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Performance Analysis of HSI-RGB Feature Fusion for Fire Blight 
Detection in Apple Leaves 

Vaibhav Sharma 

ABSTRACT 

 

This study evaluates machine learning models—Support Vector Machine, 
Random Forest, and XGBoost—for fire blight detection in apple leaves 
using hyperspectral (HSI) data and fused HSI-RGB features. Results show 
that while HSI data alone enables strong classification (F1-score up to 
0.93), fusing HSI with RGB features significantly enhances performance. 
The Random Forest model with fused features achieved the highest 
accuracy and F1-score (0.98). Visual assessments further confirm 
improved localization of infected regions with feature fusion. These 
findings demonstrate that multimodal data integration and ensemble 
learning substantially advance early, accurate fire blight detection for 
precision agriculture. 

  



vi 
 

TABLE OF CONTENTS 

 

List of Tables viii 

List of Figures xv 

List of Symbols and Abbreviations xxiii 

CHAPTER 1: INTRODUCTION 1-58 

1.1 Introduction 1 

1.2 Problem Statement 2 

1.3 Objectives of the Study 3 

1.4 Scope of the Work 3 

1.5 Thesis Organization 4 

CHAPTER 2: LITERARURE SURVEY 6 

CHAPTER 3: METHODOLOGY 12 

3.1 Dataset Description 12 

3.2 Preprocessing 13 

3.3 Feature Extraction 13 

3.4 Model Training 14 

3.5 Model Evaluation 17 

CHAPTER 4: RESULTS 20 

4.1 Quantitative Performance 20 

4.2 Prediction Outputs 22 

CHAPTER 5: CONCLUSIONS 27 

 
  



vii 
 

  LIST OF TABLES  

 
Performance parameters for SVM model on Hyperspectral data 20 

Performance parameters for RF model on Hyperspectral data 21 

Performance parameters for XGBoosting model on Hyperspectral data 21 

Performance parameters for SVM model on Multimodal data 22 

Performance parameters for RF model on Multimodal data 22 

Performance parameters for XGBoosting model on Multimodal data 23 

 

  



viii 
 

LIST OF FIGURES 

 
Prediction of SVM model on hyperspectral data 24 

Prediction of RF model on hyperspectral data 24 

Prediction of XGBoost model on hyperspectral data 25 

Prediction of SVM model on Multimodal data 25 

Prediction of RF model on Multimodal data 26 

Prediction of XGBoost model on Multimodal data 26 

  



ix 
 

SYMBOLS, ABBREVIATIONS & NOMENCLATURE 

 

 

HSI  : Hyper Spectral Imaging 

RGB : Red Green Blue 

SVM :  Support Vector Machine 

RF : Random Forest 

XGBoost : eXtreme Gradient Boosting 

 



1 
 

CHAPTER 1 

 
 

INTRODUCTION 
 
 
 
 

1.1 Background & Motivation 

Apple (Malus domestica) is one of the most economically vital 
fruit crops globally, with annual production exceeding 95 million metric 
tons and contributing over $23 billion to the global economy (FAOSTAT, 
2023). China dominates production, yielding 47.5 million tons annually 
(49.6% of global output), followed by the United States (4.4 million tons) 
and Poland (4.2 million tons) (Wikipedia, 2024; Statista, 2024). In regions 
like Himachal Pradesh, India, apple orchards support livelihoods for 30 
million people, underscoring the crop’s socio-economic importance 
(IJCRT, 2022). However, this critical industry faces existential threats 
from fire blight, a bacterial disease caused by Erwinia amylovora, which 
causes annual U.S. losses exceeding $100 million and orchard mortality 
rates of 50–60% in young trees (Virginia Tech, 2024; Cornell CALS, 
2024). 

Fire blight spreads rapidly under warm (18–30°C) and humid 
conditions, infiltrating plants through blossoms, wounds, or natural 
openings. Early symptoms include water-soaked blossoms and necrotic 
shoots exhibiting the characteristic "shepherd’s crook" deformity, while 
advanced infections lead to sunken cankers and bacterial ooze that 
facilitate secondary spread via insects, rain, or contaminated tools 
(Britannica, 1998; Microbe Notes, 2024). Traditional detection methods—
PCR assays and ELISA—detect E. amylovora at concentrations ≥10³ 
CFU/mL but fail during the 7–21-day asymptomatic incubation period, 
when bacterial populations remain subthreshold (Frontiers in Horticulture, 
2023; Singh et al., 2020). Visual inspections, though widely used, are 
labor-intensive and impractical for large-scale monitoring, underscoring 
the need for non-invasive, real-time diagnostic tools (SSRN, 2023). 
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Hyperspectral imaging (HSI) and RGB cameras have emerged 
as transformative tools for early disease detection. HSI captures 
biochemical changes across 400–2500 nm, resolving pre-symptomatic 
physiological stress indicators such as chlorophyll degradation (680–750 
nm) and water stress (1440–1910 nm) with 85–95% accuracy (MDPI 
Remote Sensing, 2020; Frontiers in Plant Science, 2019). Conversely, 
RGB imaging provides high spatial resolution (0.1–0.5 mm/pixel), 
capturing lesion morphology and texture features but lacking spectral 
depth for pre-symptomatic biochemical shifts (Frontiers in Plant Science, 
2022). The fusion of HSI and RGB data addresses these limitations by 
combining complementary features: HSI’s biochemical sensitivity and 
RGB’s structural clarity. Recent studies, such as Zhang et al. (2023), 
achieved 98.36% accuracy in soybean defect detection using fused HSI-
RGB features and lightweight CNNs, validating the potential of 
multimodal fusion for precision agriculture. 

1.2. Problem Statement 

Despite advancements, three systemic limitations hinder 
effective fire blight control: 

1. Spatial-Spectral Trade-offs: 

HSI’s Low Spatial Resolution (1–5 mm/pixel): Fails to resolve fine-
grained leaf structures (e.g., early lesions <1 mm) (MDPI Sensors, 2023). 
RGB’s Spectral Simplicity (400–700 nm): Misses pre-symptomatic 
biochemical shifts (e.g., water stress at 1,450 nm) (Frontiers in Plant 
Science, 2022). 

