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Deciphering the mechanisms of Alzheimer's and Parkinson's diseases using 

network biology and a functional genomics approach 

Rahul Tripathi 

ABSTRACT 

Neurodegenerative disorders are known to exhibit genetic overlap and shared pathophysiology. 

This study aims to find the shared genetic architecture of Alzheimer's disease (AD) and 

Parkinson's disease (PD), two major age-related progressive neurodegenerative disorders. The 

gene expression profiles of GSE67333 (containing samples from AD patients) and GSE114517 

(containing samples from PD patients) were retrieved from the Gene Expression Omnibus 

(GEO) functional genomics database managed by the National Center for Biotechnology 

Information (NCBI). The web application GREIN (GEO RNA-seq Experiments Interactive 

Navigator) was used to identify differentially expressed genes (DEGs). 617 DEGs (239 

upregulated and 379 downregulated) were identified from the GSE67333 dataset. Likewise, 

723 DEGs (378 upregulated and 344 downregulated) were identified from the GSE114517 

dataset. The protein-protein interaction (PPI) networks of the differentially expressed genes 

(DEGs) were constructed, and the top 50 hub genes were identified from the network of the 

respective dataset. Of the 4 common hub genes between the two datasets, CXCR4 was selected 

due to its gene expression signature profile and the same direction of differential expression 

between the two datasets. Mavorixafor was chosen as the reference drug due to its known 

inhibitory activity against CXCR4 and its ability to cross the blood-brain barrier. Molecular 

docking and molecular dynamics simulation of 51 molecules having structural similarity with 

Mavorixafor were performed to find two novel molecules, ZINC49067615 and 

ZINC103242147. Natural compounds are gaining prominence in the therapy of 

neurodegenerative disorders due to their biocompatibility and potential neuroprotective 

properties, including their ability to modulate CXCR4 expression. Recent advancements in 

artificial intelligence (AI) and machine learning (ML) algorithms have opened new avenues 

for drug discovery research across various therapeutic areas, including neurodegenerative 

disorders. We produced an ML model using cheminformatics-guided machine learning 

algorithms using data of compounds with known CXCR4 activity, retrieved from the Binding 

Database, to analyse diverse physicochemical attributes of natural compounds obtained from 

the COCONUT Database and predict their inhibitory activity against CXCR4.  
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CHAPTER 1 

INTRODUCTION 

Neurodegenerative disorders are reported to share a common pathophysiology. 

Genome-wide association data (GWAS) have identified genetic overlap and revealed common 

biological pathways between neurodegenerative diseases, such as Alzheimer's disease (AD) 

and Parkinson's disease (PD) (Bonham et al., 2018). Discovering common genetic architecture 

among different neurodegenerative disorders may help determine underlying shared disease 

mechanisms and facilitate early diagnosis and treatment strategies. AD and PD are age-related 

progressive neurodegenerative disorders with an enormous emotional and economic impact on 

patients and caregivers. AD is characterised by intracellular neurofibrillary tangles (NFT) 

composed of aggregated hyperphosphorylated tau protein in the neurons and glial cells 

(Dickson, Rademakers, & Hutton, 2007; Kovacs, 2015) and extracellular amyloid plaques 

consisting of aggregated amyloid-β (Aβ) (Dubois et al., 2007; Hyman et al., 2012). Even 

though PD is conventionally characterised by the aggregation of α-synuclein (α-Syn), tau 

protein, and NFTs have also been reported to modify PD symptomatology and disease risk (D. 

J. Irwin, Lee, & Trojanowski, 2013; Nalls et al., 2011; Simón-Sánchez et al., 2009). Besides 

their activity in the immune system, chemokines and their receptors are remarkably expressed 

in the central nervous system and modulate cell migration and neurotransmission. 

 

The CXC motif chemokine receptor 4 (CXCR4) belongs to the G protein-coupled 

receptor (GPCR) protein superfamily. CXCR4 and its ligand CXCL12 are usually linked with 

hematopoiesis. But, CXCL12 has also been reported to be expressed in other tissues such as 

the brain, heart, kidney, lung, thymus, liver, and spleen. Likewise, CXCR4-mediated biological 

pathways are associated with crucial cellular processes like cell proliferation, transport, and 

stress resistance (Britton, Poznansky, & Reeves, 2021). CXCR4 performs an array of 

regulatory functions in the immune system and neurodevelopment (Klein & Rubin, 2004; 

Kokovay et al., 2010; Zou, Kottman, Kuroda, Taniuchi, & Littman, 1998). CXCR4 has been 

reported to modulate axon guidance and apoptosis via microglial activation and astroglial 

signalling (Bezzi et al., 2001). CXCR4 has also been reported to be involved in cell cycle 

regulation via p53 and Rb proteins (M. Z. Khan et al., 2008; Muhammad Zafrullah Khan et al., 

2003). CXCR4 and functionally related genes have been associated with increased risk for 

various age-associated neurodegenerative diseases, such as AD and PD. CXCR4 expression 

has been observed to be elevated in AD and PD patients as compared to controls (H. Li & 
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Wang, 2017; Yuanyuan Li et al., 2019). The multifaceted activity of CXCR4 is explained by 

the complex mechanisms regulating its biological functions, such as receptor crosstalk, 

isoforms of receptor and ligands, non-canonical ligands, and signalling break-off. Impairment 

of the CXCR4/CXCL12 signalling and consequent biological processes are associated with an 

array of disease pathologies, including neurodegenerative disorders, autoimmune diseases, 

immunodeficiency disorders, developmental abnormalities, and malignancy (Britton et al., 

2021). 

 

Due to technological advancements, a large amount of genomic, transcriptomic and 

proteomic information is now available for discovering new drug targets and screening new 

lead compounds (Anderson, 2012). Computer-aided drug discovery (CADD) is emerging as a 

powerful tool that employs this information to accelerate drug design, through advanced 

computational methods and mathematical modelling to simulate receptor-drug interactions and 

predict binding affinities to screen potential compounds without prior purchase or synthesis, 

thereby saving a significant amount of time and money (Baig, Ahmad, Rabbani, Danishuddin, 

& Choi, 2018). CADD is usually classified into two categories: structure-based drug discovery 

(SBDD) and ligand-based drug discovery (LBDD). SBDD aims to design new lead compounds 

by analysing 3D structure information of receptors (proteins) to determine binding sites and 

interactions vital for their biological activity. While LBDD utilises physicochemical properties 

and biological activity of known ligands to optimise existing drugs or design new drugs with 

enhanced activity (Yu & Mackerell, 2017). Some of the commonly utilised CADD 

methodologies are receptor (protein) identification, molecular docking and simulation studies, 

QSAR (quantitative structure activity relationship), ADMET (absorption, distribution, 

metabolism, excretion, and toxicity) properties, molecule design and lead optimisation (Sehgal, 

Hammad, Tahir, Akram, & Ahmad, 2018). Molecular docking is the most frequently used 

SBDD methodology facilitated by exponential growth in the number of easily accessible 3D 

structures of receptors (proteins) and small molecule compounds (ligands), and availability of 

computational power to analyse them (Stanzione, Giangreco, & Cole, 2021). It is used to 

predict the orientation and affinity of interaction between a ligand and a protein in its binding 

site, and provide a docking score that signifies the binding strength between the ligand and the 

target protein (Tiwari & Singh, 2022).  
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Neurodegenerative disorder refers to an array of diverse conditions that result in progressive 

degeneration and loss of neurons, leading to a decline in cognitive and motor functions 

(Lamptey et al., 2022; Wood, Winslow, & Strasser, 2015). There is a severe lack of effective 

diagnostic and treatment options for neurogenerative disorders due to the complexity of the 

molecular mechanisms of their pathophysiology and the heterogeneity of the patient population 

(Myszczynska et al., 2020). Machine learning (ML), a branch of artificial intelligence (AI) and 

computer science, involves using data and algorithms to learn and make predictions (Chetty, 

Hallinan, Ruz, & Wipat, 2022). This can be used for the development of approaches for the 

diagnosis and treatment of complex conditions, including neurodegenerative disorders, such as 

Alzheimer's disease (AD) and Parkinson's disease (PD) (Khaliq, Oberhauser, Wakhloo, & 

Mahajani, 2023). Due to the availability of large amounts of experimental data, AI and ML 

have shown potential to be an indispensable tool to derive valuable insights and help in 

decision-making during drug development (Abouchekeir et al., 2022). Thus, the advancements 

in AI/ML algorithms have presented an unprecedented potential for accelerating drug 

development through AI/ML-driven approaches (Vatansever et al., 2021).  

 

 In our previous study, we observed the upregulation of the CXC motif chemokine 

receptor 4 (CXCR4), a member of the G protein-coupled receptor (GPCR) protein superfamily, 

in AD and PD, by analyzing gene expression patterns of AD and PD patients compared to 

healthy controls of similar age, using publicly available RNA sequencing datasets (Tripathi & 

Kumar, 2023). Other studies have also reported upregulation of the CXCR4 gene in 

neurodegenerative disorder patients, including AD and PD, as compared to healthy age-

matched controls (H. Li & Wang, 2017; Yuanyuan Li et al., 2019). CXCR4 and its ligand C-

X-C motif chemokine ligand 12 (CXCL12) are usually associated with the bone marrow niche 

and haematopoiesis, the production of blood cellular components. However, CXCL12 is also 

expressed in various other tissues, like the brain, kidney, lung, heart, etc. Similarly, CXCR4 

signalling pathways are crucial for various cellular processes, such as cellular proliferation and 

transport (Britton et al., 2021). It has been suggested that dysregulation in the expression of 

CXCR4 and related microglial genes may play a role in age-related neurodegenerative 

disorders, including AD and PD (Bonham et al., 2018). 

 

 In this study, we aim to find natural compounds that can potentially be used for the 

treatment of age-related neurodegenerative disorders, like AD and PD, through inhibition of 
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the CXCR4 signalling pathway. Natural compounds have become increasingly more popular 

as lead compounds for drug development, providing an alternative to synthetic compounds due 

to their biocompatibility and neuroprotective properties(Andrade et al., 2023). Natural 

compounds have been suggested to offer protection against excitotoxicity, neuroinflammation, 

oxidative stress and proteinopathies (Howes & Simmonds, 2014; P. Kumar, Khanum, Khanum, 

& Khanum, 2012). Various compounds, such as curcumin, quercetin, resveratrol, ginsenosides 

and rosmarinic acid, are commonly found in plant species used in traditional medicine or food 

products like fruits, herbs and spices. However, their poor bioavailability and delivery in the 

central nervous system (CNS) limit their utilisation for therapeutic purposes. For example, even 

though curcumin has proven benefits in the treatment of AD, it is limited due to low absorption 

and bioavailability (Sharifi-Rad et al., 2020). New pharmaceutical strategies like nanoparticles 

and nanocarriers are required for their targeted delivery and controlled release, to increase 

blood-brain barrier (BBB) permeability and improve stability against metabolic degradation, 

resulting in elevated bioavailability and reduced toxic side effects (Enrico, 2019). 
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CHAPTER 2 

MATERIAL AND METHODS
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CHAPTER 2 

MATERIAL AND METHODS 

2.1. Data Curation 

The datasets with accession numbers GSE67333 and GSE114517 were retrieved from the Gene 

Expression Omnibus (GEO) (Barrett et al., 2005) database 

(https://www.ncbi.nlm.nih.gov/geo/). GSE67333 RNA-seq dataset contains 4 samples from 

late-onset Alzheimer's disease (LOAD) patients and 4 samples from age-matched healthy 

controls. The dataset is a comprehensive list of transcriptomics alterations and warrants a 

holistic approach, including both coding and non-coding RNAs in functional studies to 

understand the pathophysiology of LOAD. Additionally, the GSE114517 RNA-seq dataset 

contains 17 samples from Parkinson's disease patients and 13 samples from age-matched 

healthy controls. In GSE114517, for performing RNA-seq, the samples, acquired from the 

Netherlands Brain Bank, were taken post-mortem from PD and non-PD control donors. The 

CXCR4 protein structure (PDB Code: 3ODU) was retrieved from Protein Data Bank 

(www.rcsb.org) (Berman et al., 2000). The acquired CXCR4 protein has 2 chains with a 

sequence length of 502 and a resolution of 2.50 Å. The structure reveals a consistent 

homodimer with an interface including helices V and VI. All undesired molecules (water 

molecules, ligands, and cofactors) were removed, and hydrogen atoms were added. The 

structure of the reference drug, Mavorixafor, was retrieved from PubChem 

(www.pubchem.ncbi.nlm.nih.gov/compound/amd-070). ZINC database 

(www.zinc.docking.org) (J. J. Irwin et al., 2020) was used for structure similarity search, and 

SDF files of 51 molecules with more than 40% similarity were selected for further analysis. 

Avogadro software (Hanwell et al., 2012) was used to convert the SDF format to the MOL2 

format. 

