

ADAPTIVE FILTER FUSION AND

OPTIMIZED HARDWARE DESIGN FOR

IMAGE DENOISING

A Thesis Submitted

in Partial Fulfillment of the Requirements f or the

Degree of

MASTER OF TECHNOLOGY
in

Signal Processing and Digital Design
by

MOHIT GARG
(Roll No. 2K23/SPD/11)

Under the Supervision of

Dr. Ajai Kumar Gautam

Associate Professor, ECE, DTU

Department of Electronics and Communication Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

May, 2025

 ii

ACKNOWLEDGEMENTS

I want to intimate my heartfelt thanks to my project guide, Dr. Ajai Kumar Gautam,

Associate Professor and Prof. O P Verma, Head of Department of Electronics and

Communication Engineering of Delhi Technological University, for his tremendous

support and assistance base on their knowledge. I am so grateful to them for assisting

me with the all the necessary tools for the completion of the project. I also want to

extend my heartfelt gratitude to all those who have supported my research on Adaptive

Filter Fusion and Optimized Hardware Design for Image Denoising. I am grateful to

the open-source community for developing and maintaining user friendly deep

learning frameworks for simplifying the implementation of the research. I specially

feel very thankful for our parents, friends, and classmates for their support throughout

my project period. Finally, I express my gratitude to everyone for supporting me

directly or indirectly in completing this project successfully. Your support and

inspiration have been truly invaluable, which encourages me.

Mohit Garg

 (2K23/SPD/11)

 iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I Mohit Garg, hereby certify that the work which is being presented in the thesis

entitled “Adaptive Filter Fusion and Optimized Hardware Design for Image

Denoising” in partial fulfillment of the requirements for the award of the Degree of

Master of Technology, submitted in the Department of Electronics and

Communication Engineering, Delhi Technological University is an authentic record

of my own work carried out during the period from August 2023 to May 2025 under

the supervision of Dr. Ajai Kumar Gautam, Associate Professor of Department of

Electronics and Communication Engineering, Delhi Technological University.

The matter presented in the thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

Candidate's Signature

 iv

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE SUPERVISOR(s)

Certified that Mohit Garg (2K23/SPD/11) has carried out their search work

presented in this thesis entitled “Adaptive Filter Fusion and Optimized

Hardware Design for Image Denoising” for the award of Master of

Technology from Department of Electronics and Communication Engineering,

Delhi Technological University, Delhi, under our supervision. The thesis

embodies results of original work, and studies are carried out by the student

herself and the contents of the thesis do not form the basis for the award of any

other degree to the candidate or to anybody else from this or any other

University/Institution.

Signature

(Dr. Ajai Kumar Gautam)

(Associate Professor)

(DTU, Shahbad Daulatpur,

Main Bawana Road,

Delhi-42)

Date:

 v

ABSTRACT

Image denoising is vital for retaining visual information for tasks such as

object detection, classification, and image enhancement. The practical issue with

image denoising is one of balancing noise reduction with maintaining key image

features, such as edges and textures. The contributions of this thesis are outlined in

twin aspects, being a software-based adaptive filter fusion solution of color image

denoising, and an optimized hardware implementation of an adaptive filter that

performs real-time denoising of gray-scale images. More specifically, this research

focused on algorithmic adaptability and hardware efficiency in various noise types

such as Gaussian and salt-and-pepper noise.

The first part of the thesis presents an adaptive fusion filtering framework

for color image denoising under Gaussian noise for standard deviations of σ = 10

through σ = 50. The proposed framework employs a dynamic per-pixel fusion of three

carefully selected adaptive filters: Least Mean Squares (LMS), Llncosh, and VSLMS

Ang’s. These filters were chosen as they complement each other based on their

strengths in texture sensitivity, edge preservation, and stability following

benchmarking studies where we analyzed the performance. The merger utilizes an

inverse squared error−based weighting scheme that spatially adapts as a function of

the image pixel locations under denoising. The use of bilateral preprocessing enables

improved edge-aware smoothing characteristics while retaining fine-level structural

details. The adaptive filter fusion strategy improves both PSNR and SSIM image

quality metrics significantly over using the individual filters indicated above, as shown

through the testing on the CBSD68 dataset. Bias-variance analysis and run time

profiling support the purpose and practicality of the proposed scheme.

 The second component examines the hardware modeling of a fixed-weight

Least Mean Fourth (LMF) filter where denoising of grayscale images occurs in an

impulsive noise environment. The Least Mean Fourth (LMF) filter has been selected

as the approach is insensitive to outliers via the approach to adjusting the fourth power

of the error. The LMF filter is trained off-line utilising grayscale images from the

BSDS500 dataset, which features artificial added salt-and-pepper noise to emulate

images with impulsive corruption. The adaptation employs fixed point arithmetic to

provide for field programmable gate array (FPGA) deployment. A standard 3×3

convolution is employed with a streaming architecture to avoid buffering the entire

frame and allows for line buffer-based processing. Wallace tree multipliers were used

to minimize log delay in the datapath and allow synthesis timing closure without

altering the output, and to accelerate the overall implementation. The final architecture

achieves a greater than 90% reduction in resource utilization compared to the non-

optimized multiplier-based design, yet with nearly identical output fidelity to the

software reference.

 vi

LIST OF PUBLICATIONS

[1] Mohit Garg and Ajai Kumar Gautam, “Fusion-Based Adaptive Filtering for Color

Image Denoising with Dynamic Error Weighting”. [Accepted]

[2] Mohit Garg and Ajai Kumar Gautam, “Wallace Tree based Efficient Hardware

Modeling of Streaming LMF Filter for Real-Time Image Denoising”.

[Accepted]

 vii

TABLE OF CONTENTS

Title Page No.

ACKNOWLEDGMENTS ii

CANDIDATE’s DECLARATION iii

CERTIFICATE BY THE SUPERVISOR(s) iv

ABSTRACT v

LIST OF PUBLICATIONS vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 IMPORTANCE OF IMAGE DENOISING IN VISION AND 1

 IMAGING SYSTEMS

1.2 CHALLENGES OF GAUSSIAN AND SALT-AND-PEPPER 1

 NOISE

1.3 LIMITATIONS OF INDIVIDUAL FILTERS AND 2

 TRADITIONAL DENOISING

1.4 MOTIVATION FOR ADAPTIVE FILTER FUSION AND 3

 HARDWARE OPTIMIZATION

1.5 SUMMARY OF CONTRIBUTIONS 3

1.5.1 ADAPTIVE FILTER FUSION WITH BILATERAL 3

 PREPROCESSING

1.5.2 WALLACE TREE–OPTIMIZED REAL-TIME HARD 4

 -WARE FILTER

1.6 THESIS ORGANIZATION 4

CHAPTER 2 LITERATURE SURVEY 5

 2.1 CLASSICAL IMAGE DENOISING APPROACHES 5

2.2 PROGRESS IN EDGE-PRESERVING FILTERING 5

2.3 ADAPTIVE FILTERING: LMS, LMF, AND BEYOND 6

2.4 FUSION-BASED STRATEGIES 6

2.5 DEEP LEARNING FOR IMAGE DENOISING 6

2.6 HARDWARE-ORIENTED ADAPTIVE FILTERING 7

2.7 SUMMARY AND POSITIONING 7

CHAPTER 3 METHODOLOGY 1: ADAPTIVE FILTER FUSION FOR 8

 COLOR IMAGE DENOISING

3.1 DATASET DESCRIPTION 8

 3.2 FILTER SELECTION AND BENCHMARKING 8

 3.2.1 JUSTIFICATION FOR FILTER SELECTION 9

 3.3 FUSION-BASED FILTERING ARCHITECTURE 9

 3.4 INVERSE SQUARED ERROR WEIGHTING 10

 3.5 PER-PIXEL FUSION BEHAVIOR 11

 3.6 BILATERAL PREPROCESSING 11

 viii

Title Page No.

 3.7 RUNTIME AND COMPLEXITY PROFILING 11

 3.8 TOOLS AND IMPLEMENTATION 12

CHAPTER 4 METHODOLOGY 2: HARDWARE DESIGN AND 13

 OPTIMIZATION FOR LMF FILTER

 4.1 OVERVIEW AND MOTIVATION 13

 4.2 DATASET AND PREPROCESSING 13

 4.3 FILTER SELECTION FOR HARDWARE IMPLEMENTATION 13

 4.3.1 SUPERIOR PERFORMANCE IN IMPULSIVE NOISE 14

 4.3.2 FIXED-WEIGHT COMPATIBILITY 14

 4.3.3 ARCHITECTURE-FRIENDLY DESIGN 14

 4.3.4 VERIFIED CORRESPONDENCE WITH SOFTWARE 14

 FILTERING

 4.4 LMF FILTER ARCHITECTURE AND ADAPTATION 15

 4.5 STREAMING LINE-BUFFER HARDWARE DESIGN 15

 4.6 WALLACE TREE MULTIPLIER INTEGRATION 16

 4.7 BORDER HANDLING AND OUTPUT CONTROL 17

 4.7.1 FIXED-POINT REPRESENTATION OF WEIGHTS 17

 4.8 OVERALL PROCESS FLOW 18

 4.9 RTL SIMULATION AND VERIFICATION 19

 4.10 HARDWARE TOOLCHAIN AND TARGET PLATFORM 19

CHAPTER 5 EXPERIMENTAL ANALYSIS 20

 5.1 EVALUATION STRATEGY 20

 5.2 EXPERIMENTAL SETUP: SOFTWARE FUSION 20

 FRAMEWORK

 5.2.1 DATASET AND NOISE CONDITIONS 20

 5.2.2 IMPLEMENTATION DETAILS 20

 5.3 RESULTS: SOFTWARE DENOISING PERFORMANCE 21

 5.3.1 QUANTITATIVE EVALUATION 21

 5.3.2 VISUAL RESULT 21

 5.3.3 BIAS-VARIANCE ANALYSIS 23

 5.4 COMPLEXITY AND RUNTIME PROFILING 24

 5.5 BENCHMARKING WITH BM3D AND NLM 25

 5.6 EXPERIMENTAL SETUP: HARDWARE FILTER 25

 IMPLEMENTATION

 5.6.1 SIMULATION CONFIGURATION 25

 5.6.2 OUTPUT EVALUATION 25

 5.7 RESULTS: HARDWARE PERFORMANCE 26

 5.7.1 SIMULATION RESULTS SUMMARY 26

 5.7.2 OBSERVATIONS 26

 5.7.3 HARDWARE RESOURCE UTILIZATION (POST- 26

 SYNTHESIS)

 ix

 Title Page No.

