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ABSTRACT 

The rapid development of deep learning has revolutionized the field of image 

enhancement and restoration, particularly for images captured under challenging 

conditions such as low-light and underwater environments. This thesis investigates the 

efficacy of advanced deep neural network architectures in improving image quality, 

visibility, and structural fidelity in scenarios where traditional methods often fall short. 

Leveraging state-of-the-art models-including architectures with edge-aware modules, 

attention mechanisms, and transformer-based context modeling-this research 

demonstrates significant improvements in both quantitative metrics (such as PSNR, 

SSIM, and LPIPS) and qualitative visual outcomes. Experiments conducted on 

benchmark datasets, including LOLv1, LOLv2, SID, LSUI, EUVP, and UFO-120, 

reveal that the proposed frameworks achieve high restoration accuracy and efficiency, 

with real-time processing capabilities suitable for deployment in resource-constrained 

environments. The results show substantial gains over traditional and contemporary 

baselines, confirming the models’ robustness and adaptability across diverse real-

world conditions. This study further addresses practical considerations such as 

computational demands, generalization, and the integration of these methods into 

applications ranging from surveillance and autonomous navigation to marine 

exploration and medical imaging. The findings highlight the transformative potential 

of deep learning in advancing image enhancement technology, offering scalable and 

effective solutions that benefit a broad spectrum of scientific, industrial, and societal 

domains. 
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CHAPTER 1 

INTRODUCTION 

 
Enhancing and restoring images captured under adverse visual conditions is a persistent and 

critical challenge in computer vision, with significant implications for diverse fields such as 

photography, surveillance, marine exploration, and autonomous systems. Images acquired in 

low-light environments or underwater are particularly susceptible to severe degradation, 

including reduced visibility, color distortion, amplified noise, and loss of structural detail. 

These degradations not only hinder human interpretation but also impede the effectiveness of 

automated analysis and decision-making systems. 

In the context of low-light image enhancement, poor illumination frequently results in 

diminished visibility, inaccurate color representation, and increased noise, making it difficult 

to extract meaningful information from the images. Traditional enhancement techniques, such 

as histogram equalization [1,2,3,4] and Retinex-based methods [5, 6, 14, 15], have been widely 

adopted but often introduce artifacts, unnatural color shifts, or fail to generalize across varying 

lighting conditions. Deep learning approaches-including RetinexNet [6], EnlightenGAN [7], 

and transformer-based models [15, 17] have propelled the field forward by learning complex 

mappings between low-light and standard-brightness images, achieving improved performance 

in visibility and color accuracy. However, these methods typically require extensive 

computational resources, complex architectures, and large paired datasets, which can limit their 

practical deployment. To address these challenges, recent research has focused on developing 

lightweight and efficient architectures that integrate edge enhancement modules, expanded 

kernel residual blocks, and attention mechanisms. Such designs enable real-time enhancement 

of low-light images, preserving structural details and natural color while remaining suitable for 

resource-constrained environments. 

On the other hand, underwater image enhancement poses a distinct set of challenges due to the 

unique optical properties of aquatic environments. Light absorption and scattering underwater 

cause substantial color casts (often blue or green), reduced contrast, and significant loss of 

detail, which are exacerbated by the complexity and variability of underwater scenes. These 

challenges not only affect the visual appeal of underwater photographs but also limit the 

effectiveness of vision-based marine research, ecological monitoring, and robotic exploration. 

Traditional underwater enhancement methods-both non- physics-based [30, 31] and physics-

based [32, 33, 34] - often struggle to generalize across different water types and lighting 

conditions, and may require precise knowledge of environmental parameters. Recent advances 

in deep learning, particularly those leveraging U-Net architectures [62], attention mechanisms 

[48, 49, 50, 54], and transformer modules [27, 51, 52, 53], have demonstrated improved 

generalization and restoration quality. However, many of these models remain computationally 

intensive and dependent on large paired or unpaired datasets, which are difficult to obtain in 

underwater settings. To overcome these limitations, novel approaches have emerged that 

combine lightweight encoder-decoder [55, 62] frameworks, parameter-free attention modules 

[54], and transformer-based global context modelling. These architectures are specifically 

designed to extract both local and global features, enabling robust color correction, detail 

recovery, and real-time performance suitable for deployment in autonomous and resource-

constrained underwater systems. 

This thesis uses advanced deep learning approaches to tackle the pressing difficulties of image 

improvement and restoration under unfavourable visual conditions. The next chapters will go 

over the associated research, recommended methodology, experimental analyses, and major 
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conclusions. Through this research, we aim to contribute robust, efficient solutions with 

practical relevance across a range of real-world applications. 

 

1.1 Motivation 

Enhancing and restoring images captured under challenging conditions such as low-light and 

underwater environments holds significant societal importance across multiple domains. In 

autonomous driving and surveillance, improved image clarity directly enhances safety by 

enabling better scene understanding and decision-making in poor visibility conditions. In 

marine science and environmental conservation, restoring underwater images facilitates 

accurate monitoring of fragile ecosystems, biodiversity assessment, and sustainable resource 

management, which are crucial for protecting ocean health and supporting global ecological 

balance. Furthermore, enhanced imaging plays a vital role in medical diagnostics, disaster 

response, and industrial automation by providing clearer visual data for timely and accurate 

interventions. By enabling robust visual perception in these adverse settings, image 

enhancement technologies contribute to safer transportation, environmental sustainability, 

improved healthcare, and economic efficiency, thereby positively impacting society at large. 

Despite the critical need and wide-ranging applications, image enhancement under adverse 

conditions remains a complex technical challenge. Low-light images suffer from noise 

amplification, color distortion, and loss of detail, while underwater images face unique 

degradations such as color casts, scattering, and uneven illumination. Traditional enhancement 

methods often fail to generalize across diverse scenarios or introduce artifacts, limiting their 

practical utility. Although deep learning approaches have advanced the state of the art, many 

existing models are computationally intensive, require large paired datasets, and lack real-time 

feasibility, restricting their deployment in resource-constrained or autonomous systems. 

Motivated by these limitations, this research aims to develop lightweight, efficient deep 

learning architectures that integrate edge enhancement, attention mechanisms, and global 

context modelling to achieve high-quality restoration with practical computational demands. 

This balance is essential to enable real-world applications ranging from autonomous 

underwater vehicles to mobile low-light photography, ultimately bridging the gap between 

research and impactful deployment. 

 

1.2 Objective 

The main objective of this study is to develop deep learning-based models capable of accurately 

and efficiently enhancing and restoring images captured under adverse visual conditions, with 

a specific focus on low-light and underwater scenarios. The proposed frameworks are designed 

to analyze and process complex degradations-such as reduced visibility, color distortion, noise 

amplification, and loss of detail-by leveraging advanced architectural components including 

edge enhancement modules, attention mechanisms, and global context modelling. These 

models aim to deliver high-quality, perceptually natural images while maintaining 

computational efficiency suitable for real-time and resource-constrained environments. This 

study’s key objectives are summarized below: 

• To develop robust and efficient deep learning-based architectures for enhancing and 

restoring images captured under adverse visual conditions, specifically targeting low-

light and underwater scenarios. The goal is to address common degradations such as 

reduced visibility, color distortion, noise amplification, and loss of detail that hinder 

both human interpretation and automated analysis. 

• To design models that integrate advanced feature extraction and refinement 

mechanisms, including edge enhancement modules (such as Laplacian and Sobel 
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operators), attention mechanisms (like CBAM and SimAM [54]), and global context 

modelling (via transformer blocks [52] or expanded kernel residuals). These 

components aim to preserve structural details, improve color fidelity, and adaptively 

focus on relevant features while maintaining computational efficiency. 

• To achieve a balance between high-quality enhancement and practical deployability by 

maintaining lightweight architectures with low computational and memory 

requirements, enabling real-time or near real-time performance suitable for resource-

constrained environments such as autonomous vehicles, embedded systems, and 

underwater robots. 

• To rigorously evaluate the proposed methods on standard and diverse benchmark 

datasets for both low-light and underwater image enhancement (e.g., LOLv1 [6], 

LOLv2 [9], SID [10], LSUI [27], EUVP [28], UFO-120 [29]), using quantitative 

metrics such as PSNR, SSIM, and LPIPS, as well as qualitative visual assessment, to 

demonstrate superiority or competitiveness over traditional and state-of-the-art 

approaches. 

• To ensure generalization and robustness of the enhancement models across a wide 

range of real-world conditions by employing extensive data augmentation, multi-

dataset training, and comprehensive validation, thereby supporting practical 

applications in fields like surveillance, marine exploration, medical imaging, and 

environmental monitoring. 

 

1.3 Challenges 

Enhancing and restoring images captured under adverse visual conditions-such as low-light 

and underwater environments-presents a range of complex and interrelated challenges that 

impact both the quality of the output and the practicality of deploying enhancement models in 

real-world scenarios. 

Images captured in low-light conditions typically suffer from reduced visibility, low contrast, 

significant noise amplification, and color distortion. Traditional enhancement methods, such 

as histogram equalization [1, 2, 3, 4] and Retinex-based algorithms [5, 6, 14, 15], often 

introduce artifacts or unnatural colors and struggle to generalize across varying lighting 

scenarios. Deep learning-based methods have shown promise in overcoming some of these 

issues, but they frequently require large, paired datasets for supervised learning, involve 

complex architectures, and demand substantial computational resources. Furthermore, many 

existing approaches focus primarily on brightness recovery, often neglecting the simultaneous 

suppression of noise and preservation of structural details, which can lead to over-smoothed or 

artifact-laden results. Balancing enhancement quality, noise reduction, and computational 

efficiency remains a significant challenge, especially for real-time or resource-constrained 

applications such as surveillance as well as autonomous vehicles. 

Underwater images face unique and severe degradations due to the optical properties of water, 

including wavelength-dependent light absorption and scattering, which result in strong color 

casts (typically blue or green), reduced contrast, blurring, and loss of fine details. The presence 

of suspended particles and varying water turbidity further exacerbates these issues, leading to 

spatially non-uniform degradations that are difficult to model and correct. Traditional physics-

based enhancement methods [30, 31] often require precise knowledge of environmental 

parameters and are limited in their ability to generalize across different underwater conditions. 

Data-driven and deep learning approaches have improved restoration quality, but they are 

challenged by the scarcity of diverse, high-quality, and paired underwater datasets and often 

exhibit high computational complexity. Moreover, most existing methods are designed to 
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address a single type of degradation (e.g., color correction or deblurring), and struggle to handle 

the interplay between multiple, simultaneous degradations present in real-world underwater 

scenes. Ensuring robust color correction, detail recovery, and perceptual quality-while 

maintaining efficiency and adaptability-remains an open challenge. 

General Challenges Across Both Domains: 

• Generalization and Robustness: Models must perform reliably across a wide range 

of real-world conditions, including unseen lighting environments or diverse underwater 

scenes, which is difficult given the variability and complexity of degradations. 

• Computational Efficiency: Achieving high-quality enhancement with lightweight 

models suitable for real-time or embedded applications is a persistent challenge, as 

many state-of-the-art methods are computationally intensive. 

• Data Limitations: The lack of large-scale, diverse, and well-annotated datasets-

especially for underwater scenarios-limits the ability to train and validate robust deep 

learning models. 

• Trade-off Between Enhancement and Artifacts: Aggressive enhancement can lead 

to overexposure, color shifts, or loss of naturalness, while insufficient processing leaves 

noise and degradations unaddressed. 

• Domain Shift and Environmental Variability: Deep learning models often struggle 

to generalize across different water types (saltwater, freshwater), depths, turbidity, and 

lighting conditions. A model trained in one environment may not perform well in 

another due to significant domain shifts, necessitating domain adaptation techniques or 

retraining for new conditions. 

• Lack of Paired and Diverse Data for Complex Scenarios: While data limitations are 

a general challenge, this is especially acute for paired datasets in complex scenarios 

like low-light underwater scenes. Most available datasets focus on either low-light or 

underwater conditions separately, making it difficult to train models that can handle 

simultaneous degradations such as scattering and insufficient illumination. The scarcity 

of high-quality, annotated, and paired data hinders the development and validation of 

robust models for these compounded scenarios. 

Addressing these challenges is essential for the development of practical, efficient, and 

generalizable image enhancement models that can be reliably deployed in real-world low-light 

and underwater applications. 

 

1.4 Thesis Organization 

This thesis is structured across several chapters to ensure a logical and thorough presentation 

of the research: 

• Chapter 1: Introduction – This section provides an overview of the thesis, outlining 

the motivation, significance, and scope of the research on image enhancement and 

restoration under adverse visual conditions. It introduces the core challenges associated 

with low-light and underwater imaging, and highlights the necessity for robust, efficient 

solutions. The chapter also presents the main objectives, societal impact, and structure 

of the thesis, setting the stage for the detailed discussions in subsequent chapters. 

 

• Chapter 2: Related Work – This chapter reviews recent advancements and existing 

literature on the application of deep learning techniques for image enhancement and 
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restoration under challenging conditions such as low-light and underwater 

environments. It highlights key methodologies and findings that provide the foundation 

for the present research. 

• Chapter 3: Proposed Methodology – This section offers a detailed account of the 

research approach, including steps such as data pre-processing, augmentation 

strategies, and a comprehensive description of the architectures and components of the 

proposed models. 

• Chapter 4: Experiments and Results – This chapter presents the experimental setup, 

including dataset selection, training procedures, and evaluation metrics. It provides an 

in-depth analysis of the results obtained from testing the developed models, comparing 

their performance against existing methods. 

• Chapter 5: Conclusion and Future Work – The final chapter summarizes the main 

findings of the research and discusses potential directions for future work that could 

further improve the effectiveness and applicability of deep learning-based image 

enhancement and restoration techniques. 
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CHAPTER 2 

RELATED WORK 

 
2.1 Literature Survey 

Traditional low-light image enhancement techniques use histogram adjustments or Retinex. 

HE methods like CLAHE [4] often increase noise and artificial results while increasing 

visibility and contrast by ignoring illumination. With multi-scale processing and color 

restoration, MSRCR expands on Retinex algorithms, which divide images into illuminated and 

reflective parts. Since these methods assume corruption-free images, they often introduce noise 

or color distortion. LIME [13] estimates and refines illumination maps using structure priors, 

but noise in very dark regions is a problem. A robust Retinex-based method to improve low-

light images by explicitly adding a noise map to the standard model is described in [14]. This 

method cuts down on noise while showing structural details by using an optimization function 

with new regularizing parts, like the gradient integrity term for reflectance and the ℓ1 norm for 

illumination smoothness. In low-light conditions, logarithmic transformations are ineffective 

for noise management. The suggested method uses Lagrange multiplier-based optimization. 