2. Model Bias Toward Deep Learning: 

Convolutional neural networks (CNNs) dominate hyperspectral research 
but require >10 million parameters and large datasets (>10,000 samples) 
(Nature, 2023). Traditional ML models like SVM and XGBoost achieve 
comparable accuracy (85–95%) with <1% of the parameters but remain 
underexplored in fused HSI-RGB contexts (IJETT, 2022; PMC, 2022). 

3. Generalizability in Field Conditions: 

Over 80% of fusion techniques are validated in controlled environments, 
neglecting real-world variability like heterogeneous illumination and 
canopy complexity. A 2023 study reported a 32% accuracy drop when 
transitioning HSI-RGB models from lab to orchard settings due to ambient 
light fluctuations (Frontiers in Plant Science, 2023c; Arxiv, 2024). 
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4. Threshold Optimization Barriers: 

Static thresholds fail to balance precision (minimizing false positives) and 
recall (minimizing false negatives) in dynamic field conditions. For 
example, UAV-based detection may prioritize recall (71.4%) over 
precision (73.7%), risking unnecessary pesticide use (Xiao et al., 2022). 

1.3 Objectives of the Study 

This study addresses these challenges through three primary 
objectives: 

1. Develop a Feature Fusion Framework: 

Integrate HSI’s spectral richness (400–2500 nm) with RGB’s spatial 
precision (0.1–0.5 mm/pixel) using early fusion strategies to preserve 
biochemical-spatial correlations critical for early detection (Zhang et al., 
2023; MDPI Remote Sensing, 2020). 

2. Compare ML Model Performance: 

Evaluate SVM (radial basis kernel), RF (100 trees with Gini impurity 
splitting), and XGBoost (learning rate 0.1, max depth 5) on fused datasets 
using metrics like accuracy, precision, recall, F1-score, and ROC-AUC 
(IJETT, 2022; Sari et al., 2023). 

3. Identify Optimal Spectral-Spatial Features: 

Use SHAP analysis and recursive feature elimination (RFE) to pinpoint 
critical bands (e.g., 700 nm for chlorophyll loss, 1440 nm for water stress) 
and spatial descriptors (e.g., LAB color histograms, GLCM contrast) 
(MDPI Sensors, 2023; Wang et al., 2023). 

1.4. Scope of Work 

1.4.1. Inclusions 

This research focuses on the development and comparative 
evaluation of machine learning models for the detection of fire blight 
disease in apple leaves using both hyperspectral and multimodal (HSI + 
RGB) imaging data. The scope of the study encompasses the following 
key areas: 

 Hyperspectral Data Utilization: Exploring the capacity of visible–
near infrared hyperspectral imagery to discriminate between healthy 
and infected leaf tissues at the pixel level using spectral and spatial 
features. 
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 Multimodal Feature Fusion: Investigating the integration of 
hyperspectral data with traditional RGB information to assess whether 
the fusion of modalities improves classification accuracy and 
robustness. 

 Model Diversity and Comparison: Implementing and comparing 
three established machine learning classifiers—Random Forest, 
XGBoost, and Linear SVM—across two data representations 
(hyperspectral-only and multimodal). 

 Balanced Learning Framework: Designing a balanced sampling 
framework to address class imbalance between symptomatic and 
healthy samples, ensuring fair model evaluation and reproducibility. 

 Comprehensive Evaluation: Employing standard classification 
metrics (accuracy, precision, recall, F1 score, and confusion matrix) to 
systematically evaluate model performance and to support the 
selection of optimal strategies for disease detection. 

 Scalability and Practical Deployment: Providing a reproducible and 
computationally feasible methodology that can be scaled and adapted 
to other plant disease detection tasks using hyperspectral and RGB data 
fusion. 

1.4.2. Exclusions 

 Deep Learning Models: CNNs (e.g., ResNet50, EfficientNet) and 
transformers are omitted due to computational constraints and limited 
interpretability for small datasets (<10,000 samples) (Nature, 2023). 

 Post-Harvest Management: Focus remains on pre-symptomatic 
detection, excluding chemical treatments, orchard recovery strategies, 
or post-harvest storage analysis (Virginia Tech, 2024). 

1.5. Thesis Organization 

Chapter 2: Literature Review 

Critically analyzes HSI/RGB imaging, fire blight pathology, and ML 
applications, highlighting gaps in fusion-classifier synergy (PMC, 2022; 
Frontiers in Plant Science, 2023b). 

Chapter 3: Methodology 

Details data acquisition (HSI-RGB alignment via affine transformation), 
preprocessing (noise removal, normalization), and fusion protocols (MDPI 
Remote Sensing, 2020; Zhang et al., 2023). 
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Chapter 4: Results 

Presents comparative performance metrics (accuracy, F1-score, ROC-
AUC) for SVM, RF, and XGBoost on single-modality and fused datasets 
(IJETT, 2022; Sari et al., 2023). 

Chapter 5: Conclusion 

Synthesizes contributions to early detection and proposes future work on 
UAV-based hyperspectral phenotyping (Frontiers in Plant Science, 2024; 
HIPPA Project, 2024). 

By harmonizing multimodal imaging and machine learning, this research 
advances scalable tools for mitigating fire blight’s catastrophic impact on 
global apple production. 
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CHAPTER 2 

 
 

LITERATURE REVIEW 
 
 
 
 

2.1 Fire Blight Disease: Biology, Symptoms, and Impact on Agriculture 

Fire blight is a highly contagious and destructive bacterial 
disease affecting apples, pears, and other members of the Rosaceae family 
(Wikipedia, 2024). The causal agent, Erwinia amylovora, is a Gram-
negative bacterium that invades host plants through blossoms, wounds, or 
natural openings, leading to rapid necrosis of shoots, leaves, and fruits 
(Microbe Notes, 2024). The disease is notorious for its ability to destroy 
entire orchards within a single growing season under optimal conditions, 
with economic losses in the United States alone exceeding $100 million 
annually (Frontiers in Horticulture, 2023; Cornell CALS, 2024). 
 