 

This study utilises the collection and analysis of the data from the Collection of Open Natural 

Products (COCONUT) Database (Sorokina, Merseburger, Rajan, Yirik, & Steinbeck, 2021) 

and the Binding Database (BindingDB) (Gilson et al., 2016). The COCONUT Database 

(http://www.coconut.naturalproducts.net), a large public resource of natural products, was the 

test data source. To enhance the relevance of the test data, the molecular structure of 

Mavorixafor, a blood-brain barrier (BBB) permeable inhibitor of CXCR4, was obtained from 

PubChem (https://www.pubchem.ncbi.nlm.nih.gov/compound/amd-070) and used as a 

reference to select 10,000 structurally similar compounds (Tanimoto Coefficient > 65%) from 
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the COCONUT Database. Similarity Search of Coconut Database ranks compounds according 

to SAB similarity score (defined as similarity between compound A and B) and produces a list 

of compounds with SAB score greater than a threshold (0.65 in our case). This search produced 

10,000 compounds (maximum possible) with the last compound having a similarity score of 

65.04%. In our study, we have used a relatively low threshold of 0.65 to increase chemical 

search space as done in previous studies (Szilágyi et al., 2021). A threshold of 0.65 was also 

evaluated to be most optimal for the prediction of compound-protein interaction in another 

study (Mulia, Kusuma, & Afendi, 2018). Simultaneously, the training data containing 1529 

compounds with known activity against CXCR4 was sourced from the BindingDB 

(https://www.bindingdb.org). RDKit (https://www.rdkit.org), used for curation of this data, is 

an open-source cheminformatics and machine learning toolkit initially developed by Rational 

Discovery and presently maintained at Novartis Institutes for BioMedical Research (Tosco, 

Stiefl, & Landrum, 2014). Utilising the RDKit toolkit, Simplified Molecular Input Line Entry 

System (SMILES) strings of test and training data were standardised into canonical SMILES. 

This step was crucial in ensuring a consistent and comparable format for the chemical 

structures within the training and test data. Redundant and duplicate entries were removed from 

the training data. This resulted in a final, high-quality training data containing 1266 

compounds. These compounds were then classified according to their inhibitory activity as 

inhibitors (IC50 ≤ 100 nM) and non-inhibitors (IC50 > 100 nM) for subsequent predictive 

modelling. 

 

2.2. Molecular docking analysis 

The docking analyses were performed using AutoDock Vina (Eberhardt, Santos-Martins, 

Tillack, & Forli, 2021). To predict the predominant binding mode of identified natural 

compounds and estimate their binding affinity as inhibitors, we conducted their molecular 

docking analyses with CXCR4, utilising Vina-GPU 2.0 (Ding et al., 2023). Using graphics 

processing units (GPUs), Vina-GPU 2.0 accelerates molecular docking techniques (such as 

AutoDock Vina, QuickVina 2, and QuickVina-W) to facilitate a speedy analysis. Our specific 

choice, Vina-GPU+ (www.github.com/DeltaGroupNJUPT/Vina-GPU-2.0), optimises the 

acceleration of Vina-GPU and facilitates batch docking for multiple ligands against a single 

receptor. The X-ray crystal structure (resolution: 2.50 Å) of our target protein, CXCR4 (PDB 

Code: 3ODU), was obtained from the Protein Data Bank (https://www.rcsb.org) (Berman et 

al., 2000). To ensure precision in our analyses, the CXCR4 protein structure was optimised to 
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remove water molecules, ligands, and cofactors. Hydrogen atoms were then added to the 

cleaned protein structure using Avogadro software (Hanwell et al., 2012). In the preparation of 

ligands for docking, Open Babel was employed to convert the Structure Data Format (SDF) 

files to the MOL2 format (O’Boyle et al., 2011). Subsequently, the refined CXCR4 protein was 

subjected to molecular docking with Mavorixafor, a reference compound, and the test 

compounds to evaluate their binding affinities. The determination of potential inhibitors rested 

on the identification of compounds exhibiting high binding affinities. The interactions between 

natural compounds and specific residues of the CXCR4 protein were recorded and compared 

with existing literature. Identification of natural compounds with interactions in line with 

previous studies increases the reliability of the study. 

 

2.3. Prediction of pharmacokinetic/toxicity (ADME/T) properties 

2.5.1. Bioavailability radar 

The bioavailability radar is a tool that considers six different physicochemical properties (size, 

solubility, lipophilicity, flexibility, polarity, and saturation) to predict a molecule's drug-

likeness. Each axis of the radar represents one of these properties, whose range is determined 

by different descriptors (Lovering, Bikker, & Humblet, 2009; Ritchie, Ertl, & Lewis, 2011) 

and depicted as a pink zone where the radar plot of the molecule must fall for it to be deemed 

as drug-like. 

 

2.5.2. Physicochemical properties 

The physicochemical properties consist of various physical and chemical descriptors like the 

number of particular atom types, the number of specific bond types, molecular weight (MW), 

fraction of sp3 hybridized carbons (Fraction Csp3), molecular r efractivity (MR) and 

topological polar surface area (TPSA) and are utilized to predict absorption and blood-brain 

permeability. The PSA is calculated using the fragmental technique called TPSA, considering 

sulfur and phosphorus as polar atoms. This has proven a useful descriptor in many models and 

rules to quickly estimate some ADME properties, especially concerning biological barrier 

crossing, such as absorption and brain access (Daina & Zoete, 2016; Lovering et al., 2009). 
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Figure 2.1: Methodology for Virtual Screening of CXCR4 Inhibitors as Potential Therapeutic Agents for 

Alzheimer's and Parkinson's Diseases. The datasets with accession numbers GSE67333 and GSE114517 were 
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retrieved from the Gene Expression Omnibus (GEO) database. To determine the differentially regulated gene 

(DEG) profiles for AD and PD patients, the datasets GSE67333 and GSE114517 were analyzed with the GEO 

RNA-seq Experiments Interactive Navigator (GREIN) web platform. STRING, a database of known and predicted 

interacting genes/proteins of a wide range of organisms, was searched for potential protein-protein interactions 

between the proteins encoded by the DEGs obtained from the datasets GSE67333 (AD) and GSE114517 (PD). 

Top 50 hub genes were screened separately from the datasets GSE67333 (AD) and GSE114517 (PD) using 

CytoHubba plugin for Cytoscape. Virtual screening was performed via molecular docking to identify novel 

potential therapeutic agents, by computing their binding affinity score and interacting residues of our target 

protein, CXCR4. 3D structure of selected protein CXCR4 (PDB ID: 3ODU) was retrieved from Protein Data 

Bank. Mavorixafor and all five test compounds were analysed to predict their ADME properties. Five test 

compound complexes with CXCR4 displaying the highest docking scores were chosen for molecular dynamics 

simulations to validate the molecular docking results. 

 

2.5.3. Lipophilicity 

The lipophilicity of drugs is measured by evaluating the octanol/water partition coefficient (log 

Po/w). Many computational methods for log Po/w estimation were developed with diverse 

performance on various chemical sets. Common practice is to use multiple predictors either to 

select the most accurate methods for a given chemical series or to generate consensus 

estimation. SwissADME (www.swissadme.ch) calculates five predictors (iLOGP, MLOGP, 

WLOGP, XLOGP3, and SILICOS-IT) to compute the consensus log Po/w (average of all five 

predictors) (Arnott & Planey, 2012; Mannhold, Poda, Ostermann, & Tetko, 2009). Here, 

XLOGP3, an atomistic method including corrective factors and knowledge-based library29; 

WLOGP, our own implementation of a purely atomistic method based on the fragmental 

system of Wildman and Crippen. MLOGP, an archetype of topological method relying on a 

linear relationship with 13 descriptors, whereas, SILICOS-IT, a hybrid method relying on 27 

fragments and 7 descriptors. 

 

2.5.4. Water solubility 

The water solubility of molecules is calculated by SwissADME using three methods – ESOL 

(Estimated Solubility) (Delaney, 2004), Ali (Ali, Camilleri, Brown, Hutt, & Kirton, 2012), and 

SILICOS-IT – as Log S values that are the decimal logarithm (i.e., logarithm with base 10) of 

their molar aqueous solubility and is calculated in mol/l and mg/ml. Their qualitative solubility 

class is also provided. 

 

2.5.5. Pharmacokinetics 

SwissADME utilizes various specialized models to assess the ADME properties of molecules. 

The first model predicts the blood-brain barrier (BBB) permeability and passive 
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gastrointestinal absorption (Daina & Zoete, 2016). The second model predicts whether a 

molecule is a substrate of permeability glycoprotein (Pgp). It assesses a molecule's ability to 

permeate through membranes such as the gastrointestinal wall and the brain (Montanari & 

Ecker, 2015). The third model predicts the interaction of a molecule with major cytochrome 

P450 (CYP) isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4) that play a crucial 

role in drug elimination by utilizing biotransformation. Furthermore, their inhibition leads to 

drug interactions (Huang et al., 2008), resulting in toxicity or other undesired ramifications. 

The last model predicts the skin permeability coefficient (Kp) that shows a linear correlation 

between molecular mass and lipophilicity (Pecoraro et al., 2019). An increase in the negative 

value of log Kp (cm/s) corresponds to a decrease in skin permeability. SwissADME applied 

the support vector machine algorithm (SVM) on meticulously cleansed large datasets of known 

substrates/non-substrates or inhibitors/non-inhibitors.  

 

2.5.6. Drug‑likeness 

It qualitatively analyses the potential of a molecule to act as a therapeutic agent regarding its 

oral bioavailability by comparing the physicochemical properties of a molecule with its 

biopharmaceutical nature inside the human body (Bickerton, Paolini, Besnard, Muresan, & 

Hopkins, 2012). SwissADME utilizes multiple filters consisting of different ranges of 

descriptors that must be fulfilled for a molecule to be considered drug-like. There filters are 

Lipinski (Lipinski, Lombardo, Dominy, & Feeney, 2001), Ghose (Ghose, Viswanadhan, & 

Wendoloski, 1999), Veber (Veber et al., 2002), Egan (Egan, Merz, & Baldwin, 2000), and 

Muegge (Muegge, Heald, & Brittelli, 2001). Additionally, a bioavailability score (Martin, 

2005) is given to the molecules that describe them in four classes with oral bioavailability of 

0.11, 0.17, 0.55, or 0.85. It seeks to predict the probability of a compound to have at least 10% 

oral bioavailability in rat or measurable Caco-2 permeability. Multiple estimations allow 

consensus views or selection of methods best fitting the end-user's specific needs in terms of 

chemical space or project-related demands. Any violation of any rule described here appears 

explicitly in the output panel. 

 

2.5.7. Medicinal chemistry friendliness 

SwissADME removes PAINS (pan assay interference compounds) using two pattern 

recognition filters. These compounds can potentially cause problems in assays irrespective of 

the target protein and can also lead to false positive results (Baell & Holloway, 2010). The 
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problematic functional groups or moieties, which can cause metabolic imbalance, toxicity, or 

inferior pharmacokinetics, are also displayed as "Structural Alerts". Lead-likeness can be 

similar to drug-likeness, but it focuses more on the physicochemical properties that must be 

fulfilled for a molecule to be regarded as a good lead (Brenk et al., 2008). The "Synthetic 

Accessibility" score that lies between 1 (easy synthesis) and 10 (complex synthesis) provides 

an estimation of the ease of synthesis of drug-like molecules. It allows the selection of 

promising virtual screened molecules for synthesis and further biological testing (Ertl & 

Schuffenhauer, 2009). 

 

2.5.8. Blood-brain barrier permeability prediction and ADME analysis 

Assessing a compound's potential to traverse the blood-brain barrier (BBB) is crucial for 

developing drug candidates targeting the central nervous system (CNS) (D. Roy, Hinge, & 

Kovalenko, 2019). Our analysis of BBB permeability employed three tools—DeePred-BBB, 

LightBBB, and SwissADME. DeePred-BBB (www.github.com/12rajnish/DeePred-BBB), 

utilizing SMILES notations, predicted BBB permeability using a deep neural network (DNN)-

based model, boasting superior accuracy (98.07%) compared to one-dimensional convolutional 

neural network (97.44%) and convolutional neural network (97.61%) (R. Kumar et al., 2022). 

LightBBB (http://ssbio.cau.ac.kr/software/bbb), a publicly available web server, also predicted 

BBB permeability through the SMILES query format (Shaker et al., 2021). SwissADME 

assessed physicochemical properties, pharmacokinetics, drug-likeness, and medicinal 

chemistry friendliness (Daina, Michielin, & Zoete, 2017). Compounds identified as BBB+ by 

all three tools underwent further evaluation of their absorption, distribution, metabolism, and 

excretion (ADME) properties. Drug-likeness, gauging the resemblance of a compound to 

existing drugs, is crucial for the drug development process (Lee, Jang, Seo, Lim, & Kim, 2022). 

