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ABSTRACT 
 

The key tool of dimensionality reduction is that the large set of parameters or 
features must be summarized into a smaller set, with no or less redundancy. With the 
emergence of non-linear dynamic systems analysis over recent years it is clear that the 
conventional approaches for dimensionality reduction may be far from optimal. There 
are generally no techniques available, especially for finding the features 
corresponding to contour appearing over different muscles movement. Moreover, the 
available techniques considering both geometric and discriminant information 
simultaneously are not computationally efficient and robust. The work takes into 
account all of the above and few novel dimensionality reduction techniques which 
have been demonstrated to be more robust than conventional analysis techniques. 

In this thesis, a novel framework for non-linear dimensionality reduction is 
designed to extract non-linear features using the concept that local is non-linear. To 
detect non linearity, relation between the nearest neighborhood elements of the image, 
have been expressed in terms of Gaussian membership functions. All the elements of 
the image are connected with the nearest neighborhood elements with some 
membership degree of the Gaussian functions. It results in the formation of number of 
fuzzy lattices. Fuzzy lattices deform according to the various muscles movements. 
Three fuzzy lattices of maximum kinetic energy corresponding to these contours are 
sufficient to recognize any object. The technique is based on the concept that any face 
can be recognized by sketching just few prominent lines corresponding to contours, 
which are appearing over different muscles movements.  

The developed technique based on the concept of local non-linear relation has 
also been tested on real time data (power quality events) generated by interfacing 
Fluke 610000A with Laptop via data acquisition system. The generated events are 
detected and classified using the developed technique based on the concept of local 
non-linear relation. It extracts any change occurring in the patterns of power quality 
events. The proposed technique efficiently distinguishes various real time power 
quality events in a single cycle. 
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Additional work is an improvement over the well known non-linear 
dimensionality reduction techniques such as Isomap and Local Linear Embedding. All 
such methods are based upon the neighborhood information and require a user base 
input such as constant parameter epsilon or number of nearest neighborhood, which is 
computational burden.  In proposed work, the neighborhood graph is constructed by 
stacking image in third dimension using Morphmap that reduces the computational 
complexity. The representation of the depth has been taken into account within small 
area in these objects by applying the intensity attenuation function. 

Another work is designing a novel framework for non-linear dimensionality 
reduction that considers both discriminant and geometric information of data. It aims 
to preserve the pairwise geodesic distances between the intraclass separable pairs and 
to separate the interclass neighbors in the reduced embedding spaces. Based on the 
extracted information features, large margins between inter and intra class clusters are 
organized, delivering a strong interclass discriminative power.  

Most of the real world data applications such as fingerprint, face or signature 
recognition suffer from the curse of dimensionality. In order to handle this efficiently, 
its dimensionality needs to be reduced without much loss of information. Principal 
Component Analysis is one of the most common and efficient technique for linear 
dimensionality reduction. However, it is not optimal for classification of data as there 
is no class discriminatory information in Principal Component Analysis. Thus, Linear 
Discriminant Analysis could be used to achieve dimensionality reduction along with 
classification of data classes. Linear Discriminant Analysis works well for 
distributions which are Gaussian. If the densities are significantly non-Gaussian, 
Linear Discriminant Analysis may not preserve any complex structure of the data 
required for the classification. The Marginal Fisher Analysis overcomes this difficulty 
to a large extent as it uses a different criterion for classification. Furthermore, the 
Marginal Fisher Analysis with suitable threshold value has been introduced for 
improving the recognition accuracy and detection of forged signatures.  

A new method is proposed for designing wavelet statistically matched to the 
signal and is applied for data compression. It overcomes the difficulty of choosing the 
appropriate wavelet from a library of previously designed wavelets. The statistically 
matched wavelet is designed based on the characteristics of the power quality event 
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using the concept of fractional Brownian motion. It has been found that the proposed 
technique is better than Daubechies wavelet in the detection of power quality events. 
To classify the detected events, an iterative closest point algorithm is used which 
classifies the detected event even in the presence of outlier points and Gaussian noise.  
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Chapter-1 
Introduction 

 
 
This chapter provides a brief introduction to dimensionality reduction. The 

chapter also provides a thorough literature survey and various methodologies related 
to the field of dimensionality reduction. The motivation behind the work carried out 
and respective objectives are defined. The chapter further discusses about the brief 
outlines of the thesis. 