The biology of E. amylovora is characterized by the 
production of a viscous exopolysaccharide, levan, which aids in the 
formation of protective biofilms, enhancing bacterial survival and 
adhesion to host tissues (Microbe Notes, 2024). The pathogen can 
overwinter in cankers on branches and trunks, becoming active in spring 
when temperatures rise and humidity increases (Cornell CALS, 2024). 
Insects and rain play a significant role in disseminating the pathogen, 
especially during bloom periods (Frontiers in Horticulture, 2023). The 
disease cycle includes blossom blight, shoot blight, canker blight, and 
rootstock blight, each presenting distinct symptoms such as water-soaked 
lesions, wilted shoots with a “shepherd’s crook,” and sunken cankers that 
may girdle and kill the tree (Cornell CALS, 2024; Wikipedia, 2024). 
 

Recent studies have highlighted the devastating impact of 
rootstock infections, which can lead to rapid tree death and significant crop 
losses (Frontiers in Horticulture, 2023). For instance, Aćimović et al. 
(2023) reported that blossom and shoot blight incidence can range from 
30% to 100% depending on orchard conditions, with up to 65% of trees in 
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some orchards succumbing to the disease. The latent phase of infection, 
during which trees may harbor asymptomatic bacteria, complicates early 
detection and management (Frontiers in Horticulture, 2023). 

 

2.2 Plant Disease Detection Methods: Traditional and Modern 

Approaches 

Traditional detection methods for fire blight and other plant 
diseases include visual inspection, culture-based assays, and molecular 
techniques such as PCR and ELISA (Frontiers in Plant Science, 2023a). 
Visual scouting is widely practiced due to its low cost, but it is subjective 
and often fails to detect early or latent infections (SSRN, 2023). Molecular 
assays, while highly specific, require laboratory infrastructure and are not 
suitable for rapid, large-scale field deployment (Frontiers in Plant Science, 
2023a). For example, PCR can detect E. amylovora at concentrations as 
low as 10³ CFU/mL, but its effectiveness is limited by the presence of 
inhibitors in plant tissues and the need for skilled personnel (Frontiers in 
Horticulture, 2023). 

 

Recent advances have introduced point-of-care devices and 
biosensors for on-site diagnosis, allowing for faster and more user-friendly 
detection (Frontiers in Plant Science, 2023a). The development of digital 
droplet PCR (ddPCR) and multiplex assays has further improved 
sensitivity and specificity for low-titer pathogens (Frontiers in Plant 
Science, 2023a). However, these methods still face challenges in 
scalability and cost-effectiveness for routine orchard monitoring. 

 

Modern approaches increasingly leverage imaging 
technologies and artificial intelligence (AI) for automated disease 
detection (SSRN, 2023; Nature, 2023). Deep learning (DL) and machine 
learning (ML) models have demonstrated high accuracy in classifying 
plant diseases from digital images, with CNN-based methods achieving up 
to 98% accuracy in some cases (Nature, 2023; IJIRT, 2025). These systems 
can process large volumes of data, enabling real-time, high-throughput 
screening of orchards, but their performance can be affected by variations 
in lighting, background, and disease presentation (Arxiv, 2024). 
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2.3 Hyperspectral Imaging (HSI): Principles and Applications in Agriculture 

Hyperspectral imaging (HSI) is a powerful tool for non-
invasive plant disease detection, capturing reflectance data across 
hundreds of narrow spectral bands (Imec, 2024). HSI enables the detection 
of subtle biochemical and physiological changes in plant tissues before 
visible symptoms appear, making it particularly valuable for early disease 
diagnosis (Frontiers in Plant Science, 2024; Pixxel, 2024). The technology 
operates across the visible, near-infrared, and shortwave infrared regions 
(400–2500 nm), allowing for the identification of changes in chlorophyll 
absorption, water content, and other stress indicators (Imec, 2024; Pixxel, 
2024). 

 

Recent advances have demonstrated the effectiveness of HSI 
in detecting a range of plant diseases, including fire blight, citrus canker, 
and seedborne pathogens (Frontiers in Plant Science, 2024; Frontiers in 
Plant Science, 2023b). For example, Abdulridha et al. (2020) showed that 
HSI could detect fire blight in apple leaves with high accuracy by 
analyzing spectral signatures associated with chlorophyll degradation and 
water stress. Studies have also highlighted the non-destructive nature of 
HSI, which allows for repeated measurements and integration with other 
diagnostic methods (Frontiers in Plant Science, 2024). 

 

HSI data are highly collinear and require advanced statistical 
and computational tools for information extraction and pattern modeling 
(Frontiers in Plant Science, 2024). Machine learning and deep learning 
algorithms, such as SVM, PLS-DA, and CNNs, have been widely applied 
to classify healthy and diseased samples based on hyperspectral data 
(PMC, 2022; Frontiers in Plant Science, 2024). For instance, Chu et al. 
(2020) achieved 100% accuracy in classifying corn seeds infected with 
Aspergillus spp. using PCA and SVM models, while Wu et al. (2022) 
reported over 97% accuracy in identifying peanut seeds infected with 
Aspergillus flavus using hyperspectral images and various classifiers. 

 

Despite its advantages, the adoption of HSI in agriculture is 
limited by high equipment costs, complex data processing, and the need 
for interdisciplinary collaboration (Frontiers in Plant Science, 2024; Imec, 
2024). Recent developments in hyperspectral snapshot cameras and UAV-
mounted sensors are helping to overcome these barriers by enabling real-
time, high-resolution data acquisition and expanding the practical 
applications of HSI in precision agriculture (Imec, 2024; Pixxel, 2024). 
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2.4 RGB Imaging: Role in Plant Disease Detection 

RGB imaging is widely used in plant disease detection due to 
its accessibility, low cost, and ability to capture high-resolution spatial 
features (Frontiers in Plant Science, 2022). RGB images, typically 
acquired with standard digital cameras, are effective for identifying visible 
symptoms such as leaf spots, discoloration, and lesions (Frontiers in Plant 
Science, 2022; SSRN, 2023). Machine learning models, including CNNs 
and SVMs, have been applied to classify plant diseases from RGB images, 
achieving high accuracy in many cases (IJIRT, 2025; Frontiers in Plant 
Science, 2023c). 