Medicinal chemistry friendliness is essential to identify fragments that could impede drug 

development. Pan assay interference compounds (PAINS) denote substances with 

substructures leading to false positive biological outcomes (Baell & Holloway, 2010). While 

Brenk alerts point to fragments with potential toxicity, reactivity, or properties detrimental to 

pharmacokinetics. Compounds with zero violations for drug-likeness filters (Lipinski, Ghose, 

Veber, Egan, and Muegge) and zero medicinal chemistry friendliness alerts (PAINS and 

Brenk) constituted the test dataset for machine learning analysis, focusing on their inhibitory 

activity against CXCR4. 
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Figure 2.2: Methodology for prediction of CXCR4 inhibitors using machine learning. We initiated the process by 

extracting 10,000 natural compounds structurally similar to Mavorixafor from the COCONUT Database, 

focusing on a Tanimoto coefficient greater than 0.65. Subsequent assessments included evaluating the blood-

brain barrier (BBB) permeability using DeePred-BBB, LightBBB, and SwissADME, followed by ADME analysis 

to evaluate drug-likeness and medicinal chemistry friendliness. Compounds with zero violations for different 

drug-likeness filters and zero medicinal chemistry alerts were selected to prepare the test set. On the other hand, 

compounds with known activity against CXCR4 were retrieved from BindingDB and used to prepare a training 

set. Molecular descriptors for both the test dataset and training dataset were calculated using RDKit. Less 

important descriptors were eliminated using feature selection methods. Lazy Predict aided in selecting the best 

machine learning model, Light Gradient Boosting Machine (LGBM) Classifier. Applying this model to the test 

dataset enabled the estimation of CXCR4 inhibitor activity. Compounds predicted to be inhibitors were evaluated 

for binding affinity through molecular docking and analysed for applicability domain using descriptor ranges and 

Mahalanobis distance. Compounds with the highest docking scores and presence inside the applicability domain 

were selected as potential therapeutic compounds. 
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2.4. Molecular dynamics (MD) simulations 

The 50 ns molecular dynamics simulation was done for the docked reference and test 

compound structures. The best-docked structures were selected for 50 ns MD simulation using 

GROMACS package (Van Der Spoel et al., 2005). The protein and ligands were split into 

separate structure files, and their topology of protein was produced using CHARMM36 force 

field and default (TIP3P) water conditions. Ligand topology was created using the CGenFF 

webserver by feeding the Mol2 file for ligand after arranging the bond orders. The solvation 

was performed by defining the unit cell and filling it with a solvent like water. The system was 

neutralized by introducing the appropriate number of counter ions. The steepest descent method 

was utilized for energy minimization and subsequently positioned restraining the ligand. Later, 

the system was equilibrated in a constant volume (NVT) and constant pressure (NPT) 

environment for 100 ps each. V-rescale temperature coupling was used to maintain 300 K 

temperature, while C-rescale pressure coupling was used to hold 1 bar pressure. Finally, the 

production MD was run after releasing the restraints for data collection. The produced 

trajectories were evaluated for Root Mean Square Deviations (RMSD), Radius of Gyration 

(Rg), Root Mean Square Fluctuation (RMSF) per residue, and Interaction Energies of Coulomb 

and Lennard-Jones. 

 

2.5. Machine Learning 

Our approach was aimed at using machine learning methodologies to classify our test 

compounds as either inhibitors or non-inhibitors of CXCR4. For this classification process, we 

constructed a training and test datasets. 

 

2.5.1. Training Dataset 

The training dataset was constructed by retrieving compounds with known CXCR4 activity 

from BindingDB. To analyze the molecular characteristics of these compounds, we employed 

RDKit, a sophisticated and versatile cheminformatics toolkit. Molecular descriptors, 

quantitative representations of chemical features, were calculated for each compound within 

the training dataset, providing an understanding of their structural and physicochemical 

properties. Feature selection methods were employed utilizing SciPy (Virtanen et al., 2020) 

and Scikit-learn (Pedregosa et al., 2011) Python libraries to identify the most relevant features 

for machine learning. Initial screening involved discarding descriptors with more than 50% 

zeroes, enhancing the efficiency and relevance of subsequent analyses. Additionally, outliers 
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were eliminated according to the z-score values of their features using a threshold of 3 standard 

deviations above and below the mean. Subsequently, we examined the relationships between 

different descriptors by calculating Pearson correlation coefficients using the pearsonr function 

from the scipy.stats module of SciPy. Pairs exhibiting correlations beyond a certain threshold 

underwent refinement, with one descriptor from each pair being eliminated. Visualization of 

these correlations was achieved through the utilization of Seaborn (Waskom, 2021), a powerful 

Python library adept at rendering statistical data into insightful heatmaps. Finally, Recursive 

Feature Elimination (RFE) function from sklearn.feature_selection module of Scikit-learn was 

utilised to rank the remaining descriptors based on their importance as features for predicting 

the activity of natural compounds. After the selection of the most relevant features, the Lazy 

Predict Python library (https://lazypredict.readthedocs.io/en/latest) was used to identify and 

select the most suitable models appropriate for our training data, optimizing the subsequent 

phases of analysis. With our chosen models in place, we proceeded to train them using the 

training dataset. 

 

2.5.2. Test Dataset 

The test dataset containing BBB+ natural compounds with desirable ADME (Absorption, 

Distribution, Metabolism, and Excretion) properties was created from compounds retrieved 

from COCONUT Database. DeePred-BBB, LightBBB, and SwissADME were used to select 

BBB+ compounds. Subsequently, SwissADME was used to evaluate violations for drug-

likeness filters (Lipinski, Ghose, Veber, Egan, and Muegge) and zero medicinal chemistry 

friendliness alerts (PAINS and Brenk) and compounds with zero violations were selected for 

further processing. Just like training dataset, RDKit was employed to analyze the molecular 

descriptors of these test compounds. SciPy and Scikit-learn Python libraries were again 

employed to verify that features obtained using training dataset are also relevant to our training 

data. Relationships between different features in test dataset were evaluated by calculating 

Pearson correlation coefficients using the pearsonr function from the scipy.stats module of 

SciPy. Pairs exhibiting correlations beyond a certain threshold underwent refinement, with one 

descriptor from each pair being eliminated. Visualization of these correlations was achieved 

through the utilization of Seaborn, a powerful Python library adept at rendering statistical data 

into insightful heatmaps. The ranges of each feature in training dataset were then calculated 

and test compounds outside this range were eliminated. This process in essential to ensure the 

reliability of machine learning predictions. Thus, the remaining compounds constituted the test 
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dataset for machine learning analysis. Finally, natural compounds within the test dataset were 

classified with selected training models as either inhibitors or non-inhibitors of CXCR4. 

 

2.6. Performance Metrics of Selected Models  

For classification tasks, the results can be summarized into four categories, depending on their 

true and predicted labels (Varoquaux & Colliot, 2023): 

1. True Positives (TP) are compounds with the true and predicted labels as 1. 

2. True Negatives (TN) are compounds with the true and predicted labels as 0. 

3. False Positives (FP) are compounds with the true label as 0 and the predicted label as 1. 

4. False Negatives (FN) are compounds with the true label as 1 and the predicted label as 0. 

 

In our case, ‘1’ was the label given to the inhibitor and ‘0’ was the label given to the non-

inhibitor. The following performance metrics were calculated using the above four categories: 

1. Accuracy: A fraction of the compounds correctly predicted. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

2. Precision: A fraction of the positively predicted compounds that are indeed positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

3. Recall: A fraction of positive compounds correctly predicted as positive. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4. Specificity: A fraction of negative compounds correctly predicted as negative. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

5. F1 score: Harmonic mean of Precision and Recall. 

𝐹1 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

=
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

6. Area under the receiver operating characteristic curve (ROC AUC). 
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2.7. Applicability Domain 

The Applicability Domain, in machine learning,  denotes the part of the chemical space where 

the model can give reliable predictions for compounds present (Ain et al., 2014). Various 

methods have been developed to evaluate the reliability of the machine learning predictions, 

including range-based, distance-based, descriptor-based, and fragment-based approaches 

(Sushko et al., 2010). Mahalanobis distance (MD) is one such distance-based metric that 

accounts for correlations between different variables, making it particularly effective in 

multivariate scenarios and is, therefore, widely used for applicability domain assessment 

(Sahigara et al., 2012). It is defined as the measure of distance between a compound and the 

distribution of compounds in the training dataset. The calculation of MD is done by computing 

the mean vector of training data (consisting of the mean of all molecular descriptors) and 

the inverse of the covariance matrix (which represents the covariance between the descriptors). 

This allows us to know how far a compound is from the centre or mean of training compounds 

in a multidimensional chemical space created from molecular descriptors while considering 

the correlation between different descriptors, explaining how similar a compound is compared 

to training data (Cabana, Lillo, & Laniado, 2021). In cheminformatics, it is significantly 

valuable for determining the similarity of compounds to the training data, which allows it to be 

used for assessment of the applicability domain. The aim is to find a similarity threshold that 

can be used to predict the inhibitory activity of new compounds reliably. For this purpose, the 

applicability domain was defined by the calculation of the average (d) and standard deviation 

(std) of MD of all compounds in the training dataset. These values were calculated utilizing the 

mahalanobis function of scipy.spatial.distance module from the SciPy library. The threshold 

(t) to determine the border of the applicability domain was set as: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑡) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑) + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑠𝑡𝑑) × 𝑧 

Where z is an arbitrary parameter (default value is 0.5) (Sahigara et al., 2012). Since MD 

accounts for the scale, correlation and shape of variables, it is considered better than Euclidean 

and Manhattan distance-based methods for assessment of the applicability domain. Using 

compounds structurally similar to Mavorixafor, a compound present in the training set, also 

improved their applicability to the training model. Furthermore, test data outside the descriptor 

range of training data was removed before activity prediction to remove compounds that may 

fall outside the applicability domain. The overall methodology of our study, encompassing data 

retrieval, preparation, machine learning, molecular docking and applicability domain analysis, 

has been elucidated in detail in Fig. 2.2.  
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CHAPTER 3 

RESULT AND DISCUSSION 

3.1.  Differentially regulated genes concurrently expressed in AD and PD patients 

The differential expression was measured by comparing the expression level of genes in AD 

or PD patients with that of age-matched healthy controls (in respective datasets). Differentially 

expressed genes (DEGs) were identified using two parameters: the fold-change of gene 

expression (FC) and the statistical significance (p-value). To acquire the list of significant 

DEGs from the individual datasets, |log2FC| > 0.8 and p-value < 0.05 were taken as cutoff 

values, where DEGs were upregulated if log2FC > 0.8 and downregulated if log2FC < −0.8. 

From the GSE67333 dataset of AD patients and aged-matched healthy controls, 617 DEGs 

were identified, out of which 239 genes were upregulated (p-value < 0.05, log2FC > 0.8) and 

379 genes were downregulated (p-value < 0.05, log2FC < -0.8) (Fig. 3.1). Likewise, from 

GSE114517 dataset of PD patients and aged-matched healthy controls, 723 DEGs were 

identified, out of which 378 genes were upregulated (p-value < 0.05, log2FC > 0.8) and 344 

genes were downregulated (p-value < 0.05, log2FC < -0.8) (Fig. 3.1). Finally, to identify 

common DEGs between AD and PD, two datasets were run on Venn Diagram, and 23 common 

DEGs were confirmed, out of which 9 genes were upregulated (p-value < 0.05, log2FC > 0.8) 

and 14 genes were downregulated (p-value < 0.05, log2FC < -0.8) (Table 3.1 and Fig. 3.1). 

 

Table 3.1: Common Differentially Regulated Genes (DEGs) between datasets GSE67333 and GSE114517: 

Gene 
GSE67333 GSE114517 

Log2FC p-value Log2FC p-value 

U
p

re
g

u
la

te
d

 G
en

es
 

Bone Morphogenetic Protein 4 (BMP4) 2.151 0.00023 1.206 0.00766 

Cyclin Dependent Kinase Inhibitor 2B (CDKN2B) 0.882 0.01028 0.999 0.01369 

C-X-C Motif Chemokine Receptor 4 (CXCR4) 0.958 0.03434 0.933 0.00854 

Gonadotropin-Releasing Hormone 1 (GNRH1) 0.986 0.01160 1.420 0.00231 

Glutamate Metabotropic Receptor 2 (GRM2) 1.222 0.00398 1.046 0.04115 

Potassium Calcium-Activated Channel Subfamily M 

Regulatory Beta Subunit 3 (KCNMB3) 
0.896 0.00805 0.903 0.04042 

Solute Carrier Family 13 Member 4 (SLC13A4) 1.594 0.01058 1.304 0.00105 

Solute Carrier Family 26 Member 4 (SLC26A4) 1.063 0.00123 0.928 0.04888 

Solute Carrier Family 5 Member 5 (SLC5A5) 2.996 0.00010 1.050 0.01544 

D
o

w
n

re
g

u
la

te
d

 G
en

es
 Complement C1q Like 3 (C1QL3) -0.970 0.01215 -1.626 0.02612 

DCC Netrin 1 Receptor (DCC) -0.889 0.01781 -1.076 0.01732 

Follistatin (FST) -1.311 0.00604 -1.939 0.03004 

Granulysin (GNLY) -1.256 0.00473 -0.984 0.03550 

G Protein-Coupled Receptor 26 (GPR26) -1.087 0.00291 -1.348 0.02741 

NLR Family Pyrin Domain Containing 2 (NLRP2) -0.933 0.00145 -2.197 0.00452 

Nuclear Receptor Subfamily 4 Group A Member (NR4A2) -1.151 0.00624 -0.990 0.03180 
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Nuclear Receptor Interacting Protein 3 (NRIP3) -1.208 0.00787 -0.990 0.01343 

Oxytocin Receptor (OXTR) -1.289 0.00787 -1.036 0.00387 

RAB3C, Member RAS Oncogene Family (RAB3C) -0.803 0.03211 -1.056 0.03173 

Solute Carrier Family 18 Member A2 (SLC18A2) -2.972 0.00002 -2.379 0.00806 

Transient Receptor Potential Cation Channel Subfamily C 

Member 4 (TRPC4) 
-0.984 0.01605 -1.076 0.03033 

Unc-45 Myosin Chaperone B (UNC45B) -2.166 0.00101 -1.463 0.00963 

WD Repeat Domain 63 (WDR63) -1.698 0.00037 -1.099 0.01050 

 

3.2.  Protein-protein interaction network and hub genes analysis 

Protein-protein interactions play a crucial role in predicting target proteins' biological function 

in healthy and diseased individuals (Rao, Srinivas, Sujini, & Kumar, 2014). STRING (version 

11.5) (Szklarczyk et al., 2023), a database of known and predicted interacting genes/proteins 

of a wide range of organisms, was searched for potential protein-protein interactions between 

the proteins encoded by the DEGs obtained from the datasets GSE67333 (AD) and GSE114517 

(PD). These interactions can be either physical or functional in nature, and derived from co-

expression analysis, text-mining of the scientific literature or computational prediction. 

