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Performance Evaluation of Adaptive Filters for Speech
Enhancement across Realistic Acoustic Conditions

Arpit Sharma
ABSTRACT

Speech enhancement plays a critical role in improving the intelligibility and quality of
speech signals in real-world acoustic environments, especially for applications such as
mobile communications, hearing aids, and voice-controlled systems. This thesis
presents a comprehensive study on adaptive filtering techniques for speech denoising,
with a particular focus on evaluating and improving their performance in realistic noise
conditions.

In the first part of this work, fifteen adaptive filters from the Python Padasip toolbox
are rigorously evaluated across eight real-life noise scenarios—including babble, car,
exhibition hall, and airport noise—at two challenging signal-to-noise ratio (SNR)
levels (5 dB and 10 dB). The performance of each filter is assessed using established
objective speech quality metrics: PESQ (Perceptual Evaluation of Speech Quality),
fwsegSNR (Frequency-Weighted Segmental SNR), LLR (Log-Likelihood Ratio), and
CovL (Composite Objective Measure). Results reveal that while the Recursive Least
Squares (RLS) filter consistently delivers superior performance, filters such as GMCC,
AP, and VSLMS also demonstrate notable strength in specific noise cases or under
certain evaluation criteria. This analysis provides valuable insights into the behavior
of different adaptive filters and forms a benchmark for future research in the field.

Building upon these findings, the second part of the thesis introduces an ensemble-
based adaptive filtering approach tailored for in-car noise environments. This method
dynamically combines the outputs of three filters—NLMS, GMCC, and VSLMS
(Mathews’ adaptation)—using a performance-weighted scheme where filters with
lower error contribute more to the final output. Additional signal processing
techniques, including noise estimate subtraction, pre-emphasis, and de-emphasis, are
incorporated to further suppress residual noise. Experiments conducted on in-car noisy
speech samples from the NOIZEUS corpus at 5 dB and 10 dB SNR levels demonstrate
that the proposed ensemble method significantly outperforms individual filters and
static combinations across all objective quality measures.

Together, these contributions offer a dual perspective: a detailed comparative
evaluation of adaptive filters in diverse noise conditions and a novel ensemble-based
enhancement system optimized for automotive noise. This work lays the groundwork
for future advancements in adaptive speech enhancement systems suitable for real-
time deployment in noisy environments.
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CHAPTER 1

INTRODUCTION

1.1 Background & Motivation

Speech communication systems are highly susceptible to
performance degradation in the presence of background noise, which is
common in real-world environments such as streets, restaurants, train
stations, and moving vehicles. This distortion compromises the
intelligibility, quality, and overall user experience of voice-based
applications, especially in real-time scenarios like mobile telephony, smart
assistants, automotive voice controls, and hearing aids. As the demand for
robust and efficient speech enhancement systems grows—driven by the
proliferation of smart devices and vehicular infotainment systems—it
becomes critical to develop algorithms that can handle both stationary and
highly dynamic, non-stationary noise conditions.

Adaptive filtering has emerged as a powerful technique for
real-time speech enhancement due to its self-adjusting nature, allowing it
to track changes in the input signal and noise characteristics. Classical
algorithms such as the Least Mean Square (LMS) and Recursive Least
Squares (RLS) filters have long been the foundation of this domain,
balancing between simplicity and convergence speed. However, these
traditional approaches often exhibit limitations in noisy environments with
rapidly changing acoustic profiles. LMS is prone to slow convergence and
poor performance in non-stationary conditions, while RLS, though faster
and more accurate, is computationally intensive—limiting its practicality
in embedded or latency-sensitive applications.

To overcome these drawbacks, a variety of advanced adaptive
filtering algorithms have been proposed, including Normalized LMS
(NLMS), Least Mean Fourth (LMF), Sign-Sign LMS, Affine Projection
(AP), and the information-theoretic Generalized Maximum Correntropy
Criterion (GMCC) filter. More recent innovations like Variable Step-Size
LMS (VSLMS) and Online Centered NLMS (OCNLMS) offer dynamic



adaptability to signal environments but remain relatively underexplored,
especially under complex acoustic conditions. While each of these filters
has its own strengths, there is currently no one-size-fits-all solution that
performs uniformly well across all real-world noise scenarios.

This motivated our first line of investigation, where we
conducted a detailed, statistical performance evaluation of fifteen adaptive
filters across eight real-world noise conditions using the NOIZEUS
database and objective quality measures such as PESQ, LLR, and
fwSegSNR. The study revealed that the optimal choice of filter varies with
noise type and SNR, underscoring the need for more flexible and noise-
aware speech enhancement strategies.

In parallel, our second line of investigation focuses on
environments with particularly challenging and highly dynamic noise
profiles—most notably the automobile. Inside a moving vehicle, speech
signals are often masked by a combination of engine noise, road texture
interaction, tire friction, wind turbulence, and ambient traffic, making
noise suppression particularly difficult. Single-filter solutions often fail to
maintain both intelligibility and naturalness of speech under such
conditions.

To address this, we propose an ensemble-based adaptive
filtering framework, where multiple filters—such as NLMS, VSLMS
(Mathews), and GMCC—operate in parallel and are dynamically weighted
based on real-time performance. This ensemble approach harnesses the
complementary strengths of individual filters, providing improved
robustness, flexibility, and generalizability. By incorporating dynamic
weighting mechanisms and transform-domain techniques (e.g., spectral
subtraction), we achieve enhanced speech quality with low latency and
minimal computational overhead—making the solution viable for real-
time deployment in embedded automotive systems.

Through this combined work, we aim to bridge the gap
between theoretical advancements in adaptive filtering and their real-
world application in complex, noisy environments. Our unified approach
not only provides a comparative foundation for adaptive filter performance
but also introduces a practical, ensemble-driven strategy for robust speech
enhancement—paving the way for next-generation, noise-resilient
communication systems.



1.2 Problem Statement

Despite significant advancements in adaptive filtering
algorithms for speech enhancement, real-world deployment continues to
face critical challenges due to the diverse and dynamic nature of
background noise. Conventional adaptive filters such as LMS and RLS are
either too simplistic to handle non-stationary noise or too computationally
intensive for real-time applications. Although more recent algorithms—
like GMCC, VSLMS, and OCNLMS—have shown promise in specific
scenarios, there remains a lack of comprehensive understanding regarding
their relative performance across different noise environments.

This gap becomes particularly prominent in high-noise,
dynamic settings such as in-vehicle environments, where speech signals
are heavily distorted by compound noise sources like engine hum, road
friction, and wind turbulence. In such cases, the limitations of single-filter
solutions become evident, as no single algorithm can consistently maintain
optimal performance across all conditions. The problem, therefore, is
twofold:

Lack of a unified performance evaluation framework for benchmarking
adaptive filters under diverse real-world acoustic scenarios.

Need for a robust, noise-aware speech enhancement strategy that
dynamically adapts to varying noise profiles—especially in non-
stationary, high-noise environments like automobiles.

This research addresses both issues by first establishing a
statistically grounded benchmarking framework for evaluating multiple
adaptive filters on real-world noise datasets. It then proposes a novel
ensemble-based adaptive filtering system that combines the strengths of
diverse algorithms through dynamic weighting, offering improved
performance, flexibility, and real-time viability for automotive and general
speech enhancement applications.

1.3 Objectives of the Study

The primary objectives of this thesis are as follows:

To perform a systematic benchmarking of various adaptive filters for
speech enhancement, including both conventional filters (LMS, NLMS,
RLS) and modern variants (GMCC, VSLMS, Lincosh, OCNLMS), using



standardized objective measures across multiple real-world noise
environments.

e To analyze the performance trade-offs between noise suppression,
speech intelligibility, convergence behavior, and computational efficiency
under varying acoustic conditions, especially at low SNR levels.

e To design a novel ensemble-based adaptive filtering framework that
dynamically combines the outputs of multiple adaptive filters using a
performance-driven weighting mechanism to achieve robust and efficient
speech enhancement, particularly in challenging automotive noise
environments.

¢ To compare the proposed ensemble system with individual filters and
classical techniques, assessing its effectiveness in terms of objective
metrics, real-time feasibility, and adaptability to non-stationary noise
profiles.

1.4 Scope of the Study

This study encompasses the design, evaluation, and comparative analysis
of adaptive filtering techniques for speech enhancement in noisy
environments, focusing on the following scopes:

e The benchmarking study covers 15 adaptive filtering algorithms
implemented using the Padasip Python library, evaluated on the NOIZEUS
speech corpus across eight real-world noise types (e.g., car, babble, airport,
restaurant) and two SNR levels (5 dB and 10 dB), using objective metrics
such as PESQ, LLR, fwSegSNR, and a composite measure.

e The ensemble-based system is developed using three parallel adaptive
filters—NLMS, GMCC, and VSLMS (Mathews)—with a dynamic
weighting mechanism based on the real-time error performance of each
filter. This system is specifically tested in automotive (car) noise
environments, where non-stationarity and intensity of noise pose serious
challenges.

e The entire study is implemented in Python (using Padasip, NumPy, SciPy,
and Librosa libraries) with post-processing conducted in MATLAB for
PESQ and SNR evaluation, ensuring cross-platform validation.

e The research does not cover psychoacoustic modeling, deep learning
methods, or multi-microphone systems, although it lays the groundwork
for integrating such methods in future studies.



