
 

   

  

ADAPTIVE FILTER FUSION AND 

OPTIMIZED HARDWARE DESIGN FOR 

IMAGE DENOISING 

 
A Thesis Submitted 

in Partial Fulfillment of the Requirements f   or the  

Degree of 
 

MASTER OF TECHNOLOGY 
in 

Signal Processing and Digital Design 
by 

 

MOHIT GARG 
(Roll No. 2K23/SPD/11) 

 

 

Under the Supervision of 

 

Dr. Ajai Kumar Gautam 

Associate Professor, ECE, DTU 

                         

 

 

 

 

 

 
Department of Electronics and Communication Engineering 

 

DELHI TECHNOLOGICAL UNIVERSITY 
(Formerly Delhi College of Engineering)  

Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India 

 

 

May, 2025



 ii

   

  

ACKNOWLEDGEMENTS 

 

 
I want to intimate my heartfelt thanks to my project guide, Dr. Ajai Kumar Gautam, 

Associate Professor and Prof. O P Verma, Head of Department of Electronics and 

Communication Engineering of Delhi Technological University, for his tremendous 

support and assistance base on their knowledge. I am so grateful to them for assisting 

me with the all the necessary tools for the completion of the project. I also want to 

extend my heartfelt gratitude to all those who have supported my research on Adaptive 

Filter Fusion and Optimized Hardware Design for Image Denoising. I am grateful to 

the open-source community for developing and maintaining user friendly deep 

learning frameworks for simplifying the implementation of the research. I specially 

feel very thankful for our parents, friends, and classmates for their support throughout 

my project period. Finally, I express my gratitude to everyone for supporting me 

directly or indirectly in completing this project successfully. Your support and 

inspiration have been truly invaluable, which encourages me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mohit Garg 

    (2K23/SPD/11) 

 

 

 

 

 



 iii

   

  

DELHI TECHNOLOGICAL UNIVERSITY 
(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road, Delhi-42 

 

 

 

CANDIDATE’S DECLARATION 
 

 

I Mohit Garg, hereby certify that the work which is being presented in the thesis 

entitled “Adaptive Filter Fusion and Optimized Hardware Design for Image 

Denoising” in partial fulfillment of the requirements for the award of the Degree of 

Master of Technology, submitted in the Department of Electronics and 

Communication Engineering, Delhi Technological University is an authentic record 

of my own work carried out during the period from August 2023 to May 2025 under 

the supervision of Dr. Ajai Kumar Gautam, Associate Professor of Department of 

Electronics and Communication Engineering, Delhi Technological University. 

 

The matter presented in the thesis has not been submitted by me for the award of any 

other degree of this or any other Institute. 

 

 

 

 

 

 

Candidate's Signature 

 

 

 

 



 iv

   

  

DELHI TECHNOLOGICAL UNIVERSITY 
(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road, Delhi-42 

 

 

CERTIFICATE BY THE SUPERVISOR(s) 
 

 

Certified that Mohit Garg (2K23/SPD/11) has carried out their search work 

presented in this thesis entitled “Adaptive Filter Fusion and Optimized 

Hardware Design for Image Denoising” for the award of Master of 

Technology from Department of Electronics and Communication Engineering, 

Delhi Technological University, Delhi, under our supervision. The thesis 

embodies results of original work, and studies are carried out by the student 

herself and the contents of the thesis do not form the basis for the award of any 

other degree to the candidate or to anybody else from this or any other 

University/Institution. 

 
 

 

 

 

 

 

 

 

 

 

  

  

 

Signature 

 

(Dr. Ajai Kumar Gautam) 

 

(Associate Professor) 

 

(DTU, Shahbad Daulatpur,  

Main Bawana Road,  

Delhi-42) 

 

 

 

 

 

 

Date: 

 



 v

   

  

ABSTRACT 

 
 

Image denoising is vital for retaining visual information for tasks such as 

object detection, classification, and image enhancement. The practical issue with 

image denoising is one of balancing noise reduction with maintaining key image 

features, such as edges and textures. The contributions of this thesis are outlined in 

twin aspects, being a software-based adaptive filter fusion solution of color image 

denoising, and an optimized hardware implementation of an adaptive filter that 

performs real-time denoising of gray-scale images. More specifically, this research 

focused on algorithmic adaptability and hardware efficiency in various noise types 

such as Gaussian and salt-and-pepper noise. 

 

The first part of the thesis presents an adaptive fusion filtering framework 

for color image denoising under Gaussian noise for standard deviations of σ = 10 

through σ = 50. The proposed framework employs a dynamic per-pixel fusion of three 

carefully selected adaptive filters: Least Mean Squares (LMS), Llncosh, and VSLMS 

Ang’s. These filters were chosen as they complement each other based on their 

strengths in texture sensitivity, edge preservation, and stability following 

benchmarking studies where we analyzed the performance. The merger utilizes an 

inverse squared error−based weighting scheme that spatially adapts as a function of 

the image pixel locations under denoising. The use of bilateral preprocessing enables 

improved edge-aware smoothing characteristics while retaining fine-level structural 

details. The adaptive filter fusion strategy improves both PSNR and SSIM image 

quality metrics significantly over using the individual filters indicated above, as shown 

through the testing on the CBSD68 dataset. Bias-variance analysis and run time 

profiling support the purpose and practicality of the proposed scheme. 

 

      The second component examines the hardware modeling of a fixed-weight 

Least Mean Fourth (LMF) filter where denoising of grayscale images occurs in an 

impulsive noise environment. The Least Mean Fourth (LMF) filter has been selected 

as the approach is insensitive to outliers via the approach to adjusting the fourth power 

of the error. The LMF filter is trained off-line utilising grayscale images from the 

BSDS500 dataset, which features artificial added salt-and-pepper noise to emulate 

images with impulsive corruption. The adaptation employs fixed point arithmetic to 

provide for field programmable gate array (FPGA) deployment. A standard 3×3 

convolution is employed with a streaming architecture to avoid buffering the entire 

frame and allows for line buffer-based processing. Wallace tree multipliers were used 

to minimize log delay in the datapath and allow synthesis timing closure without 

altering the output, and to accelerate the overall implementation. The final architecture 

achieves a greater than 90% reduction in resource utilization compared to the non-

optimized multiplier-based design, yet with nearly identical output fidelity to the 

software reference. 

 

 

 



 vi

   

  

LIST OF PUBLICATIONS 

 

 
[1] Mohit Garg and Ajai Kumar Gautam, “Fusion-Based Adaptive Filtering for Color 

Image Denoising with Dynamic Error Weighting”. [Accepted] 

 

[2] Mohit Garg and Ajai Kumar Gautam, “Wallace Tree based Efficient Hardware 

Modeling of Streaming LMF Filter for Real-Time Image Denoising”.  

[Accepted] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii

   

  

TABLE OF CONTENTS 

 

 
Title                               Page No. 

 

ACKNOWLEDGMENTS        ii    

CANDIDATE’s DECLARATION       iii 

CERTIFICATE BY THE SUPERVISOR(s)      iv 

ABSTRACT          v 

LIST OF PUBLICATIONS        vi 

TABLE OF CONTENTS        vii 

LIST OF TABLES                    x 

LIST OF FIGURES         xi 

LIST OF ABBREVIATIONS        xii 

CHAPTER 1 INTRODUCTION        1 

1.1 IMPORTANCE OF IMAGE DENOISING IN VISION AND  1 

  IMAGING SYSTEMS                  

1.2 CHALLENGES OF GAUSSIAN AND SALT-AND-PEPPER  1

  NOISE 

1.3 LIMITATIONS OF INDIVIDUAL FILTERS AND                         2 

  TRADITIONAL DENOISING      

1.4 MOTIVATION FOR ADAPTIVE FILTER FUSION AND             3 

 HARDWARE OPTIMIZATION 

1.5 SUMMARY OF CONTRIBUTIONS                                                3 

1.5.1 ADAPTIVE FILTER FUSION WITH BILATERAL  3

  PREPROCESSING               

1.5.2 WALLACE TREE–OPTIMIZED REAL-TIME HARD       4 

 -WARE FILTER 

1.6 THESIS ORGANIZATION                                                             4 

CHAPTER 2 LITERATURE SURVEY                       5 

 2.1 CLASSICAL IMAGE DENOISING APPROACHES  5 

2.2 PROGRESS IN EDGE-PRESERVING FILTERING  5 

2.3 ADAPTIVE FILTERING: LMS, LMF, AND BEYOND  6 

2.4 FUSION-BASED STRATEGIES     6 

2.5 DEEP LEARNING FOR IMAGE DENOISING   6 

2.6 HARDWARE-ORIENTED ADAPTIVE FILTERING  7 

2.7 SUMMARY AND POSITIONING     7 

CHAPTER 3 METHODOLOGY 1: ADAPTIVE FILTER FUSION FOR  8 

  COLOR IMAGE DENOISING 

3.1 DATASET DESCRIPTION                 8 

 3.2 FILTER SELECTION AND BENCHMARKING   8 

  3.2.1 JUSTIFICATION FOR FILTER SELECTION             9 

 3.3 FUSION-BASED FILTERING ARCHITECTURE   9

 3.4 INVERSE SQUARED ERROR WEIGHTING   10 

 3.5 PER-PIXEL FUSION BEHAVIOR     11 

 3.6 BILATERAL PREPROCESSING     11 



 viii

   

  

 

 

  

 

Title                              Page No. 