 

However, RGB imaging is limited in its ability to detect pre-
symptomatic or subtle physiological changes, as it only captures 
information in the visible spectrum (400–700 nm) (Frontiers in Plant 
Science, 2022). Recent research has explored the integration of RGB with 
other modalities, such as hyperspectral or thermal imaging, to enhance 
detection performance (Metallurgical and Materials Engineering, 2025). 
For example, Zhang et al. (2021) proposed a CNN model optimized for 
maize disease detection, demonstrating that reconstructed hyperspectral 
data from RGB images could improve detection accuracy, especially in 
complex environments (Frontiers in Plant Science, 2022). 

 

2.5 Feature Fusion Techniques: Multimodal Data Fusion in Plant Pathology 

Multimodal data fusion combines features from multiple 
imaging modalities, such as HSI, RGB, and thermal imaging, to improve 
the accuracy and robustness of plant disease detection (Metallurgical and 
Materials Engineering, 2025). Early fusion strategies concatenate features 
before classification, while late fusion combines the outputs of separate 
classifiers (Metallurgical and Materials Engineering, 2025; Frontiers in 
Plant Science, 2023b). Hybrid fusion approaches leverage both strategies 
to maximize information gain and model performance. 

 

Recent studies have demonstrated the effectiveness of feature 
fusion in plant disease diagnosis. For instance, Assudani and Krishna 
(2025) introduced a multimodal deep learning framework that integrates 
RGB, hyperspectral, and thermal images using CNNs and Vision 
Transformers, achieving superior accuracy and robustness compared to 
single-modality models (Metallurgical and Materials Engineering, 2025). 
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Similarly, Wang et al. (2023) showed that multimodal fusion networks 
could achieve high accuracy for early disease detection in citrus by 
leveraging complementary information from different sensors (Frontiers 
in Plant Science, 2023b). 

 

Despite these advances, challenges remain in optimizing 
fusion strategies for real-time, field-deployable systems. Computational 
complexity, data heterogeneity, and the need for large labeled datasets can 
limit the scalability and generalizability of multimodal approaches 
(Metallurgical and Materials Engineering, 2025; Arxiv, 2024). 

 

2.6 Machine Learning in Plant Disease Detection: SVM, RF, XGBoost, and 

Related Works 

Machine learning and deep learning have revolutionized plant 
disease detection by enabling automated, high-throughput analysis of 
complex image data (SSRN, 2023; Frontiers in Plant Science, 2023c). 
Support Vector Machines (SVM), Random Forests (RF), and XGBoost are 
among the most widely used ML algorithms for plant disease classification 
(PMC, 2022; IJIRT, 2025). SVM is known for its generalization ability and 
effectiveness with high-dimensional data, while RF and XGBoost offer 
robust performance and interpretability (PMC, 2022; IJIRT, 2025). 

 

Comparative studies have shown that deep learning models, 
particularly CNNs, often outperform traditional ML algorithms in terms of 
accuracy and robustness, especially when large labeled datasets are 
available (Nature, 2023; Frontiers in Plant Science, 2023c). For example, 
CNNs have achieved classification accuracies exceeding 96% on the 
PlantVillage dataset, while Random Forest and Gradient Boosting also 
demonstrate strong performance (IJIRT, 2025). However, SVM and other 
traditional ML models remain valuable for applications with limited data 
or computational resources (PMC, 2022). 

 

Recent advances include the integration of ML and DL models 
with feature selection and dimensionality reduction techniques to improve 
classification performance and reduce computational costs (PMC, 2022; 
Frontiers in Plant Science, 2024). For instance, ReliefF and PCA have been 
used to extract relevant features from hyperspectral data, enabling more 
accurate and efficient disease detection (PMC, 2022). 
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2.7 Research Gaps 

Despite significant progress, several challenges remain in 
developing robust, field-deployable plant disease detection systems. Many 
studies are conducted under controlled conditions, with limited validation 
in real-world environments where variability in lighting, background, and 
disease presentation can affect model performance (Frontiers in Plant 
Science, 2023c; Metallurgical and Materials Engineering, 2025). The 
integration of multimodal features and the comparative evaluation of 
traditional ML and DL models for early disease detection are still 
underexplored areas (Metallurgical and Materials Engineering, 2025; 
Arxiv, 2024). 

 

This thesis addresses these gaps by developing and evaluating 
a multimodal feature fusion framework using HSI and RGB data, and 
systematically comparing the performance of SVM, RF, and XGBoost for 
fire blight detection in apple leaves. The approach emphasizes real-world 
applicability, scalability, and interpretability, aiming to provide actionable 
tools for precision agriculture and sustainable disease management. 
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CHAPTER 3 

 
 

METHODOLOGY 
 
 
 
 

This chapter elucidates the complete methodological framework employed 
for the classification of apple leaf health conditions using hyperspectral and 
multimodal (HSI + RGB) data. The proposed approach is developed using the publicly 
available "Visible – Near Infrared Hyperspectral Dataset of Healthy and Infected 
Apple Tree Leaves for the Monitoring of Apple Fire Blight." A structured process 
encompassing data acquisition, preprocessing, feature extraction, model training, and 
evaluation is presented herein. The overarching objective is to compare the 
performance of multiple machine learning classifiers on both hyperspectral-only and 
fused multimodal data representations. 

3.1 Dataset Description 

The dataset utilized in this study is specifically designed for plant 
disease detection under varying health conditions. It comprises leaf-level 
imagery acquired using visible and near-infrared hyperspectral imaging. 
Each plant sample folder contains the following components: 

 A hyperspectral image file (.hdr and corresponding .dat) 
 A visible-range RGB image (.png format) 
 A CSV file specifying pixel coordinates annotated as 

symptomatic (infected) 

The hyperspectral cube spans a broad spectral range, and each 
pixel captures spectral reflectance across hundreds of contiguous bands. 
The RGB image provides visual context and is used for complementary 
analysis. The annotations enable precise localization of diseased regions, 
facilitating supervised learning with labeled data.
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3.2 Data Preprocessing 

3.2.1 Balanced Sampling Strategy 

To mitigate class imbalance, a balanced sampling strategy was 
adopted. For every plant image: 

 All pixels annotated as symptomatic were identified and extracted 
based on the provided CSV file. 

 An equal number of healthy pixels were randomly selected from 
the remaining non-annotated pixel grid. 