1.5 Thesis Organisation

The thesis i1s structured as follows:

Chapter 1: Introduction
Provides background, motivation, problem statement, objectives, scope,
and an overview of the thesis structure.

Chapter 2: Literature Review

Discusses historical and recent work on adaptive filtering for speech
enhancement, with focus on benchmark studies, algorithm development,
and ensemble approaches.

Chapter 3: Methodology for Benchmarking Adaptive Filters
Describes the dataset, adaptive filters considered, performance evaluation
metrics, and experimental design.

Chapter 4: Benchmarking Results and Analysis
Presents quantitative and statistical comparisons of adaptive filters across
noise types and SNR levels, highlighting best-performing algorithms.

Chapter 5: Ensemble-Based Adaptive Filtering System Design
Introduces the proposed ensemble system, its architecture, dynamic
weighting scheme, and noise-specific post-processing methods.

Chapter 6: Ensemble Filter Results and Evaluation
Shows the performance of the ensemble model in car noise scenarios and
compares it with baseline adaptive filters and traditional methods.

Chapter 7: Conclusions and Future Work
Summarizes the key findings, limitations of the current work, and potential
future research directions.



CHAPTER 2

LITERATURE REVIEW

Speech enhancement in noisy environments has long been a focus of signal
processing research, particularly for applications like telephony, hearing aids, and in-
vehicle communication systems. The evolution of adaptive filtering algorithms has
played a pivotal role in enabling real-time suppression of noise while preserving
speech intelligibility and quality.

1. Classical Adaptive Filters and Limitations

The Least Mean Square (LMS) algorithm, introduced by
Widrow and Hoff in 1960 [1], is one of the earliest adaptive filtering
techniques. It minimizes the mean squared error (MSE) between the
desired and estimated signals via a stochastic gradient descent mechanism.
LMS is computationally efficient and robust under stationary conditions
but suffers from slow convergence and sensitivity to input signal
correlation.

To improve convergence behavior, the Normalized LMS
(NLMS) algorithm was developed [2]. NLMS adapts the step size
dynamically based on input signal power, thereby improving numerical
stability and allowing for faster convergence in environments with variable
signal energy. However, both LMS and NLMS remain limited in highly
nonstationary or correlated signal environments, such as moving vehicles
where noise characteristics fluctuate rapidly.

2. Higher-Order and Sign-Based Algorithms

The Least Mean Fourth (LMF) algorithm [3] emerged as an
alternative that minimizes the fourth power of the error signal, which
makes it more sensitive to outliers and noise bursts. The Normalized LMF
(NLMF) variant [4] combines the higher-order statistics of LMF with input
normalization to enhance convergence when signal correlation is high.

For low-power or embedded implementations, sign-based
algorithms like Sign-Sign LMS (SSLMS) and Normalized SSLMS



(NSSLMS) [5] have been proposed. These algorithms significantly reduce
computational burden by quantizing both the error and input signals to
their signs, requiring only bitwise and integer operations. While they offer
reduced precision, they are well-suited for real-time digital signal
processors (DSPs) in automotive control units.

3. Recursive and Projection-Based Algorithms

The Recursive Least Squares (RLS) algorithm [6], based on
exponentially weighted least-squares error minimization, provides rapid
convergence and superior tracking of nonstationary signals. It achieves this
by recursively updating the inverse of the autocorrelation matrix using the
matrix inversion lemma. However, the O(N?) computational complexity
and memory requirements make RLS unsuitable for high-dimensional or
resource-constrained systems.

To bridge the performance gap between NLMS and RLS,
Affine Projection (AP) algorithms [7] were developed. AP extends NLMS
by projecting the input vector onto a subspace formed by multiple previous
input vectors. The projection order P controls the trade-off between
computational cost and convergence performance, and AP has shown
strong robustness to signal correlation—a common condition in enclosed
vehicle cabins.

4. Gradient Control and Kernel Methods

The Generalized Normalized Gradient Descent (GNGD)
algorithm [8] introduces an adaptive learning rate based on local gradient
curvature. By estimating an optimal normalization factor dynamically,
GNGD improves convergence stability under rapidly changing noise
conditions, which is typical in urban driving scenarios.

To increase robustness against impulsive and heavy-tailed
noise, non-quadratic cost functions have been employed. The Least Incosh
(Llncosh) algorithm [9] uses a hybrid logarithmic-hyperbolic cost function
that combines properties of both MSE and MAE, resulting in improved
robustness to non-Gaussian noise. Similarly, the Generalized Maximum
Correntropy Criterion (GMCC) [10] utilizes kernel-based similarity
metrics (e.g., Gaussian kernels) to suppress outliers, offering excellent
performance in scenarios with speech occlusion or transient noise.

5. Variable Step-Size and Adaptive Learning

Fixed step-size algorithms often represent a compromise
between convergence speed and steady-state error. Variable Step-Size



LMS (VSLMS) methods, such as Ang’s rule, Mathews’s rule, and
Benveniste’s method [11][12], dynamically adjust the step size based on
signal energy, past error trends, or gradient history. These approaches
enable rapid convergence during high noise activity and maintain stability
when the error becomes small. They are particularly suitable for vehicular
systems where environmental noise can change drastically within seconds
(e.g., switching from idle engine noise to road noise).

The Online Centered Normalized LMS (OCNLMS) algorithm
[13] introduces input data centering in a streaming context to mitigate
signal drift and DC bias—both of which degrade filter performance in
long-term driving conditions.

6. Early Approaches to Automotive Speech Enhancement

Automobile noise has a complex, nonstationary structure
consisting of broadBand engine hum, narrowband tire-road noise, and
intermittent environmental interference (e.g., sirens, honking). Spectral
subtraction and Wiener filtering [14][15] were among the first signal
enhancement methods applied to car environments. Though simple to
implement, they require accurate noise estimations and struggle with
musical noise artifacts in highly dynamic environments.

Sub-band-based speech presence probability (SPP) estimators
[16] improved speech detection by operating in frequency bands, adapting
to nonstationary noise spectra. Later developments introduced
environment-specific adaptation, including beamforming in microphone
arrays [17] and power-ratio-based gain control [18], to isolate desired
speech based on directionality and spatial filtering.

7. Advanced Real-Time Architectures

In modern car infotainment systems, psychoacoustic
filterbanks [19] have been employed to mimic human auditory perception,
prioritizing perceptually significant frequency components for
enhancement. Blind Source Separation (BSS) techniques [20], including
Independent Component Analysis (ICA), separate speech and noise
sources based on statistical independence, often requiring multi-
microphone arrays.

Further improvements came with Time Difference of Arrival
(TDOA) and Kalman filtering techniques [21][22], which estimate speaker
positions and track speech trajectories across multiple microphones. These
methods are particularly useful in conversational Al for multi-speaker,
hands-free environments.



8. Ensemble Filtering and Hybrid Approaches

Recently, ensemble-based adaptive filtering strategies have
gained attention, especially in nonstationary and computationally
constrained environments like cars. These systems use multiple adaptive
filters (e.g., NLMS, GMCC, VSLMS) in parallel and assign dynamic
weights based on instantaneous error performance, convergence speed, or
signal-to-noise ratio (SNR) improvements [23]. Weighted combinations of
filter outputs have shown resilience to diverse noise types while preserving
low complexity through modular design.

This hybrid architecture provides a flexible trade-off between
robustness and computation, and it enables real-time deployment on
embedded platforms such as Automotive Grade Linux (AGL) or QNX-
based head units. The adaptability of ensemble filters makes them ideal for
evolving car environments including electric vehicles, where noise
signatures are drastically different from combustion-engine cars.
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CHAPTER 3

METHODOLOGY FOR BENCHMARKING ADAPTIVE
FILTERS

This chapter presents the complete experimental framework used to
benchmark fifteen adaptive filtering algorithms for single-channel speech
enhancement in realistic noise conditions. We elaborate on dataset selection and
characteristics, (3.2) filter implementations with theoretical underpinnings, (3.3)
objective performance metrics and their computation, and (3.4) the process flowchart
diagram depicting overall methodology.

