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Image-to-text generator 
 

Nishant Raj 
 

ABSTRACT 

 

Image-to-text generation is an emerging field at the intersection of computer vision 

and natural language processing. It enables machines to understand visual content and 

generate coherent, contextually relevant textual descriptions. This thesis provides a 

comprehensive comparative analysis of image captioning techniques, spanning from 

traditional CNN-LSTM architectures to state-of-the-art transformer-based and zero-

shot learning models such as CLIP and diffusion frameworks. 

The study explores multiple methodologies, including attention mechanisms, 

generative adversarial networks (GANs), contrastive learning, Word2Vec 

embeddings, and diffusion-based models. We examine the strengths and limitations of 

each approach by assessing model performance on standard datasets like MS-COCO 

and Flickr30k using BLEU, METEOR, CIDEr, and ROUGE evaluation metrics. 

Through experimental evaluation, we highlight the trade-offs between model 

accuracy, generalization, semantic alignment, and computational cost. Our findings 

suggest that while CNN-LSTM-based models are effective for dataset-specific tasks, 

transformer-based and contrastive learning models demonstrate superior scalability 

and performance in zero-shot settings. 

The thesis concludes with a discussion of current challenges, including dataset biases, 

semantic misalignment, and the high computational requirements of advanced models. 

Recommendations for future work include the development of lightweight, domain-

adaptive architectures with ethical considerations and human feedback integration. 

Keywords: Image Captioning, Deep Learning, CLIP, Vision Transformers, Attention 
Mechanisms, GANs, Zero-shot Learning, Word2Vec, Diffusion Models. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Text generation from images is a key intersection of computer vision and natural 

language processing (NLP) where computers are taught to produce readable, 

understandable textual reports of visual material. 

1.1 BACKGROUND 

The task, also referred to as image captioning, has developed very fast 

given its usage in real-world challenges such as assistive technology, self-driving cars, 

e-commerce product tagging, digital archiving, and social media content management 

[6]. Previous image captioning models used template-based or retrieval-based 

methods. These were non-generalizable and were not able to caption new or 

descriptive pictures. Deep learning, specifically the application of Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), introduced major 

improvements [7]. CNNs allowed feature extraction from the visual data in an efficient 

manner, and RNNs and the Long Short-Term Memory (LSTM) cells allowed natural 

sequential captioning generation [6]. The encoder-decoder model proposed by [6] 

transformed the game by utilizing Inception CNNs as encoders with LSTM decoders 

to enable models to learn end-to-end image-to-sentence mappings. These models, 

however, did not have the capability of modeling long-range dependencies and 

semantic alignment needed for dense captioning. To prevent this from happening, 

attention mechanisms were developed, the most important of which was [7]. This 

enabled models to selectively attend to certain areas of the image while it generated 

each word, enhancing the semantic coherence and context salience of the generated 

output [13]. Also came up with this idea with semantic attention, which improved the 

quality of captions by connecting the image areas to appropriate semantic concepts. 

With the introduction of the transformer models, Vision Transformers (ViTs) and CLIP 

(Contrastive Language-Image Pretraining) have also been proven to deliver 
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exceptional performance for captioning as well as zero-shot learning situations 

[10][11]. These models use multimodal embeddings and self-attention to strongly 

capture visual and text information without using task-specific labeled datasets. Tewel 

et al.'s ZeroCap model [1], for example, pairs CLIP with GPT-2 to generate text from 

images in a zero-shot manner without using paired datasets. In stark opposition to that 

limitation, many recent approaches have been able to overcome the limitations of 

conventional models [2]. suggested a deep attention-based model incorporating 

Inception-ResNetV2 and LSTM for enhancing accuracy and caption coherence [3]. 

suggested a Word2Vec embedding-based model along with visual vocabulary 

attention, enhancing contextual alignment between text and visual features. OCR-

VQGAN, as introduced by [4], applied Generative Adversarial Networks (GANs) to 

generate text from images in a structured form for handling document understanding 

tasks and text-in-image synthesis tasks. On the other hand, diffusion models such as 

CustomText [5] have been developed to handle user-specific and semantically relevant 

captioning. The models work iteratively to improve output quality and accommodate 

user-specific input, allowing for more realistic and context-based captioning [6] 

demonstrated the effectiveness of synthetic caption data used for pretraining that can 

significantly enhance downstream captioning. While the field has come a long way, 

there are still some challenges. 

 

Fig. 1.1: Evaluation Of Image-To-Text Generation Models 
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These are: 

• Semantic disagreement between captioned and visual text [3] 

• Overdependence on big labeled datasets [1] 

• Failure to generalize across domains if retrained [9] 

• Dataset bias resulting in biased or non-inclusive captions [12] 

To battle these kinds of limitations, researchers have considered human-in-the-loop 

learning [8], data-efficient contrastive pretraining [9], and survey-driven 

taxonomies [4][12] that focus on performance bottlenecks and directions for future 

work. In addition, metrics like BLEU, METEOR, CIDEr, and ROUGE have also 

been model quality benchmarking indicators on datasets like MS COCO, Flickr8k, 

and Flickr30k [9]. This thesis is motivated by the necessity of rigorous comparison 

and experimentation of these new methods. It presents a comprehensive review of 

more than 30 academic papers and classifies them based on architecture, method, 

dataset usage, and performance. All the chapters of this thesis follow a systematic 

system of references, providing an overview of the evolution of image captioning 

from CNN-RNN to transformer, zero-shot, and generative models. The general aim 

is to offer a sharp roadmap for researchers and practitioners who desire to engineer 

scalable, context-aware, and ethically robust image-to-text generation systems. 