The method reduces noise and improves visibility, but it risks feature loss in low-noise images 

and is computationally expensive. Not all settings can use it because it requires human 

parameter adjustment.  

Deep learning improves low-light enhancement in many ways. In the absence of paired data, 

EnlightenGAN [7] uses unpaired training and a global-local discriminator structure to produce 

visually appealing results. However, extreme conditions can distort colors. With a one-stage 

Retinex framework, transformer-based methods like Retinexformer [15] improve low-light 

image enhancement. Initially, the illumination brightens the image, followed by the restoration 

of noise, artifacts, and color distortions. Its illumination-guided transformer models non-local 

interactions between differently lit regions, outperforming previous methods across multiple 

benchmarks. DSLR [16] (Deep Stacked Laplacian Restorer) Employs the Laplacian pyramid 

in both image and feature domains. DSLR [16] breaks the input image into a three-level 

Laplacian pyramid for multi-scale processing, recovering global illumination at the coarsest 

level while preserving local details at finer levels. When applied to LLIE workloads, Swin IR, 

a Swin Transformer-based backbone, performs well but has overexposure and brightness 

imbalance artifacts. To deal with these problems, new methods have been developed, such as 

SNR-aware Swin Transformer networks [17], which use signal-to-noise ratio (SNR) maps to 

balance local and global feature extraction and drive spatially varying augmentation. On 

benchmark datasets like LOL-v1 [6] and LOL-v2 [9], these methods and unsupervised learning 

models like Retinex models perform similarly to paired training data. PSNR and SSIM are also 

competitive. 

In [41, 42], autonomous image processing techniques have been introduced to rectify non-

uniform illumination, mitigate noise, augment contrast, and modify colors. Alternative 

techniques used edge detection activities to facilitate object-edge preservation during filtering 

processes for color enhancement [43]. In [44], it has been noted that the image channels 

respond variably to light disruption: red hues diminish after a few meters from the surface, but 

green and blue exhibit greater persistence. The disparities led to the development of 

enhancement techniques that operate distinctly on each color channel, prioritizing specialized 

filters influenced by ambient parameters over generalization [45, 46]. Alternative 

methodologies assessed the parameters of global background light [45, 47] to implement 

specific color corrections (i.e., to mitigate the bluish and greenish impacts). These models 

employ the principles of optics and chromatics to address diverse underwater situations. While 
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these models are more precise, acquiring all the necessary elements that influence underwater 

footage constrains their utilization.  

Underwater image augmentation machine learning methods typically utilized a U-Net-like 

architecture in order to improve the source image while keeping the spatial details and object 

interactions intact. With a focus on attention and pooling layers [48], skip connections are 

commonly used to send the raw inputs to the final layers in order to preserve spatial links [49, 

50].  Other methods explored the emerging use of Transformer architectures [27, 51, 52, 53] 

and advanced attention mechanisms have become popular for improving underwater images, 

taking use of their effectiveness in broader computer vision tasks. Originally designed for NLP, 

transformers [52] have shown to be highly effective at representing global context and long-

range dependency in image models. Underwater enhancement approaches like UDAformer [53] 

and U-shape Transformer [27] use channel-wise and spatial-wise self-attention modules to deal 

with complex, irregular degradations. In order to improve color correction, contrast, and detail 

restoration, these approaches combine convolutional and transformer blocks to capture both 

local properties and global associations. If better feature representations are required without 

significantly increasing computing complexity, lightweight attention approaches like SimAM 

[54] and channel attention modules are suitable. Through the incorporation of these 

enhancements, recent methodologies have demonstrated the efficiency of transformer-based 

and attention-driven structures for robust and generalizable underwater image enhancement, 

achieving improved performance on demanding underwater datasets.  

SETAU-Net and LEARN exemplify advanced machine learning-based strategies for image 

enhancement under adverse visual conditions, each tailored to address the unique challenges 

of underwater and low-light scenarios, respectively. SETAU-Net leverages a deep neural 

network architecture that integrates transformer-driven global context modeling, attention-

based refinement, and explicit edge feature extraction to significantly improve underwater 

images. At the input stage, fixed Sobel kernels extract horizontal and vertical gradients, 

providing the network with enriched edge information and improved low-level features, which 

are then concatenated with the original image channels and further processed by convolutional 

layers. The U-Net encoder-decoder backbone, enhanced with parameter-free SimAM attention 

modules, enables adaptive feature weighting at every level, while a transformer bridge at the 

bottleneck efficiently captures long-range dependencies and global context. Unlike approaches 

that rely on direct skip connections from the raw input, SETAU-Net propagates rich multi-

scale information through its skip connections, facilitating the reconstruction of high-quality, 

detail-preserving, and color-corrected images suitable for real-time, resource-constrained 

deployments in autonomous underwater systems. In parallel, LEARN (Laplacian Enhanced 

Attention and Residual Network) is designed for low-light image enhancement and employs a 

Laplacian enhancement module to extract and amplify high-frequency edge details, which are 

then adaptively scaled and fused with the original image features. Its encoder-decoder 

structure, built with expanded 5×5 kernel residual blocks, captures broader contextual 

information, while Convolutional Block Attention Modules (CBAM) provide sequential 

channel and spatial attention to selectively emphasize important structures and suppress noise. 

Skip connections ensure efficient propagation of spatial details, resulting in enhanced images 

that maintain natural color and structural fidelity. LEARN’s lightweight and computationally 

efficient design enables real-time performance, making it well-suited for applications such as 

surveillance, autonomous vehicles, and medical imaging. Together, these models demonstrate 

how the integration of edge-aware modules, attention mechanisms, and efficient architectural 

principles can deliver robust, high-quality image enhancement across diverse and challenging 

environments. 
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a 

Author(s) 
Paper 

Reference  
Publication/ 
Proceeding 

Year Advantages Limitations 

Land, E. H.  [5] 
Scientific 
American 

1977 

Presented the 
Retinex hypothesis; a 
seminal contribution 
to illumination-
reflectance 
decomposition. 

Assumes 
corruption-free 
images; prone to 
color distortion and 
noise amplification. 

Pisano, E. 
D., et al. 

 [4] 
Journal of 

Digital imaging 
1998 

CLAHE enhances 
visibility and 
contrast in low-light 
photographs 
proficiently. 

Enhances noise; 
generates artificial 
outcomes in 
extreme low-light 
environments. 

Abdullah-
Al-Wadud, 
M., et al. 

 [1] 

IEEE 
transactions on 

consumer 
electronics 

2007 

Dynamic histogram 
equalization 
adaptively enhances 
contrast under 
fluctuating lighting 
conditions. 

Suboptimal 
performance in 
extreme low-light 
conditions; 
susceptible to over-
enhancement 
artifacts. 

Celik, T., & 
Tjahjadi, T. 

 [2] 

IEEE 
Transactions on 

Image 
Processing 

2011 

Provides better local 
contrast 
enhancement by 
incorporating 
contextual 
information. 

Enhances local 
contrast more 
effectively by 
integrating 
contextual 
information. 

Cheng, H. 
D., & Shi, 

X. J. 
 [3] 

Digital signal 
processing 

2004 

Straightforward 
execution; efficient 
under moderate 
illumination 
conditions. 

Limited adaptation 
to various lighting 
conditions; 
exacerbates 
loudness in less lit 
areas. 

Wei, C., 
Wang, W., 

Yang, W., & 
Liu, J. 

 [6] arXiv preprint 2018 

Thorough separation 
of illumination and 
reflection; enhanced 
visibility in dim 
lighting conditions. 

Inadequately 
mitigates noise; 
resource-intensive. 

Li, M., Liu, 
J., Yang, W., 
Sun, X., & 

Guo, Z. 

 [14] 

IEEE 
transactions on 

image 
processing 

2018 

Integrates a noise 
map into the Retinex 
model, substantially 
diminishing noise 
while maintaining 
structural features. 

Significant 
computational 
expense; potential 
for feature loss in 
low-noise photos; 
necessitates human 
parameter 
adjustment. 

Table 2.1. Overview of Traditional and Machine-Learning Approaches to Low Light Image Enhancement 
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Zhang, Y., 
Zhang, J., & 

Guo, X. 
 [12] 

Proceedings of 
the 27th ACM 
international 

conference on 
multimedia 

2019 

Functional and 
lightweight design; 
efficient for 
relatively low-light 
conditions. 

Suboptimal 
performance in 
extreme low-light 
environments; 
difficulties with 
noise reduction. 

Chen, C., 
Chen, Q., 
Do, M. N., 
& Koltun, 

V. 

 [10] 

Proceedings of 
the IEEE/CVF 
International 

conference on 
computer vision 

2019 

High-quality 
enhancement of 
extreme low-light 
images; effective 
noise suppression. 

Demands specialist 
gear (e.g., Sony 
α7SII camera); 
incurs substantial 
computational 
expenses. 

Guo, C., Li, 
C., Guo, J., 
Loy, C. C., 

Hou, J., 
Kwong, S., 
& Cong R. 

 [8] 

Proceedings of 
the IEEE/CVF 
conference on 

computer vision 
and pattern 
recognition 

2020 

Zero-reference 
training removes 
reliance on paired 
data; the lightweight 
design is appropriate 
for deployment. 

Restricted 
generalization in 
varied lighting 
situations; has 
difficulties with 
significant noise or 
artifacts. 

Zeng, H., 
Cai, J., Li, 
L., Cao Z., 
& Zhang L. 

 [20] 

IEEE 
Transactions on 

Pattern 
Analysis and 

Machine 
Intelligence 

2020 

Real-time 
performance utilizing 
a lightweight 
architecture; 
augmentation that 
adapts to images. 

Constrained to 
particular image 
formats; encounters 
difficulties in 
extreme low-light 
conditions. 

Lim S., & 
Kim W. 

 [16] 
IEEE 

Transactions on 
Multimedia 

2020 

Multi-scale 
processing using the 
Laplacian pyramid 
facilitates efficient 
global illumination 
recovery and the 
preservation of local 
details. 

Computational 
complexity arising 
from multi-scale 
processing; 
restricted real-time 
application. 

Jiang Y., 
Gong X., 
Liu D., 

Cheng Y., 
Fang C., 
Shen X. 

 [7] 

IEEE 
transactions on 

image 
processing 

2021 

Unpaired training 
eliminates the 
necessity for paired 
datasets, yielding 
aesthetically 
acceptable outcomes 
in the majority of 
instances. 

Generates color 
aberrations under 
high situations; has 
difficulties in noise 
reduction. 

Liu R., Ma 
L., Zhang J. 

 [19] 

Proceedings of 
the IEEE/CVF 
conference on 

computer vision 
and pattern 
recognition 

2021 

Efficient unrolling 
methodology 
grounded in Retinex 
theory; enhanced 
noise management 
and detail retention. 

Resource-intensive; 
requires meticulous 
parameter 
optimization for 
optimal outcomes. 

Cai Y., Bian 
H. 

[15] Proceedings of 
the IEEE/CVF 

2023 Illumination-guided 
transformer models 

Elevated 
computational 
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international 
conference on 

computer vision 

efficiently capture 
non-local 
interactions and 
greatly surpass 
benchmarks. 

demands stemming 
from transformer 
construction; 
intricate design 
constrains 
deployment 
efficacy. 

 

Author(s) Paper  Publication/Proceeding Year Key Contributions 

Ronneberger, O., 
Fischer, P., & 

Brox, T. 
[62] 

Medical Image Computing 
and Computer-Assisted 

Intervention  
2015 

Proposed U-Net, an encoder-
decoder architecture featuring 
skip connections, designed for 
accurate biomedical 
segmentation. Demonstrated 
effectiveness with constrained 
data through elastic 
augmentation, attaining state-
of-the-art results in ISBI 
challenges. 

Ghani, A. S. A., 
& Isa, N. A. M. 

[30] Applied Soft Computing  2015 

Proposed UIE combining an 
integrated color model with 
histogram modification based 
on Rayleigh distribution to 
enhance contrast and visual 
quality. 

Ancuti, C. O., 
Ancuti, C., De 

Vleeschouwer, C., 
& Bekaert, P. 

[41] 
IEEE Transactions on 

Image Processing  
2017 

Proposed a fusion-based UIE 
approach. Combines a color-
corrected version and a 
contrast-enhanced version 
using perceptual weight maps 
(luminance, chromaticity, 
saliency). 

Huang, D., Wang, 
Y., Song, W., 
Sequeira, J., & 
Mavromatis, S. 

[56] 
MultiMedia Modeling 

Conference 
2018 

Proposed Relative Global 
Histogram Stretching (RGHS) 
for shallow-water images. 
Adaptively stretches 
Green/Blue channel 
histograms based on 
distribution & light absorption. 

Islam, M. J., Xia, 
Y., & Sattar, J. 

[28] 
IEEE Robotics and 
Automation Letters 

2020 

Proposed FUnIE-GAN, a real-
time conditional GAN for UIE 
that utilizes a multi-modal 
perceptual loss. The EUVP 
dataset was introduced, 
demonstrating enhanced 
perception capabilities. 

Table 2.2. Overview of Traditional and Machine-Learning Approaches to Underwater Image Enhancement 
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Islam, M. J., Luo, 
P., & Sattar, J. 

[29] 
Robotics: Science and 

Systems  
2020 

Introduced the simultaneous 
enhancement & super-
resolution (SESR) task. 
Proposed Deep SESR network 
utilizing multi-modal loss and 
saliency guidance. The UFO-
120 dataset for SESR has been 
released. 

Yang, L., Zhang, 
R.-Y., Li, L., & 

Xie, X. 
[54] 

International Conference 
on Machine Learning  

2021 

Proposed SimAM, a simple, 
parameter-free 3D attention 
(channel & spatial) module. 
Employs a neuroscience-
inspired energy function and a 
closed-form solution to 
allocate distinct neuron 
weights. 

Tang, Y., 
Iwaguchi, T., 
Kawasaki, H., 
Sagawa, R., & 
Furukawa, R. 

[52] 
Asian Conference on 

Computer Vision  
2022 

Utilized Neural Architecture 
Search (NAS) to automatically 
identify optimal U-Net 
configurations for UIE. 
Transformers were included in 
the search space, 
demonstrating their suitability 
for high-level features. 

Peng, L., Zhu, C., 
& Bian, L.. 

[27] 
IEEE Transactions on 

Image Processing 
2023 

Introduced the Transformer 
architecture to UIE, 
incorporating specialized 
channel and spatial modules. A 
novel multi-color space loss is 
proposed, along with the 
release of the LSUI dataset. 

Khan, R., Mishra, 
P., Mehta, N., 
Phutke, S. S., 

Vipparthi, S. K., 
Nandi, S., & 
Murala, S. 

