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Development of an Efficient Algorithm for Heart Rate Estimation Using 

Remote Photoplethysmography Signal 

 

Ritika Gupta 

 

 

ABSTRACT 

 

 

 
Accurate and non-contact heart rate monitoring has received substantial 

interest due to its usefulness in telemedicine, fitness tracking, and real-time health 

surveillance. Traditional contact-based methods, though reliable, pose challenges in 

terms of user ease, sensor placement, feasibility for remote monitoring. In light of these 

restrictions, this research explores a remote and scalable solution through Remote 

Photoplethysmography (rPPG)—a technique that estimates heart rate from face video 

recorded by a standard RGB camera. 

The proposed method employs MediaPipe facial landmark detection to 

identify the facial region which are examples of stable Regions of Interest on the face 

that are known to have trustworthy blood volume pulse (BVP) signals. The collected 

RGB signals are converted into the HSV color space to increase the signal extractions’s 

resilience, where the Saturation (S) channel is isolated due to its reduced sensitivity to 

illumination variations. This enhances the quality of the extracted signal. Further, a 

Fourier Decomposition Method (FDM) is applied to isolate heartbeat-related 

frequency components while reducing the impact of noise and motion artifacts.  

Experimental validation on publicly available UBFC-rPPG dataset demonstrates that 

the method performs competitively compared to existing rPPG techniques. The 

findings confirm that the proposed pipeline achieves consistent and reliable heart rate 

estimation even under realistic conditions involving movement and lighting changes.  

 This scientific exploration brings forth the growing body of non-contact 

physiological monitoring techniques, offering a non-intrusive and efficient alternative 

to traditional heart rate measurement tools. Future work may include enhancing motion 

resilience, evaluating performance across varying skin tones, integrating deep learning 

for automatic ROI selection and denoising, and extending the system to measure 

additional physiological parameters such as respiratory rate. The method holds 

promise for deployment in consumer health applications, mobile platforms, and large-

scale telehealth systems. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Estimating heart rate is a crucial physiological measure extensively 

utilized in healthcare and wellness applications, encompassing cardiovascular 

monitoring, fitness assessment, and psychophysiological evaluation. Traditional HR 

measuring methods mainly utilize contact-based sensors, including 

electrocardiography (ECG) and photoplethysmography (PPG), both requiring direct 

skin contact for accurate readings. However, these methods can be inconvenient for 

persistent tracking and observation, such as in sleep apnea studies, as they constrain 

movement and may cause discomfort. Moreover, attaching sensors can be particularly 

challenging in certain medical conditions, such as wound assessment (burns, ulcers, or 

trauma), fragile or sensitive skin, and newborn medical care. 

Widely adopted in both clinical and non-clinical environments, the 

technique offers a practical solution for tracking vital physiological signals in real 

time. It plays an essential part in the early identification of possible health concerns 

and supports ongoing wellness monitoring. The technique works by shining light onto 

the skin and using a photodetector to identify the alterations in light transmission or 

reflection. These modifications result from variations in the volume of blood within 

the underlying vessels. With each heartbeat, blood flow changes, and it subtly changes 

the way light behaves as it passes through the tissue, data that is monitored and 

converted into a physiological signal to be analyzed [1]. 

According to Beer-Lambert's rule, PPG uses light-emitting diodes and, 

photodetector to identify blood changes in perfusion brought on by heart activity, also 

known as the blood volumetric pulse (BVP) [2]. In a similar vein, non-contact 

techniques use cameras as sensors to capture BVP under natural light. Different optical 

attributes of oxygenated or deoxygenated blood form the basis of this practice since 

they have different absorption properties of light, and oxygenated blood is lighter in 

quality. A remotely located RGB camera can measure periodic changes in complexion 

based on the difference in blood oxygenation. A BVP-like signal can be reconstructed 

from analyzing these subtle changes in colour with a pulse across consecutive video 

frames for vital sign estimation [3]. Consequently, this method is widely recognized 

in the literature as remote PPG (rPPG) or image PPG (iPPG). 

A standard camera can be used by rPPG to capture facial footage of the 

subject variations in the skin colour to produce the rPPG signal [1]. The method is 

based on directing light onto the skin and measuring the reflection or transmission 

changes of the illuminance by a photodetector. The changes are the result of changes 

in the blood volume of the underlying vessels. Blood flow changes with each heartbeat, 

and it makes the light behave slightly differently as it travels through the tissue, data 
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measured and translated into a physiological signal to study. Additionally, the signal 

strength in rPPG is generally weaker than contact-based methods, requiring precise 

processing to maintain accuracy. 

In earlier research, Verkruysse et al. [4] initially suggested the application 

of consumer-level cameras as a breakthrough in the development of the rPPG 

technique. In their initial development, they concluded that the various channels of the 

RGB colour space convey different levels of photoplethysmographic information, with 

the green channel having the most heartbeat-related signal. This lines up with the 

biological principle that Hb is a more absorptive medium for green light and, thus, 

very sensitive to variation in blood volume. The study successfully validated the 

potential of extracting heart rate data from standard video footage without the need for 

specialized equipment. Since this breakthrough, numerous approaches have been 

proposed for remote heart rate monitoring using rPPG, and the field continues to attract 

active research and innovation.  

However, many factors constrain the effectiveness of rPPG; BVP are weak 

signals by nature, and thus anything from ambient lighting to activities resulting in 

facial muscle contractions from the person in question may smear the noise across the 

target signal that seeks to retain accuracy and stability in rPPG measures. An effective 

technique in this direction is to select an ROI least affected by muscle movement to 

improve the resistance of the signal to noise. With the advancement of face detection 

and landmark-based algorithms, facial skin has become the area of interest most 

commonly investigated in rPPG HR estimation [5].  

 

1.1 Principle behind rPPG  

 

Remote photoplethysmography is an optical method that makes it possible 

to obtain physiological parameters, such as heart rate, in a non-contact manner by 

measuring small differences in skin colour due to blood volume changes during the 

cardiac cycle [6]. The principle of the rPPG states that, with every heartbeat, the 

cardiovascular system’s blood propagation creates periodic waves by altering the 

 

Fig. 1.1 The dichromatic reflection model depicts the concept of remote 

photoplethysmography (rPPG). 



 3

   

  

blood volume in the microvascular tissue bed under the skin. These variations in blood 

volume are brought on by pulsatile blood flow in the superficial microvascular tissues, 

and the modulation patterns show how light is absorbed and reflected on the skin's 

surface. As illustrated in Fig. 1.1, the dichromatic reflection model (DRM) [7] provides 

more insight into the rPPG concept. When light from the environment strikes the skin, 

it generates both specular and diffuse reflections. Specular reflection occurs at the 

surface level, reflecting light directly off the skin without carrying any physiological 

information. In contrast, diffuse reflection contains essential physiological signals by 

penetrating the skin and interacting with the blood vessels underneath. However, the 

video signal captured by a camera is a mixture of both reflection types. As a result, 

effective rPPG signal extraction relies on isolating the diffuse reflection component, 

which carries the meaningful data, while minimizing the influence of specular 

reflections. Standard cameras can capture such minor fluctuations in reflected light, 

which, after appropriate signal processing, can be analyzed and interpreted as 

meaningful physiological data [4]. Thus, it is a very efficacious technology for all 

applications in telemedicine, fitness, and remote health diagnostics, as it measures 

heart rate without contact. 

In this study, the basic concepts of rPPG are exploited to obtain a very 

efficient heart-rate estimation technique to solve general issues in non-contact 

monitoring, like motion artifacts, lighting variations, and environmental noise. Thus, 

the algorithm makes the heart rate estimation more accurate and reliable and, hence, 

demonstrates the practicality of rPPG in real-world situations with efficient signal 

acquisition and processing techniques. 

 

1.2 Heart rate estimation using facial videos 

 

The enhancement in signal processing and computer vision techniques has 

made facial video heart rate estimation more secure in terms of accuracy and 

reliability. We will discuss the heart rate estimation system workflows based on rPPG. 

The capturing of any facial video corresponded with colour fluctuations due to 

incessant blood flow, while the extraction of rPPG signals was necessary to find the 

heart rate. For the initial face video, ROI was defined from which the temporal signals 

were extracted. Blind source separation (BSS) [8], periodicity measurements, or deep-

learning (DL) architectures [9] are used to generate the rPPG signal from these data. 

Noise is reduced by filtering the generated rPPG signal [10]. HR is calculated by 

analyzing the frequency spectrum or R-R intervals of the rPPG signal. 

Advancements in face detection and landmark algorithms have led to the 

inclusion of facial skin as the primary ROI in rPPG investigations [11]. Researchers 

are relentlessly improving ROI detection systems and investigating various ROI sites. 

However, several challenges have been faced by these processes, including sensitivity 

to facial movements, lighting variations, and different skin tones; all of these generate 

a considerable amount of noise and decrease the accuracy of heart rate detection. It is 

therefore important to ensure appropriate ROI stabilization and integrate robust signal 

extraction techniques for dealing with such challenges. 

In response to these limitations, the proposed algorithm for facial tracking 

and optimized ROI extraction techniques ensures that the signal is consistently 

acquired even in unevenly dynamic conditions. On top of this, with better stabilization 
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of the pipeline for the processing of facial videos and better signal analysis techniques, 

this algorithm improves the performance of heart rate estimation, compared to 

traditional methods, to a higher extent in the case of environments with varying 

lighting and motion artifacts. 

 

1.3 Applications 

 

The evolution of rPPG has redefined the landscape of non-contact vital 

sign monitoring, enabling seamless measurement of physiological parameters like 

heart rate (HR), respiratory rate (RR), and blood oxygen saturation (SpO2) through 

video-based analysis. This contactless technology leverages subtle skin colour changes 

captured by standard cameras, eliminating the discomfort and limitations of traditional 

sensors. Its versatility has paved the way for numerous real-world applications, 

extending from clinical health monitoring to fitness and mental health assessments. 

The various applications of rPPG technology are demonstrated in Fig. 1.2 

1.3.1 Pediatric Health Monitoring 

 

The rPPG technology is greatly employed in pediatric health monitoring. 