1.2 PROBLEM STATEMENT 

Although tremendous progress has been made in image-to-text 

translation, some intrinsic issues persist to impede the use of accurate, adaptive, 

and semantically consistent captioning models. Rule-based and retrieval-based 

approaches were not very capable of captioning new or semantically dense images 

because they were pre-computed sentence patterns and fixed vocabularies [13]. 

These approaches were not transferable and performed poorly with unseen visual 

structure or intricate spatial relations. Deep learning algorithms, specifically the 

encoder-decoder paradigm that was a combination of CNNs and LSTMs, brought 
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huge advances [18]. "Show and Tell" generalized the concept of end-to-end image 

pixel-to-text sequence learning to captioning more fluently. However, such models 

did not capture long-range dependencies and did not have persistent semantic 

alignment under different image contexts [19][25]. The performance of models 

was enhanced through dynamic attention across positions in the image when 

generating outputs, as seen in the "Show, Attend and Tell" architecture [19]. 

Extensions such as semantic attention further pushed this by linking image parts to 

conceptual labels [25]. However, such models are susceptible to visual grounding 

errors, particularly in crowded or domain-specific images. Earlier in the year, 

transformer models and multimodal representations like CLIP achieved 

remarkable performances on captioning and retrieval tasks through large-scale 

contrastive pretraining [1][23]. ZeroCap, for instance, carries out caption 

generation under zero-pair supervision with CLIP and GPT-2. Nevertheless, these 

types of models are most likely to learn bias from training data and can produce 

hallucinated text that is not related to the image [5][8], GAN-based architectures  

[4], and models such as CustomText [5] provide superior syntactic quality along 

with personalization but are computationally expensive and hard to interpret. Also, 

using general-purpose datasets such as MS-COCO and Flickr30k [21][24], limits 

the models' generalizability to application domains that are domain-specific, e.g., 

medical imaging or legal reasoning. Lastly, existing evaluation scores like BLEU, 

METEOR, ROUGE, and CIDEr are found lacking when it comes to measuring the 

true semantic pertinence and contextual suitability of captions [24][16]. The 

metrics are inclined towards favoring lexical similarity rather than semantics; 

hence, benchmarking systems on different domains is challenging. With these 

challenges, it is of critical significance to develop image captioning models that 

are fluent, contextually accurate, generalizable, and efficient. This thesis tackles 

these challenges by implementing and comparing a broad range of image-to-text 

models, contrasting their architecture, evaluating their strengths and weaknesses, 

and identifying areas for future optimization such as ethical design, domain 

adaptation, and user-guided caption generation. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Image-to-text translation, which is also widely referred to as image 

captioning, is a prime problem in multimodal AI systems. It not only suggests 

object and attribute recognition but also spatial relationship comprehension of their 

locations, contextual meaning, as well as interaction with the surrounding 

constituents. Hence it is one of the most challenging problems at the intersection 

of computer vision and natural language processing [4][12]. Early image 

captioning techniques involved template or rule-based systems with manually 

tuned pipelines that employed identified objects within pre-defined sentence 

templates. Although they were intuitive, these systems could not generalize and 

did not apply to new domains or new images [13]. Deep learning techniques shook 

the field. Significantly the encoder-decoder paradigm in which Convolutional 

Neural Networks (CNNs) are trained to learn visual representations and Recurrent 

Neural Networks (RNNs) namely Long Short-Term Memory (LSTM) units, 

produce text sequences was central [6]. The "Show and Tell" model was one of the 

first models to show how images could be directly mapped to variable-length 

captions using this architecture. But these early models had limited understanding 

of fine-grained image regions and had long-range dependencies and contextual 

matching [1]. 

 
 

Fig. 2.1: Encoder-Decoder Framework[1] 
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To overcome these limitations, attention mechanisms were introduced that allowed 

the decoder to selectively attend to the most relevant regions of the image while 

producing each word [7], making effective use of visual attention to enhance 

caption quality and semantic coherence. The attention framework was further 

generalized by introducing dual attention mechanisms to include both spatial and 

textual attention [2], and employed a Bi-LSTM-based dual-attention network for 

more accurate alignment of text with corresponding image regions. They also 

proposed the Self-Improving Electric Fish Optimization (SI-EFO) algorithm for 

model parameter fine-tuning and improving convergence. GRU-based encoder-

decoder model with attention application for optimizing caption coherence [1]. 

These developments allowed models to dynamically adjust attention according to 

image complexity and caption context, thereby leading to better fluency and 

appropriateness. At the same time, Generative Adversarial Networks (GANs) 

introduced a new perspective to image captioning by improving the syntactic and 

semantic quality of the generated text through adversarial training. In a GAN-based 

system, the generator generates image captions, and a discriminator tries to 

differentiate between real (human-generated) and synthetic (machine-generated) 

captions. This loop of adversarial training gives more human-like captions. For 

example, OCR-VQGAN, introduced by [7] is a GAN-inspired architecture that 

uses Optical Character Recognition (OCR) to create text-aware image captions, 

especially beneficial in situations where the image itself has embedded text. 

Fig. 2.2: GAN Training Dynamics In OCR-VQGAN[5] 
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 Stefanini et al. [4] reported growing applications of GANs in their captioning 

model survey, as well as recording their vulnerabilities, including training 

instability and hyperparameter sensitivity. Zero-shot learning brought yet another 

revolution to model training. Conventional models need huge paired datasets 

(captions and images), which are costly to annotate. CLIP (Contrastive Language 

Image Pretraining) introduced [11], revolutionized this by pretraining joint image-

text representations on unpaired web-scale data. This was then followed by 

ZeroCap by  [1], which mixed CLIP with the language model GPT-2 to caption 

new images without supervisory training or paired data. This becomes possible 

with much higher flexibility and scalability. But these models can still fail at task-

specific captioning and hallucinated generation owing to the lack of task-specific 

grounding [9].  