[58] 

IEEE/CVF Winter 
Conference on 

Applications of Computer 
Vision  

2024 

Proposed Spectroformer, a 
multi-domain 
(spatial/frequency) query 
cascaded Transformer for UIE. 
Uses MQCA, Spatio-Spectro 
Fusion Attention & Hybrid 
Fourier-Spatial Upsampling 
blocks. 

Pucci, R., & 
Martinel, N. 

[60] arXiv preprint 2024 

Proposed CE-VAE for the 
simultaneous compression and 
enhancement of underwater 
images. Employs an attention-
aware encoder and an 
innovative dual decoder, 
comprising spatial and 
capsule-based components, to 
achieve state-of-the-art results 
with compression. 
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2.2 Datasets 

High-quality datasets are fundamental to the effectiveness of any deep learning-based image 

enhancement or restoration model. In this thesis, the careful selection and utilization of 

benchmark datasets play a pivotal role in developing, training, and validating the proposed 

frameworks for low-light and underwater image enhancement. These datasets not only provide 

diverse and challenging real-world scenarios but also serve as standardized benchmarks for 

evaluating and comparing the performance of different models. For low-light image 

enhancement, datasets such as LOLv1 [6], LOLv2-Real [9], LOLv2-Synthetic [9], and SID 

[10] offer paired images captured under varying illumination and noise conditions, ensuring 

that the models are exposed to a broad spectrum of real and synthetic low-light environments. 

For underwater image enhancement, datasets like LSUI [27], EUVP [28], and UFO-120 [29] 

encompass a wide range of underwater scenes with varying degrees of color distortion, contrast 

loss, and detail degradation. The use of these comprehensive datasets is crucial for achieving 

robust model generalization and for facilitating meaningful comparisons with state-of-the-art 

approaches in the field. The datasets employed in this research are summarized below, each 

contributing to the thorough assessment and advancement of deep learning-based image 

enhancement techniques under challenging visual conditions. 

Low Light Image Enhancement Datasets: The testing and training of LEARN utilizes 

LOLv1 [6], LOLv2-Real [9], LOLv2-Synthetic [9], and SID [10] datasets. The LOLv1 [6] 

dataset comprises 500 paired low/normal-light images, split into 485 pairs for training and 15 

pairs for testing, while LOLv2-Real [9] and LOLv2-Synthetic [9] datasets each contain 689 

training pairs and 100 test pairs, offering greater diversity. For the SID [10] dataset, we use a 

subset of the Sony α7SII camera data, selecting only the highest exposure time from the 

available 10 exposure settings for each low-light scene, paired with the corresponding ground 

truth image. LOLv1 [6] consists of indoor scenes shot under different ISO levels and exposure 

times. These pictures are a basic benchmark for improvement models since they feature natural 

noise artifacts common in low-light photography. Using a three-step shooting approach to 

average several normal-light photographs for high-quality ground truth creation, LOLv2-Real 

[9] guarantees alignment and lowers artifacts like motion blur or camera shake, therefore 

offering increased variability. LOLv2-Synthetic [9] creates low-light photographs by 

artificially darkening normal-light ones, therefore enabling controlled research of degradation 

effects and illumination matching genuine dark photography. These datasets taken together 

offer a complete framework for assessing models in both natural and synthetic low-light 

environments, therefore allowing strong generalization to many illumination conditions. 

Underwater Image Enhancement Datasets: SETAU-Net utilizes three benchmark datasets 

common in underwater image enhancement research; EUVP [28], LSUI [27], and UFO-120 

[29] for supervised training and assessment. The training phase utilizes a mix of EUVP [28], 

LSUI [27], and UFO-120 [29]. Training uses the "Underwater Scenes" subset of the EUVP 

[28] dataset, which contains 2,185 pairs of poor and good perceptual quality images from seven 

camera types in diverse oceanic locations and visibility conditions to ensure representativeness 

of real-world robotic deployments. For scene diversity and high-quality references, the LSUI 

dataset [27] collected real-world underwater images and generated high-quality reference 

images through automated enhancement, objective filtering, and multiple rounds of human 

perceptual rating and refinement. It provides 3,423 pairs from compilation to our training split. 

Our training split includes 1,500 training pairs from the UFO-120 dataset [29], which uses 

domain transfer techniques to imitate damaged images and is utilized for UIE, super-resolution, 

and salient object recognition. PyTorch's ‘ConcatDataset’ [18] combines these three training 

sets to create a 7,108-image-pair training pool that exposes the model to more degradation 
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patterns. EUVP [28] (515 pairs), LSUI [27] (400 pairs), and UFO-120 [29] (120 pairs) test 

partitions are used to evaluate performance of the model.  

 

All training and testing datasets use a standard input dimension of 256 × 256 pixels to preserve 

detail while optimizing computing performance. These datasets collectively provide a robust 

foundation for training and evaluating deep learning models for both low-light and underwater 

image enhancement, ensuring the models are tested on a wide variety of challenging real-world 

conditions. 

 

2.3 Problem statement 

The accurate and timely enhancement and restoration of images captured under adverse visual 

conditions, such as low-light and underwater environments, is essential for a wide range of 

real-world applications-including autonomous vehicles, surveillance, medical diagnostics, and 

marine exploration. Images acquired in these challenging settings are frequently affected by 

severe degradations, including reduced visibility, color distortion, amplified noise, blurring, 

and significant loss of structural detail. These issues not only hinder human interpretation but 

also compromise the performance of automated computer vision systems. Existing traditional 

and machine learning techniques for adverse (low-light and underwater images) image 

enhancement and restoration methods are limited by their tendency to introduce artifacts, 

unnatural color shifts, and their inability to generalize across diverse and complex scenarios. 

While deep learning has shown promise in overcoming some of these limitations, existing 

models often demand large, high-quality paired datasets, are computationally intensive, or fail 

to balance the trade-off between enhancement quality and efficiency. Furthermore, real-world 

conditions bring additional challenges, such as variations in illumination, scene complexity, 

and the presence of multiple simultaneous degradations (e.g., both noise and color cast in 

underwater images), which can severely impact model accuracy and robustness.  

There is, therefore, a pressing need for the development of robust, efficient, and generalizable 

deep learning-based frameworks that can effectively restore visibility, correct color, suppress 

noise, and preserve fine structural details in images captured under these adverse conditions. 

Such frameworks should be capable of real-time or near real-time deployment in resource-

constrained environments, ensuring practical applicability across a variety of domains. The 

main objective of this study is to design and validate lightweight deep learning architectures 

that address these challenges, advancing the state of the art in image enhancement and 

restoration for low-light and underwater scenarios. 

Dataset Number of Images/Image pairs Year Released 

LOL-v1 [6] 500 (485 train, 15 test) pairs 2018 

LOL-v2 [9] 789 (689 train, 100 test) pairs 2024 

SID [10] 5094 raw images 2018 

LSUI [27] 4279 pairs 2023 

EUVP [28] 12000 pairs 2020 

UFO-120 [29] 120 pairs 2021 

Table 2.3. Common Datasets used in Enhancement and restoration of Adverse (Low-Light and Underwater) 

Images 
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CHAPTER 3 

PROPOSED METHODOLOGY 

 
This section details the proposed methodology for image enhancement and restoration under 

challenging visual conditions using deep learning. In this research, we utilize several 

benchmark datasets, including LOLv1 [6], LOLv2-Real [9], LOLv2-Synthetic [9], SID [10] 

for low-light images, and LSUI [27], EUVP [28], and UFO-120 [29] for underwater images, 

to comprehensively train and evaluate our models. Two state-of-the-art architectures are 

developed: LEARN, which employs a Laplacian enhancement module, expanded kernel 

residual blocks, and Convolutional Block Attention Modules (CBAM) for low-light image 

enhancement; and SETAU-Net, which integrates Sobel-based edge extraction, SimAM 

attention modules, and a transformer bridge within a U-Net backbone for underwater image 

enhancement. Figures 3.1 and 3.2 illustrate the respective architectures of the proposed 

frameworks. The following sub-sections provide a detailed discussion of data acquisition, pre-

processing, network architecture, as well as model training and validation procedures. 

 

3.1 LEARN (Laplacian Enhanced Attention and Residual Network): In this section, we present 

LEARN (Laplacian Enhanced Attention and Residual Network), our proposed approach for 

low-light image enhancement. LEARN uses a small yet powerful architecture to solve the basic 

problems of maintaining fine details while enhancing visibility in low-light photos. Our model 

achieves competitive performance while requiring significantly fewer computational resources 

than existing approaches. The methodology combines three key components: a Laplacian 

enhancement module for edge preservation, residual blocks for contextual information 

extraction, and convolutional block attention modules (CBAM) for adaptive feature refinement.  

3.1.1 Architecture 

The LEARN architecture (Fig. 3.1.) follows an encoder-decoder structure optimized for low 

light image enhancement. The network processes RGB input images of dimensions height × 

width × 3 channels (H×W×3) through three main components. First, our Laplacian 

enhancement module applies a fixed 3×3 Laplacian kernel [[0, 1, 0], [1, -4, 1], [0, 1, 0]] to 

extract edge information. This discrete approximation of the Laplacian operator highlights 

rapid intensity changes in the image. A learnable scaling factor 𝛼, initialized to 0.1, refines 

this enhancement by amplifying edge details while preserving overall structure. 

By use of its specific Laplacian enhancement module in combination with enlarged kernel 

residual blocks, the LEARN architecture improves low-light images. Following a learnable 

scaling factor and 1x1 convolution to adaptively enhance these features, the Laplacian module 

detects edges and high-frequency details using a fixed 3x3 Laplacian kernel.  Larger 5x5 

kernel residual blocks with more context information complement this.  Together, they provide 

a potent mix in which the Laplacian module especially focuses edge preservation and detail 

enhancement, producing sharper, more detailed outputs; the residual blocks extract rich 

features and preserve spatial information through skip connections. 

The encoder consists of three convolutional layers: an initial 3×3 convolutional layer 

producing 64 feature maps, subsequent to two downsampling layers with a stride of 2 that 

produce 128 and 256 feature maps respectively. We use 5×5 kernels in our residual blocks 

instead of the standard 3×3 kernels to increase the receptive field by 25%, allowing the 

network to capture broader contextual information. The middle section contains two residual 

blocks, each with two 5×5 convolutional layers maintaining 256 feature channels. Each 

residual block follows the structure F(x) + x, where residual mapping F(x) represents the 
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function to be learned by the network. This skip-connection architecture mitigates the problem 

of vanishing gradients and improves the training efficiency of deeper networks.  

Each residual block is integrated with CBAM modules that apply sequential channel and 

spatial attention. The CBAM initially establishes a one-dimensional channel attention map 

Mc ∈ RC×𝟙×𝟙 and then a twi-dimensional spatial attention map Ms ∈ R𝟙×H×W. The channel 

attention module exploits both max-pooled and average-pooled features to compute channel-

wise attention, while the spatial attention module uses concatenated average and max pooling 

features to focus on meaningful regions in the image. This dual attention method enables the 

network to focus selectively on relevant features while reducing noise. 

The Convolutional Block Attention Module (CBAM) significantly enhances feature 

refinement in low-light image enhancement by implementing a dual attention mechanism. 

CBAM sequentially applies channel attention and spatial attention to hone in on "what" and 

"where" is important in the feature maps. This focused attention method lets the network 

dynamically highlight vital features while suppressing less important ones, hence enhancing 

low-light areas and maintaining natural look. 

The decoder mirrors this structure with two transposed convolutional layers (kernel=4, 

stride=2) that upsample from 256→128→64 channels, followed by a final 3×3 convolutional 

layer that produces the enhanced RGB output. Skip connections transfer feature maps from 

encoder to decoder through addition operations. After decoding, The Laplacian enhancement 

module sharpens edge details before passing the final output through a sigmoid activation 

function, ensuring pixel values remain within a valid range. 

The LEARN model employs two primary activation functions, ReLU and Sigmoid placed 

throughout the architecture. ReLU (Rectified Linear Unit) activation function is used in the 

encoder, decoder, and residual blocks to incorporate non-linearity and enable the network to 

learn intricate patterns. ReLU is specifically utilized following each convolutional layer in the 

encoder, after the transposed convolution layers in the decoder, and within the residual blocks 

to activate intermediate feature mappings. The sigmoid activation function is used in the final 

output ensuring compatibility with image data formats. These activations are chosen to balance 

efficient training with stable output generation. 

LEARN demonstrates a lightweight architecture that enables excellent performance in image 

enhancement while highlighting critical trade-offs. To reduce the number of parameters, it 

employs a simplistic encoder-decoder architecture. To compensate for this, the leftover blocks 

employ bigger 5×5 kernels to acquire more contextual information without adding depth. By 

allocating processing power to key regions instead of treating the entire image equally, 

convolutional back-projection with attention mechanisms (CBAM) enables effective feature 

refining. The dedicated Laplacian improvement module focuses on edge details with minimal 

parameter increase, and skip connections preserve details without adding parameters. By 

carefully considering these factors, LEARN was able to keep its computing requirements low 

enough for real-world applications while still achieving competitive performance on 

enhancement tasks. 

3.1.2 Training configuration 

•     Loss function- LEARN is trained using a combined loss function with three components: 

VGG perceptual loss, L1 loss, and SSIM loss (window size = 11, 𝐶1 = 0.012, 𝐶2 = 0.032) 

with 60%, 20% and 20% weightage respectively. The VGG perceptual loss uses features 

from a pre-trained VGG19 network to maintain natural visual characteristics, while L1 

loss measures pixel-level accuracy and SSIM preserves structural information. 
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•     Parameters- LEARN employs the AdamW optimizer for training, with a 1e-4 learning 

rate and 1e-2 weight decay. A cosine annealing scheduler gradually reduces the learning 

rate from the initial value 1e-4 to 1e-6 over 50 epochs. Training is conducted by leveraging 

a batch size of 16, where input images are resized to 256×256 pixels using LANCZOS 

resampling to maintain consistency across datasets. For the Laplacian enhancement 

module, the scaling factor α is initialized to 0.1. The CBAM module uses a reduction ratio 

of 8 for the channel attention mechanism and a 7×7 kernel for spatial attention.  

