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ABSTRACT 

Plant leaf disease segmentation has been a very important topic for research over a 

decade. Segmentation helps to calculate the spread of infection, and proper image 

preprocessing leads to better results in disease detection and identification. In this 

thesis we have proposed our work, findings and potential of AI models in segmenting 

image accurately based on recently proposed architectures. Making models too 

complex makes it computationally expensive. We must focus on finding the model that 

has less trainable parameters. This is achieved when we focus more on making 

architecture lossless. It can be achieved in many ways, we have proposed propagating 

the learnings of each previous layer to propagate in subsequent layer to avoid any 

information loss and up sample using indices to reduce loss. Model maintains good 

accuracy with very a smaller number of parameters. 

Our model uses a few dense layers to trap the information within the encoder decoder 

architecture. This reduces exponential increment in number of channels and stills make 

network deep and more lossless. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Agriculture is the basic and most important sector, being the primary sector, it affects 

many sectors higher in hierarchy. It affects the economy, stability, and sustainability in 

many countries. In the field of AI, the detection of plant disease is an important task 

that is used to automate the detection of pests and implement the necessary measures. 

Data preprocessing plays a crucial role in improving the performance of AI models 

[1]. Hence, it is obvious to improve those techniques individually. Here, we propose a 

Semantic Segmentation technique to separate background, leaf, and infected area in 

given leaf image. Better segmentation results in better prediction [1]. 

1.2 Motivation 

As the global population grows, addressing agricultural production challenges is 

essential to enhance food security and efficiency. Smart farming is a promising 

approach that boosts agricultural productivity by utilizing advancements with the help 

sensors attached to iot devices, monitoring the farms using AI.  

Key areas within smart farming include planning which crop to plant where, 

monitoring all the activities if they are performed properly, and predicting the yield, 

which are crucial for improving performance and expanding the economic power of 

modern approach of agriculture. Yield prediction vital for agricultural businesses. It 

helps buyers to make fresh plan based on sales estimates or customer orders.  

If buyers anticipate a shortage or surplus in production, they can take proactive steps, 

such as sourcing extra items from retailers or redistributing over supply. Ac curate 

yield predictions enable better stock management, helping buyers reduce costs while 

keeping prices favourable for farmers. This improves sourcing strategies, meets 

customer needs more effectively, and fosters closer collaboration between farmers and 

buyers, ultimately benefiting both parties. 

1.3 Overview 

Our ultimate objective is plant disease detection from the image of leaf or leaves. To 

increase accuracy of deep learning models we focus on better segmentation that leads 

towards improvement in terms of accuracy and computational advantage. 

1.4 Challenges 

Segmentation methods have lot of problems. 

• They have limited generalization; models are experimented on limited 

number of crops and datasets. 

• Various algorithms are computationally expensive and heavy to run on 

normal de vices  
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• Data set we have for training models are manually or synthetically created, 

but while using models in real world, it can undergo diverse backgrounds, 

weather and lighting conditions 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Literature Survey 

Recently lots of efforts are made for effective leaf image segmentation. That include 

lot of traditional and modern deep learning methods. 

In 2023, X. Zhang et al. [2] presented a model for segmenting grape disease. Its goal 

is to achieve precise automatic image segmentation for small diseased areas in grape 

leaves, which is challenging due to complex backgrounds and rich edge textures in 

grape diseases. The segmentation model used is the Cross-Resolution Transformer 

(CRFormer). It employs attention mechanism that encodes channel and spatial 

information, that handles tiny, infected areas in complex image conditions.  

The integration of artificial intelligence in agriculture, particularly for plant disease 

detection and classification, has shown immense promise. Among various AI methods, 

deep learning-based segmentation and classification techniques have demonstrated 

superior accuracy, especially in identifying diseases from plant leaf images. Recent 

research has shifted from traditional convolutional neural networks (CNNs) to more 

advanced hybrid models, incorporating Transformers and optimization strategies to 

enhance performance and efficiency. This review synthesizes key contributions from 

recent studies to outline the state-of-the-art in this domain. 

A significant breakthrough came with the introduction of the CRFormer model, which 

leverages multi-resolution attention mechanisms to segment grape leaf diseases 

effectively [2]. By integrating cross-resolution features, the model captures both local 

and global context, significantly improving its robustness to variable disease patterns 

and complex background textures. This approach not only enhances segmentation 

accuracy but also demonstrates better generalization to unseen samples, making it 

suitable for real-world agricultural deployment. 

In a similar vein, researchers have explored multiscale convolutional designs for 

tomato leaf disease segmentation. A notable example is the multiscale U-Net model 

proposed for detecting and isolating tomato leaf lesions [3]. By incorporating 

convolutional filters of varying kernel sizes and hierarchical feature learning, the 

model achieves improved precision in identifying disease boundaries. The use of 

residual blocks and enhanced skip connections further boosts the model’s ability to 

retain fine-grained details during up sampling, which is critical for accurate 

segmentation. 

While CNNs have been the backbone of most segmentation tasks, some researchers 

have generalized their work to a wider range of plant species and environmental 

conditions. One such study proposed a robust deep learning model with an emphasis 

on edge-aware segmentation [4]. By enhancing boundary localization and 

incorporating attention mechanisms, the model achieved accurate segmentation under 

varying lighting and occlusion scenarios. This adaptability is vital for field conditions, 

where controlled environments are rare. 
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In addition to advanced neural architectures, some studies have taken a more systems-

based approach. One such work proposed a complete pipeline for tomato leaf disease 

detection that spans from image preprocessing to disease treatment recommendations 

[5]. The integration of traditional image processing with deep learning techniques 

made the system more interpretable and applicable in resource-limited settings. It 

highlights the importance of not only developing accurate models but also ensuring 

they can be deployed in real agricultural ecosystems. 

The U-Net architecture remains a popular baseline due to its encoder-decoder structure 

and ability to preserve spatial details. An improved version of U-Net, which modifies 

the decoder and incorporates enhanced skip connections, was shown to better handle 

complex and irregular lesion shapes [6]. The refinement in up sampling paths helps 

maintain spatial coherence, ensuring that segmented outputs align closely with ground 

truth masks. These improvements underline how slight architectural changes can yield 

significant gains in segmentation quality. 