Usual vital sign-measuring techniques for neonates and infants tend to require 

uncomfortable contact sensors and sometimes, even invasive ones. On the other hand, 

rPPG provides contactless monitoring for heart rate, respiration rate, and oxygen 

saturation in children, including neonates from birth to 28 days. This approach is less 

 

Fig. 1.2 Emerging applications of rPPG technology 
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painful and purely non-invasive; hence, it reduces the likelihood of skin irritation and 

infection compared to conventional sensors. Besides, the acceptability and feasibility 

of rPPG to children and their parents point to this being an option of choice concerning 

continuous monitoring in NICUs and pediatric wards. Remote measurement of 

physiological parameters enables health professionals to observe changes in vital signs 

without the patients or clients experiencing physical disturbance, boosting patient 

comfort and allowing for frequent and standardized monitoring. This application also 

facilitates remote assessments, where pediatric patients can be monitored from home, 

reducing the need for frequent hospital visits while ensuring safety, health stability. 

 

1.3.2 Smartphone-based Vital Monitoring 

 

The implementation of rPPG in mobile-based applications is 

revolutionary in achieving pervasive health monitoring. There are indeed some good 

examples of the same, as we alluded to above with the WellFie app that is using the 

camera of your smartphone to do contactless sensing (like heart rate, respiratory rate 

and even blood pressure to an extent). Studies have confirmed that the readings from 

the app are just as accurate as readings from a conventional medical device. This 

innovation converts typical smartphones into very useful health monitors, and allows 

people to obtain his/her physiological information anywhere, anytime. This means 

individuals with chronic diseases, such as hypertension or cardiovascular ailments, can 

use real-time logging of data and prompt feedback without the hassle of wearable 

sensors or frequent visits to the clinic. Furthermore, the data collected can be easily 

shared with medical professionals for remote consultations, making it a cornerstone 

for mobile health (mHealth) initiatives. 

 

1.3.3 Skin Microcirculation Analysis 

 

Aside from breathing rate and heart rate, rPPG has also been applied to 

skin microcirculation research. Emerging developments led to the development of 

adaptive illumination and near-infrared light rPPG devices. These devices provide 

enhanced accuracy in capturing blood perfusion maps, which are crucial for assessing 

skin health and circulation. Adaptive illumination adjusts the lighting dynamically to 

optimize signal quality, even in suboptimal environmental conditions. Such a 

capability allows health practitioners to measure microvascular health quantitatively, 

detect pathology of blood flow, and determine the effectiveness of therapeutic 

intervention. Applications include diabetic foot care monitoring, pressure ulcer 

prevention, and skin graft monitoring, where real-time, noncontact measurement is 

highly beneficial. 

 

1.3.4 Telehealth and Remote Patient Monitoring 

 

rPPG's non-contact nature positions it as a highly valuable technology for 

telehealth and remote patient monitoring. As more and more healthcare becomes 

dependent on remote consultations, rPPG offers the capability to monitor 

cardiovascular health metrics in real time without the requirement of being present. 

This feature is particularly beneficial to the mobility-impaired, those in remote areas, 
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or even in the event of pandemics, when contact needs to be minimized to an absolute 

level. Real-time video processing allows doctors to monitor heart rate variability, 

identify arrhythmias, and monitor general cardiovascular health during telemedicine 

consultations. The simplicity of setting up a standard camera for monitoring eliminates 

the logistical constraints of wearable devices, offering patients a seamless experience 

while ensuring medical oversight remains consistent. 

 

1.3.5 Mental Health and Stress Monitoring 

 

In addition to physical wellness, rPPG has proven to be highly effective in 

the area of mental wellness and stress monitoring. Physiological indices and signals, 

such as heart rate variability (HRV), are highly related to the prevailing emotional 

states and the level of stress. Through the monitoring of changes in HRV, rPPG can 

serve as an indicator of psychological health. Mental well-being applications of rPPG 

are real-time stress measurement in stress environments, mood tracker and early 

detection of anxiety disorders. Wearables camera or smartphone app integration offers 

self-monitoring of emotional state change and adaptation of activities or routines. For 

clinicians, this non-contact monitoring provides a continuous stream of physiological 

data, offering insights into patients' mental health without intrusive procedures. 

 

1.3.6 Sports and Fitness Monitoring 

 

Another emerging use of rPPG is in sports and fitness applications. 

Conventional heart rate measurement is based on chest straps or wrist units, which are 

uncomfortable and cause inconvenience during stages of high-intensity activity. In 

contrast, rPPG enables athletes to monitor heart rate, respiratory rate and recovery 

time by using video video-based method only. Cameras may be positioned to capture 

real-time performance measures that are not obtrusive to the athlete during training. 

This information will help you get the most out of your training, avoid overtraining, 

and improve your recovery techniques. Moreover, its non-contact technology is 

perfect for team sports where a large number of athletes are otherwise difficult to 

monitor at once. The versatility of remote Photoplethysmography (rPPG) extends far 

beyond traditional health monitoring, unlocking applications across pediatric care, 

telemedicine, mental health, and even fitness. Its non-contact nature, coupled with the 

ability to deliver real-time physiological insights, makes it a groundbreaking solution 

for modern health challenges. Future enhancements in multi-modal sensing, adaptive 

illumination, and motion stabilization are expected to further solidify its role in 

continuous and contactless health assessment.                                                                                                                                                                                                 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 
Traditional heart rate monitoring techniques, such as Electrocardiography 

(ECG) and Photoplethysmography (PPG), involve contact with skin, so it is not 

feasible in continuous and comfortable monitoring scenarios. In contrast, rPPG enables 

heart rate estimation by analyzing facial skin regions that reflect blood flow patterns 

without the need for physical sensors, making it highly suitable for telemedicine, 

fitness applications, and real-time health monitoring. Numerous techniques were 

developed to provide enhanced remote photoplethysmography (PPG) signal 

processing, assisting in reducing noise as well as compensating for motion artifacts. 

Most of the time, machine learning algorithms are used for the automatic detection of 

events [12]. Nevertheless, challenges continue to deter progress by a factor concerning 

the rPPG signal analysis since there are still many motion artifacts and ambient light 

within it. Thus, there is a need to address such challenges to enhance the rPPG-based 

health monitoring systems. 

Various methods have been proposed for improving the accuracy and 

robustness of rPPG-based heart rate estimation, which range from elementary pixel 

intensity analysis to more advanced signal processing systems. Recent research has 

used far more sophisticated approaches to signal processing techniques, including deep 

learning methods, blind source separation (BSS), optical reflection models, and 

independent component analysis (ICA) [13], principal component analysis (PCA) 

[14]. All these are meant to help extract the pure rPPG signal while separating 

unwanted noise components. In simple terms, model-driven methods focus on 

breaking down RGB signals into a linear combination of the underlying blood volume 

pulse (BVP) and various noise elements. This approach helps to isolate noise based on 

certain predefined assumptions or constraints. In contrast, deep learning frameworks 

employ neural networks to create relationships between the video data and/or features 

extracted from a video frame with physiological targets such as Heart Rate (HR) or 

Blood Volume Pulse (BVP) waveforms. These models utilize the parameters learned 

from vast training datasets to predict HR components. 
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2.1 Conventional Signal Processing Techniques 

 

Under typical ambient lighting circumstances, early studies on rPPG-based 

heart rate measurement have produced encouraging results. However, issues including 

skin tone fluctuations, illumination variances, and motion disturbances can 

compromise measurement accuracy. Several signal-processing methods have been 

created to solve these issues, and their basic flow is shown in Fig. 2.1. 

 

2.1.1 Discrete Wavelet Transform  

 

DWT decomposes PPG signals into different frequency bands, facilitating 

the  effective removal of motion artifacts through methods like soft thresholding [15].  

 

2.1.2 Adaptive Filtering  

 

By reducing the error between the PPG signal and a reference signal that 

correlates with motion artifacts, methods like the Least Mean Squares (LMS) adaptive 

filter are put into practice that not only identifies but also eliminate motion artifact 

[16]. 

 

2.1.3 Kalman Filtering 

 

This recursive estimation technique adjusts filter parameters based on 

dynamic models of physiological processes and measurement noise, making it 

effective for denoising signals and estimating parameters in rPPG analysis [17]. 

 

 

 

 

Fig 2.1 The flowchart of rPPG signal processing 
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2.1.4 Bandpass Filtering  

 

Setting a bandpass filter is one of the core signal processing methods for 

analyzing rPPG signals. It helps focus on desirable frequency components, e.g., Blood 

Volume Pulse or Pulse Rate, while rejecting the noise from disturbance and changes 

in the illumination source. This, in turn, generally leads to a better estimate of 

physiological parameters, since it accentuates the pulsatile signal and blocks other 

frequencies that may contaminate its measurement. In contrast, the method will 

contrast with being effective since a mischoice between the cutoff frequencies will 

distort the signal or allow noise to enter. Also, given that it is a static filter, it is hard 

to incorporate adjustments when changes in environmental conditions take place very 

quickly, hence the need for some post-processing for artifact removal. 

 

2.1.5 Fast Fourier Transform Filtering  

 

Being a type of filter in the realm of signal processing, FFT helps to 

decompose the rPPG signals from time-domain data into their constitutive frequency 

components. Once the frequency peak associated with cardiac-related signals is 

located, parameters of the physical nature of BVP and PR can be derived accurately. 

However, leakage in the FFT may occur, which is highly noticeable in short-time 

signals or nonstationary signals. The spectral leakage mandates a proper window and 

resolution choice since, otherwise, artifacts could be introduced into analyses or results 

could be deformed. Nonetheless, FFTs are, without any question, a very powerful tool 

for frequency domain analysis of the rPPG [18].  

 

2.1.6 ICA and PCA filters  

 

Independent Component Analysis (ICA) serves as a highly competent 

method for decomposing multi-channel rPPG signals into statistically independent 

components and disentangling physiological signals from complex and noisy 

recordings. It stands out with the ability to separate sources, namely, hemodynamic 

changes and motion artifacts, based on the premise of statistical independence. Hence, 

ICA will provide a much stronger basis for signal extraction under conditions where 

sources overlap or amount to much noise. However, to a large extent, the performance 

of ICA depends on how accurately the independence assumption holds, whereas in 

cases of incorrect application, it might generate misleading components or discard 

relevant information. ICA can also, in high-dimensional data, be computationally 

intensive. 