3.1 Dataset Selection and Characteristics

A noisy speech corpus (NOIZEUS) was developed to facilitate comparison
of speech enhancement algorithms among research groups (Hu and Loizou, 2007).
Key characteristics:

e Speech material: 30 phonetically balanced sentences selected from the IEEE
sentence database [IEEE Subcommittee, 1969]. Recorded in a sound proof
booth by three male and three female speakers using Tucker Davis
Technologies (TDT) hardware. Originally sampled at 25 kHz and down
sampled to 8 kHz.

e Noise types: Eight real-world noise categories derived from the AURORA
database [Hirsch and Pearce, 2000]. Each noise type exhibits distinct temporal
and spectral characteristics representative of in-field conditions:

1 Suburban train noise: Low-frequency rumble and wheel-rail
interaction, with periodic components corresponding to train motor
harmonics.

2 Babble (crowd): Overlapping voices in public spaces, exhibiting
highly nonstationary and non-Gaussian characteristics.

3 Car cabin noise: Combined engine vibration, tire—road friction, and
HVAC system hum, with both tonal and broadBand components.

4 Exhibition hall noise: Ambient crowd murmur mixed with intermittent
machinery and ventilation noise.
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5 Restaurant noise: Background chatter, tableware clatter, and
intermittent foot traffic sounds.

6 Street traffic noise: Continuous vehicle engines, horns, and wind
turbulence in open environments.

7 Airport terminal noise: Public announcements over a PA system,
luggage trolley movement, and crowd murmur.

8 Train-station noise: Platform announcements, rolling suitcases, and
passenger movement.

e SNR levels: Noisy speech files are provided at four SNRs (0 dB, 5 dB, 10 dB,
15 dB). For this study, we focus on 5 dB and 10 dB to simulate realistic
moderate-to-severe noise conditions.

e File format and naming: All recordings are stored as 16-bit PCM WAV files
(mono) at 8 kHz. File naming follows the convention <noise> <SNR>dB.wav
(e.g., car_5dB.wav).

e Accessibility and citation: The corpus is freely available for research and has
been employed to validate objective measures (Hu and Loizou, 2008; Ma et
al., 2009).

The IRS filter from ITU-T P.862 was applied to both clean and noise
signals to restrict their spectra to the 300—3400 Hz range used by telephone and mobile
handsets. This ensures that PESQ and other perceptual metrics operate under the same
band-limited conditions as real-world telephony and removes out-of-band components
irrelevant to embedded communication hardware.

Only 5 dB and 10 dB SNR samples were used because they represent the
most challenging yet common noise levels encountered in applications like in-car
communication and mobile telephony. At 5 dB, speech intelligibility is severely
degraded and at 10 dB, moderate noise still allows meaningful enhancement. Lower
SNRs offer little perceptual gain, and higher SNRs leave too little noise to differentiate
filter performance.

3.2 Adaptive Filters Considered

Fifteen adaptive filtering algorithms—spanning classic, higher-order,
sign-based, projection-based, gradient-adaptive, robust-cost, kernel-based, and
variable-step strategies—were implemented using the Padasip Python toolbox to cover
the spectrum of trade-offs between computational complexity, convergence speed, and
robustness to nonstationary noise.
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3.2.1 LMS-Family Filters
1. LMS:

wn+1) =wh)+uen)x(n) (1)
e(m) =dm) —w'(m)x(n) (2)

Here, x(n) is the input vector, w(n) is the filter coefficient
vector d(n) the desired signal and e(n) is the a priori error and p is the
step size. LMS offers O(N) complexity per tap update but requires careful
choice of pu<l/Amax (largest input-autocorrelation eigenvalue) to ensure
stability.

2. NLMS:

wn+1) =wn) + e(n) x(n) 3)

N
[x(m)|? + €

€ is a small regularization constant. By normalizing the step
size to the instantaneous input power, NLMS improves convergence
stability under varying signal energies.

3. SSLMS & NSSLMS:

wn+1) =wn)+ usgn(e(n)) sgn(x(n)) 4)

wn+1)=wn)+ m sgn(e(n)) sgn(x(n)) (5)

Sign-quantized updates reduce arithmetic to bit-level
operations; NSSLMS adds NLMS-style normalization to the sign-sign
rule.

3.2.2 Higher-Order and Robust-Cost Filters
4. LMF & NLMF:
wn+1) =w®) + nle(m)]® x(n) (6)

wn+1) =w(n) + [e(M)]® x(n) (7)

__r
[x(m)|? + €

Minimizing fourth-order error, LMF is more resilient to
impulsive noise. NLMF extends LMF with input-energy normalization.
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5. Lincosh:
wn+1)=whn)+pn tanh(e(n)) x(n) ®)

The log-hyperbolic cost blends MSE and MAE behaviors,
offering robustness across Gaussian and heavy-tailed noise distributions.

3.2.3 Projection- and Recursive-Based Filters
6. AP (Affine Projection):

wn+1) =wh)+pXM)XT(n)X(n) + el)~te(n) 9)
e(n) = d(n) — XT(m)w(n) (10)

here X(n) =[x(n),x(n—1),.., x(n—P+1)]is M XP
matrix of the last P input vectors, d(n) = [d(n),d(n —1),...,d(n — P +
1)]"is the vector of last P desired outputs and e(n) is error vector for the
P samples.

Instead of updating the filter using just the most recent input
sample (like LMS), the AP algorithm uses the last P input vectors and
desired signals. This gives a richer context for adapting the weights,
making the algorithm more robust to correlated noise and speech.

7. RLS (Recursive Least Squares):

wn+1) =wn)+ Pn)x(n)en) (11)

P(n—1)x(m)x(n)"P(n—1) .
A+xm)TP(n— 1)x(n) ) (12)

P(n) = %(P(n -1)—

A is the forgetting factor to give more weight to recent data,
which is important in nonstationary environments, P(n) is inverse
autocorrelation matrix of the input signal for RLS. With O(N?) complexity,
RLS offers the fastest convergence and optimal least-squares tracking at
the expense of memory and computation.

3.2.4 Gradient-Adaptive and Kernel-Based Filters
8. GNGD (Generalized Normalized Gradient Descent):

e(n) x(n)

w(n+1)=w(n)+p~m

(13)
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' xT(n—1Dx(n)
(e(n) + |x(n — 1)|*)?

eEm+1D)=e(n)—p-p-en)-en—1) (14)

GNGD dynamically learns the regularization term e(n) that
appears in the denominator of the NLMS update. e(n) is the regularization
term at time n. P is the learning rate for the regularization parameter €(n).
This allows it to handle signal variations better than NLMS, which uses a
fixed €, which makes GNGD maintain stable convergence under rapidly
varying noise power.

9. GMCC (Generalized Maximum Correntropy Criterion):

_ ( [e(n)]2>
wn+1)=wn)+pe(n) exp| — o2 x(n) (15)

The exponential term in GMCC uses o to define the kernel size
used to determine correntropy which is a nonlinear similarity measure to
emphasize on smaller errors. The correntropy-based term downweights
large errors, making GMCC highly robust to outliers and non-Gaussian
interference.

3.2.5 Variable Step-Size and Centered Filters

10. VSLMS:
Mang(M)  [e(n) —e(n — 1)]? (16)
uMathews(n) Xy ll(n - 1) + (1 - Y) e(n)z (17)
uBenveniste(n) X H(n - 1) + p e(n) Ve(n) (18)

Three variants dynamically adjust u based on:
o Ang’s rule (error-difference squared)
e Mathews’s rule (exponentially weighted past errors) where y is
initial step size adaptation parameter at the beginning.
o Benveniste’s rule (gradient-based update) where p is learning rate for
step size u, which scales the influence of the instantaneous gradient of
the error used for deeper adaptation to the signal’s local structure.

11. OCNLMS (Online Centered NLMS):

1l
Ix(n) —x(M)|* + €

wn+1) =w(n) + e(m) [x(n) —x(m)] (19)
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This filter uses a centered version of the input vector. x(n) is
the running mean in OCNLMS. Incorporates a running estimate of input
mean into the NLMS update to remove bias and improve tracking in
drifting noise conditions.

3.3 Performance Evaluation Metrics

In this research, four objective metrics were employed to
evaluate the effectiveness of adaptive filters in speech enhancement tasks.
These metrics provide quantitative measures of speech quality,
intelligibility, and distortion, which are crucial for assessing the
performance of speech enhancement algorithms in practical applications.

3.3.1 Perceptual Evaluation of Speech Quality (PESQ)

PESQ is a widely used standardized metric introduced by ITU-
T in recommendation P.862 for assessing speech quality by modeling
human auditory perception. It predicts the Mean Opinion Score (MOS)
that listeners would assign to a speech sample, allowing for an objective
comparison of enhanced and clean speech. Using an auditory model, it
compares the clean and enhanced signals to determine speech quality. The
PESQ metric is computed as follows:

PESQ = ay-Dy + a,-D, + a, (20)
Where D; and D, are the disturbance values. For network
speech, the regression coefficients ag, a; and a2 are optimized. The PESQ
scores range from -0.5 to 4.5 where better speech is an indication of a high
score values.

