm under various noise types. 

4.1 Experimental Setup Recap 

A brief restatement of key points: 

 Dataset: NOIZEUS with 8 real-world noise types. 
 

 SNR Levels: 5 dB and 10 dB. 
 

 Sampling Rate: 8 kHz after IRS filtering. 
 

 Evaluation Metrics: PESQ, LLR, fwSegSNR, Composite Score. 
 

 Test Conditions: 30 utterances × 2 SNRs × 8 noise types per filter. 
 

4.2 Performance Across Noise Types 

For each noise type (e.g., car, babble, exhibition), present: 

 Quantitative Tables: PESQ, LLR, fwSegSNR, Composite for each filter. 
 

 Bar Charts or Boxplots: Visualizing filter performance variation. 
 

 Commentary: Discuss which filters perform best and why. 

4.3 Metric-Wise Filter Comparison 

Results were analyzed by using the following metrics: 

 PESQ Analysis: Which filters yield the highest perceptual quality. 
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 LLR Analysis: Performance in preserving spectral envelope. 
 

 fwSegSNR: Signal-level distortion reduction effectiveness. 
 

 Composite Score: Overall robustness across multiple dimensions. 

4.4 Benchmarking Results 

TABLE 1: Best Performing Filter for Each Noise Type Based on Objective 
Parameters (For Noisy Speech Samples At 5dB SNR) 

 

Sr
. N

o 

Noise Type 
(5dB samples) 

Best Performing Filter based on 

PESQ fwsegSNROVL LLR COVL 

1 Airport RLS 4.3028 AP 4.892 VSLMSMath 0.3441 RLS 4.6744 
2 Babble RLS 4.2932 AP 4.6989 VSLMSBen 0.3476 RLS 4.6801 
3 Car RLS 4.3847 RLS 4.949 VSLMSMath 0.3184 RLS 4.7995 
4 Exhibition RLS 4.2861 RLS, SSLMS 5 GMCC 0.3268 RLS 4.6858 
5 Restaurant RLS 4.3158 AP 4.909 VSLMSMath 0.34 RLS 4.7231 
6 Station RLS 4.367 AP 4.9193 VSLMSBen 0.3441 RLS 4.7523 
7 Street RLS 4.333 AP 4.9581 GMCC 0.3232 RLS 4.7326 
8 Train RLS 4.2239 RLS, SSLMS 5 GMCC 0.3135 RLS 4.5977 

 

TABLE 2: Ranking of Adaptive Filters for Each Noise Type Based on Composite 
Parameter COVL (For Noisy Speech Samples At 5dB SNR) 

R
an

k 

Noise Types (5dB samples) 

Airport Babble Car Exhibition Restaurant Station Street Train 

1 RLS RLS RLS RLS RLS RLS RLS RLS 
2 NLMS NLMS NLMS GMCC NLMS NLMS NLMS GMCC 

3 VSLMSAng VSLMSBen 
VSLMSMat

h 
VSLMSMat

h 
VSLMSAng 

VSLMSMat

h 
VSLMSBen NLMF 

4 VSLMSBen VSLMSAng VSLMSAng NLMF VSLMSBen VSLMSBen NLMF LMF 

5 
VSLMSMat

h 
VSLMSMat

h 
VSLMSBen VSLMSAng 

VSLMSMat

h 
VSLMSAng VSLMSAng OCNLMS 

6 Llncosh GMCC GMCC VSLMSBen Llncosh GMCC GMCC GNGD 

7 GMCC Llncosh Llncosh NLMS GMCC LMF 
VSLMSMat

h 
LMS 

8 GNGD NLMF NLMF GNGD GNGD Llncosh LMF VSLMSAng 
9 NLMF LMS LMS LMF OCNLMS NLMF Llncosh Llncosh 

10 AP LMF OCNLMS Llncosh NLMF AP OCNLMS 
VSLMSMat

h 
11 LMS OCNLMS LMF AP LMF LMS GNGD VSLMSBen 
12 OCNLMS AP GNGD OCNLMS LMS GNGD LMS AP 
13 LMF GNGD AP LMS AP OCNLMS AP NLMS 
14 SSLMS SSLMS SSLMS SSLMS SSLMS SSLMS SSLMS SSLMS 
15 NSSLMS NSSLMS NSSLMS NSSLMS NSSLMS NSSLMS NSSLMS NSSLMS 
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TABLE 3: Best Performing Filter for Each Noise Type Based on Objective 
Parameters (For Noisy Speech Samples At 10dB SNR) 

S
r.