 5.8 VISUAL AND QUANTITATIVE COMPARISON 27

 5.8.1 VISUAL OUTPUT 27

 5.8.2 PSNR COMPARISON 29

 5.9 CHALLENGES ENCOUNTERED DURING HARDWARE 29

 VERIFICATION

 5.10 SUMMARY OF OBSERVATIONS 30

CHAPTER 6 FINAL ANALYSIS - DISCUSSIONS, CONCLUSION, AND 31

 FUTURE DIRECTIONS

 6.1 INTEGRATED DISCUSSION 31

 6.2 SUMMARY OF CONTRIBUTIONS 32

 6.2.1 ADAPTIVE FILTER FUSION FRAMEWORK FOR 32

 COLOR IMAGE DENOISING

 6.2.2 STREAMING LMF FILTER DESIGN WITH 32

 WALLACE TREE OPTIMIZATION

 6.2.3 BRIDGING ALGORITHMIC AND ARCHITECTURAL 32

 DOMAINS

 6.3 FUTURE DIRECTIONS 32

 6.3.1 COLOR HARDWARE FILTERING 33

 6.3.2 ADAPTIVE FILTER FUSION ON FPGA 33

 6.3.3 MACHINE-LEARNED GATING AND FUSION 33

 CONTROL

 6.3.4 ASIC OPTIMIZATION AND POWER-AWARE 33

 DESIGN

 6.3.5 INTEGRATION WITH IMAGE PROCESSING 33

 PIPELINES

 6.4 CLOSING REMARKS 34

REFERENCES 35

LIST OF PUBLICATIONS AND THEIR PROOFS 38

 x

LIST OF TABLES

Title Page No.

Table 3.1 Adaptive Filter PSNR Ranking……...……………………………..8

Table 4.1 Multiplier Resource Utilization Comparison………..……………..17

Table 5.1 Average PSNR (dB) and SSIM across CBSD68 dataset…………..21

Table 5.2 Computational Demand (Macs/image) and Runtime (s)…………..24

Table 5.3 Hardware Throughput Comparison………………………………..26

Table 5.4 FPGA Resource Utilization with Conventional Multiplier………..26

Table 5.5 FPGA Resource Utilization with Wallace Tree Multiplier………..27

Table 5.6 LMF Denoising PSNR Comparison………………………...……..29

 xi

LIST OF FIGURES

Title Page No.

Figure 1.1 Adaptive Filter Block Diagram……………………………………….2

Figure 3.1 Block diagram of proposed fusion-based adaptive filtering system...10

Figure 4.1 Wallace Tree Multiplier Structure…………...……………………...16

Figure 4.2 Process flowchart………………..………………………………......18

Figure 5.1 Line graph for Image-wise PSNR Trend...………………………….21

Figure 5.2 Line graph for Image-wise SSIM Trend…………..………………...22

Figure 5.3 Visual Comparison of Denoising Performance…….………………..22

Figure 5.4 Line graph for Bias-variance using Real Image Patch…….………...24

Figure 5.5 Visual denoising comparison..………………………………………27

Figure 5.6 Post-Synthesis Schematic of the LMF Filter………………………..28

Figure 5.7 RTL Simulation and Timing Verification…………………....……...29

Figure 5.8 Intermediate reconstructed error outputs observed during hardware

verification………..…………………………………………………30

 xii

LIST OF ABBREVIATIONS

Abbreviation Full Form

LMF Least Mean Fourth

LMS Least Mean Squares

VSLMS_Ang Variable Step-Size LMS (Angular variant)

RLS Recursive Least Squares

NLMS Normalized Least Mean Squares

Llncosh Log-Cosh Adaptive Filter

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index

MAC Multiply-Accumulate

HDL Hardware Description Language

RTL Register Transfer Level

FPGA Field-Programmable Gate Array

LUT Look-Up Table

FF Flip-Flop

DSP Digital Signal Processing (Block)

BRAM Block RAM

NLM Non-Local Means

BM3D Block Matching and 3D Filtering

YCbCr Luminance-Chrominance Color Space

RGB Red Green Blue

DnCNN Denoising Convolutional Neural Network

AWGN Additive White Gaussian Noise

I/O Input/Output

σ (sigma) Standard Deviation (Noise Level)

CBSD68
Color Berkeley Segmentation Dataset (68

Images)

BSDS500 Berkeley Segmentation Dataset (500 Images)

Vivado Xilinx Vivado Design Suite

 1

CHAPTER 1

INTRODUCTION

1.1 Importance of Image Denoising in Vision and Imaging Systems

Image denoising is a core process in digital image processing and

computer vision. Its essential purpose is to enhance the quality of images by removing

noise while retaining useful visual information characteristics. Clean images are

fundamental to the precise implementation of higher-level tasks (e.g., object detection,

classification, segmentation, or feature extraction) in medical imaging, remote sensing,

autonomous navigation, and monitoring applications [1], [2].

In the real-world applications, image acquisition systems are regularly

exposed to noise as a result of the hardware sensors limitations, adverse environmental

conditions, and signal transmission imperfections. All of these introduce random

variations in pixel intensities and can result in considerably low-quality images and

unreliable downstream processing. Thus, it is essential to develop robust and efficient

denoising algorithms for preserving visual data and ensuring its usability across both

software applications and hardware-constrained settings [3], [4].

1.2 Challenges of Gaussian and Salt-and-Pepper Noise

Two common types of noise that impact digital images are additive

Gaussian noise and salt-and-pepper (also called impulse) noise. Gaussian noise is due

to thermal fluctuation in the sensor, electronic interference (which can be external or

internal), and quantization errors. It is usually modeled as zero-mean white noise at all

intensities. The presence of Gaussian noise in an image can cause loss of detail in the

image, decrease the contrast of the image, and can blur high-frequency information

such as edges and textural information [5, 7].

Salt-and-pepper noise, on the other hand, is presented as randomly

occurring black (0) and white (255) pixels in the image due to different causes,

generally due to sensor element malfunction, bit error in transmission or faults in

analog-to-digital conversion [8], [9]. In contrast to Gaussian noise, impulsive noise

generates sharp intensity spikes that drastically distort local pixel information and

complicate the ability to effectively apply linear smoothing techniques. Both types of

noise have specific demands and challenges. Specifically, Gaussian noise requires

retaining the structure of the image but suppressing the smooth deviation and salt-and-

pepper noise requires outlier robustness that maintains neighboring image features.

 2

On top of this, color images become more complicated given the

dependence of the RGB channels. Noise in any channel can impact perceived quality

across the whole color image, which calls for designing denoising methods that are

both color-aware and structure-aware [6], [10].

1.3 Limitations of Individual Filters and Traditional Denoising

Conventional denoising approaches, such as median filtering, bilateral

filtering, and wavelet shrinkage, have long been used due to their simplicity and ability

to handle low- to moderate-noise scenarios [11], [12]. Median filters are particularly

effective against salt-and-pepper noise, while bilateral filters provide a good trade-off

between noise suppression and edge preservation [4], [13]. However, these methods

rely on fixed spatial or statistical models, making them less effective when noise levels

are high or image content varies significantly.

Adaptive filters provide a more flexible framework by adjusting their

parameters in response to the input signal, as shown in block diagram in Fig. 1.1.

Techniques such as the Least Mean Squares (LMS), Recursive Least Squares (RLS),

and Least Mean Fourth (LMF) filters dynamically update their weights based on the

observed error between predicted and actual pixel values [11], [14]. This allows them

to adapt to local variations in the image and respond differently to flat, textured, or

edge-rich regions.

Despite their theoretical advantages, individual adaptive filters face

several limitations. Many are sensitive to initialization, require careful tuning of step

sizes, and may exhibit instability in the presence of high variance or non-stationary

noise [15], [16]. Moreover, a single filter is unlikely to perform optimally across the

entire image, especially in color images where different regions demand different

filtering characteristics. As a result, the effectiveness of any standalone filter is

inherently constrained, prompting the need for hybrid or fusion approaches [17], [18].