PCA, or Principal Component Analysis, is a method by which rPPG 

signals can be transformed into several orthogonal components that will allow the 

identification of dominant patterns of variation within the source. This method helps 

reduce dimensionality and cut down on noise while keeping important physiological 

references intact, making it a great option for extracting features and interpreting 

signals. PCA allows for the comparison of different components against a 

physiological parameter. However, its fundamental assumption of orthogonality 

doesn’t apply to all rPPG signals, and using it incorrectly could result in losing some 
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valuable and subtle features of the signal. PCA continues to remain a handy method 

for improving signal clarity and interpretability despite these limitations [19]. 

 

2.1.7 Savitzky-Golay Filtering  

 

Savitzky-Golay filtering is a broadly applied technique in rPPG analysis 

for the purpose of smoothing signals, attenuating high-frequency noise, and partly 

preserving the important characteristics of physiological signals. By applying local 

polynomial regression, it can efficiently enhance the signal-to-noise ratio, but is easily 

allowed to process data in real-time due to its low computational cost. However, it has 

a defined response, which can lead to phase distortion or smoothing of the signal 

associated with inappropriate filter parameters or non-stationary signals. Although by 

itself it can be effective, it will not eliminate all sources of noise, and thus will often 

need further pre-processing. Under careful tuning of the parameters, Savitzky-Golay 

filtering can indeed be considered a valuable processing tool for improving the quality 

of rPPG signals [20]. 

Implementing these advanced signal processing methods enhances the 

accuracy and reliability of rPPG-based HR measurements, addressing key challenges 

in non-invasive physiological monitoring. 

 

2.2 Advancements in Deep Learning techniques for rPPG 

 

Innovations in deep learning have reached the level of utmost progress for 

extracting PPG signals. However, most models are not generalised across skin tones 

or environments because the datasets are not diverse enough. Some efforts have been 

tried out, such as developing effective solutions using convolutional neural networks, 

building 3D models, and using self-attention transformers like EfficientPhys [21]. 

Nevertheless, remote PPG applications with deep learning are still very complicated 

with architecture design and data curation for reliable heart rate measurements. Table 

2.1 depicts the evolution of distinct rPPG methods for HR estimation. 

 While rPPG methods have seen significant advancements, stability 

remains a challenge. Several current methodologies fail to account for the 

physiological aspects of facial BVP signal assessment, limiting their practical 

application. Variations in the geographical distribution of facial blood vessels and the 

temporal consistency of HR signals are of particular importance. As a result, many 

current methods are tailored for specific video conditions, which makes them less 

effective when dealing with footage that features a variety of facial characteristics, 

different demographic backgrounds, or real-life situations. This limitation is clear in 

the experimental results shared in previous studies. Different areas of the face show 

varying strengths of blood volume pulse (BVP) signals, and inconsistent lighting can 

throw off the denoising process, leading to poorer signal quality. Yet, most rPPG 

techniques focus on just one facial area of interest (ROI), which can compromise the 

reliability and precision of signal extraction. 
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In recent years, deep learning (DL) techniques have really taken off in the realm 

of imaging photoplethysmography (iPPG), mainly because they excel at capturing complex 

spatial and temporal dynamics. These techniques generally fall into two main categories: end-

to-end and modular (non-end-to-end) learning architectures. As highlighted in [23], non-end-

to-end methods usually rely on spatiotemporal signal representations to pull out iPPG-related 

features from specific facial areas. A prime example of this approach is a two-phase 

convolutional neural network (CNN), which first extracts features and then estimates heart 

rate (HR), as shown in Fig. 2.2. Building on this idea, model called SAM-rPPGNet has been 

created, which includes attention mechanisms to boost accuracy even further. This architecture 

is made up of three main parts: a feature detection system for facial inputs, an iPPG signal 

derivation block, and a signal refinement unit, as depicted in Fig. 2.3. 

 

Several advanced methods, including EVM-CNN [24], AND-rPPG [25], 

and DT-rPPG [26], have successfully utilized spatio-temporal maps as effective 

representations of heart rate, which are used as inputs to train deep learning models. 

While non-end-to-end models benefit from rich iPPG data and perform reliably under 

realistic conditions, they typically require extensive preprocessing of temporal HR 

features. In contrast, end-to-end models bypass this step by learning directly from raw 

facial video sequences. Notably, Chen and McDuff [27] introduced Deepphys—Using 

normalized frame differences, the first end-to-end convolutional attention model 

calculates pulse signals. Building on this, newer models like HR-CNN [28], PhysNet, 

and PhysFormer++ [29] have emerged for direct heart rate extraction from video 

inputs. 

 

 

Fig. 2.2 The framework of HR-CNN 

Fig. 2.3 The architecture of SAM-rPPGNet 
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 Since they first appeared in 2014,Generative Adversarial Networks 

(GANs) have become incredibly influential in the realms of image analysis and 

computer vision, thanks to their knack for creating high-quality synthetic data. A 

standard GAN setup consists of two main parts: a generator and a discriminator. These 

two networks are trained at the same time but with opposite objectives—the generator's 

job is to create data that closely resembles real samples, while the discriminator works 

to tell the difference between real and generated inputs. This ongoing rivalry drives 

the generator to continually enhance its outputs, leading to results that look more and 

more lifelike, as shown in Fig. 2.4. 
 

In their research, Yu et al. [30] introduced a groundbreaking method called 

Physformer for estimating heart rate (HR). This approach leverages the transformer 

model to deliver top-notch results in analyzing remote photoplethysmography (rPPG) 

signals, as shown in Fig. 2.5. The heart of Physformer is its time-difference 

transformer mechanism, which skillfully captures long-range spatiotemporal 

relationships. This architecture is particularly adept at understanding both local 

temporal changes and wider spatiotemporal trends that are essential for precise HR 

estimation.  

 

 

Fig. 2.4 The basic architecture of GAN 

Fig. 2.5 The architecture of PhysFormer 

 

Fig. 2.6 The architecture of RADIANT 
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Recently, Gupta et al. [31] introduced an exciting new framework called 

RADIANT. This innovative approach merges signal embedding techniques with a 

transformer-based architecture, as illustrated in Fig. 2.6. Signal embedding enhances 

the portrayal of iPPG features while reducing noise interference. Their process starts 

with traditional methods to extract initial rPPG signals from chosen facial ROIs. These 

signals are then processed through Multi-Layer Perceptron (MLP) layers for 

embedding, which helps preserve more detailed rPPG information and improves signal 

quality. You can find a summary of the evolution of various rPPG-based heart rate 

estimation methods in Table 2.1. 

 

Contrastive learning has proven to be highly effective for unsupervised 

methods; however, it also presents certain drawbacks, including high computational 

complexity and substantial processing costs due to the need for large sample 

comparisons. Addressing these limitations, Speth et al. [32] introduced SiNC, as 

illustrated in Fig. 2.7. Unlike traditional contrastive learning, which relies on 

comparing a large number of samples, SiNC leverages prior knowledge of periodic 

signals to achieve efficient learning without the overhead of extensive sample 

comparisons.  

In real-world settings, DL-based approaches must account for variations 

in ethnicity, lighting conditions, and other environmental factors to ensure accurate 

results. However, capturing such diverse data is challenging due to the wide range of 

real-life scenarios. Additionally, physiological states vary over time and differ 

significantly between individuals, making it difficult to develop models that generalize 

well across the entire population.  

 

Sr Model Year Method Description 

1 MTTS-CAN 

[33] 

2020 Attention + 

TSM 

(2D CNN) 

Using an attention mechanism to 

steer the motion modeling 

process, paired with a Temporal 

Shift Module (TSM). 

2 SAM-

rPPGNet [34] 

2021 Attention Introduced a SAM for signal 

estimation that uses 3D CNN to 

learn prominent features and 

reduce head motion noise. 

 

Fig. 2.7 The architecture of SiNC 

Table 2.1. Analysis of various methods depicting the evolution of rPPG studies 
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3 PulseGAN 

[35] 

2021 CHROM 

(GAN) 

Using GAN for signal filtering, a 

coarse rPPG signal can be 

converted into a high-fidelity 

rPPG signal. 

4 PhysFormer++ 

[29] 

2023 Temporal-

Difference 

Learning + 

SlowFast 

On top of PhysFormer, the 

intricate cross-speed relation in 

the dual-channel slowFast 

architectural concept is included 

for more dependable head motion. 

5 RADIANT 

[36] 

2023 Signal 

Embedding 

A domain-generalized rPPG 

network that utilizes decoupled 

feature learning. 

6 Multi-Task 

[37] 

2021 Data 

Augmentation 

A multi-task approach for  

extraction of rPPG signals and 

enhancement of data through 

augmentation techniques. 

7 DG-rPPGNet 

[38] 

2022 Disentangled 

Feature 

Learning 

Domain generalized iPPG 

network that leverages 

disentangled feature learning to 

improve cross-domain 

performance. 

8 SimPer [39] 2023 Data 

Augmentation 

+ Contrastive 

Learning 

Using Generalized Contrastive 

Loss and Relative Sampling Rates 

to Learn Robust and Effective 

Periodic Representations. 

9 rPPG-MAE 

[40] 

2023 Spatial-

Temporal Map 

+ MAE 

The best unsupervised 

performance was attained by the 

first rPPG approach to use MAE 

in conjunction with the creation of 

a new PC-STMap. 

10 APNET [41] 2022 Axis 

Projection 

The idea of APNET is put forth, 

which projects films into several 

axes to gather data from every 

direction. 

11 PRN 

augmented 

[32] 

2022 Data 

Augmentation 

+ Style 

Transfer 

A 3D CNN-based skin tone 

generator that creates a uniformly 

dark tone from facial photos with 

varying skin tones. 