This sampling process ensures that the dataset for each plant 
maintains a 1:1 ratio between diseased and healthy samples, thereby 
preventing classifier bias toward the majority class. A random number 
generator initialized with a fixed seed ensured reproducibility. 

3.2.2 Dataset Partitioning 

The total set of plant folders was split into training and testing 
subsets. Seventy percent (70%) of the folders were randomly allocated for 
training, and the remaining thirty percent (30%) were retained for testing. 
This approach preserves plant-level independence between training and 
testing samples, minimizing data leakage. 

3.3 Feature Extraction 

Feature engineering was performed separately for the 
hyperspectral-only and multimodal approaches. 

3.3.1 Hyperspectral-Only Features 

a) Spectral Band Reduction 

Due to the high dimensionality of hyperspectral data, a band 
reduction process was applied. From the full spectral cube, 40 uniformly 
spaced bands were selected via downsampling to reduce computational 
complexity while preserving spectral information. 
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b) Vegetation Indices 

Two well-established indices were computed: 

 Excess Green (ExG): Derived from the RGB image to enhance 
the green component, calculated as: 
ExG=2G−R−BExG = 2G - R - B 

 Normalized Difference Vegetation Index (NDVI): Calculated 
using the first (red) and last Near InfraRed (NIR) reflectance 
values: 

NDVI =  
NIR −  R

NIR +  R
 (1) 

c) Texture Feature 

To capture local spatial variations, texture features were 
extracted from NDVI image patches. The Gray-Level Co-occurrence 
Matrix (GLCM) method was employed to compute the contrast statistic 
over 3x3 patches centered on each pixel. The final feature vector per pixel 
for the hyperspectral model was a concatenation of the 40 spectral bands, 
ExG, NDVI, and texture contrast. 

3.3.2 Multimodal Fusion Features 

For the multimodal approach, hyperspectral features were directly 
concatenated with RGB pixel values: 

 For each pixel, the reduced hyperspectral vector (from 40 selected 
bands) was combined with its corresponding RGB values (R, G, B). 

 This results in a multimodal feature vector of length 43 per pixel. 

Symptomatic and healthy pixels were extracted and balanced using 
the same strategy as in the hyperspectral-only method. The features were 
stored in a unified CSV file for training. 

3.4 Model Training 

In this study, three distinct and widely used supervised learning 
algorithms were employed to build classification models: Random Forest 
(RF), Extreme Gradient Boosting (XGBoost), and Linear Support Vector 
Machine (SVM). These models were selected for their complementary 
strengths in handling structured and high-dimensional data. 

 Random Forest (RF) is an ensemble-based method that constructs 
a multitude of decision trees during training and outputs the class 
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that is the mode of the classes (classification) of the individual trees. 
It is robust to overfitting and effective for datasets with a mix of 
numerical and categorical features. 

 Extreme Gradient Boosting (XGBoost) is a high-performance 
implementation of gradient boosting that has gained popularity due 
to its speed and accuracy. It builds models in a sequential manner 
where each new tree corrects errors made by previously trained 
trees. Regularization techniques help in reducing overfitting. 

 Linear Support Vector Machine (SVM) is a discriminative 
classifier formally defined by a separating hyperplane. In this work, 
a linear kernel is used for its scalability with high-dimensional data, 
such as hyperspectral input, and efficiency in terms of computation. 

Each model was trained and tested on both hyperspectral-only and 
multimodal datasets to assess its capability in detecting symptomatic and 
healthy pixels across different input modalities. 

Three supervised machine learning classifiers were evaluated for both the 
hyperspectral-only and multimodal features: 

 Random Forest (RF) 

 Extreme Gradient Boosting (XGBoost) 

 Linear Support Vector Machine (SVM) 

3.4.1 Preprocessing 

All input features were standardized using the StandardScaler 
from the Scikit-learn library. For SVM models trained on hyperspectral-
only data, Principal Component Analysis (PCA) was applied to reduce the 
feature dimensionality to 30 principal components, thereby improving 
model efficiency and reducing overfitting. 

3.4.2 Random Forest Classifier 

The Random Forest classifier was configured with the following 
parameters: 

 n_estimators = 100 
 class_weight = 'balanced' 
 random_state = 42 
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For hyperspectral-only data, deeper trees and a greater number of 
estimators (up to 200) were tested. Models were trained on the 
standardized feature vectors and evaluated on the held-out test set. 

3.4.3 XGBoost Classifier 

The XGBoost classifier was configured with the following 
hyperparameters: 

 n_estimators = 100 
 max_depth = 6 
 learning_rate = 0.1 
 eval_metric = 'logloss' 
 use_label_encoder = False 
 random_state = 42 

This gradient-boosting framework is optimized for tabular data and 
provides robust performance with built-in regularization. Models were 
trained and validated using stratified train-test splits. 

3.4.4 Linear SVM Classifier 

The Linear SVM classifier was selected for its simplicity and 
efficiency in high-dimensional spaces. The implementation used: 

 class_weight = 'balanced' 
 random_state = 42 
 max_iter = 10000 

For the hyperspectral-only SVM, PCA-reduced features were used. 
For the multimodal SVM, all features were retained 

3.4.1 Preprocessing 

All input features were standardized using the StandardScaler 
from the Scikit-learn library. For SVM models trained on hyperspectral-
only data, Principal Component Analysis (PCA) was applied to reduce the 
feature dimensionality to 30 principal components, thereby improving 
model efficiency and reducing overfitting. 

3.4.2 Random Forest Classifier 

The Random Forest classifier was configured with the following 
parameters: 
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 n_estimators = 100 
 class_weight = 'balanced' 
 random_state = 42 

For hyperspectral-only data, deeper trees and a greater number of 
estimators (up to 200) were tested. Models were trained on the 
standardized feature vectors and evaluated on the held-out test set. 

3.4.3 XGBoost Classifier 

The XGBoost classifier was configured with the following 
hyperparameters: 

 n_estimators = 100 
 max_depth = 6 
 learning_rate = 0.1 
 eval_metric = 'logloss' 
 use_label_encoder = False 
 random_state = 42 

This gradient-boosting framework is optimized for tabular data and 
provides robust performance with built-in regularization. Models were 
trained and validated using stratified train-test splits. 