 N
o 

Noise Type 
(10dB samples) 

Best Performing Filter based on 

PESQ fwsegSNROVL LLR COVL 

1 Airport RLS 4.2192 AP 4.9992 GMCC 0.3918 RLS 4.5827 
2 Babble RLS 4.2358 RLS 4.4948 GMCC 0.3628 RLS 4.6086 
3 Car RLS 4.3236 AP 4.292 VSLMSBen 0.3407 RLS 4.7193 
4 Exhibition RLS 4.2525 RLS, SSLMS 5 GMCC 0.3389 RLS 4.6396 
5 Restaurant RLS 4.2367 AP 4.8306 VSLMSMathews 0.3878 RLS 4.63 
6 Station RLS 4.2739 AP 4.922 VSLMSBen 0.3773 RLS 4.6436 
7 Street RLS 4.274 AP 4.8486 GMCC 0.3382 RLS 4.66 
8 Train RLS 4.2346 RLS, SSLMS 5 GMCC 0.3493 RLS 4.6005 

 

TABLE 4: Ranking of Adaptive Filters for Each Noise Type Based on Composite 
Parameter COVL (For Noisy Speech Samples At 10dB SNR) 

R
an

k
 Noise Types (10dB samples) 

Airport Babble Car Exhibition Restaurant Station Street Train 

1 RLS RLS RLS RLS RLS LMS RLS RLS 
2 NLMS NLMS NLMS NLMS NLMS NLMS NLMS NLMF 
3 VSLMSBen GMCC GMCC GMCC GMCC LMF NLMF GMCC 
4 VSLMSAng NLMF VSLMSBen NLMF NLMF NLMF GMCC LMF 

5 LMF 
VSLMSMat

h 
NLMF 

VSLMSMat

h 
VSLMSMat

h 
SSLMS VSLMSAng GNGD 

6 
VSLMSMat

h 
VSLMSAng LMF VSLMSAng LMF NSSLMS LMF OCNLMS 

7 GMCC LMF 
VSLMSMat

h 
VSLMSBen VSLMSAng RLS 

VSLMSMat

h 
VSLMSAng 

8 AP AP VSLMSAng LMF AP GNGD VSLMSBen VSLMSBen 

9 OCNLMS VSLMSBen Llncosh OCNLMS VSLMSBen AP AP 
VSLMSMat

h 
10 NLMF GNGD GNGD GNGD GNGD GMCC GNGD Llncosh 
11 Llncosh OCNLMS AP AP Llncosh OCNLMS Llncosh LMS 
12 LMS Llncosh OCNLMS Llncosh OCNLMS Llncosh OCNLMS AP 
13 GNGD LMS LMS LMS LMS VSLMSAng LMS NLMS 
14 SSLMS SSLMS SSLMS SSLMS SSLMS VSLMSBen SSLMS SSLMS 

15 NSSLMS NSSLMS NSSLMS NSSLMS NSSLMS 
VSLMSMat

h 
NSSLMS NSSLMS 

 The noisy speech samples were processed through adaptive 
filters. The data consisted of eight types of noise, at two SNR levels (5 dB 
and 10 dB) with 30 speech samples for each case. This provided: 

8(𝑛𝑜𝑖𝑠𝑒 𝑡𝑦𝑝𝑒𝑠) × 2(𝑆𝑁𝑅 𝑙𝑒𝑣𝑒𝑙𝑠) × 30(𝑠𝑝𝑒𝑒𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) 
= 480 𝑖𝑛𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

resulting in 480 input samples in total. These input samples were then 
processed using 15 adaptive filters, resulting in: 

480 𝑖𝑛𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 15 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 7,200 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