12 SiNC [42] 2023 Data 

Augmentation 

+ Penalized 

Regression 

As the first unsupervised 

technique without contrastive 

learning, penalized regression 

was used to create the loss 

function. 
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CHAPTER 3 

 

 

Proposed Method for Remote Photoplethysmography-based Heart 

Rate Detection 

 

 

 
 The key purpose of heart rate monitoring is to achieve accurate and reliable 

measurements in real-time, which is crucial for health monitoring, fitness tracking, and 

medical diagnostics. Traditional methods like ECG and PPG require direct contact 

with the skin, making them inconvenient for continuous and non-intrusive monitoring 

applications. This limitation has encouraged further investigation in remote 

photoplethysmography, which allows for heart rate estimation using standard RGB 

cameras through the detection of minor variations in skin tone on the face. However, 

existing rPPG methods face significant challenges, including sensitivity to motion 

artifacts, lighting variations, and skin tone differences, which compromise signal 

quality and accuracy. Additionally, the lack of robust Region of Interest (ROI) 

optimization and noise-filtering mechanisms further hampers real-world application. 

Hence, the problem is formulated as follows: How can non-contact heart rate 

estimation be optimized for accuracy and robustness in dynamic real-world scenarios? 

To address this, a novel algorithm is proposed that leverages MediaPipe facial 

landmark detection, HSV color space transformation, and the Fourier Decomposition 

Method (FDM) to enhance signal clarity, reduce noise, and provide reliable heart rate 

estimation across varying conditions. Fig. 3.1 shows a visual illustration of the 

proposed algorithm for non-contact based HR estimation. 

 

Fig. 3.1 A graphical representation of the proposed algorithm for non-contact HR 

estimation. 
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3.1 Face detection and tracking 

 

Since, the skin pixels in each frame give pulsating cardiac information, 

they are included in the spatial domain of the rPPG HR estimate method. The face is 

typically seen in the facial recordings as an unhindered, well-lit body part, which 

makes it a suitable region of interest for BVP signal extraction. In this regard, the facial 

area in each frame must be localized. To retrieve BVP-related information, just the 

skin pixels are required, as the non-skin (zero intensity) pixels may induce noise to the 

BVP signal. This is achieved by MediaPipe Face Landmark [43], introduced by 

Kartynnik et al. as a technique for identifying geometry points of the face and 

expressions in videos and images of the face. The geometric facial mapping model 

employs a recurrent deep neural framework to provide ultra-fast inference 

performance on mobile GPUs. Fig. 3.2 (b) demonstrates that the model can infer 468 

points, making it suitable for virtual try-ons, augmented reality effects, and cosmetics. 

Screen coordinates (x- and y-) are used to represent the position of the 𝑚𝑡ℎ landmark 

point, 𝑙𝑚. The landmark point in the 𝑡𝑡ℎ frame 𝐼(𝑡) situated at 𝑙𝑚(𝑡) = [𝑥𝑚(𝑡), 𝑦𝑚(𝑡)]. 
(1) shows that Inference is performed on a per-frame basis and generates a collection 

of landmarks, 𝐿(𝑡) = [𝑙1(𝑡), 𝑙2(𝑡), . . . , 𝑙468(𝑡)] . The 𝑚𝑡ℎ landmark detected per frame 

creates the 𝑚𝑡ℎ trajectory 𝐿𝑚 = [𝑙𝑚(1), 𝑙𝑚(2), . . . , 𝑙𝑚(𝑛)] of the recorded video 𝑉 =
[𝐼(1), 𝐼(2), . . . , 𝐼(𝑛)]. The signal's x- and y-components are built using x-coordinate 

signals 𝑉 = [𝐼(1), 𝐼(2), . . . , 𝐼(𝑛)], and y-coordinate signals 𝑦 =
[𝑦𝑚(1), 𝑦𝑚(2), . . . , 𝑦𝑚(𝑛)], respectively.  

 

𝐿(𝑡) = 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘(𝐼(𝑡))                          (3.1) 

 

ROI extraction involves identifying face landmarks and then extracting sub-ROIs from 

the forehead, left cheek, and right cheek regions. 

 

3.2 Skin detection and sub-ROIs extraction  

 

When it comes to estimating heart rate through rPPG, getting accurate skin 

pixel information is essential for capturing a clear and dependable Blood Volume Pulse 

(BVP) signal. To detect faces, we use the MediaPipe Landmark Detection Model, 

which skillfully identifies 468 key facial points to define different areas of the face. 

From these points, we focus on three main sub-ROIs: the forehead, the left cheek, and 

the right cheek. These specific regions are strategically chosen because they are 

generally less prone to movement artifacts and provide clearer signals related to blood 

flow variations. The forehead is especially effective due to its smooth surface and 

minimal muscle movement, while the cheek regions capture strong pulsatile signals 

from underlying vasculature. 
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Fig. 3.2 (c) shows the sub-ROI extractions utilizing landmark points. Once 

these sub-ROIs are extracted, it is essential to filter out non-skin elements that do not 

contribute to BVP signal extraction. These non-skin elements may include hair strands, 

spectacle frames, facial scars, and even portions of the background that are mistakenly 

captured during face detection.  

Even with a careful choice of sub-ROIs, there might still be some non-skin 

pixels hanging around in the defined areas, like those pesky beard spots, reflections 

from glasses, or random background clutter. To tackle this issue, we use a smart 

strategy for selecting the best sub-ROIs. We assess how well each sub-ROI captures a 

clear BVP signal by looking at the Mean Absolute Error (MAE) analysis. MAE serves 

as our go-to performance metric to measure the noise and error levels in the signals 

extracted from each sub-ROI. Among the three regions, the one with the lowest MAE 

is selected as the optimal sub-ROI, as it represents the most noise-free and stable signal 

for heart rate estimation, as shown in Fig. 3.2 (d). 

Once the sub-ROI is fixed, one can calculate the RGB signals—r(t), g(t), 

and b(t)—for each frame by spatial averaging over pixel values within the region. 

Spatial averaging is often considered a noise reduction procedure since it uniformly 

blends any colour intensity present over the entire sub-ROI area. Meanwhile, this 

averaging is performed separately on red, green, and blue channel values to capture 

very fine changes in skin reflectance due to pulsatile blood flow. Later, these averaged 

RGB signals become very important for processing, such as conversion of signals into 

various colour spaces and signal decomposition, which are necessary for making an 

accurate heart rate detection. 

This methodical approach—melding facial landmark detection, skin 

segmentation, sub-ROI optimization, and spatial averaging—ensures that only the best 

quality signals are sent through for heart rate estimation. By cutting down on noise and 

honing in on clean BVP signals, this technique greatly enhances the reliability and 

effectiveness of non-contact heart rate monitoring. 

 

Fig. 3.2 An illustration of the optimal ROI selection. a) The subject's raw frame. b) 

The MediaPipe face landmark's outcome. c) Sub-ROIs were derived for the 

forehead, left cheek, and right cheek areas, respectively, using landmark points. d) 

Among the three extracted sub-ROIs, the ROI with the lowest MAE values is 

chosen as the best one. 
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3.3 Color Space Transformation 

 

Red, green, and blue signals, r(t), g(t), and b(t), respectively, being derived 

from the chosen sub-ROI, the next important step deals with improving the clarity and 

robustness of the Blood Volume Pulse (BVP) signals that are extracted from the skin 

surface. The RGB colour space, while able to reasonably capture skin reflectance 

variations, nevertheless offers a significant disadvantage in handling fluctuations 

brought about by lighting conditions and movement, which could compromise the 

quality of the BVP signal. To counteract this problem, the RGB signals are 

transformed into the HSV (Hue, Saturation, Value) color space. This alternate skin-

colour representation leads to a more robust skin colour variation description along 

with better signal quality. 

The HSV color space is designed to be perceptually uniform, separating 

color (chromatic content) from brightness (intensity). This separation makes it easier 

to manipulate and analyze color information in a more intuitive way [44]. Unlike the 

RGB model, which intertwines color and intensity in a linear space, HSV represents 

colors through three separate components: 

 

➢ Hue (H) : This represents the type of color (e.g., red, blue, green) and is 

measured in degrees on a 360° color wheel. For instance, red is at 0°, green at 

120°, and blue at 240°. It is visualized as an angular dimension in the HSV 

cylinder, indicating the basic wavelength of light. 

 

➢ Saturation (S): This characterizes the intensity or purity of the colour, ranging 

from 0% (completely desaturated, appearing grey) to 100% (fully saturated, 

vivid colour). Saturation measures how much white light is mixed with the 

colour—lower saturation indicates more whiteness, while higher saturation 

represents a purer colour. 

 

➢ Value (V): This defines the brightness or luminance of the colour, varying from 

0% (black) to 100% (full brightness). The Value component is analogous to 

light intensity, with higher values indicating lighter shades of the colour. 

 

Geometrically, the HSV colour space is represented as a hexagonal cone 

(hexcone), where the Value (V) ranges vertically from black at the bottom to white at 

the top, representing varying intensities. The Hue (H) is arranged circularly around the 

cone's axis, while Saturation (S) extends radially from the centre (grey axis) to the 

outer boundary. As the value increases, the hexagonal cross-sections expand, 

representing brighter colours. The geometry of HSV allows for easier manipulation of 

colour properties, making it more suitable for detecting subtle skin reflectance changes 

caused by blood flow. RGB to HSV transformation is shown below in Fig. 3.3. 
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3.3.1 RGB to HSV Conversion 

 

The conversion from RGB to HSV is mathematically represented as 

follows:  

First, the RGB values are normalized to a [0, 1] range: 

 

𝑅′ =
𝑟

255
; 𝐺′ =

𝑔

255
; 𝐵′ =

𝑏

255
 

 

Next, the greatest and snallest values among the normalized components are identified: 

 

𝐶𝑚𝑎𝑥 = 𝑀𝐴𝑋(𝑅′, 𝐺′, 𝐵′) 
𝐶𝑚𝑖𝑛 = 𝑀𝐼𝑁(𝑅′, 𝐺′, 𝐵′) 

The variation between the greatest and smallest values is calculated as: 

𝛥 = 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛 

The hue component (H) is then computed based on which of the R', G', or B' channels 

is dominant: 

 

𝐻 =

{
 
 

 
 60

∘ × (
𝐺′−𝐵′

𝛥
mod6)     ,    𝐶max = 𝑅′

60∘ × (
𝐵′−𝑅′

𝛥
+ 2)         ,    𝐶max = 𝐺′

60∘ × (
𝑅′−𝐺′

𝛥
+ 4)         ,    𝐶max = 𝐵′

           (3.2) 

 

 

 

Fig. 3.3 RGB to HSV color space conversion for enhanced BVP signal 

extraction. 
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The saturation component (S) is calculated as follows: 

 

𝑆 = {
  0  ,       𝐶max = 0
𝛥

𝐶max
,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (3.3) 

 

Finally, the value component (V) is simply the maximum value among the three 

channels; 

𝑉  = 𝐶𝑚𝑎𝑥     (3.4) 

 

This conversion process results in a representation where the S channel effectively 

isolates blood flow variations, minimizing the influence of ambient light changes. 