3.3.2 Log Likelihood Ratio (LLR)

LLR measures the spectral distortion between the enhanced
speech and the clean reference by comparing their Linear Prediction
Coding (LPC) coefficients, which model the vocal tract envelope. It
quantifies how well the LPC model of the enhanced signal matches that of
the clean speech, thus indicating preservation of spectral features critical
for intelligibility. Since LPC captures vocal tract resonances (formants),
LLR is an effective metric for evaluating spectral fidelity post
enhancement. Mathematically, the LLR for a frame is defined as:

T

ac Raclean

LLR = log (%) (21)
enh enh

Where ajeqn and a,,p, are the LPC coefficient vectors of clean
and enhanced speech respectively. R is the autocorrelation matrix of the
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speech frame. An LLR value close to zero indicates minimal spectral distortion.
Higher LLR values indicate greater deviation from the clean spectral envelope,
reflecting degradation.

3.3.3 Frequency-Weighted Segmental Signal-to-Noise Ratio (fwSegSNR)

fwSegSNR evaluates the enhancement performance by measuring the
signal-to-noise ratio across short speech segments, with additional
frequency weighting to emphasize perceptually important bands. Speech
intelligibility is not uniform across frequencies; the human ear is more
sensitive to certain frequency regions. fwSegSNR accounts for this by
weighting the SNR calculation accordingly. The fwSegSNR over M
frames is computed as:

10

fwSegSNR = —-
wSeg N

i 2
L TR, WG, m) log ( YGm) )
NZ:I - : (1YG,m)| —|Y(j.m)|)2 22)
m jB=1W(j!m)

=0

N is the total number of frames, B is the number of bands, and
W (j, m) is the weight for the " frequency band in the m" frame. The clean
and enhanced speech spectrums are represented by |Y(j,m)|
and |17(1', m) |, respectively, A weighting function assigns higher
importance to speech-dominant regions. The following is the expression
for the weighting function:

W(j,m) =Y(j,m) (23)
where y control the sensitivity of spectral variations. The
signal's bandwidth was divided into either 13 or 25 bands, which
correspond to the auditory critical bands [19]. We have used 13 bands here.
Better speech intelligibility is correlated with higher fwSNRseg values.

3.3.4 Composite speech Quality Measure (Corz)

The composite measure is created as a weighted sum of a
number of objective measures for a more reliable estimate of speech
quality. It is given as:

N
n=1

where Cy is the composite score for a given rating scale, e.g.,
speech distortion, background noise distortion, or overall quality. The
symbols a,, are regression coefficients established by statistical analysis,
and M,, are the contributing objective measures. Among the components
of the composite measure we look for overall quality (OVL). The use of



17

several objective measures increases the correlation with subjective
ratings, thus increasing the robustness of the measurement.

3.4 Process Flowchart

Noisy Speech signals
(NOIZEUS)

!

Adaptive Filtering
(Python Script)

!

Filtered Outputs
(-wav files)

!

Performance parameter computation

(MATLAB code)

L

Results & Analysis

Fig. 1. Process flowchart for adaptive filtering and performance evaluation.

Figure 1 illustrates the adaptive filtering procedure for speech
enhancement. The 5dB and 10dB SNR noisy speech samples for eight types
of noisy speech samples are taken from the NOIZEUS database. These are
fed as input in the python script containing aforementioned fifteen adaptive
filters from the Padasip library. After being filtered, the results are saved
as.wav files and processed in MATLAB for performance analysis using
aforementioned objective speech quality metrics. Finding the optimal filter
for each noise environment is the final step, which involves analysing the
results.
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CHAPTER 4

BENCHMARKING RESULTS AND ANALYSIS

This chapter presents a comprehensive evaluation of fifteen adaptive filters
applied to single-channel speech enhancement in realistic acoustic environments. Each
filter was tested across multiple noise conditions and signal-to-noise ratios (SNRs),
and evaluated using objective metrics such as PESQ, LLR, Segmental SNR, and
Composite Score. Results are analyzed to identify the strengths and weaknesses of
each algorithm under various noise types.

4.1 Experimental Setup Recap

A brief restatement of key points:

e Dataset: NOIZEUS with 8 real-world noise types.

SNR Levels: 5dB and 10 dB.

Sampling Rate: 8 kHz after IRS filtering.

Evaluation Metrics: PESQ, LLR, fwSegSNR, Composite Score.

Test Conditions: 30 utterances x 2 SNRs x 8 noise types per filter.
4.2 Performance Across Noise Types

For each noise type (e.g., car, babble, exhibition), present:

e Quantitative Tables: PESQ, LLR, fwSegSNR, Composite for each filter.
e Bar Charts or Boxplots: Visualizing filter performance variation.

e Commentary: Discuss which filters perform best and why.

4.3 Metric-Wise Filter Comparison

Results were analyzed by using the following metrics:

e PESQ Analysis: Which filters yield the highest perceptual quality.



o LLR Analysis: Performance in preserving spectral envelope.

o fwSegSNR: Signal-level distortion reduction effectiveness.
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e Composite Score: Overall robustness across multiple dimensions.

4.4 Benchmarking Results

TABLE 1: Best Performing Filter for Each Noise Type Based on Objective
Parameters (For Noisy Speech Samples At 5dB SNR)

Best Performing Filter based on

2 Noise Type

& | (S4B samples) PESQ fwsegSNRovL LLR CovL

1 Airport RLS | 4.3028 AP 4.892 | VSLMSwmah | 0.3441 | RLS | 4.6744
2 Babble RLS | 4.2932 AP 4.6989 | VSLMSgen | 0.3476 | RLS | 4.6801
3 Car RLS | 4.3847 RLS 4949 | VSLMSwman | 0.3184 | RLS | 4.7995
4 Exhibition RLS | 4.2861 | RLS, SSLMS 5 GMCC 0.3268 | RLS | 4.6858
5 Restaurant RLS | 4.3158 AP 4.909 | VSLMSwmatn 0.34 RLS | 4.7231
6 Station RLS | 4.367 AP 4.9193 | VSLMSgBen | 0.3441 | RLS | 4.7523
7 Street RLS | 4.333 AP 49581 GMCC 0.3232 | RLS | 4.7326
8 Train RLS | 4.2239 | RLS, SSLMS 5 GMCC 0.3135 | RLS | 4.5977

TABLE 2: Ranking of Adaptive Filters for Each Noise Type Based on Composite
Parameter Covr (For Noisy Speech Samples At SdB SNR)

Noise Types (5dB samples)

-~
5

Airport Babble Car Exhibition | Restaurant Station Street Train
1 RLS RLS RLS RLS RLS RLS RLS RLS
2 | NLMS NLMS NLMS GMCC NLMS NLMS NLMS GMCC
3 | VSLMSan | VSLMSpen VSLI:/ISM“‘ VSU:’ISM“ VSLMS ang VSUIVISM“ VSLMSken | NLMF
4 | VSLMSper | VSLMSax | VSLMSame | NLMF__| VSLMSpe | VSLMSpe | NLMF LMF
5 vsulest VSLI:/ISM”‘ VSLMSsen | VSLMSane VSL?’ISM“‘ VSLMSang | VSLMSane | OCNLMS
6 | Llncosh | GMCC GMCC | VSLMSpe | Lincosh | GMCC GMCC GNGD
7 | GMCC | Lincosh | Lincosh | NLMS GMCC LMF VSLI:’[SM“‘ LMS
8 | _GNGD NLMF NLMF GNGD GNGD | Lincosh LMF__| VSLMSns |
9 | NLMF LMS LMS LMF | OCNLMS | NLMF | Lincosh | Llncosh
10 AP LMF | OCNLMS | Lincosh | NLMF AP OCNLMS VSU:’ISM“‘
11| LMS | OCNLMS | _LMF AP LMF LMS GNGD | VSLMSpe
12 | OCNLMS AP GNGD | OCNLMS | LMS GNGD LMS AP
13| LMF GNGD AP LMS AP OCNLMS AP NLMS
14 | SSLMS | SSLMS | SSLMS | SSLMS | SSLMS | SSLMS | SSLMS | SSLMS
15 | NSSLMS | NSSLMS | NSSLMS | NSSLMS | NSSLMS | NSSLMS | NSSLMS | NSSLMS
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TABLE 3: Best Performing Filter for Each Noise Type Based on Objective
Parameters (For Noisy Speech Samples At 10dB SNR)