 Each filtered output is a unique combination of speech sample, 
noise type, SNR level, and adaptive filter. For measuring performance, the 
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objective measure scores for the 30 speech samples for each noise-filter 
combination were averaged. Appendix 1 & 2 respectively contains the 
averaged results for 5 dB & 10 dB samples respectively. The tables in this 
section are the top findings among the results mentioned in Appendix 1. 
These were separately computed for the 5 dB and 10 dB SNR levels, and 
the filter with the highest performance was determined for each of the 
noise types.  
 For PESQ and LLR, the raw computed absolute value was 
taken, whereas fwSNRseg was computed using 25 critical bands based on 
the Bark psychoacoustic scale [19], with score mapped to a 0-5 MOS like 
scale, similar to the composite measure, which was also mapped on a 0-5 
scale. The MATLAB codes used to compute these measures were   adapted 
and modified from [18] for compatibility with the current MATLAB 
version. Table 1 and Table 3 highlights the top-performing filters for each 
noise type based on these objective measures for 5 dB and 10 dB 
respectively. Similarly, Table 2 and 4 represents the filter ranking across 
each noise type, based on the composite measure COVL as it showed the 
highest correlation with subjective listening scores for each SNR levels. 
Both of these SNR levels represent noisier to less noisy acoustic situations. 
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CHAPTER 5 

ENSEMBLE-BASED ADAPTIVE FILTERING SYSTEM DESIGN 
 
 
 
 

5.1 Motivation & Background 

 Noisy speech improvement is important in order to improve 
communication quality in various applications like mobile 
communication, car voice assistants, and hearing aids. Automotive 
environments involve much engine, tire, and other noise background 
which badly deteriorates the quality and intelligibility of the speech 
signals. The challenge to real-time systems is that this should be efficiently 
carried out without introducing substantial latency or distortion. 

 Conventional adaptive filters such as Recursive Least Squares 
(RLS) (Venkateswarlu et al., 2021) and Normalized Least Mean Squares 
(NLMS) (Diniz, 2020) have been traditionally used for filtering out noise. 
The filters themselves, however, cannot be run in a stable manner in 
dynamic noise environments, particularly for car-type environments where 
the noise environment of interest tends to keep changing. RLS filter's need 
for heavy computations also renders it inappropriate for low power-
embedded systems, which provokes the design of energy-efficient 
alternatives. 

Individual adaptive filters do not adapt best to varying noise profiles and, 
as such, provide poor speech enhancement quality. Although RLS is more 
precise, its computational complexity renders it impossible for low power 
real-time processing, especially when applied in resource-constrained 
environments. An ensemble-based approach that utilizes a bank of 
adaptive filters can provide enhanced robustness by controlling 
dynamically filter contributions based on their individual error 
performance. 

In car environments, speech enhancement proves challenging owing to 
non-stationary noise from sources such as traffic, wind, and engines. 
Previous approaches utilized multi-channel adaptive Wiener filtering for 
high-frequency sub-bands (Chen et al., 2012) and spectral subtraction for 
low-frequency sub-bands to combat noise and distortion (Visser et al., 
2001). In speech presence estimation, sub-band-based methods later 
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surpassed more traditional methods such as Wiener and MMSE-based 
estimators (Fingscheidt et al., 2008). To compensate speech enhancement 
for various conditions, environment-adaptive techniques brought in sub-
band processing and statistical modeling. A robust system enhanced 
speech recognition with time- and frequency-domain beamformers 
without retraining in diverse environments (Ramesh Babu & Sridhar, 
2020). 

 Later, dynamic multi-microphone systems with power ratio-
based controls were developed to control multiple talkers and ambient 
noise (Matheja et al., 2013). With pipelined architectures, real-time 
capability was delivered by psychoacoustic models and perceptual filter 
banks (Yang et al., 2008). Real-time adaptive Wiener filters and blind 
source separation (BSS) techniques further augmented noise cancellation 
in automotive environments (Djendi, 2016). 

 Recent developments utilized adaptive parallel filter methods 
to dynamically suppress road noise and beamforming combined with 
Kalman filtering for enhanced intelligibility (Yin et al., 2023). Time 
difference of arrival (TDOA) and source separation with microphone 
arrays (Pathrose & Govindaraj, 2024) were examined in recent studies for 
adaptive signal adjustment. Norm-based adaptive filters provided robust 
solutions for channel estimation and in-car echo cancellation (Huang et al., 
2022). Yet, existing methods often lack in dynamically responding to 
changing noise patterns and have difficulty in balancing computational 
complexity and noise reduction. Whereas methods such as spectral 
subtraction and Wiener filtering fail in non-stationary environments, 
methods such as RLS are effective but computationally expensive. 