 

3.3.2 Significance of the Saturation (S) Channel in Heart Rate Estimation 

 

When it comes to the three components, the Saturation (S) channel really 

shines for estimating heart rate. Unlike the RGB model, where color and brightness 

are all tangled up together, the S channel does a great job of separating color purity 

from light intensity. This makes it much more reliable when the lighting conditions are 

all over the place, which is often the case in real life. Each heartbeat causes a slight 

change in the saturation of the skin color due to the pulsatile blood flow, and the S 

channel captures these changes beautifully. These fluctuations are directly linked to 

variations in blood volume, which helps us get a much clearer Blood Volume Pulse 

(BVP) signal. 

To make sure we get accurate heart rate readings, we separate color 

intensity from brightness. This helps reduce the effects of changing lighting 

conditions, which is why the S channel is a solid option for non-contact heart rate 

estimation. We then run this channel through a 4th-order Butterworth bandpass filter, 

set to a frequency range of 0.7 to 3 Hz—perfectly aligned with typical human heart 

rates, which range from 42 to 180 beats per minute. This filtering process helps cut out 

any noise that falls outside the expected heart rate range, making the signal much 

clearer. 

 

3.3.3 Advantages of HSV over RGB in HR Estimation 

 

➢ Lighting Robustness: HSV's separation of color and brightness reduces 

sensitivity to illumination changes. 

 

➢ Noise Reduction: The S channel isolates pulsatile signals effectively, filtering 

out irrelevant brightness changes. 

 

➢ Enhanced Signal Clarity: The transformation improves the Signal-to-Noise 

Ratio (SNR), making the BVP signal more distinct. 

 

➢ Geometric Simplicity: The cylindrical representation of HSV simplifies the 

processing of skin reflectance. 
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3.4 Fourier Decomposition Method 

 

At this point, the selected color signal contains not just BVP information 

but also some unwanted components caused by time invariant and time varying 

sources. In our work, to denoise the BVP signal, we have used the Fourier 

decomposition method, which analyzes and extracts the frequency components of the 

colour signals. Although the Empirical Mode Decomposition (EMD) algorithm has 

been widely applied to non-stationary and non-linear signals [45], suffering from 

limitations such as mode mixing and end effects, as well as a lack of mathematical 

clarity, it pinpoints difficulty from such effects in the accuracy of heart rate estimates 

from rPPG signals. The Fourier Decomposition Method supersedes EMD by 

encompassing all these deficiencies. FDM provides a better adaptive and more robust 

approach for HR estimation since it gives much more reliable decomposition and the 

ability to capture all relevant frequency components that constitute rPPGs. Fourier 

Decomposition is a commonly used technique for adaptive narrow-band filtering of 

non-stationary and nonlinear signals [46]. The FDM decomposes the input data, real 

values and time-limited signal 𝑥(𝑡) in the interval [𝑡1, 𝑡1 + 𝑇0] into a set of limited-

bandwidth Fourier intrinsic band functions (FIBFs), which can then be utilized to 

decompose multi-component and nonstationary signals in both low and high 

frequency. 

 

𝑥(𝑡) = ∑ 𝑦𝑖(𝑡) + 𝑎0
𝑀

𝑖=1
                (3.5) 

 

Here, 𝑦𝑖(𝑡) is the 𝑖𝑡ℎ FIBF, 𝑎0 being the mean value of 𝑥(𝑡), respectively. 

A FIBF 𝑦𝑖(𝑡) meets the following conditions : 

• Zero mean: ∫ 𝑦𝑖(𝑡) = 0  ,    𝑓𝑜𝑟 ∀𝑖;
𝑡1+𝑇0
𝑡1

 

• Orthogonal: ∫ 𝑦𝑖(𝑡)𝑦𝑗(𝑡) = 0  ,    𝑓𝑜𝑟 𝑖 ≠ 𝑗;
𝑡1+𝑇0

𝑡1
 

• Analytic representation: (ℎ𝑟𝑒𝑓), where 𝑦𝑖̂(𝑡) represents the 

Hilbert transform of 𝑦𝑖(𝑡).  

 

In order to apply FDM, the signal ( )x t  is periodically extended into 

𝑥𝑇0(𝑡) = 𝑥(𝑡 − 𝑘𝑇0), 𝑘 =  1,2, . . . . , ∞. As such,  𝑥(𝑡) can be expressed as : 

 

𝑥(𝑡) = 𝑥𝑇0(𝑡)𝑤(𝑡)                   (3.6) 

 

𝑤(𝑡) = {
1,       𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑇0 

0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,    
 

 

Then, signal 𝑥𝑇0(𝑡), that is periodic, is analyzed through Fourier series expansion, 
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i.e. 

𝑥𝑇0(𝑡) = 𝑎0 +∑ [𝑎𝑘cos
∞

𝑘=1
 (𝑘𝜔0𝑡) + 𝑏𝑘sin(𝑘𝜔0𝑡)]          (3.7)                         

Here,  𝜔0 =
2𝜋

𝑇0
, 

𝑎𝑘 =
2

𝑇0
∫ 𝑥𝑇0(𝑡)cos(𝑘𝜔0𝑡)𝑑𝑡,

𝑡1+𝑇0

𝑡1

 

𝑏𝑘 =
2

𝑇0
∫ 𝑥𝑇0(𝑡)sin(𝑘𝜔0𝑡)𝑑𝑡,

𝑡1+𝑇0

𝑡1

 

𝑎0 =
1

𝑇0
∫ 𝑥𝑇0

𝑡1+𝑇0

𝑡1

(𝑡)𝑑𝑡 

Using Euler’s formula,  

𝑥𝑇0(𝑡) = 𝑎0 + Re{𝑧𝑇0(𝑡)}        (3.8) 

where , 

𝑧𝑇0(𝑡) = ∑ 𝑐𝑘exp(𝑗𝑘𝜔0𝑡)
+∞

𝑘=1
        (3.9) 

 Here, 𝑐𝑘 = 𝑎𝑘 − 𝑗𝑏𝑘. Afterwards, for obtaining a set of FIBFs, (9) is 

rewritten as 

𝑧𝑇0(𝑡) = ∑ 𝑎𝑖(𝑡)exp[𝑗𝜙𝑖(𝑡)]
𝑀

𝑖=1
      (3.10) 

In our work, the selection of the most suitable Intrinsic Mode Functions 

(IMFs) is performed from the forward (i.e. low to high frequency scan) search of 

AFIBFs, aiming to enhance the extraction of relevant information from the original 

signal while minimizing noise. The underlying assumption is that the low-frequency 

IMFs most likely capture the dominant periodic components of the physiological 

signal, such as BVP corresponding to the heart rate, whereas the high-frequency IMFs 

are predominantly constituted of noise or fast oscillations that are least relevant for 

heart rate estimation. The forward search of AFIBFs is evaluated as follows: 

𝑎𝑖(𝑡)exp(𝑗𝜙𝑖(𝑡)) = ∑ 𝑐𝑘exp(𝑗𝑘𝜔0𝑡)
𝑁𝑖

𝑘=𝑁𝑖−1+1
          (3.11) 

with 𝑁0 = 0 and 𝑁𝑀 = ∞. The FIBFs are the real part of AFIBFs 

presented in (3.11). 

As for the formulation of the reconstructed signal in this work, it is a 

combination of the recovered low-to-high IMFs, and only those IMFs carrying the 

essential heart-rate-related frequencies are retained. This way, the temporal and 

frequency properties of the original signal can be preserved, while noise and non-

stationary components that could hinder the heart rate extraction task are filtered out. 

By virtue of the low-to-high IMFs, the proposed method efficiently removes non-

stationary and noise contaminants and thereby provides a clean and reliable 
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representation of the heart rate signal.  

 

 

Fig. 3.4 The proposed methodology in operation over a dataset recording 
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Fig. 3.4 illustrates the introduced approach for heart rate estimation 

scheme applied to a sample video from the UBFC dataset. The first column of subplots 

presents the initial RGB signals (R, G, and B) extracted from the optimally selected 

sub-ROIs—specifically, the forehead, left cheek, and right cheek regions. These raw 

signals are heavily contaminated with noise and artifacts, making blood volume 

changes difficult to distinguish. Such distortions stem from ambient lighting 

fluctuations, motion artifacts, and non-skin pixels that interfere with the true 

photoplethysmographic signals. Consequently, the characteristic pulsatile nature of the 

Blood Volume Pulse (BVP) is not clearly visible in the raw RGB channels, 

highlighting the need for effective signal enhancement.   

To address this, the RGB signals undergo a Color Space Transformation 

into the HSV (Hue, Saturation, Value) space. This transformation decouples color 

intensity from brightness, effectively separating the pulsatile components of blood 

flow into distinct channels. Notably, the Saturation (S) channel captures these 

periodic-like variations with higher clarity, as it is less sensitive to illumination 

changes and better at preserving blood volume pulse information. This substantiates 

the hypothesis that the BVP signal, which is diffused across the raw RGB channels, 

can be consolidated and amplified in the HSV space, enhancing its detectability. 