A growing trend in this domain involves integrating optimization techniques into deep 

learning pipelines. For instance, a hybrid framework that combines metaheuristic 

optimization with CNNs has been developed for the classification and segmentation 

of tomato leaf diseases [7]. The optimization layer fine-tunes model parameters 

dynamically, leading to better convergence and improved classification accuracy. This 

approach offers a balance between high performance and computational efficiency. 

Transformers, initially designed for natural language processing, have now found 

applications in plant disease segmentation due to their ability to model long-range 

dependencies. LRT specifically adapted for grape leaf segmentation, introduces a 

memory-efficient reversible block structure [8]. This design reduces memory overhead 

during training, allowing for deeper architectures without increasing resource 

requirements. LRT’s performance is especially noteworthy in scenarios requiring high-

resolution processing. 

Beyond segmentation, some works have emphasized the creation of domain-specific 

datasets to facilitate research. A study focusing on morning glory plant segmentation 

introduced a dedicated dataset and used a semantic segmentation model tailored for 

selective harvesting applications [9]. The availability of such benchmark datasets 

enables fair comparison among models and supports the development of more 

generalized solutions across plant species. 

Efficiency remains a crucial factor for real-world application, especially in mobile or 

edge devices. To address this, the EAIS-Former model was introduced, combining 

Transformer modules with efficient attention mechanisms to segment fruit leaf 

diseases accurately while keeping computation low [10]. The model’s architecture 

allows for faster inference and reduced latency, making it ideal for handheld 

agricultural diagnostic tools. 

Further exploring lightweight architectures, the Reformer model modifies traditional 

convolutional kernels and applies re-parameterization to reduce redundancy in 

network weights [11]. This approach helps compress the model without sacrificing 

segmentation performance. The reduction in computational burden makes Reformer a 

practical choice for remote sensing applications and drone-based monitoring systems. 
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While deep learning dominates current literature, traditional algorithmic methods still 

offer value. One study employed genetic algorithms to optimize segmentation using 

various color spaces [12]. Although it lacks the adaptability of neural networks, this 

approach is particularly effective for preprocessing or enhancing image quality before 

feeding data into deep models. It underscores the potential of hybrid systems 

combining classical and modern methods. 

Another lightweight Transformer-based approach, UPFormer, adopts a U-shaped 

architecture tailored for grape leaf disease segmentation [13]. The model prioritizes 

computational efficiency and generalization, making it suitable for deployment in 

uncontrolled field environments. Its attention layers focus on disease regions, ensuring 

that irrelevant background noise is minimized during segmentation. 

In addition to grape and tomato plants, research has also been directed toward other 

crops. For example, a deep CNN system was developed for paddy plant disease 

identification [13]. The model balances lightweight design and high classification 

accuracy, with an emphasis on real-time disease detection in smallholder farming 

contexts. The research stresses the importance of building inclusive and adaptable 

tools to address the diversity of crops and farming practices worldwide. 

Across all these efforts, several key themes emerge. Firstly, there is a noticeable shift 

from traditional CNNs to Transformer-based models due to their superior feature 

extraction capabilities and ability to capture long-range spatial relationships. Secondly, 

many recent models focus on computational efficiency, either through model 

compression, lightweight architectures, or hybrid approaches, ensuring practical 

usability in the field. Finally, the integration of real-world constraints, such as varying 

lighting conditions, occlusion, and background complexity, reflects a growing interest 

in deploying these models in practical, real-time agricultural scenarios. 

To conclude, the literature demonstrates rapid advancements in deep learning-based 

segmentation and classification methods for plant leaf disease detection. Innovations 

in model design, attention mechanisms, optimization strategies, and dataset 

development collectively contribute to more accurate, efficient, and field-ready 

diagnostic tools. As the field continues to evolve, future work is likely to focus on 

cross-species generalization, self-supervised learning, and integration with Internet of 

Things (IoT) platforms to create fully autonomous crop health monitoring systems. 
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Table 2.1 Literature Survey. 

 

  

Author(s) 
Paper  

Reference 
Year Advantages Limitations 

Xinxin Zhang, Chaojun Cen, 

Fei Li, Meng Liu, Weisong 

Mu 

 

[2] 

 

2023 

less computation than 

competitors specifically 

on the Field-PV dataset 

Down sampling is 

irreversible and leads to 

loss of information. 

Kahkashan Perveen, Sandip 

Debnath, Brijesh Pandey, 

Sumanta Prasad Chand, Najat 

A. Bukhari, Pradipta 

Bhowmick, Najla A. Alshaikh, 

Shaista Arzoo, Shanzeh Batool 

 

 

[3] 

 

 

2023 

Decrease wastage of 

time on annotating 

dataset for with high 

accuracy, at very tiny 

dots of pixels. 

dataset is unequal/biased 

across disease categories 

and is from single 

geographical source. 

 

Olfa Mzoughi,  

Itheri Yahiaoui 

 

[4] 

 

2023 

helps to recognize new 

species holding diseases 

that were previously 

learnt 

Biased because as related 

to bias in PlantVillage 

dataset. 

Rahman, S.U., Alam, F., 

Ahmad, N. et al 

 

[5] 

 

2023 

For tomato crops it is 

fast and effective in 

terms of cost. 

Limited to tomato crop 

Shanwen Zhang, Chuanlei 

Zhang 

 

 

[6] 

 

 

2023 

Resolves overfitting, 

which leads to being a 

better model. 

Overpowers underfitting 

issue with the help of 

residual connection. 

Model is not properly 

optimized and not tuned 

properly. 

Manjunatha Badiger, Jose 

Alex Mathew 

 

[7] 

 

2023 

Successfully segment 

tomato leaf images more 

accurately and 

effectively 

Dataset was limited to 

specific conditions and 

hence model is not 

properly validated as per 

scope of generalization. 