° Best Performing Filter based on

z Noise Type

& | (10dB samples) PESQ fwsegSNRovL LLR Covr

1 Airport RLS | 4.2192 AP 4.9992 GMCC 0.3918 | RLS | 4.5827
2 Babble RLS | 4.2358 RLS 4.4948 GMCC 0.3628 | RLS | 4.6086
3 Car RLS | 4.3236 AP 4.292 VSLMSBen 0.3407 | RLS | 4.7193
4 Exhibition RLS | 4.2525 RLS, SSLMS 5 GMCC 0.3389 | RLS | 4.6396
5 Restaurant RLS | 4.2367 AP 4.8306 VSLMSMathews 0.3878 | RLS 4.63
6 Station RLS | 4.2739 AP 4.922 VSLMSBen 0.3773 | RLS | 4.6436
7 Street RLS 4.274 AP 4.8486 GMCC 0.3382 | RLS 4.66
8 Train RLS | 4.2346 | RLS, SSLMS 5 GMCC 0.3493 | RLS | 4.6005

TABLE 4: Ranking of Adaptive Filters for Each Noise Type Based on Composite
Parameter COVL (For Noisy Speech Samples At 10dB SNR)

» Noise Types (10dB samples)

=

é Airport Babble Car Exhibiti Re: ant Stati Street Train

1 RLS RLS RLS RLS RLS LMS RLS RLS

2 NLMS NLMS NLMS NLMS NLMS NLMS NLMS NLMF

3 | VSLMSgBen GMCC GMCC GMCC GMCC LMF NLMF GMCC

4 | VSLMSang NLMF VSLMSBen NLMF NLMF NLMF GMCC LMF

5 LMF VSU:’ISM"‘ NLMF VSLI;ASM"“ VSLI::[SM'““ SSLMS | VSLMSang | GNGD

6 VSU:ISMat VSLMSang LMF VSLMSang LMF NSSLMS LMF OCNLMS

7 | emce LMF VSLI;’[SM'““ VSLMShen | VSLMSang | RLS VSU:/ISM"‘ VSLMSang

8 AP AP VSLMSAng LMF AP GNGD VSLMSBen | VSLMSBen

9 OCNLMS | VSLMSBen Lincosh OCNLMS | VSLMSBen AP AP VSLMSnar

h

10 NLMF GNGD GNGD GNGD GNGD GMCC GNGD Lincosh

11 Llncosh OCNLMS AP AP Llncosh OCNLMS Llncosh LMS

12 LMS Llncosh OCNLMS Llncosh OCNLMS Llncosh OCNLMS AP

13 GNGD LMS LMS LMS LMS VSLMSang LMS NLMS

14 SSLMS SSLMS SSLMS SSLMS SSLMS VSLMSBen SSLMS SSLMS

15 NSSLMS NSSLMS NSSLMS NSSLMS NSSLMS VSLMSna NSSLMS NSSLMS
h

The noisy speech samples were processed through adaptive

filters. The data consisted of eight types of noise, at two SNR levels (5 dB

and 10 dB) with 30 speech samples for each case. This provided:

8(noise types) X 2(SNR levels) x 30(speech samples)

= 480 input samples

resulting in 480 input samples in total. These input samples were then
processed using 15 adaptive filters, resulting in:

480 input samples X 15 adaptive filters = 7,200 filtered outputs

Each filtered output is a unique combination of speech sample,

noise type, SNR level, and adaptive filter. For measuring performance, the
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objective measure scores for the 30 speech samples for each noise-filter
combination were averaged. Appendix 1 & 2 respectively contains the
averaged results for 5 dB & 10 dB samples respectively. The tables in this
section are the top findings among the results mentioned in Appendix 1.
These were separately computed for the 5 dB and 10 dB SNR levels, and
the filter with the highest performance was determined for each of the
noise types.

For PESQ and LLR, the raw computed absolute value was
taken, whereas fwSNRseg was computed using 25 critical bands based on
the Bark psychoacoustic scale [19], with score mapped to a 0-5 MOS like
scale, similar to the composite measure, which was also mapped on a 0-5
scale. The MATLAB codes used to compute these measures were adapted
and modified from [18] for compatibility with the current MATLAB
version. Table 1 and Table 3 highlights the top-performing filters for each
noise type based on these objective measures for 5 dB and 10 dB
respectively. Similarly, Table 2 and 4 represents the filter ranking across
each noise type, based on the composite measure Coyz as it showed the
highest correlation with subjective listening scores for each SNR levels.
Both of these SNR levels represent noisier to less noisy acoustic situations.
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CHAPTER 5

ENSEMBLE-BASED ADAPTIVE FILTERING SYSTEM DESIGN

5.1 Motivation & Background

Noisy speech improvement is important in order to improve
communication quality in various applications like mobile
communication, car voice assistants, and hearing aids. Automotive
environments involve much engine, tire, and other noise background
which badly deteriorates the quality and intelligibility of the speech
signals. The challenge to real-time systems is that this should be efficiently
carried out without introducing substantial latency or distortion.

Conventional adaptive filters such as Recursive Least Squares
(RLS) (Venkateswarlu et al., 2021) and Normalized Least Mean Squares
(NLMS) (Diniz, 2020) have been traditionally used for filtering out noise.
The filters themselves, however, cannot be run in a stable manner in
dynamic noise environments, particularly for car-type environments where
the noise environment of interest tends to keep changing. RLS filter's need
for heavy computations also renders it inappropriate for low power-
embedded systems, which provokes the design of energy-efficient
alternatives.

Individual adaptive filters do not adapt best to varying noise profiles and,
as such, provide poor speech enhancement quality. Although RLS is more
precise, its computational complexity renders it impossible for low power
real-time processing, especially when applied in resource-constrained
environments. An ensemble-based approach that utilizes a bank of
adaptive filters can provide enhanced robustness by controlling
dynamically filter contributions based on their individual error
performance.

In car environments, speech enhancement proves challenging owing to
non-stationary noise from sources such as traffic, wind, and engines.
Previous approaches utilized multi-channel adaptive Wiener filtering for
high-frequency sub-bands (Chen et al., 2012) and spectral subtraction for
low-frequency sub-bands to combat noise and distortion (Visser et al.,
2001). In speech presence estimation, sub-band-based methods later



23

surpassed more traditional methods such as Wiener and MMSE-based
estimators (Fingscheidt et al., 2008). To compensate speech enhancement
for various conditions, environment-adaptive techniques brought in sub-
band processing and statistical modeling. A robust system enhanced
speech recognition with time- and frequency-domain beamformers
without retraining in diverse environments (Ramesh Babu & Sridhar,
2020).

Later, dynamic multi-microphone systems with power ratio-
based controls were developed to control multiple talkers and ambient
noise (Matheja et al., 2013). With pipelined architectures, real-time
capability was delivered by psychoacoustic models and perceptual filter
banks (Yang et al., 2008). Real-time adaptive Wiener filters and blind
source separation (BSS) techniques further augmented noise cancellation
in automotive environments (Djendi, 2016).

Recent developments utilized adaptive parallel filter methods
to dynamically suppress road noise and beamforming combined with
Kalman filtering for enhanced intelligibility (Yin et al., 2023). Time
difference of arrival (TDOA) and source separation with microphone
arrays (Pathrose & Govindaraj, 2024) were examined in recent studies for
adaptive signal adjustment. Norm-based adaptive filters provided robust
solutions for channel estimation and in-car echo cancellation (Huang et al.,
2022). Yet, existing methods often lack in dynamically responding to
changing noise patterns and have difficulty in balancing computational
complexity and noise reduction. Whereas methods such as spectral
subtraction and Wiener filtering fail in non-stationary environments,
methods such as RLS are effective but computationally expensive.

This part of the research aims to develop an ensemble-based
adaptive filtering system for speech enhancement in car noise
environments. A performance-based dynamic weighting scheme will
adaptively regulate the contribution of multiple adaptive filters, ensuring
improved noise attenuation with low computational complexity, making it
ideal for real-time applications in challenging automotive environments.

5.2 Methodology

5.2.1 Model Diagram

Figure 1 shows the proposed ensemble adaptive filter system,
that pre-emphasizes a noisy speech signal after noise estimate subtraction.
Three parallel adaptive filters-NLMS [2], GMCC [13], and VSLMS
(Mathew's) [14] process the pre-emphasized signal. The enhanced speech
signal is produced by dynamically combining the filter outputs and de-
emphasizing the resultant signal.
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Noisy Enhanced
Speech Speech
l NLMS
Wy T
Noise w2
De
Estimate > EmPLeasis GMCC ENBREes
Subtraction P P
VSLMS W3
Mathew’s

Fig. 2. Block diagram of the proposed ensemble-based adaptive filtering system model
for speech enhancement in car noise environment

5.2.2 Pre-Processing

The noisy speech signal is conditioned during the pre-
processing phase by noise estimate subtraction and pre-emphasis. The pre-
computed noise profile is obtained by averaging the differences between
30 noisy and their corresponding 30 clean speech samples available in the
dataset. In the frequency domain, the estimate noise spectrum is subtracted
from signals spectrum, and the signal is converted back by IFFT. The pre-
emphasis is the following step, where high-frequency components are
boosted to preserve the speech details. All of these processes assure that
input is optimized to provide efficient speech enhancement and attenuation
of noise is supplied to the filters.