 This part of the research aims to develop an ensemble-based 
adaptive filtering system for speech enhancement in car noise 
environments. A performance-based dynamic weighting scheme will 
adaptively regulate the contribution of multiple adaptive filters, ensuring 
improved noise attenuation with low computational complexity, making it 
ideal for real-time applications in challenging automotive environments. 

5.2 Methodology 

5.2.1 Model Diagram 

 Figure 1 shows the proposed ensemble adaptive filter system, 
that pre-emphasizes a noisy speech signal after noise estimate subtraction. 
Three parallel adaptive filters-NLMS [2], GMCC [13], and VSLMS 
(Mathew's) [14] process the pre-emphasized signal. The enhanced speech 
signal is produced by dynamically combining the filter outputs and de-
emphasizing the resultant signal. 
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Fig. 2. Block diagram of the proposed ensemble-based adaptive filtering system model 
for speech enhancement in car noise environment 

5.2.2 Pre-Processing 

 The noisy speech signal is conditioned during the pre-
processing phase by noise estimate subtraction and pre-emphasis. The pre-
computed noise profile is obtained by averaging the differences between 
30 noisy and their corresponding 30 clean speech samples available in the 
dataset. In the frequency domain, the estimate noise spectrum is subtracted 
from signals spectrum, and the signal is converted back by IFFT. The pre-
emphasis is the following step, where high-frequency components are 
boosted to preserve the speech details. All of these processes assure that 
input is optimized to provide efficient speech enhancement and attenuation 
of noise is supplied to the filters. 

5.2.3 Parallel Filtering 

 Here we are applying three adaptive filters in parallel: NLMS, 
GMCC, and VSLMS (Mathew’s). In our  preliminary analysis, it was 
found that these filters showed exceptional individual performance in Car 
noise conditions. These were sourced from python Padasip library [15]. 
Each filter iteratively updates its weights using a different adaptation rule. 
NLMS uses normalized step-size control to improve stability and 
convergence speed. GMCC employs a kernel-based method to enhance 
error minimization by accounting for higher-order dependencies. VSLMS 
(Mathew’s) dynamically adjusts the step-size according to the error 
magnitude, allowing for better trade-offs between convergence speed and 
steady-state error. 

5.2.4 Dynamic weight assignment & post-processing 

 To enhance speech robustness, an error-based dynamic weight 
assignment strategy combines outputs from three parallel adaptive filters. 
Each filter’s error—defined as the difference between the desired clean 
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signal and its output—guides weight adjustments. Filters with smaller 
errors are given higher weights, while less accurate ones contribute less. A 
normalized inverse error measure continuously updates these weights, 
ensuring the most effective filter dominates the final signal. Once 
combined, the output undergoes post-processing: de-emphasis reverses the 
high-frequency boost applied earlier to restore spectral balance, and 
normalization adjusts the amplitude to maintain clarity and prevent 
distortion. 

5.3 Experimental Setup 

5.3.1 Dataset 

 We use the NOIZEUS Speech Corpus, the same dataset 
described earlier in Section 3.1. 

5.3.2 Performance parameters 

 The ensemble filter's performance was assessed using the 
objective speech quality metrics mentioned in Section 3.3. 
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CHAPTER 6 

ENSEMBLE FILTER RESULTS AND EVALUATION 
 
 
 
 

 The Composite Objective Measure (COVL), which closely correlates with 
subjective human perception of speech quality, was used as a principal metric in 
evaluating the performance of each adaptive filter. Figure 2 displays the COVL scores 
for all 30 speech samples under both 5 dB and 10 dB SNR conditions. The results 
clearly indicate the consistent superiority of the Ensemble-based adaptive filtering 
approach. 

Fig. 3. COVL values per speech sample for each filter tested at  
(a) 5dB & (b) 10dB SNR 

 
Under the 5 dB SNR condition, the Ensemble filter outperformed all 

individual filters in 25 out of 30 samples, while in the remaining 5 samples, the NLMS 
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filter marginally surpassed it. Similarly, under the 10 dB SNR condition, the Ensemble 
filter achieved the highest COVL in 26 out of 30 samples, further reinforcing its 
reliability across varying noise levels. 

 
 

The average COVL scores summarized in Table 1 reinforce these per-sample 
observations. The Ensemble filter achieved the highest mean COVL values among all 
filters tested, under both noise conditions. This consistent advantage highlights the 
Ensemble’s ability to effectively model speech quality improvements across different 
noise scenarios. Its dynamic weighting strategy—combining the strengths of multiple 
adaptive filters—results in more perceptually pleasing and intelligible speech 
reconstructions. 