Jared Cervantes Canales, Jair 

Cervantes Canales, Farid 

Garcıa-Lamont, Arturo Yee-

Rendon, Jose Sergio Ruiz 

Castilla, Lisbeth Rodriguez 

Mazahua 

 

 

[12] 

 

 

2024 

Easily choose best 

segmentation techniques 

for any new domain 

using genetic algo. 

experiment do not include 

segmentation techniques 

that focus on separating 

damage regions on leaves 

Jiangwen Lu, Bibo Lu, Wanli 

Ma, Yang Sun 

 

[10] 

 

2024 

Huge increment in 

accuracy compared to 

U-Net model.  

High computational Cost. 
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2.2 Datasets 

Below is list of publicly available datasets. 

Table 2.2 List of publicly available dataset. 

Dataset Name No of images Year Released 

Plant Village Dataset 61486 2019 

Field Plant Village [7] 665 2023 

Syn-Plant Village [7] 54306 2023 

Rice Leaf disease dataset 120 - 

Tomato leaf detection 

dataset 

11000 2022 

PlantDoc 2598 2020 

Leaf disease segmentation 

dataset 

588 images including 

mask 

2021 

 

Xinxin Zhang, Fei Li, Haibin Jin, 

Weisong Mu 
[8] 2023 Use reversible approach 

to compress data while 

passing through MHA. 

In terms of performance, it 

has less Dice compared to 

other segmentation models 

specially for segmenting 

leaf area. 
Jingxuan Su, Sean Anderson, 

Mahed Javed, Charoenchai 

Khompatraporn, Apinanthana 

Udomsakdigool, Lyudmila 

Mihaylova 

[9] 2023 Reduce exponential 

increase in number of 

channels in next 

successive layers, leads 

to lower computation. 

Also, no layer does not 

have to suffer any 

information loss from 

any of the previous 

layers of a block. 

Experimentation is not 

performed to segment 

diseased areas. 

Xinxin Zhang, Zibo Feng, 

Weisong Mu 
[11] 2025 Model works very 

effectively, with very 

high computational 

efficiency 

Model has poor 

generalization ability, 

works only for grape 

leaves 
Xinxin Zhang, Fei Li, Haiying 

Zheng, Weisong Mu 
[13] 2024 Architecture supports 

model highly in terms of 

reduction of cost. 

Model has poor 

generalization ability, 

works only for grape 

leaves. 
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2.3 Research Gaps and future scope 

Deep learning and image processing technologies have significantly advanced the 

automatic detection and segmentation of plant leaf diseases, offering promising tools 

for precision agriculture. However, despite impressive progress, there are several 

intrinsic challenges that limit the current models' real-world applicability and 

robustness. In this section, we discuss these limitations in detail and propose potential 

research directions to overcome them, aiming to push the boundaries of automated 

plant disease diagnostics. 

 

2.3.1 Limited Generalization Across Crops and Datasets 

One of the critical limitations faced by existing leaf disease segmentation models is 

their limited generalization capability. Many deep learning systems are trained and 

evaluated on datasets comprising only a handful of crop types and disease classes. 

These models tend to overfit the specific characteristics of their training data, making 

them less effective when applied to new crops or regions with different disease 

manifestations. 

The agricultural domain is highly diverse; different crops show distinct leaf structures, 

disease symptoms vary widely, and environmental factors further affect disease 

presentation. Consequently, a model trained on a narrow dataset may fail to recognize 

or accurately segment diseases on other crops. 

To address this, novel algorithmic frameworks such as Genetic Algorithms (GAs) offer 

promising potential. GAs operates by evolving a population of candidate solutions 

through iterative processes mimicking natural selection. As proposed in recent 

research [12], multiple segmentation algorithms and their associated hyperparameters 

can be encoded as candidate solutions in a GA framework. By evaluating these 

candidates on a new dataset using accuracy metrics like (IoU), the GA can identify the 

optimal combination of segmentation methods and parameter settings. This approach 

enables a flexible, data-driven selection process that adapts to different datasets and 

crop types, improving model generalization. 

Furthermore, assembling large, diverse datasets spanning multiple crops and 

geographic regions is crucial. Initiatives for collaborative data sharing and the creation 

of standardized benchmarks would significantly accelerate the development of more 

robust, generalizable models. 

 

2.3.2 Accurate Separation of Infected Leaf Areas 

Accurately segmenting the infected regions within a leaf remains a significant 

challenge. Many existing segmentation models focus primarily on separating the leaf 

from the background, which is important but insufficient for disease diagnosis that 

requires localizing affected portions. 
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• Traditional image processing methods often rely on multi-stage filtering: one 

filter isolates the leaf itself, and a subsequent filter attempts to identify disease 

spots or lesions based on color, texture, or shape cues. While somewhat 

effective, this process is limited by handcrafted feature design and sensitivity 

to varying lighting and leaf appearance. 

• Deep learning-based segmentation models, particularly those using multi-class 

masks, offer a more precise solution. These models can be trained to predict 

distinct labels for healthy leaf tissue and various disease classes 

simultaneously. Creating such detailed training data requires manual 

annotation with tools like LabelMe [3], which allows fine-grained pixel-wise 

labeling of infected and healthy regions. This enables the model to learn subtle 

visual differences and improve localization accuracy. 

Moreover, enhancing the dataset with diverse examples of disease progression stages 

and symptom variations can help the model generalize better across different infection 

levels and environmental conditions. 

 

2.3.3 Computational Efficiency and Hardware Constraints 

A practical limitation in deploying leaf disease segmentation models is the high 

computational cost associated with many state-of-the-art architectures [10]. Large 

models with millions of parameters often require powerful GPUs and extensive 

memory, which are not always available in agricultural settings, especially in resource-

constrained environments like small farms or mobile devices. 

To mitigate this, researchers have proposed several strategies: 

• Region of Interest (ROI) Detection: Instead of processing the entire image at 

full resolution, an initial lightweight detector identifies candidate regions likely 

to contain diseased tissue. Subsequent segmentation is then performed only on 

these ROI patches, drastically reducing computation without sacrificing 

accuracy. 