Fig. 1.1 Adaptive Filter Block Diagram

 3

1.4 Motivation for Adaptive Filter Fusion and Hardware Optimization

The limitations of traditional and standalone adaptive filters motivate the

development of a fusion-based adaptive filtering framework. The central idea is to

combine the strengths of multiple adaptive filters—each having distinct error

characteristics—into a unified system that dynamically adjusts its behavior based on

pixel-wise performance. For example, one filter may be more effective in flat regions

while another excels at preserving edges or textures. By assigning greater weight to

the best-performing filter at each pixel location, the fused output can achieve better

overall denoising quality than any individual filter [6], [19].

In this work, a fusion model is proposed based on inverse squared error

weighting of three adaptive filters: LMS, Llncosh, and VSLMS Ang’s. The fusion

weights are computed in real time based on local error metrics, enabling the system to

respond intelligently to different regions of the image. Additionally, a bilateral

preprocessing stage is incorporated to improve edge definition and enhance the quality

of input patches, especially under Gaussian noise [20], [21].

On the hardware front, the need for real-time image denoising necessitates

efficient architectures that can process data with minimal latency and resource

consumption. The LMF filter, known for its robustness to salt-and-pepper noise due to

its fourth-power error cost function, is chosen for hardware implementation [9], [22].

However, its computational demands are addressed through architectural

optimizations. Specifically, the use of Wallace tree multipliers in the filtering path

significantly reduces the critical path delay, logic utilization, and power consumption

[23], [24]. The resulting design is capable of streaming input data and producing

filtered output at high throughput—making it well-suited for FPGA-based or

embedded deployment [25], [26].

1.5 Summary of Contributions

1.5.1 Adaptive Filter Fusion with Bilateral Preprocessing

A fusion-based framework is developed that combines three distinct

adaptive filters—LMS, Llncosh, and VSLMS Ang’s—using a dynamic, pixel-wise

inverse error weighting scheme. Bilateral filtering is employed as a preprocessing step

to enhance structural fidelity, especially in edge and texture-rich areas. A bias-variance

analysis is conducted to theoretically and empirically validate the fusion performance.

The fused output is shown to exhibit reduced variance compared to individual filters

[16], [18].

The computational efficiency of the proposed approach is evaluated

against popular classical methods (NLM, BM3D, DnCNN), demonstrating that the

fusion method achieves competitive denoising performance while requiring

significantly fewer multiply-accumulate operations (MACs).

 4

1.5.2 Wallace Tree–Optimized Real-Time Hardware Filter

A Verilog-based LMF filter is implemented using fixed weights derived

from offline adaptive training. The hardware architecture employs a streaming line-

buffer design with 3×3 window processing, including valid pixel detection and border

skipping. To optimize the arithmetic pipeline, Wallace tree multipliers replace

conventional multipliers, resulting in notable reductions in logic utilization and

dynamic power, with improved timing closure. The hardware-filtered output closely

matches the software reference output, confirming functional equivalence with

improved throughput and resource efficiency [23], [24].

1.6 Thesis Organization

Chapter 2: Literature Survey

Reviews conventional denoising techniques, adaptive filters, fusion approaches, and

prior hardware implementations of image filters.

Chapter 3: Methodology 1

Describes the adaptive fusion framework, including dataset, filter selection, weighting

mechanism, and bilateral preprocessing strategy.

Chapter 4: Methodology 2

Presents the Verilog hardware design of the LMF filter, including system architecture,

streaming logic, and Wallace tree optimization.

Chapter 5: Experimental Analysis

Details the evaluation of both software and hardware implementations using PSNR,

SSIM, complexity, and resource metrics.

Chapter 6: Final Analysis and Future Scope

Discusses the observed results, draws comparisons with existing techniques, concludes

the work, and proposes directions for future research.

 5

CHAPTER 2

LITERATURE SURVEY

2.1 Classical Image Denoising Approaches

Early image denoising research centered around the suppression of

additive noise using spatial and transform-domain filters. Traditional filters such as the

mean and median were simple but often compromised edge and texture information.

A major breakthrough came with the Non-Local Means (NLM) algorithm by Buades

et al., which introduced the use of distant self-similar patches for weighted averaging.

This preserved structural details significantly better than classical local filters,

especially in flat regions with repetitive patterns [1].

Building on this, Block-Matching and 3D Filtering (BM3D) by Dabov et

al. became a gold standard for Gaussian noise removal, delivering state-of-the-art

results through collaborative filtering in grouped 3D transform coefficients [3].

However, both NLM and BM3D were computationally expensive and unsuitable for

real-time use.

Wavelet thresholding and Wiener filtering were also explored for

denoising in transform domains, leveraging signal sparsity. Techniques like

VisuShrink and BayesShrink removed noise in wavelet coefficients but

underperformed in textured or color-rich images [2].

2.2 Progress in Edge-Preserving Filtering

With the need to preserve structure, bilateral filtering emerged as a robust

approach that combined spatial and radiometric proximity for weighted smoothing.

Though effective in edge preservation, it was costly in large images [4]. Guided filtering

offered a fast alternative with linear complexity, maintaining edge-awareness using a

reference guidance image [5]. For color image denoising, where inter-channel

dependencies matter, Dinh et al. proposed cross-channel texture transferring to retain

chromatic consistency [6], while quaternion-based methods unified RGB modeling to

reduce color artifacts [7].

These methods advanced color fidelity but still lacked adaptive flexibility in

textured or dynamic regions.

 6

2.3 Adaptive Filtering: LMS, LMF, and Beyond

Adaptive filtering introduced parameter updates via feedback from input-

output errors. The LMS algorithm, popular for its simplicity, updated weights using

gradient descent and was widely used in digital signal processing [19]. However, LMS

was sensitive to non-Gaussian noise and outliers.

To address impulsive noise, the Least Mean Fourth (LMF) algorithm was

introduced, which penalized large errors more heavily by minimizing the fourth power

of the error. This made LMF effective in salt-and-pepper and impulsive environments

[14]. However, it came with slower convergence and higher computation.

Improved variants like Normalized LMF (NLMF) and bias-compensated

LMF achieved faster convergence and robustness under dynamic conditions [8], [11].

The Llncosh filter, using a log-likelihood-based cost, offered better generalization and

smooth adaptation in Gaussian noise settings [27]. Regularization techniques further

enhanced adaptive filter stability under continuous updates [16].

2.4 Fusion-Based Strategies

Despite individual strengths, adaptive filters are prone to local overfitting

and instability. Inspired by fusion learning, fusion-based methods combine outputs

from multiple filters, each optimized for different local conditions [18]. Fusion assigns

adaptive weights using performance indicators like absolute or squared error.

A notable approach is inverse squared error weighting, where each filter’s

output is weighted inversely proportional to its error, allowing more accurate filters to

dominate locally [15]. Region-based switching and low-rank fusion are other strategies

that leverage structural correlations across filters [9], [17].

In color image denoising, bilateral preprocessing enhances spatial

consistency, helping preserve edge transitions and reducing noise gradients prior to

fusion. This results in improved robustness across RGB channels [28].

Empirical evaluations consistently show fusion-based models outperform

individual filters in PSNR, SSIM, and perceptual metrics across multiple noise levels

[20], [21].

2.5 Deep Learning for Image Denoising

Deep learning models revolutionized denoising by learning noise

mappings from data. DnCNN employed residual learning, training CNNs to predict

and subtract noise components, achieving remarkable performance on Gaussian noise

[13]. Later models like FFDNet introduced variable noise-level conditioning, while

DRUNet integrated attention and dilation for improved performance [26], [29].

 7

Though highly effective, these models are computation-intensive, data-

dependent, and less interpretable than traditional adaptive filters—limiting their real-

time hardware deployment potential.

2.6 Hardware-Oriented Adaptive Filtering

For embedded use, LMS filters have been synthesized on FPGA and ASIC

platforms using fixed-point arithmetic for area and power efficiency [24], [25].

Multiplier-less LMS and distributed arithmetic LMS eliminated costly hardware

multipliers with logic-optimized alternatives [12], [22].

Though computationally heavier, the LMF filter remains attractive due to

its superior performance under impulsive noise. The main challenge lies in its reliance

on high-speed multiplication operations.

To address this, Wallace tree multipliers are adopted. Originally proposed

by Wallace, these reduce adder stages and critical path delay in binary multiplication

arrays [30]. Subsequent VLSI- and FPGA-optimized versions of Wallace trees

improved speed and throughput significantly [31].

Comparative analysis has shown Wallace tree multipliers consistently

outperform Booth and array multipliers in area-delay tradeoffs and pipeline efficiency,

particularly for 24-bit and higher operations, making them ideal for LMF-based

filtering hardware [10].

2.7 Summary and Positioning

In summary, denoising methods have evolved from spatial filtering to

adaptive and fusion strategies, culminating in real-time hardware-accelerated

solutions. Each generation addressed limitations in structure preservation,

computational complexity, and noise generalization. This thesis contributes to this

lineage through:

• A fusion-based adaptive filter framework using LMS, Llncosh, and VSLMS

with bilateral preprocessing and inverse-error weighting.

• A streaming hardware-optimized LMF filter accelerated with Wallace tree

multiplication for real-time image denoising.

Together, they form a practical and scalable approach to denoising that

balances statistical accuracy, perceptual quality, and implementation feasibility.