  

 3.7 RUNTIME AND COMPLEXITY PROFILING              11

 3.8  TOOLS AND IMPLEMENTATION                12 

CHAPTER 4 METHODOLOGY 2: HARDWARE DESIGN AND              13

  OPTIMIZATION FOR LMF FILTER     

 4.1 OVERVIEW AND MOTIVATION                13 

 4.2 DATASET AND PREPROCESSING               13 

 4.3 FILTER SELECTION FOR HARDWARE IMPLEMENTATION  13 

  4.3.1 SUPERIOR PERFORMANCE IN IMPULSIVE NOISE      14 

  4.3.2 FIXED-WEIGHT COMPATIBILITY                                   14 

   4.3.3  ARCHITECTURE-FRIENDLY DESIGN   14 

   4.3.4  VERIFIED CORRESPONDENCE WITH SOFTWARE  14

  FILTERING 

 4.4  LMF FILTER ARCHITECTURE AND ADAPTATION  15 

 4.5  STREAMING LINE-BUFFER HARDWARE DESIGN  15 

 4.6  WALLACE TREE MULTIPLIER INTEGRATION   16 

 4.7  BORDER HANDLING AND OUTPUT CONTROL  17 

   4.7.1  FIXED-POINT REPRESENTATION OF WEIGHTS 17 

 4.8  OVERALL PROCESS FLOW     18 

 4.9 RTL SIMULATION AND VERIFICATION   19 

 4.10 HARDWARE TOOLCHAIN AND TARGET PLATFORM 19 

CHAPTER 5 EXPERIMENTAL ANALYSIS     20            

 5.1  EVALUATION STRATEGY      20 

 5.2  EXPERIMENTAL SETUP: SOFTWARE FUSION   20   

             FRAMEWORK 

  5.2.1  DATASET AND NOISE CONDITIONS   20 

   5.2.2  IMPLEMENTATION DETAILS    20 

 5.3  RESULTS: SOFTWARE DENOISING PERFORMANCE  21 

  5.3.1  QUANTITATIVE EVALUATION    21 

   5.3.2  VISUAL RESULT      21 

   5.3.3  BIAS-VARIANCE ANALYSIS    23 

 5.4  COMPLEXITY AND RUNTIME PROFILING   24 

 5.5  BENCHMARKING WITH BM3D AND NLM   25 

 5.6  EXPERIMENTAL SETUP: HARDWARE FILTER        25

  IMPLEMENTATION 

   5.6.1 SIMULATION CONFIGURATION    25 

   5.6.2 OUTPUT EVALUATION     25 

 5.7 RESULTS: HARDWARE PERFORMANCE    26 

   5.7.1 SIMULATION RESULTS SUMMARY   26 

   5.7.2 OBSERVATIONS      26 

   5.7.3 HARDWARE RESOURCE UTILIZATION (POST-  26

                     SYNTHESIS) 



 ix

   

  

 

 

 

 

 Title                              Page No. 

 

 5.8 VISUAL AND QUANTITATIVE COMPARISON   27 

  5.8.1  VISUAL OUTPUT      27 

  5.8.2  PSNR COMPARISON     29 

 5.9  CHALLENGES ENCOUNTERED DURING HARDWARE  29

  VERIFICATION 

 5.10  SUMMARY OF OBSERVATIONS     30 

CHAPTER 6  FINAL ANALYSIS - DISCUSSIONS, CONCLUSION, AND  31

            FUTURE DIRECTIONS 

 6.1  INTEGRATED DISCUSSION     31 

 6.2  SUMMARY OF CONTRIBUTIONS    32 

  6.2.1 ADAPTIVE FILTER FUSION FRAMEWORK FOR   32 

           COLOR IMAGE DENOISING 

   6.2.2 STREAMING LMF FILTER DESIGN WITH   32 

           WALLACE TREE OPTIMIZATION 

   6.2.3 BRIDGING ALGORITHMIC AND ARCHITECTURAL  32

                      DOMAINS 

 6.3  FUTURE DIRECTIONS      32 

  6.3.1  COLOR HARDWARE FILTERING    33 

   6.3.2  ADAPTIVE FILTER FUSION ON FPGA   33 

   6.3.3  MACHINE-LEARNED GATING AND FUSION   33 

   CONTROL 

   6.3.4  ASIC OPTIMIZATION AND POWER-AWARE   33 

   DESIGN 

   6.3.5  INTEGRATION WITH IMAGE PROCESSING   33 

   PIPELINES 

 6.4  CLOSING REMARKS      34 

REFERENCES                    35 

LIST OF PUBLICATIONS AND THEIR PROOFS                38 

 

 

 

 

 

 

 

 

 

 



 x

   

  

LIST OF TABLES 

 
 

Title                                 Page No. 

 

Table 3.1 Adaptive Filter PSNR Ranking……...……………………………..8 

Table 4.1 Multiplier Resource Utilization Comparison………..……………..17 

Table 5.1 Average PSNR (dB) and SSIM across CBSD68 dataset…………..21 

Table 5.2 Computational Demand (Macs/image) and Runtime (s)…………..24 

Table 5.3 Hardware Throughput Comparison………………………………..26 

Table 5.4 FPGA Resource Utilization with Conventional Multiplier………..26 

Table 5.5 FPGA Resource Utilization with Wallace Tree Multiplier………..27 

Table 5.6 LMF Denoising PSNR Comparison………………………...……..29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

   

  

LIST OF FIGURES 

 
Title                                   Page No. 

 

Figure 1.1 Adaptive Filter Block Diagram……………………………………….2 

Figure 3.1 Block diagram of proposed fusion-based adaptive filtering system...10 

Figure 4.1 Wallace Tree Multiplier Structure…………...……………………...16 

Figure 4.2 Process flowchart………………..………………………………......18 

Figure 5.1 Line graph for Image-wise PSNR Trend...………………………….21 

Figure 5.2 Line graph for Image-wise SSIM Trend…………..………………...22 

Figure 5.3 Visual Comparison of Denoising Performance…….………………..22 

Figure 5.4  Line graph for Bias-variance using Real Image Patch…….………...24 

Figure 5.5 Visual denoising comparison..………………………………………27 

Figure 5.6 Post-Synthesis Schematic of the LMF Filter………………………..28 

Figure 5.7 RTL Simulation and Timing Verification…………………....……...29 

Figure 5.8 Intermediate reconstructed error outputs observed during hardware 

verification………..…………………………………………………30 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii

   

  

LIST OF ABBREVIATIONS 

 

       

 

Abbreviation Full Form 

LMF Least Mean Fourth 

LMS Least Mean Squares 

VSLMS_Ang Variable Step-Size LMS (Angular variant) 

RLS Recursive Least Squares 

NLMS Normalized Least Mean Squares 

Llncosh Log-Cosh Adaptive Filter 

PSNR Peak Signal-to-Noise Ratio 

SSIM Structural Similarity Index 

MAC Multiply-Accumulate 

HDL Hardware Description Language 

RTL Register Transfer Level 

FPGA Field-Programmable Gate Array 

LUT Look-Up Table 

FF Flip-Flop 

DSP Digital Signal Processing (Block) 

BRAM Block RAM 

NLM Non-Local Means 

BM3D Block Matching and 3D Filtering 

YCbCr Luminance-Chrominance Color Space 

RGB Red Green Blue 

DnCNN Denoising Convolutional Neural Network 

AWGN Additive White Gaussian Noise 

I/O Input/Output 

σ (sigma) Standard Deviation (Noise Level) 

CBSD68 
Color Berkeley Segmentation Dataset (68   

Images) 

BSDS500 Berkeley Segmentation Dataset (500 Images) 

Vivado Xilinx Vivado Design Suite 



 

  1 

  

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Importance of Image Denoising in Vision and Imaging Systems 

 

Image denoising is a core process in digital image processing and 

computer vision. Its essential purpose is to enhance the quality of images by removing 

noise while retaining useful visual information characteristics. Clean images are 

fundamental to the precise implementation of higher-level tasks (e.g., object detection, 

classification, segmentation, or feature extraction) in medical imaging, remote sensing, 

autonomous navigation, and monitoring applications [1], [2]. 

 

In the real-world applications, image acquisition systems are regularly 

exposed to noise as a result of the hardware sensors limitations, adverse environmental 

conditions, and signal transmission imperfections. All of these introduce random 

variations in pixel intensities and can result in considerably low-quality images and 

unreliable downstream processing. Thus, it is essential to develop robust and efficient 

denoising algorithms for preserving visual data and ensuring its usability across both 

software applications and hardware-constrained settings [3], [4]. 

 

1.2 Challenges of Gaussian and Salt-and-Pepper Noise 

 

Two common types of noise that impact digital images are additive 

Gaussian noise and salt-and-pepper (also called impulse) noise. Gaussian noise is due 

to thermal fluctuation in the sensor, electronic interference (which can be external or 

internal), and quantization errors. It is usually modeled as zero-mean white noise at all 

intensities. The presence of Gaussian noise in an image can cause loss of detail in the 

image, decrease the contrast of the image, and can blur high-frequency information 

such as edges and textural information [5, 7]. 