• Lightweight Model Design: Architectures such as MobileNet, ShuffleNet, or 

efficient transformer variants prioritize model compactness and speed [2]. 

Improving the accuracy of such lightweight models through techniques like 

knowledge distillation, quantization, and neural architecture search (NAS) can 

make disease segmentation feasible on edge devices. 

Balancing computational efficiency with segmentation quality is critical to enable real-

time disease diagnosis directly in the field, empowering farmers with accessible tools 

for crop health monitoring. 

 

2.3.4 Dataset Bias and Class Imbalance 

In many leaf disease datasets, some disease classes are underrepresented relative to 

others, creating a class imbalance problem. Training a model on biased data can lead 

to poor performance in minority classes and unreliable segmentation results [4]. 
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Several strategies exist to counteract class imbalance: 

• Data Augmentation: Artificially expanding the number of samples for rare 

classes by applying transformations such as rotation, flipping, cropping, and 

color jittering helps balance the dataset. 

• Resampling Techniques: Oversampling underrepresented classes or under-

sampling dominant classes during training can ensure more equitable 

representation. 

• Loss Function Re-weighting: Assigning higher penalty weights to errors in 

minority classes guides the model to pay more attention to these classes. 

• Feature Prioritization: Incorporating domain knowledge to prioritize specific 

features relevant to rare diseases during training can improve classification and 

segmentation accuracy. 

Overall, addressing dataset bias is fundamental to creating fair and reliable disease 

segmentation models that perform consistently across all disease types. 

 

2.3.5 Geographic and Environmental Limitations 

Most disease datasets are collected from specific geographic locations, reflecting the 

local climate, crop varieties, and disease prevalence [3]. Consequently, models trained 

on such datasets often struggle to perform well when applied to new regions due to 

domain shifts caused by differing environmental conditions, leaf appearances, and 

disease symptom expressions. 

Two main approaches can help bridge this gap: 

• Transfer Learning: By starting with models pretrained on large, diverse 

datasets and fine-tuning them on smaller region-specific data, one can leverage 

existing learned representations and adapt to new domains more efficiently. 

• Data Augmentation for Domain Diversity: Simulating a range of 

environmental factors, such as different lighting, weather, or leaf conditions, 

during training encourages models to learn invariant features robust to domain 

shifts. 

Combining these methods with continued collection of diverse datasets from multiple 

regions is essential to building universal disease detection systems deployable 

worldwide. 

 

2.3.6 Handling Diverse Lighting and Background Conditions 

Agricultural images are often captured under varying lighting, weather, and 

background conditions, which introduces substantial visual variability. Models trained 

under controlled conditions or synthetically generated data may fail to generalize when 

deployed outdoors in real-world environments [12]. 

Improving robustness to such variability involves: 
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• Advanced Image Preprocessing: Techniques to normalize illumination, such as 

histogram equalization, gamma correction, or shadow removal, can standardize 

inputs before segmentation. 

• Augmentation with Lighting Variations: Training on images augmented with 

different brightness, contrast, and color variations helps models learn to handle 

diverse lighting. 

• Domain Adaptation Techniques: Methods that explicitly learn lighting-

invariant features or use adversarial training to reduce domain discrepancy can 

further enhance performance. 

These steps ensure models remain reliable in heterogeneous agricultural settings, 

increasing their practical utility. 

 

2.3.7 Avoiding Information Loss During Downsampling 

Many segmentation architectures rely on down sampling operations like pooling to 

reduce computational complexity and increase receptive fields. However, these 

operations can cause irreversible information loss, degrading the model’s ability to 

accurately segment fine-grained details such as small disease spots. 

Recent research [2, 8] highlights the benefits of using reversible down sampling 

techniques that preserve spatial information. Approaches like learnable pooling, 

dilated convolutions, and attention mechanisms help maintain detail while still 

achieving effective feature abstraction. 

Incorporating these strategies into future model designs promises higher segmentation 

accuracy, particularly for diseases that manifest as subtle visual patterns. 
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 CHAPTER 3  

PROPOSED METHODOLOGY 

3.1 Data Acquisition 

The dataset used in this study is known as Field-PV, a publicly available dataset 

designed for plant visual disease analysis [8]. To tailor it to our research objectives, we 

refined the dataset by selecting only the images related to grape leaves. This focused 

approach allowed us to concentrate specifically on identifying and segmenting grape 

leaf diseases with greater accuracy and consistency. The initial raw dataset contained 

a broader variety of crops and plant species; hence, filtering it down to grape leaf 

images was a necessary preprocessing step to ensure domain-specific learning. 

After selection, we manually annotated the images using the LabelMe annotation tool. 

This open-source tool allows for pixel-level segmentation of regions of interest in the 

image and is especially suitable for image segmentation tasks. Each leaf image was 

carefully labeled by drawing polygonal boundaries around infected and healthy 

regions. These annotations serve as the ground truth masks for supervised training, 

enabling the deep learning model to distinguish between different types of leaf 

conditions during training. Manual annotation, though time-consuming, ensures high-

quality, accurate data labels, which are critical for semantic segmentation tasks. 

The dataset included a total of 104 high-resolution images specific to grape leaves. 

These images covered four classes: three distinct types of grape leaf diseases and one 

class representing healthy leaf samples. The disease types included in the dataset 

exhibit visual differences in terms of color patterns, lesion shapes, and spread across 

the leaf surface. These visual variations play a key role in helping the deep learning 

model learn to distinguish between healthy and diseased areas. Ensuring all four 

classes were sufficiently represented in the dataset was crucial to developing a 

balanced and unbiased model. 

One challenge encountered was the relatively small size of the dataset, as 104 images 

is considered a limited number for training deep neural networks. To address this issue 

and improve model generalization, we applied a set of data augmentation techniques. 

These augmentations were carefully chosen to simulate real-world variability while 

maintaining the semantic integrity of the original image content. The augmentation 

strategies applied included [1]: 

1. Scaling: Images were resized to introduce size variation, which helps the model 

adapt to leaves appearing at different scales. 

2. Rotation: Images were rotated at various angles, which is important because, 

in real field conditions, leaves are rarely aligned in the same orientation. 