 8

CHAPTER 3

Methodology 1: Adaptive Filter Fusion for Color Image Denoising

3.1 Dataset Description

To evaluate the performance of the proposed adaptive filter fusion

framework, we utilize the CBSD68 dataset, a widely adopted benchmark in image

denoising research [1]. The dataset comprises 68 natural color images with diverse

textures, edges, and luminance characteristics. This diversity makes it ideal for

assessing the spatial adaptability and generalization capacity of denoising algorithms.

For experimental consistency, additive white Gaussian noise is

synthetically applied to each image. Four noise levels—standard deviations of σ = 10,

15, 25, and 50—are used to simulate different noise intensities. These levels reflect

realistic conditions ranging from light sensor noise to severely degraded transmission

scenarios. The clean, uncorrupted images are retained as ground truth for computing

full-reference quality metrics such as PSNR and SSIM [3].

3.2 Filter Selection and Benchmarking

To construct a high-performing and efficient adaptive fusion framework,

a variety of adaptive filters were evaluated under Gaussian noise with σ = 15, a

representative mid-level noise condition. The benchmarking focused on denoising

quality (measured using PSNR), using the CBSD68 dataset with full-color inputs.

Results of the Benchmarking are shown in Table 3.1.

Rank Filter Average PSNR (dB) Notes

1 RLS 29.71 Best quality; very high

computational load.

2 VSLMS Ang’s 29.43 Directionally adaptive; edge-

aware learning.

3 Llncosh 29.32 Smooth and stable

convergence.

4 LMS 28.96 Simple, effective in smooth

regions.

Table 3.1 Adaptive Filter PSNR Ranking

 9

3.2.1 Justification for Filter Selection

While RLS delivered the highest PSNR, it was excluded due to its

significant computational overhead. Specifically:

• RLS performs recursive matrix updates, leading to quadratic time complexity

per iteration and elevated memory usage.

• In practice, RLS exhibited very high runtime than LMS or Llncosh in Python

(see Table 5.2, runtime analysis).

• This renders it unsuitable for either dynamic fusion (per-pixel weighting) or

hardware implementation [14].

Thus, three filters were selected based on their strong trade-off between

denoising performance, computational cost, and complementary behavior:

• LMS: Efficient in smooth/flat regions; fast convergence

• Llncosh: Edge-preserving; well-behaved near gradients

• VSLMS Ang’s: Excels in high-texture, detail-preserving regions

Together, these filters span a diverse adaptation space and are

computationally efficient enough to be used for per-pixel dynamic fusion, a key aspect

of the proposed methodology.

3.3 Fusion-Based Filtering Architecture

The proposed architecture fuses the outputs of the three selected adaptive

filters on a pixel-wise basis, dynamically adjusting each filter’s contribution according

to its local estimation accuracy. The framework is designed to process full-color

images, with the fusion process applied separately on each RGB channel, thereby

maintaining inter-channel consistency and preserving color integrity [6].

The denoising pipeline consists of the following major components:

• Bilateral Preprocessing: Applied to the noisy image to enhance structural

continuity and suppress coarse noise

• Adaptive Filtering Stage: The preprocessed image is fed into the three selected

adaptive filters operating in parallel

• Dynamic Weighting and Fusion: The output of each filter is combined using a

pixel-wise inverse squared error weighting strategy

• Final Output: A weighted summation yields the denoised image

 10

The block diagram of proposed system is shown in Fig. 3.1. The noisy

image is first passed through a bilateral filter to reduce noise while preserving edges.

The output is then processed by three adaptive filters—VSLMS Ang’s, Llncosh and

LMS—in parallel. Their outputs are combined using dynamic error weighting, where

each filter’s contribution is adjusted based on its local pixel-wise error. The final image

is produced by a weighted fusion of these filtered outputs, yielding an enhanced

denoised result [7].

3.4 Inverse Squared Error Weighting

The core of the proposed framework is a dynamic error-weighted fusion

mechanism that combines the outputs of selected filters based on their instantaneous

adaptation error.

At each pixel 𝑛, the local error for the 𝑖𝑡ℎ filter is defined as:

𝑒𝑖(𝑛)  =  𝑑(𝑛)  −  𝑦𝑖(𝑛) (3.1)

Where, 𝑦𝑖(𝑛) is the filter output and  𝑑(𝑛) is the corresponding ground truth. The

contribution of each filter is controlled using inverse squared error weighting:

𝑤𝑖(𝑛) =
1

 𝑒𝑖(𝑛)2+ 𝜀
 (3.2)

Here, 𝜀 is a small constant to avoid division by zero. The weights are then

normalized:

{𝑤}𝑖̂(𝑛) =
𝑤𝑖(𝑛)

∑ 𝑤𝑗(𝑛)𝐾
𝑗=1

 (3.3)

Fig 3.1 Block diagram of proposed fusion-based adaptive filtering system

 11

Finally, the fused output is computed as the weighted sum of all filter

outputs:

𝑌𝑓𝑢𝑠𝑒𝑑(𝑛) = ∑ {𝑤}𝑖̂(𝑛) ⋅ 𝑦𝑖(𝑛)𝐾
𝑖=1 (3.4)

This fusion mechanism allows the system to adaptively emphasize the

best-performing filters at each pixel, thereby improving both perceptual and structural

denoising performance [9] , [10].

3.5 Per-Pixel Fusion Behavior

This per-pixel fusion approach leverages the behavioral diversity of the

selected filters:

• LMS is generally favored in flat and homogeneous regions due to its simplicity

and stability.

• VSLMS Ang’s becomes dominant near high-gradient zones such as edges or

textures, owing to its directional sensitivity and adaptive learning rate.

• Llncosh tends to balance performance in intermediate regions where local

contrast transitions gradually [8].

By dynamically combining these behaviors, the fusion method achieves

enhanced denoising performance while minimizing global parameter tuning or

segmentation heuristics.

3.6 Bilateral Preprocessing

To further improve filtering quality, bilateral filtering is applied as a

preprocessing step prior to adaptive filtering. Bilateral filtering is an edge-preserving

smoothing technique that reduces noise while maintaining important structural

content. It leverages both spatial proximity and pixel intensity similarity to perform

localized smoothing without blurring critical edges [16], [27]. In our pipeline, bilateral

filtering improves the quality of filter input patches and enhances the effectiveness of

the downstream fusion-based adaptation. This hybrid approach leverages the spatial

sensitivity of bilateral filtering and the learning behavior of adaptive filters for robust

color image denoising.

3.7 Runtime and Complexity Profiling

In addition to denoising quality, the fusion model is profiled in terms of:

• Multiply-Accumulate Operations (MACs) per image

• Runtime (in seconds) on a standard CPU

The LMS, Llncosh, and VSLMS Ang’s filters require only linear or mildly

non-linear updates, keeping their computational demands manageable. The overall

fusion process—including bilateral filtering and weighted averaging—remains

 12

significantly more efficient than conventional methods like NLM or BM3D [3], [18].

On average:

• The fusion method requires ~12.9 million MACs per 480×321 image

• Typical execution time is < 0.02 seconds per image (CPU-only)

This makes the framework suitable for real-time applications or integration

into embedded systems with constrained resources.

3.8 Tools and Implementation

The entire fusion pipeline is implemented in Python using:

• Padasip: For adaptive filtering (LMS, Llncosh, VSLMS Ang’s)

• scikit-image (skimage): For image preprocessing, bilateral filtering, and metric

evaluation

• NumPy: For vectorized operations and weight normalization

• Matplotlib: For plotting visual results and performance trends

The modular implementation allows for easy replacement or extension of

individual filters, facilitating further exploration of alternative fusion strategies.

 13

CHAPTER 4

Methodology 2: Hardware Design and Optimization for LMF Filter

4.1 Overview and Motivation

While adaptive filtering is highly effective for image denoising, software-

based implementations are often unsuitable for real-time applications, particularly in

embedded or FPGA-based systems. High computational complexity, memory latency,

and limited parallelism are major bottlenecks in real-world deployment [20], [26].

To overcome these limitations, we propose a hardware-efficient

implementation of the Least Mean Fourth (LMF) adaptive filter using a streaming

architecture. The design is tailored for grayscale image denoising under salt-and-

pepper noise, a scenario where the LMF filter excels due to its robustness to impulsive

disturbances [14]. The design further incorporates Wallace tree multipliers to reduce

resource usage and improve processing speed, enabling practical deployment on

FPGA platforms [23], [24].

4.2 Dataset and Preprocessing

 The hardware model is evaluated using images from the BSDS500

dataset, a benchmark widely used for image segmentation and filtering tasks [17]. To

simulate impulsive noise conditions, salt-and-pepper noise is synthetically added using

a MATLAB-based preprocessing script.

• Noise Density: 1% (i.e., 1% of total pixels are replaced with either 0 or 255)

• Salt-to-Pepper Ratio: 0.5 (equal probability of black or white pixel corruption)

Images are resized to a fixed resolution of 480 × 321 pixels, and the

corrupted noisy images are used as inputs to both software and hardware filters for

comparative evaluation.

4.3 Filter Selection for Hardware Implementation

The choice of the Least Mean Fourth (LMF) filter for hardware

implementation was driven by both its theoretical robustness in handling impulsive

noise and its practical suitability for fixed-weight deployment in real-time systems

[11], [26].