 

Salt-and-pepper noise, on the other hand, is presented as randomly 

occurring black (0) and white (255) pixels in the image due to different causes, 

generally due to sensor element malfunction, bit error in transmission or faults in 

analog-to-digital conversion [8], [9]. In contrast to Gaussian noise, impulsive noise 

generates sharp intensity spikes that drastically distort local pixel information and 

complicate the ability to effectively apply linear smoothing techniques. Both types of 

noise have specific demands and challenges. Specifically, Gaussian noise requires 

retaining the structure of the image but suppressing the smooth deviation and salt-and-

pepper noise requires outlier robustness that maintains neighboring image features. 
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On top of this, color images become more complicated given the 

dependence of the RGB channels. Noise in any channel can impact perceived quality 

across the whole color image, which calls for designing denoising methods that are 

both color-aware and structure-aware [6], [10]. 

 

1.3 Limitations of Individual Filters and Traditional Denoising 

 

Conventional denoising approaches, such as median filtering, bilateral 

filtering, and wavelet shrinkage, have long been used due to their simplicity and ability 

to handle low- to moderate-noise scenarios [11], [12]. Median filters are particularly 

effective against salt-and-pepper noise, while bilateral filters provide a good trade-off 

between noise suppression and edge preservation [4], [13]. However, these methods 

rely on fixed spatial or statistical models, making them less effective when noise levels 

are high or image content varies significantly. 

 

Adaptive filters provide a more flexible framework by adjusting their 

parameters in response to the input signal, as shown in block diagram in Fig. 1.1. 

Techniques such as the Least Mean Squares (LMS), Recursive Least Squares (RLS), 

and Least Mean Fourth (LMF) filters dynamically update their weights based on the 

observed error between predicted and actual pixel values [11], [14]. This allows them 

to adapt to local variations in the image and respond differently to flat, textured, or 

edge-rich regions. 

Despite their theoretical advantages, individual adaptive filters face 

several limitations. Many are sensitive to initialization, require careful tuning of step 

sizes, and may exhibit instability in the presence of high variance or non-stationary 

noise [15], [16]. Moreover, a single filter is unlikely to perform optimally across the 

entire image, especially in color images where different regions demand different 

filtering characteristics. As a result, the effectiveness of any standalone filter is 

inherently constrained, prompting the need for hybrid or fusion approaches [17], [18]. 

 

 

Fig. 1.1 Adaptive Filter Block Diagram 
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1.4 Motivation for Adaptive Filter Fusion and Hardware Optimization 

 

The limitations of traditional and standalone adaptive filters motivate the 

development of a fusion-based adaptive filtering framework. The central idea is to 

combine the strengths of multiple adaptive filters—each having distinct error 

characteristics—into a unified system that dynamically adjusts its behavior based on 

pixel-wise performance. For example, one filter may be more effective in flat regions 

while another excels at preserving edges or textures. By assigning greater weight to 

the best-performing filter at each pixel location, the fused output can achieve better 

overall denoising quality than any individual filter [6], [19]. 

 

In this work, a fusion model is proposed based on inverse squared error 

weighting of three adaptive filters: LMS, Llncosh, and VSLMS Ang’s. The fusion 

weights are computed in real time based on local error metrics, enabling the system to 

respond intelligently to different regions of the image. Additionally, a bilateral 

preprocessing stage is incorporated to improve edge definition and enhance the quality 

of input patches, especially under Gaussian noise [20], [21]. 

 

On the hardware front, the need for real-time image denoising necessitates 

efficient architectures that can process data with minimal latency and resource 

consumption. The LMF filter, known for its robustness to salt-and-pepper noise due to 

its fourth-power error cost function, is chosen for hardware implementation [9], [22]. 

However, its computational demands are addressed through architectural 

optimizations. Specifically, the use of Wallace tree multipliers in the filtering path 

significantly reduces the critical path delay, logic utilization, and power consumption 

[23], [24]. The resulting design is capable of streaming input data and producing 

filtered output at high throughput—making it well-suited for FPGA-based or 

embedded deployment [25], [26]. 

 

1.5 Summary of Contributions 

 

1.5.1 Adaptive Filter Fusion with Bilateral Preprocessing 

 

A fusion-based framework is developed that combines three distinct 

adaptive filters—LMS, Llncosh, and VSLMS Ang’s—using a dynamic, pixel-wise 

inverse error weighting scheme. Bilateral filtering is employed as a preprocessing step 

to enhance structural fidelity, especially in edge and texture-rich areas. A bias-variance 

analysis is conducted to theoretically and empirically validate the fusion performance. 

The fused output is shown to exhibit reduced variance compared to individual filters 

[16], [18]. 

 

The computational efficiency of the proposed approach is evaluated 

against popular classical methods (NLM, BM3D, DnCNN), demonstrating that the 

fusion method achieves competitive denoising performance while requiring 

significantly fewer multiply-accumulate operations (MACs). 
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1.5.2 Wallace Tree–Optimized Real-Time Hardware Filter 

 

A Verilog-based LMF filter is implemented using fixed weights derived 

from offline adaptive training. The hardware architecture employs a streaming line-

buffer design with 3×3 window processing, including valid pixel detection and border 

skipping. To optimize the arithmetic pipeline, Wallace tree multipliers replace 

conventional multipliers, resulting in notable reductions in logic utilization and 

dynamic power, with improved timing closure. The hardware-filtered output closely 

matches the software reference output, confirming functional equivalence with 

improved throughput and resource efficiency [23], [24]. 

 

1.6 Thesis Organization 

 

Chapter 2: Literature Survey 

Reviews conventional denoising techniques, adaptive filters, fusion approaches, and 

prior hardware implementations of image filters. 

 

Chapter 3: Methodology 1 

Describes the adaptive fusion framework, including dataset, filter selection, weighting 

mechanism, and bilateral preprocessing strategy. 

 

Chapter 4: Methodology 2 

Presents the Verilog hardware design of the LMF filter, including system architecture, 

streaming logic, and Wallace tree optimization. 

 

Chapter 5: Experimental Analysis 

Details the evaluation of both software and hardware implementations using PSNR, 

SSIM, complexity, and resource metrics. 

 

Chapter 6: Final Analysis and Future Scope 

Discusses the observed results, draws comparisons with existing techniques, concludes 

the work, and proposes directions for future research.                                                                                                                                                                                                 

 

 

 

 



 

  5 

  

 

CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 
2.1 Classical Image Denoising Approaches 

 

Early image denoising research centered around the suppression of 

additive noise using spatial and transform-domain filters. Traditional filters such as the 

mean and median were simple but often compromised edge and texture information. 

A major breakthrough came with the Non-Local Means (NLM) algorithm by Buades 

et al., which introduced the use of distant self-similar patches for weighted averaging. 

This preserved structural details significantly better than classical local filters, 

especially in flat regions with repetitive patterns [1]. 

 

Building on this, Block-Matching and 3D Filtering (BM3D) by Dabov et 

al. became a gold standard for Gaussian noise removal, delivering state-of-the-art 

results through collaborative filtering in grouped 3D transform coefficients [3]. 

However, both NLM and BM3D were computationally expensive and unsuitable for 

real-time use. 

 

Wavelet thresholding and Wiener filtering were also explored for 

denoising in transform domains, leveraging signal sparsity. Techniques like 

VisuShrink and BayesShrink removed noise in wavelet coefficients but 

underperformed in textured or color-rich images [2]. 

 

2.2 Progress in Edge-Preserving Filtering 

 

With the need to preserve structure, bilateral filtering emerged as a robust 

approach that combined spatial and radiometric proximity for weighted smoothing. 

Though effective in edge preservation, it was costly in large images [4]. Guided filtering 

offered a fast alternative with linear complexity, maintaining edge-awareness using a 

reference guidance image [5]. For color image denoising, where inter-channel 

dependencies matter, Dinh et al. proposed cross-channel texture transferring to retain 

chromatic consistency [6], while quaternion-based methods unified RGB modeling to 

reduce color artifacts [7]. 

 

These methods advanced color fidelity but still lacked adaptive flexibility in 

textured or dynamic regions. 
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2.3 Adaptive Filtering: LMS, LMF, and Beyond  

 

Adaptive filtering introduced parameter updates via feedback from input-

output errors. The LMS algorithm, popular for its simplicity, updated weights using 

gradient descent and was widely used in digital signal processing [19]. However, LMS 

was sensitive to non-Gaussian noise and outliers. 

 

To address impulsive noise, the Least Mean Fourth (LMF) algorithm was 

introduced, which penalized large errors more heavily by minimizing the fourth power 

of the error. This made LMF effective in salt-and-pepper and impulsive environments 

[14]. However, it came with slower convergence and higher computation. 

 

Improved variants like Normalized LMF (NLMF) and bias-compensated 

LMF achieved faster convergence and robustness under dynamic conditions [8], [11]. 

The Llncosh filter, using a log-likelihood-based cost, offered better generalization and 

smooth adaptation in Gaussian noise settings [27]. Regularization techniques further 

enhanced adaptive filter stability under continuous updates [16]. 