•     Datasets and data augmentation-  Proposed model is trained on LOLv1 [6], LOLv2-

Real [9], LOLv2-Synthetic [9], and SID [10] datasets. The LOLv1 [6] dataset comprises 

500 paired low/normal-light images, split into 485 pairs for training and 15 pairs for 

testing, while LOLv2-Real [9] and LOLv2-Synthetic [9] datasets each contain 689 training 

pairs and 100 test pairs, offering greater diversity. For the SID [10] dataset, we use a subset 

of the Sony α7SII camera data, selecting only the highest exposure time from the available 

10 exposure settings for each low-light scene, paired with the corresponding ground truth 

image. To improve generalization and expand our training dataset, we apply several data 

augmentation techniques including horizontal flipping (50% probability), vertical flipping 

(25% probability), and slight Gaussian noise addition (σ=0.01). For SID [10] images 

specifically, we apply additional transformations including random rotation (±10°), 

limited random cropping (90-95% of original size), and occasional light smoothing with 

Gaussian blur (radius=1, 50% probability). LOLv1 [6] consists of indoor scenes shot under 

different ISO levels and exposure times. These pictures are a basic benchmark for 

improvement models since they feature natural noise artifacts common in low-light 

photography. Using a three-step shooting approach to average several normal-light 

photographs for high-quality ground truth creation, LOLv2-Real [9] guarantees alignment 

and lowers artifacts like motion blur or camera shake, therefore offering increased 

variability. LOLv2-Synthetic [9] creates low-light photographs by artificially darkening 

normal-light ones, therefore enabling controlled research of degradation effects and 

illumination matching genuine dark photography. These datasets taken together offer a 

complete framework for assessing models in both natural and synthetic low-light 

environments, therefore allowing strong generalization to many illumination conditions. 

•     Implementation- LEARN is programmed and executed in PyTorch [18] and trained on 

an NVIDIA GeForce RTX 4060 GPU (8GB GDDR6) paired with a 13th Gen Intel Core 

i7-13700HX 2.10 GHz processor with 16 GB RAM. The training process takes 

approximately 2-6 minutes per epoch. Mixed precision training is employed using 

PyTorch [18], which accelerates computation and reduces memory usage by performing 

certain operations in FP16 while maintaining stability for others in FP32. The model uses 

batch normalization layers where applicable, ensuring stable training dynamics. Skip 

connections are implemented as addition operations to preserve spatial information while 

minimizing memory overhead. The training setup includes a combined dataset loader that 

merges multiple datasets (LOLv1 [6], LOLv2-Real [9], LOLv2-Synthetic [9], and SID 

[10]) into a unified pipeline. The best-performing weights are saved based on validation 

loss during model checkpointing to ensure optimal performance and allow training to be 

continued if interrupted. All training artifacts, including ideal and final model weights, are 

kept in a directory for reproducibility. 

3.1.3 Model Operation 

1. LEARN architecture integrates multiple interrelated components to improve visibility and 

preserve details in low-light images.  The encoder captures hierarchical features through 

three convolutional layers to start the model.  The middle phase refines features using 

residual blocks and Convolutional Block Attention Modules (CBAM).  The decoder 
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reconstructs the augmented image using transposed convolutions and skip connections to 

restore spatial features lost during downsampling.  After reconstructing features, the 

Laplacian Enhancement module gathers edge information and refines fine details before 

output. 

2. The image enters the encoder path consisting of three convolutional layers. First, a 3×3 

convolution transforms the input into 64 feature maps: 

                                                                 𝐹1 = Conv3×3(𝐼enhanced)                 (1) 

3. This operation applies 64 different 3×3 filters to the enhanced image, with each filter 

learning to detect specific patterns. The calculation for each output pixel in feature map 

‘j’ at position (x, y) is: 

                     𝐹1
𝑗(𝑥, 𝑦) = ∑ ∑ ∑ 𝑊𝑚,𝑛,𝑖,𝑗

2

𝑛=0

2

𝑚=0

2

𝑖=0

∗ 𝐼enhanced(𝑥 + 𝑚 − 1, 𝑦 + 𝑛 − 1, 𝑖) + 𝑏𝑗            (2) 

where W represents the learnable weights and bj is the bias for feature map ‘j’. 

4. Next, two downsampling convolutions with a stride of 2 reduce spatial dimensions while 

increasing feature depth: 

i. 𝐹2 = Conv3×3,stride=2(𝐹1) producing 128 feature maps at half resolution. 

ii. 𝐹3 = Conv3×3,stride=2(𝐹2) producing 256 feature maps at quarter resolution. 

5. The encoder's output F3 enters the middle section containing two residual blocks with 

CBAM modules. Each residual block first processes features through two consecutive 5×5 

convolutional layers: 

                                           Fmid = Conv5×5 (ReLU(Conv5×5(Fin)))                 (3) 

These larger 5×5 kernels expand the receptive field compared to standard 3×3 

convolutions, allowing the network to incorporate broader spatial context. The residual 

connection then adds the original input to these processed features:  

                                                                    Fres = Fin + Fmid                                                                  (4) 

6. After the residual connection, the CBAM module applies sequential channel and spatial 

attention. For channel attention, it computes: 

                                  𝑀𝑐 = σ (MLP(AvgPool(Fres)) + MLP(MaxPool(Fres)))                     (5) 

where average-pooled and max-pooled features are processed through shared MLPs with 

reduction ratio 8, then combined and activated with sigmoid σ. This produces a channel 

attention map that scales each feature channel based on importance. Spatial attention 

follows with: 

                   Ms = σ (Conv7 × 7(AvgPool(Fres ⊗ Mc) ⊕ MaxPool(Fres ⊗ Mc)))            (6) 

where channel-refined features are pooled across channels, concatenated (denoted by 

‘⊕’), processed by a 7×7 convolution, and activated with sigmoid to generate a spatial 

attention map highlighting important regions. The final output of each residual block with 

CBAM is 𝐹𝑜𝑢𝑡 = (𝐹𝑟𝑒𝑠 ⊗ 𝑀𝑐) ⊗ 𝑀𝑠, where ⊗ represents element-wise multiplication. 

7. After the middle section, the decoder path reconstructs the enhanced image by 

progressively upsampling the refined features and incorporating details via skip 
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connections. The output of the middle section, Fout, is passed through a transposed 

convolution layer to double its spatial dimensions and reduce its channel count from 256 

to 128: 

                                                          𝐷1 = TransConv4×4,stride=2(Fout)                                       (7) 

8. A skip connection adds the corresponding encoder feature map F2 to preserve spatial 

details: 𝐷1 = 𝐷1 + F2. Next, 𝐷1 is passed through another transposed convolution to 

further double its spatial dimensions and reduce its channel count from 128 to 64: 

                                                          𝐷2 = TransConv4×4,stride=2(D1)                                                 (8) 

9. Another skip connection adds the feature map F1 (from the first encoder layer): 𝐷2 = 𝐷2 +
𝐹1. Finally, 𝐷2is passed through a 3×3 convolutional layer to produce three output channels 

(RGB) 𝐷3 = Conv3×3(𝐷2).This completes the decoder path, producing an intermediate 

enhanced image that retains both global context and local details.  

10. After the decoder path reconstructs intermediate features, the final enhanced image is 

generated. The reconstructed features, 𝐷3, are passed through the Laplacian enhancement 

module to refine edge details. The Laplacian Enhancement module is applied at the end of 

the decoder path to refine edge details before producing the final enhanced output. This 

module uses a fixed 3 × 3 Laplacian kernel to extract edge information and applies a 

learnable scaling factor α for enhancement. The Laplacian operator is defined as: 

[
0 1 0
1 −4 1
0 1 0

] 

The enhanced features are computed as: 𝐼laplacian = Conv1×1(Laplacian(𝐷3)) where 𝐷3 is 

the output from the decoder's final convolutional layer. The final enhanced image is then 

calculated as 𝐼enhanced = 𝐷3 + α ⋅ 𝐼laplacian; Here, α scales the effect of the Laplacian 

augmentation, allowing the network to learn the amount of edge refinement required. 

Finally, a sigmoid activation function is employed to constrain pixel values within the 

range of 0 to 1: 𝐼output = σ(𝐼enhanced). This results in a final enhanced RGB image with 

increased visibility and preserved edge details. 
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Layer 
Output 

channels 
Kernel 

size 
Stride Padding Activation Parameters Description 

2D Convolutional 

Layer (encoder 

convolution 1) 

64 3x3 1 1 ReLU 1,792 
Initial feature 

extraction 

2D Convolutional 

Layer (encoder 

convolution 2) 

128 3x3 2 1 ReLU 73,856 

Downsampling 

and feature 

expansion 

2D Convolutional 

Layer (encoder 

convolution 3) 

256 3x3 2 1 ReLU 295,168 

Further 

downsampling 

and feature 

expansion 

Residual Block 

(residual block 1) 
256 5x5 1 2 ReLU 3,277,312 

Residual 

learning with 

expanded 

receptive field 

Fig. 3.1. LEARN Model Architecture Diagram 

Table 3.1. LEARN Model Configuration 
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Convolutional 

Block Attention 

Module (attention 

module 1) 

256 - - - Sigmoid 16,771 

Channel and 

spatial 

attention 

refinement 

Residual Block 

(residual block 2) 
256 5x5 1 2 ReLU 3,277,312 

Second 

residual block 

for deep 

feature 

extraction 

Convolutional 

Block Attention 

Module (attention 

module 2) 

256 - - - Sigmoid- 16,771 

Additional 

attention 

refinement 

2D Transposed 

Convolutional 

Layer (decoder 

convolution 1) 

128 4x4 2 1 ReLU 524,416 

Upsampling 

and feature 

reduction 

2D Transposed 

Convolutional 

Layer (decoder 

convolution 2) 

64 4x4 2 1 ReLU 
131,136 

 

Further 

upsampling 

and feature 

reduction 

2D Convolutional 

Layer (decoder 

convolution 3) 

3 3x3 1 1 - 1,731 

Final 

reconstruction 

to image space 

Laplacian 

Enhancement 

Module 

3 3x3 1 1 - 40 

Edge 

enhancement 

using 

Laplacian 

operator 

 

3.2 SETAU-Net - This section presents the proposed SETAU-Net, an innovative hybrid 

network architecture specifically developed for the complex job of Underwater Image 

Enhancement (UIE). SETAU-Net integrates the advantages of Convolutional Neural Networks 

(CNNs) for hierarchical feature extraction and spatial detail retention with the global context 

modeling skills of Transformers, particularly designed for efficiency and efficacy in the 

underwater domain. The design has a preliminary edge-enhancement phase, attention (self-

attention and SimAM) techniques integrated into its basic framework, and a Transformer-based 

bottleneck bridge.  

3.2.1 Architecture 

The proposed SETAU-Net (Fig. 3.2) utilizes a U-Net design, with an encoder pathway that 

captures hierarchical information and a symmetric decoder pathway for precise localization 

and reconstruction, interconnected by skip connections. This architecture is meticulously 

crafted for the complexities of underwater image enhancement (UIE) through several key 
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innovations: an initial Sobel-based edge enhancement stage, parameter-free SimAM attention 

integrated within the convolutional blocks, and a Transformer-based attention bridge at the 

network's bottleneck. The network is engineered to process a 3-channel input image 𝑋 ∈
ℝ𝐻×𝑊×3 and generate an enhanced 3-channel output 𝐼𝑜𝑢𝑡 ∈ ℝ𝐻×𝑊×3. The network utilizes a 

base channel width, referred to as C0, which dictates the number of feature channels following 

the first processing and establishes a foundation for the dimensions of succeeding layers; in 

our design, this base width is established at 40 channels. Figure 1 presents a schematic 

overview of the whole SETAU-Net architecture. 

Processing begins with the Sobel Enhancement Module, designed to explicitly leverage 

structural information often degraded underwater. Instead of operating directly on the input 

image X, this module first computes horizontal (Gx) and vertical (𝐺𝑦) gradients using fixed 

3x3 Sobel filter kernels (𝐾𝑥, 𝐾𝑦) applied via depthwise convolution (groups = Cin = 3) to 

preserve channel-specific edge details:      
t 
                                          Gx = Conv2d(X, Kx, padding = 1, groups = 3)    (9) 

                                          Gy = Conv2d(X, Ky, padding = 1, groups = 3)               (10) 
 

The original input X (3 channels) is then concatenated with both gradient maps (Gx: 3 channels, 

Gy: 3 channels) along the channel dimension, creating a 9-channel feature map 𝑋𝑖𝑛
′ =

Concat(𝑋, 𝐺𝑥, 𝐺𝑦). This combined map, rich in both color and edge information, is 

subsequently processed by two sequential processing blocks. Each block comprises a 3x3 

convolutional layer, succeeded by batch normalization, and culminates with a rectified linear 

unit (ReLU) activation function (ReLU(𝑥) = max(0, 𝑥)). The resultant feature map E0 

denotes the output where: 

                                                            𝐸0 = Block2(Block1(𝑋′𝑖𝑛))                          (11) 

                                       Block(𝑍) = ReLU (BatchNorm(Conv3x3(𝑍)))                         (12) 

The rationale for this initial step is twofold: it injects strong structural priors derived from 

edges at minimal computational cost (using fixed Sobel filters), and the subsequent learnable 

convolutional layers allow the network to adaptively integrate this information, guiding 

feature extraction in the deeper layers. This module outputs an edge-aware feature map E0 

with dimensions ℝ𝐻×𝑊×𝐶0, having the base channel width of 40. 

The resulting feature map E0 is then fed into the Encoder Path, which progressively reduces 

spatial resolution while increasing channel depth across four stages to learn multi-scale 

contextual representations. Each encoder stage utilizes computationally efficient depthwise-

separable convolutions. Specifically, within each stage, a 3x3 depthwise convolution performs 

spatial filtering independently for each input channel. For downsampling, this depthwise 

convolution uses a stride of 2 in the second, third, and fourth encoder stages (producing 

E2, E3, E4). A further 1x1 pointwise convolution modifies the features to the designated output 

channel dimension, thus consolidating information across channels. Batch normalization is 

succeeded by the implementation of the Gaussian Error Linear Unit (GELU) activation 

function, expressed as GELU(𝑥) = 𝑥Φ(𝑥), where Φ(𝑥) symbolizes the CDF (Cumulative 

Distribution Function) of the normal distribution in its conventional form. A crucial element 

incorporated post-activation in each encoder step is the SimAM [54] (Simple, Parameter-free 

Attention Module). SimAM adaptively enhances features by computing attention weights 

using an energy function based on neuron data inside each channel, without adding further 

learnable parameters. The energy function for a target neuron 𝑡 with respect to others xi in a 

channel is: 
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                                       et(wt, bt, y, xi) = (yt − t̂)2 +
1

M−1
∑ (yo − xî)

2M−1
i=1              (13) 

where t̂, xî are linear transformations and yt = 1, yo = −1,  M = H × W. Minimizing this 

function yields attention weights sigmoid(E), where E relates to the neuron's variance, 

effectively highlighting more informative features. Finally, the output of the SimAM module 

is combined with the original input to the stage (𝑋) via a residual connection; this input 𝑋 may 

first be passed through a 1x1 convolutional projection if its dimensions or channel count 

changed within the stage (e.g., due to striding). This sequential structure – depthwise 

convolution, pointwise convolution, normalization, activation, SimAM attention [54], and 

residual addition – promotes efficient feature extraction, incorporates adaptive feature 

refinement with minimal overhead, and ensures stable training. The encoder produces feature 

maps E1, E2, E3, E4 with spatial dimensions reducing from  H × W  to  H/8 × W/8  and 

channel dimensions increasing progressively as multiples of the base width: C0, 2C0, 4C0, 8C0 

(corresponding to 40, 80, 160, and 320 channels). 