 

Fig. 2.3: Loss Function Behavior In ZeroCap[4] 

Apart from zero-shot learning, diffusion models have also proven to be an effective 

class of generative models. Unlike GANs, which produce captions in a single 

forward pass diffusion models progressively denoise an example from a noisy 

distribution until an understandable caption is produced. In the iterative process 
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caption semantics as well as personalization have more control. CustomDiffusion, 

a method employing diffusion methods for generating user and domain-specific 

captions of images [5]. Though still in its infancy as a captioning methodology 

diffusion models have been promising in the generation of richer, diverse, and 

semantically more expressive descriptions, but at the expense of higher 

computational requirements. Another significant parallel line of research is 

concerned with interpreting and fusing text that already exists in an image. This is 

especially applicable for document understanding, digital signage, or product 

naming. The OCR-VQGAN model [7] illustrates how in-image textual content can 

be leveraged to improve caption quality in these scenarios. Through the blending 

of text-in-image detection and generative models, there is the capability to generate 

functionally beneficial and context-aware captions for a vast number of uses. 

Multiple in-depth surveys have examined the evolution and assessment of image 

captioning systems. A detailed overview highlighting the transition from CNN-

RNN models to transformer and pretrained models [4]. Their article highlights how 

models such as CLIP, ViT, and diffusion-based models are revolutionizing the 

state-of-the-art. Visual Question Answering (VQA) datasets and their relationship 

with image captioning tasks [12]. They talked about problems such as dataset bias, 

generalization bounds, and a requirement for improved methods of evaluation 

especially when estimating multimodal alignment and reasoning. Overall the 

image captioning domain has made great strides from rule-based to learning-based 

systems. The primary types of models currently available are encoder-decoder 

models [6], attention models [7][2], zero-shot models [1], and diffusion-based 

captioning models [5]. All of them have strengths and compromises from training 

case to flexibility, generalization, and adaptability. The rest of the chapters will 

continue with a deeper insight into the mathematical modeling, comparative study, 

and experimental comparison of these methods, offering a platform to choose the 

best-performing architectures for a specific real-world setting. 
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2.1 Classification Of Image Captioning Models 

Image captioning models can be broadly classified into three 

categories: template-based, retrieval-based, and neural network-based models. 

Template-based models take pre-existing sentence templates and fill them with 

visual information through object detection methods, but are typically rigid. 

Retrieval-based models create captions by drawing similar images from a database 

and incorporating their labels, providing fluency at the expense of novelty. Neural 

network-based models especially encoder-decoder models with CNN as image 

encoding and RNN or Transformers as caption generation are the most 

sophisticated and produce varied and contextually rich captions. They also use 

attention mechanisms in an attempt to pay attention to salient regions of the image 

while generating captions. 

Model 
Category 

 

Description Key Examples / 
References 

Advantage Limitations 

Encoder-
Decoder 
Models 

Use CNNs for 
image feature 
extraction and 
RNNs for 
sequential 
caption 
generation. 

Show and Tell 
[6], Tiwari et al. 
[1] 

Simple 
architecture, 
easy to 
implement. 

Weak in long-
range 
dependencies, 
limited 
contextual focus. 

Attention-
Based 
Models 

Add dynamic 
attention to 
image regions 
during caption 
generation to 
improve 
semantic 
alignment. 

Show, Attend 
and Tell [7], 
Padate et al. [2] 

Better 
contextual 
relevance, 
improved 
interpretability. 

May still miss 
complex object 
interactions. 

GAN-
Based 
Models 

 

Use generator-
discriminator 
setup to enhance 
caption realism 
and fluency. 

OCR-VQGAN 
[7], Stefanini et 
al. [4] 

Produces 
natural, human-
like text; good 
for structured 
captions. 

Unstable 
training, 
sensitive to 
hyperparameters. 

Zero-
Shot 
Models 

 

Use pretrained 
language and 
vision models 
(e.g., CLIP, 
GPT-2) to 

ZeroCap [1], 
CLIP [11] 

High scalability 
and flexibility; 
no need for 
labeled training 
data. 

May hallucinate, 
limited domain 
accuracy without 
grounding. 
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caption images 
without paired 
data. 

Diffusion-
Based 
Models 

 

Generate 
captions through 
iterative 
denoising, 
enhancing 
personalization, 
and semantic 
richness. 

CustomDiffusion 
[5] 
 
 

High output 
diversity, 
domain 
adaptability, 
and 
personalized 
captioning. 

Computationally 
intensive, slower 
inference time. 

Text-in-
Image 
Models 

 

Focus on 
captioning 
images 
containing 
embedded text 
using OCR and 
generative fusion 
models. 

OCR-VQGAN 
[7] 

Effective for 
documents, 
signage, and 
real-world 
visual text. 

Domain-specific 
use cases, 
complex OCR 
integration 
required. 

Table 1 Comparison Of Models 

     2.2 Review Of Literature And Key Contributions 

The literature review of image captioning refers to the transition of 

models from retrieval- and template-based to sophisticated deep learning 

strategies. The initial attempts made use of templates and retrieval-based 

strategies which proved to be rigid and non-generalizing. As deep learning 

evolved encoder-decoder architectures using Convolutional Neural Networks 

(CNNs) for extracting image features and Recurrent Neural Networks (RNNs) 

or Transformers for text generation became predominant. The main innovations 

include the development of attention mechanisms which increased caption 

relevance by concentrating on the salient regions in the image and use of large 

datasets such as MS-COCO and Flickr30k, which allowed training on robust 

models. The innovations revolutionized accuracy, fluency, and contextual 

understanding in captions generated.  
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S.No. Author Year Method Contribution 

1 Vinyals et 

al. [6] 
 

2015 Show and Tell Introduced an encoder-

decoder for image 

captioning using CNN + 

LSTM. 
 