Significant interactions, with the minimum confidence score of 0.4, were selected to build PPI 

networks in order to identify the most important genes and proteins that may play a vital role 

in development of AD and PD, respectively. The resulting PPI networks were obtained from 

the STRING database and exported as short tabular text output (.tsv) files. Cytoscape 

(www.cytoscape.org) (version 3.9.1) was used to analyze these PPI networks and identify the 

hub genes (Shannon et al., 2003). CytoHubba (www.apps.cytoscape.org/apps/cytohubba) 

plugin for Cytoscape was used to determine top hub genes graded by Maximal Clique 

Centrality (MCC) Score (Chin et al., 2014). Top 50 hub genes were screened separately from 

the datasets GSE67333 (AD) and GSE114517 (PD). 4 common hub genes, CXCR4, DKK1, 

BMP4 and FST, were found (Fig. 3.1) between the top 50 hub genes obtained from datasets 

GSE67333 (AD) and GSE114517 (PD). Studies have demonstrated that in AD and PD, CXCR4 

modulate TLR4 signaling pathway that leads to MAPK activation and the production of 

inflammatory cytokines (Yan, Su, & Zhang, 2022). Further, inhibition of Wnt signaling, 

modulation of Tau phosphorylation and induction of neuronal cell death by DKK1 (Scali et al., 

2006). Similarly, Dun et al., 2012 demonstrated that inhibition of canonical Wnt pathway by 

DKK contributes to the etiology of PD rat model (Dun et al., 2012). Additionally, studies have 

found the upregulation of TGFβ superfamily ligand, BMP4 in CNS after KA-induced 

neurodegeneration (Abdipranoto-Cowley et al., 2009). FST a secreted extracellular 

glycoprotein expressing widely in nervous system. Downregulation of FST disrupts synaptic 

transmission in hippocampus and leads to cognitive impairments (S. Xiang et al., 2020).
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3.3.  Analyzing gene expression signatures of screened genes in different cell types 

To confirm expression of selected hub genes, BrainRNASeq (www.brainrnaseq.org) was used, 

as it contains experimental RNA sequencing data of different brain cells, viz. astrocytes, 

neurons, oligodendrocytes and microglia. In BrainRNASeq, single-cell RNA-Seq profiles for 

microglia and brain myeloid cells (1816 cells total passed quality control) from different 

developmental stages (E14.5, P7 and P60) were generated, which were grouped into 15 clusters 

using Seurat package. A gene was considered to be significantly expressed if its FPKM 

(Fragments Per Kilobase of transcript per Million) value was more than 0.5. BMP4 was not 

significantly expressed in any cell type and had FPKM values of 0.10 (astrocytes), 0.20 

(neurons), 0.10 (oligodendrocytes) and 0.10 (microglia). FST was also not significantly 

expressed in any cell type and had FPKM values of 0.10 (astrocytes), 0.10 (neurons), 0.10 

(oligodendrocytes) and 0.10 (microglia). DKK1 was not significantly expressed in any cell 

type besides neurons and had FPKM values of 0.22 (astrocytes), 0.90 (neurons), 0.24 

(oligodendrocytes) and 0.10 (microglia). But DKK1 was upregulated in AD while 

downregulated in PD and, therefore, was ruled out. The only remaining gene, CXCR4, was 

significantly expressed (FPKM > 0.5) in all cell types, and had FPKM values of 7.91 

(astrocytes), 1.10 (neurons), 7.92 (oligodendrocytes) and 109.80 (microglia). It was also 

upregulated in both AD and PD. Thus, CXCR4 was selected for the next part of the study. 

Previous studies have reported the upregulation of CXCR4 in AD (Sanfilippo, Castrogiovanni, 

Imbesi, Nunnari, & Di Rosa, 2020) and PD (Bagheri, Khorramdelazad, Hassanshahi, 

Moghadam-Ahmadi, & Vakilian, 2019), which is in line with our results. For example, it was 

found out that CXCR4/CXCL12 based mechanism suggests that Aβ plaques attract microglia 

to activate the inflammatory cascade by which CXCL12 stimulates CXCR4-dependent 

signaling both in microglia and in astrocytes to release pro-inflammatory cytokines such as 

tumor necrosis factor α. The Involvement of Ca2+ cascade is also suggested to be involved 

based on this signaling mechanism which ends in activation of kinases, phosphorylation and 

further excitotoxicity cascade triggered by excessive stimulation by glutamate (Gavriel, 

Rabinovich-Nikitin, & Solomon, 2022). Likewise, Tian et al., 2022 demonstrated that HMGB1 

A Box protects TH+ neurons by binding CXCR4 to inhibit the migration/infiltration of T cells 

and macrophages to substantia nigra mediated by HMGB1/CXCL12 complex formed by 

neuron derived HMGB1, and thus, prevents neuronal damage in PD mice model (Tian et al., 

2022). 
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Figure 3.1: Analysis of Differential Gene Expression. GEO RNA-seq Experiments Interactive Navigator (GREIN) 

web platform was used to find differentially regulated genes from datasets GSE67333 (AD) and GSE114517 (PD). 

To acquire the list of significant DEGs from the individual datasets, |log2FC| > 0.8 and p < 0.05 were taken as 

cutoff values, where DEGs were upregulated if log2FC > 0.8 and downregulated if log2FC < −0.8. From 

GSE67333 Dataset, 617 DEGs were identified, 239 upregulated genes (p < 0.05, log2FC > 0.8) and 379 

downregulated genes (p < 0.05, log2FC < -0.8). From GSE114517 Dataset, 723 DEGs were identified, 378 

upregulated genes (p < 0.05, log2FC > 0.8) and 344 downregulated genes (p < 0.05, log2FC < -0.8). The top 50 

Hub Genes were identified from both datasets, and common 4 hub genes were selected. To confirm expression of 

selected hub genes, BrainRNASeq was used, as it contains experimental RNA sequencing data of different brain 

cells, viz. astrocytes, neurons, oligodendrocytes and microglia. A gene was considered to be significantly 

expressed if its FPKM value was more than 0.5. Only CXCR4 gene was significantly expressed (FPKM > 0.5) in 

all cell types and had FPKM values of 7.91 (astrocytes), 1.10 (neurons), 7.92 (oligodendrocytes) and 109.80 

(microglia). It was also upregulated in both AD and PD. Thus, CXCR4 was selected for the next part of the study.



24 

 

3.4.  Molecular Docking of Small Molecules (ZINC Database) 

Virtual screening was performed via molecular docking to screen novel potential therapeutic 

agents, by computing their binding affinity score and interacting residues of our target protein, 

CXCR4. 3D structure of selected protein CXCR4 (PDB ID: 3ODU) was retrieved from Protein 

Data Bank. Mavorixafor was selected as a reference drug as it is a known inhibitor of CXCR4 

and can pass through the blood-brain barrier. Its 3D structure was retrieved from PubChem. 

The ZINC database was searched to find molecules showing at least 40% similarity with 

Mavorixafor to find molecules that could have similar biological activity. 52 such molecules 

were selected as test compounds to perform molecular docking. Mavorixafor and these test 

compounds were docked with the CXCR4 (PDB ID: 3ODU) using AutoDock Vina. 

Mavorixafor, our reference drug, displayed docking score or binding affinity (ΔG) of −8.3 

kcal/mol. Among our 52 test compounds, five molecules were selected that displayed higher 

docking score or binding affinity (ΔG) than that of Mavorixafor. These molecules were 

ZINC103242147 (-8.9 kcal/mol), ZINC1353043237 (-8.6 kcal/mol), ZINC49069258 (-8.5 

kcal/mol), ZINC49067615 (-8.5 kcal/mol), ZINC49069264 (-8.5 kcal/mol). This indicates that 

these molecules could show higher inhibitory activity towards CXCR4 as compared to 

Mavorixafor. The binding affinity scores and interacting residues for reference and all selected 

molecules have been listed in Table 3.2. 

 

Table 3.2: Similarity score and docking score of Mavorixafor (Reference) and five selected compounds: 

Compound Formula Similarity Docking Score Residues 

Mavorixafor 

(Reference) 
C21H27N5 - 8.3 TYR45, AL112, ILE185, ASP187, GLU288 

ZINC49069258 C22H25N5 0.77 8.5 
TRP94, ASP97, TRP102, VAL112, TYR116, 

TYR255, GLU288 

ZINC49067615 C21H25N5 0.72 8.5 LEU41, TRP94, ASP97, VAL112, ARG183 

ZINC49069264 C21H25N5O 0.70 8.5 
TRP94, ASP97, ALA98, HIS113, TYR116, 

CYS186 

ZINC103242147 C23H32N4 0.61 8.9 
GLU32, LEU41, TRP94, ASP97, ALA98, VAL112, 

HIS113, TYR116, CYS186, GLU288 

ZINC1353043237 C23H32N4 0.56 8.6 
TRP94, ASP97, ALA98, VAL112, HIS113, 

ASP187 
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3.5.  ADME Analysis of Small Molecules (ZINC Database) 

Mavorixafor and all five test compounds were predicted to be orally bioavailable (Fig. 3.2). 

The radar plot of all six compounds falls in the pink zone and thus can be deemed to be drug-

like, satisfying all six criteria: XLOGP3 between −0.7 and +5.0, molecular weight between 150 

and 500 g/mol, TPSA between 20 and 130 Å, log S not higher than 6, fraction of carbons in 

the sp3 hybridization not less than 0.25, and no more than 9 rotatable bonds. The molecular 

and physicochemical properties of Mavorixafor and five test compounds were evaluated (Table 

3.3). Mavorixafor and five test compounds were tested for the five predictors of lipophilicity 

(iLOGP, XLOGP3, WLOGP, MLOGP, Silicos-IT Log P) and the consensus log Po/w (Table 

3.3). The water solubility of Mavorixafor and five test compounds was analyzed by three 

methods (Ali, ESOL, and SILICOS-IT). The resulting log S values (where S is molar solubility 

in water) and respective qualitative solubility classes have been mentioned in Table 3.3. Blood-

brain barrier (BBB) permeability, gastrointestinal absorption, skin permeation, and effect on 

permeability glycoprotein (Pgp) and major isoforms of cytochromes P450 (CYP) were 

predicted for all molecules (Table 3.3). To evaluate the drug-likeness of all molecules were 

tested by Lipinski, Ghose, Veber, Egan, and Muegge methods (Table 3.3). No molecule 

exhibited any violation in any of the five methods. The bioavailability score of all molecules 

was calculated to be 0.55 for all molecules. No undesirable moieties were observed under the 

PAINS filter for any molecule. Besides ZINC49069258, no other molecule exhibited 

undesirable moieties under the Brenk filter. ZINC49067615, ZINC49069264, and 

ZINC103242147 showed violations related to lead-likeness (Table 3.3). 
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Figure 3.2: ADME Analysis of Mavorixafor (Reference Drug) and Five Test Compounds. A) Molecular structure, 

bioavailability radar, and similarity score with the reference drug. The pink zone denotes the optimal range for 

each property (lipophilicity: XLOGP3 b/w −0.7 and +5.0, size: molecular weight b/w 150 and 500 g/mol, polarity: 

TPSA b/w 20 and 130 Å, solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 hybridization 

not less than 0.25, and flexibility: no more than 9 rotatable bonds. B) BOILED-Egg prediction of blood-brain 

barrier penetration and gastrointestinal absorption. C) SwissADME calculates five predictors (iLOGP, MLOGP, 

WLOGP, XLOGP3, and SILICOS-IT) to compute the consensus log Po/w (mean of all five predictors). 
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Table 3.3: Different descriptors for ADME properties of Mavorixafor and 5 test compounds: 

Descriptors 

Mavorix

afor 

(Referen

ce) 