 
TABLE 5. Average values of performance parameters for each filter tested at 5dB speech 

samples 

TABLE 6. Average values of performance parameters for each filter tested at 10dB SNR 
speech samples 

 
These findings affirm that the Ensemble filter not only performs well in 

most individual cases but also demonstrates the best overall speech enhancement 
performance when averaged across all samples and SNR conditions. This makes it a 
strong candidate for real-world deployment, particularly in challenging acoustic 
environments such as automotive or public spaces. 

S. No. Filter 
Performance Parameters 

for Speech samples at 5dB SNR 
PESQ LLR fwsegSNR COVL 

1 NLMS 3.75 0.77 1.27 4.15 
2 VSLMSMathews 2.43 0.91 1.91 2.98 
3 GMCC 3.14 0.97 1.74 3.52 
4 Ensemble 3.58 0.28 2.13 4.27 

S. No. Filter 
Performance Parameters 

for Speech samples at 10dB SNR 
PESQ LLR fwsegSNR COVL 

1 NLMS 3.76 0.82 1.36 4.14 
2 VSLMSMathews 2.65 0.99 1.79 3.11 
3 GMCC 3.15 1.04 1.97 3.49 
4 Ensemble 3.60 0.36 1.81 4.24 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 
 
 
 
 

 This thesis presented a comprehensive benchmarking study of adaptive 
filtering techniques for speech enhancement in realistic acoustic environments, with a 
primary focus on automotive noise conditions. A total of fifteen adaptive filters from 
the Padasip library—including LMS, NLMS, RLS, GMCC, VSLMS variants, and 
others—were evaluated using objective speech quality and intelligibility metrics. The 
evaluation was conducted on a phonetically balanced dataset with eight real-world 
noise types at 5 dB and 10 dB SNR levels. 

 

Among the individual filters, GMCC and VSLMS (Mathew’s variant) 
consistently demonstrated strong performance in high-noise environments. However, 
variability across noise types revealed limitations in generalizability for standalone 
filters. To address this, an Ensemble-based adaptive filtering approach was proposed, 
combining the outputs of selected filters using a dynamic weighting strategy. 

 

The results clearly showed that the Ensemble filter achieved superior 
performance across all objective metrics, particularly the Composite Objective 
Measure (COVL), which closely correlates with perceptual quality. In over 80% of the 
speech samples, the Ensemble filter produced the highest COVL scores, and its average 
scores across all conditions were the highest among all tested filters. These findings 
demonstrate the robustness and adaptability of the Ensemble framework, especially in 
fluctuating real-world noise conditions such as car, exhibition, and restaurant 
environments. 

 

Future Work 

While the current work provides a solid benchmarking framework and a 
strong Ensemble-based solution, several promising directions remain open for future 
research: 

 Psychoacoustic Model Integration: Incorporating human auditory models can 
help prioritize perceptually important features in the speech signal, potentially 
improving both intelligibility and quality. 

 Fuzzy Logic-Based Weighting: Replacing or enhancing the dynamic weighting 
strategy in the Ensemble with fuzzy logic can enable context-aware filter 
selection, further boosting robustness. 
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 Deep Learning Hybridization: Exploring the integration of adaptive filters with 
deep neural networks (e.g., LSTM, CNN, or transformer-based denoisers) may 
lead to hybrid systems that leverage both signal processing and data-driven 
learning. 

 Real-Time Implementation: Implementing the proposed Ensemble model in 
embedded systems or low-power digital signal processors (DSPs) can enable 
practical applications in hearing aids, in-car voice assistants, and mobile 
devices. 

 Subjective Evaluation: Although objective metrics provide reliable estimates, 
future work should include large-scale Mean Opinion Score (MOS) studies to 
validate perceptual benefits in real-world scenarios. 

 Extension to Multichannel and Binaural Inputs: Leveraging spatial information 
from stereo or multichannel recordings can significantly improve enhancement 
performance in complex acoustic scenes. 