5.2.3 Parallel Filtering

Here we are applying three adaptive filters in parallel: NLMS,
GMCC, and VSLMS (Mathew’s). In our preliminary analysis, it was
found that these filters showed exceptional individual performance in Car
noise conditions. These were sourced from python Padasip library [15].
Each filter iteratively updates its weights using a different adaptation rule.
NLMS uses normalized step-size control to improve stability and
convergence speed. GMCC employs a kernel-based method to enhance
error minimization by accounting for higher-order dependencies. VSLMS
(Mathew’s) dynamically adjusts the step-size according to the error
magnitude, allowing for better trade-offs between convergence speed and
steady-state error.

5.2.4 Dynamic weight assignment & post-processing

To enhance speech robustness, an error-based dynamic weight
assignment strategy combines outputs from three parallel adaptive filters.
Each filter’s error—defined as the difference between the desired clean
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signal and its output—guides weight adjustments. Filters with smaller
errors are given higher weights, while less accurate ones contribute less. A
normalized inverse error measure continuously updates these weights,
ensuring the most effective filter dominates the final signal. Once
combined, the output undergoes post-processing: de-emphasis reverses the
high-frequency boost applied earlier to restore spectral balance, and
normalization adjusts the amplitude to maintain clarity and prevent
distortion.

5.3 Experimental Setup
5.3.1 Dataset

We use the NOIZEUS Speech Corpus, the same dataset
described earlier in Section 3.1.

5.3.2 Performance parameters

The ensemble filter's performance was assessed using the
objective speech quality metrics mentioned in Section 3.3.
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CHAPTER 6

ENSEMBLE FILTER RESULTS AND EVALUATION

The Composite Objective Measure (Covr), which closely correlates with
subjective human perception of speech quality, was used as a principal metric in
evaluating the performance of each adaptive filter. Figure 2 displays the CovL scores
for all 30 speech samples under both 5 dB and 10 dB SNR conditions. The results
clearly indicate the consistent superiority of the Ensemble-based adaptive filtering
approach.

(a) Coyi per Speech sample (5dB SNR)
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(b) Coy. per Speech sample (10dB SNR)
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——Ensemble ——VSLMS ——GMCC ——NLMS
Fig. 3. CovL values per speech sample for each filter tested at
(a) 5dB & (b) 10dB SNR

Under the 5 dB SNR condition, the Ensemble filter outperformed all
individual filters in 25 out of 30 samples, while in the remaining 5 samples, the NLMS
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filter marginally surpassed it. Similarly, under the 10 dB SNR condition, the Ensemble
filter achieved the highest CovL in 26 out of 30 samples, further reinforcing its
reliability across varying noise levels.

The average Covr scores summarized in Table 1 reinforce these per-sample
observations. The Ensemble filter achieved the highest mean COVL values among all
filters tested, under both noise conditions. This consistent advantage highlights the
Ensemble’s ability to effectively model speech quality improvements across different
noise scenarios. Its dynamic weighting strategy—combining the strengths of multiple
adaptive filters—results in more perceptually pleasing and intelligible speech
reconstructions.

TABLE 5. Average values of performance parameters for each filter tested at 5dB speech

samples
Performance Parameters
S. No. Filter for Speech samples at 5dB SNR
PESQ LLR fwsegSNR Covi
1 NLMS 3.75 0.77 1.27 4.15
2 VSLM Suathews 243 0.91 1.91 2.98
3 GMCC 3.14 0.97 1.74 3.52
4 Ensemble 3.58 0.28 2.13 4.27

TABLE 6. Average values of performance parameters for each filter tested at 10dB SNR
speech samples

Performance Parameters
S. No. Filter for Speech samples at 10dB SNR
PESQO LLR fwsegSNR Covi
1 NLMS 3.76 0.82 1.36 4.14
2 VSLMSmathews 2.65 0.99 1.79 3.11
3 GMCC 3.15 1.04 1.97 3.49
4 Ensemble 3.60 0.36 1.81 4.24

These findings affirm that the Ensemble filter not only performs well in
most individual cases but also demonstrates the best overall speech enhancement
performance when averaged across all samples and SNR conditions. This makes it a
strong candidate for real-world deployment, particularly in challenging acoustic
environments such as automotive or public spaces.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis presented a comprehensive benchmarking study of adaptive
filtering techniques for speech enhancement in realistic acoustic environments, with a
primary focus on automotive noise conditions. A total of fifteen adaptive filters from
the Padasip library—including LMS, NLMS, RLS, GMCC, VSLMS variants, and
others—were evaluated using objective speech quality and intelligibility metrics. The
evaluation was conducted on a phonetically balanced dataset with eight real-world
noise types at 5 dB and 10 dB SNR levels.

Among the individual filters, GMCC and VSLMS (Mathew’s variant)
consistently demonstrated strong performance in high-noise environments. However,
variability across noise types revealed limitations in generalizability for standalone
filters. To address this, an Ensemble-based adaptive filtering approach was proposed,
combining the outputs of selected filters using a dynamic weighting strategy.

The results clearly showed that the Ensemble filter achieved superior
performance across all objective metrics, particularly the Composite Objective
Measure (Covr), which closely correlates with perceptual quality. In over 80% of the
speech samples, the Ensemble filter produced the highest Covi scores, and its average
scores across all conditions were the highest among all tested filters. These findings
demonstrate the robustness and adaptability of the Ensemble framework, especially in
fluctuating real-world noise conditions such as car, exhibition, and restaurant
environments.

Future Work

While the current work provides a solid benchmarking framework and a
strong Ensemble-based solution, several promising directions remain open for future
research:

e Psychoacoustic Model Integration: Incorporating human auditory models can
help prioritize perceptually important features in the speech signal, potentially
improving both intelligibility and quality.

e Fuzzy Logic-Based Weighting: Replacing or enhancing the dynamic weighting
strategy in the Ensemble with fuzzy logic can enable context-aware filter
selection, further boosting robustness.
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e Deep Learning Hybridization: Exploring the integration of adaptive filters with
deep neural networks (e.g., LSTM, CNN, or transformer-based denoisers) may
lead to hybrid systems that leverage both signal processing and data-driven
learning.

e Real-Time Implementation: Implementing the proposed Ensemble model in
embedded systems or low-power digital signal processors (DSPs) can enable
practical applications in hearing aids, in-car voice assistants, and mobile
devices.

e Subjective Evaluation: Although objective metrics provide reliable estimates,
future work should include large-scale Mean Opinion Score (MOS) studies to
validate perceptual benefits in real-world scenarios.

e Extension to Multichannel and Binaural Inputs: Leveraging spatial information
from stereo or multichannel recordings can significantly improve enhancement
performance in complex acoustic scenes.

In summary, this thesis lays a strong foundation for adaptive filter
benchmarking and offers a promising Ensemble-based speech enhancement solution,
with multiple pathways open for expanding its applicability and performance.



10.

11.

12.

13.

30

REFERENCES

P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation.
Cham: Springer International Publishing, 2020, doi: 10.1007/978-3-030-29057-3.
M. Kalamani and M. Krishnamoorthi, “Modified least mean square adaptive filter
for speech enhancement,” in Applied Speech Processing, Elsevier, 2021, pp. 47—
73.

E. Walach and B. Widrow, “The least mean fourth (LMF) adaptive algorithm and
its family,” IEEE Trans. Inform. Theory, vol. 30, no. 2, pp. 275-283, Mar. 1984,
doi: 10.1109/TIT.1984.1056886.

A. Zerguine, “Convergence and steady-state analysis of the normalized least mean
fourth algorithm,” Digital Signal Processing, vol. 17, no. 1, pp. 17-31, Jan. 2007,
doi: 10.1016/j.dsp.2006.01.005.

M. Z. U. Rahman, R. A. Shaik, and D. V. R. K. Reddy, “Noise cancellation in ECG
signals using normalized Sign-Sign LMS algorithm,” in 2009 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), Ajman,
UAE: IEEE, Dec. 2009, pp. 288-292, doi: 10.1109/ISSPIT.2009.5407510.

S. C. Venkateswarlu, N. U. Kumar, and A. Karthik, “Speech enhancement using
recursive least square based on real-time adaptive filtering algorithm,” in 2021 6th
International Conference for Convergence in Technology (I2CT), Maharashtra,
India: IEEE, Apr. 2021, pp. 1-4, doi: 10.1109/12CT51068.2021.9417929.