 14

4.3.1 Superior Performance in Impulsive Noise

Unlike LMS and RLS variants that minimize squared error, the LMF

algorithm minimizes the fourth power of the error signal:

𝐽(𝑛) = 𝑒(𝑛)4 (4.1)

This higher-order cost function inherently places more penalty on large errors, making

LMF particularly effective in suppressing outliers. This property is ideal for denoising

salt-and-pepper noise, which introduces extreme pixel deviations (i.e., 0s and 255s in

8-bit images). Empirical testing showed that LMF preserves structure better while

aggressively filtering such outliers [14].

4.3.2 Fixed-Weight Compatibility

While adaptive filters like LMS, Llncosh, and VSLMS Ang’s require

dynamic weight updates during inference (which is impractical for standard hardware

logic), the LMF filter in this design was used in its pre-trained, fixed-weight form [9].

This simplifies the hardware significantly:

• No run-time weight updates needed

• Allows mapping to a simple multiply-accumulate (MAC) pipeline

• Avoids division and normalization operations required by NLMS or RLS

This makes LMF ideal for hardware acceleration, especially when trained

weights are derived offline using Python simulations and later quantized to fixed-point.

4.3.3 Architecture-Friendly Design

The LMF filter adapts naturally to a streaming 3×3 convolutional

architecture, which:

• Aligns well with line-buffer based window generation

• Requires only 9 fixed multipliers and an adder tree

• Can be pipelined for high-throughput operation

Furthermore, the choice of LMF synergized well with Wallace tree

multipliers, which reduced latency and improved synthesis timing closure without

sacrificing denoising performance [23], [24].

4.3.4 Verified Correspondence with Software Filtering

A major factor in choosing LMF was its ability to match Python results

with high fidelity after conversion to fixed-point weights. The hardware simulation

produced denoised output with minimal PSNR loss compared to floating-point

software version, validating its use as efficient, quality-preserving solution [25].

 15

4.4 LMF Filter Architecture and Adaptation

The Least Mean Fourth (LMF) algorithm is a higher-order adaptive

filtering technique that minimizes the mean of the fourth power of the error signal,

making it resilient to outliers [14].

In software, the adaptive process is done using the Padasip library:

• A 3×3 pixel patch is extracted at each location

• The LMF filter computes an output based on current weights

• The error is calculated between the filter output and the clean pixel value

• During the adaptive filtering stage, the filter weights are dynamically adjusted

based on the instantaneous error computed between the filter output and the

desired clean pixel value. The weight adaptation follows the LMF update rule

as per Equation 4.2.

𝐰(𝑛 + 1)  =  𝐰(𝑛)  +  μ
e3(𝑛) ⋅ 𝐱(𝑛)

||𝐱(𝑛)||
2

+ ϵ
 (4.2)

where, 𝐰(𝑛) is the weight vector at iteration n, μ is the step size parameter,

e(n) = d(n) − 𝐰 T(n) ⋅ x(n) (4.3)

is the instantaneous error, x(n) is the input vector (i.e., pixel patch), ∥x(n)∥ is the

Euclidean norm of the input vector, ϵ is a small positive constant to avoid division by

zero.

4.5 Streaming Line-Buffer Hardware Design

The proposed hardware design processes incoming pixels in a streaming

manner using a 3×3 sliding window that moves across the image row by row. Key

features include:

• Line Buffers: Used to store previous two rows of pixels to form the 3×3

window

• Shift Registers: Update the window contents column-wise

• Fixed Weights: Multiplied with corresponding pixels in the 3×3 window

• Accumulator Tree: Performs summation to generate filtered output

• Valid Signal Generator: Ensures output is only generated when a complete 3×3

window is available (border skipping) [32]

This architecture avoids full-frame buffering and minimizes latency,

supporting pixel-by-pixel processing suitable for video or streaming image systems.

 16

4.6 Wallace Tree Multiplier Integration

Multiplication is one of the most resource-intensive operations in digital

filters. To optimize this, we replace standard array multipliers with Wallace tree

multipliers. Fig 4.1 depicts a basic structure of Wallace Tree Multiplier algorithm.

Wallace tree multipliers offer:

• Reduced critical path delay

• Lower LUT and flip-flop usage

• Increased clock frequency and throughput

Wallace tree multipliers achieve this by reorganizing partial product

addition using carry-save adders in a tree structure, significantly reducing the number

of sequential additions. This directly benefits the speed and area efficiency of the

design [23], [24].

Fig. 4.1 Wallace Tree Multiplier Structure

 17

MULTIPLIER RESOURCE UTILIZATION

 LUT (%) IO (%)

Classical 3.36 64.50

Booth 3.20 64

Wallace Tree 3.15 64

Based on benchmarking as shown in Table 4.1 (from our own prior

multiplier study), Wallace tree multipliers consume 3.15% LUTs, compared to 3.36%

for classical and 3.20% for Booth, confirming their superior hardware efficiency.

4.7 Border Handling and Output Control

Since a valid 3×3 window cannot be formed at the borders, the filter skips:

• First and last rows

• First and last columns

Thus, the output image dimensions are reduced from 480×321 to 478×319.

The design includes:

• Control logic to assert valid_out only when a full window is available

• Synchronized pipeline to ensure correct alignment of input and output streams

Output pixels are written sequentially to a memory or file via simulation

or interfaced with a display controller in deployment.

4.7.1 Fixed-Point Representation of Weights

In the proposed hardware implementation of the LMF filter, the learned

weights from the Python-based training phase were originally represented in 32-bit

floating-point format [12], [25]. However, hardware designs particularly FPGA

implementations using Verilog HDL are typically optimized for fixed-width arithmetic

due to constraints on area, speed, and logic utilization.

To enable synthesis-friendly deployment, the trained weights were

converted to a 16-bit signed fixed-point format using a uniform scaling and rounding

procedure. The transformation is expressed as:

𝜔𝑓𝑖𝑥𝑒𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝜔𝑓𝑙𝑜𝑎𝑡) × 2𝑆 (4.4)

Where:

• 𝜔𝑓𝑙𝑜𝑎𝑡: Original floating-point weight

• 𝑆: Scaling factor (e.g., 7 or 8 bits to preserve fractional

precision)

Table 4.1 Multiplier Resource Utilization Comparison

 18

• 𝜔𝑓𝑖𝑥𝑒𝑑: Resulting integer weight used in Verilog

This conversion retains adequate dynamic range while minimizing

quantization error. The fixed weights were then manually hardcoded in the Verilog

module as 16-bit hexadecimal values and used directly in the multiply-and-accumulate

stage of the LMF pipeline. By adopting fixed-point arithmetic:

• Area and timing performance were improved over floating-point equivalents

• Synthesis compatibility with DSP slices and adders was ensured

• Simulation precision was kept acceptably close to the original Python output

This transformation was critical in bridging the high-level filter design

with a low-level, resource-aware hardware implementation.

4.8 Overall Process Flow

The complete process from software-based adaptive filtering to hardware deployment

is shown in Fig. 4.2. The overall process for the proposed work begins with dataset

preparation, wherein clean images are selected from the BSDS500 dataset and

corrupted with salt-and-pepper noise using a MATLAB-based pre-processing script.

Subsequently, software-based adaptive filtering is performed by applying the LMF

algorithm using the Padasip library, and the final adapted filter weights are extracted

after the completion of the adaptive process. These extracted fixed weights are then

used in the hardware modeling phase, where a streaming line-buffer-based LMF filter

architecture is implemented in Verilog HDL [25], [32].

Fig. 4.2 Process flowchart

 19

To enhance computational efficiency, the design undergoes multiplier optimisation by

replacing conventional array multipliers with Wallace tree multipliers within the

filtering data path [24]. Following the hardware design, simulation and synthesis are

conducted using Xilinx Vivado to verify functional correctness and prepare the design

for FPGA deployment [29].

Finally, a comprehensive analysis is carried out by comparing the visual,

and quantitative denoising performance between the noisy, software-filtered, and

hardware-filtered images, along with evaluating hardware resource utilisation and

throughput metrics [12], [23].

4.9 RTL Simulation and Verification

Simulation is performed using Vivado’s integrated environment. The
following signals are validated:

• Input loading and line buffer operation

• Formation of correct 3×3 window

• Application of fixed weights and multiply-accumulate operation

• Proper assertion of valid_out and writing of filtered output

The RTL waveforms confirm that the architecture correctly skips borders,

applies weights, and generates outputs with appropriate timing. A post-synthesis

schematic shows the hierarchical structure of the module, including:

• Multiplier units

• Accumulator logic

• FSM for control and synchronization

4.10 Hardware Toolchain and Target Platform

• Design Language: Verilog HDL (synthesis-ready)

• Toolchain: Xilinx Vivado for simulation, synthesis, and implementation

• Synthesis Metrics Tracked:

• LUTs, FFs, DSPs

• Throughput and clock frequency

 20

CHAPTER 5

Experimental Analysis

5.1 Evaluation Strategy

The proposed dual-path framework—comprising a software-based

adaptive filter fusion approach for color image denoising and a hardware-optimized

LMF filter for grayscale images—was evaluated through extensive experimentation.

The performance of each system was assessed using:

• Quantitative image quality metrics (PSNR, SSIM)

• Complexity analysis (MACs, runtime)

• Hardware resource utilization and timing (LUTs, FFs, DSPs, frequency)

This analysis helps establish the effectiveness, efficiency, and deploy

ability of both contributions under varying noise conditions and implementation

constraints.

5.2 Experimental Setup: Software Fusion Framework

5.2.1 Dataset and Noise Conditions

• Dataset: CBSD68 (68 color images)

• Noise: Additive Gaussian noise with σ = {10, 15, 25, 50}

• Each image passed through LMS, Llncosh, and VSLMS Ang’s filters, followed

by dynamic fusion.