3.4.4 Linear SVM Classifier 

The Linear SVM classifier was selected for its simplicity and 
efficiency in high-dimensional spaces. The implementation used: 

 class_weight = 'balanced' 
 random_state = 42 
 max_iter = 10000 

For the hyperspectral-only SVM, PCA-reduced features were 
used. For the multimodal SVM, all features were retained. 

3.5 Model Evaluation 

The models were assessed on the test dataset using standard 
classification metrics: 
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3.5.1 Confusion Matrix 

A confusion matrix is a tabular representation of actual vs. 
predicted classifications. It helps visualize performance across classes and 
is defined as follows: 

 
Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 
Actual Negative False Positive (FP) True Negative (TN) 

The confusion matrix allows for detailed error analysis and class-specific 
performance insights. 

3.5.2 Accuracy 

Accuracy measures the proportion of total correct predictions 
over all predictions. It is defined as: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

where TP, TN, FP, and FN denote True Positives, True 
Negatives, False Positives, and False Negatives, respectively. 

3.5.3 Precision 

Precision evaluates the ratio of true positives to all positive 
predictions made by the model. It is a measure of exactness: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

A high precision indicates that the model returns more relevant 
results than irrelevant ones. 

3.5.4 Recall 

Recall (or Sensitivity) quantifies the model's ability to identify 
all relevant instances: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

A high recall indicates a lower false negative rate, which is 
critical in disease detection tasks.
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3.5.5 F1 Score 

The F1 Score is the harmonic mean of precision and recall: 

𝐹ଵ = 2 ×
Precision × Recall

Precision + Recall
 (5) 

 
It balances the trade-off between precision and recall. 

3.6 Summary 

This chapter detailed the data handling, feature engineering, 
and model development workflow for detecting fire blight in apple leaves. 
By incorporating both hyperspectral and RGB data, the proposed 
methodology aims to compare conventional hyperspectral classification 
techniques with multimodal learning strategies. The subsequent chapter 
presents the experimental results and a comparative analysis of model 
performance across the two approaches. 
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CHAPTER 4 

 
 

RESULTS 
 
 
 
 

This chapter presents the experimental results obtained from the evaluation 
of machine learning models (Support Vector Machine, Random Forest, and XGBoost) 
for the detection of fire blight in apple leaves. The performance of these models, 
trained on hyperspectral (HSI) features alone and subsequently on fused HSI-RGB 
features, is detailed. The chapter is organized into two main sections: a quantitative 
analysis of performance metrics obtained from the testing performed on the 30% test 
set and a qualitative presentation of predicted image outputs. Key metrics including 
accuracy, precision, recall, F1-score, and ROC-AUC are reported to provide a 
comprehensive assessment of model capabilities. 

 
 

4.1. Quantitative Performance Analysis of Machine Learning Models 

4.1.1 Models trained on Hyperspectral Data 

a) SVM 

Table 1: Performance parameters for SVM model on Hyperspectral data 

Metric Healthy (Class 0) Diseased (Class 1) Overall / Macro Avg. 

Precision 0.94 0.92 0.93 

Recall 0.92 0.94 0.93 

F1-score 0.93 0.93 0.93 

Accuracy  0.93 

Support 78,902 78,902 157,804 

Confusion Matrix: 72276 6626 
4887 74015 
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b) Random Forest 

Table 2: Performance parameters for RF model on Hyperspectral data 

Metric Healthy (Class 0) Diseased (Class 1) Overall / Macro Avg. 

Precision 0.92 0.94 0.93 

Recall 0.94 0.91 0.93 

F1-score 0.93 0.93 0.93 

Accuracy  0.93 

Support 78,902 78,902 157,804 

Confusion Matrix: 

 

c) XGBoosting 

Table 3: Performance parameters for XGBoosting model on Hyperspectral data 

Metric Healthy (Class 0) Diseased (Class 1) Overall / Macro Avg. 

Precision 0.91 0.94 0.92 

Recall 0.95 0.90 0.92 

F1-score 0.93 0.92 0.92 

Accuracy  0.92 

Support 78,902 78,902 157,804 

Confusion Matrix: 

 

 

72532 4370 

6758 72144 

74585 4317 

7755 71147 
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4.1.2 Models trained on HIS-RGB fusion Data 

a) SVM 

Table 4: Performance parameters for SVM model on Multimodal data 

Metric Healthy (Class 0) Diseased (Class 1) Overall / Macro Avg. 

Precision 0.98 0.91 0.95 

Recall 0.91 0.98 0.95 

F1-score 0.94 0.95 0.95 

Accuracy  0.95 

Support 52,684 52,684 105,368 

Confusion Matrix: 

 

 

b) Random Forest 

Table 5: Performance parameters for RF model on Multimodal data 

Metric Healthy (Class 0) Diseased (Class 1) Overall / Macro Avg. 

Precision 0.99 0.97 0.98 

Recall 0.97 0.99 0.98 

F1-score 0.98 0.98 0.98 

Accuracy  0.98 

Support 62,575 62,574 125,149 

47819 4865 

807 51877 
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Confusion Matrix: 

 

 

c) XGBoosting 

Table 6: Performance parameters for XGBoosting model on Multimodal data 

Metric Healthy (Class 0) Diseased (Class 1) Overall / Macro Avg. 

Precision 0.99 0.96 0.975 

Recall 0.95 0.99 0.97 

F1-score 0.97 0.97 0.97 

Accuracy  0.9737 

Support 62,575 62,574 125,149 

Confusion Matrix: 

 

 

4.2 Prediction Outputs 

To visually demonstrate and compare the qualitative 
performance of all trained models, a single representative image from the 
test set was selected. For each model, its prediction output is presented 
alongside the original input image and the corresponding ground truth 
mask. Along with that the quantitative results for that output has also been 
shown. This side-by-side presentation facilitates a clear visual assessment 
and comparison of how each model performs in segmenting or classifying 
the target features on the same sample image. 