In summary, this thesis lays a strong foundation for adaptive filter 
benchmarking and offers a promising Ensemble-based speech enhancement solution, 
with multiple pathways open for expanding its applicability and performance. 
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APPENDIX 

 

Appendix 1: Each row is the average result of 30 speech samples (5dB) 
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Appendix 1: Each row is the average result of 30 speech samples 
(10dB) 
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Abstract. In-car noise due to engine vibrations, road friction, and external disturbances 
considerably impairs the performance of speech communication systems. This paper presents an 
ensemble-based adaptive filtering system to enhance the quality of speech in such in-car noisy 
conditions. The suggested method is a combination of the outputs of three adaptive filters-
Normalized Least Mean Squares (NLMS), Variable Step-Size LMS (VSLMS) with Mathews' 
adaptation, and Generalized Maximum Correntropy Criterion (GMCC) by dynamic error-based 
weighting, in which lower error filters are given greater influence in every iteration. Post-processing 
methods, such as noise estimate subtraction, pre-emphasis, and de-emphasis, further enhance the 
output to minimize residual noise. The In-Car noisy speech samples at 5dB & 10dB SNR are 
sourced from the NOIZEUS speech corpus for performance testing. Objective measures of speech 
quality, such as PESQ (Perceptual Evaluation of Speech Quality), LLR (Log-Likelihood Ratio), 
fwsegSNR (frequency-weighted segmental SNR), and COVL (Composite Objective Measure), 
were employed to measure system performance. The results show that the ensemble-based method 
robustly outperforms individual filters and static combination methods, providing an effective 
solution for car noise conditions in real-time speech enhancement. 

Keywords: Adaptive Filter, Ensemble, NOIZEUS, SNR, Pre-Emphasis, De-Emphasis, PESQ, 
LMS, RLS 

Introduction 

Noisy speech improvement is important in order to improve communication quality in various 
applications like mobile communication, car voice assistants, and hearing aids. Automotive 
environments involve much engine, tire, and other noise background which badly deteriorates the 
quality and intelligibility of the speech signals. The challenge to real-time systems is that this should be 
efficiently carried out without introducing substantial latency or distortion. 

Conventional adaptive filters such as Recursive Least Squares (RLS) [1] and Normalized Least Mean 
Squares (NLMS) [2] have been traditionally used for filtering out noise. The filters, however, cannot 
maintain stable operation in dynamic environments of noise, especially in the case of car-type 
environments in which the environment of the noise tends to frequently change. RLS filter’s 
requirement of large amounts of computations also makes it unsuitable for low power-embedded 
applications, which motivates the formulation of energy-effective substitutes. 

Individual adaptive filters tend not to adapt optimally to different noise profiles and, as such, result 
in unreliable speech improvement. While RLS is more accurate, its high computational cost makes it 
infeasible for low power real-time applications, particularly for resource-limited environments. For 
these limitations, an ensemble-based strategy that employs a set of adaptive filters is capable of 
enhancing robustness by dynamically varying filter contributions according to their respective error 
performance. 

In automobile settings, speech enhancement is difficult because of non-stationary noise from sources 
including traffic, wind, and engines. The early methods employed multi-channel adaptive Wiener 
filtering for high-frequency sub-bands [3] and spectral subtraction for low-frequency sub-bands to 
reduce noise and distortion [4]. In speech presence estimation, sub-band-based methods later surpassed 
more traditional methods such as Wiener and MMSE-based estimators [5]. To compensate speech 
enhancement for various conditions, environment-adaptive techniques brought in sub-band processing 
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and statistical modeling. A robust system enhanced speech recognition with time- and frequency-
domain beamformers without retraining in diverse environments [6]. 

Later, dynamic multi-microphone systems with power ratio-based controls were developed to control 
multiple talkers and ambient noise [7]. With pipelined architectures, real-time capability was delivered 
by psychoacoustic models and perceptual filter banks [8]. Real-time adaptive Wiener filters and blind 
source separation (BSS) techniques further augmented noise cancellation in automotive environments 
[9]. 

Later developments utilized adaptive parallel filter methods to dynamically suppress road noise and 
beamforming combined with Kalman filtering for enhanced intelligibility [10]. Time difference of 
arrival (TDOA) and source separation with microphone arrays [11] were examined in recent studies for 
adaptive signal adjustment. Norm-based adaptive filters provided robust solutions for channel 
estimation and in-car echo cancellation [12]. Yet, existing methods often lack in dynamically 
responding to changing noise patterns and have difficulty in balancing computational complexity and 
noise reduction. Whereas methods such as spectral subtraction and Wiener filtering fail in non-
stationary environments, methods such as RLS are effective but computationally expensive. 