At the U-Net's bottleneck, the most compressed feature map E4 (with dimensions 

ℝ𝐻/8×𝑊/8×320) is processed by the Transformer Attention Bridge. This module substitutes 

normal convolutions to clearly represent global context and long-range dependencies, essential 

for tackling spatially variable degradation such as color casts in UIE. The bridge consists of a 

sequence of two identical Transformer layers. Each layer begins with Instance Normalization 

(often beneficial in generative tasks for normalizing style/contrast information per instance), 

followed by a multi-head scaled dot-product self-attention mechanism and a residual 

connection adding the layer's input to its output. The self-attention mechanism implements 

attention using four parallel attention heads. Input features X are linearly projected 

to Query (Q), Key (K), and Value (V) representations using 1x1 convolutions. Attention is 

computed as: 
a 

                                               Attention(Q, K, V) = Softmax (
QKT

√dk
) V                                          (14) 

a 
where dk is the dimension per head (80 in this configuration). This allows the module to weigh 

information globally based on feature similarity. Our implementation enhances this with a 

parallel path using a 3x3 depthwise convolution (potentially aiding positional awareness) and 

incorporates an interaction term derived from the Query and Key projections, modulating the 

attention output before combining it with the depthwise path result. A final 1x1 projection 

follows the attention block. Furthermore, the bridge incorporates multi-scale context 

aggregation: features after the Transformer layers are pooled to global (1x1) and medium (2x2) 

sizes using adaptive average pooling, processed with separate 1x1 convolutions, bilinearly 

upsampled, and fused (via concatenation and a 1x1 fusion convolution) with the main feature 

path. This design allows the bottleneck to effectively capture both global dependencies and 

summarized multi-scale context, outputting a refined bottleneck feature map  𝐵  of size 

ℝ𝐻/8×𝑊/8×320. The refined bottleneck features 𝐵 initiate the decoder path, which 

symmetrically mirrors the encoder to reconstruct the enhanced image. It comprises three 

stages. Each decoder stage receives input from the preceding stage (or the bridge 𝐵 for the 

first stage) and the corresponding feature map from the encoder via a skip connection 

(E3, E2, E1 respectively). The incoming feature map Xin is first upsampled by a factor of 2 

using a 2x2 Transposed Convolution (ConvTranspose2d) with stride=2, providing a learnable 

upsampling mechanism. The crucial skip connection operation follows: the upsampled map is 

concatenated channel-wise with the feature map Xskip from the corresponding encoder level 

Concat(Up(Xin), Xskip). Padding is applied if spatial dimensions differ slightly. This 

concatenation ensures that high-resolution spatial details from the encoder are directly 

available during reconstruction. A 1x1 fusion convolution subsequently integrates the 
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concatenated information and modifies the channel dimension. Each decoder stage has two 

successive blocks, each featuring a typical 3x3 convolution, succeeded by batch normalization 

and GELU activation. A SimAM module is incorporated post-convolutional blocks for 

parameter-free feature refining, analogous to the encoder. A residual link then adds the fused 

input feature map (after 1x1 fusion convolution) to the SimAM output, followed by a final 

GELU activation. 
a 

            (Output = Act(SimAM(ConvBlocks(FusedFeatures)) + FusedFeatures))              (15) 
t 
The process wherein ConvBlocks denotes the series of Conv-BN-GELU operations and Act 

signifies the concluding GELU, enables the decoder to incrementally enhance features and 

augment spatial resolution while assimilating intricate details from the skip connections. The 

decoder stages produce feature maps D3, D2, D1 with spatial dimensions increasing from 

 H/4 × W/4  back to  H × W  and channel dimensions decreasing progressively: 

4C0, 2C0, C0 (corresponding to 160, 80, and 40 channels). 

Finally, the output layer maps the high-resolution feature map D1 (shape ℝ𝐻×𝑊×40) from the 

last decoder stage to the final enhanced image. This is achieved using a single 1x1 convolution 

layer that projects the 40 feature channels down to the required 3 output channels (RGB). A 

Sigmoid activation function, σ(𝑥) = 1/(1 + 𝑒−𝑥), is applied element-wise to the output of 

the convolution. This ensures that the final pixel values of the enhanced image Iout are 

normalized to the standard range (0, 1), producing the final result Iout ∈ ℝH×W×3. 

3.2.2 Training configuration 

• Loss function- We employ a composite loss function to direct the SETAU-Net model in 

producing improved images, trained in an end-to-end fashion.   This function integrates 

many objectives, preserving balance among pixel-level reconstruction accuracy, 

structural integrity, perceptual realism, and edge clarity, all vital components for effective 

underwater image enhancement.   The total loss (Ltotal) is a weighted combination of five 

distinct loss components: L1 loss ((L1)), L2 loss (Mean Squared Error, (L2)), Structural 

Similarity Index Measure loss (LSSIM), VGG-based perceptual loss (LVGG), and 

Laplacian loss (LLap).  Each term addresses a distinct facet of image quality, with their 

contributions calibrated by predetermined weights established from the configuration: 

wL1 =  0.30, wL2 =  0.10, wSSIM =  0.30, wVGG =  0.15 and wLap = 0.15. The 

entire loss is expressed as: 

                    Ltotal = wL1L1 + wL2L2 + wSSIMLSSIM + wVGGLVGG + wLapLLap                  (16) 

The Mean Absolute Error (L1 loss), executed through `nn.L1Loss`, is incorporated to 

ensure pixel-level precision.  It promotes the network output Iout to closely align with 

the ground truth Igt on a pixel-by-pixel basis and is recognized for its relative resilience 

to outliers in comparison to L2. The Mean Squared Error (L2 Loss), executed through 

`nn.MSELoss`, enhances pixel-level accuracy while imposing greater penalties on 

bigger discrepancies compared to L1.   

                                                                   L2 = ||Iout − Igt||
2

2

                          (17) 

Its incorporation, however with reduced significance, enhances L1 and constitutes a 

fundamental element in several image restoration endeavors. Solely utilizing pixel-level 

losses may result in indistinct outcomes. The SSIM loss is essential for maintaining 

structural information by comparing localized patterns of pixel intensities adjusted for 

brightness and contrast. 



 

24 

 

                                                            LSSIM = 1 − SSIM(Iout, Igt)                                     (18) 

To enhance the output's conformity with human visual perception, we integrate a 

VGG16-based perceptual loss, executed within the VGG16PerceptualLoss class. By 

reducing the mean squared error between feature maps (ϕ𝑖) obtained from designated 

intermediate ReLU activation layers (indexed 2, 7, 12, 21) of a pre-trained VGG16 

network (models.VGG16_Weights.DEFAULT').  

                                            LVGG = ∑ ||ϕi(Iout) − ϕi(Igt)||
2

2

i∈{2,7,12,21}                                    (19) 

This loss function promotes the generation of images with authentic textures and details, 

circumventing the excessively smooth outputs often linked to solely pixel-based or 

structural losses. To particularly mitigate the blurring frequently observed in underwater 

images, which may be intensified by enhancement networks, the Laplacian loss is 

incorporated.  

                                                         𝐿Lap = ||∇2𝐼out − ∇2𝐼gt||
1
                                              (20) 

By computing the L1 distance between the second-order derivatives of the output and 

target (approximated channel-wise using a 2D convolution with the Laplacian kernel 

and groups = 3), this loss explicitly encourages the preservation and reconstruction of 

sharp edges and fine details. 

𝐾Lap = [
−1 −1 −1
−1 8 −1
−1 −1 −1

] 

• Parameters- For training SETAU-Net, we employ the AdamW optimizer for better 

model generalization. We start AdamW with a learning rate of 5 × 10−4 to facilitate 

rapid convergence in the early phases of training.  AdamW's decoupling mechanism 

penalizes excessive network weights with a weight decay coefficient of 0.01 to reduce 

overfitting. The ‘ReduceLROnPlateau’ scheduler was used to adjust the learning rate 

during training. It monitors the average total training loss and reacts dynamically to 

learning progress. If the loss does not improve after p=2 consecutive epochs, the learning 

rate is reduced by γ= 0.1. A minimum threshold of 1 × 10−7 was set to prevent 

stagnation in learning rate. The training took 35 epochs and a practical batch size of 12 

was used to get a steady gradient estimate. The input photos are processed at a standard 

256x256 pixel resolution, which balances detail retention and processing efficiency in 

image restoration jobs. The SimAM attention [54] modules uses a standard λ value of 

1 × 10−4, while the Transformer bridge uses a standard setup of 4 attention heads to 

evenly divide the bottleneck dimension (320) by the number of heads. 

• Datasets and data augmentation- We utilize three benchmark datasets common in 

underwater image enhancement research: EUVP [28], LSUI [27], and UFO-120 [29] for 

supervised training and assessment of SETAU-Net. The training phase utilizes a mix of 

EUVP [28], LSUI [27], and UFO-120 [29]. Our training uses the "Underwater Scenes" 

subset of the EUVP [28] dataset, which contains 2,185 pairs of poor and good perceptual 

quality images from seven camera types in diverse oceanic locations and visibility 

conditions to ensure representativeness of real-world robotic deployments. For scene 

diversity and high-quality references, the LSUI dataset [27] collected real-world 

underwater images and generated high-quality reference images through automated 

enhancement, objective filtering, and multiple rounds of human perceptual rating and 

refinement. It provides 3,423 pairs from compilation to our training split. Our training 
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split includes 1,500 training pairs from the UFO-120 dataset [29], which uses domain 

transfer techniques to imitate damaged images and is utilized for UIE, super-resolution, 

and salient object recognition. PyTorch's ‘ConcatDataset’ [18] combines these three 

training sets to create a 7,108-image-pair training pool that exposes the model to more 

degradation patterns. EUVP [28] (515 pairs), LSUI [27] (400 pairs), and UFO-120 [29] 

(120 pairs) test partitions are used to evaluate performance of the model. All training and 

testing datasets use a standard input dimension of 256 × 256 pixels to preserve detail 

while optimizing computing performance. During training, we used a data augmentation 

pipeline to increase SETAU-Net's resilience and generalization capabilities.  In order to 

maintain correspondence, the same geometric and photometric transformations were 

applied to each input-target image pair in a probabilistic manner using the 

Albumentations library.  The augmentation sequence had moderate color jittering (a 30% 

chance of changing brightness, contrast, saturation, and hue), infrequent random 

rotations within ±15 degrees, and horizontal and vertical flips (each with a 50% chance).  

In order to assist the model develop invariance to frequent underwater photography 

situations including perspective shifts and color distortions, this technique incorporates 

variability in orientation and color.  In order to guarantee a balanced mixture of original 

and augmented data in every training epoch, all augmentations were performed with an 

overall probability of 0.5. 

• Implementation- SETAU-Net is implemented and performed with the PyTorch deep 

learning framework [18].  Training was performed on a machine including an NVIDIA 

GeForce RTX 4060 GPU (8GB GDDR6), complemented by a 13th Gen Intel Core i7-

13700HX 2.10 GHz CPU and 16 GB of RAM.  To improve training efficacy, mixed 

precision training is employed using PyTorch's ‘torch.amp’ and ‘GradScaler’ 

functionalities [18].   This technique improves computational efficiency and reduces 

GPU memory consumption by performing some operations in lower precision (FP16) 

while maintaining numerical stability for others in FP32. The model architecture 

incorporates Batch Normalization (nn.BatchNorm2d) inside its convolutional blocks and 

Instance Normalization (nn.InstanceNorm2d) in the Transformer bridge layers, therefore 

guaranteeing stable training dynamics and appropriate feature normalization for diverse 

module types.   Skip connections, crucial to the U-Net design for preserving spatial 

information, are implemented using feature concatenation (torch.cat) in the decoder 

blocks, amalgamating feature maps from corresponding encoder stages.  The training 

configuration employs a consolidated data pipeline formed by integrating the EUVP [28], 

UFO-120 [29] and LSUI [27] training datasets with PyTorch's ‘ConcatDataset’ [18].  

Model checkpoints are regularly stored throughout training (e.g., after each epoch), 

preserving the model's state dictionary, optimizer and scheduler states, the current epoch 

number, and recent training loss.  This facilitates the resumption of the training process 

if stopped, and the final model weights are preserved following the conclusion of the 

training epochs.  All training artifacts, including saved checkpoints and final model 

weights, are preserved in a specified directory to ensure repeatability. 

3.2.3 Model Operation 

1. The SETAU-Net model analyzes an input RGB underwater image X ∈ ℝ3×𝐻×𝑊 using a 

sequence of specialized modules tailored to tackle the distinct issues of underwater image 

enhancement. The procedure starts with the ‘CNNSobelEdgeModule’, which specifically 

collects edge information vital for recovering structural features frequently obscured in 

underwater environments. This module calculates horizontal and vertical gradients with 

fixed Sobel kernels Kx and Ky through depthwise convolution. Each encoder block first 

applies a 3 × 3 depthwise convolution (optionally with stride 2 for downsampling), 
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followed by a 1 × 1 pointwise convolution, batch normalization (BatchNorm2d), and 

GELU activation. The depthwise convolution performs spatial filtering autonomously for 

each input channel, while the pointwise convolution projects features to the desired output 

channel dimension. The stride is set to 2 in the second, third, and fourth encoder blocks to 

progressively downsample the spatial dimensions, providing multi-scale contextual 

representations. 

2. The use of depthwise convolution with groups = 3 ensures that the Sobel filtering is 

applied independently to each color channel, preserving channel-specific edge 

information.    This initial module injects crucial structural priors while avoiding 

computational   overhead. The kernels 𝐾𝑥 and 𝐾𝑦 are fixed (non-trainable) and initialized 

as:  

                        𝑘𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]                                     𝑘𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] 

3. The original image 𝑋, Gx, and Gy are concatenated along the channel dimension to create 

a 9-channel tensor. The result is then passed through two consecutive convolutional blocks 

(each block: Conv → BN → ReLU), producing an edge-aware feature map E0 ∈
ℝ𝐶0×𝐻×𝑊, where C0 = 40. 