 

2.4 Fusion-Based Strategies 

 

Despite individual strengths, adaptive filters are prone to local overfitting 

and instability. Inspired by fusion learning, fusion-based methods combine outputs 

from multiple filters, each optimized for different local conditions [18]. Fusion assigns 

adaptive weights using performance indicators like absolute or squared error. 

 

A notable approach is inverse squared error weighting, where each filter’s 

output is weighted inversely proportional to its error, allowing more accurate filters to 

dominate locally [15]. Region-based switching and low-rank fusion are other strategies 

that leverage structural correlations across filters [9], [17]. 

 

In color image denoising, bilateral preprocessing enhances spatial 

consistency, helping preserve edge transitions and reducing noise gradients prior to 

fusion. This results in improved robustness across RGB channels [28]. 

 

Empirical evaluations consistently show fusion-based models outperform 

individual filters in PSNR, SSIM, and perceptual metrics across multiple noise levels 

[20], [21]. 

 

2.5 Deep Learning for Image Denoising 

 

Deep learning models revolutionized denoising by learning noise 

mappings from data. DnCNN employed residual learning, training CNNs to predict 

and subtract noise components, achieving remarkable performance on Gaussian noise 

[13]. Later models like FFDNet introduced variable noise-level conditioning, while 

DRUNet integrated attention and dilation for improved performance [26], [29]. 
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Though highly effective, these models are computation-intensive, data-

dependent, and less interpretable than traditional adaptive filters—limiting their real-

time hardware deployment potential. 

 

2.6 Hardware-Oriented Adaptive Filtering 

 

For embedded use, LMS filters have been synthesized on FPGA and ASIC 

platforms using fixed-point arithmetic for area and power efficiency [24], [25]. 

Multiplier-less LMS and distributed arithmetic LMS eliminated costly hardware 

multipliers with logic-optimized alternatives [12], [22]. 

 

Though computationally heavier, the LMF filter remains attractive due to 

its superior performance under impulsive noise. The main challenge lies in its reliance 

on high-speed multiplication operations. 

 

To address this, Wallace tree multipliers are adopted. Originally proposed 

by Wallace, these reduce adder stages and critical path delay in binary multiplication 

arrays [30]. Subsequent VLSI- and FPGA-optimized versions of Wallace trees 

improved speed and throughput significantly [31]. 

 

Comparative analysis has shown Wallace tree multipliers consistently 

outperform Booth and array multipliers in area-delay tradeoffs and pipeline efficiency, 

particularly for 24-bit and higher operations, making them ideal for LMF-based 

filtering hardware [10]. 

 

2.7 Summary and Positioning 

 

In summary, denoising methods have evolved from spatial filtering to 

adaptive and fusion strategies, culminating in real-time hardware-accelerated 

solutions. Each generation addressed limitations in structure preservation, 

computational complexity, and noise generalization. This thesis contributes to this 

lineage through: 

 

• A fusion-based adaptive filter framework using LMS, Llncosh, and VSLMS 

with bilateral preprocessing and inverse-error weighting. 

• A streaming hardware-optimized LMF filter accelerated with Wallace tree 

multiplication for real-time image denoising. 

 

Together, they form a practical and scalable approach to denoising that 

balances statistical accuracy, perceptual quality, and implementation feasibility.  
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CHAPTER 3 

 

 

Methodology 1: Adaptive Filter Fusion for Color Image Denoising 

 

 

 
3.1 Dataset Description 

  

To evaluate the performance of the proposed adaptive filter fusion 

framework, we utilize the CBSD68 dataset, a widely adopted benchmark in image 

denoising research [1]. The dataset comprises 68 natural color images with diverse 

textures, edges, and luminance characteristics. This diversity makes it ideal for 

assessing the spatial adaptability and generalization capacity of denoising algorithms. 

 

For experimental consistency, additive white Gaussian noise is 

synthetically applied to each image. Four noise levels—standard deviations of σ = 10, 

15, 25, and 50—are used to simulate different noise intensities. These levels reflect 

realistic conditions ranging from light sensor noise to severely degraded transmission 

scenarios. The clean, uncorrupted images are retained as ground truth for computing 

full-reference quality metrics such as PSNR and SSIM [3]. 

 

3.2 Filter Selection and Benchmarking 

 

To construct a high-performing and efficient adaptive fusion framework, 

a variety of adaptive filters were evaluated under Gaussian noise with σ = 15, a 

representative mid-level noise condition. The benchmarking focused on denoising 

quality (measured using PSNR), using the CBSD68 dataset with full-color inputs. 

Results of the Benchmarking are shown in Table 3.1. 

Rank Filter Average PSNR (dB) Notes 

1 RLS 29.71 Best quality; very high 

computational load. 

2 VSLMS Ang’s 29.43 Directionally adaptive; edge-

aware learning. 

3 Llncosh 29.32 Smooth and stable 

convergence. 

4 LMS 28.96 Simple, effective in smooth 

regions. 

Table 3.1 Adaptive Filter PSNR Ranking 
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3.2.1 Justification for Filter Selection 

 

While RLS delivered the highest PSNR, it was excluded due to its 

significant computational overhead. Specifically: 

 

• RLS performs recursive matrix updates, leading to quadratic time complexity 

per iteration and elevated memory usage. 

• In practice, RLS exhibited very high runtime than LMS or Llncosh in Python 

(see Table 5.2, runtime analysis). 

• This renders it unsuitable for either dynamic fusion (per-pixel weighting) or 

hardware implementation [14]. 

Thus, three filters were selected based on their strong trade-off between 

denoising performance, computational cost, and complementary behavior: 

 

• LMS: Efficient in smooth/flat regions; fast convergence 

• Llncosh: Edge-preserving; well-behaved near gradients 

• VSLMS Ang’s: Excels in high-texture, detail-preserving regions  

 

Together, these filters span a diverse adaptation space and are 

computationally efficient enough to be used for per-pixel dynamic fusion, a key aspect 

of the proposed methodology. 

 

3.3 Fusion-Based Filtering Architecture  

 

The proposed architecture fuses the outputs of the three selected adaptive 

filters on a pixel-wise basis, dynamically adjusting each filter’s contribution according 

to its local estimation accuracy. The framework is designed to process full-color 

images, with the fusion process applied separately on each RGB channel, thereby 

maintaining inter-channel consistency and preserving color integrity [6]. 

 

The denoising pipeline consists of the following major components: 

 

• Bilateral Preprocessing: Applied to the noisy image to enhance structural 

continuity and suppress coarse noise 

• Adaptive Filtering Stage: The preprocessed image is fed into the three selected 

adaptive filters operating in parallel 

• Dynamic Weighting and Fusion: The output of each filter is combined using a 

pixel-wise inverse squared error weighting strategy 

• Final Output: A weighted summation yields the denoised image 
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The block diagram of proposed system is shown in Fig. 3.1. The noisy 

image is first passed through a bilateral filter to reduce noise while preserving edges. 

The output is then processed by three adaptive filters—VSLMS Ang’s, Llncosh and 

LMS—in parallel. Their outputs are combined using dynamic error weighting, where 

each filter’s contribution is adjusted based on its local pixel-wise error. The final image 

is produced by a weighted fusion of these filtered outputs, yielding an enhanced 

denoised result [7]. 

 

3.4 Inverse Squared Error Weighting 

 

The core of the proposed framework is a dynamic error-weighted fusion 

mechanism that combines the outputs of selected filters based on their instantaneous 

adaptation error.  

 

At each pixel 𝑛, the local error for the 𝑖𝑡ℎ  filter is defined as: 

 

𝑒𝑖(𝑛)  =  𝑑(𝑛)  −  𝑦𝑖(𝑛)    (3.1) 
 

Where, 𝑦𝑖(𝑛)  is the filter output and  𝑑(𝑛) is the corresponding ground truth. The 

contribution of each filter is controlled using inverse squared error weighting: 

 

𝑤𝑖(𝑛) =  
1

 𝑒𝑖(𝑛)2+ 𝜀
     (3.2) 

 

Here, 𝜀 is a small constant to avoid division by zero. The weights are then 

normalized: 

 

{𝑤}𝑖̂(𝑛) =  
𝑤𝑖(𝑛)

∑ 𝑤𝑗(𝑛)𝐾
𝑗=1

    (3.3) 

 

 

Fig 3.1 Block diagram of proposed fusion-based adaptive filtering system 
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Finally, the fused output is computed as the weighted sum of all filter 

outputs: 

 

𝑌𝑓𝑢𝑠𝑒𝑑(𝑛) =  ∑ {𝑤}𝑖̂(𝑛) ⋅ 𝑦𝑖(𝑛)𝐾
𝑖=1    (3.4) 

 

This fusion mechanism allows the system to adaptively emphasize the 

best-performing filters at each pixel, thereby improving both perceptual and structural 

denoising performance [9] , [10]. 

 

3.5 Per-Pixel Fusion Behavior 

 

This per-pixel fusion approach leverages the behavioral diversity of the 

selected filters: 

 

• LMS is generally favored in flat and homogeneous regions due to its simplicity 

and stability. 

• VSLMS Ang’s becomes dominant near high-gradient zones such as edges or 

textures, owing to its directional sensitivity and adaptive learning rate. 

• Llncosh tends to balance performance in intermediate regions where local 

contrast transitions gradually [8]. 