This research aims to develop an ensemble-based adaptive filtering system for speech enhancement 
in car noise environments. A performance-based dynamic weighting scheme will adaptively regulate 
the contribution of multiple adaptive filters, ensuring improved noise attenuation with low 
computational complexity, making it ideal for real-time applications in challenging automotive 
environments. 

This manuscript is structured in following sections. Section 2 describes the methodology, including 
pre and post processing, parallel adaptive filtering, and dynamic weight assignment. Section 3 elucidates 
the experimental setup. Results are shown in section 4, followed by Section 5 discussing the conclusions 
and future directions. 

Methodology 

Model Diagram 

Figure 1 shows the proposed ensemble adaptive filter system, that pre-emphasizes a noisy speech signal 
after noise estimate subtraction. Three parallel adaptive filters-NLMS [2], GMCC [13], and VSLMS 
(Mathew's) [14] process the pre-emphasized signal. The enhanced speech signal is produced by 
dynamically combining the filter outputs and de-emphasizing the resultant signal. 

Fig. 1. Block diagram of the proposed ensemble-based adaptive filtering system model for speech enhancement in 
car noise environment 

Pre-Processing 

The noisy speech signal is conditioned during the pre-processing phase by noise estimate subtraction 
and pre-emphasis. The pre-computed noise profile is obtained by averaging the differences between 30 
noisy and their corresponding 30 clean speech samples available in the dataset. In the frequency domain, 
the estimate noise spectrum is subtracted from signals spectrum, and the signal is converted back by 
IFFT. The pre-emphasis is the following step, where high-frequency components are boosted to 
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preserve the speech details. All of these processes assure that input is optimized to provide efficient 
speech enhancement and attenuation of noise is supplied to the filters. 

Parallel Filtering 

Here we are applying three adaptive filters in parallel: NLMS, GMCC, and VSLMS (Mathew’s). In our  
preliminary analysis, it was found that these filters showed exceptional individual performance in Car 
noise conditions. These were sourced from python Padasip library [15]. Each filter iteratively updates 
its weights using a different adaptation rule. NLMS uses normalized step-size control to improve 
stability and convergence speed. GMCC employs a kernel-based method to enhance error minimization 
by accounting for higher-order dependencies. VSLMS (Mathew’s) dynamically adjusts the step-size 
according to the error magnitude, allowing for better trade-offs between convergence speed and steady-
state error. 

Dynamic weight assignment & post-processing 

To enhance speech robustness, an error-based dynamic weight assignment strategy combines outputs 
from three parallel adaptive filters. Each filter’s error—defined as the difference between the desired 
clean signal and its output—guides weight adjustments. Filters with smaller errors are given higher 
weights, while less accurate ones contribute less. A normalized inverse error measure continuously 
updates these weights, ensuring the most effective filter dominates the final signal. Once combined, the 
output undergoes post-processing: de-emphasis reverses the high-frequency boost applied earlier to 
restore spectral balance, and normalization adjusts the amplitude to maintain clarity and prevent 
distortion. 

Experimental Setup 

Dataset 

We use the NOIZEUS Speech Corpus [16], which contains 30 IEEE sentences in American English 
from three male and three female speakers. It includes eight noise types from the AURORA database, 
with a focus on car noise at 5 dB and 10 dB SNR levels. Noise was synthetically added following ITU-
T P.56 to achieve the desired SNR levels. 

Performance parameters 

The ensemble filter's performance was assessed using the following objective speech quality metrics, 
selected due to their high correlation with subjective ratings [17]. 

Perceptual Evaluation of Speech Quality (PESQ): 
The ITU-T P.862 standard defines (PESQ) [18] parameter. Using an auditory model, it compares the 
clean and enhanced signals to determine speech quality. The PESQ metric is computed as follows: 

 PESQ = a0 Dt + a1 Da + a2 (1) 

Dt and Da are the disturbance values in this. For speech communication network system, the 
regression coefficients  a0,  a1 and a2 are optimized. The PESQ scores range from -0.5 to 4.5 where better 
speech is an indication of a high score values. 