3. Zooming: Cropping and zooming in on different regions helped the model 

focus on localized infection patterns. 

4. Brightness adjustment: Varying the brightness levels of images simulated 

different lighting conditions, making the model more robust to changes in 

illumination. 
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By augmenting the original dataset in these ways, we significantly increased the 

effective size and diversity of the training data. This not only improved the model’s 

ability to generalize but also helped in reducing overfitting. These augmented images 

were used exclusively for training purposes and were not included in the validation or 

test sets to preserve the integrity of model evaluation [13]. 

Another critical consideration was ensuring class balance throughout the dataset. In 

many real-world agricultural datasets, certain disease types may be overrepresented 

while others are rare. This class imbalance can cause a model to perform well on 

majority classes but poorly on minority ones [14]. To mitigate this, we made sure that 

all four categories—three disease types and healthy leaves—were fairly represented 

across the training, validation, and test sets. This balance is particularly important in 

classification and segmentation tasks, where underrepresented classes can lead to 

skewed performance metrics. 

The public availability of the Field-PV [8] dataset ensures that the results obtained 

using this data can be reproduced and benchmarked by other researchers in the field. 

By using an open dataset and clearly outlining our preprocessing steps, including 

annotation and augmentation, we support transparency and encourage further 

advancements in automated plant disease detection. 

 

 

Figure 3.1 Sample showing some of the data augmentation techniques we used in experiment. 

 

In summary, the Field-PV dataset served as a solid foundation for our grape leaf 

disease segmentation task. Through careful selection, manual annotation, and 
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extensive data augmentation, we transformed a modest dataset into a robust training 

resource [15]. The inclusion of multiple disease classes and healthy samples ensured 

that the model could learn to recognize a wide range of visual patterns, ultimately 

enhancing its practical applicability in real-world scenarios such as precision 

agriculture and disease management. 

 

3.2 Dataset Partitioning 

Effective dataset partitioning is a critical step in developing robust deep learning 

models, especially for image-based plant disease detection systems. A well-structured 

split ensures that the model is exposed to diverse samples during training, can be 

reliably tuned using a separate subset, and ultimately evaluated on truly unseen data. 

In this study, we followed a commonly adopted partitioning strategy by dividing our 

dataset into three primary subsets: training, validation, and testing. This approach helps 

to reduce the risk of overfitting and ensures a fair assessment of the model’s 

performance; perfect partition highly matters for better results [16]: 

1. Training data: The largest portion of the dataset, comprising 70% of the 

original images (72 images), was allocated for training purposes. However, due 

to the limited number of original samples, we applied data augmentation 

techniques to artificially expand the training set. Through rotation, flipping, 

scaling, brightness adjustment, and translation transformations, the initial 72 

training images were augmented to generate a total of 576 images. This 

augmentation process is crucial, particularly when working with relatively 

small datasets, as it helps the model generalize better by exposing it to varied 

versions of the same data. 

The training data serves as the foundation for model learning [16]. It is during 

this phase that the model adjusts its internal parameters to minimize prediction 

errors based on the input image-label pairs. Through iterative optimization 

using gradient descent, the network learns to distinguish between healthy leaf 

regions and those exhibiting disease symptoms. Augmentation not only 

increases data diversity but also acts as a regularization technique that prevents 

overfitting, ensuring that the model does not memorize specific patterns from 

the limited original dataset but instead learns to identify underlying features 

relevant across different images. 

 

2. Validation data: To monitor the model’s performance during the training 

process and fine-tune hyperparameters, we reserved 15% of the dataset (16 

images) as the validation set. This subset was not included in the training 

process, ensuring that the model’s performance on it provides a genuine 

measure of generalization to unseen data. During training, the validation set 

helps in early stopping decisions, hyperparameter tuning (such as learning rate, 

batch size, or number of layers), and in selecting the model checkpoint that 

generalizes best [17]. 

A key role of the validation set is to prevent overfitting by acting as a feedback 

loop. For instance, if the training loss continues to decrease while the validation 

loss starts increasing, it indicates that the model is learning patterns that do not 
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generalize well to new data. Such insights allow us to intervene early—by 

adjusting training strategies or architecture—to maintain model performance 

across unseen inputs. Moreover, validation accuracy or Intersection over Union 

(IoU) scores serve as interim benchmarks to compare the effectiveness of 

different model variants or configurations. 

 

3. Test data: The remaining 15% of the dataset (16 images) was allocated for final 

testing. This test set is entirely isolated from the training and validation phases 

and is only used after the model has been fully trained and fine-tuned. The 

purpose of this dataset is to provide an unbiased evaluation of the model’s 

performance in real-world scenarios [17]. It acts as the ultimate benchmark for 

assessing segmentation accuracy, classification precision, and overall 

robustness. 

Performance metrics such as accuracy, precision, recall, F1-score, and Dice 

coefficient are computed on this test set to quantify how well the model 

performs on previously unseen data. A consistent performance across training, 

validation, and test sets is a strong indicator of a well-generalized model. 

 

4. Balanced Representation: To ensure fair and reliable learning, care was taken 

to maintain a balanced distribution of all disease categories across the three 

subsets [14]. This is especially important in agricultural disease datasets, where 

class imbalance can significantly affect model performance. For example, if 

one disease type is overrepresented in the training set but underrepresented in 

the validation or test sets, the model may appear to perform well during training 

but fail to recognize underrepresented diseases in deployment. By evenly 

distributing images of different disease classes and healthy samples, the risk of 

such biases is minimized [15]. 

Additionally, stratified sampling was considered during partitioning, which 

ensures that each subset contains a proportional representation of the various 

leaf disease conditions. This method increases the reliability of validation and 

test results, as each disease category receives sufficient representation in all 

phases of model development. 

3.3 Image Segmentation 

Our model is designed to segment the background, leaf and disease areas in the given 

image. For that we have proposed architecture that use Dense block [9] in CNN 

network and uses max unpooling for upsampling to get back the image. The purpose 

of max unpooling is to track back the mask using lossless manner. It saves the indices 

of maximum intensity pixel and uses that location to upsample more accurately. 