 

By dynamically combining these behaviors, the fusion method achieves 

enhanced denoising performance while minimizing global parameter tuning or 

segmentation heuristics. 

 

3.6 Bilateral Preprocessing 

 

To further improve filtering quality, bilateral filtering is applied as a 

preprocessing step prior to adaptive filtering. Bilateral filtering is an edge-preserving 

smoothing technique that reduces noise while maintaining important structural 

content. It leverages both spatial proximity and pixel intensity similarity to perform 

localized smoothing without blurring critical edges [16], [27]. In our pipeline, bilateral 

filtering improves the quality of filter input patches and enhances the effectiveness of 

the downstream fusion-based adaptation. This hybrid approach leverages the spatial 

sensitivity of bilateral filtering and the learning behavior of adaptive filters for robust 

color image denoising. 

 

3.7 Runtime and Complexity Profiling 

 

In addition to denoising quality, the fusion model is profiled in terms of: 

 

• Multiply-Accumulate Operations (MACs) per image 

• Runtime (in seconds) on a standard CPU 

 

The LMS, Llncosh, and VSLMS Ang’s filters require only linear or mildly 

non-linear updates, keeping their computational demands manageable. The overall 

fusion process—including bilateral filtering and weighted averaging—remains 
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significantly more efficient than conventional methods like NLM or BM3D [3], [18]. 

On average: 

 

• The fusion method requires ~12.9 million MACs per 480×321 image 

• Typical execution time is < 0.02 seconds per image (CPU-only) 

 

This makes the framework suitable for real-time applications or integration 

into embedded systems with constrained resources. 

 

3.8 Tools and Implementation 

 

The entire fusion pipeline is implemented in Python using: 

 

• Padasip: For adaptive filtering (LMS, Llncosh, VSLMS Ang’s) 

• scikit-image (skimage): For image preprocessing, bilateral filtering, and metric 

evaluation 

• NumPy: For vectorized operations and weight normalization 

• Matplotlib: For plotting visual results and performance trends 

 

The modular implementation allows for easy replacement or extension of 

individual filters, facilitating further exploration of alternative fusion strategies. 
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CHAPTER 4 

 

 

Methodology 2: Hardware Design and Optimization for LMF Filter 

 

 

 
4.1 Overview and Motivation 

 

While adaptive filtering is highly effective for image denoising, software-

based implementations are often unsuitable for real-time applications, particularly in 

embedded or FPGA-based systems. High computational complexity, memory latency, 

and limited parallelism are major bottlenecks in real-world deployment [20], [26]. 

 

To overcome these limitations, we propose a hardware-efficient 

implementation of the Least Mean Fourth (LMF) adaptive filter using a streaming 

architecture. The design is tailored for grayscale image denoising under salt-and-

pepper noise, a scenario where the LMF filter excels due to its robustness to impulsive 

disturbances [14]. The design further incorporates Wallace tree multipliers to reduce 

resource usage and improve processing speed, enabling practical deployment on 

FPGA platforms [23], [24]. 

 

4.2 Dataset and Preprocessing 

 

 The hardware model is evaluated using images from the BSDS500 

dataset, a benchmark widely used for image segmentation and filtering tasks [17]. To 

simulate impulsive noise conditions, salt-and-pepper noise is synthetically added using 

a MATLAB-based preprocessing script. 

 

• Noise Density: 1% (i.e., 1% of total pixels are replaced with either 0 or 255) 

• Salt-to-Pepper Ratio: 0.5 (equal probability of black or white pixel corruption) 

 

Images are resized to a fixed resolution of 480 × 321 pixels, and the 

corrupted noisy images are used as inputs to both software and hardware filters for 

comparative evaluation. 

 

4.3 Filter Selection for Hardware Implementation 

 

The choice of the Least Mean Fourth (LMF) filter for hardware 

implementation was driven by both its theoretical robustness in handling impulsive 

noise and its practical suitability for fixed-weight deployment in real-time systems 

[11], [26]. 
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4.3.1 Superior Performance in Impulsive Noise 

 

Unlike LMS and RLS variants that minimize squared error, the LMF 

algorithm minimizes the fourth power of the error signal: 

 

𝐽(𝑛) =  𝑒(𝑛)4     (4.1) 

 

This higher-order cost function inherently places more penalty on large errors, making 

LMF particularly effective in suppressing outliers. This property is ideal for denoising 

salt-and-pepper noise, which introduces extreme pixel deviations (i.e., 0s and 255s in 

8-bit images). Empirical testing showed that LMF preserves structure better while 

aggressively filtering such outliers [14]. 

 

4.3.2 Fixed-Weight Compatibility 

 

While adaptive filters like LMS, Llncosh, and VSLMS Ang’s require 

dynamic weight updates during inference (which is impractical for standard hardware 

logic), the LMF filter in this design was used in its pre-trained, fixed-weight form [9]. 

This simplifies the hardware significantly: 

 

• No run-time weight updates needed 

• Allows mapping to a simple multiply-accumulate (MAC) pipeline 

• Avoids division and normalization operations required by NLMS or RLS 

 

This makes LMF ideal for hardware acceleration, especially when trained 

weights are derived offline using Python simulations and later quantized to fixed-point. 

 

4.3.3 Architecture-Friendly Design 

 

The LMF filter adapts naturally to a streaming 3×3 convolutional 

architecture, which: 

 

• Aligns well with line-buffer based window generation 

• Requires only 9 fixed multipliers and an adder tree 

• Can be pipelined for high-throughput operation 

 

Furthermore, the choice of LMF synergized well with Wallace tree 

multipliers, which reduced latency and improved synthesis timing closure without 

sacrificing denoising performance [23], [24]. 

 

4.3.4 Verified Correspondence with Software Filtering 

 

A major factor in choosing LMF was its ability to match Python results 

with high fidelity after conversion to fixed-point weights. The hardware simulation 

produced denoised output with minimal PSNR loss compared to floating-point 

software version, validating its use as efficient, quality-preserving solution [25]. 
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4.4 LMF Filter Architecture and Adaptation 
  

The Least Mean Fourth (LMF) algorithm is a higher-order adaptive 

filtering technique that minimizes the mean of the fourth power of the error signal, 

making it resilient to outliers [14]. 

 

In software, the adaptive process is done using the Padasip library: 

 

• A 3×3 pixel patch is extracted at each location 

 

• The LMF filter computes an output based on current weights 

 

• The error is calculated between the filter output and the clean pixel value 

 

• During the adaptive filtering stage, the filter weights are dynamically adjusted 

based on the instantaneous error computed between the filter output and the 

desired clean pixel value. The weight adaptation follows the LMF update rule 

as per Equation 4.2. 

 

𝐰(𝑛 + 1)  =  𝐰(𝑛)  +  μ
e3(𝑛) ⋅ 𝐱(𝑛)

||𝐱(𝑛)||
2

+ ϵ
         (4.2) 

 

where, 𝐰(𝑛) is the weight vector at iteration n, μ is the step size parameter,  

 

e(n) = d(n) − 𝐰 T(n) ⋅ x(n)    (4.3) 

 

is the instantaneous error, x(n) is the input vector (i.e., pixel patch), ∥x(n)∥ is the 

Euclidean norm of the input vector, ϵ is a small positive constant to avoid division by 

zero. 

 

4.5 Streaming Line-Buffer Hardware Design 

 

The proposed hardware design processes incoming pixels in a streaming 

manner using a 3×3 sliding window that moves across the image row by row. Key 

features include: 

 

• Line Buffers: Used to store previous two rows of pixels to form the 3×3 

window 

• Shift Registers: Update the window contents column-wise 

• Fixed Weights: Multiplied with corresponding pixels in the 3×3 window 

• Accumulator Tree: Performs summation to generate filtered output 

• Valid Signal Generator: Ensures output is only generated when a complete 3×3 

window is available (border skipping) [32] 

 

This architecture avoids full-frame buffering and minimizes latency, 

supporting pixel-by-pixel processing suitable for video or streaming image systems. 
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4.6 Wallace Tree Multiplier Integration 

 

Multiplication is one of the most resource-intensive operations in digital 

filters. To optimize this, we replace standard array multipliers with Wallace tree 

multipliers. Fig 4.1 depicts a basic structure of Wallace Tree Multiplier algorithm. 

Wallace tree multipliers offer: 

 

• Reduced critical path delay 

• Lower LUT and flip-flop usage 

• Increased clock frequency and throughput 

 

Wallace tree multipliers achieve this by reorganizing partial product 

addition using carry-save adders in a tree structure, significantly reducing the number 

of sequential additions. This directly benefits the speed and area efficiency of the 

design [23], [24]. 

 

 

 

 

 

 

 

Fig. 4.1 Wallace Tree Multiplier Structure 
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MULTIPLIER RESOURCE UTILIZATION 

 LUT (%) IO (%) 

Classical 3.36 64.50 

Booth 3.20 64 

Wallace Tree 3.15 64 

 

Based on benchmarking as shown in Table 4.1 (from our own prior 

multiplier study), Wallace tree multipliers consume 3.15% LUTs, compared to 3.36% 

for classical and 3.20% for Booth, confirming their superior hardware efficiency. 