After transforming the color space, we apply Fourier Decomposition to 

pinpoint the key frequencies that correspond to heartbeats. This decomposition process 

enhances the Blood Volume Pulse (BVP) signal by breaking it down into its core 

frequency bands, effectively filtering out any noise and highlighting the heart rate 

component. As shown in Fig. 3.4, the estimated iPPG closely mirrors the reference 

PPG waveform, which confirms that our method is effective. 

To measure heart rate, we process the estimated BVP signal using a Fast 

Fourier Transform (FFT) along with a Kaiser window. The FFT process converts a 

signal from the time domain into its constituent frequencies by decomposing it into 

frequency components, allowing us to spot distinct peaks that correspond to heartbeats. 

In the resulting spectrum, we identify the highest peak within the physiological heart 

rate range of 0.7–3.5 Hz, which we label as the Heart Rate (HR) frequency. This final 

step enables us to estimate heart rate accurately and without any physical contact, 

showing a strong correlation with the actual PPG readings. 
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CHAPTER 4 

 

 

Experimental Analysis 

 

 

 
4.1 Database Description 

 

The proposed heart rate estimation algorithm has been put to the test using 

the UBFC-rPPG dataset [47], which is a publicly accessible benchmark specifically 

created for analyzing heart rates through rPPG. This dataset was gathered at the 

University of Burgundy-Franche-Comté and includes 50 facial video recordings, 

divided into two main categories: SIMPLE and REALISTIC. 

 

4.1.1 Dataset Composition and Acquisition Setup 

 

 The SIMPLE subset consists of 8 video recordings taken in a controlled 

environment. In this scenario, participants were asked to sit still with their eyes closed, 

which helped reduce head movement and outside distractions. This subset is mainly 

used for baseline testing, where the effects of motion artifacts and lighting changes are 

minimal. In contrast, the REALISTIC subset includes 42 video recordings that mimic 

more natural and interactive human-computer interactions. Here, participants took part 

in a time-sensitive math game designed to create heart rate variability. This gaming 

experience not only triggers physiological changes in heart rate but also encourages 

spontaneous head movements, making the dataset perfect for evaluating the 

effectiveness of non-contact heart rate estimation algorithms in real-life situations.  

 

(a) (b) 

Fig. 4.1 The UBFC-rPPG dataset. (a) SIMPLE subset. (b) REALISTIC 

subset 
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Dataset for both subsets was collected using a Logitech C920 HD 

Prowebcam, set about 1 meter away from the participants. The camera recorded facial 

videos at a resolution of 640×480 pixels in an uncompressed 8-bit RGB format, 

ensuring high-quality visuals for rPPG analysis. Each video was filmed at 30 frames 

per second (fps), providing enough temporal resolution to capture the subtle shifts in 

skin color linked to blood volume pulses. The SIMPLE subset recordings lasted around 

60 seconds, while the REALISTIC subset videos were up to two minutes long, 

allowing ample time for heart rate variations during gameplay. An example video from 

each of the two subsets of the UBFC-rPPG dataset can be seen in Fig. 4.1. 

 

4.1.2 Ground-Truth PPG Signal Acquisition 
 

 To ensure we have a solid reference for estimating heart rates, we recorded 

ground-truth Photoplethysmography (PPG) signals during each session. We used a 

Contec Medical CMS50E pulse oximeter to gather the PPG data at a sampling rate of 

60 Hz. The device was placed on the participant's fingertip, allowing us to capture the 

blood volume pulse information right from the skin's surface. This ground-truth signal, 

illustrated in Fig. 4.2, acts as a baseline for assessing how accurate our rPPG-based 

heart rate estimation is. By comparing the heart rate values we extracted from the facial 

videos with the PPG measurements, we can effectively validate the reliability and 

robustness of the proposed algorithm. 

 

4.1.3 Frame Extraction 

 

Before diving into the analysis, we first get each video recording ready for 

frame extraction at the native 30 fps rate. This process breaks down the continuous 

video stream into individual frames, with each frame capturing a specific moment of 

facial skin reflectance. Next, we use the MediaPipe Landmark Detection Model to 

identify and extract Regions of Interest (ROIs)—specifically focusing on the forehead, 

 

Fig. 4.2 The Ground Truth PPG signal 
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left cheek, and right cheek. Once we have those frames, we convert them into the HSV 

color space, isolating the Saturation (S) channel for further analysis. 

The preprocessing phase also takes care of illumination normalization and 

motion stabilization to minimize any artifacts. Since the lighting conditions can vary 

quite a bit during the recordings, especially in the REALISTIC subset, normalization 

helps maintain a consistent signal quality across all frames. Plus, we filter out any 

temporal noise caused by head movements, which really boosts the clarity of the BVP 

signal we extract from the facial skin regions. 

 

4.1.4 Significance of the UBFC-rPPG Dataset 

 

The UBFC-rPPG dataset serves as a comprehensive baseline for 

examining the performance of algorithms built on rPPG-based heart rate estimation. 

In this dataset the two-part setup allows for validation in both controlled (SIMPLE) 

and real-world interactive (REALISTIC) scenarios assuring that comprehensive 

validation can be performed in ideal and practical scenarios. Furthermore, this dataset 

accompanies the synchronized, ground-truth PPG signals that serve as ideal metrics 

for accuracy and provides important benchmarks from the estimated heart rate values 

from rPPG when validating the estimated values. The structure of the dataset 

additionally including lighting variations and natural head movement will allow us to 

assess the ability of the proposed algorithm to cope with changes in environments and 

motion artifacts. 

 

4.2 Performance Metrics  

 

To assess the performance and reliability of the proposed heart rate 

estimation algorithm, several standard metrics are utilized. Additionally, a windowing 

method has been employed to estimate the heart rate (HR) in real time using a 20-

second window updated every 2 seconds. Each metric and methods will serve as a 

useful indicator to evaluate the accuracy and reliability of the estimated HR signal 

compared to the corresponding reference HR from the ground-truth PPG signals. 

 

4.2.1. Mean Absolute Error (MAE) 

 

The Mean Absolute Error (MAE) calculates the average magnitude of the 

absolute differences between the estimated heart rate (ℎ𝑒𝑠𝑡) and the reference heart rate 

(ℎ𝑟𝑒𝑓) derived from the ground-truth PPG signal. It is calculated using the formula: 

 

where, 

 

𝑀𝐴𝐸 =
1

𝑁
∑ | ℎ𝑒𝑠𝑡, 𝑖 −  ℎ𝑟𝑒𝑓 , 𝑖 |
𝑁
𝑖=1         (4.1) 

 

ℎ𝑒𝑠𝑡 represents the estimated heart rate, and ℎ𝑟𝑒𝑓 represents the reference heart rate. 

MAE provides an intuitive measure of the error in beats per minute (bpm), 

reflecting the average deviation of the estimated HR from the true HR. The key 

advantage of MAE is its simplicity and straightforward interpretation, making it one 
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of the most widely used error metrics in heart rate estimation. 

 

4.2.2. Root Mean Square Error (RMSE)  

 

The Root Mean Square Error (RMSE) is another commonly used metric 

that quantifies the square root of the average squared differences between the estimated 

and reference heart rates. It is mathematically represented as: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (ℎ𝑒𝑠𝑡 , 𝑖 −  ℎ𝑟𝑒𝑓 , 𝑖)

2𝑁
𝑖=1    (4.2) 

 

RMSE is more sensitive to larger errors compared to MAE because it 

squares the differences before averaging. This property makes it particularly useful for 

identifying significant deviations in heart rate estimation. A lower RMSE value 

indicates better model performance with minimal large deviations from the actual HR. 

 

4.2.3. Mean Error Rate (MER%) 

 

The Mean Error Rate (MER%) expresses the average error as a percentage 

of the reference heart rate, providing a normalized view of the estimation accuracy. It 

is calculated as follows: 

 

𝑀𝐸𝑅% =  (
1

𝑁
)∑ |

(ℎ𝑒𝑠𝑡,𝑖 − ℎ𝑟𝑒𝑓,𝑖)

ℎ𝑟𝑒𝑓,𝑖
|𝑁

𝑖=1 ×  100  (4.3) 

 

MER allows for a more interpretable assessment of the algorithm's 

performance by representing the deviation in relative terms rather than absolute terms. 

This is particularly useful when comparing error rates across varying heart rate ranges. 

 

4.2.4. Pearson's Correlation Coefficient (CC) 

 

Pearson's Correlation Coefficient calculates the linear correlation between 

the estimated heart rate (h_est) and the reference heart rate (h_ref), quantifying the 

degree to which the two variables move together. It is defined as: 

 

where: 

 

𝐶𝐶 =
( ∑(ℎ𝑒𝑠𝑡,𝑖 − 𝜇𝑒𝑠𝑡)(ℎ𝑟𝑒𝑓,𝑖 − 𝜇𝑟𝑒𝑓))

√[∑(ℎ𝑒𝑠𝑡,𝑖 − 𝜇𝑒𝑠𝑡)2∑(ℎ𝑟𝑒𝑓,𝑖 − 𝜇𝑟𝑒𝑓)
2
]

     (4.4) 

 

ℎ𝑒𝑠𝑡 and ℎ𝑟𝑒𝑓 are the mean values of the estimated and reference heart rates, 

respectively.  

The value of CC ranges from -1 to +1: +1 being a perfect positive 

correlation, 0 states no correlation, while -1 says a perfect negative correlation. A high 

CC value close to +1 implies that the estimated HR closely follows the fluctuations of 

the ground-truth HR, indicating accurate prediction. 
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4.2.5. Windowing Technique for Heart Rate Estimation 

 

To achieve smooth and real-time HR estimation, the proposed method 

employs a windowing technique. This technique calculates the heart rate in 

overlapping time intervals, ensuring continuous monitoring and reducing latency. The 

specific configuration used is: 

• Window Length: 20 seconds 

• Window Update Interval: 2 seconds 

The overlapping window mechanism allows the algorithm to extract heart 

rate estimates at fine intervals, providing real-time feedback while smoothing out 

short-term noise. For each 20-second window, the BVP signal is analyzed in the 

frequency domain. 