ZINC 

49067615 

ZINC 

49069258 

ZINC 

490692

64 

ZINC 

103242147 

ZINC 

1353043237 

Physicoche

mical 

Properties 

Formula C21H27N5 C22H25N5 C21H25N5 
C21H25

N5O 
C23H32N4 C20H23N3O 

MW 349.47 359.47 347.46 363.46 364.53 321.42 

#Heavy atoms 26 27 26 27 27 24 

#Aromatic heavy 

atoms 
15 15 15 15 12 15 

Fraction Csp3 0.43 0.41 0.33 0.38 0.52 0.35 

#Rotatable bonds 7 7 6 7 7 5 

#H-bond acceptors 4 4 4 4 3 3 

#H-bond donors 2 1 2 2 2 2 

MR 105.45 107.29 104.97 105.65 115.54 96.49 

TPSA 70.83 68.6 70.83 87.9 54.18 52.15 

Lipophilicit

y 

iLOGP 2.2 2.33 2.67 2.04 3.54 2.3 

XLOGP3 2.38 3.01 1.97 1.41 3.42 2.95 

WLOGP 3.1 4.06 2.88 2.63 3.03 2.96 

MLOGP 1.91 2.06 1.84 1.43 2.66 2.52 

Silicos-IT Log P 3.68 4.44 3.5 3.22 3.71 3.72 

Consensus Log P 2.65 3.18 2.57 2.15 3.27 2.89 

Water 

Solubility 

ESOL Log S -3.47 -3.91 -3.27 -2.93 -4.12 -3.82 

ESOL Solubility 

(mg/ml) 
1.18E-01 4.38E-02 1.88E-01 

4.26E-

01 
2.76E-02 4.82E-02 

ESOL Solubility 

(mol/l) 
3.38E-04 1.22E-04 5.42E-04 

1.17E-

03 
7.56E-05 1.50E-04 

ESOL Class Soluble Soluble Soluble 
Solubl

e 

Moderately 

soluble 
Soluble 

Ali Log S -3.51 -4.12 -3.08 -2.86 -4.24 -3.71 

Ali Solubility 

(mg/ml) 
1.08E-01 2.76E-02 2.87E-01 

5.01E-

01 
2.11E-02 6.30E-02 

Ali Solubility 

(mol/l) 
3.10E-04 7.67E-05 8.26E-04 

1.38E-

03 
5.78E-05 1.96E-04 
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Ali Class Soluble 
Moderately 

soluble 
Soluble 

Solubl

e 

Moderately 

soluble 
Soluble 

Silicos-IT LogSw -6.9 -7.33 -6.18 -6.43 -7.02 -6.26 

Silicos-IT 

Solubility (mg/ml) 
4.44E-05 1.67E-05 2.31E-04 

1.35E-

04 
3.46E-05 1.77E-04 

Silicos-IT 

Solubility (mol/l) 
1.27E-07 4.63E-08 6.64E-07 

3.72E-

07 
9.48E-08 5.50E-07 

Silicos-IT class 
Poorly 

soluble 

Poorly 

soluble 

Poorly 

soluble 

Poorly 

soluble 

Poorly 

soluble 

Poorly 

soluble 

Pharmacok

inetics 

GI absorption High High High High High High 

BBB permeant Yes Yes Yes No Yes Yes 

Pgp substrate Yes Yes Yes Yes Yes Yes 

CYP1A2 inhibitor Yes Yes No No No Yes 

CYP2C19 inhibitor Yes Yes Yes Yes No No 

CYP2C9 inhibitor No Yes No No No No 

CYP2D6 inhibitor Yes Yes Yes Yes Yes Yes 

CYP3A4 inhibitor Yes Yes Yes Yes Yes Yes 

log Kp (cm/s) -6.74 -6.36 -7.02 -7.52 -6.1 -6.17 

Drug‑likene

ss 

Lipinski 

#violations 
0 0 0 0 0 0 

Ghose #violations 0 0 0 0 0 0 

Veber #violations 0 0 0 0 0 0 

Egan #violations 0 0 0 0 0 0 

Muegge 

#violations 
0 0 0 0 0 0 

Bioavailability 

Score 
0.55 0.55 0.55 0.55 0.55 0.55 

Medicinal 

Chemistry 

Friendlines

s 

PAINS #alerts 0 0 0 0 0 0 

Brenk #alerts 0 0 1 0 0 0 

Lead-likeness 

#violations 
0 1 0 1 1 0 

Synthetic 

Accessibility 
3.38 3.36 3.45 3.31 3.99 2.91 
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3.6.  MD Simulation 

Five test compound complexes with CXCR4 displaying the highest docking scores were 

chosen for molecular dynamics simulations. The RMSD values offered an understanding of 

these complexes' stability, with the docked structure values lying between 0.15 nm and 0.45 

nm (Fig. 3.3A). A low fluctuation in the RMSD values implies that inhibitors achieved stability 

in the docked structure. RMSF values per residue for all molecules are mostly less than 0.4 nm 

(Fig. 3.3B), indicating the stability of complexes. Additionally, the elastic stability of the 

studied complexes was examined as Radius of Gyration (Rg) values varied between 2.1 nm 

and 2.4 nm, indicating the system was able to achieve stability after 15 ns (Fig. 3.3C). 

ZINC103242147 showed a stronger Coulomb potential of interaction (Fig. 3.3D), while 

ZINC49067615 a stronger Lennard-Jones potential of interaction energy (Fig 3.3E). This 

suggests that these two molecules could show more significant inhibitory activity than 

Mavorixafor. The molecular dynamics trajectory was divided into 10 ns intervals to analyze 

the minimum distance and interactions between protein residues and ligand molecules. The 

first 10 ns was excluded as the duration needed for the system to reach stability. The minimum 

distance was calculated using the "gmx mindist" command of gromacs, and residues with an 

average distance of 0.35 nm or less have been shown in Fig 3.4. The heatmap was generated 

for residues showing the amount of time distance was less than 0.35 nm. The green color 

signifies that the distance was less than 0.35 nm for 100% of the duration, while the yellow 

indicates that the distance was less than 0.35 nm for 0% of the duration. Specific residues like 

TYR45, TRP94, and ASP97 can be seen to be present for most of the duration of the simulation. 

Interaction between ligand and protein residues at 10 ns, 20 ns, 30 ns, 40 ns, and 50 ns have 

been shown in Fig 3.5. BIOVIA Discovery Studio was used to visualise these interactions. 

Here again, specific residues like TYR45, TRP94, and ASP97 can be seen to be interacting 

with ligands at different timeframes of the simulation, signifying the importance of these 

residues for receptor-ligand interaction. 
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Figure 3.3: Results of Molecular Dynamics Simulation. A) RMSD of ligand in terms of 100ps running averages. 

The RMSD values of these complexes lied between 0.15 nm and 0.45 nm. A low fluctuation in the RMSD values 

implies that inhibitors achieved stability in the docked structure. B) Root Mean Square Fluctuation (RMSF) per 

residue. RMSF values per residue for all molecules are mostly less than 0.4 nm, indicating the stability of 

complexes. C) Radius of gyration of the protein-ligand complexes. The elastic stability of the studied complexes 

was examined as Radius of Gyration (Rg) values varied between 2.1 nm and 2.4 nm, indicating the system was 

able to achieve stability after 15 ns. D) Interaction energy between protein and ligand – Coulomb Potential. 

ZINC103242147 showed a stronger Coulomb potential of interaction. E) Interaction energy between protein and 

ligand – Lennard-Jones Potential. ZINC49067615 a stronger Lennard-Jones potential of interaction energy. 
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Figure 3.4: Minimum distance between ligand and protein residues. The minimum distance was calculated using 

the "gmx mindist" command of gromacs, and residues with an average distance of 0.35 nm or less have been 

shown. The first 10 ns of the simulation were excluded as the duration needed for the system to reach stability. 

The simulation was divided into 10 ns intervals, and a heatmap was generated by showing the amount of time 

distance was less than 0.35 nm. Green signifies that the distance was less than 0.35 nm for 100% of the duration, 

while yellow indicates that the distance was less than 0.35 nm for 0% of the duration. Specific residues like TYR45, 

TRP94, and ASP97 can be seen to be present for most of the duration of the simulation. 
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Figure 3.5: Interaction between ligand and protein residues at 10 ns, 20 ns, 30 ns, 40 ns, and 50 ns. The first 10 

ns of the simulation were excluded as the duration needed for the system to reach stability. Certain residues like 

TYR45, TRP94, and ASP97 can be seen to be present throughout the different time points (10 ns, 20 ns, 30 ns, 40 

ns, and 50 ns) of the simulation. BIOVIA Discovery Studio was used to visualise these interactions. 
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3.7. Blood-Brain Barrier Permeability and ADME Analysis of Natural Compounds 

The significance of structural similarity is fundamental in the domain of drug design and 

discovery. This significance is based on the core assumption that compounds with similar 

structures are likely to manifest similar biological activities (A. Kumar & Zhang, 2018). In the 

specific context of our study, our primary objective was to identify natural compounds sharing 

structural similarity with Mavorixafor, an inhibitor of CXCR4 that is permeable through the 

blood-brain barrier (BBB). Thus, we retrieved 10,000 natural compounds (from the 

COCONUT Database) exhibiting a structural similarity exceeding 65% (using the Tanimoto 

coefficient) to Mavorixafor. Since the goal of our study is to identify CXCR4 inhibitors for the 

treatment of neurodegenerative disorders, an important criterion of our selection process was 

the BBB permeability of compounds as this barrier selectively allows only certain molecules 

to penetrate the brain while preventing the transport of neurotoxins (O’Connor et al., 2020; 

Pardridge, 2012). To address this, we analyzed all 10,000 natural compounds using three 

distinct tools (DeePred-BBB, LightBBB, and SwissADME) and selected 2,712 compounds 

that were predicted to be BBB+ by all three tools. Subsequently, these compounds were 

analyzed for their pharmacokinetic properties. The parameters of absorption, distribution, 

metabolism, and excretion (ADME) serve as pivotal metrics in comprehending a drug's 

pharmacokinetics (Doogue & Polasek, 2013). ADME describes how our body processes a drug 

while it executes its therapeutic function and, thereby, provides an understanding of its 

molecular mechanisms, toxicity and drug-drug interactions (Yuhua Li et al., 2019; X. Wang et 

al., 2013). In an era before the formal integration of ADME testing into the drug discovery 

pipeline, a staggering 40% of compounds failed due to suboptimal pharmacokinetic properties. 

Thanks to advancements in this field, the failure rate has been now significantly reduced to less 

than 10% (Kola & Landis, 2004). SwissADME was used to evaluate the ADME properties of 

BBB+ compounds, and those found to violate any of the five drug-likeness filters (Lipinski, 

Ghose, Veber, Egan, and Muegge) were systematically excluded. These are widely accepted 

guidelines in drug discovery and development to evaluate  'drugability', the ability of a 

compound to be used commercially as a pharmaceutical drug (Avti, Singh, Dahiya, & 

Khanduja, 2023). Similarly, compounds exhibiting one or more alerts for medicinal chemistry 

unfriendliness filters (PAINS and Brenk) were also eliminated. These filters are used to identify 

fragments or substructures of a compound that can lead to unfavourable chemical properties 

such as toxicity or non-specificity (Alam & Khan, 2019).  The removal of these compounds 

with poor pharmacokinetic properties is vital for increasing the reliability of the study. Thus, 

in the final refinement, 1,566 compounds devoid of drug-likeness violations and medicinal 

chemistry unfriendliness alerts, were selected to form the test set of natural compounds (see 

Fig. 3.6). 
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Figure 3.6: Prediction of blood-brain permeability and ADME analysis of natural compounds. 10,000 compounds 

obtained from the COCONUT Database were evaluated for their blood-brain barrier (BBB) permeability using 

three distinct tools, namely DeePred-BBB, LightBBB, and SwissADME, to ensure a comprehensive assessment. 

Subsequently, 2,712 compounds emerged as promising candidates, being predicted as BBB+ by all three 

algorithms. The selected compounds underwent further scrutiny to determine their drug-likeness and medicinal 

chemistry friendliness. The compounds were evaluated using five drug-likeness filters (Lipinski, Ghose, Veber, 

Egan, and Muegge) and two medicinal chemistry filters (PAINS and Brenk). Following this analysis, 1,566 

compounds displayed zero violations for the drug-likeness filters and zero alerts for medicinal chemistry filters. 

Thus, compounds with positive blood-brain permeability, optimal drug-likeness and favourable medicinal 

chemistry attributes were selected for further analysis. 
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3.8. Calculation of Molecular Descriptors and Feature Selection 

To predict the activity of compounds against CXCR4, we created a training set using 

compounds retrieved with known activity against CXCR4 from the BindingDB, recording their 

IC50 values and SMILES notations. After data curation that involved standardization of data 

and removal of duplicates 1266 compounds were left in training data. Compounds with IC50 

values ≤ 100 nM were categorized as inhibitors, while those with IC50 values > 100 nM were 

labelled as non-inhibitors. Recognizing the intrinsic link between a compound's molecular 

structure and its biological activity (Todeschini & Consonni, 2010), we evaluated molecular 

descriptors — depicting various physical and chemical characteristics — to enhance the 

efficiency of our drug design and discovery process. Utilizing the Descriptors module of 

RDKit, an open-source tool for cheminformatics and machine learning, we calculated 

descriptors for both the training and test datasets. To increase the speed and accuracy of 

machine learning model creation, redundant data was removed, and most crucial features were 

selected for machine learning. Firstly, descriptors with more than 50% zero values were 

eliminated from either dataset, followed by the removal of outliers.  

 

In the training set, any outlier with a z-score of 3 standard deviations above and below the mean 

for any feature was removed, finally resulting in 674 compounds in the training data, which 

included 322 inhibitors and 352 non-inhibitors. Subsequently, we scrutinized the remaining 

descriptors for significant correlations, utilizing the Pearson correlation coefficient computed 

with SciPy. If a pair of descriptors had the Pearson correlation coefficient exceeding 0.60 in 

the training dataset, one of the descriptors was removed. This process led to the selection of 17 

descriptors out of the original 209 for further analysis. The Recursive Feature Elimination 

(RFE) algorithm of Scikit-learn ranked these 17 descriptors based on their feature importance 

by eliminating the least important features one by one, resulting in a list of descriptors ranked 

by their significance. A threshold of 0.60 was selected by using Grid Search on different 

thresholds and using RFE to select the threshold with the best model accuracy. The heatmaps 

of the Pearson correlation coefficients of the top 15 descriptors ranked by RFE for both the 

training and test dataset was generated using the Seaborn Python library (Fig. 3.7). 
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Figure 3.7: Selection of molecular descriptors as best features for generation of machine learning model. 

Molecular descriptors were first evaluated for both the training dataset and test set. To eliminate less important 

descriptors, feature selection was performed. Descriptors with more than 50% zero values were eliminated. 