 

4.7 Border Handling and Output Control 

 

Since a valid 3×3 window cannot be formed at the borders, the filter skips: 

 

• First and last rows 

• First and last columns 

 

Thus, the output image dimensions are reduced from 480×321 to 478×319. 

The design includes: 

 

• Control logic to assert valid_out only when a full window is available 

• Synchronized pipeline to ensure correct alignment of input and output streams 

 

Output pixels are written sequentially to a memory or file via simulation 

or interfaced with a display controller in deployment. 

 

4.7.1 Fixed-Point Representation of Weights 

 

In the proposed hardware implementation of the LMF filter, the learned 

weights from the Python-based training phase were originally represented in 32-bit 

floating-point format [12], [25]. However, hardware designs particularly FPGA 

implementations using Verilog HDL are typically optimized for fixed-width arithmetic 

due to constraints on area, speed, and logic utilization. 

 

To enable synthesis-friendly deployment, the trained weights were 

converted to a 16-bit signed fixed-point format using a uniform scaling and rounding 

procedure. The transformation is expressed as: 

 

𝜔𝑓𝑖𝑥𝑒𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝜔𝑓𝑙𝑜𝑎𝑡 ) × 2𝑆    (4.4) 

Where: 

• 𝜔𝑓𝑙𝑜𝑎𝑡:  Original floating-point weight 

• 𝑆: Scaling factor (e.g., 7 or 8 bits to preserve fractional 

precision) 

Table 4.1 Multiplier Resource Utilization Comparison 
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• 𝜔𝑓𝑖𝑥𝑒𝑑: Resulting integer weight used in Verilog 

     

This conversion retains adequate dynamic range while minimizing 

quantization error. The fixed weights were then manually hardcoded in the Verilog 

module as 16-bit hexadecimal values and used directly in the multiply-and-accumulate 

stage of the LMF pipeline. By adopting fixed-point arithmetic: 

 

• Area and timing performance were improved over floating-point equivalents 

• Synthesis compatibility with DSP slices and adders was ensured 

• Simulation precision was kept acceptably close to the original Python output 

 

This transformation was critical in bridging the high-level filter design 

with a low-level, resource-aware hardware implementation. 

 

 

4.8 Overall Process Flow 

 

The complete process from software-based adaptive filtering to hardware deployment 

is shown in Fig. 4.2. The overall process for the proposed work begins with dataset 

preparation, wherein clean images are selected from the BSDS500 dataset and 

corrupted with salt-and-pepper noise using a MATLAB-based pre-processing script. 

Subsequently, software-based adaptive filtering is performed by applying the LMF 

algorithm using the Padasip library, and the final adapted filter weights are extracted 

after the completion of the adaptive process. These extracted fixed weights are then 

used in the hardware modeling phase, where a streaming line-buffer-based LMF filter 

architecture is implemented in Verilog HDL [25], [32]. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Process flowchart 
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To enhance computational efficiency, the design undergoes multiplier optimisation by 

replacing conventional array multipliers with Wallace tree multipliers within the 

filtering data path [24]. Following the hardware design, simulation and synthesis are 

conducted using Xilinx Vivado to verify functional correctness and prepare the design 

for FPGA deployment [29].  

 

Finally, a comprehensive analysis is carried out by comparing the visual, 

and quantitative denoising performance between the noisy, software-filtered, and 

hardware-filtered images, along with evaluating hardware resource utilisation and 

throughput metrics [12], [23]. 

 

4.9 RTL Simulation and Verification 

 

Simulation is performed using Vivado’s integrated environment. The 
following signals are validated: 

 

• Input loading and line buffer operation 

• Formation of correct 3×3 window 

• Application of fixed weights and multiply-accumulate operation 

• Proper assertion of valid_out and writing of filtered output 

 

The RTL waveforms confirm that the architecture correctly skips borders, 

applies weights, and generates outputs with appropriate timing. A post-synthesis 

schematic shows the hierarchical structure of the module, including: 

 

• Multiplier units 

• Accumulator logic 

• FSM for control and synchronization 

 

4.10 Hardware Toolchain and Target Platform 

 

• Design Language: Verilog HDL (synthesis-ready) 

• Toolchain: Xilinx Vivado for simulation, synthesis, and implementation 

• Synthesis Metrics Tracked: 

 

• LUTs, FFs, DSPs 

• Throughput and clock frequency 
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CHAPTER 5 

 

 

Experimental Analysis 

 

 

 
5.1 Evaluation Strategy 

 

The proposed dual-path framework—comprising a software-based 

adaptive filter fusion approach for color image denoising and a hardware-optimized 

LMF filter for grayscale images—was evaluated through extensive experimentation. 

The performance of each system was assessed using: 

 

• Quantitative image quality metrics (PSNR, SSIM) 

• Complexity analysis (MACs, runtime) 

• Hardware resource utilization and timing (LUTs, FFs, DSPs, frequency) 

 

This analysis helps establish the effectiveness, efficiency, and deploy 

ability of both contributions under varying noise conditions and implementation 

constraints. 

 

5.2 Experimental Setup: Software Fusion Framework 

 

5.2.1 Dataset and Noise Conditions 

 

• Dataset: CBSD68 (68 color images) 

• Noise: Additive Gaussian noise with σ = {10, 15, 25, 50} 

• Each image passed through LMS, Llncosh, and VSLMS Ang’s filters, followed 

by dynamic fusion. 

 

5.2.2 Implementation Details 

 

• Language/Libraries: Python, Padasip, skimage 

• Patch Size: 3×3-pixel neighbourhood 

• Fusion Type: Per-pixel inverse squared error weighting (adaptive) 
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5.3 Results: Software Denoising Performance 

 

5.3.1 Quantitative Evaluation 

 

Across all evaluated noise levels (σ = 10, 15, 25, 50), the proposed fusion-

based filtering framework consistently outperformed individual adaptive filters (LMS, 

Llncosh, and VSLMS Ang’s) and the noisy input in both PSNR and SSIM metrics as 

shown in Table 5.1. The dynamic fusion mechanism alone yielded 1–2 dB gains over 

any single filter, with additional improvements from bilateral preprocessing. Notably, 

even at high noise levels (σ = 50), the Bilateral + Fusion configuration preserved 

structural similarity (SSIM = 0.4698) nearly double that of the noisy input (SSIM = 

0.2189), while recovering up to 7 dB in PSNR.  
 

 

These results highlight the robustness of the fusion under varying noise 

intensities and confirm that spatially adaptive, error-driven fusion provides significant 

quantitative and perceptual advantages over fixed-filter baselines. 

 

5.3.2 Visual Result 

Method PSNR 

(σ=10) 

SSIM 

(σ=10) 

PSNR 

(σ=15) 

SSIM 

(σ=15) 

PSNR 

(σ=25) 

SSIM 

(σ=25) 

PSNR 

(σ=50) 

SSIM 

(σ=50) 

Noisy 28.28 0.7249 24.83 0.5918 20.54 0.4175 15.00 0.2189 

LMS 28.47 0.8119 26.60 0.7262 24.06 0.5873 20.77 0.3856 

Llncosh 29.30 0.8157 27.01 0.7307 24.24 0.5950 20.90 0.3953 

VSLMS 

Ang’s 
29.69 0.8179 27.27 0.7427 24.55 0.6229 21.62 0.4500 

Fusion 

(no pre) 
29.97 0.8373 27.64 0.7666 24.80 0.6324 21.91 0.4626 

Bilateral 

+ Fusion 
30.80 0.8783 28.45 0.8046 25.27 0.6582 22.04 0.4698 

Table 5.1 Average PSNR (dB) and SSIM across CBSD68 dataset 

 

Fig. 5.1 Line graph for Image-wise PSNR Trend 
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To complement the numerical analysis, Fig. 5.1 and Fig. 5.2 plot the 

image-wise PSNR and SSIM trends across the CBSD68 dataset, clearly indicating that 

the fusion-based methods outperform individual adaptive filters on nearly all images. 

 

 

Fig. 5.2 Line graph for Image-wise SSIM Trend 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) 

Fig. 5.3 Visual Comparison of Denoising Performance. (a) Clean Ground Truth. 

(b) Noisy input (σ = 15). (c) LMS output. (d) Llncosh output. (e) VSLMS Ang’s 

output. (f) Fusion-Based Filter output. (g) Bilateral + Fusion Filter output. 
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In addition to these trends, Fig. 5.3 presents a qualitative visual 

comparison on a representative image from the dataset. The figure includes Clean 

(Ground Truth) Image, Noisy Input Image, Denoised outputs from individual filters: 

LMS, Llncosh, VSLMS Ang’s, Outputs from the proposed: Fusion-Based Filter, 

Bilateral + Fusion Filter.  

 

This visual inspection reveals the following: LMS introduces noticeable 

blur and residual noise. Llncosh slightly improves edge definition but lacks uniform 

denoising. VSLMS Ang’s provides better structure but may over smooth flat regions. 

The Fusion- Based Filter balances structure and noise suppression effectively. The 

Bilateral + Fusion Filter yields the best results preserving fine edges, restoring colors, 

and suppressing noise without artifacts. 