M. Alam, Md. L. Islam, and M. R. Amin, “Performance Comparison of STFT, WT,
LMS and RLS Adaptive Algorithms in Denoising of Speech Signal,” IJET, vol. 3,
no. 3, pp. 235-238, 2011, doi: 10.7763/1JET.2011.V3.230.

R. Ram and M. N. Mohanty, “Performance Analysis of Adaptive Algorithms for
Speech Enhancement Applications,” Indian Journal of Science and Technology,
vol. 9, no. 44, Nov. 2016, doi: 10.17485/ijst/2016/v9144/102867.

K. Ozeki, Theory of Affine Projection Algorithms for Adaptive Filtering, vol. 22,
Mathematics for Industry. Tokyo: Springer Japan, 2016, doi: 10.1007/978-4-431-
55738-8.

D. P. Mandic, “A Generalized Normalized Gradient Descent Algorithm,” IEEE
Signal Process. Lett.,, vol. 11, no. 2, pp. 115-118, Feb. 2004, doi:
10.1109/LSP.2003.821649.

C. Liu and M. Jiang, “Robust adaptive filter with Incosh cost,” Signal Processing,
vol. 168, p. 107348, Mar. 2020, doi: 10.1016/j.sigpro.2019.107348.

B. Chen, L. Xing, H. Zhao, N. Zheng, and J. C. Principe, “Generalized Correntropy
for Robust Adaptive Filtering,” IEEE Trans. Signal Process., vol. 64, no. 13, pp.
3376-3387, Jul. 2016, doi: 10.1109/TSP.2016.2539127.

W. P. Ang and B. Farhang-Boroujeny, “A new class of gradient adaptive step-size
LMS algorithms,” IEEE Trans. Signal Process., vol. 49, no. 4, pp. 805-810, Apr.
2001, doi: 10.1109/78.912925.



14

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

31

V. J. Mathews and Z. Xie, “A stochastic gradient adaptive filter with gradient
adaptive step size,” IEEE Trans. Signal Process., vol. 41, no. 6, pp. 2075-2087,
Jun. 1993, doi: 10.1109/78.218137.

M. Cejnek and J. Vrba, “Online centered NLMS algorithm for concept drift
compensation,” Neural Network World, vol. 31, no. 5, pp. 329-341, 2021, doi:
10.14311/NNW.2021.31.018.

M. Cejnek and J. Vrba, “Padasip: An open-source Python toolbox for adaptive
filtering,” Journal of Computational Science, vol. 65, p. 101887, Nov. 2022, doi:
10.1016/j.jocs.2022.101887.

Y. Hu and P. C. Loizou, “Subjective comparison and evaluation of speech
enhancement algorithms,” Speech Communication, vol. 49, no. 7-8, pp. 588-601,
Jul. 2007, doi: 10.1016/j.specom.2006.12.006.

Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for speech
enhancement,” IEEE Trans. Audio Speech Lang. Process., vol. 16, no. 1, pp. 229—
238, Jan. 2008, doi: 10.1109/TASL.2007.911054.

P. C. Loizou, Speech Enhancement: Theory and Practice. CRC Press, 2007.

Y. H. Chen, S. J. Ruan, and T. Qi, “An automotive application of real-time adaptive
Wiener filter for non-stationary noise cancellation in a car environment,” in 2012
IEEE Int. Conf. on Signal Processing, Communication and Computing (ICSPCC),
Aug. 2012, pp. 597-601.

E. Visser, T. Lee, and M. Otsuka, “Speech enhancement in a noisy car
environment,” in Proc. 3rd Int. Conf. on Independent Component Analysis and
Source Separation, Dec. 2001, pp. 272-277.

T. Fingscheidt, S. Suhadi, and S. Stan, “Environment-optimized speech
enhancement,” IEEE Trans. Audio, Speech, and Language Processing, vol. 16, no.
4, pp. 825-834, Apr. 2008.

G. R. Babu and G. V. Sridhar, “Speech enhancement using beamforming and
Kalman Filter for In-Car noisy environment,” in Microelectronics,
Electromagnetics and Telecommunications: Proc. of the Fifth ICMEET 2019,
Springer, 2020, pp. 549-557.

T. Matheja, M. Buck, and T. Fingscheidt, “A dynamic multi-channel speech
enhancement system for distributed microphones in a car environment,” EURASIP
J. Adv. Signal Process., vol. 2013, no. 1, pp. 1-21, 2013.

C. H. Yang, J. C. Wang, J. F. Wang, C. H. Wu, and K. H. Chang, “Design and
implementation of subspace-based speech enhancement under in-car noisy
environments,” IEEE Trans. Vehicular Technology, vol. 57, no. 3, pp. 14661479,
May 2008.

M. Djendi, “An efficient frequency-domain adaptive forward BSS algorithm for
acoustic noise reduction and speech quality enhancement,” Computers &
Electrical Engineering, vol. 52, pp. 12-27, May 2016.

L. Yin et al., “Adaptive parallel filter method for active cancellation of road noise
inside vehicles,” Mechanical Systems and Signal Processing, vol. 193, p. 110274,
Jun. 2023.

J. Pathrose and V. Govindaraj, “In-Car Speech Enhancement Based on Source
Separation Technique,” Audiology and Speech Research, vol. 20, no. 3, pp. 172—
182, Jul. 2024.



32

29. X. Huang, Y. Li, X. Han, and H. Tu, “Lawson-norm-based adaptive filter for
channel estimation and in-car echo cancellation,” IEEE Trans. Circuits Syst. II:
Express Briefs, vol. 69, no. 4, pp. 2376-2380, Jan. 2022.



33

APPENDIX

Each row is the average result of 30 speech samples (5dB)

Appendix 1
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Each row is the average result of 30 speech samples

Appendix 1
(10dB)
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Ensemble-Based Adaptive Filtering for Speech Enhancement in Car
Noise Conditions
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Abstract. In-car noise due to engine vibrations, road friction, and external disturbances
considerably impairs the performance of speech communication systems. This paper presents an
ensemble-based adaptive filtering system to enhance the quality of speech in such in-car noisy
conditions. The suggested method is a combination of the outputs of three adaptive filters-
Normalized Least Mean Squares (NLMS), Variable Step-Size LMS (VSLMS) with Mathews'
adaptation, and Generalized Maximum Correntropy Criterion (GMCC) by dynamic error-based
weighting, in which lower error filters are given greater influence in every iteration. Post-processing
methods, such as noise estimate subtraction, pre-emphasis, and de-emphasis, further enhance the
output to minimize residual noise. The In-Car noisy speech samples at 5dB & 10dB SNR are
sourced from the NOIZEUS speech corpus for performance testing. Objective measures of speech
quality, such as PESQ (Perceptual Evaluation of Speech Quality), LLR (Log-Likelihood Ratio),
fwsegSNR (frequency-weighted segmental SNR), and COVL (Composite Objective Measure),
were employed to measure system performance. The results show that the ensemble-based method
robustly outperforms individual filters and static combination methods, providing an effective
solution for car noise conditions in real-time speech enhancement.

Keywords: Adaptive Filter, Ensemble, NOIZEUS, SNR, Pre-Emphasis, De-Emphasis, PESQ,
LMS, RLS

Introduction

Noisy speech improvement is important in order to improve communication quality in various
applications like mobile communication, car voice assistants, and hearing aids. Automotive
environments involve much engine, tire, and other noise background which badly deteriorates the
quality and intelligibility of the speech signals. The challenge to real-time systems is that this should be
efficiently carried out without introducing substantial latency or distortion.

Conventional adaptive filters such as Recursive Least Squares (RLS) [1] and Normalized Least Mean
Squares (NLMS) [2] have been traditionally used for filtering out noise. The filters, however, cannot
maintain stable operation in dynamic environments of noise, especially in the case of car-type
environments in which the environment of the noise tends to frequently change. RLS filter’s
requirement of large amounts of computations also makes it unsuitable for low power-embedded
applications, which motivates the formulation of energy-effective substitutes.

Individual adaptive filters tend not to adapt optimally to different noise profiles and, as such, result
in unreliable speech improvement. While RLS is more accurate, its high computational cost makes it
infeasible for low power real-time applications, particularly for resource-limited environments. For
these limitations, an ensemble-based strategy that employs a set of adaptive filters is capable of
enhancing robustness by dynamically varying filter contributions according to their respective error
performance.

In automobile settings, speech enhancement is difficult because of non-stationary noise from sources
including traffic, wind, and engines. The early methods employed multi-channel adaptive Wiener
filtering for high-frequency sub-bands [3] and spectral subtraction for low-frequency sub-bands to
reduce noise and distortion [4]. In speech presence estimation, sub-band-based methods later surpassed
more traditional methods such as Wiener and MMSE-based estimators [S]. To compensate speech
enhancement for various conditions, environment-adaptive techniques brought in sub-band processing
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and statistical modeling. A robust system enhanced speech recognition with time- and frequency-
domain beamformers without retraining in diverse environments [6].