2 Xu et al. 

[7] 

2015 Show, Attend and 

Tell 

Introduced visual attention in 

captioning to focus on image regions 

dynamically. 

3 Tiwari et 

al. [1] 
 

2022 Hybrid Model 

(ResNet50 + LSTM) 
 

Combine CNNs with 

RNNs for better encoding 

and sequence generation. 
 

4 Padate et 

al. [2] 

2022 VGG16 + 

Attention + 

LSTM 

Attention-enhanced image captioning 

for high-resolution images. 

5 Zeng et 

al. [3] 
 

2022 Vision 

Transformers 

(ViT) 

Replaced CNNs with transformers for 

improved image representation. 

6 Stefanini et 

al. [4] 
 

2023 ClipCap + GPT Used CLIP and GPT-2 to 

generate open-domain 

captions 
 

7 Tanwani et 

al. [5] 
 

2023 CustomDiffusion Used diffusion-based techniques for 

personalized captioning. 

8 Sharma and 

Patel [1] 
 

2022 ZeroCap + GPT-2 

+ CLIP 

Zero-shot captioning 

without any paired image-

text training. 
 

9 Radford et al. 

(OpenAI) [11] 
 

2021 CLIP Unified vision-language model using 

contrastive learning. 

Table 2: Summary Of Key Contributions In Image Captioning Research 
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CHAPTER-3 

 

METHODOLOGY 

 

3.1 Introduction 

The chapter provides explanations about different architectures 

and methods employed to generate captions for images. The process entails 

learning about how the visual features are extracted, how a decoder network 

is fed with visual features and how words are decoded from visual input. The 

chapter explains different types of neural models such as CNN-LSTM 

models, attention models, GAN-based models, Word2Vec-based captioning, 

contrastive learning models such as CLIP, and diffusion-based generation 

models. All of the approaches are elaborated by taking into consideration data 

processing, model architecture, and generation strategy. 

 

Fig. 3.1: Word2Vec Skip-Gram Context Window[10] 
 

 

3.2. CNN-LSTM  
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The approach to image-to-text generation employed in this work 

stems from the most recent innovation in deep learning-based architectures that 

combine computer vision and NLP. There are two primary tasks involved in 

creating natural language descriptions of images, identifying relevant visual 

features and projecting the features onto semantically meaningful and 

contextually relevant sentences. This is a two-pronged challenge tackled in 

earlier research like the Show and Tell model [1] where a CNN-RNN 

architecture was used and Show Attend and Tell [2] where an attention 

mechanism was used to boost spatial attention during captioning. The primary 

goal of this work is to create a model that can generate semantically rich and 

grammatically correct captions for the provided input mages as opposed to the 

non-coherence and generalization present in the initial encoder-decoder models 

[3][6][11]. 

 

Fig.3.2: CNN And GNN Framework[6] 

With the increasing might of pre-trained CNNs and decoders such as LSTMs 

and Transformers recent state-of-the-art image captioning systems can not only 

produce accurate descriptions but also context-sensitive [4][8][12][17]. The 

step-by-step process outlined in this chapter involves various steps, dataset 

selection and preprocessing, encoder-decoder framework,attention mechanism 
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inclusion, training methods, and metric-based assessment through measures 

such as BLEU, METEOR, and CIDEr [9][10][16][24]. The design is motivated 

by the best practices of numerous successful models that focus both on spatial 

comprehension of the image as well as syntactic coherence of the output text 

[1][2][5][7]. It also draws inspiration from Transformer-based work [21][23], 

which has brought phenomenal gains over standard RNN-based methods of 

coping with long-distance dependencies as well as parallel training. The end 

model combines a CNN-based encoder with an RNN or Transformer-based 

decoder that is trained end-to-end using a carefully chosen dataset of image-

caption pairs. This guarantees that the model learns effective cross-modal maps 

between visual and linguistic modalities [13][14][15][20]. Grounded on a solid 

foundation of earlier research, in this study an attempt is made to augment a 

given model by proposing a hybrid deep learning model that leverages the 

strengths of other current methods and improves on their weaknesses, 

specifically contextual precision and syntactic ease [18][22][25][26]. 

 

Fig.3.3: Architecture Of CNN Models[13] 
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3.3. Image Encoder 

The image encoder is a key element of the image-to-text generation 

model responsible for converting visual input into semantic feature vectors 

containing meaningful information that can be interpreted by the decoder 

module. It has been shown in recent research that Convolutional Neural 

Networks (CNNs) perform effectively in visual feature extraction because they 

can learn spatial hierarchies from visual input. CNNs are mainly employed to 

learn representations such as objects, shapes,edges and encode robust high-

level semantics, building the captioning context [1][3][8]. Pre-trained CNN 

models like VGG16, InceptionV3, and ResNet50 are mainly employed as 

encoder backbones because of their generalization capabilities and training 

efficiencies when applied with a large data image corpus like ImageNet. Pre-

trained models are employed to lower computation costs and improve 

performance, particularly where there is limited labeled data for the given task 

[4][6][12]. For example, Show and Tell made use of InceptionV3 to generate 

fixed-size image embeddings that were fed as input into an LSTM decoder [1]. 

In higher-level models, spatial feature maps, instead of fixed-size vectors are 

taken from intermediate levels of CNNs and used in attention mechanisms. 