Pearson Correlation Test was performed for the rest of the descriptors and if the Pearson Correlation Coefficient 

of two descriptors was more than 0.60, one descriptor of the pair was eliminated. Finally, 17 descriptors were 

selected for further analysis. A heatmap of Pearson Correlation Coefficients was prepared for both A) the 

Training dataset and B) the Test dataset, using the top 15 descriptors, predicted by Recursive Feature Elimination, 

that displayed maximum model accuracy. 
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3.9. Model Selection and Activity Prediction 

After the creation of training and test datasets, the Lazy Predict Python library was used to 

identify the most optimum machine learning algorithm, as it can fit and evaluate all the machine 

learning models contained in the scikit-learn Python library with a minimal amount of coding 

in a single step. It is composed of a Lazy Classifier and Lazy Regressor to perform the 

classification and regression tasks, respectively. We used Lazy Classifier to find a model for 

the classification of natural compounds as CXCR4 inhibitors or non-inhibitors by building and 

evaluating 27 different machine learning models using our training dataset. We used Lazy 

Classifier to select the best models for different numbers of descriptors removing the lowest 

RFE ranked descriptors one by one. After building models for different numbers of descriptors, 

we compared the highest accuracy obtained with each set of descriptors. The highest accuracy 

obtained for each set of descriptors has been shown in Fig. 3.8(A). Additionally, the names and 

accuracy of the top three models for different numbers of descriptors have been mentioned in 

Table 3.4. The highest model accuracy was achieved at the set of top 15 ranked descriptors for 

Light Gradient Boosting Machine (LGBM) Classifier with 81.94% model accuracy, followed 

by eXtreme Gradient Boosting (XGB) Classifier with 79.86% model accuracy and Random 

Forest (RF) Classifier with 77.48% model accuracy. All the models and their accuracy with the 

set of top 15 ranked descriptors have been shown in Fig. 3.8(B).  

Table 3.4: Comparison of accuracy of top 3 models with different number of descriptors: 

Features Best Model Accuracy 2nd Best Model Accuracy 3rd Best Model Accuracy 

1 ExtraTreeClassifier 67.26% RandomForestClassifier 67.06% ExtraTreesClassifier 66.37% 

2 ExtraTreeClassifier 67.26% RandomForestClassifier 66.27% KNeighborsClassifier 66.17% 

3 ExtraTreesClassifier 75.40% XGBClassifier 75.10% DecisionTreeClassifier 73.81% 

4 ExtraTreesClassifier 78.27% LGBMClassifier 76.79% RandomForestClassifier 76.69% 

5 LGBMClassifier 75.99% RandomForestClassifier 75.89% ExtraTreesClassifier 75.00% 

6 ExtraTreesClassifier 79.66% RandomForestClassifier 76.79% XGBClassifier 76.79% 

7 XGBClassifier 77.28% ExtraTreesClassifier 75.89% LGBMClassifier 75.10% 

8 LGBMClassifier 78.27% XGBClassifier 78.17% ExtraTreesClassifier 76.59% 

9 LGBMClassifier 77.38% RandomForestClassifier 75.30% ExtraTreesClassifier 73.61% 

10 RandomForestClassifier 79.07% LGBMClassifier 76.79% XGBClassifier 74.40% 

11 RandomForestClassifier 78.17% LGBMClassifier 75.99% XGBClassifier 75.30% 

12 RandomForestClassifier 78.97% LGBMClassifier 77.48% ExtraTreesClassifier 77.18% 

13 LGBMClassifier 77.48% RandomForestClassifier 77.38% XGBClassifier 76.79% 
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14 LGBMClassifier 79.76% XGBClassifier 79.17% RandomForestClassifier 76.49% 

15 LGBMClassifier 81.94% XGBClassifier 79.86% RandomForestClassifier 77.48% 

16 RandomForestClassifier 79.86% LGBMClassifier 79.76% ExtraTreesClassifier 76.59% 

17 LGBMClassifier 79.56% XGBClassifier 78.47% RandomForestClassifier 78.08% 

 

Finally, hyperparameter tuning was performed for all three models to find the optimum set of 

parameters. 

LGBM Classifier again showed the best model accuracy of 0.8222 (or 82.22%) with the 

parameters:  

𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒: 0.6, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒: 0.1, 𝑚𝑎𝑥 _𝑑𝑒𝑝𝑡ℎ: 7, 𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠: 20 

𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠: 100, 𝑛𝑢𝑚_𝑙𝑒𝑎𝑣𝑒𝑠: 20, 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒: 0.6 

XGB Classifier showed an accuracy of 0.8074 (or 80.74%) with the following parameters: 

𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒: 0.8, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒: 0.2, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ: 3, 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠: 100, 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒: 0.7 

Random Forest Classifier showed an accuracy of 0.8 (or 80.00%) with the parameters: 

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ: 𝑁𝑜𝑛𝑒, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓: 1, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡: 10, 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠: 300 

Along with Model Accuracy, these three models were also tested for various performance 

metrics such as Precision, Recall, Sensitivity, F1-score and ROC AUC Score. To calculate all 

these performance metrics, including accuracy, 20% of training dataset was used as the 

validation dataset to perform holdout validation of data. In the holdout validation approach, 

training set is split into two parts, one for training (70-80%) and one for validation (20-30%).  

Subsequently, 70-80% training set is used to tune the model and remaining 20-30% is used to 

evaluate the model (Allgaier & Pryss, 2024). Precision signifies the fraction of positively 

predicted compounds are actually positive. LGBM Classifier show precision of 0.9 (or 90%). 

Specificity signifies the fraction of negatively compounds that are actually predicted as 

negative. Specificity of LGBM Classifier was calculated to be 0.9048 (or 90.48%). Both of 

these metrics shows that our model (LGBM Classifier) is highly accurate in classifying 

negatives as true negatives instead of false positives. Therefore, the LGBM Classifier was used 

for the prediction of the activity of test data using the top 15 ranked descriptors. Performance 

metrics (Accuracy, Precision, Recall, Sensitivity, F1-score and ROC AUC Score) of top 3 

models have been mentioned in the Table 3.5. 
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Figure 3.8: Selection of best machine learning model for classification of activity of natural compounds as 

inhibitors and non-inhibitors of CXCR4. 17 descriptors obtained after the Pearson Correlation Test were ranked 

by their feature importance using the Recursive Feature Elimination (RFE) method to improve model performance 

by removing less important features. Lazy Predict was used to select the best model for different numbers of 

descriptors removing lowest lowest-ranked descriptors one by one. Best model accuracy was achieved at 15 

descriptors with 81.94% accuracy for the Light Gradient Boosting Machine (LGBM) Classifier. A) Comparison 

of balanced accuracy of best models at the different number of descriptors. B) Comparison of accuracy of different 

models with a dataset of 15 highest ranked descriptors. 
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Table 3.5: Performance metrics of top 3 models selected through Lazy Predict and hyperparameter tuning: 

Classifier Parameter Accuracy Precision Recall Specificity 
F1 

Score 

ROC AUC 

Score 

Light 

Gradient-

Boosting 

Machine 

(LGBM) 

colsample_bytree: 0.6 

learning_rate: 0.1 

max_depth: 7 

min_child_samples: 20 

n_estimators: 100 

num_leaves: 20 

subsample: 0.6 

0.8222 0.9000 0.7500 0.9048 0.8182 0.8274 

 Extreme 

Gradient 

Boosting 

(XGB) 

colsample_bytree: 0.8 

learning_rate: 0.2 

max_depth: 3 

n_estimators: 100 

subsample: 0.7 

0.8074 0.8594 0.7639 0.8571 0.8088 0.8105 

Random 

Forest 

(RF) 

max_depth: None 

min_samples_leaf: 1 

min_samples_split: 10 

n_estimators: 300 

0.8000 0.8571 0.7500 0.8571 0.8000 0.8036 

 

Before using our trained model for activity prediction, it was important to remove outliers from 

our test data to only consider molecules within the descriptor space of training data to ensure 

consistency between both datasets. Thus, the range of features of training data was evaluated 

and outliers in the test data that were outside the range for corresponding features of training 

data were identified and removed. This was done to mitigate the data discrepancies between 

training and test datasets, thereby improving the reliability and applicability of the developed 

machine learning model. By aligning the range of features in both datasets and removing 

outliers that could adversely affect model accuracy, the model performance on unseen data is 

expected to improve. This resulted in 975 compounds in our test data that we can use for 

activity prediction. Violin plots were generated using the Seaborn python library to visualize 

feature distribution of test and training data (Fig. 3.9). The LGBM Classifier machine learning 

model was then used to classify our test compounds as inhibitors and non-inhibitors of CXCR4. 

Finally, 20 compounds that were classified as CXCR4 inhibitors were analyzed for their 

binding affinity by molecular docking and applicability to the trained model through analysing 

the Applicability Domain. 



41 

 

 

Figure 3.9: Feature distribution of training and test data. Outliers in test data that were outside the feature range 

of training data were removed. Subsequently, violin plots were generated for each feature to compare the 

distribution of the top 15 features (ranked according to RFE) in training and test data. Each subplot contains the 

individual feature, with the value of the feature mentioned in the y-axis and the data type (training or test) 

mentioned in the x-axis. The Ipc feature was transformed using a logarithmic scale to improve visibility. The 

feature distribution shows that the range of features in test data is within that of training data, ensuring the 

integrity of the predicted models. 
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3.10. Validation: Molecular Docking and Applicability Domain 

After the LGBM Classifier was determined as the best model for our training data through 

Lazy Predict, test data was evaluated for their activity against CXCR4. 20 compounds, 

mentioned in Table 3.6, were predicted to possess inhibitory activity against CXCR4. 

Mavorixafor and 20 compounds classified as CXCR4 inhibitors, by LGBM Classifier, after 

machine learning were docked to evaluate their binding affinity with CXCR4 using Vina-

GPU+. It is one of the three docking methods of Vina-GPU 2.0 and allows accelerated docking 

using a GPU and batch processing of multiple ligands with a single receptor molecule. Our 

reference drug (Mavorixafor) had a binding score of -7.4 kcal/mol. 19 out of 20 compounds 

exhibited better docking scores than Mavorixafor, the lowest being -7.5 kcal/mol and the 

highest being -11.1 kcal/mol. One compound had a slightly lower binding score (-7.3 kcal/mol) 

than Mavorixafor. The next step was to analyze these compounds for their applicability to the 

trained model. Mahalanobis distance (MD) was used as a metric for this purpose, as it allows 

us to check whether a compound falls in the descriptor space of training data. The applicability 

domain was defined by the calculation of the average (d) and standard deviation (std) of MD 

of all compounds in the training data. These values were calculated utilizing SciPy and Scikit-

learn Python libraries. 

 

The threshold (t) to determine the border of the applicability domain was set as: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑡) = 𝑑 + 𝑠𝑡 × 𝑧 

For our training data, values of d, std and t were determined to be 3.63, 1.34 and 4.30, 

respectively. 7 compounds with MD less than 4.30 were, therefore, observed to fall in the 

applicability domain of our training data. However, one compound (CNP0399717) had a 

slightly lower binding score as mentioned above. All 20 compounds were visualized for their 

MD and their presence inside or outside of the applicability domain using the pyplot interface 

of matplotlib (Hunter, 2007), as shown in Fig 3.10 (A). Compounds with green colour refer to 

those that are inside the applicability domain. While compounds with red colour refer to those 

that are outside the applicability domain. 
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Figure 3.10: Applicability Domain and PCA Analysis. After Lazy Predict determined the top machine learning 

algorithms (LGBM Classifier), compounds in the test dataset were evaluated for their activity against CXCR4. 

After the prediction of 20 compounds as inhibitors, these compounds were tested if they fell in the applicability 

domain. Mahalanobis distance was used as a metric to analyze the presence of our selected test compounds falling 

in the descriptor space of training data. To define the applicability domain, we calculated the average (d) and the 

standard deviation (std) of the Mahalanobis distance. The threshold was set as d + std x z, where z is the arbitrary 

parameter (default value is 0.5). Using this approach 7 compounds were observed to fall in the applicability 

domain. Compounds with green colour refer to those that are inside the applicability domain. While compounds 

with red colour refer to those that are outside the applicability domain. 
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Since we are dealing with 15 descriptors for our study, we used Principal component analysis 

(PCA) to reduce the dimensionality of our data while minimizing information loss. This is done 

by the creation of new uncorrelated variables, known as the principal components, defined 

according to the given data, which makes it an adaptive data analysis technique (Jollife & 

Cadima, 2016). Depending on the number of principal components being selected while 

visualization, we can generate 2D PCA with two principal components or 3D PCA with three 

principal components. 2D PCA and 3 PCA plots were visualized while using the pyplot 

interface of matplotlib (Hunter, 2007) and predicted test compounds were observed in the PCA 

space of training data along with their status for applicability domain in Fig. 3.10 (A) and 3.10 

(B), respectively. After accessing the compounds for AD, their interaction with different 

residues of CXCR4 was analysed. CXCR4 protein contains seven transmembrane (TM) 

helices, TM1 to TM7 that are arranged in a barrel-like structure with the inside of the barrel 

being more hydrophilic and the outside being more hydrophobic (Tegler et al., 2020). Besides 

TM helices, CXCR4 contains an extracellular N-terminal domain, three extra-cellular loops 

(ECL), three intracellular loops (ICL) and an intracellular C-terminal domain (Bianchi & 

Mezzapelle, 2020).  

 

Important interacting residues of CXCR4 are Glu32 in N-terminal domain; 

Phe36/Asn37/Leu41/Tyr45 in TM1; Trp94/Asp97/Ala98 in TM2; Val112/His113/Tyr116 in 

TM3; His281/Ile284/Ser285/Glu288 in TM7; Trp102 in ECL1; and Cys186/Arg188 in ECL2 

(Das et al., 2015). Most of these residues can be seen as interacting residues of our selected 

compounds (Fig. 3.11). TRP94, VAL112 and HIS113 were observed to be the most prominent 

interaction residues across all the molecules. Thus, our results are in line with existing literature 

about the interaction of small molecules with CXCR4. CNP0015964 (benzimidazole 

derivative), CNP0013977 (pyridinylpiperazine derivative), and CNP0015625 (aminopyridine 

derivative) were the top 3 compounds with the highest docking scores that were within the 

applicability domain of our trained model. All of the most prominent interacting residues, 

TRP94, VAL112 and HIS113, are observed in their interactions with CXCR4 (Fig. 3.11). 