 

4.2.6 Heart Rate Calculation Using FFT 

 

Within each window segment, a Fast Fourier Transform (FFT) is applied 

to convert the BVP signal from the time domain to the frequency domain. This 

transformation reveals the dominant frequency components corresponding to 

heartbeats. The frequency spectrum is searched within the physiological range of 0.7 

Hz to 3.5 Hz (42–210 bpm).The highest peak within this range is selected as the 

dominant heartbeat frequency: 

 

𝐻𝑅 (𝑏𝑝𝑚) = 𝑓𝑝𝑒𝑎𝑘 × 60     (4.5) 

 

where, 𝑓𝑝𝑒𝑎𝑘 is the frequency of the dominant peak detected by FFT. 

To accurately identify heartbeat intervals, we use the find_peaks function 

from the SciPy library in Python. Once we detect these peaks, we can calculate the 

average interval between consecutive beats, which we then convert into beats per 

minute (bpm).  

The heart rate estimation method we're proposing relies on solid evaluation 

metrics like MAE, RMSE, MER%, and CC to measure accuracy and reliability. Plus, 

we've enhanced real-time monitoring with a windowing strategy that ensures smooth 

heart rate detection every 2 seconds using a 20-second rolling window.  

 

4.3 Results  

 

The heart rate estimation method we proposed underwent a thorough 

evaluation using the UBFC-rPPG dataset, which is a well-known benchmark tailored 

for non-contact heart rate monitoring. To achieve precise and real-time heart rate 

detection, we utilized a sliding window approach, breaking down each recording into 

20-second segments with an 18-second overlap. This overlapping structure enabled 

the extraction of HR values every 2 seconds, providing high temporal resolution and 

smooth tracking of heart rate fluctuations throughout the video sequences.  
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The quantitative evaluation of the proposed method demonstrated a Mean 

Absolute Error (MAE) of 1.31 bpm and a Root Mean Square Error (RMSE) of 1.96 

bpm. These results signify a high degree of accuracy, achieved improvements of 6.89 

bpm, 3.27 bpm, and 1.69 bpm over CHROM, DeepPhys, and PhysNet, [48] 

respectively as shown in Table 4.1. The robustness of the proposed technique is 

attributed to the Fourier Decomposition Method (FDM), combined with HSV color 

space transformation, which effectively captures subtle blood volume changes while 

minimizing noise and motion artifacts. These values indicate precise heart rate 

estimation with minimal deviation from the ground-truth values obtained from PPG 

signals. The low MAE value reflects the method's ability to consistently produce 

estimates close to the actual heart rate, while the RMSE highlights its resilience in 

handling larger errors, which are effectively minimized through signal enhancement 

techniques. 

 

4.3.1 Pearson's Correlation Coefficient (CC) 

 

The Pearson's Correlation Coefficient (CC) was measured at 0.78, 

signifying a strong positive correlation between the estimated heart rate ℎ𝑒𝑠𝑡 and the 

reference heart rate ℎ𝑟𝑒𝑓.  This correlation suggests that the estimated HR closely 

follows the fluctuations and variations observed in the reference HR. While slightly 

lower than ideal, the CC value demonstrates reliability across different segments of 

the video. 

To visualize this correlation, a scatter plot as shown in Fig. 4.3 was 

generated, where the calculated HR values are plotted against the ground truth HR 

values. In the ideal scenario, all points would align perfectly along the diagonal identity 

line ℎ𝑒𝑠𝑡 = ℎ𝑟𝑒𝑓. The plot illustrated that the points are densely clustered around the 

diagonal, indicating strong agreement. Minor deviations were observed, primarily 

during high-motion artifacts or sudden illumination shifts, but the overall alignment 

validates the effectiveness of the proposed method. 

To further evaluate the agreement between the estimated and reference 

heart rates, a Bland-Altman analysis was performed. The result is as shown in Fig. 4.4. 

This analysis is instrumental in identifying systematic biases and understanding the 

spread of error. The Bland-Altman plot revealed an average bias of -1.62 bpm,  

Methods MAE(bpm) RMSE(bpm) MER(%) 𝛒 

POS 8.35 10.00 9.85 0.24 

CHROM 8.20 9.92 9.17 0.27 

Green 6.01 7.87 6.48 0.29 

SynRhythm 5.59 6.82 5.5 0.72 

DeepPhys 4.58 14.76 4.86 0.78 

RhythmNet 3.91 7.72 4.06 0.93 

PhysNet 3.0 10.05 3.52 0.75 

Proposed Method 1.31 1.96 1.50 0.78 

Table 4.1 HR estimation outcomes of our approach and a few cutting-edge 

techniques 
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indicating a slight underestimation of heart rate on average. 

The Limits of Agreement (LOA), calculated as Mean ± 1.96 SD, were 

found to range from -3.35 bpm to 4.19 bpm. This tight range indicates a small error 

band, which shows that the method can reliably provide estimates even when 

conditions change. Most of the data points fell within these limits, highlighting a strong 

 

 

 

Fig. 4.3 Scatter plot between the ℎ𝑟𝑒𝑓 and ℎ𝑒𝑠𝑡 values for 

different recordings from the dataset 

Fig. 4.4 Band-Altman plot describing the agreement between ℎ𝑟𝑒𝑓 

and ℎ𝑒𝑠𝑡 values for different subjects. 
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level of consistency. Additionally, the spread didn’t reveal any significant proportional 

bias, suggesting that the error distribution remained fairly stable across both low and 

high heart rate ranges. This reliability is essential for telemedicine applications, where 

accurate monitoring is vital for effective patient care. 

 

4.3.2 Outlier detection and error consistency 

 

To enhance the accuracy of heart rate estimation, we implemented a post-

processing step that included outlier detection using a carefully chosen threshold 

mechanism. This process involved examining the estimated heart rate values to spot 

and eliminate any unusual peaks that strayed far from the expected physiological 

range. We established an optimal threshold based on the statistical distribution of heart 

rate variations, which helped us effectively filter out outliers caused by sudden 

movements, changes in lighting, or noise interference. 

By applying this outlier detection method, we significantly improved the 

overall stability of heart rate estimation, as it helped to weed out misleading signals 

that could distort the average heart rate. This optimization was especially beneficial 

during periods of rapid movement or fluctuating lighting, where raw estimates often 

spiked inaccurately. The post-processing phase played a crucial role in minimizing 

noise-induced deviations, ultimately leading to a smoother and more reliable final 

heart rate output. 

The analysis of error distribution showed that the estimation error stayed 

within ±2 bpm for most of the video frames, demonstrating its reliability against small 

physiological and environmental changes. Additionally, the post-processed heart rate 

values remained accurate within the clinically acceptable range of ±5 bpm for nearly 

all segments. This underscores the method's practicality for continuous health 

monitoring, where real-time accuracy is essential. 

The results reveal that the heart rate estimation algorithm proposed here 

achieves impressive accuracy and aligns well with the actual PPG signals from the 

UBFC-rPPG dataset. By utilizing color space transformation, Fourier Decomposition, 

and a sliding window approach, the method consistently provides accurate heart rate 

readings. Plus, the addition of post-processing with outlier detection boosts reliability, 

ensuring strong performance even in real-world scenarios with motion artifacts and 

varying lighting conditions. 

The method's capability to keep error rates low, maintain a strong 

correlation, and exhibit minimal bias highlights its potential for non-contact health 

monitoring in telemedicine and fitness applications. 
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CHAPTER 5 

 

 

Final Analysis : Discussion, Conclusion and Future Directions 

 

 

 
5.1 Discussion 

 

5.1.1 Analysis and Interpretation 

 

The heart rate estimation method we've proposed marks a significant leap 

forward in non-contact photoplethysmography (rPPG). It does this by utilizing 

MediaPipe facial landmark detection and fine-tuning the extraction of Regions of 

Interest (ROI). The main goal here was to pinpoint the best sub-ROIs from facial 

landmarks to boost signal stability and cut down on noise artifacts, especially from 

non-skin areas like hair, eyes, and the background. By carefully selecting these facial 

regions, we were able to lessen the effects of spatial variability and motion-induced 

distortions, resulting in a clearer and more consistent blood volume pulse (BVP) 

signal. 

One of the key changes in our process was switching from RGB to HSV 

color space, with a particular emphasis on the Saturation (S) channel. We chose this 

channel because it holds up well against changes in lighting, which is a common hurdle 

in non-contact heart rate monitoring. Traditional RGB analysis often struggles with 

fluctuations caused by varying light conditions; however, the HSV transformation 

effectively separates color information (H), saturation (S), and brightness (V), making 

it easier to isolate the pulsatile signals. This conversion not only enhanced the BVP 

data but also reduced the influence of environmental lighting, leading to more 

dependable heart rate detection in different settings. 

For precise heart rate extraction, the method employed the Fourier 

Decomposition Method (FDM), which efficiently decomposed the raw signals into 

frequency components. The heart rate was identified within the physiological range of 

0.7–3 Hz, where the dominant peak corresponded to the pulsatile heartbeat. Unlike 

traditional Fast Fourier Transform (FFT), FDM allowed for finer resolution in the 

frequency domain, capturing subtle variations in the BVP signal that are indicative of 

heartbeats. 

While this method has its advantages, it’s not completely free from motion 

artifacts, especially when someone is moving their face or talking. These artifacts can 

create noise in the heart rate's dominant frequency bands, which might throw off the 

accuracy of the FDM extraction. To tackle this issue, we added a post-processing 

outlier detection mechanism that uses an optimal threshold to filter out any unusual 

peaks and stabilize the heart rate signal. This extra step really boosted the reliability of 
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heart rate estimates, particularly during those moments when motion-induced noise is 

more likely to occur. 

The experimental results from the UBFC-rPPG dataset showcase how 

effective this method is, with a Mean Absolute Error (MAE) of 1.31 bpm, a Root Mean 

Square Error (RMSE) of 1.96 bpm, and a Pearson's Correlation Coefficient (CC) of 

0.78. The scatter plots showed a strong correlation with the reference heart rate values, 

and the Bland-Altman analysis revealed minimal bias with tight Limits of Agreement 

(LOA). These results suggest that this method can accurately monitor heart rate in real-

time, even under less-than-ideal conditions. 