 

60565 2010 

402 62172 

59684 2891 

403 62171 
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4.2.1 Models trained on Hyperspectral Data 

a) SVM 

Accuracy 0.9219436645507812 
Precision 0.08654876741693462 
Recall 0.9958890030832477 
F1 Score 0.15925712876982495 
IoU 0.08651785714285715 

 

Figure 1 Prediction of SVM model on hyperspectral data 

b) RF 

 
Figure 2 Prediction of RF model on hyperspectral data 

Accuracy 0.978851318359375 
Precision 0.25981308411214954 
Recall 1.0 
F1 Score 0.4124629080118694 
IoU 0.25981308411214954 
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c) XGBoosting 

Accuracy 0.9740028381347656 
Precision 0.22212076247003767 
Recall 1.0 
F1 Score 0.3635005136826375 
IoU 0.22212076247003767 

 

Figure 3 Prediction of XGBoost model on hyperspectral data 

4.2.2 Models trained on HIS-RGB fusion Data 

a) SVM 

Accuracy 0.976837158203125 
Precision 0.24238261738261738 
Recall 0.9974306269270298 
F1 Score 0.3899939722724533 
IoU 0.242231374017222 

 

Figure 4 Prediction of SVM model on Multimodal data 
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b) RF 

 

Figure 5 Prediction of RF model on Multimodal data 

c) XGBoosting 

Accuracy 0.976837158203125 
Precision 0.24238261738261738 
Recall 0.9974306269270298 
F1 Score 0.3899939722724533 
IoU 0.242231374017222 

 

Figure 5 Prediction of XGBoost model on Multimodal data 

 

Accuracy 0.9815711975097656 
Precision 0.2870848708487085 
Recall 0.9994861253854059 
F1 Score 0.44604976493521387 
IoU 0.28704250295159384 
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CHAPTER 5 

 
 

CONCLUSIONS 
 
 
 
 

This chapter provides an in-depth discussion of the experimental results 
presented in Chapter 4 for the detection of fire blight in apple leaves using machine 
learning models trained on hyperspectral (HSI) features and fused HSI-RGB features. 
The implications of these findings are explored, followed by a summary of the main 
conclusions and potential avenues for future research. 

5.1 Discussion of Results 

The primary objective of this study was to evaluate the efficacy 
of different machine learning models (Support Vector Machine, Random 
Forest, and XGBoost) and the impact of multimodal feature fusion (HSI-
RGB) on the accuracy of fire blight detection. 
5.1.1 Performance on Hyperspectral (HSI) Data Alone 

The results from models trained solely on HSI data (Section 4.1.1) 
indicate a strong baseline capability for fire blight detection. 

 Both Support Vector Machine (SVM) and Random Forest 
(RF) achieved identical overall accuracy and macro F1-scores of 
0.93. This suggests that when relying purely on spectral 
information, these two models can effectively distinguish between 
healthy and diseased leaf samples with high fidelity. The confusion 
matrices show a balanced performance in correctly identifying 
both healthy (class 0) and diseased (class 1) instances. 

 XGBoost, while still performing very well, yielded a slightly lower 
accuracy and macro F1-score of 0.92. This minor difference might 
be attributed to the specific hyperparameter tuning or the nature of 
how XGBoost handles high-dimensional spectral data compared to 
SVM's kernel transformations or RF's ensemble of decision trees. 

 The overall high performance across these models underscores the 
rich discriminative information contained within hyperspectral 
signatures for identifying physiological changes associated with 
fire blight. 
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5.1.2. Impact and Efficacy of HSI-RGB Feature Fusion 

The introduction of RGB-derived features, fused with HSI data 
(Section 4.1.2), led to a noticeable improvement in performance across all 
three machine learning models. 

 SVM saw its accuracy increase from 0.93 to 0.95, and its macro 
F1-score also rose to 0.95. This indicates that the addition of spatial 
and colorimetric information from RGB images provided 
complementary features that SVM could leverage for better class 
separation. 

 Random Forest (RF) demonstrated the most substantial 
improvement with feature fusion. Its accuracy surged from 0.93 to 
0.98, and its macro F1-score similarly reached 0.98. This suggests 
that RF is particularly adept at utilizing the combined feature set, 
possibly due to its ability to handle diverse feature types and 
interactions effectively through its ensemble structure. RF emerged 
as the top-performing model quantitatively on the fused dataset. 
The confusion matrix for RF with fused data shows a very low 
number of misclassifications (e.g., only 402 false negatives for 
class 1). 

 XGBoost also benefited significantly from fusion, with accuracy 
improving from 0.92 to 0.9737 and the macro F1-score to 0.97. 
This places XGBoost as a very strong performer on the fused 
dataset, nearly matching Random Forest. 

 
The consistent improvement across all models upon feature fusion 

strongly suggests that the spatial context, color information, and 
potentially texture (depending on specific RGB features extracted, though 
not explicitly detailed in the methodology from the results chapter) from 
RGB images provide valuable information that HSI data alone may lack 
or represent differently. HSI excels at capturing subtle spectral changes 
indicative of plant stress, while RGB can offer clearer macroscopic visual 
cues. Their combination evidently provides a more holistic representation 
of the leaf's condition. 

5.1.3 Qualitative Analysis of Prediction Outputs 

The qualitative results presented in Section 4.2, showing predictions 
on a single representative image, offer further insights, though they also 
highlight a common challenge in translating overall 
classification/segmentation metrics to individual image performance. 

 The reported F1-scores and IoU values for this single image 
prediction task (e.g., RF Fused F1-score of 0.446, SVM HSI F1-
score of 0.159) are substantially lower than the overall dataset 
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macro F1-scores (which were above 0.90). This discrepancy is 
significant. It could imply several things: 

 The chosen representative image might be particularly 
challenging, with subtle or complex infection patterns. 

 The metrics reported in Section 4.2 (IoU) are typically used 
for semantic segmentation (pixel-level classification), 
which is a more demanding task than image-level or large-
region classification. The overall metrics in Section 4.1 
might reflect a more general classification accuracy over 
many samples/pixels averaged out, while Section 4.2 
focuses on the pixel-wise accuracy of segmentation 
on one image. 

 Ground truth annotation for pixel-level segmentation can 
be subjective and difficult, especially for early or diffuse 
symptoms. 