Later, dynamic multi-microphone systems with power ratio-based controls were developed to control
multiple talkers and ambient noise [7]. With pipelined architectures, real-time capability was delivered
by psychoacoustic models and perceptual filter banks [8]. Real-time adaptive Wiener filters and blind
source separation (BSS) techniques further augmented noise cancellation in automotive environments
[9].

Later developments utilized adaptive parallel filter methods to dynamically suppress road noise and
beamforming combined with Kalman filtering for enhanced intelligibility [10]. Time difference of
arrival (TDOA) and source separation with microphone arrays [11] were examined in recent studies for
adaptive signal adjustment. Norm-based adaptive filters provided robust solutions for channel
estimation and in-car echo cancellation [12]. Yet, existing methods often lack in dynamically
responding to changing noise patterns and have difficulty in balancing computational complexity and
noise reduction. Whereas methods such as spectral subtraction and Wiener filtering fail in non-
stationary environments, methods such as RLS are effective but computationally expensive.

This research aims to develop an ensemble-based adaptive filtering system for speech enhancement
in car noise environments. A performance-based dynamic weighting scheme will adaptively regulate
the contribution of multiple adaptive filters, ensuring improved noise attenuation with low
computational complexity, making it ideal for real-time applications in challenging automotive
environments.

This manuscript is structured in following sections. Section 2 describes the methodology, including
pre and post processing, parallel adaptive filtering, and dynamic weight assignment. Section 3 elucidates
the experimental setup. Results are shown in section 4, followed by Section 5 discussing the conclusions
and future directions.

Methodology

Model Diagram

Figure 1 shows the proposed ensemble adaptive filter system, that pre-emphasizes a noisy speech signal
after noise estimate subtraction. Three parallel adaptive filters-NLMS [2], GMCC [13], and VSLMS
(Mathew's) [14] process the pre-emphasized signal. The enhanced speech signal is produced by
dynamically combining the filter outputs and de-emphasizing the resultant signal.

Noisy Enhanced
Speech Speech
NLMS
Wi T
Noise w2
D
Estimate EmPLeasis » GMCC Em :asis
Subtraction g i
VSLMS w3
Mathew’s

Fig. 1. Block diagram of the proposed ensemble-based adaptive filtering system model for speech enhancement in
car noise environment

Pre-Processing

The noisy speech signal is conditioned during the pre-processing phase by noise estimate subtraction
and pre-emphasis. The pre-computed noise profile is obtained by averaging the differences between 30
noisy and their corresponding 30 clean speech samples available in the dataset. In the frequency domain,
the estimate noise spectrum is subtracted from signals spectrum, and the signal is converted back by
IFFT. The pre-emphasis is the following step, where high-frequency components are boosted to
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preserve the speech details. All of these processes assure that input is optimized to provide efficient
speech enhancement and attenuation of noise is supplied to the filters.

Parallel Filtering

Here we are applying three adaptive filters in parallel: NLMS, GMCC, and VSLMS (Mathew’s). In our
preliminary analysis, it was found that these filters showed exceptional individual performance in Car
noise conditions. These were sourced from python Padasip library [15]. Each filter iteratively updates
its weights using a different adaptation rule. NLMS uses normalized step-size control to improve
stability and convergence speed. GMCC employs a kernel-based method to enhance error minimization
by accounting for higher-order dependencies. VSLMS (Mathew’s) dynamically adjusts the step-size
according to the error magnitude, allowing for better trade-offs between convergence speed and steady-
state error.

Dynamic weight assignment & post-processing

To enhance speech robustness, an error-based dynamic weight assignment strategy combines outputs
from three parallel adaptive filters. Each filter’s error—defined as the difference between the desired
clean signal and its output—guides weight adjustments. Filters with smaller errors are given higher
weights, while less accurate ones contribute less. A normalized inverse error measure continuously
updates these weights, ensuring the most effective filter dominates the final signal. Once combined, the
output undergoes post-processing: de-emphasis reverses the high-frequency boost applied earlier to
restore spectral balance, and normalization adjusts the amplitude to maintain clarity and prevent
distortion.

Experimental Setup

Dataset

We use the NOIZEUS Speech Corpus [16], which contains 30 IEEE sentences in American English
from three male and three female speakers. It includes eight noise types from the AURORA database,
with a focus on car noise at 5 dB and 10 dB SNR levels. Noise was synthetically added following ITU-
T P.56 to achieve the desired SNR levels.

Performance parameters

The ensemble filter's performance was assessed using the following objective speech quality metrics,
selected due to their high correlation with subjective ratings [17].

Perceptual Evaluation of Speech Quality (PESQ):
The ITU-T P.862 standard defines (PESQ) [18] parameter. Using an auditory model, it compares the
clean and enhanced signals to determine speech quality. The PESQ metric is computed as follows:

PESQ=aoDt+ aiDa + az (H)

D, and D, are the disturbance values in this. For speech communication network system, the
regression coefficients ag a;and a;are optimized. The PESQ scores range from -0.5 to 4.5 where better
speech is an indication of a high score values.

Log Likelihood Ratio (LLR):
LLR measures spectral distortion. It compares the Linear Predictive Coding (LPC) coefficients [17] of
clean and enhanced speech. It is defined as:
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Where d; ;5 (bp, bc) is the LLR distance. The original clean speech frame's LPC coefficient vector is
denoted by b.. The processed speech frame's LPC coefficient vector is denoted by b,,. The original
speech signal's autocorrelation matrix is denoted by Q.. The range of values was limited to (0, 2). Better
spectrum preservation and less distortion are indicators of a low LLR value.

Frequency-Weighted Segmental Signal-to-Noise Ratio (fwsegSNR):
It measures how well noise is suppressed. Segmental SNR [17] is averaged across frequency bands. It
is computed as follows:
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Here, N is the total number of frames, B is the number of bands, and W (j, m) is a frequency-domain
weighting function that assigns higher importance to speech-dominant regions. It is proportional to the
clean speech spectrum raised to a power v, i.e., W(j,m) = Y (j,m)¥. The clean and enhanced speech
spectrums are represented by |Y (j, m)| and |17(1', m) |, respectively. The signal bandwidth was divided
into 25 critical bands corresponding to auditory perception [18]. Better speech intelligibility is
correlated with higher fiwsegSNR values.

Composite Speech Quality Measure (CovL):
The composite measure is created as a weighted sum of a number of objective measures [17] for a more
reliable estimate of speech quality. It is given as:

Cy=ap+ Zﬁ:l aMy, 4)

Here, Cy represents the composite score (e.g., for speech distortion or overall quality), a,, are
regression coefficients, and M,, are objective metrics. We consider the overall quality (OVL) component
in our analysis. Using multiple measures improves correlation with subjective ratings, enhancing
evaluation robustness.

Results & Discussion

The Composite Objective Measure (Covr) of each speech sample was examined, as it most closely
correlates with subjective ratings of speech quality. Figure 2 present the Covr scores of all 30 speech
samples for both 5 dB and 10 dB SNR. The per-sample result indicates that, for the 5 dB SNR input
samples, NLMS has slightly better Coyr values in just 5 out of 30 samples, whereas under the 10 dB
SNR condition, this is true for 4 out of 30 samples. Table 1 presents the average value of the
performance parameters for all 30 noisy input speech samples for each filter tested. The Ensemble can
be seen to have the highest Covr values.
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Fig. 2. CovL values per speech sample for each filter tested at (a) 5dB & (b) 10dB SNR
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Table 1. Average values of performance parameters for each filter tested at 5dB & 10dB SNR speech samples

Performance Parameters
S. No. Filter for Speech samples at 5dB SNR Jfor Speech samples at 10dB SNR
PESQ LLR fwsegSNR Covi PESQ LLR fwsegSNR Covi
1 NLMS 3.75 0.77 1.27 4.15 3.76 0.82 1.36 4.14
2 VSLMSwmathews 243 0.91 1.91 2.98 2.65 0.99 1.79 3.11
3 GMCC 3.14 0.97 1.74 3.52 3.15 1.04 1.97 3.49
4 Ensemble 3.58 0.28 2.13 4.27 3.60 0.36 1.81 4.24

Conclusions & Future Work

The proposed ensemble-based adaptive filtering method was compared with standalone filters. While
averaged PESQ values suggested that NLMS was marginally better, a detailed per-sample comparison
of Covi, which correlates very well with listening tests, demonstrated that the ensemble approach
performed better in 26 out of 30 samples under 10dB and 25 out of 30 samples under 5dB. This indicates
that, overall, the ensemble method steadily enhances speech quality. Future work could further enhance
the ensemble method’s robustness and flexibility by integrating psychoacoustic models or fuzzy logic

to enhance the dynamic weight assignments.
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