4. The encoder path consists of four sequential encoder blocks, each designed to extract 

increasingly abstract features while reducing spatial resolution and increasing channel 

depth. Each encoder block starts with a 3 × 3 depthwise convolution (which can use a 

stride of 2 to reduce size), followed by a 1 × 1 pointwise convolution, batch normalization, 

and GELU activation. The output is then enhanced by the SimAM [54] attention 

mechanism, which calculates channel-wise attention weights by a parameter-free energy 

function, where 𝑥 represents the feature map, μ denotes its mean, σ2 signifies its variance, 

and λ is a negligible constant. The attention weights are obtained via a sigmoid activation 

and multiplied elementwise with the features. A residual connection adds the (possibly 

projected) input to the SimAM-refined output, ensuring stable gradient flow. The encoder 

produces feature maps E1, E2, E3, E4 with spatial sizes halved at each stage and channel 

sizes C0, 2C0, 4C0, 8C0 (i.e., 40, 80, 160, 320). The attention weights are obtained via a 

sigmoid activation and multiplied elementwise with the features, adaptively scaling feature 

responses based on their importance. 

                                                                   E =
(𝑥−μ)2

4(σ2+λ)
+ 0.5                                       (21) 

5. At the bottleneck, the most compressed feature map E4 is processed by the transformer 

bridge. This module consists of two sequential blocks, each applying instance 

normalization, followed by a self-attention mechanism and a residual connection. The 

‘SelfAttention’ module computes multi-head self-attention as follows: input features are 

projected to queries Q, keys K, and values V using 1 × 1 convolutions, then reshaped for 

ℎ heads (here h = 4). 

6. The attention output is modulated by a learned interaction term and combined with a 

depthwise convolutional path. After both transformer blocks, multi-scale context is 

aggregated by global and medium adaptive average pooling, followed by 1 × 1 

convolutions, upsampling, and fusion with the main path. The following procedure 

generates a contextually enhanced bottleneck feature map 𝐵 ∈ ℝ320×𝐻/8×𝑊/8. 
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7. The decoder path parallels the encoder, recreating the image at ever greater resolutions. 

Each decoder block initially upsamples its input using a transposed convolution before 

concatenating it with the associated encoder feature map (skip connection). The integrated 

features are combined using a 1 × 1 convolution, succeeded by two 3 × 3 convolutions 

(each incorporating BatchNorm and GELU), SimAM attention [54], a residual connection, 

and a concluding GELU activation. This procedure is done over three phases, yielding 

feature maps D3, D2, D1 with channel dimensions 4C0, 2C0, C0 (160, 80, 40) while 

reinstating the original spatial resolution. If the spatial dimensions do not match due to 

rounding issues during upsampling, padding is applied using ‘F.pad’. 

8. Finally, the output layer employs a 1 × 1 convolution to transform the 𝐶0 = 40 channels 

into 3 output channels (RGB), succeeded by a sigmoid activation. 

                                                 𝐼out = σ(Conv1×1(𝐷1)),  σ(𝑥) =
1

1+𝑒−𝑥
                         (22) 

The above procedure guarantees that the improved image 𝐼out ∈ ℝ3×𝐻×𝑊 possesses pixel values 

throughout the interval [0,1]. The complete architecture is entirely differentiable and trained 

end-to-end, allowing the model to acquire both low-level and high-level characteristics essential 

for effective underwater image enhancement. 
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Layer Output 
channels 

Kernel  Stride Activation Parameters Description 

Edge 40 3x3 1 ReLU 18,000 
Edge enhancement using 
Sobel filters 

Encoder 1 40 3x3 1 GELU 1,920 Initial feature extraction 

Encoder 2 80 3x3 2 GELU 7,360 
Downsampling and 
feature expansion 

Encoder 3 160 3x3 2 GELU 28,800 
Further downsampling & 
feature expansion 

Encoder 4 320 3x3 2 GELU 104,960 
Final downsampling and 
feature expansion 

Bridge 320 - - - 1,959,040 
Global context modeling 
with Transformer 

Decoder 
3 

160 3x3 2 GELU 947,712 
Upsampling and feature 
reconstruction 

Decoder 
2 

80 3x3 2 GELU 237,120 
Further upsampling & 
feature reconstruction 

Decoder 
1 

40 3x3 1 GELU 59,200 
Final upsampling and 
feature reconstruction 

Output 
Layer 

3 1x1 1 Sigmoid 123 Projection to RGB output 

Table 3.2. SETAU-Net Architecture Configuration 

Fig. 3.2. SETAU-Net Architecture Diagram
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CHAPTER 4 

EXPERIMENTAL RESULTS AND ANALYSIS 

 
This section presents the experimental setup and evaluation protocols used to assess the 

effectiveness of the proposed deep learning frameworks for image enhancement and restoration 

under adverse visual conditions. The experiments were conducted using publicly available 

benchmark datasets for both low-light and underwater scenarios, ensuring the models were 

rigorously tested across diverse and challenging conditions. Details of the datasets, data 

preprocessing steps, and the architectures of LEARN and SETAU-Net are provided to establish 

the experimental context. The performance of the proposed models was measured using widely 

adopted quantitative metrics such as PSNR, SSIM, and LPIPS, as well as qualitative visual 

comparisons. Furthermore, a comprehensive comparative analysis is conducted against 

existing state-of-the-art methods to highlight the strengths and improvements achieved by our 

approach. The results are discussed in detail, providing insights into the models’ enhancement 

quality, computational efficiency, and practical applicability in real-world settings. 

 

4.1 Experimental Setup 

This section outlines our experimental configuration. We employ a rigorous assessment process, 

enabling comprehensive quantitative and qualitative comparisons with leading methodologies. 

LEARN and SETAU-Net are evaluated using PSNR (Peak Signal to Noise Ratio) to measure 

pixel-level accuracy between enhanced and ground truth images, SSIM (Structural Similarity 

Index) is used to assess structural similarity of enhanced and ground truth images. From -1 to 

1, bigger SSIM values indicate more similarity. A window size of 7 is employed, with default 

settings applied to the other parameters for SETAU-Net while for LEARN the configuration are 

window size=11, C₁= 0.01² and C₂= 0.03². The Structural Similarity Index (SSIM) with a range 

of [-1, 1] compares images using structural characteristics, contrast, and brightness. It is 

important because, especially when measuring structural distortions, it better matches human 

sense of image quality than MSE or PSNR. A greater SSIM score, approaching 1, indicates 

structural similarity between the enhanced image and ground truth. Superior because it means 

the improved image retains or accurately rebuilds the reference image's structural features and 

perceived quality qualities. Both metrics are calculated using ‘skimage.metrics’ module from 

scikit-image library. All test images are processed at 256×256 resolution using LANCZOS 

resampling from the PIL (Python Imaging Library) for consistent image loading and 

preprocessing across datasets. 

                               PSNR = 10 ⋅ log10 (
MAX𝐼

2

MSE
) = 20 ⋅ log10 (

MAX𝐼

√MSE
)                                 (23) 

Where; 

                                              MSE =
1

m n
∑ ∑[I(i, j) − K(i, j)]2

n−1

j=0

m−1

i=0

                                            (24) 

and, MAX𝐼 = Maximum possible pixel value of the image. 

                                    SSIM(𝑥, 𝑦) =
(2μ𝑥μ𝑦 + 𝐶1)(2σ𝑥𝑦 + 𝐶2)

(μ𝑥
2 + μ𝑦

2 + 𝐶1)(σ𝑥
2 + σ𝑦

2 + 𝐶2)
                                      (25) 

Where;  
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μx is the pixel sample mean of image x, 

μy is the pixel sample mean of image y, 

σx
2is the sample variance of image x, 

σy
2 is the sample variance of image y, 

σxy is the sample covariance of images x and y, 

C1 = (k1L)2, C2 = (k2L)2 are constants to stabilize the division, 

L is the dynamic range of pixel values (2bits per pixel − 1), 

k1 = 0.01 and k2 = 0.03 (default values). 

Additionally, SETAU-Net is also evaluated using LPIPS (Learning Perceptual Image Patch 

Similarity). LPIPS uses features from deep convolutional neural networks (CNNs) pre-trained 

on large image datasets (e.g., AlexNet or VGG) to quantify the perceptual difference between 

two image patches, I and K. Instead of comparing pixel values, LPIPS determines the network's 

activation distance between two patches. Let ϕ be the pre-trained deep network, and let ϕ𝑙(𝐼) ∈
ℝ𝐻𝑙×𝑊𝑙×𝐶𝑙 represent the feature map (activations) obtained from layer 𝑙 for the input image I. 
The activations are normalized on a channel-wise basis (represented as ϕ�̂�). The LPIPS distance 

𝑑(𝐼, 𝐾) is calculated as a summation over many layers. 𝐿:  

                          𝑑(𝐼, 𝐾) = ∑
1

𝐻𝑙𝑊𝑙
𝑙∈𝐿

∑ ∑ ||𝑤𝑙 ⊙ (ϕ�̂�(𝐼)ℎ,𝑤 − ϕ�̂�(𝐾)ℎ,𝑤)||
2

2

                      (26)

𝑊𝑙

𝑤=1

𝐻𝑙

ℎ=1

 

In this formulation, let 𝐿 be the collection of layers utilized from the network ϕ.The variables 

𝐻𝑙 and 𝑊𝑙 represent the spatial dimensions of the feature map at layer 𝑙. ϕ�̂�(𝐼)ℎ,𝑤 denotes the 

normalized activation vector (across channels 𝐶𝑙) at spatial coordinates (ℎ, 𝑤) in layer 𝑙 for 

image 𝐼. 𝑤𝑙 represents the channel-wise scaling factors (weights) for layer 𝑙. The weights are 

optimized using an independent dataset to enhance the metric's correlation with human 

perceptual evaluations. Let ⊙ represent element-wise multiplication. The notation ||  ⋅ ||2
2 

represents the squared L2 distance, which is the summation of squared differences across 

channels. The spatial dimensions 𝐻𝑙 , 𝑊𝑙 standardize the total, resulting in an average distance 

per spatial location inside the feature map. A low LPIPS score 𝑑(𝐼, 𝐾) signifies enhanced 

perceptual similarity between images 𝐼 and 𝐾. We employ the conventional AlexNet backbone 

for our assessment, with input images scaled to the range [-1 to 1]. 

LEARN and SETAU-Net undergo execution in PyTorch [18] and are tested on an NVIDIA 

GeForce RTX 4060 GPU (8GB GDDR6) alongside a 13th Gen Intel Core i7-13700HX 

processor running at 2.10 GHz with 16GB of RAM. The implementation leverages PyTorch's 

[18] mixed precision capabilities to accelerate computation while maintaining numerical 

stability. 
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4.2 Datasets 

For LEARN, testing is performed on LOLv1 [6] (15 image pairs), LOLv2-Real [9] (100 pairs) 

and LOLv2-Synthetic [9] (100 pairs). We assess SETAU-Net using three publicly accessible 

underwater image enhancement datasets, each presenting distinct traits and problems. EUVP 

[28] (Enhancing Underwater Visual Perception) consists of paired underwater images 

exhibiting different levels of deterioration with their matching high-quality reference 

photographs. The "Underwater Scenes" subset 515 image pairs, obtained under various 

underwater circumstances and with different camera systems. LSUI [27] is a comprehensive 

dataset particularly created for the enhancement of underwater images. In accordance with [27, 

28, 29], we present findings on a subset of 400 test pairings (LSUI-L400 [27]). UFO-120 [29] 

comprises 240 paired underwater photos exhibiting complex degradations, produced by domain 

transfer methodologies. This dataset functions as a significant benchmark for evaluating the 

generalization capabilities of enhancement techniques in unobserved underwater situations.  

Task Dataset Testing pairs 

Underwater Image 

Enhancement 

EUVP (Underwater scenes) [28] 515 

LSUI [27] 400 

UFO-120 [29] 240 

Low Light Image 

Enhancement 

LOL-v1 [6] 15 

LOL-v2 Real [9] 100 

LOL-v2 Synthetic [9] 100 

 

 

Fig. 4.1. Training Loss Convergence of LEARN 

Table 4.1. Dataset image split pairs used for testing 
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4.3 Baselines 

We evaluate SETAU-Net against traditional and state-of-the-art underwater image 

enhancement techniques, namely, RGHS [56], UDCP [57], UIBLA [41], UGAN [35], CLUIE-

Net [59], TWIN [61], U-shaped Transformer [27], Spectroformer [58] and CE-VAE [60]. The 

datasets used for evaluation and comparison include LSUI-L400 [27] (400 paired test images), 

EUVP [28] (515 paired test images) and UFO-120 [29] (240 paired test images). The 

evaluation metrics used for comparison are PSNR, SSIM and LPIPS. 

LEARN is evaluated against both traditional and state-of-the-art low-light image enhancement 

techniques, namely, RAUS [19], RetinexNet [6], KinD [11], EnlightenGAN [7], SID [10], 

MIRNet [12], and 3DLUT [20]. The datasets used for evaluation and comparison include 

LOLv1 [6] (15 paired test images), LOLv2-Real [9] (100 paired test images), and LOLv2-

Synthetic [9] (100 paired test images). The evaluation metrics used for comparison are PSNR 

and SSIM. 

 

4.4 Results and Analysis 

This section presents the experimental results and analysis of the proposed deep learning 

frameworks for image enhancement under adverse visual conditions. The performance of 

LEARN and SETAU-Net is evaluated on multiple benchmark datasets using both quantitative 

metrics-such as PSNR, SSIM, and LPIPS-and qualitative visual comparisons. The results are 

systematically compared with traditional and state-of-the-art baseline methods to demonstrate 

the effectiveness, robustness, and efficiency of the proposed approaches. Detailed discussions 

highlight the strengths and limitations observed across various scenarios, offering insights into 

the practical applicability and generalization capabilities of the models in real-world low-light 

and underwater environments. 

SETAU-Net exhibits robust performance on many underwater enhancement benchmarks while 

ensuring considerable computational economy, necessitating around 31.1 GFLOPs and 3.36 

million parameters. The quantitative data are encapsulated in Table 4.2. 