BIOVIA Discovery Studio was used to visualise these interactions. Furthermore, they had 

44.59%, 24.32% and 21.62% higher docking scores, respectively, as compared to Mavorixafor. 

Thus, these compounds can potentially be more effective inhibitors than Mavorixafor and may 

be used for the treatment of neurodegenerative disorders. 
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Figure 3.11: Receptor-Ligand Interactions of Mavorixafor and top 3 compounds predicted by machine learning. 

Different types of binding interactions of the top 3 compounds and Mavorixafor with CXCR4 have been shown. 

Important interacting residues of CXCR4 are Glu32 in N-terminal domain; Phe36/Asn37/Leu41/Tyr45 in TM1; 

Trp94/Asp97/Ala98 in TM2; Val112/His113/Tyr116 in TM3; His281/Ile284/Ser285/Glu288 in TM7; Trp102 in 

ECL1; and Cys186/Arg188 in ECL2. Certain residues, like TRP94, VAL112 and HIS113, have been observed to 

be binding residues in all three selected molecules and Mavorixafor. These results about interacting residues 

complement existing literature. BIOVIA Discovery Studio was used to visualise these interactions. 
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Table 3.6: List of 20 natural compounds predicted as CXCR4 inhibitors by LGBM Classifier with their 

docking scores and their presence in Applicability Domain (AD): 

S.No. ID Mahalanobis Distance Within AD Docking Score (kcal/mol) 

1 CNP0004424 4.68 No -11.1 

2 CNP0015964 3.89 Yes -10.7 

3 CNP0319279 5.97 No -10 

4 CNP0094414 5.02 No -9.8 

5 CNP0165909 4.33 No -9.7 

6 CNP0013977 3.57 Yes -9.2 

7 CNP0450948 5.16 No -9.1 

8 CNP0015625 4.20 Yes -9 

9 CNP0014385 4.89 No -8.8 

10 CNP0127043 4.25 Yes -8.7 

11 CNP0015957 5.17 No -8.5 

12 CNP0314177 4.20 Yes -8.4 

13 CNP0015859 5.36 No -8.3 

14 CNP0408379 5.03 No -8 

15 CNP0360705 6.06 No -7.8 

16 CNP0397928 5.53 No -7.8 

17 CNP0122007 4.59 No -7.7 

18 CNP0216455 4.97 No -7.6 

19 CNP0015823 3.85 Yes -7.5 

20 CNP0399717 3.96 Yes -7.3 

 

3.11. Discussion 

AD pathophysiology is characterized by abnormal Aβ aggregation and tau protein 

hyperphosphorylation (Rajmohan & Reddy, 2017), while PD pathophysiology is characterized 

by abnormal α-Syn (Gómez-Benito et al., 2020). Inhibition of accumulation or promoting 

clearance Aβ and α-Syn are potential therapeutic targets for treatment of AD and PD, 

respectively (Fields, Bengoa-Vergniory, & Wade-Martins, 2019; Nalivaeva & Turner, 2019). 

CXCR4 is a receptor present on the surface of B lymphocytes, which secretes antibodies that 

target toxic proteins in AD and PD (Sim, Im, & Park, 2020). Downregulation of CXCR4 is 

essential for the migration of immature B-cells into the peripheral blood from the bone marrow 

(Beck, Gomes, Cyster, & Pereira, 2014). CXCR4 upregulation in AD patients results in 
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decreased migration of B-cells and decline in anti-Aβ antibody secretion, leading to Aβ 

aggregation (Q.-L. Wang, Fang, Huang, & Xue, 2022). Microarray analysis has revealed 

upregulation of CXCR4 in the inferior parietal lobe (IPL) brain sections of AD patients, which 

was also confirmed by real-time PCR and immunohistochemistry (Weeraratna et al., 2007). 

AMD3100, a CXCR4 inhibitor, has been shown to improve cognitive performance, reduce 

neuroinflammation, and alleviate AD pathophysiology (Gavriel, Rabinovich-Nikitin, Ezra, 

Barbiro, & Solomon, 2020). However, normal levels of CXCR4 expression is required for 

cognitive performance and normal development of hippocampal dentate gyrus (M. Lu, Grove, 

& Miller, 2002). Chronic administration of AMD3100 has been shown to result in learning and 

memory dysfunction in young mice (Parachikova & Cotman, 2007). Thus, crux of the 

treatment lies in maintaining CXCR4 levels. In another study, MPTP-mediated CXCR4 

upregulation preceded the loss of DA neurons, suggesting role of CXCR4 in the PD etiology 

and its potential as a new target molecule for PD treatment (Shimoji, Pagan, Healton, & 

Mocchetti, 2009). AMD3100 also increased life span and improved motor function in the 

SOD1G93A mice model of ALS (Rabinovich-Nikitin, Ezra, Barbiro, Rabinovich-Toidman, & 

Solomon, 2016). Likewise, Mason et al., 2021 demonstrated that AMD3100 pre-treated 

animals displayed reduced AMPH-induced locomotor activity in comparison to SAL pre-

treated animals. Postmortem analyses of brain tissue revealed elevated CXCR4 protein levels 

in the striatum of all experimental groups. The results implicated that CXCR4 inhibition with 

AMD3100 attenuates amphetamine induced locomotor activity (Mason et al., 2021). 

Furthermore, CXCR4 knockout prevents degeneration of dopamine neurons of MPTP-lesioned 

mice through microglial and astroglial activation. CXCR4 knockout also protected blood-brain 

barrier (BBB) from MPTP-induced damage (Ma et al., 2023). Therefore, downregulation of 

CXCR4 can be a promising approach for the treatment for AD and PD. 

However, drug discovery is an expensive and time-consuming process with the average 

approved drug requiring 10 to 15 years to develop with an estimated cost of 0.8–2 billion USD. 

Various FDA-approved drugs, such as aliskiren, captopril, dorzolamide, oseltamivir, and 

nolatrexed, were all optimized using CADD (Talele, Khedkar, & Rigby, 2010), and a large 

number of publications describe the successful design and discovery of leads/drugs using 

CADD (W. Lu, Zhang, Jiang, Zhang, & Luo, 2018). The drugs that were optimized or designed 

(Espinoza-Moraga, Caballero, Gaube, Winckler, & Santos, 2012; Fjelldal et al., 2019; Ha, 

Fatima, & Gaurav, 2015; S. Kumar, Chowdhury, & Kumar, 2017; Mishra et al., 2017; 

Popugaeva et al., 2019; Remya, Dileep, Tintu, Variyar, & Sadasivan, 2013; Samadi et al., 2012; 
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Tadayon & Garkani-Nejad, 2019; Thomas & Grossberg, 2009) (Vancraenenbroeck et al., 2014; 

Y. Wang, Lv, Jin, & Liang, 2020) for AD or PD and later confirmed through in vitro or in vivo 

studies (De Andrade Teles et al., 2018; Du et al., 2016; “Memantine for Treatment of Cognitive 

Impairment in Patients With Parkinson’s Disease and Dementia - Full Text View - 

ClinicalTrials.gov,” n.d.; K. K. Roy et al., 2012; Samadi et al., 2013; Varadaraju et al., 2013; 

Venkata et al., 2017; Wei et al., 2013; West, 2017) have been listed in Table 3.7. The main 

goal of CADD is to reduce these timescales and costs without affecting quality (Kapetanovic, 

2008). Importantly, CADD can be used in most stages of drug development: from target 

identification to target validation, from lead discovery to optimization, and in preclinical 

studies. Thus, It is estimated that CADD could lower the drug development cost by up to 50% 

(Macalino, Gosu, Hong, & Choi, 2015; M. Xiang, Cao, Fan, Chen, & Mo, 2012). Therefore, 

our study aims to find potential leads for the treatment of AD and PD among the large number 

of small molecule compounds available in online databases. 

We search for molecules similar to Mavorixafor, a known CXCR4 inhibitor, in Zinc 

Database and found 52 such compounds. Due to similarity in structure, these compounds may 

have similar bioactivity, which we later validated using molecular docking and molecular 

dynamics simulation. Through molecular docking we found 5 molecules that had better binding 

affinity than Mavorixafor. The prediction of the fate of a drug and the effects caused by a drug 

inside the body, such as how much drug is absorbed if administered orally and how much is 

absorbed in the gastrointestinal tract, is an indispensable part of drug discovery. In a similar 

way, if the absorption is poor, its distribution and metabolism would be affected, which can 

lead to causing neurotoxicity and nephrotoxicity. Ultimately, the study is to understand the 

disposition of a drug molecule within an organism. Thus, ADME study is one of the most 

essential parts of computational drug design. Therefore, we validated the molecules through 

their ADME profile and found 4 out of 5 of these molecules were suitable as lead compounds, 

only exception being ZINC49069264, which as not blood-brain barrier permeable. Then we 

employed molecular dynamics simulation to validate stability of protein-ligand complexes. We 

found two molecules, ZINC49067615 and ZINC103242147, that were stable in their 

interaction with CXCR4 and had stronger binding energies than Mavorixafor. Certain residues 

such as TYR45, TRP94, ASP97, etc. were found to be involved in binding between these 

molecules and CXCR4 through molecules docking as well as molecular dynamics simulation. 

This is in line with the residues that have been reported to be important for stability of 
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interactions with known CXCR4 inhibitors (Neves, Simões, & Sá e Melo, 2010; Vinader, 

Ahmet, Ahmed, Patterson, & Afarinkia, 2013), further confirming our results. 

Table 3.7. Neurodegenerative diseases with their diagnostic targets and respective drugs that have been 

identified using Computer-aided drug discovery. The experimental validation, either in vitro or in vivo, 

performed for each drug is also indicated. 

Disease Targets Molecules Software 
In Vitro or In Vivo 

Study 

Alzheimer’s 

Disease 

N-methyl-D-aspartate 

(NMDA) Receptor 

1-Benzyl-1,2,3,4-Tetrahydro-

β-Carboline 
ICM Cell-based assay 

Acetylcholinesterase 

(AChE) and 

Butyrylcholinesterase 

(BuChE) 

6-Chloro-pyridonepezils 
Autodock Vina, 

QikProp 

In vitro blood–brain 

barrier (BBB) model 

Nucleoside hydrolase Flavonoids AutoDock Mice and rat models 

N-methyl-D-aspartate 

(NMDA) Receptor 
Ifenprodil 

Schrödinger 

Suite 

Chicken embryo 

forebrain cultures 

(E10) 

AChE, BuChE, BACE 1, 

MAO and NMDA 
Memantine Glide Clinical Trial 

AChE Morin Glide 
APPswe/PS1dE9 

mice 

ABCG2 enzyme 
2,4-disubstituted 

pyridopyrimidine derivatives 

Autogrid, 

Autodock, and 

GROMACS 

In vitro enzyme 

inhibitory model 

AChE Pyridonepezil Autodock Vina 
In vitro blood–brain 

barrier model 

Transient receptor potential 

canonical 6 (TRPC6) 
Piperazine derivatives PASS software Ellman’s method 

Human islet amyloid 

polypeptide (hIAPP) 
Rutin 

AutoDock and 

AutoDock Vina 

Neuroblastoma cells 

(IMR32) and Wistar 

rats 

Parkinson’s 

Disease 

Leucine-rich repeat kinase 

2 (LRRK2) 

9-methyl-N-phenylpurine-

2,8-diamine, N-

phenylquinazolin-4-amine, 

and 1,3-dihydroindol-2-one) 

MOE 
In vitro and in vivo 

studies 

 

Several studies have reported that CXCR4, a chemokine receptor predominantly expressed on 

B-cell surface, has diverse regulatory functions within the immune system, cell proliferation, 

and neurodevelopment (Bianchi & Mezzapelle, 2020). CXCR4 downregulation is a critical 

event that facilitates the migration of immature B cells from the bone marrow into the 

bloodstream (Beck et al., 2014). However, in neurodegenerative disorders, an aberrant 

upregulation of CXCR4 has been implicated in a cascade of events leading to reduced B cell 

migration, decreased antibody secretion, and the consequential aggregation of toxic proteins, 

such as Aβ in AD and α-Syn in PD (Sierks et al., 2011; Q.-L. Wang et al., 2022). In the absence 

of effective treatment options, natural compounds have recently gained significant attention 

due to their inherent biocompatibility, low toxicity and neuroprotective properties, making 
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them attractive candidates for therapeutic alternatives to synthetic chemical compounds 

(Jamshidi, Rostami, Shojaei, Taherkhani, & Taherkhani, 2024; Mohd Sairazi & Sirajudeen, 

2020). Notably, among their diverse protective effects, natural compounds can counter 

excitotoxicity, reduce neuroinflammation, alleviate oxidative stress, and mitigate 

proteinopathies (Bagli, Goussia, Moschos, Agnantis, & Kitsos, 2016). 