 Despite the lower absolute scores in Section 4.2, the trend observed 
in the quantitative analysis (Section 4.1) generally holds: 

 Models trained on fused HSI-RGB data consistently 
achieved higher F1-scores and IoU values for the single 
image prediction compared to their HSI-only counterparts 
(e.g., RF HSI F1=0.412 vs. RF Fused F1=0.446; SVM HSI 
F1=0.159 vs. SVM Fused F1=0.389). This visually 
reinforces the benefit of feature fusion for improving the 
accuracy of localizing or segmenting infected regions. 

 Random Forest generally yielded the best F1-score and 
IoU in both HSI-only and fused scenarios for this specific 
image, aligning with its top quantitative performance on the 
broader test set. 

 The high recall values (often 1.0 or close to 0.99) for the single 
image predictions, especially for RF and XGBoost, suggest that the 
models are very good at identifying potential infected pixels (low 
false negatives for the positive class on that image). However, the 
lower precision values indicate that they might also be over-
segmenting or including some healthy pixels in their "diseased" 
prediction (higher false positives for the positive class on that 
image), leading to the more moderate F1 and IoU scores. 

5.1.4 Comparative Model Performance 

Overall, Random Forest emerged as the most effective model, particularly 
when utilizing the fused HSI-RGB feature set, achieving an accuracy and 
macro F1-score of 0.98. XGBoost also demonstrated excellent and highly 
competitive performance with fused data. SVM, while improving with 
fusion, was slightly outperformed by the ensemble methods in the fused 
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scenario. This aligns with literature where ensemble models like Random 
Forest and XGBoost are often found to be robust and high-performing for 
complex classification tasks with diverse feature sets. 

5.1.5 Implications and Significance 

The findings of this study have important implications for the 
development of automated plant disease detection systems. The 
demonstrated improvement with HSI-RGB fusion suggests that future 
systems should aim to integrate data from multiple sensor modalities to 
achieve higher accuracy and reliability. Early and accurate detection of fire 
blight is crucial for timely intervention and management, which can 
prevent significant economic losses in apple orchards. The high accuracies 
achieved, particularly with Random Forest on fused data, indicate a strong 
potential for practical application. 

5.1.6 Limitations of the Study 

While the results are promising, some limitations should be 
acknowledged: 

 Dataset Specificity: The performance was evaluated on a specific 
dataset. Generalizability to other apple cultivars, different 
geographical locations, varying environmental conditions, or other 
diseases would require further testing. 

 Computational Cost: The study focused on accuracy metrics. A 
comparison of training and inference times for the different models 
and feature sets would be valuable for assessing practical 
deployability. 

 Feature Engineering: The specific HSI bands selected and RGB 
features extracted were based on common practices. Further 
optimization of feature selection or extraction techniques might 
yield additional performance gains. 

5.2 Conclusions 

Based on the comprehensive experimental evaluation, the following key 
conclusions can be drawn: 

1. Effectiveness of HSI Data: Hyperspectral imaging data alone 
provides substantial information for detecting fire blight in apple 
leaves, with models like SVM and Random Forest achieving high 
accuracies (0.93 F1-score). 

2. Superiority of Multimodal Fusion: The fusion of HSI spectral 
features with RGB-derived spatial/colorimetric features 
significantly enhances the performance of all tested machine 
learning models (SVM, Random Forest, and XGBoost) for fire 
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blight detection. This underscores the value of integrating 
complementary information from different sensor modalities. 

3. Random Forest as the Top Performer: The Random Forest 
model, when trained on the fused HSI-RGB feature set, 
demonstrated the highest overall quantitative performance, 
achieving an accuracy and macro F1-score of 0.98. It also showed 
strong qualitative results in the single-image prediction task. 

4. Qualitative Corroboration: Visual inspection of prediction 
outputs confirmed that fused models generally provided more 
precise delineation of infected regions compared to models using 
only HSI data, despite the overall quantitative metrics for the single 
image being lower than for the entire test set. 

5. Potential for Practical Application: The high levels of accuracy 
achieved, particularly with feature fusion, indicate a strong 
potential for developing practical, automated systems for early fire 
blight detection. Such systems can aid in precision agriculture, 
enabling timely and targeted interventions to mitigate disease 
spread and economic damage. 
In summary, this research successfully demonstrates that a 

multimodal approach, specifically the fusion of HSI and RGB data, 
coupled with robust machine learning algorithms like Random Forest, 
offers a highly effective strategy for the detection of fire blight in apple 
leaves. 

5.3 Future Work 

Building upon the findings of this study, several avenues for future 
research can be pursued: 

1. Exploration of Deep Learning Models: Investigate the 
application of deep learning architectures (e.g., CNNs, Vision 
Transformers, multimodal deep fusion networks) for this task, 
which might automatically learn more complex hierarchical 
features from HSI and RGB data. 

2. Advanced Fusion Techniques: Explore more sophisticated 
feature fusion techniques beyond early concatenation, such as 
attention mechanisms, intermediate fusion, or model-level fusion. 

3. Temporal Analysis: Leverage the temporal aspect of the dataset 
more explicitly, perhaps using recurrent neural networks (RNNs) 
or LSTMs to model disease progression over time. 

4. Expanded Dataset and Generalizability Testing: Evaluate the 
developed models on larger, more diverse datasets encompassing 
different apple cultivars, geographical regions, varying 
environmental conditions, and other similar plant diseases to assess 
robustness and generalizability. 
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5. Real-World Field Deployment: Develop and test a prototype 
system for real-time or near real-time fire blight detection in field 
conditions, possibly using UAV-mounted HSI and RGB sensors. 
This would also involve addressing challenges like varying 
illumination and complex backgrounds. 

6. Interpretability of Models: Further investigate the features 
deemed most important by the models (e.g., using SHAP for 
Random Forest and XGBoost) to gain deeper insights into the 
spectral and spatial characteristics indicative of fire blight. 

7. Cost-Benefit Analysis: Conduct a cost-benefit analysis for 
implementing such detection systems in commercial orchards to 
assess their economic viability. 

8. Clarification of Test Set Metrics: Re-evaluate or clarify the 
'support' figures in the classification reports to ensure consistent 
comparison bases between HSI-only and fused model evaluations 
if they were indeed intended to be on the exact same 30% test set. 
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