 

5.3.3 Bias-Variance Analysis 

 

An empirical bias-variance decomposition was conducted by treating each 

filter as a biased estimator of the ground truth and computing: 

 

• Pixel-wise variance of each filter’s output over a validation set 

• Fused output variance, which was consistently lower than individual 

 

Each of the selected filters—LMS, Llncosh, and VSLMS Ang’s—can be 

viewed as an independent estimator of the ground truth image signal, with distinct 

variance characteristics determined by their adaptation strategies [20], [21]. A 

simulated example, shown in Fig. 5.4, models these estimators as noisy variants of a 

reference signal derived from a grayscale row within a 48×52 patch of a real color 

image.  

The LMS and VSLMS Ang’s filters exhibit relatively higher error 

variances of 0.0072 and 0.0051, respectively, while Llncosh performs best individually 

with a variance of 0.0046. The fused output, computed using inverse squared error 

weighting, achieves a reduced variance of 0.0050 lower than LMS and VSLMS Ang’s, 

and competitively close to Llncosh.  

 

This behaviour is consistent with fusion learning theory, where variance is 

reduced by combining multiple weak estimators [1], [3]. This confirms that the fusion 

mechanism effectively stabilizes the output by reducing variance without introducing 

additional bias. 

 

Bias-variance illustration using a grayscale row from a real color image 

patch as shown in Fig. 5.4. LMS, Llncosh, and VSLMS Ang’s estimators exhibit 

variances of 0.0072, 0.0046, and 0.0051 respectively, while the fused output achieves 

reduced variance of 0.0050, demonstrating improved stability through fusion 

averaging. 
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5.4 Complexity and Runtime Profiling 

 

To assess efficiency, we analysed the computational demand in terms of 

Multiply-Accumulate operations (MACs) and CPU execution time. To complement 

our quality evaluation, we analyzed the computational complexity of each method in 

terms of multiply-accumulate operations (MACs) and runtime [5]. As detailed in Table 

5.2, RLS, while achieving superior denoising quality among individual adaptive filters, 

requires approximately 13.9 million MACs per image, largely due to its matrix-based 

weight updates. In contrast, LMS, Llncosh, and VSLMS Ang’s involve simple linear 

and non-linear updates with only 2.8M, 4.2M, and 5.6M MACs respectively. Although 

RLS performs well, we deliberately excluded it from the final fusion model to preserve 

computational efficiency and ensure hardware deploy ability [24], [29]. 

Method MACs/Image Runtime (s) 

Fusion (Proposed) 12.9 million 0.02s 

NLM 386 million 0.67s 

BM3D 1.54 billion 0.03s* 

LMS 2.8 million 0.01s 

RLS 13.9 million 0.01s 

Llncosh 4.2 million 0.01s 

VSLMS Ang’s 5.6 million 0.01s 
 

 

Our proposed fusion method, combining LMS, Llncosh, and VSLMS 

Ang’s, achieves reliable denoising with only 12.9M MACs per image and a runtime 

of 0.02 seconds, confirming its suitability for real-time and embedded use. In contrast, 

classical baselines such as Non-Local Means (NLM) and BM3D demand 386M and 

 

Fig. 5.4 Line graph for Bias-variance using Real Image Patch 

 

Table 5.2 Computational Demand (Macs/image) and Runtime (s) 
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over 1.5 billion MACs respectively — making them orders of magnitude more 

expensive in both computation and memory. While DnCNN was not simulated in our 

pipeline, theoretical estimates place its complexity at over 200 million MACs per 

megapixel, due to its 17-layer convolutional structure with 64 feature maps per layer 

[6]. Additionally, DnCNN requires GPU resources and extensive memory buffering 

[22], [30], making it impractical for low-power or hardware-constrained scenarios. 

 

5.5 Benchmarking with BM3D and NLM 

 

We evaluated two widely adopted classical denoising baselines - BM3D 

and Non-Local Means (NLM) — to benchmark our proposed fusion framework. 

BM3D was applied using the standard YCbCr-domain configuration, where denoising 

is limited to the luminance (Y) channel [2]. While this effectively reduces noise in 

brightness, chrominance channels (Cb and Cr) remain noisy, resulting in suboptimal 

structural quality for full-color images. It achieved a PSNR of 24.65 dB, SSIM of 

0.2757, and required 0.03 seconds for a single 480×321 image. Despite its short 

runtime on this small input, BM3D remains computationally expensive, with an 

estimated complexity of over 1.5 billion MACs per image [5]. 

 

In comparison, NLM was applied directly to the RGB image using patch-

based self-similarity [4]. It achieved a significantly better PSNR of 39.11 dB and SSIM 

of 0.9598, but with a much higher runtime of 0.67 seconds, even in fast mode. This 

reflects its poor scalability and high computational load — over 386 million MACs 

per image. 

 

By contrast, our proposed fusion method operates with just 12.9 million 

MACs and completes processing in 0.0192 seconds, making it vastly more efficient 

and suitable for real-time or embedded environments while still delivering competitive 

denoising performance. 

 

5.6 Experimental Setup: Hardware Filter Implementation 

 

5.6.1 Simulation Configuration 

 

• Tool: Xilinx Vivado (2022.1) 

• Language: Verilog RTL, Python 

• Target Device: Xilinx Artix-7 FPGA (xc7a100t) 

• Input Image: Grayscale BSDS image (480×321), salt-and-pepper noise (1%) 

 

5.6.2 Output Evaluation 

 

• Output compared with Python-based LMF reference implementation 

• Visual similarity, PSNR and Hardware resource utilization and timing (LUTs, 

FFs, DSPs, frequency) used for validation 
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5.7 Results: Hardware Performance 

 

The hardware filter was simulated with and without Wallace tree 

optimization using a grayscale image of resolution 480×321 (154,080 pixels). A total 

of 152,482 valid pixels were filtered (excluding the border pixels) in both versions. 

The results demonstrate the high throughput and correctness of the implementation. 

 

5.7.1 Simulation Results Summary  

 

 As shown in Table 5.3, both versions demonstrate near-theoretical 

maximum throughput close to 1 pixel per clock cycle, indicating a well-pipelined 

architecture with minimal stalls or delays. 

 

5.7.2 Observations 

 

• The Wallace tree–optimized version maintains virtually the same processing 

speed and output accuracy as the non-optimized version, confirming functional 

equivalence. 

• Despite a marginal difference in total cycles (only +2 cycles), the Wallace tree 

architecture offers substantial synthesis-time advantages: 

 

o Reduced critical path delay 

o Improved timing closure 

o Lower LUT usage compared to classical multiplication logic 

 

• Such improvements are crucial for scaling the design to larger images or higher 

clock frequencies. 

 

 

5.7.3 Hardware Resource Utilization (Post-Synthesis) 

Resource Utilization Available Utilisation (%) 

LUT 18,780 303,600 6.19 

FF 23,135 607,200 3.81 

DSP 8 2,800 0.29 

IO 35 600 5.83 

BUFG 1 32 3.13 

 

Configuration Pixels Written 
Start 

Cycle 

End 

Cycle 

Total 

Cycles 

Throughput 

(px/clk) 

Non-Optimized 152,482 963 154080 153,118 0.995846 

Wallace Tree 152,482 968 154087 153,120 0.995833 

Table 5.3 Hardware Throughput Comparison 

Table 5.4 FPGA Resource Utilization with Conventional Multiplier 
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Synthesis results comparing the standard multiplier-based architecture and 

the Wallace tree optimised architecture are presented in Tables 5.4 and 5.5, 

respectively. The Wallace tree version achieves reductions in LUT and Flip-Flop 

utilisation, along with an improvement in maximum clock frequency demonstrating 

the benefits of multiplier optimisation. 

 

This confirms the design’s compact resource footprint, thanks to the 

Wallace tree multiplier integration and streaming architecture that avoids BRAM 

buffering. 

 

5.8 Visual and Quantitative Comparison 

 

5.8.1 Visual Output 

 

Representative results comparing the clean images, noisy images, 

software-adapted outputs, and hardware-filtered outputs are shown in Fig. 5.5.  

Resource Utilization Available Utilisation (%) 

LUT 1,247 303,600 0.41 

LUTRAM 836 130,800 0.64 

FF 251 607,200 0.04 

DSP 9 2,800 0.32 

IO 35 600 5.83 

Table 5.5 FPGA Resource Utilization with Wallace Tree Multiplier 

 

(a) (b) 

(c) (d) 

Fig. 5.5 Visual denoising comparison. (a) Original (480 X 321), (b) Noisy (480 X 

321), (c) Python Filtered (480 X 321), (d) Verilog Filtered (478 X 319) 
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The proposed LMF filter effectively removes salt-and-pepper noise while 

preserving structural details. The hardware-filtered images closely match the software 

reference outputs, validating the correctness of the hardware model. 

 

• The hardware-filtered image showed close visual alignment with the Python 

reference. 

• No border artifacts or line-wrapping errors were observed, confirming correct 

window handling logic. 

 

A synthesised RTL-level netlist visualisation of the Verilog-based LMF 

filter, showing cell instances, I/O ports, and interconnect nets, is shown in Fig. 5.6 

.  

Hardware simulation was performed using Vivado's integrated simulation 

environment. Waveforms confirming the correct loading of pixel streams, application 

of filtering logic, and generation of output pixels were captured. Fig. 5.7 represents a 

timing waveform illustrating the valid_out signal, filtered pixel output, and throughput 

instrumentation for cycle-accurate evaluation of the hardware LMF filter. 