5.2.2 Implementation Details

• Language/Libraries: Python, Padasip, skimage

• Patch Size: 3×3-pixel neighbourhood

• Fusion Type: Per-pixel inverse squared error weighting (adaptive)

 21

5.3 Results: Software Denoising Performance

5.3.1 Quantitative Evaluation

Across all evaluated noise levels (σ = 10, 15, 25, 50), the proposed fusion-

based filtering framework consistently outperformed individual adaptive filters (LMS,

Llncosh, and VSLMS Ang’s) and the noisy input in both PSNR and SSIM metrics as

shown in Table 5.1. The dynamic fusion mechanism alone yielded 1–2 dB gains over

any single filter, with additional improvements from bilateral preprocessing. Notably,

even at high noise levels (σ = 50), the Bilateral + Fusion configuration preserved

structural similarity (SSIM = 0.4698) nearly double that of the noisy input (SSIM =

0.2189), while recovering up to 7 dB in PSNR.

These results highlight the robustness of the fusion under varying noise

intensities and confirm that spatially adaptive, error-driven fusion provides significant

quantitative and perceptual advantages over fixed-filter baselines.

5.3.2 Visual Result

Method PSNR

(σ=10)

SSIM

(σ=10)

PSNR

(σ=15)

SSIM

(σ=15)

PSNR

(σ=25)

SSIM

(σ=25)

PSNR

(σ=50)

SSIM

(σ=50)

Noisy 28.28 0.7249 24.83 0.5918 20.54 0.4175 15.00 0.2189

LMS 28.47 0.8119 26.60 0.7262 24.06 0.5873 20.77 0.3856

Llncosh 29.30 0.8157 27.01 0.7307 24.24 0.5950 20.90 0.3953

VSLMS

Ang’s
29.69 0.8179 27.27 0.7427 24.55 0.6229 21.62 0.4500

Fusion

(no pre)
29.97 0.8373 27.64 0.7666 24.80 0.6324 21.91 0.4626

Bilateral

+ Fusion
30.80 0.8783 28.45 0.8046 25.27 0.6582 22.04 0.4698

Table 5.1 Average PSNR (dB) and SSIM across CBSD68 dataset

Fig. 5.1 Line graph for Image-wise PSNR Trend

 22

To complement the numerical analysis, Fig. 5.1 and Fig. 5.2 plot the

image-wise PSNR and SSIM trends across the CBSD68 dataset, clearly indicating that

the fusion-based methods outperform individual adaptive filters on nearly all images.

Fig. 5.2 Line graph for Image-wise SSIM Trend

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5.3 Visual Comparison of Denoising Performance. (a) Clean Ground Truth.

(b) Noisy input (σ = 15). (c) LMS output. (d) Llncosh output. (e) VSLMS Ang’s

output. (f) Fusion-Based Filter output. (g) Bilateral + Fusion Filter output.

 23

In addition to these trends, Fig. 5.3 presents a qualitative visual

comparison on a representative image from the dataset. The figure includes Clean

(Ground Truth) Image, Noisy Input Image, Denoised outputs from individual filters:

LMS, Llncosh, VSLMS Ang’s, Outputs from the proposed: Fusion-Based Filter,

Bilateral + Fusion Filter.

This visual inspection reveals the following: LMS introduces noticeable

blur and residual noise. Llncosh slightly improves edge definition but lacks uniform

denoising. VSLMS Ang’s provides better structure but may over smooth flat regions.

The Fusion- Based Filter balances structure and noise suppression effectively. The

Bilateral + Fusion Filter yields the best results preserving fine edges, restoring colors,

and suppressing noise without artifacts.

5.3.3 Bias-Variance Analysis

An empirical bias-variance decomposition was conducted by treating each

filter as a biased estimator of the ground truth and computing:

• Pixel-wise variance of each filter’s output over a validation set

• Fused output variance, which was consistently lower than individual

Each of the selected filters—LMS, Llncosh, and VSLMS Ang’s—can be

viewed as an independent estimator of the ground truth image signal, with distinct

variance characteristics determined by their adaptation strategies [20], [21]. A

simulated example, shown in Fig. 5.4, models these estimators as noisy variants of a

reference signal derived from a grayscale row within a 48×52 patch of a real color

image.

The LMS and VSLMS Ang’s filters exhibit relatively higher error

variances of 0.0072 and 0.0051, respectively, while Llncosh performs best individually

with a variance of 0.0046. The fused output, computed using inverse squared error

weighting, achieves a reduced variance of 0.0050 lower than LMS and VSLMS Ang’s,

and competitively close to Llncosh.

This behaviour is consistent with fusion learning theory, where variance is

reduced by combining multiple weak estimators [1], [3]. This confirms that the fusion

mechanism effectively stabilizes the output by reducing variance without introducing

additional bias.

Bias-variance illustration using a grayscale row from a real color image

patch as shown in Fig. 5.4. LMS, Llncosh, and VSLMS Ang’s estimators exhibit

variances of 0.0072, 0.0046, and 0.0051 respectively, while the fused output achieves

reduced variance of 0.0050, demonstrating improved stability through fusion

averaging.

 24

5.4 Complexity and Runtime Profiling

To assess efficiency, we analysed the computational demand in terms of

Multiply-Accumulate operations (MACs) and CPU execution time. To complement

our quality evaluation, we analyzed the computational complexity of each method in

terms of multiply-accumulate operations (MACs) and runtime [5]. As detailed in Table

5.2, RLS, while achieving superior denoising quality among individual adaptive filters,

requires approximately 13.9 million MACs per image, largely due to its matrix-based

weight updates. In contrast, LMS, Llncosh, and VSLMS Ang’s involve simple linear

and non-linear updates with only 2.8M, 4.2M, and 5.6M MACs respectively. Although

RLS performs well, we deliberately excluded it from the final fusion model to preserve

computational efficiency and ensure hardware deploy ability [24], [29].

Method MACs/Image Runtime (s)

Fusion (Proposed) 12.9 million 0.02s

NLM 386 million 0.67s

BM3D 1.54 billion 0.03s*

LMS 2.8 million 0.01s

RLS 13.9 million 0.01s

Llncosh 4.2 million 0.01s

VSLMS Ang’s 5.6 million 0.01s

Our proposed fusion method, combining LMS, Llncosh, and VSLMS

Ang’s, achieves reliable denoising with only 12.9M MACs per image and a runtime

of 0.02 seconds, confirming its suitability for real-time and embedded use. In contrast,

classical baselines such as Non-Local Means (NLM) and BM3D demand 386M and

Fig. 5.4 Line graph for Bias-variance using Real Image Patch

Table 5.2 Computational Demand (Macs/image) and Runtime (s)

 25

over 1.5 billion MACs respectively — making them orders of magnitude more

expensive in both computation and memory. While DnCNN was not simulated in our

pipeline, theoretical estimates place its complexity at over 200 million MACs per

megapixel, due to its 17-layer convolutional structure with 64 feature maps per layer

[6]. Additionally, DnCNN requires GPU resources and extensive memory buffering

[22], [30], making it impractical for low-power or hardware-constrained scenarios.

5.5 Benchmarking with BM3D and NLM

We evaluated two widely adopted classical denoising baselines - BM3D

and Non-Local Means (NLM) — to benchmark our proposed fusion framework.

BM3D was applied using the standard YCbCr-domain configuration, where denoising

is limited to the luminance (Y) channel [2]. While this effectively reduces noise in

brightness, chrominance channels (Cb and Cr) remain noisy, resulting in suboptimal

structural quality for full-color images. It achieved a PSNR of 24.65 dB, SSIM of

0.2757, and required 0.03 seconds for a single 480×321 image. Despite its short

runtime on this small input, BM3D remains computationally expensive, with an

estimated complexity of over 1.5 billion MACs per image [5].

In comparison, NLM was applied directly to the RGB image using patch-

based self-similarity [4]. It achieved a significantly better PSNR of 39.11 dB and SSIM

of 0.9598, but with a much higher runtime of 0.67 seconds, even in fast mode. This

reflects its poor scalability and high computational load — over 386 million MACs

per image.

By contrast, our proposed fusion method operates with just 12.9 million

MACs and completes processing in 0.0192 seconds, making it vastly more efficient

and suitable for real-time or embedded environments while still delivering competitive

denoising performance.

5.6 Experimental Setup: Hardware Filter Implementation

5.6.1 Simulation Configuration

• Tool: Xilinx Vivado (2022.1)

• Language: Verilog RTL, Python

• Target Device: Xilinx Artix-7 FPGA (xc7a100t)

• Input Image: Grayscale BSDS image (480×321), salt-and-pepper noise (1%)

5.6.2 Output Evaluation

• Output compared with Python-based LMF reference implementation

• Visual similarity, PSNR and Hardware resource utilization and timing (LUTs,

FFs, DSPs, frequency) used for validation

 26

5.7 Results: Hardware Performance

The hardware filter was simulated with and without Wallace tree

optimization using a grayscale image of resolution 480×321 (154,080 pixels). A total

of 152,482 valid pixels were filtered (excluding the border pixels) in both versions.

The results demonstrate the high throughput and correctness of the implementation.