 

The main objective of this study was to classify natural compounds as inhibitors (IC50 ≤ 100 

nM) or non-inhibitors (IC50 > 100 nM) based on their activity against CXCR4 so that they can 

be ultimately used as a potential therapeutic option for neurodegenerative disorders, 

particularly AD and PD. To create a test dataset, we selected 10,000 natural compounds from 

the COCONUT Database, ensuring that they were structurally similar (Tanimoto Coefficient 

> 65%) to Mavorixafor. We then screened these compounds for their ability to cross the blood-

brain barrier (BBB), an important factor for drug efficacy in central nervous system (CNS) 

disorders (Wu et al., 2023). Only 2712 compounds that passed the initial screening by DeePred-

BBB, LightBBB, and SwissADME were selected for further analysis. We also assessed the 

drug-likeness and medicinal chemistry friendliness of these compounds to eliminate those with 

suboptimal absorption, distribution, metabolism, and excretion (ADME) properties, which can 

hinder drug development (A. P. Li, 2001). This resulted in the identification of 1675 

compounds that exhibited zero violations for Lipinski, Ghose, Veber, Egan, and Muegge filters, 

as well as zero Pan Assay Interference Compounds (PAINS) and Brenk alerts. These 

compounds were considered suitable for further investigation. Finally, we calculated the 

molecular descriptors of these compounds using RDKit software to create a test dataset for 

machine learning. 

 

Simultaneously, a robust training dataset was formulated using molecules with documented 

activity against CXCR4 from the BindingDB. Lazy Predict facilitated the exploration of 

various classification algorithms, ultimately leading to the selection of the LGBM Classifier, 

XGB Classifier and Random Forest Classifier, all of which demonstrated superior accuracy 

against the training set. LGBM Classifier offering the best model accuracy after 

hyperparameter tuning was ultimately used for predicting the activity of test compounds and 

identified 20 compounds as potential inhibitors (Table 3.6). Then, we delved into a detailed 

assessment of the binding affinity of these 20 compounds employing Vina-GPU 2.0 and docked 

these compounds with CXCR4. Remarkably, 19 out of 20 compounds exhibited superior 
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binding scores compared to Mavorixafor. The last compound had only a slightly inferior 

binding score compared to Mavorixafor. Finally, these compounds were tested for their 

applicability to our training model. For this purpose, Mahalanobis distance, a distance-based 

metric employed to define the applicability domain (Sahigara et al., 2012), was used to analyze 

the presence of predicted test compounds in the feature space of our training data. Furthermore, 

test compounds outside the feature range of training data were already eliminated before 

activity prediction, reducing the likelihood of predicted test compounds falling outside the 

applicability domain of training data. Therefore, 7 compounds were observed to fulfil the 

applicability domain criteria and prediction for these compounds by our machine learning 

model can be suggested to be reliable. 

 

Three compounds, CNP0015964 (benzimidazole derivative), CNP0013977 

(pyridinylpiperazine derivative), and CNP0015625 (aminopyridine derivative), which emerged 

as the top three CXCR4 inhibitors were within the applicability domain of the model used for 

training and displayed higher docking scores than Mavorixafor by 44.59%, 24.32% and 

21.62%, respectively. Many benzimidazole, pyridinylpiperazine and aminopyridine derivatives 

have been reported for their neuroprotective properties (Imran et al., 2021; Kikuoka et al., 

2020; Strupp et al., 2017), suggesting the potential of these compounds as therapeutic options 

for neurodegenerative disorders. Analysis of the binding interactions between ligands and 

receptors revealed specific residues TRP94, VAL112, and HIS113 as potential determinants for 

CXCR4 inhibition, which have been reported in previous studies (Hung, Lee, Chen, & Chen, 

2014; Senthil Kumar, Kishore, Elumalai, & Gupta, 2023; Tripathi & Kumar, 2023). 

Additionally, it is worth mentioning that these residues were consistently observed as binding 

residues in all three selected molecules as well as Mavorixafor. This observation strengthens 

the idea that CNP0015964, CNP0013977, and CNP0015625 have therapeutic value as CXCR4 

inhibitors and could be potentially effective in the management of neurodegenerative disorders. 

The significance of our findings extends beyond the identification of potential therapeutic 

molecules as it not only unravels the structural motifs that influence CXCR4 inhibition but also 

establishes a robust computational framework that seamlessly integrates cheminformatics and 

machine learning to expedite the discovery of CXCR4 inhibitors from natural compound 

libraries. The cost-effectiveness and efficiency associated with this strategy position it as a 

compelling avenue for drug development, particularly in the context of inflammatory and 

immune-related disorders. 
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Figure 3.12: Fall in CXCR4 expression is vital for the migration of immature B lymphocytes and bone marrow-

derived cells from the bone marrow into the peripheral blood. Mature B lymphocytes secrete antibodies that cross 

the blood-brain barrier and target toxic proteins, like Aβ and α-Syn. Inhibition of CXCR4 expression through 

natural compounds may be helpful for Aβ and α-Syn clearance, thereby helping in treating neurodegenerative 

disorders caused by aggregation of such toxic proteins, namely AD and PD. Similarly, an increase in CXCR4 

expression activates effectors (such as Akt, ERK, c-Jun, NF-kB, p38, mTOR, etc.), as it is a pro-inflammatory 

chemokine, and results in neuroinflammation, which is an important characteristic of the pathophysiology of 

neurodegenerative disorders, such as AD and PD. Thus, CXCR4 inhibitors may help in regulating CXCR4 

expression to normal range, thereby providing protection against neuroinflammation and cell death.
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CHAPTER 4 

SUMMARY, CONCLUSION AND FUTURE SCOPE 

4.1.  Summary 

In this study, we explore the common molecular signatures of Alzheimer’s and Parkinson’s 

disease, outlined shared transcriptional changes in both, and catalogued specific ways in which 

gene expression results implicate mitochondrial pathways, synaptic degeneration, or 

inflammatory pathways in both diseases. These signals also highlight functioning mechanisms 

across these neurodegenerative diseases. We took an innovative, and computational drug-

repurposing approach to screen the compounds from the COCONUT library to discover 

potential drug-treatment targets for the chemokine receptor CXCR4, a compound that is shown 

to play an important role in both neuroinflammation, and neurodegeneration. This was 

comprised of several steps: virtual screening, molecular docking, and pharmacokinetic 

profiling to select compounds that will work effectively and develop into good drugs. We 

identified several different novel compounds with some degree of binding affinity to CXCR4, 

and relevant levels of stability and pharmacokinetic properties. In silico test methods were 

utilized to screen, predict, and confer efficacy of discovered compounds. Using molecular 

dynamics approaches, they were evaluated based on the length of time the compounds will 

adhere with some degree of stability. In determining the interaction between the novel drug 

discovered, and previous knowledge of interaction sites, there are key discovered residues in 

the binding pocket of the CXCR4 chemokine receptor, which provide potential for future 

research and gives insight to rational drug design towards CXCR4. Structural dynamics 

between the compound and CXCR4 receptor at the binding pocket facilitate a highly selective 

bond with key residues for inhibition of receptor CXCR4 actions in cellular chemistry.  

Specifically mapping the chemokine receptor protein and residues that are capable for binding, 

we can begin to understand the design space optimally binding to CXCR4. Alongside the study 

of synthetic compounds, we expanded our investigation to natural compounds as potential 

therapeutic agents for Alzheimer’s and Parkinson’s diseases. Several natural compounds 

showed high levels of inhibition against CXCR4 and some of those compounds had the 

potential via their pharmacokinetic properties. These compounds are also derived from plants 

and are preferable because they are likely more natural and also safer than synthetic drugs. Due 

to their ability to cross the blood-brain barrier and their drug-likeness we focused our further 

investigation on testing these natural compounds. To confirm that selected compounds could 

be usable as therapeutic agents, we conducted experiments to establish the ability of these 

compounds to cross the blood-brain barrier—a crucial characteristic for drug development 
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when the target is neurodegenerative diseases. The ability to cross the blood-brain barrier was 

not the only important attribute verified, as we also established their drug-likeness and that they 

were friendly to medicinal chemistry—two characteristics indicative of properties often 

required for drug development. Only compounds displaying the most desirable characteristics 

of both drug-likeness and capability of crossing the blood-brain barrier were considered for 

additional studies. The potential of the selected compounds to function as inhibiting agents was 

independently tested via prediction algorithms utilizing machine learning. The LightGBM 

Classifier, which was trained based on known biological activity against CXCR4 from an 

archived dataset of compounds, was used as a predictive algorithm for success in novel 

compound comparisons. The LightGBM Classifier produced positive results with respect to 

accurate prediction of all the compounds and represented the strongest predictive capacity of 

the data models. This technique emphasizes the use of computational methods with 

experimental results when determining alternative therapies for disease. The interaction of the 

selected compounds with CXCR4 and supporting residues in the protein-ligand complex has 

been described in detail. These interactions form the foundation for compound activity as 

follows. With regard to an experimental perspective the authors further detail ways of 

rationalizing the compounds on a molecular basis in order to leverage future compounds that 

are more selective and better derived from data resourced biological remedies.  To verify the 

predictions of the compounds were of relevance and reliable, we performed a rigorous 

assessment using the Mahalanobis distance for the applicability to the trained model, 

establishing it was in the chemical space of known CXCR4 inhibitors. The Mahalanobis 

distance metric provides more support for our predictions and the potential therapeutic value 

of the selected compounds. 

Our research has highlighted common transcriptional signatures in the context of 

neurodegenerative disorders, specifically Alzheimer's and Parkinson's, suggesting overlapping 

molecular mechanisms that might be manipulated therapeutically. From our computational 

analysis, we have found novel and natural compounds that bested others with good, strong 

inhibition against CXCR4, good pharmacokinetic properties, and able to cross the blood-brain 

barrier. Machine diagnostic models are further suggestion the potential efficacy of the 

compounds. The interaction insights detailed in the present study and prompting the 

applicability to underline the potential these compounds can act as therapeutic approaches in 

neurodegenerative disorders. Our results open pathways for future research and development 

in effective therapies for Alzheimer and Parkinson's disease. This is promising news for people 

who suffer with neurodegenerative diseases.  
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4.2.  Conclusion 

The molecular docking and simulation were used to screen the molecules showing 

structural similarity with Mavorixafor (CXCR4 inhibitor) to find novel molecules potentially 

regulating the CXCL12/CXCR4 pathway. After the virtual screening of the molecules using 

molecular docking, five test compounds exhibiting high docking scores were selected for 

further analysis. After ADME analysis, ZINC49069264 was ruled out as it was observed to be 

unable to pass through the blood-brain barrier. All other molecules were selected for further 

research. After MD simulation, ZINC49067615 and ZINC103242147 were stable in docked 

configuration with CXCR4 and exhibited high interaction energy. The ADME profiles of these 

compounds were also suitable for being used a lead compounds, passing all five, Lipinski, 

Ghose, Veber, Egan, and Muegge, descriptors of drug-likeness with no violations. Thus, this 

preliminary study revealed that these molecules can be potential therapeutic agents and be 

further tested in biological studies, either in vitro or in vivo, to analyze their potential in the 

modulation of the CXCL12/CXCR4 pathway to treat AD and PD (Fig. 3.12). However, the 

study accompanies the limitations, such as in vitro and in vivo validation of the identified 

compounds in respect to AD and PD pathology.  

 

Artificial intelligence (AI) and machine learning (ML) algorithms have made significant 

advances over the past decade. These computational tools, along with the widespread 

availability of biological data, have become indispensable for drug design and discovery. They 

not only expedite the drug development process but also offer a cost-effective way of 

identifying more potent treatment options for various diseases, including neurodegenerative 

disorders. In this study, we utilized Lazy Predict Python libraries to semi-automate machine 

learning to classify natural compounds as either inhibitors or non-inhibitors of CXCR4. Our 

methodology integrated machine learning with structural similarity, ADME (Absorption, 

Distribution, Metabolism, and Excretion), and molecular docking, leading to the identification 

of optimal candidates for lead discovery. This versatile approach can be applied to other drug 

targets beyond CXCR4. By utilizing existing data to generate machine learning models, our 

methodology accelerates the discovery of potential lead compounds for various targets. This 

not only improves the efficiency of the drug discovery pipeline but also offers a robust 

framework that can be used in conjunction with traditional experimental approaches. As the 

landscape of drug development continues to evolve, the amalgamation of computational and 

experimental techniques stands poised to redefine the efficiency and success of therapeutic 

interventions.  
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4.3.  Future Scope 

• Future studies may examine other molecular targets in addition to CXCR4 that are 

recognized to have physiological roles in both Alzheimer’s and Parkinson’s diseases. 

This consideration could advance more robust treatment strategies that specifically 

target a number of physiological roles in these complex diseases and disorders. 

 

• Additionally, investigational potential benefit of CKX4 inhibitors combined with 

methods of traditional treatment using an increasingly good success rates will 

additively benefit to treatment options. Combined additive benefit will reduce the 

incidence and/or disease progression more effectively than other therapies. 

 

• A crucial consideration in these future directions should involve extensive clinical 

trials to safely and efficaciously establish the identified compounds for use in humans, 

which will provide greater confidence in the possibility of use within the context of 

developing effective treatments for neurodegenerative disorders. 

 

• An important consideration in these future areas of research would be to develop 

personalized treatment modalities based on genetic and physical characteristics, 

thinking differently about each individual patient will help in developing a treatment 

with greater response toward positive outcomes. 

 

• Lastly, advanced computational modelling and machine learning algorithms will be 

increasingly helpful in predicting the efficacy and optimizing design for compound 

used in therapeutic treatments and optimizing accuracy within the compound 

development. 

 

• Relatedly, expanded use of research in support of discovering natural compounds for 

therapeutic efficacy through the investigation of different medicinal natural sources, 

including plants and traditional medicines, will aid in the discovery of neuroprotective 

agents. Natural compounds provide advantageous properties that are not always 

present within synthetic candidates. 

 

• It will be particularly important to investigate and study new routes of drug delivery 

through the blood-brain barrier. Drug delivery to the brain is essential in the treatment 

of brain disorders and overcoming the blood-brain barrier will be of utmost 

importance in increased efficacy for interventions combatting neurodegeneration, 

developing drugs and control methods with improved efficacy. 
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