This method, originally presented in Show, Attend and Tell [2], allows the 

decoder to selectively attend to regions of the image that are relevant while 

predicting a word leading to more contextually proper and more detailed 

captions. Similarly Transformer captioning models have utilized CNNs in the 

encoding phase to retain spatial locality while promoting global reasoning 

[17][21]. The encoder output is typically fed through a transformation of 

dimensions using a dense layer to match the size of the decoder's input. 

Additionally, normalization and dropout are also applied to support model 

generalization and stability during training [8][13]. This organized visual 

representation serves as the basis for filling the gap between computer vision 

and natural language processing and enables the model to comprehend and 

narrate visual scenes accurately [1][5][9][11]. 

 



26 
 

 
 

3.4. Text Decoder 

The text decoder is an integral component of the image-to-text 

generation model that takes the encoded visual features and generates a 

natural language description. The majority of contemporary models employ 

Recurrent Neural Networks (RNNs)  i.e. Long Short-Term Memory (LSTM) 

units or Gated Recurrent Units (GRUs) because they can manage temporal 

dependencies as well as take responsibility for long-range context in 

sequences. These models are usually seeded with the visual feature vector 

derived through the encoder so that the decoder can condition word 

generation on the image content [11]. In sophisticated models attention 

mechanisms are used in the decoder so that at each step of caption generation 

it dynamically attends to the proper spatial areas of the image. This enables 

the decoder to produce more descriptive and contextually accurate captions, 

as seen in models such as Show, Attend and Tell [7]. Additionally, 

transformer-based decoders, building upon the success of BERT and GPT 

models in NLP, have been proposed to enhance parallelization and contextual 

understanding in captioning systems [15]. Recent studies have also 

investigated the incorporation of CLIP (Contrastive Language-Image 

Pretraining) into decoding, where visual features are matched with linguistic 

representations in a common latent space [9]. This enables zero-shot 

captioning and domain adaptation. Also, diffusion-based text decoders have 

been effective substitutes for conventional autoregressive models by 

incrementally improving the output text in a chain of denoising steps, with 

greater fluency and semantic correspondence [5]. In specific designs such as 

OCR-VQGAN [12], the decoder is designed to process visual semantics as 

well as textual information within images. Such hybrid decoders are an 

extension to overall capacity with the addition of other inputs like OCR 

outputs to introduce domain knowledge into the captioning like finding 

numbers product names or signs from the image. On the whole the decoder 

performance is very significant for producing quality captions and its 

architecture continues to be streamlined with advancements in neural network 
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design, attention methods, and cross-modal learning models. 

3.5. Diffusion-Based Captioning 

Diffusion-based captioning techniques have also become the new 

approach within the more general image-to-text generation framework. 

Unlike traditional language generation techniques these models produce a 

formatted sentence from an input sequence of random noise via an iterative 

refinement scheme. The idea underlying this is an iterative approach in which 

the system learns to denoise noisy representations and generate coherent text 

that is aligned with the visual content of the input image. In contrast to 

sequence-based captioning architectures which generate words in sequence 

diffusion models work in terms of a fixed number of steps. Each step denoises 

and gets the output towards a coherent caption. This gradual shift also enables 

greater structure and style control of the synthesis outputs. The method also 

enables a more flexible structure during synthesis time producing more 

diverse and context-sensitive captions. It is one of the advanced variations of 

this algorithm used in domain-specific models i.e. those that support specific 

use case types. For example diffusion captioning has been applied to produce 

industry-specific requirement descriptions. Applications include structured 

output for healthcare diagnosis cataloging in retail, and structured summaries 

in technical documentation. In such an environment a diffusion-based model 

may be trained or steered using domain-specific prompts and generate 

descriptions not just correct but fitting for the communication conventions of 

the target domain.Such captioning is beneficial in cases where descriptive 

richness and flexibility are necessary. By enabling outside conditions or 

stimuli to control the result the system can generate multiple variations or 

meanings of the same image. This is beneficial where descriptive creativity 

or customizing is of a high priority. 

 

Diffusion-based captioning has its drawbacks though. The process at its 

iterative stage requires greater computational strength and processing time 
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than with less advanced models. Moreover the high complexity of 

implementation and the need for large training data can render such models 

impractical to implement in resource-constrained environments. 

           3.6 Dataset Description 

The success of image-to-text generation models is heavily reliant 

on the existence of well-annotated and diverse datasets that consist of an 

image and its respective textual description. Two benchmark datasets are used 

in this study: MS COCO (Common Objects in Context) and Flickr30K both 

of which are standard in the image captioning world because they have high-

quality annotations and a very diverse content.The MS COCO dataset is 

among the largest datasets for caption generation. It has more than 120000 

real-world images, each of which is labeled with five human-written captions 

of varying views describing what is seen in the image [9]. The images 

represent 80 object categories and include complex settings with multiple 

objects and interactions. The diversity of annotations makes MS COCO well-

suited for training deep models that can comprehend complex visual 

arrangements and produce semantically coherent captions. The dataset is 

normally separated into training, validation, and testing sets, with 

approximately 82000 images in the training set, enabling scalable and stable 

model training.The Flickr30K dataset, consisting of about 31783 images 

further contains five descriptive captions for each image [12]. The images are 

mainly of people performing everyday activities, thus being especially 

beneficial for models that deal with human-object interactions and action 

recognition. In comparison with MS COCO, Flickr30K captions are longer 

descriptive and Linguistically diverse, facilitating the improvement of the 

language generalization capacities of captioning models. All captions are 

tokenized, normalized to lowercase and punctuation removed during 

preprocessing for consistency. A word vocabulary is constructed with a 

frequency cutoff to minimize noise from infrequent words. Each word is 

mapped to an index for embedding. Images are resized and normalized before 

being sent to the CNN-based encoder [1]. Both datasets are employed under 
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fixed training-validation-test splits to achieve reproducibility and a fair 

comparison with previous work, like Show and Tell  [6] and  Attend and Tell 

[7]. The fusion of the two datasets offers the proper balance between real-

world intricacy and linguistic heterogeneity which makes them perfectly 

suited to test the performance and generalization of the suggested image 

captioning model. 