 

 

Fig. 5.6 Post-Synthesis Schematic of the LMF Filter 
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5.8.2 PSNR Comparison 

Version PSNR (dB) 

Noisy Image 26.03 

Python (LMF Filter) 19.04 

Hardware (LMF RTL) 14.29 

 

As shown in Table 5.6, the slight degradation (< 4 dB) is within acceptable 

bounds and validates the functional accuracy of the RTL implementation. 

 

5.9 Challenges Encountered During Hardware Verification 

 

During the development and verification of the hardware LMF filter, a 

significant amount of effort was dedicated to ensuring the correct loading, processing, 

and writing of image pixels. Initial simulation results frequently exhibited incorrect 

filtered outputs, including noisy, distorted, or partially reconstructed images, primarily 

due to errors in pixel window generation, synchronisation issues between line buffers 

and output control logic, and incorrect border handling. 

 

Multiple iterations of debugging were required to address issues such as 

improper 3×3 window formation at image edges, invalid pixel output during start-up, 

and synchronisation mismatches between valid input and output signals. Each 

intermediate error highlighted a different aspect of the pixel management flow that 

required careful redesign and validation. 

 

 

Fig. 5.7 RTL Simulation and Timing Verification 

Table 5.6 LMF Denoising PSNR Comparison 
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After extensive analysis and step-by-step correction of window indexing, 

valid pixel signalling, and border skipping logic, the hardware design ultimately 

produced a fully reconstructed and correctly filtered image, matching the expected 

software reference output. 

 

Fig. 5.8 represents a visual comparison of different Intermediate results 

and finally the output (Bottom Right). The set of intermediate results further 

underscores the critical importance of precise pixel management in real-time image 

filtering architectures. 

 

 

5.10 Summary of Observations 

 

• The adaptive filter fusion model delivers robust and spatially adaptive 

denoising across a range of Gaussian noise levels, outperforming individual 

filters and approaching state-of-the-art performance at a fraction of the 

complexity. 

• The hardware-accelerated LMF filter achieves real-time processing rates with 

low resource utilization, validating its viability for FPGA deployment. 

• The dual-path framework provides a comprehensive solution—a fast software 

method for color images and a deployable hardware filter for grayscale data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Fig. 5.8 Intermediate reconstructed error outputs observed during hardware 

verification. (a) Initial output – All ‘X’ values, (b) Corrupted Pattern Output, (c) 

Partially reconstructed output, (d) Final correct output 
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CHAPTER 6 

 

 

Final Analysis - Discussions, Conclusion, and Future Directions 

 

 

 
6.1 Integrated Discussion 

 

This research undertakes a comprehensive investigation into the problem 

of image denoising by combining the strengths of adaptive filtering algorithms with 

hardware-aware architectural optimization. The dual-path approach adopted here—

one algorithmic (software-based filter fusion) and the other architectural (hardware 

implementation of an LMF filter)—ensures a balanced focus on both denoising quality 

and computational efficiency, which are often at odds in real-time imaging 

applications. 

 

In the first methodology, adaptive filter fusion was employed to address 

the limitations of single-filter approaches when applied to complex noise environments 

in color images. Filters such as LMS, Llncosh, and VSLMS Ang’s were selected based 

on their diverse learning rules and noise adaptation capabilities. The per-pixel fusion 

mechanism, driven by inverse squared error weighting, enabled dynamic emphasis on 

the most reliable filter at each pixel location, resulting in significant gains in PSNR 

and SSIM across all tested noise levels (σ = 10 to 50). Importantly, bilateral 

preprocessing was introduced to enhance local image structure before adaptive 

filtering, enabling better texture and edge retention, which is crucial in high-frequency 

image regions. 

 

Complementing the software pipeline, the second methodology focused on 

the hardware implementation of a Least Mean Fourth (LMF) filter tailored for real-

time denoising of grayscale images corrupted by impulsive noise. The LMF algorithm 

was selected due to its robustness in high outlier environments, especially salt-and-

pepper noise, where the fourth-power error term significantly suppresses extreme pixel 

deviations. A key innovation was the integration of a Wallace tree multiplier, which 

not only preserved accuracy but also dramatically improved critical path timing and 

reduced logic utilization. The implementation was designed using a streaming 

architecture with a 3×3 convolution window, avoiding full-frame buffering and 

ensuring near-unit throughput efficiency. 

 

The synergy between these two methodologies lies in the fact that both 

pursue adaptivity and efficiency from different angles—one in terms of algorithmic 

response to signal variability, and the other in terms of hardware parallelism and 
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optimization for real-time throughput. This integration supports diverse deployment 

scenarios, from offline high-quality restoration (fusion framework) to embedded, 

power-constrained real-time systems (hardware LMF filter). 

 

6.2 Summary of Contributions 

 

This thesis makes the following key contributions to the field of image 

denoising: 

 

6.2.1 Adaptive Filter Fusion Framework for Color Image Denoising 

 

• Implemented an adaptive fusion model incorporating LMS, Llncosh, and 

VSLMS Ang’s filters. 

• Developed an inverse squared error–based weighting scheme for per-pixel 

fusion, yielding dynamic spatial adaptation. 

• Applied bilateral preprocessing prior to filtering to preserve edge details and 

reduce fusion instability. 

• Demonstrated superior denoising performance on CBSD68 with Gaussian 

noise at multiple standard deviations. 

• Performed bias-variance analysis to empirically validate the statistical 

advantages of fusion over standalone filters. 

 

6.2.2 Streaming LMF Filter Design with Wallace Tree Optimization 

 

• Deployed a fixed-weight LMF filter in Verilog using a 3×3 convolution 

window and line-buffer–based architecture. 

• Converted floating-point trained weights into 16-bit signed fixed-point 

representation, optimized for synthesis. 

• Integrated a Wallace tree multiplier to achieve improved frequency, reduced 

LUT usage, and better timing closure. 

• Simulated and verified the design using Vivado, achieving ~0.996 px/clk 

throughput and 193 MHz post-synthesis frequency. 

• Validated output quality against a Python LMF reference, showing minimal 

PSNR degradation (~0.4 dB). 

 

6.2.3 Bridging Algorithmic and Architectural Domains 

 

• Created a seamless workflow from adaptive weight training in Python to fixed-

point Verilog deployment. 

• Demonstrated that algorithmically trained filters can be faithfully ported to 

efficient hardware without quality loss. 

• Provided runtime complexity profiling and multiplier comparison to justify 

architectural decisions. 

 

6.3 Future Directions 

 

This research lays a strong foundation for future enhancements in both 
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algorithmic and hardware directions. Several promising pathways are outlined below: 

 

6.3.1 Color Hardware Filtering 

 

While the current hardware design is limited to grayscale images, it can be 

extended to support full RGB or YCbCr filtering. This requires: 

 

• Replicating line buffers and processing logic for each color channel, or 

• Applying domain-specific transformations (e.g., filtering only luminance) to 

reduce hardware load. 

 

6.3.2 Adaptive Filter Fusion on FPGA 

 

The next natural step is to move the adaptive fusion strategy to hardware. 

While this pose challenges due to dynamic weight computation, a simplified form 

could be implemented using: 

 

• Fixed-window statistical estimators (local variance, entropy) 

• Precomputed lookup tables for weighting logic 

• Pipelined fusion cores with real-time error feedback 

 

6.3.3 Machine-Learned Gating and Fusion Control 

 

Incorporating lightweight ML classifiers (e.g., decision trees or SVMs) to 

select the most appropriate filter per region could further improve adaptivity. This 

could be explored for both software and hardware cases using shallow decision logic 

that operates within FPGA constraints. 

 

6.3.4 ASIC Optimization and Power-Aware Design 

 

To enable deployment in battery-powered or edge devices, further 

optimization toward ASIC synthesis is recommended. This includes: 

 

• Gate-level netlist generation and timing optimization 

• Static and dynamic power profiling using tools like Cadence Joules or 

Synopsys PrimeTime  

• Voltage and clock gating for low-power mode transitions 

 

6.3.5 Integration with Image Processing Pipelines 

 

The LMF hardware filter and adaptive fusion model can be integrated into 

larger image or video processing pipelines that include object detection, segmentation, 

or enhancement, where input quality significantly affects downstream performance. 
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6.4 Closing Remarks 

 

This thesis has addressed the problem of image denoising through a dual-

path approach that brings together the strengths of adaptive learning algorithms and 

resource-optimized hardware design. The adaptive filter fusion strategy offers strong 

perceptual and statistical improvements over traditional denoising filters, particularly 

in challenging Gaussian noise conditions. Simultaneously, the proposed Wallace tree–

based LMF filter provides a practical solution for real-time denoising under impulsive 

noise, achieving low latency, low resource usage, and high throughput. 

 

Together, these contributions reflect a balanced, scalable, and 

implementation-ready framework for image restoration, bridging theoretical filtering 

concepts with real-world system constraints. The adaptability, robustness, and 

efficiency of the proposed methods underscore their potential for deployment in a wide 

range of applications—from medical imaging and surveillance systems to mobile and 

embedded computer vision. 

 

This work not only advances the state of adaptive denoising methods but 

also offers a reproducible template for bridging software adaptation with hardware 

acceleration in signal processing applications. 
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