5.7.1 Simulation Results Summary

 As shown in Table 5.3, both versions demonstrate near-theoretical

maximum throughput close to 1 pixel per clock cycle, indicating a well-pipelined

architecture with minimal stalls or delays.

5.7.2 Observations

• The Wallace tree–optimized version maintains virtually the same processing

speed and output accuracy as the non-optimized version, confirming functional

equivalence.

• Despite a marginal difference in total cycles (only +2 cycles), the Wallace tree

architecture offers substantial synthesis-time advantages:

o Reduced critical path delay

o Improved timing closure

o Lower LUT usage compared to classical multiplication logic

• Such improvements are crucial for scaling the design to larger images or higher

clock frequencies.

5.7.3 Hardware Resource Utilization (Post-Synthesis)

Resource Utilization Available Utilisation (%)

LUT 18,780 303,600 6.19

FF 23,135 607,200 3.81

DSP 8 2,800 0.29

IO 35 600 5.83

BUFG 1 32 3.13

Configuration Pixels Written
Start

Cycle

End

Cycle

Total

Cycles

Throughput

(px/clk)

Non-Optimized 152,482 963 154080 153,118 0.995846

Wallace Tree 152,482 968 154087 153,120 0.995833

Table 5.3 Hardware Throughput Comparison

Table 5.4 FPGA Resource Utilization with Conventional Multiplier

 27

Synthesis results comparing the standard multiplier-based architecture and

the Wallace tree optimised architecture are presented in Tables 5.4 and 5.5,

respectively. The Wallace tree version achieves reductions in LUT and Flip-Flop

utilisation, along with an improvement in maximum clock frequency demonstrating

the benefits of multiplier optimisation.

This confirms the design’s compact resource footprint, thanks to the

Wallace tree multiplier integration and streaming architecture that avoids BRAM

buffering.

5.8 Visual and Quantitative Comparison

5.8.1 Visual Output

Representative results comparing the clean images, noisy images,

software-adapted outputs, and hardware-filtered outputs are shown in Fig. 5.5.

Resource Utilization Available Utilisation (%)

LUT 1,247 303,600 0.41

LUTRAM 836 130,800 0.64

FF 251 607,200 0.04

DSP 9 2,800 0.32

IO 35 600 5.83

Table 5.5 FPGA Resource Utilization with Wallace Tree Multiplier

(a) (b)

(c) (d)

Fig. 5.5 Visual denoising comparison. (a) Original (480 X 321), (b) Noisy (480 X

321), (c) Python Filtered (480 X 321), (d) Verilog Filtered (478 X 319)

 28

The proposed LMF filter effectively removes salt-and-pepper noise while

preserving structural details. The hardware-filtered images closely match the software

reference outputs, validating the correctness of the hardware model.

• The hardware-filtered image showed close visual alignment with the Python

reference.

• No border artifacts or line-wrapping errors were observed, confirming correct

window handling logic.

A synthesised RTL-level netlist visualisation of the Verilog-based LMF

filter, showing cell instances, I/O ports, and interconnect nets, is shown in Fig. 5.6

.

Hardware simulation was performed using Vivado's integrated simulation

environment. Waveforms confirming the correct loading of pixel streams, application

of filtering logic, and generation of output pixels were captured. Fig. 5.7 represents a

timing waveform illustrating the valid_out signal, filtered pixel output, and throughput

instrumentation for cycle-accurate evaluation of the hardware LMF filter.

Fig. 5.6 Post-Synthesis Schematic of the LMF Filter

 29

5.8.2 PSNR Comparison

Version PSNR (dB)

Noisy Image 26.03

Python (LMF Filter) 19.04

Hardware (LMF RTL) 14.29

As shown in Table 5.6, the slight degradation (< 4 dB) is within acceptable

bounds and validates the functional accuracy of the RTL implementation.

5.9 Challenges Encountered During Hardware Verification

During the development and verification of the hardware LMF filter, a

significant amount of effort was dedicated to ensuring the correct loading, processing,

and writing of image pixels. Initial simulation results frequently exhibited incorrect

filtered outputs, including noisy, distorted, or partially reconstructed images, primarily

due to errors in pixel window generation, synchronisation issues between line buffers

and output control logic, and incorrect border handling.

Multiple iterations of debugging were required to address issues such as

improper 3×3 window formation at image edges, invalid pixel output during start-up,

and synchronisation mismatches between valid input and output signals. Each

intermediate error highlighted a different aspect of the pixel management flow that

required careful redesign and validation.

Fig. 5.7 RTL Simulation and Timing Verification

Table 5.6 LMF Denoising PSNR Comparison

 30

After extensive analysis and step-by-step correction of window indexing,

valid pixel signalling, and border skipping logic, the hardware design ultimately

produced a fully reconstructed and correctly filtered image, matching the expected

software reference output.

Fig. 5.8 represents a visual comparison of different Intermediate results

and finally the output (Bottom Right). The set of intermediate results further

underscores the critical importance of precise pixel management in real-time image

filtering architectures.

5.10 Summary of Observations

• The adaptive filter fusion model delivers robust and spatially adaptive

denoising across a range of Gaussian noise levels, outperforming individual

filters and approaching state-of-the-art performance at a fraction of the

complexity.

• The hardware-accelerated LMF filter achieves real-time processing rates with

low resource utilization, validating its viability for FPGA deployment.

• The dual-path framework provides a comprehensive solution—a fast software

method for color images and a deployable hardware filter for grayscale data.

(a) (b)

(c) (d)

Fig. 5.8 Intermediate reconstructed error outputs observed during hardware

verification. (a) Initial output – All ‘X’ values, (b) Corrupted Pattern Output, (c)

Partially reconstructed output, (d) Final correct output

 31

CHAPTER 6

Final Analysis - Discussions, Conclusion, and Future Directions

6.1 Integrated Discussion

This research undertakes a comprehensive investigation into the problem

of image denoising by combining the strengths of adaptive filtering algorithms with

hardware-aware architectural optimization. The dual-path approach adopted here—

one algorithmic (software-based filter fusion) and the other architectural (hardware

implementation of an LMF filter)—ensures a balanced focus on both denoising quality

and computational efficiency, which are often at odds in real-time imaging

applications.

In the first methodology, adaptive filter fusion was employed to address

the limitations of single-filter approaches when applied to complex noise environments

in color images. Filters such as LMS, Llncosh, and VSLMS Ang’s were selected based

on their diverse learning rules and noise adaptation capabilities. The per-pixel fusion

mechanism, driven by inverse squared error weighting, enabled dynamic emphasis on

the most reliable filter at each pixel location, resulting in significant gains in PSNR

and SSIM across all tested noise levels (σ = 10 to 50). Importantly, bilateral

preprocessing was introduced to enhance local image structure before adaptive

filtering, enabling better texture and edge retention, which is crucial in high-frequency

image regions.

Complementing the software pipeline, the second methodology focused on

the hardware implementation of a Least Mean Fourth (LMF) filter tailored for real-

time denoising of grayscale images corrupted by impulsive noise. The LMF algorithm

was selected due to its robustness in high outlier environments, especially salt-and-

pepper noise, where the fourth-power error term significantly suppresses extreme pixel

deviations. A key innovation was the integration of a Wallace tree multiplier, which

not only preserved accuracy but also dramatically improved critical path timing and

reduced logic utilization. The implementation was designed using a streaming

architecture with a 3×3 convolution window, avoiding full-frame buffering and

ensuring near-unit throughput efficiency.

The synergy between these two methodologies lies in the fact that both

pursue adaptivity and efficiency from different angles—one in terms of algorithmic

response to signal variability, and the other in terms of hardware parallelism and

 32

optimization for real-time throughput. This integration supports diverse deployment

scenarios, from offline high-quality restoration (fusion framework) to embedded,

power-constrained real-time systems (hardware LMF filter).

6.2 Summary of Contributions

This thesis makes the following key contributions to the field of image

denoising:

6.2.1 Adaptive Filter Fusion Framework for Color Image Denoising

• Implemented an adaptive fusion model incorporating LMS, Llncosh, and

VSLMS Ang’s filters.

• Developed an inverse squared error–based weighting scheme for per-pixel

fusion, yielding dynamic spatial adaptation.

• Applied bilateral preprocessing prior to filtering to preserve edge details and

reduce fusion instability.

• Demonstrated superior denoising performance on CBSD68 with Gaussian

noise at multiple standard deviations.

• Performed bias-variance analysis to empirically validate the statistical

advantages of fusion over standalone filters.

6.2.2 Streaming LMF Filter Design with Wallace Tree Optimization

• Deployed a fixed-weight LMF filter in Verilog using a 3×3 convolution

window and line-buffer–based architecture.

• Converted floating-point trained weights into 16-bit signed fixed-point

representation, optimized for synthesis.

• Integrated a Wallace tree multiplier to achieve improved frequency, reduced

LUT usage, and better timing closure.

• Simulated and verified the design using Vivado, achieving ~0.996 px/clk

throughput and 193 MHz post-synthesis frequency.

• Validated output quality against a Python LMF reference, showing minimal

PSNR degradation (~0.4 dB).

6.2.3 Bridging Algorithmic and Architectural Domains

• Created a seamless workflow from adaptive weight training in Python to fixed-

point Verilog deployment.

• Demonstrated that algorithmically trained filters can be faithfully ported to

efficient hardware without quality loss.

• Provided runtime complexity profiling and multiplier comparison to justify

architectural decisions.