Proposed architecture of the model: 

1. Shrinking and expanding: For this we use encoder then decoder to first shrink 

then expand image back to desired mask. We have five layers to shrink the 

image and five layers to expand the image. At the shrinking phase we use 

pooling layer pf size 2 after each shrinking layer and we use max unpooling 

layer size 2 before each expanding layer, corresponding indices calculated at 

pooling phase. Each shrinking and expanding layer consists of a few Convo 
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layers of filter size 3, and stride 1, followed by batch norm and Relu layers. We 

have dense blocks after the first three expanding layers and before the last three 

shrinking layers. The first two shrinking layers and the last two expanding 

layers have two conv layers, and the remaining layers have three conv layers, 

based on VGG-16 model [9].   

 

 

 

Figure 3.2 Architecture of the network. 

 

 

Figure 3.3 Representing lossless preservation of max unpooling operation. 

 

 

2. Dense blocks: This are blocks that are fitted in both upsampling as well as 

downsampling phase. Its purpose is to reduce the exponential increment of the 

number of channels in successive layers. Also, it is much lossless. Here at each 

stage, we concatenate all the outputs of previous layers then pass through 

layers. So, the input size at each layer will be summed up of all the previous 

layers channel count. These blocks learn features so effectively with very few 

computational costs as number layer increases as per arithmetic addition [9]. It 

is also lossless even after making it so deep. We use a constant k, which is the 

number of filters at each layer of dense block. So, it tells the growth by which 

the number of input channels increases in each successive layer. Each layer has 

two conv layers, first is of kernel size one and the second is of kernel three. 
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The first kernel is to shrink the number of channels equal to k, then we actual 

use second filter to calculate the features. 

So, we have a total of six blocks, three in the shirking phase a three in the 

expanding phase. The number of layers in each block is as follows, first: 12, 

second: 24, third: 16, fourth: 16, fifth: 8 and sixth: 4. And we keep k = 32. 

 

 

Figure 3.4 Dense block represents connection of all the previous layers by each layer. 

 

3. Activation: We use SoftMax layer to calculate the category of each pixel. We 

have three different colors of output mask as background, leaf and infection. 

So, we must map the probability of color, so we have three categories for each 

pixel. 

 

Table 3.1 Table showing layers, input size and number of output channels at each 

layer. 

Layers Output size 

(height and width) 

Number of channels 

Input 224 3 

Shrinking layer 1 112 64 

Shrinking layer 2 56 128 

Dense layer1 56 512 

Shrinking layer 3 28 256 

Dense layer 2 28 1024 
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Shrinking Layer 4 14 512 

Dense Layer 3 14 1024 

Shrinking Layer 5 7 512 

Expanding Layer 1 14 1024 

Dense Layer 4 14 512 

Expanding Layer 2 28 1024 

Dense Layer 5 28 256 

Expanding Layer 3 56 512 

Dense Layer 6 56 128 

Expanding Layer 4 112 64 

Expanding Layer 5 224 3 

Output layer 224 3 

 

4. Loss: Dimensions of output will be of size 4, batch size of output, channel size 

of mask, height of mask and width of mask. And channel size will be 3, height 

and width will be 224, output mask and input image will have same size, batch 

we kept 32. We use categorical cross entropy loss to train the model. 

 

3.4 Train the model 

Model training is most important part of ML; it helps to learn features from the training 

data [18]. First, we set random parameters in models. Then we must train the 

parameters as per the SL approach. For that we divide the data into the chunks of 

batches and pass complete batch through the model and take out the output for 

complete batch. Then we find the loss using the chosen or created loss function and 

we the calculate the gradient and propagate the loss backward through each layer and 

update the parameters using GDA. 

After few epochs we stop the process, the new parameters we get we sat it is trained. 

When the new unseen data is passed it gives result with some accuracy. 

 



19 
 

 

Figure 3.5 Total trainable parameters at each layer after compiling the model. 
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CHAPTER 4 

EXPERIMANTATION 

4.1 Dataset Preparation 

The dataset we used was publicly available [9] but not annotated, We, made the 

annotation in json format using label me and converted it into mask using python 

script. The name of the dataset is Field plant village, from that we have taken images 

of grape leaf that include four types of classification based on the name of disease. 

They are Black rot, Black Measles, Leaf Blight and healthy leaf images. We have 104 

images in total.  70%, that is 72 images were used for training purposes. To increase 

the size of data we augmented each image with 8 variations, and we got 576 images in 

total. 

 

Figure 4.1 Represents the generation of mask from the image. 

 

The size of this dataset is small and, to make it effective we need to increase this, 

making diverse images also helps better generalization. The color of mask we chose is 

black for background, green for leaves and red for infected areas. Images are of random 

size we converted it into height and width both of 224.  

 

 

Figure 4.2 Dataset is diverse has leaves with different background, lighting conditions and difference 

in quantity of infection spread. 
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4.2 Implementation 

Implementation process consists of following steps: 

1. Preprocessing: The first step in our pipeline involved preparing the raw image 

data for use in a deep learning environment. All input images and their 

corresponding ground-truth segmentation masks were initially in standard 

image formats. To feed these into the neural network, we converted both the 

images and the masks into tensors, which are the fundamental data structures 

used by deep learning frameworks like TensorFlow. 

Next, we applied a series of data preprocessing and augmentation techniques 

[1] to enhance the quality and diversity of the dataset. This step is crucial, 

especially when working with a relatively small number of images. 

Augmentation techniques such as rotation, scaling, horizontal and vertical 

flipping, brightness adjustment, and zooming were applied to artificially 

increase the dataset size [1]. These augmentations not only helped introduce 

variations in the dataset, simulating different real-world conditions, but also 

improved the model’s ability to generalize to unseen data. 

After preprocessing and augmentation, the dataset was divided into three 

distinct subsets: training, validation, and testing. The training set, which 

constituted most of the data, was used to fit the model. The validation set 

allowed fine-tuning hyperparameters and monitoring overfitting, while the test 

set was held back to evaluate the model’s final performance [16]. Each subset 

was carefully constructed to ensure balanced representation across different 

grape leaf disease classes and healthy samples. 