Dataset FPS Processing time 

LSUI [27] 118.93 ± 10 ~8.41 ms per image 

EUVP [28] 115.21 ± 10 ~8.54 ms per image 

UFO-120 [29] 118.03 ± 10 ~8.47 ms per image 

Average 117.39 ± 10 ~8.47 ms per image 

 

In the LSUI-L400 [27] dataset, SETAU-Net exhibits superior performance, attaining a PSNR 

of 28.96 dB, an SSIM of 0.92, and an LPIPS of 0.07, with an image processing rate of 118.93 

± 10 FPS (approximately 8.41 ms per image). This surpasses CE-VAE [60] (24.49 dB PSNR, 

0.84 SSIM, 0.26 LPIPS) by +4.47 dB PSNR, +0.08 SSIM, and -0.19 LPIPS, and also exceeds 

U-Shaped Transformer [27] (23.02 dB PSNR, 0.82 SSIM, 0.29 LPIPS) across all metrics. On 

the EUVP [28] dataset, SETAU-Net achieves a PSNR of 25.90 dB, an SSIM of 0.86, and an 

LPIPS of 0.14 at 115.21 ± 10 FPS (approximately 8.54 ms per image). While CE-VAE [60] 

(27.75 dB PSNR, 0.89 SSIM, 0.20 LPIPS) and U-Shaped Transformer [27] (27.59 dB PSNR, 

0.88 SSIM, 0.23 LPIPS) report higher PSNR and SSIM, SETAU-Net provides improved 

perceptual quality, achieving a lower LPIPS by -0.06 compared to CE-VAE [60] and -0.09 

Table 4.2. Real-time Performance Evaluation of SETAU-Net 
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compared to U-Shaped Transformer [27]. In the UFO-120 [29] dataset, SETAU-Net attains a 

PSNR of 27.28 dB, SSIM of 0.87, and LPIPS of 0.12 at a rate of 118.03 ± 10 FPS 

(approximately 8.47 ms per image), surpassing CE-VAE [60] (24.38 dB PSNR, 0.79 SSIM, 

0.28 LPIPS) by +2.90 dB PSNR, +0.08 SSIM, and -0.16 LPIPS. SETAU-Net consistently 

demonstrates superior perceptual quality (LPIPS) and maintains an average processing speed of 

117.39 ± 10 FPS (8.47 ms per image) across all datasets. With only 3.36 million parameters and 

31.1 GFLOPs per 256×256 image, SETAU-Net balances enhancement quality and 

computational efficiency, making it an effective solution for real-world underwater imaging 

applications that require both quality and speed, and outperforming more resource-intensive 

transformer-based and multi-branch models such as UGAN [35]. 

 

LEARN demonstrates strong performance across multiple low-light enhancement benchmarks 

with computational requirements of 46.67 GFLOPS and 7.62M parameters. On the LOLv1 [6] 

dataset, it achieves a PSNR of 22.86 dB and SSIM of 0.8374 with a processing speed of 104.56 

± 10 FPS (0.0096 ± 0.002 seconds per image), outperforming methods like KinD [12] (20.86 

dB PSNR, 0.79 SSIM) and RetinexNet [6] (16.77 dB PSNR, 0.56 SSIM) in terms of 

enhancement quality while maintaining comparable computational efficiency to KinD [12] 

(34.99 GFLOPS, 8.02M parameters). For the LOLv2-Real [9] dataset, LEARN reaches 24.62 

dB PSNR and 0.8746 SSIM with 97.25 ± 10 FPS (0.0131 ± 0.0032 seconds per image), 

significantly improving upon RAUS [19] (18.37 dB PSNR, 0.723 SSIM) and EnlightenGAN 

[7] (18.23 dB PSNR, 0.617 SSIM). On LOLv2-Synthetic [9], LEARN attains 22.54 dB PSNR 

and 0.8720 SSIM with a processing speed of 82.33 ± 10 FPS (0.0110 ± 0.0020 seconds per 

image), showcasing better enhancement quality than methods like RetinexNet [6] (17.13 dB 

PSNR, 0.798 SSIM) and EnlightenGAN [7] (16.57 dB PSNR, 0.734 SSIM). Overall, LEARN 

achieves an average PSNR of 23.34 dB and SSIM of 0.8613 across all datasets, with an average 

processing time of 0.0111 ± 0.0005 seconds per image (90.82 ± 5 FPS). These metrics 

demonstrate LEARN's ability to balance enhancement quality with real-time processing 

 
LSUI-L400 [27] EUVP [28] UFO-120 [29] 

Methods PSNR 
↑  

SSIM 
↑  

LPIPS 
↓ 

PSNR 
↑  

SSIM 
↑ 

LPIPS 
↓  

PSNR 
↑  

SSIM 
↑  

LPIPS 
↓  

RGHS [56] 18.44 0.80 0.31 18.05 0.78 0.31 17.48 0.71 0.37 

UDCP [31] 13.24 0.56 0.39 14.52 0.59 0.35 14.50 0.55 0.42 

UIBLA [57] 17.75 0.72 0.36 18.95 0.74 0.33 17.04 0.64 0.40 

UGAN [35] 19.40 0.77 0.37 20.98 0.83 0.31 19.92 0.73 0.38 

CLUIE-Net [59] 18.71 0.78 0.33 18.90 0.78 0.30 18.43 0.72 0.36 

TWIN [61] 19.84 0.79 0.33 18.91 0.79 0.32 18.21 0.72 0.37 

UST [27] 23.02 0.82 0.29 27.59 0.88 0.23 22.82 0.77 0.33 

Spectroformer [58] 20.09 0.79 0.32 18.70 0.79 0.32 18.03 0.71 0.37 

CE-VAE [60] 24.49 0.84 0.26 27.75 0.89 0.20 24.38 0.79 0.28 

SETAU-Net 28.96 0.92 0.07 25.90 0.86 0.14 27.28 0.87 0.12 

Table 4.3. Comparative Analysis of SETAU-Net and Existing Underwater Image Enhancement (For each 

metric/dataset, the best result is highlighted in red, second best is highlighted in blue and third best is 

highlighted in purple).  ↑ Denotes that a higher value for a particular metric is better while ↓ denotes that a 

lower value for a particular metric is better   
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capabilities while maintaining a reasonable computational footprint, making it suitable for 

practical applications requiring both efficiency and high-quality results. 

Dataset FPS Processing time 

LOL-v1 [6] 104.56 ± 10 0.0096 ± 0.002  

LOL-v2 Real [9] 97.25 ± 10 0.0131 ± 0.0032  

LOL-v2 Synth [9] 82.33 ± 10 0.0110 ± 0.0020 

Average 90.82 ± 5 0.0111 ± 0.0005 

 Model Complexity LOL-v1 [6] LOL-v2 Real [9] LOL-v2 Synth.[9] 

Methods GFLOPS↓ Parameters↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ 

SID [10] 13.73 7.76 14.35 0.436 13.24 0.442 15.04 0.61 

3DLUT [20] 0.075 0.59 14.35 0.445 17.59 0.721 18.04 0.8 

RetinexNet [6] 587.47 0.84 16.77 0.56 15.47 0.567 17.13 0.798 

EGAN [7] 61.01 114.35 17.48 0.65 18.23 0.617 16.57 0.734 

RAUS [19] 0.83 0.003 18.23 0.72 18.37 0.723 16.55 0.652 

KinD [12] 34.99 8.02 20.86 0.79 14.74 0.641 13.29 0.578 

MIRNet [11] 785 31.76 24.14 0.830 20.02 0.820 21.94 0.876 

LEARN 46.67 7.62 22.86 0.837 24.62 0.875 22.54 0.872 

Table 4.4. Real-time Performance Evaluation of LEARN Model (in seconds) 

Table 4.5. Comparative Analysis of SETAU-Net and Existing Underwater Image Enhancement (For each 

metric/dataset, the best result is highlighted in red and second best is highlighted in blue).  ↑ Denotes that a 

higher value for a particular metric is better while ↓ denotes that a lower value for a particular metric is 

better 

 

 
Fig. 4.2. PSNR Comparison of Low Light Image Enhancement Methods Across LOL-v1, LOL-v2 Real and 

LOL-v2 Synthetic Datasets (Higher is better) 
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Fig. 4.3. SSIM Comparison of Low Light Image Enhancement Methods Across LOL-v1, LOL-v2 Real and 

LOL-v2 Synthetic Datasets (Higher is better) 
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Fig. 4.4. SSIM Comparison of Underwater Image Enhancement Methods Across LSUI, EUVP and UFO-

120 Datasets (Higher is better) 
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Fig. 4.6. PSNR Comparison of Underwater Image Enhancement Methods Across LSUI, EUVP and UFO-

120 Datasets (Higher is better) 
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Fig. 4.5. LPIPS Comparison of Underwater Image Enhancement Methods Across LSUI, EUVP and UFO-

120 Datasets (lower is better) 
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Fig. 4.7. Comparison of Number of Parameters in various Underwater Image Enhancement Methods 

Across LSUI, EUVP and UFO-120 Datasets (lower is better) 
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Table 4.6. Visual Comparison of Low Light Image Enhancement Across Multiple Datasets 

Dataset Low light image Enhanced image Ground truth image 

 

 

LOL-v1 
[6] 

   

 

LOL-v2 
Real [9] 

   

 

LOL-v2 
Synthetic  

[9] 

   
 

 
Table 4.7. Visual Comparison of Underwater Enhancement Across Multiple Datasets 

Dataset Underwater image Enhanced image Ground truth image 

 
 

LSUI-
L400 
[27] 

   

 
EUVP 
[28] 

   

 
UFO-
120 
[29] 
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CHAPTER 5 

CONCLUSION, FUTURE WORK AND SOCIAL IMPACT 

 
5.1 Conclusion  

In order to tackle the distinct difficulties presented by unfavourable visual situations, we have 

presented and thoroughly assessed two sophisticated deep learning frameworks in this research 

study: SETAU-Net for underwater image restoration and LEARN for low-light image 

enhancement. Both models achieve state-of-the-art performance on several public benchmarks 

while preserving lightweight architectures appropriate for real-time deployment, exhibiting a 

strong balance between computational efficiency and enhanced quality. LEARN is extremely 

relevant for a variety of applications, from autonomous driving and medical imaging to 

smartphone photography and surveillance, due to its capacity to provide high-fidelity, 

instantaneous picture improvement on devices with limited resources. Similarly, underwater 

photography, marine research, environmental monitoring, and autonomous robotics can all 

benefit from SETAU-Net's exceptional restoration accuracy and efficiency. The 

comprehensive results underscore the versatility, scalability, and societal relevance of these 

frameworks, highlighting their potential to advance technological capabilities and address real-

world needs in a variety of critical applications.  

LEARN offers a practical, effective way to maximize computing resources and improve low-

light photos. The encoder-decoder architecture incorporates skip connections, residual blocks 

with larger kernels to make the receptive field bigger, and Convolutional Block Attention 

Modules (CBAM) to highlight significant channel- and space-specific details. A Laplacian 

enhancement module enhances detail sharpness and edge definition. The model has a 

consistent computational need of 46.67 GFLOPS with 7.62 million parameters across many 

low-light enhancement datasets, attaining a mean PSNR of 23.34 dB and an SSIM of 0.8613. 

LEARN demonstrates significant potential for providing high-fidelity, real-time image 

enhancements, achieving an average processing rate of 90.82 ± 5 FPS (0.0111 ± 0.0005 

seconds per image), so confirming its capability to give high-quality solutions instantaneously. 

The findings suggest that LEARN is applicable in resource-constrained real-world situations, 

as it sustains a constant balance between expedited processing and enhanced quality.  LEARN 

could be helpful in various ways under suboptimal illumination.  Without more hardware, it 

can improve low-light photography in smartphone camera systems.  Improved view of low-

light collected film could improve the security monitoring features of surveillance systems.  

This technique increases vision systems' ability to distinguish objects and hazards in low light, 

potentially improving autonomous driving safety. LEARN's clarity improvement 

characteristics in medical imaging will benefit low-light endoscopic and microscopic images. 

Design adjustment can make the model domain-specific, maximize hardware acceleration-

based mobile device integration, or address motion blur or noise with alternative methods. 

These developments would make it more adaptable to many kinds of specialized work, 

therefore transforming it into a versatile solution for numerous technological and medical 

applications. 

SETAU-Net presents a robust and efficient approach to underwater image enhancement, 

successfully achieving a balance between computational efficiency and restoration quality. 

Constructed with an encoder-decoder framework featuring skip connections, SimAM attention, 

a CNN Sobel edge enhancement module for clear edge guidance, and a transformer bridge for 

comprehensive global context, SETAU-Net reaches leading performance on multiple public 

underwater benchmarks. The quantitative analysis unequivocally demonstrates that SETAU-

Net surpasses both traditional and deep learning methodologies. In the LSUI-L400 [27] dataset, 
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SETAU-Net exhibits a PSNR of 28.96 dB, an SSIM of 0.92, and a notably low LPIPS of 0.07. 

In the context of EUVP [28], SETAU-Net achieves a PSNR of 25.90 dB, an SSIM of 0.86, and 

an LPIPS of 0.14, demonstrating superior perceptual quality compared to all other methods 

evaluated. In the context of the demanding UFO-120 [29] dataset, SETAU-Net demonstrates a 

performance of 27.28 dB PSNR, 0.87 SSIM, and 0.12 LPIPS, consistently exceeding all 

baseline models. The model demonstrates high efficiency, utilizing only 31.1 GFLOPs and 

comprising 3.36 million parameters.  The findings indicate an average processing speed of 

117.39 ± 10 FPS (~8.47 ms per image), confirming the model's appropriateness for real-time 

applications, practical deployment, and resource-limited environments. Practical use in a variety 

of underwater imaging applications is made possible by the lightweight architecture, which 

enables smooth implementation on embedded and mobile systems.   The features include 

improved clarity for consumer underwater photography, assistance for marine research, ease of 

environmental monitoring, and improvements in vision systems for autonomous cars and 

underwater robotics.   Applications of SETAU-Net's real-time, high-fidelity underwater 

photography advancements are anticipated to have an influence on a number of domains, 

including autonomous navigation, marine exploration, environmental preservation, and 

underwater surveillance.   Enhancing visibility and detail in difficult-to-reach places increases 

user experience, encourages scientific research, and improves safety.   By combining speed, 

quality, and efficiency, SETAU-Net presents itself as a viable substitute for the development of 

underwater photography technology in both commercial and recreational settings. 

Overall, the results affirm that both LEARN and SETAU-Net offer practical, high-performance 

solutions for challenging image enhancement and restoration tasks. Their efficiency, 

adaptability, and strong restoration quality position them as valuable tools for a wide range of 

real-world applications, paving the way for further advancements in intelligent imaging 

technologies. 

 

5.2 Future work 

There are still a number of intriguing avenues for further study, despite the suggested 

frameworks' excellent performance and usefulness. Important next developments include 

significantly lowering processing needs, integrating multi-scale or domain-specific modules, 

and improving adaptation to increasingly varied and harsh visual situations. The impact and 

versatility of these approaches will be further expanded by looking into unsupervised or self-

supervised learning to lessen reliance on paired datasets, expanding the models to handle 

additional degradations like motion blur or severe noise, and optimizing deployment for edge 

and mobile devices. Further developments along these lines will contribute to the continued 

stability, effectiveness, and accessibility of deep learning-based picture augmentation in a 

greater variety of real-world applications. 