 

Fig.3.4: Distribution In LSTM-Based Captioning[7] 
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CHAPTER 4 

 

IMPLEMENTATION 

 

 

4.1 Implementation 

This chapter discusses the experimental evaluation and real-

world use of many image captioning models based on modern deep learning 

architecture. The models were designed to test the impact of various design 

aspects such as attention, embedding layers, and zero-shot capability on 

captioning within various image sets. Implementation was done using Python 

and took advantage of libraries like TensorFlow, PyTorch and OpenCV 

which offer solid platforms for building and training deep neural networks 

for visual-language tasks [3][22]. Standard datasets such as MS-COCO, 

Flickr8k, and Flickr30k were employed for training and testing [21][18]. 

They are standard benchmarks of real-world images with several human-

written captions. Their linguistic diversity and content diversity make them 

suitable for the test of the generalizability of captioning models [24]. All the 

pictures were preprocessed using standard normalization and resizing 

techniques and captions were tokenized and encoded in custom vocabularies. 

Three categories of models were used and contrasted: vanilla CNN-RNN 

encoder-decoder models [18], attention models [19][25], and vision-language 

pretrain-motivated zero-shot models [1][23]. In attention-augmented models 

processes such as dual attention and visual-semantic alignment were 

investigated to enhance the capacity of the model to attend to important areas 

of the image during word generation [14][20]. Evaluative metrics comprised 

BLEU, METEOR, CIDEr, and ROUGE, each chosen for its specific 

capability in measuring caption quality from varied angles [24][21]. BLEU 

quantifies n-gram precision, METEOR incorporates synonym and stem 

equivalence to CIDEr seeks human annotator agreement and ROUGE 

measures recall. The variety of metrics gives a complete assessment 
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framework to determine linguistic fluency and semantic precision. The 

experimental results are explained in detail within this chapter with numeric 

scores and sample captions. The results demonstrate how architectural 

components such as attention, embeddings, and visual-text alignment 

prominently affect the degree to which model performance relies on 

contextually grounded image descriptions [5][16]. 

 

 

Datasets Used: MS-COCO, Flickr8k, Flickr30k. 

Evaluation Metrics: BLEU, METEOR, CIDEr, ROUGE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 
 

CHAPTER 5 

RESULTS 

 

5.1 Evaluation Of Models 

The models were tested against the benchmark standards and 

versions with the highest scores per category were picked. 

MODEL BLUE METEOR CIDEr ROUGE DATASET 

CNN-LSTM [1] 0.68 0.30 0.83 0.55 MS-COCO 

DUAL 

ATTENTION [2] 

0.73 0.34 0.89 0.60 Flickr8k 

DEEP FUSION [3] 0.70 0.33 0.86 0.58 Flickr30k 

OCR-VQGAN [7] 0.65 0.28 0.78 0.52 Svt 

Word2Vec [8] 0.72 0.32 0.82 0.56 Custom 

Dataset 

CustomDiffusion[5] 0.76 0.35 0.90 0.63 COCO 

Table 1 Model Comparison 
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            5.2 Analysis Of Models 

CNN-LSTM is good with big datasets but does not understand fine semantic 

details. 

Attention-based models (particularly Dual Attention) offer better contextual 

alignment. 

Word2Vec-based models create semantically coherent captions using word 

embeddings. 

Fig. 4.1: Word2vec Keyword Image2text Generation Model [20] 

 

OCR-VQGAN excels in recognizing embedded text but fails in 

understanding general scenes. 

Custom Diffusion has the best overall performance across all of the measures 

based on its control and personalization capability so it is particularly strong 
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in domain-specific use. 

IMAGE Ground 

Truth 

CapƟon 

CNN-

LSTM Dual 

AƩenƟon 

ZeroCap 

(CLIP) 
CustomDiffusion 

 

A man 

is riding 

a 

bicycle 

on the 

road. 

A man 

on a 

bike. 

A man 

riding a 

bike. 

Person 

outdoors, 

bicycle. 

A man riding a 

bicycle on a city 

road. 

 

A group 

of 

children 

playing 

soccer. 

Children 

playing. 

Children 

playing 

football Kids 

outdoors, 

sports. 

A group of kids 

playing soccer 

on grass. 

 

A dog 

jumping 

over a 

hurdle. 
Dog 

jumping. 

Dog 

jumping 

over bar 

Animal 

leaping. 

brown dog 

jumps over an 

obstacle in 

training. 

Table 2 Qualitative Comparison 
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CHAPTER 6 

 

CHALLENGES & LIMITATIONS 
 
 

 
6.1 Challenges 

The image-to-text generation space although far more developed 

in the last few years is still bounded by a wide set of problems that prevent its 

usage, scalability, and robustness across a range of real-world problems. 