Log Likelihood Ratio (LLR): 
LLR measures spectral distortion. It compares the Linear Predictive Coding (LPC) coefficients [17] of 
clean and enhanced speech. It is defined as: 
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                                                     𝑑௅௅ோ൫𝑏௣, 𝑏௖൯ = log ቆ
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்
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் ቇ                                      (2) 

Where 𝑑௅௅ோ൫𝑏௣, 𝑏௖൯ is the LLR distance. The original clean speech frame's LPC coefficient vector is 
denoted by 𝑏௖. The processed speech frame's LPC coefficient vector is denoted by 𝑏௣. The original 
speech signal's autocorrelation matrix is denoted by 𝑄௖ . The range of values was limited to (0, 2). Better 
spectrum preservation and less distortion are indicators of a low LLR value. 

Frequency-Weighted Segmental Signal-to-Noise Ratio (fwsegSNR): 
It measures how well noise is suppressed. Segmental SNR [17] is averaged across frequency bands. It 
is computed as follows: 

              fwsegSNR =
10

𝑁
⋅ ෍
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௝ୀଵ logଵ଴ ൭
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ேିଵ

௠ୀ଴

    (3) 

Here, N is the total number of frames, B is the number of bands, and 𝑊(𝑗, 𝑚) is a frequency-domain 
weighting function that assigns higher importance to speech-dominant regions. It is proportional to the 
clean speech spectrum raised to a power γ, i.e., 𝑊(𝑗, 𝑚) = 𝑌(𝑗, 𝑚)ఊ. The clean and enhanced speech 
spectrums are represented by |𝑌(𝑗, 𝑚)| and ห𝑌෠(𝑗, 𝑚)ห, respectively. The signal bandwidth was divided 
into 25 critical bands corresponding to auditory perception [18]. Better speech intelligibility is 
correlated with higher fwsegSNR values. 

Composite Speech Quality Measure (COVL): 
The composite measure is created as a weighted sum of a number of objective measures [17] for a more 
reliable estimate of speech quality. It is given as: 

 𝐶௒ = 𝛼଴ + ∑ 𝛼௡𝑀௡
ே
௡ୀଵ            (4) 

Here, 𝐶௒ represents the composite score (e.g., for speech distortion or overall quality), 𝛼௡ are 
regression coefficients, and 𝑀௡ are objective metrics. We consider the overall quality (OVL) component 
in our analysis. Using multiple measures improves correlation with subjective ratings, enhancing 
evaluation robustness. 

Results & Discussion 

The Composite Objective Measure (COVL) of each speech sample was examined, as it most closely 
correlates with subjective ratings of speech quality. Figure 2 present the COVL scores of all 30 speech 
samples for both 5 dB and 10 dB SNR. The per-sample result indicates that, for the 5 dB SNR input 
samples, NLMS has slightly better COVL values in just 5 out of 30 samples, whereas under the 10 dB 
SNR condition, this is true for 4 out of 30 samples. Table 1 presents the average value of the 
performance parameters for all 30 noisy input speech samples for each filter tested. The Ensemble can 
be seen to have the highest COVL values. 



44 
 

Fig. 2. COVL values per speech sample for each filter tested at (a) 5dB & (b) 10dB SNR 

Table 1. Average values of performance parameters for each filter tested at 5dB & 10dB SNR speech samples 

S. No. Filter 
Performance Parameters 

for Speech samples at 5dB SNR for Speech samples at 10dB SNR 
PESQ LLR fwsegSNR COVL PESQ LLR fwsegSNR COVL 

1 NLMS 3.75 0.77 1.27 4.15 3.76 0.82 1.36 4.14 
2 VSLMSMathews 2.43 0.91 1.91 2.98 2.65 0.99 1.79 3.11 
3 GMCC 3.14 0.97 1.74 3.52 3.15 1.04 1.97 3.49 
4 Ensemble 3.58 0.28 2.13 4.27 3.60 0.36 1.81 4.24 

Conclusions & Future Work 

The proposed ensemble-based adaptive filtering method was compared with standalone filters. While 
averaged PESQ values suggested that NLMS was marginally better, a detailed per-sample comparison 
of COVL, which correlates very well with listening tests, demonstrated that the ensemble approach 
performed better in 26 out of 30 samples under 10dB and 25 out of 30 samples under 5dB. This indicates 
that, overall, the ensemble method steadily enhances speech quality. Future work could further enhance 
the ensemble method’s robustness and flexibility by integrating psychoacoustic models or fuzzy logic 
to enhance the dynamic weight assignments. 
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