 

5.1.2 Computational Cost Analysis 

 

One of the defining advantages of the proposed method is its 

computational efficiency. The experimentation was conducted using Google Colab, a 

cloud-based platform that provides an isolated Python 3 runtime. The implementation 

was performed entirely on a CPU-based hardware accelerator, without the need for 

dedicated GPUs. Despite this, the method achieved real-time processing capabilities, 

demonstrating its lightweight computational footprint. The primary libraries used 

included: 

➢ OpenCV for image processing and frame manipulation, 

➢ NumPy for efficient numerical operations, 

➢ SciPy for signal processing, 

➢ Matplotlib for visualization of HR estimations and error plots, 

➢ Mediapipe for precise facial landmark detection and Region of Interest (ROI) 

extraction, 

➢ os for handling directory paths and file operations during data processing. 

The sliding window framework, which uses 20-second windows with an 

18-second overlap, allowed for continuous heart rate detection, updating HR values 

every 2 seconds. This approach not only improved the temporal resolution but also 

made memory usage more efficient by processing only small segments of video frames 

during each iteration. By employing Fourier Decomposition, we could streamline 

signal extraction, concentrating on specific frequency bands and lightening the 

computational load that usually comes with full-spectrum FFT analysis. 

Mediapipe was particularly important in identifying stable facial 

landmarks, which helped in accurately extracting regions of interest (ROI). This 

process removed non-skin areas from the analysis, boosting signal clarity and cutting 

down on noise. Additionally, the integration with OS simplified file management 

during dataset processing, making it easier to navigate through video frames and 

manage data storage. 

Choosing Google Colab as the execution environment offered easy access 

to cloud resources without the limitations of local machines. Even when relying solely 

on CPU processing, the method kept an optimal runtime, making it suitable for 

deployment on low-power devices like mobile health monitors or IoT-based 

wearables. 

In summary, the design principles of this method focused on not just 

accuracy and robustness, but also on computational efficiency, enabling smooth real-

time heart rate monitoring even with limited hardware resources.. 
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5.2 Conclusion 

 

The heart rate estimation method proposed in this study marks a major leap 

forward in non-contact physiological monitoring. By harnessing the capabilities of 

Remote Photoplethysmography (rPPG), this technique estimates heart rate (HR) using 

facial videos taken with standard RGB cameras. Unlike traditional methods that 

require physical contact, like ECG and finger-based PPG, this approach is completely 

non-invasive, making it perfect for telehealth, remote patient monitoring, and fitness 

applications where discreet and continuous HR tracking is essential. 

To enhance robustness, the RGB signals are transformed into the HSV 

color space, with a particular emphasis on the Saturation (S) channel. This channel is 

notably resistant to fluctuations in ambient lighting, a common hurdle in video-based 

heart rate estimation. This transformation allows for better isolation of pulsatile blood 

flow signals compared to traditional RGB analysis, leading to clearer BVP waveforms. 

By tackling the issues caused by light-induced artifacts, this method ensures consistent 

performance across different lighting conditions, which is vital for practical 

applications. 

The extracted signals undergo processing through the Fourier 

Decomposition Method (FDM). This step is pivotal in filtering out noise and isolating 

heartbeat-related frequencies within the 0.7–3 Hz range, corresponding to typical 

human heart rates. Unlike standard FFT, FDM offers a more refined frequency analysis 

that enhances the signal-to-noise ratio (SNR), allowing the subtle pulsations of 

heartbeats to emerge more distinctly. This contributes directly to the low error metrics 

achieved in the experimentation, with a Mean Absolute Error (MAE) of 1.31 bpm, a 

Root Mean Square Error (RMSE) of 1.96 bpm, and a Pearson's Correlation Coefficient 

(CC) of 0.78, all indicating a strong agreement with ground-truth PPG values. 

To further enhance reliability, the method incorporates a post-processing 

technique for outlier detection, employing an optimal threshold mechanism. This stage 

is crucial for eliminating erroneous spikes in HR estimation caused by rapid head 

movements or lighting fluctuations. By smoothing the output signal, the method 

ensures that the final HR estimations are both stable and realistic, aligning closely with 

physiological expectations. 

The experimental validation conducted on the UBFC-rPPG dataset 

showcased the method's effectiveness in real-world conditions, where artificial 

lighting variations and minor head movements were present. Despite the inherent 

challenges of non-contact monitoring, the proposed approach maintained high 

accuracy and reliability, validating its potential for deployment in telemedicine and 

continuous health monitoring scenarios. Furthermore, the scatter plots and Bland-

Altman analysis provided visual confirmation of the method's alignment with 

reference HR values, demonstrating its capacity to accurately track real-time heart rate 

changes. 

However, it is acknowledged that motion artifacts still pose a challenge to 

the method's robustness, particularly during intense facial movements or 

conversations. While the post-processing outlier detection mitigates some of these 

effects, future iterations of the method could benefit from advanced denoising 

techniques, possibly through machine learning-based artifact removal. Integrating 
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adaptive filtering mechanisms may further enhance its capability to differentiate 

between genuine BVP signals and noise-induced variations. 

In conclusion, the proposed heart rate estimation method introduces a 

powerful, non-contact solution for real-time health monitoring using standard RGB 

cameras. Its reliance on landmark-based ROI extraction, HSV transformation, and 

Fourier Decomposition enables precise HR tracking with minimal error. The 

integration of outlier detection further strengthens its reliability, paving the way for its 

application in telehealth, fitness monitoring, and remote patient care. Future 

improvements focusing on multi-modal data integration and machine learning-driven 

noise suppression are expected to extend its usability to diverse environmental 

conditions and broader physiological metrics, including respiratory rate estimation and 

stress monitoring. 

 

5.3 Future scope 

 

The promising results achieved by the proposed heart rate estimation 

method highlight its potential for real-world applications in telemedicine, fitness 

monitoring, and continuous health assessment. However, there remain several avenues 

for further improvement and expansion to enhance its robustness, applicability, and 

global usability. 

 

5.3.1 Robustness Against Motion Artifacts 

 

Although the proposed method incorporates post-processing with outlier 

detection, significant head movements and facial expressions still introduce noise that 

affects heart rate accuracy. Future work can focus on integrating motion compensation 

techniques that dynamically adjust the Region of Interest (ROI) based on head motion. 

Advanced optical flow algorithms or deep-learning-based motion stabilization could 

be explored to minimize the impact of non-rigid facial deformations during heart rate 

monitoring. 

 

5.3.2  Multi-Modal Signal Fusion 

 

Currently, the method relies solely on RGB facial videos for heart rate 

estimation. A potential enhancement is the integration of multi-modal signals such as 

thermal imaging, infrared (IR) sensing, and depth cameras. Thermal cameras can 

capture heat variations corresponding to blood flow, while IR sensors are less affected 

by ambient light, making them ideal for low-light conditions. Depth sensors could 

improve the isolation of facial regions, further minimizing noise from the background. 

The fusion of these signals with the existing rPPG pipeline could be 

implemented using multi-modal learning frameworks, allowing for more robust HR 

estimation even in challenging environments. This would also pave the way for the 

simultaneous estimation of other vital signs, such as respiratory rate and oxygen 

saturation (SpO2), expanding its clinical relevance. 
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5.3.3 Exploration Across Different Skin Tones and Ethnicities 

 

Another thing to consider for future evaluation is to study the method’s 

performance across various skin tones and ethnicities. Skin reflectance varies 

significantly with pigment levels of the skin and probably might reduce the signal 

quality of rPPG-based monitoring. The future work may incorporate a wider variety 

of dataset skin tones of lighting conditions for algorithm robustness evaluation. 

Moreover, adaptive calibration methods that vary color space 

transformations based on skin reflectance could further enhance accuracy along all 

demographics. Deep learning methods launched on ethnically variant training data 

could learn such invariant features so that heart rate estimation would be reliable 

independent of skin tone. 

 

5.3.4 Automated Sub-ROI Selection and Noise Reduction 

 

Currently, an optimally fixed sub-ROI based on MAE is used. Further 

improvements can be pursued through dynamic sub-ROI selection, which would be 

algorithm-driven. A self-learning model may analyze signal quality in real time and 

adjust the sub-ROI to the region where the signal has the best integrity, thus making 

the HR estimation method more resilient.  

In addition, more advanced denoising techniques, including Wavelet 

Transform-based filtering or an RNN, could be used to separate true BVP signals from 

noise. When varying ambient light conditions or subtle head movements hamper the 

detection of these signals, these advanced methods might outperform traditional 

filtering techniques. 

 

5.3.5 Deep Learning-Based Artifact Removal 

 

The Fourier Decomposition with thresholding for outlier removal is the 

current method, whereas the deep learning-based artifact removal approach seems to 

be a promising option. The CNNs and GANs would be used to automatically 

discriminate between noise and true pulse signals even in high-motion segments. 

These networks could learn very complex temporal patterns, thus providing a clear 

separability for hr estimation.  

Then, use of transformers, such as ViTs, could further align the method's 

attention to segments of clean signals and away from noise-filled segments. This 

would improve robustness and reduce post-processing overhead. 

 

5.3.6 Integration with Real-Time Applications 

 

To develop into a more practical system for real-life scenarios, the method 

could be altered for a real-time deployment on wearable devices and mobile apps. 

Certain little models like quantization or model pruning might change their algorithm 

to a form executable on low-power embedded systems. Direct interfacing with edge 

computing infrastructures will enable real-time monitoring minus the cloud 

dependency, thus keeping unwanted latency at bay and privacy intact. Real-time 

monitoring applications can be: 
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➢ Telemedicine for continuous remote patient monitoring. 

➢ Fitness applications studying real-time heart rate during workouts. 

➢ Mental health assessment wherein HRV is the prime indicator of stress 

levels. 

The encouraging results obtained in this research open the pathway for 

several other research avenues both for furthering the scope of user adaptability and 

robustness of the proposed heart rate estimation method. Using its strength as a base, 

future research aims at further smoothing some current hurdles as well as extending 

the approach to several other more challenging and practical real-world scenarios. 
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