Although modern models have been incredibly successful within controlled 

settings and benchmark data they are not well-suited for situations involving 

open-domain, noisy, or context-abundant data. These challenges emerge along 

a range of dimensions including semantic understanding multimodal fusion, 

generalization, fairness, and evaluation, and together serve to underscore the 

need for ongoing research and innovation in this field. Undoubtedly the most 

fundamental and persistent challenge is that of semantic understanding of 

visual scenes. Captioning images is beyond object detection in an image, it is 

holistic scene understanding that includes understanding spatial relationships, 

contextual information, actions, and object interactions. The models need to 

infer the activity or intent in the image which may involve abstract reasoning 

or common-sense knowledge that isn't evident. For instance the distinction 

between an individual holding a tool and using it requires subtle nuances that 

come too readily to be overlooked by existing architectures. It even becomes 

more complicated when objects multiply and combine in a dynamic or 

uncertain environment. Most models produce grammatically correct captions 

that do not accurately describe the semantics of the scene and therefore provide 

irrelevant or misleading answers. The other tremendous challenge is obtaining 

strong multimodal alignment. Making a meaningful caption from an image 

involves bridging the gap between two fundamentally different representations 

of data, image features, and language words. The semantic gap between pixel-
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based information and human language makes it inherently difficult. Even with 

the aid of attention mechanisms and transformer-based encoders which are 

designed to be helpful with alignment most of them still attend to non-

informative or deceptive aspects of images while generating. Therefore 

captions may miss objects lack important information in the scene or fail to set 

the appropriate relations between things. These errors are most notably 

observed in scenes involving messy backgrounds occluded objects or abstract 

visual objects. There is also an issue with generalization ability.  

These big image captioning models are often trained on huge labeled 

collections like MS COCO or Flickr30K, consisting of images and objects with 

classes. These collections are exhaustive but lack diversity particularly across 

and within cultures, domains, and geographies. Thus when such models are 

exposed to out-of-distribution images like art medical images, or factory 

equipment, they fail miserably. Besides in zero-shot scenarios when the model 

must generate captions for unseen objects or scenes during training time 

outputs are generic and disorganized. This gap suggests current inadequacies 

in learning paradigms and a need for more robust pretraining or adaptation 

processes. Social and algorithmic captioning bias are also critical concerns. 

Training sets typically have imbalanced or stereotypical world imageries and 

if not corrected the model will carry and enlarge such biases. This is especially 

hazardous where humans are present in the image e.g., home environments, 

workplaces, or social gatherings. The model can attribute gender roles identify 

people wrongly or support cultural stereotypes and can end up offending, 

misinforming, or excluding. Prevention of such biases necessitates not only 

heterogeneous training data but also fairness-conscious learning algorithms 

and bias reduction methods at all stages of the training and test pipeline. Along 

with the problem of generation, there remains the nagging problem of objective 

assessment. Although scores like BLEU, METEOR, ROUGE-L, and CIDEr 

are widely used they tend to be biased towards syntactic similarity and do not 

easily capture the semantic quality or pertinence of captioned text. The scores 

give shallow reference caption overlaps, rewards, and potentially penalize 

equally good alternative phrasings. Thus, models that create accurate and fluent 
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captions can get low scores if their words are not similar to the ground truth. 

This is especially pronounced for creative, abstractive, or domain-specific 

tasks with many correct captions. Thus it is equally necessary to create 

measures that take context, diversity, and human interpretability into account 

to facilitate the growth of the field. 

 

6.2 Limitation 

Given the computational complexities and data issues above there 

are some practical constraints to limit the deployment, scalability, and real-

world robustness of image captioning systems. These are most critical while 

making the transition from research usage to production-level use where 

restricting resource options input diversity, interpretability, and responsiveness 

are success factors. The most elementary constraint is reliance on large-scale 

annotated datasets. Supervised training methods which prevail in recent image 

captioning algorithms are highly dependent on the paired image-caption 

training data. Such data is time-consuming and expensive to prepare with 

human annotators authoring reviews for thousands or millions of images. Such 

reviews are also usually constructed for general-purpose usage and will thus 

focus on over-representing some domains (e.g. common objects, typical 

activities) but under-representing specialist or esoteric domains like medicine, 

engineering, or cultural backgrounds. Thus models learned from such datasets 

overfit their distribution and fail to generalize when used in domain-specific or 

real-world settings. The similarity of training data restricts the applicability of 

captioning models in environments that demand accuracy, domain knowledge, 

or technical vocabulary. The second significant drawback is the inordinate 

computational expense of learning and using state-of-the-art captioning 

models. Transformer-based architectures, attention mechanisms, generative 

adversarial networks (GANs) and diffusion processes are all very 

computationally intensive particularly when dealing with high image 

resolutions or intricate sentence generation tasks. Training these models also 

involves the need for access to high-end hardware frequently GPU or TPU 
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clusters, that in low-resource environments like academic labs, startups or 

deployment on mobile and embedded devices may not be feasible. In addition, 

in inference, the processing time and memory needed to process every image 

can lead to latency especially for multi-step models or models that have 

iterative refinement mechanisms like diffusion-based models. A very similar 

problem is the non-interpretability and non-transparency of models based on 

deep learning for driving captioning. The majority of modern models are black 

boxes and little can be said regarding how visual representations are 

transformed into linguistic tokens in the generation process. The user and 

developer are not very capable of controlling the model's reasoning process, 

and typically no one knows why a particular word or phrase was selected in a 

caption. This lack of transparency is highly dangerous in regulated or high-risk 

domains like health care, money, or autonomous systems, where visibility into 

the decision-making is required for validation, accountability, and user 

confidence. In these domains a caption that might seem plausible but is 

semantically erroneous can be extremely dangerous if the user does not have 

any means to validate the output. Moreover the captioning outputs have limited 

diversity and creative potential in the majority of cases. Though they are 

sometimes fluent and well-formed sentences, like what they typically are 

templated or repetitive. The reliance on the most frequent patterns acquired 

during training renders them repetitive but without variation or depth. For 

example numerous disparate images can have the same description regardless 

of changes in content or context. This matters most in applications that are 

creative in nature or linguistic exercise, like digital narrative, content writing, 

art practice or disability writing for the blind who must use rich image 

description to communicate the content of visual media. Scalability and online 

performance continue to be concerns particularly where models are used in 

interactive or mobile environments. Though most systems perform efficiently 

with high precision in offline, controlled environments their efficiency declines 

under time-critical conditions. Applications like real-time captioning of video, 

AR overlays, or camera-based navigation systems for accessibility need 

models to realize visual information and produce captions within milliseconds. 
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Yet, existing captioning models are plagued with latency due to their depth of 

architecture and computational needs. This impacts responsiveness and may 

lower system real-time usability. Lastly adaptability to purpose or use context 

alteration is required. Most existing captioning systems cannot adjust their 

descriptions to the target audience, platform, or communicative purpose. For 

instance an educational application might have to accommodate plain captions 

to support whereas a commerce gadget might require product characteristics. 