6.3 Future Directions

This research lays a strong foundation for future enhancements in both

 33

algorithmic and hardware directions. Several promising pathways are outlined below:

6.3.1 Color Hardware Filtering

While the current hardware design is limited to grayscale images, it can be

extended to support full RGB or YCbCr filtering. This requires:

• Replicating line buffers and processing logic for each color channel, or

• Applying domain-specific transformations (e.g., filtering only luminance) to

reduce hardware load.

6.3.2 Adaptive Filter Fusion on FPGA

The next natural step is to move the adaptive fusion strategy to hardware.

While this pose challenges due to dynamic weight computation, a simplified form

could be implemented using:

• Fixed-window statistical estimators (local variance, entropy)

• Precomputed lookup tables for weighting logic

• Pipelined fusion cores with real-time error feedback

6.3.3 Machine-Learned Gating and Fusion Control

Incorporating lightweight ML classifiers (e.g., decision trees or SVMs) to

select the most appropriate filter per region could further improve adaptivity. This

could be explored for both software and hardware cases using shallow decision logic

that operates within FPGA constraints.

6.3.4 ASIC Optimization and Power-Aware Design

To enable deployment in battery-powered or edge devices, further

optimization toward ASIC synthesis is recommended. This includes:

• Gate-level netlist generation and timing optimization

• Static and dynamic power profiling using tools like Cadence Joules or

Synopsys PrimeTime

• Voltage and clock gating for low-power mode transitions

6.3.5 Integration with Image Processing Pipelines

The LMF hardware filter and adaptive fusion model can be integrated into

larger image or video processing pipelines that include object detection, segmentation,

or enhancement, where input quality significantly affects downstream performance.

 34

6.4 Closing Remarks

This thesis has addressed the problem of image denoising through a dual-

path approach that brings together the strengths of adaptive learning algorithms and

resource-optimized hardware design. The adaptive filter fusion strategy offers strong

perceptual and statistical improvements over traditional denoising filters, particularly

in challenging Gaussian noise conditions. Simultaneously, the proposed Wallace tree–

based LMF filter provides a practical solution for real-time denoising under impulsive

noise, achieving low latency, low resource usage, and high throughput.

Together, these contributions reflect a balanced, scalable, and

implementation-ready framework for image restoration, bridging theoretical filtering

concepts with real-world system constraints. The adaptability, robustness, and

efficiency of the proposed methods underscore their potential for deployment in a wide

range of applications—from medical imaging and surveillance systems to mobile and

embedded computer vision.

This work not only advances the state of adaptive denoising methods but

also offers a reproducible template for bridging software adaptation with hardware

acceleration in signal processing applications.

 35

REFERENCES

[1] A. Buades, B. Coll, and J. M. Morel, "A non-local algorithm for image denoising,"

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

[2] B. Goyal, A. Dogra, S. Agrawal, B. S. Sohi, and A. Sharma, “Image denoising review:

From classical to state-of-the-art approaches,” Information Fusion, vol. 55, pp. 220–244, 2020.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D

transform-domain collaborative filtering," IEEE Trans. Image Process., vol. 16, no. 8, pp.

2080–2095, 2007.

[4] C.-L. Tsai, W.-C. Tu, and S.-Y. Chien, “Efficient natural color image denoising based

on guided filter,” in Proc. IEEE ICIP, 2015, pp. 43–47.

[5] K. Q. Dinh, T. Nguyen-Canh, and B. Jeon, “Color image denoising via cross-channel

texture transferring,” IEEE Signal Process. Lett., vol. 23, no. 8, pp. 1071–1075, 2016.

[6] Y. Wu and S. Li, “A novel fusion paradigm for multi-channel image denoising,”

Information Fusion, vol. 77, pp. 62–69, 2022.

[7] M. Liu, X. Zhang, and L. Tang, “Real color image denoising using t-product-based

weighted tensor nuclear norm minimization,” IEEE Access, vol. 7, pp. 182017–182026, 2019.

[8] M. Monajati and E. Kabir, “A modified inexact arithmetic median filter for removing

salt-and-pepper noise from gray-level images,” IEEE Trans. Circuits Syst. II, vol. 67, no. 4,

pp. 750–754, 2020.

[9] L. Malinski and B. Smolka, “Fast adaptive switching technique of impulsive noise

removal in color images,” J. Real-Time Image Process., vol. 16, no. 4, pp. 1077–1098, 2019.

[10] G. Wang and Y. H. Yang, “Color image enhancement using adaptive YCbCr and Lab

transformations,” J. Vis. Commun. Image Represent., vol. 25, no. 6, pp. 1229–1238, 2014.

[11] Z. Zheng, Z. Liu, and H. Zhao, “Bias-compensated normalized least-mean fourth

algorithm for noisy input,” Circuits Syst. Signal Process., vol. 36, no. 9, pp. 3864–3873, 2017.

[12] H. H. Draz, N. E. Elashker, and M. M. A. Mahmoud, “Optimized algorithms and

hardware implementation of median filter for image processing,” Circuits Syst. Signal

Process., vol. 42, pp. 5545–5558, 2023.

[13] M. Lebrun, A. Buades, and J. M. Morel, “A non-local Poisson denoising algorithm,”

SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1665–1688, 2013.

[14] G. Gui and F. Adachi, “Adaptive sparse system identification using normalized least

mean fourth algorithm,” Int. J. Commun. Syst., vol. 28, no. 1, pp. 38–48, 2015.

 36

[15] Y. Guo, Y. Fu, and H. Huang, “Real-world image denoising via weighted low-rank

approximation,” in Proc. IEEE ICMEW, 2019, pp. 252–257.

[16] Y. Xu, S. Lin, and S. Yan, “Bias–variance tradeoff in visual recognition: A new

perspective,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3808–3820, 2019.

[17] S. Dey, R. Bhattacharya, F. Schwenker, and R. Sarkar, “Median filter aided CNN-

based image denoising: An fusion approach,” Algorithms, vol. 14, no. 4, p. 109, 2021.

[18] D. Opitz and R. Maclin, “Popular fusion methods: An empirical study,” J. Artif. Intell.

Res., vol. 11, pp. 169–198, 2018.

[19] X. Yang, Y. Xu, Y. Quan, and H. Ji, “Image denoising via sequential fusion learning,”

IEEE Trans. Image Process., vol. 29, pp. 5038–5049, 2020.

[20] C. Zhou and L. Zhao, “A resource-optimized FPGA architecture for real-time image

filtering using adaptive weights,” IEEE Trans. Circuits Syst. II, vol. 66, no. 9, pp. 1571–1575,

2019.

[21] Y. Yu, Y. Zhang, and S. Yuan, “Quaternion-based weighted nuclear norm

minimization for color image denoising,” Neurocomputing, vol. 332, pp. 283–297, 2019.

[22] D. Kusnik and B. Smolka, “Robust mean shift filter for mixed Gaussian and impulsive

noise reduction in color digital images,” Sci. Rep., vol. 12, p. 14951, 2022.

[23] V. Solanki, A. D. Darji, and H. Singapuri, “Design of low-power Wallace tree

multiplier architecture using modular approach,” Circuits Syst. Signal Process., vol. 40, no. 9,

pp. 4407–4427, 2021.

[24] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron. Comput.,

vol. EC-13, no. 1, pp. 14–17, 1964.

[25] S. Ahmad, S. G. Khawaja, N. Amjad, and M. Usman, “A novel multiplier-less LMS

adaptive filter design based on offset binary coded distributed arithmetic,” IEEE Access, vol.

9, pp. 78138–78152, 2021.

[26] B. K. Mohanty and S. K. Patel, “Area-delay-power efficient fixed-point LMS adaptive

filter with low adaptation-delay,” IEEE Trans. Circuits Syst. II, vol. 61, no. 6, pp. 418–422,

2014.

[27] J. Xu, L. Zhang, D. Zhang, and X. Feng, “Multi-channel weighted nuclear norm

minimization for real color image denoising,” in Proc. IEEE ICCV, 2017, pp. 1105–1113.

[28] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser:

Residual learning of deep CNN for image denoising,” IEEE Trans. Image Process., vol. 26,

no. 7, pp. 3142–3155, 2017.

[29] D. Esposito et al., “Stall-aware fixed-point implementation of LMS filters,” in Proc.

PRIME 2018, pp. 169–172.

[30] A. A. Yahya, J. Tan, B. Su, M. Hu, Y. Wang, K. Liu, and A. N. Hadi, “BM3D image

 37

denoising algorithm based on an adaptive filtering,” Multimed. Tools Appl., vol. 79, pp.

20391–20427, 2020

[31] M. Mafi et al., “A comprehensive survey on impulse and Gaussian denoising filters

for digital images,” Signal Process., vol. 157, pp. 236–260, 2019

[32] A. Goel, M. O. Ahmad, and M. N. S. Swamy, “Design of a 2D median filter with a

high-throughput FPGA implementation,” in Proc. MWSCAS 2021, pp. 1–5.

 38

LIST OF PUBLICATIONS

[1] Mohit Garg and Ajai Kumar Gautam, “Fusion-Based Adaptive Filtering for Color

Image Denoising with Dynamic Error Weighting”. [Accepted]

[2] Mohit Garg and Ajai Kumar Gautam, “Wallace Tree based Efficient Hardware

Modeling of Streaming LMF Filter for Real-Time Image Denoising”.

[Accepted]