 

2. Model Training: Once the data was preprocessed, we initiated the training 

phase of our deep learning model. The prepared tensors were fed into a custom-

built segmentation model designed for identifying diseased and healthy areas 

in grape leaves. The model was trained over a total of 50 epochs, which is a 

reasonable training duration that allows for sufficient learning without 

overfitting. 

We used a batch size of 32, meaning that during each iteration of training, the 

model processed 32 image-mask pairs at a time. This batch size provided a 

good balance between computational efficiency and memory constraints given 

our hardware limitations. For optimization, we employed the Adam optimizer, 

a widely used gradient descent variant known for its ability to adaptively adjust 

learning rates based on the complexity of the loss surface. 

The learning rate itself was not fixed but varied dynamically during training. 

This variable learning rate strategy helps the model converge more efficiently 

[19]. Typically, we start with a relatively higher learning rate to make quick 

progress during the early epoch and then gradually decrease it to fine-tune the 

weights with greater precision in later stages. This adaptive adjustment ensures 

that the model does not get stuck in suboptimal solutions and can continue 

improving steadily. 

 

3. Hardware and software setup: Our experiments were conducted on a personal 

computing system equipped with an NVIDIA GTX 1650 GPU, which offers 4 
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GB of dedicated graphics memory. Although this GPU is relatively modest 

compared to high-end systems used in research institutions, it provided 

sufficient computational power to train our model within a reasonable time 

frame, especially given the augmented dataset and optimized training 

parameters. 

In terms of software, the entire implementation was carried out using the 

Python programming language, which is widely adopted for machine learning 

and deep learning tasks due to its simplicity and extensive ecosystem of 

libraries. For the deep learning components of our project, we used 

TensorFlow, a powerful and flexible framework that supports the construction 

and training of neural networks with high efficiency. 

Additional preprocessing and data analysis tasks were supported by other 

Python libraries. We used LabelMe, an open-source annotation tool, to 

manually label the disease-affected regions in grape leaf images. These 

annotations formed the ground-truth masks used during supervised training. 

For handling and organizing tabular data, we utilized the Pandas library, which 

offers convenient data manipulation functions and is well-suited for tasks such 

as class distribution analysis and data integrity checks. 

4.3 Evaluation Metrics 

We used following metrics for evaluation: 

1. IoU: it stands for intersection over union to measure the performance of 

segmentation task. It tells how much area is common between original and 

predicted area over the total area covered by union of original and predicted 

area [9]. It is calculated by below formula. 

      (1) 

 

Figure 4.3 Visualization of intersection over Union operation. 
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2. Precision: It is used to calculate the ratio of the positive samples that are 

correctly predicted with the samples that are predicted as positive. Here we 

calculate average precision of per-class [9]. It is calculate using formula: 

       (2) 

Where l is number of classes, here we have three class background, leaf and 

infection. 

 

4.4 Result 

 

 

Figure 4.4 Represents the decrease in loss with epochs in our model during the training phase. 

 

 

Irrespective of very less size of dataset, model has good performance. Our model gives 

IoU of 82.67 and Precision of 78.23. It is averaged when compared to relevant models 

in competition.  
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Figure 4.5 Shows the output of model on sample of test data after training the model. 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

Increasing layers in arithmetically instead of exponentially reduces a lot of 

computational complexity [9]. Also, it leads to deeper network without losing and of 

the previous information at each stage of network. It can remove all the constraints of 

the data being so lengthy, unclear, because as the depth starts, it means increasing 

performance is at the next level. Usually, models forget all the previous learnings of 

previous layers since the more we propagate backward we realize that there is less 

impactful gradient that we are getting updated, and model and no good learning. The 

model seeks to suffer improper loss propagation at initial layers. We know how 

gradient starts to explode or vanish [20]. What difference does it make? As we continue 

the concatenation of all the previous input layers then in convo operation it simply has 

access to all the layers and its learning means a last layer of the block has access to its 

first layer of block also, to its learnings, all the previous blocks help learning the next 

layers not just the one of the previous subsequent layers [21]. In this way information 

is propagated a lot easily and learned easily without gradient exploding or vanishing. 

We can easily conclude that by very few parameters it easily catches all the features 

there is no failure to any important feature coming from corresponding layer. When 

the convo layer takes the input and concatenates all the inputs into one, then while 

passing the filters it combines all channels into one, and the number of output channels 

depends on the number of output channels it has [22]. We can see all the information 

is merged into just one channel like, each of the single channel has all the information, 

all the learning considering the learnings of all the channels. This is how information 

is preserved, and we gain control over the loss of information.  

 

Figure 5.1 Represents the arithmetic increment of the number of channels in dense blocks. 

 

We had a shrinking phase that successfully shrinks the data by downscaling operation, 

for that we use max pooling, and we also save its indices for future reference, for up 

sample operation [23]. Max Pooling is best because it catches high intensity pixel, the 
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pixel that has more value than neighboring pixel, leads to finalizing strong pixels. In 

the shrinking phase models easily start getting compact, feature vector starts 

decreasing in height and width but increase in terms of channels [23], this what we call 

learning, considering that we are now having feature understanding of all features in 

data.  

But we are doing segmentation, Compressed data is not what we finally need, we need 

complete mask that has size equivalent to original image. So, we must expand it back 

for that max un-pooling operation we used has high impact, because we have access 

over the location of high valued pixel and now, we are expanding based on that. This 

also leads to some degree of lossless approach, and we get to maintain the integrity of 

output and performance of model [23].  

We successfully were able to make our model very light weight, efficient with 

capturing features, highly lossless, learning preserving, and effective training with no 

redundant layers. 

Limitations: As the data is available publicly but not the annotations, we have taken 

and experimented on a very small dataset to avoid huge manual and computational 

costs. But we can expand the dataset and see how it behaves after sufficient training 

size, and how easily it catches to parameters and learning the sample.  