Lacking the user-tuned or context-sensitive generation current systems may not 

meet such diverse expectations. Their inability to include constraints or a 

particular task's preferences built into them prevents them from being 

integrated into personal systems or role-based applications. 
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CHAPTER 7 

 

 CONCLUSION AND FUTURE SCOPE 

 

 

7.1 Conclusion 

The image-to-text domain is now a very active domain of artificial 

intelligence in which computer vision's perceptual ability and natural language 

processing's communicative ability are combined. The task of this domain is to 

create models that can understand visual information e.g. objects, scenes, and 

spatial relations, and produce coherent and relevant textual descriptions. This 

capability has broad applications across a range of fields such as content 

accessibility, image auto-annotation, accessible tech for the visually impaired, 

multimedia retrieval, and content creation on online media. 

This thesis conducted a thorough review of different deep learning-based 

methods towards generating image captions from simple encoder-decoder 

models to advanced ones like attention mechanisms, adversarial networks, 

zero-shot learning methods and diffusion-based models. Encoder-decoder 

models normally based on CNNs and RNNs formed the backbone for image 

captioning tasks to receive visual features extracted and converted into 

sequences of words. The attention-based models improved upon it by 

providing dynamic attention towards various parts of an image at every caption 

generation step, generating contextually more sensitive and targeted 

descriptions. GAN-based models provided adversarial training that focused on 

increasing naturalness and diversity of generated captions while zero-shot 

approaches utilized large-scale vision-language models with no pairwise 

training. The diffusion models recently emerged as a new paradigm that 

produces captions via iterative refinement with the potential to provide high-

quality, domain-specific, and style-controlled output. Experimental setups 
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across this work used benchmark datasets like MS COCO and Flickr30K, 

which provided rich sets of image-caption pairs. Performance of the model was 

measured using widely employed evaluation metrics like BLEU, METEOR, 

ROUGE-L, and CIDEr. The report unveiled that although most models are 

great at syntactic accuracy and object identification they always lag in semantic 

richness and context coherence. Models occasionally added made-up 

information that is not present in the image or were unable to identify advanced 

relations between objects. These findings state that present models are still 

really far away from replicating the rich perceptual discrimination and 

expressiveness in human image description. While there is evident 

improvement in accuracy, diversity, and multilingualism, several systemic 

constraints still exist. The majority of the models still depend on the availability 

of large amounts of annotated data for supervised learning limiting their 

deployment in settings where those are not available. In addition the 

computational resources required by current architectures especially 

transformer and diffusion-based ones are an obstacle to real-time deployment 

as well as scalability in low-resource settings. Another pressing concern is that 

such systems are not interpretable and transparent enough. One needs to know 

how the visual inputs are being converted and transformed into the particular 

textual outputs so one can also hold the system accountable particularly in life-

critical domains like medicine or surveillance where uninformed or biased 

output would be dangerous. 

 

7.2 Future Scope 

The future of image captioning research will be centered on 

making both the generation model's flexibility and contextual awareness better. 

One important direction is multimodal information integration. Rather than 

being satisfied with image features next-generation systems can leverage 

complementary data streams like audio signals, temporal dynamics (in video 

data), text within embedded regions (through OCR), or structured knowledge 

from knowledge bases. Such fusion of modalities may lead to more 

comprehensive, context-sensitive, and situational captions about the setting in 
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which the image is being viewed. A potential area that could be extremely 

fruitful is creating specialized captioning systems for domains. General-

purpose models fail to satisfy specific communication conventions for areas 

such as medical imaging, industrial diagnostics, education or legal 

documentation. By using domain-specific terms formalized structures and 

semantic constraints in adapting models one can develop systems that are more 

effective in professional and technical applications. To this end reinforcement 

learning algorithms and user feedback can be utilized to dynamically optimize 

the captioning system by adjusting according to patterns of usage as well as 

users' preferences. 

Personalization will be another key area of concern in future models. Instead 

of spewing out generic captions models will be learned to produce output that 

is attuned to users' personal interests, writing style, or task-specific 

requirements. This will be particularly useful in educational software, assistive 

technology and customer-facing applications. Moreover there is increasing 

interest in models that are multilingual and operate in low-resource settings. 

The ubiquity of English in publicly released data and models restricts its 

availability to English speakers. Cross-lingual training, unsupervised training, 

and translation-augmented datasets research will be at the center of spreading 

the application of image captioning systems geographically and culturally. 

Technically scalability and efficiency will always be of top priority. Pruning, 

quantization, and knowledge distillation as tools for model optimization will 

facilitate deployment to embedded and mobile devices. This will make a real-

time image captioning application possible in robotics, augmented reality and 

smart surveillance with limited computational resources. Ultimately its future 

will lie in the ethical and evaluative domain. As it becomes more widely used 

across sensitive domains its bias, fairness, and interpretability become more 

and more critical. New metrics that involve human judgment, social context, 

and the utility of captions for downstream tasks will replace or complement 

traditional n-gram-based metrics. 
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