LEARN- Leveraging LEARN's established ability to integrate computational efficiency with 

superior quality presents multiple opportunities for application expansion. The 256×256 input 

resolution hinders the retention of intricate features in high-resolution images, and the static 

Laplacian kernel configuration restricts adaptability to diverse edge profiles, notwithstanding 

LEARN's robust performance in low-light enhancement and real-time processing (~90.82 FPS).  

To tackle these challenges, a resolution-agnostic design utilizing hybrid CNN-Transformer 

blocks or progressive resizing during training could effectively support elevated resolutions. 

Furthermore, the dependence on paired training data (LOLv1/v2 [6, 9], SID [10]) limits its 

applicability in unpaired real-world contexts. Future research may investigate CycleGAN-style 

training to facilitate enhancement without the necessity of paired low- and normal-light data. 

Unsupervised and semi-supervised techniques, such as self-supervised denoising and domain 

adaptation, can mitigate the issue of static noise distributions in training data, which constrains 
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noise adaptability. Integrating neural architecture search (NAS) with pruning or 8-bit 

quantization can diminish the computational load (46.67 GFLOPS) by 40-60%, thereby 

enhancing the feasibility of mobile implementation and increasing efficiency in edge 

deployment. To enhance efficiency in edge deployment, neural architecture search (NAS) 

integrated with pruning or 8-bit quantization can diminish the computational burden (46.67 

GFLOPS) by 40-60%, thereby enabling mobile implementation. The static Learnable edge 

detection modules or adaptive frequency decomposition can improve multi-scale edge handling 

over Laplacian kernel design, which struggles with various edge shapes. Perceptual color 

consistency losses or advanced color correction modules can reduce excessive low-light color 

distortions in enhancement models. Addressing these limitations could improve LEARN's 

adaptability, computing demands, and performance in real-world applications like nighttime 

surveillance and mobile photography. 

SETAU-Net- This framework demonstrates computational efficiency alongside high 

enhancement quality, while improving performance on various underwater datasets, coupled 

with notable processing speed.  However, particular limitations must be addressed to improve 

its effectiveness in practical underwater applications. SETAU-Net's 256 x 256 input resolution 

hinders its ability to preserve fine-scale details in high-resolution underwater photography, 

crucial for scientific documentation and marine biology applications. The fixed-scale Sobel 

module detects edges well, but it may struggle to preserve multi-scale features under varying 

underwater circumstances and object sizes. By training at numerous resolutions or extracting 

features independent of scale, a solution can adapt to different situations. Coastal, oceanic, and 

turbid waters have variable light absorption and scattering qualities, but SETAU-Net does not 

adjust to them. Some enhanced images have color casts, according to comparisons. Even if these 

casts are relatively low, they affect generalizability among aquatic conditions. A water-type 

classification branch or color correction module could improve underwater image enhancement 

techniques. 3.36 million parameters and 31.1 GFLOPs make up SETAU-Net's lightweight 

design. On resource-limited platforms like AUVs and portable underwater photography 

systems, optimization may boost its utility. The knowledge distillation procedure from SETAU-

Net to smaller student networks improves quality while reducing computing loads. With low 

performance deterioration, network pruning, filter factorization, and 8-bit quantization can 

potentially Reduce computational load by 30-50%. The SimAM attention parameters, 

transformer bridge design, and composite loss weights of SETAU-Net could be optimized 

through systematic parameter tuning to improve its effectiveness using techniques like Bayesian 

optimisation and population-based training to automatically find optimal hyperparameters. 

Adaptive loss weighting can balance the composite loss function during training. Designing 

parameter search spaces for architectural needs helps solve underwater augmentation problems. 

By solving these restrictions, future SETAU-Net versions could improve underwater 

photography flexibility, computational efficiency, and quality for marine biology, underwater 

archaeology, and ocean engineering where effective color correction and image clarity is 

essential. 

5.3 Social Impact  

Advancements in real-time image enhancement technologies have far-reaching implications for 
both everyday life and specialized fields. By addressing critical challenges in low-light and 
underwater environments, modern deep learning models like LEARN and SETAU-Net offer 
tangible benefits across diverse societal and industrial domains. 

LEARN combines practicality with significant society benefit in a variety of scenarios by 
enabling real-time improvement of low-light images. The architecture is intended to be 
lightweight and efficient in computing to handle real-time applications like security monitoring, 
autonomous driving, and live video processing. Because of this, it is ideal for low-power devices 
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such as smartphones, security cameras, and embedded platforms. Fields that potentially benefit 
from LEARN's enhanced visibility and edge detail preservation under challenging lighting 
conditions include forensics, medical imaging, and traffic safety, among others. LEARN's 
ability to generalize across makes it suitable for both well-lit indoor environments and utterly 
dark outdoor settings. LEARN's equilibrium of real-time functionalities and social significance 
demonstrates its accessibility for practical implementation by improving safety, diagnostics, and 
user experiences in low-light conditions. 

On the other hand, in today's world, which is becoming more digital and interconnected by the 
day, high-quality underwater imaging is crucial for a variety of technological and societal 
applications. This is why SETAU-Net was developed. The usefulness of conventional imaging 
and analysis techniques can be significantly reduced in underwater environments because of the 
special visual challenges posed by light absorption, scattering, and color distortion. Because of 
its resource-efficient, real-time design, SETAU-Net is highly feasible for use in fields where 
speedy, dependable image enhancement is essential for mission success, such as autonomous 
underwater vehicles, marine robotics, environmental monitoring, and scientific exploration. In 
the context of maritime research, SETAU-Net allows for clearer observation and documenting 
of underwater habitats, which aids biodiversity evaluation, habitat conservation, and early 
detection of environmental changes or risks, amongst many other usages. Its applications 
include industrial inspection, underwater archaeology, and recreational diving, where improved 
optical clarity can boost safety, operational efficiency, and user experience. By utilizing 
advanced deep learning techniques to produce robust, high-fidelity image restoration, SETAU-
Net advances digital imaging technology while also supporting the greater societal objective of 
sustainable ocean development. In an era where the health of marine habitats is strongly related 
to global well-being, SETAU-Net provides researchers, policymakers, and industry experts with 
superior visual data, ultimately enabling more informed decision-making and beneficial social 
effect. 

In summary, the practical deployment of LEARN and SETAU-Net stands to deliver meaningful 
benefits across multiple domains, improving safety, efficiency, and decision-making. These 
innovations exemplify how cutting-edge deep learning can drive positive social impact through 
accessible, high-quality imaging solutions. 
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1 Internet

arxiv.org 1%

2 Internet

repository.naturalis.nl <1%

3 Internet

assets.researchsquare.com <1%

4 Submitted works

University of Sydney on 2023-11-04 <1%

5 Internet

assets-eu.researchsquare.com <1%

6 Internet

www.mdpi.com <1%

7 Internet

openaccess.thecvf.com <1%

8 Internet

ebin.pub <1%

9 Publication

Wang Mao-sen, Niu Shao-zhang. "An enhancement algorithm for mobile docume… <1%

10 Publication

"Computer Vision – ACCV 2024 Workshops", Springer Science and Business Media … <1%
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https://arxiv.org/html/2401.15204v2
https://repository.naturalis.nl/pub/801145/Pucci-2025-CE-VAE.pdf
https://assets.researchsquare.com/files/rs-2868789/v1_covered_9af37e82-b522-40cd-9653-5fefe8ec5674.pdf?c=1697495467
https://assets-eu.researchsquare.com/files/rs-4387487/v1_covered_ed1dd219-de38-4764-8571-ca76dcee3112.pdf?c=1716288460
https://www.mdpi.com/2077-1312/12/11/2082
https://openaccess.thecvf.com/content/ICCV2023/papers/Liu_Low-Light_Image_Enhancement_with_Multi-Stage_Residue_Quantization_and_Brightness-Aware_Attention_ICCV_2023_paper.pdf
https://ebin.pub/computer-vision-accv-2022-16th-asian-conference-on-computer-vision-macao-china-december-48-2022-proceedings-part-iii-lecture-notes-in-computer-science-13843-303126312x-9783031263125.html
https://doi.org/10.1145/3194206.3194234
https://doi.org/10.1007/978-981-96-2644-1


11 Submitted works

Hong Kong Baptist University on 2023-04-25 <1%

12 Submitted works

Universitas Dian Nuswantoro on 2016-01-14 <1%

13 Submitted works

University of Bristol on 2023-08-03 <1%

14 Publication

Shangwang Liu, Feiyan Si, Yinghai Lin. "CSUnet: a dual attention and hybrid conv… <1%

15 Publication

"Pattern Recognition", Springer Science and Business Media LLC, 2025 <1%

16 Submitted works

Technical University of Cluj-Napoca on 2024-07-10 <1%

17 Publication

Xin Zhang, Xia Wang. "MARN: Multi-scale attention retinex network for low-light i… <1%

18 Submitted works

Indian Institute of Technology Roorkee on 2025-01-27 <1%

19 Submitted works

University of Northampton on 2025-05-18 <1%

20 Internet

pmc.ncbi.nlm.nih.gov <1%

21 Submitted works

Queen Mary and Westfield College on 2022-11-20 <1%

22 Publication

Shuang Wang, Qianwen Lu, Boxing Peng, Yihe Nie, Qingchuan Tao. "DPEC: Dual-P… <1%

23 Submitted works

Asian Institute of Technology on 2024-07-17 <1%

24 Submitted works

Cardiff University on 2024-10-07 <1%
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https://doi.org/10.1007/s11760-024-03485-7
https://doi.org/10.1007/978-3-031-78305-0
https://doi.org/10.1109/ACCESS.2021.3068534
https://pmc.ncbi.nlm.nih.gov/articles/PMC10070385/
https://doi.org/10.1016/j.neucom.2025.129980


25 Publication

Nadeem Sarwar, Asma Irshad, Qamar H. Naith, Kholod D.Alsufiani, Faris A. Almal… <1%

26 Publication

Runmin Cong, Wenyu Yang, Wei Zhang, Chongyi Li, Chun-Le Guo, Qingming Huan… <1%

27 Submitted works

University of Lancaster on 2024-05-05 <1%

28 Submitted works

University of Newcastle upon Tyne on 2025-05-06 <1%

29 Submitted works

Adama Science and Technology University on 2023-06-13 <1%

30 Publication

Binghao Huang, Huimin Meng, Lianchao Huang, Chunsi Zhao, Nianmin Yao. "PFL… <1%

31 Publication

Chunlei Wu, Fengjiang Wu, Jie Wu, Leiquan Wang, Qinfu Xu. "Gradient-guided low… <1%

32 Publication

Eilif Hjelseth, Sujesh F. Sujan, Raimar J. Scherer. "ECPPM 2022 – eWork and eBusin… <1%

33 Publication

Lichuan Wang, Shuchun Wang. "A survey of Image Compression Algorithms base… <1%

34 Submitted works

Liverpool John Moores University on 2024-03-19 <1%

35 Submitted works

University of Hertfordshire on 2024-12-01 <1%

36 Submitted works

University of San Diego on 2024-12-10 <1%

37 Submitted works

University of Sunderland on 2024-05-21 <1%

38 Submitted works

University of Technology, Sydney on 2024-05-24 <1%
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https://doi.org/10.1186/s12911-024-02686-x
https://doi.org/10.1109/TIP.2023.3286263
https://doi.org/10.1007/s11760-025-03885-3
https://doi.org/10.1016/j.dsp.2025.105272
https://doi.org/10.1201/9781003354222
https://doi.org/10.21203/rs.3.rs-2794445/v1


39 Submitted works

University of Westminster on 2024-11-17 <1%

40 Internet

drsr.daiict.ac.in <1%

41 Internet

link.springer.com <1%

42 Internet

thesai.org <1%

43 Internet

www.marketresearch.com <1%

44 Publication

"Data Science and Applications", Springer Science and Business Media LLC, 2024 <1%

45 Publication

"Digital Multimedia Communications", Springer Science and Business Media LLC, … <1%

46 Publication

"Machine Learning in Medical Imaging", Springer Science and Business Media LL… <1%

47 Submitted works

Association of Educators on 2023-10-30 <1%

48 Publication

C.H. Chen. "Signal and Image Processing for Remote Sensing", CRC Press, 2024 <1%

49 Submitted works

City University on 2023-10-18 <1%

50 Publication

Debasis Chaudhuri, Jan Harm C Pretorius, Debashis Das, Sauvik Bal. "Internationa… <1%

51 Publication

Huan Hu, Fengwen Liu, Nan Su, Wenqiang Hu. "ECF-Net: lumber defect segmenta… <1%

52 Publication

Jiachen Dang, Yong Zhong, Xiaolin Qin. "PPformer: Using pixel-wise and patch-wis… <1%
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http://drsr.daiict.ac.in/bitstream/handle/123456789/1104/202011035.pdf?isAllowed=y&sequence=1
https://link.springer.com/article/10.1007/s11263-023-01853-3?code=bcfac3df-a8ec-42b4-b238-f434e3f6369c&error=cookies_not_supported
https://thesai.org/Downloads/Volume15No1/Paper_46-Low_Light_Image_Enhancement_using_Retinex_based_Network.pdf
https://www.marketresearch.com/TechSci-Research-v3895/Automotive-Occupant-Classification-System-Global-35316700/
https://doi.org/10.1007/978-981-99-7862-5
https://doi.org/10.1007/978-981-97-3623-2
https://doi.org/10.1007/978-3-030-32692-0
https://doi.org/10.1201/9781003382010
https://doi.org/10.1201/9781003428459
https://doi.org/10.1007/s00530-025-01817-2
https://doi.org/10.1016/j.cviu.2024.103930


53 Submitted works

La Trobe University on 2023-11-15 <1%

54 Publication

Mingjie Wang, Keke Zhang, Hongan Wei, Weiling Chen, Tiesong Zhao. "Underwat… <1%

55 Submitted works

Obudai Egyetem on 2025-05-16 <1%

56 Submitted works

The University of Tokyo on 2024-08-30 <1%

57 Submitted works

Tilburg University on 2025-05-18 <1%

58 Submitted works

University of Edinburgh on 2025-04-21 <1%

59 Publication

V. Sharmila, S. Kannadhasan, A. Rajiv Kannan, P. Sivakumar, V. Vennila. "Challeng… <1%

60 Publication

Yılmaz, İlyas Eren. "Systematic Evaluation of the Effects of Low-resolution and Mo… <1%

61 Internet

dokumen.pub <1%
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https://doi.org/10.1016/j.imavis.2024.104995
https://doi.org/10.1201/9781003559092
https://gateway.proquest.com/openurl?res_dat=xri%3Apqm&rft_dat=xri%3Apqdiss%3A31656038&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&url_ver=Z39.88-2004
https://dokumen.pub/graph-spectral-image-processing-1nbsped-1789450284-9781789450286.html