 

5.2 Future Work 

CNN are not that good in terms of capturing global dependencies [24], recent 

advancement in VIT has opened new dimension of image learning. Where we divide 

image into patches and use variations of MHA to calculate the relationship between. 

We can use combination of dense blocks and VIT to increase the performance by new 

type of learning. MHA has ability to known how much given part of image is 

connected to remaining part of the image [24]. It is calculated by below equation. 

      (3) 

Where Q is a query, K is a key, V is a value, i is the attention head, T refers to transpose, 

d is dimension of each head. We first calculate attention of each head individual then 

concatenate all to form MHA [27]. It can be calculated by the following equation: 

     (4) 

MHA is just the combination attention of all the heads, then we can multiply with total 

weight. 
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Figure 5.2 Explains the architecture of MHA. 

 

Initially K, Q and V are the same input matrix, we can perform operations to compress 

them for increasing efficiency [25], like pooling or convolution operation [26]. Or we 

can also do reversible compressions [8, 26] before calculation of MHA and then 

reverse it back to remove loss. When we multiply Q and K we get a square matrix that 

has the highest values in diagonal elements, it gives the result that when a patch is 

multiplied with another patch what will the result be? Then that value gives us the hint 

of how much both the patches are interrelated. The complete matrix saves information 

on each pair of patches. It is called self-attention, we then divide by dimensional size 

of head to rescale the new tensor. 

After taking SoftMax of that tensor we can scale it between zero and one, this brings 

it into probabilistic terms. Then multiplying it with value is actual attention score. It is 

a very basic idea of any transformer architecture [24]. 

Recent developments in VIT have opened the doors to many new possibilities, many 

attempts are being made to combine abilities of VIT and CNN. VIT is good for 

capturing global dependencies in complete image whereas CNN are good in capturing 

local dependencies within nearby pixels [24], this tradeoff is much intense and so the 

huge research is made to make a hybrid approach to that can capture abilities of both 

CNN and VIT [7].  

Our model has Dense blocks for reducing sudden increment in channels, this ability of 

dense channels is very useful. We can use it to capture local features properly without 

much computation [22]. With each dense block we will use MHA in parallel and 

concatenate both dense and MHA (or any improved version of MHA) into one and 

then pass to shrinking or expanding layer.  
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How will it help? The advantage of dense block is to get local features [22] and MHA 

on other hand takes global features [24]. When combination of both is passed into next 

layer (shrinking or expanding) it will capture both the dependencies, far and near. 

Usually, the leaf size is big, and infected regions can be small as well as large based 

on type of disease or quantity of disease spread [8]. This variable is needed for any 

generalization to happen. Our model must be sharp enough to handle both together at 

the same time is most important to increase performance to every type of image and 

disease. Scope of VIT is limited when we start caring for local properties [24], we are 

able reduce the size of patches, but it gives huge computational overhead that increase 

training time multiple times. Usually in modern approaches the size of patches is kept 

small in initial stages of encoder, and it is increased in next layers this helps to make 

pyramidal architecture like CNN [25], and the depth of tensors is increased.  

 

Figure 5.3 Shows the behaviors of VIT. Image taken from the original paper of VIT. CNN and VIT 

work differently, capture different features (local can global), has their own way of achieving 

accuracy. 

We try to make VIT look like CNN, but VIT is VIT and CNN is CNN, just trying to 

make it look like each other is not sufficient. We must merge its abilities into one model 

to work in parallel and combinate the result based on input or forget to get parameters 

like LSTM [28] to manipulate which among MHA and Dense block which part must 

be forgotten and which to be inputted for next layers this makes model like to be more 

generalized. 

 

Figure 5.4 Image taken from the original paper of VIT. Compared to CNN, VIT works poorly on 

smaller datasets as the dataset size increases VIT starts overpowering CNN. 



29 
 

5.3 Social impact 

Agriculture stands as one of the most vital pillars of human civilization. As the 

foundational sector of the economy, it supports not only the sustenance of life but also 

fuels the operations of industries and markets. Without a thriving agricultural base, the 

continuity of food production, economic stability, and social development would face 

significant threats [29]. In recent decades, especially with the rapid growth in global 

population, the demand for higher agricultural output has become more urgent than 

ever. This increase in demand must be met while also managing the challenges posed 

by plant diseases and minimizing the overall cost of farming. 

To address these modern-day challenges, Artificial Intelligence (AI) has emerged as a 

transformative tool in the domain of smart farming. AI-based technologies are being 

used to automate various aspects of agriculture, including the early detection of plant 

diseases [29]. Traditionally, farmers relied heavily on manual observation and 

experience to identify symptoms of disease on crops, which often resulted in delayed 

detection and suboptimal treatment. However, with the integration of AI-powered 

systems, farmers can now utilize mobile devices, drones, or smart cameras equipped 

with disease detection models that rapidly analyse plant conditions and offer precise 

feedback [30]. 

One of the most critical components in this AI-driven workflow is image segmentation. 

Segmentation allows for the accurate delineation of diseased areas from healthy 

regions on plant leaves. This step is not only essential for visual understanding but also 

plays a central role in quantifying the severity of infections. With accurate 

segmentation, farmers can measure the exact portion of the crop that is infected, which 

in turn allows for targeted application of pesticides or treatment. This reduces wastage, 

ensures appropriate dosing, and minimizes environmental impact [1]. 

Moreover, segmentation serves as a fundamental stage in the data preprocessing 

pipeline of deep learning models. The quality of segmentation directly influences the 

overall performance of AI models in disease prediction [1]. When the infected areas 

are clearly and precisely segmented, the model can learn better features, resulting in 

higher accuracy during classification and prediction phases. This means fewer false 

diagnoses and more reliable decision support for farmers. 

The social benefits of such technological integration are far-reaching [30]. First, it 

empowers farmers with actionable insights, reducing dependency on external 

agricultural experts. Second, it promotes sustainable farming practices by optimizing 

resource usage. Third, it contributes to food security by helping prevent large-scale 

crop failures. And lastly, it enhances rural development by introducing modern 

technological practices into traditionally manual sectors. 
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