 
1.1 Dimensionality Reduction 

High-dimensional datasets present many mathematical challenges as well as 
some opportunities and are bound to give rise to new theoretical developments. One of 
the problems with high-dimensional datasets is that, in many cases all the measured 
variables are not important for understanding the underlying phenomena of interest. 
While certain computationally expensive novel methods can construct predictive 
models with high accuracy from high-dimensional data. It is still a point of interest in 
many applications to reduce the dimensions of the original data prior to modeling of 
the dataset. The fundamental assumption which forms the basis for dimensionality 
reduction is the fact that the sample actually lies on a manifold of smaller dimension 
than the original data space. The goal of dimensionality reduction is to find a 
representation of that manifold which allows projection of the data vectors on it and 
obtaining a low-dimensional, compact representation of the data. Often, the original 
representation of the data is redundant for several reasons. Firstly, many of the 
variables have a variation smaller than the measurement noise and thus irrelevant. 
Secondly, many of the variables are correlated with each other and hence a new set of 
uncorrelated variables have be found. Thus, in many situations it should be possible to 
somehow strip of the redundant information thereby producing a more economic 
representation of the data. Dimensionality reduction is important in many domains, 
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such as data analysis, visualization, data compression, pattern recognition and 
classification of high-dimensional data. 

The next section presents a literature survey reflecting the work done in the field 
of dimensionality reduction.  

 
1.2 Related Work 

Hotelling in [1] proposes a linear dimensionality reduction (LDR) technique 
called Principal Components Analysis (PCA). It constructs a low dimensional 
representation of the data that describes maximum variance in the data as possible.  

Torgerson in [2] describes the traditional technique of multidimensional scaling 
(MDS) also known as classical scaling technique. The input into classical scaling is 
similar to the input into most other multidimensional scaling techniques, i.e., a 
pairwise Euclidean distance matrix whose entries represent the Euclidean distance 
between the high dimensional data points.  

Roweis in [3] presented a latent variable model called probabilistic PCA. The 
model uses a Gaussian prior over the latent space along with a linear Gaussian noise 
model. The probabilistic formulation of PCA leads to an expectation-maximization 
(EM) algorithm that may be computationally more efficient for very high dimensional 
data.  

Lawrence in [4] extended probabilistic PCA by using Gaussian processes to 
learn non-linear mappings between the high dimensional and the low dimensional 
space. PCA and classical scaling have been successfully applied in a large number of 
domains such as face recognition, coin classification and seismic series analysis. 

However, PCA and classical scaling suffer from two main drawbacks. First, in 
PCA, the size of the covariance matrix is proportional to the dimensionality of the data 
points. As a result, the computation of the eigenvectors might be infeasible for very 
high dimensional data. In datasets, where data vectors are less than dimensionality, the 
problem of large size of covariance matrix may be overcome by performing classical 
scaling instead of PCA. Because the classical scaling measures data vectors with the 
number of data points instead of number of dimensions in the data. Alternatively, 
iterative techniques such as PCA [1] or probabilistic PCA [3] may be employed. 
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Second, the cost function in PCA and classical scaling focus mainly on retaining large 
pairwise distances, instead of retaining the small pairwise distances. 

MDS finds an embedding that preserves the inter-point distances, equivalent to 
PCA when those distances are Euclidean [2]. LDA, a supervised learning algorithm 
selects a transform matrix in such a way that the ratio of the between-class scatter and 
the within-class scatter is maximized [79]. PCA seeks a projection that best represent 
the data in a least-squares sense [5, 6]. PCA assume the existence of a linear map 
between the data points and the parameterization space, such a map often does not 
exist as many data sets contain essential non-linear structures. Applying LDR 
techniques to data therefore results in a distorted representation. If the input patterns 
are distributed more or less throughout this subspace, the eigen value spectra from 
these methods also reveal the data set’s intrinsic dimensionality. A more interesting 
case arises when the input patterns lie on or near a low dimensional submanifold of 
the input space. In this case, the structure of the data set may be highly non-linear, and 
linear methods are bound to fail.  

In the last decade, a large number of non-linear dimensionality reduction 
(NLDR) techniques have been proposed [10-13]. They all utilized local neighborhood 
relation to learn the global structure of non-linear manifolds. But they have quite 
different motivation and objective functions. 

If the high dimensional data lies on or near a curved manifold, such as in the 
Swiss roll dataset, classical scaling might consider two data points as near points, 
whereas their distance over the manifold is much larger than the typical inter point 
distance.  

Tenenbaum et al. in [14] describes an approach called Isomap that resolves this 
problem by attempting to preserve pairwise Geodesic distances between data points. 
However, Isomap faces several imperfections such as that its algorithm suffers with 
topological instability [15]. Isomap may construct erroneous connections in the 
neighborhood graph. Such short-circuiting [16] can severely impair the performance of 
Isomap. Several approaches have been proposed to overcome the problem of short-
circuiting, by removing data points with large total flows in the shortest-path algorithm 
[17] or by removing nearest neighbors that violate local linearity of the neighborhood 
graph. Isomap may also suffer from holes in the manifold. This problem can be dealt 
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with by tearing manifolds with holes. Another weakness of Isomap is that it can fail if 
the manifold is non convex. Despite these weaknesses, Isomap has been successfully 
applied on tasks such as wood inspection, visualization of biomedical data, and head 
pose estimation. 

     Sch¨olkopf et al. in [18] presented Kernel PCA that is the reformulation of 
traditional linear PCA in a high-dimensional space. It is constructed using a kernel 
function. In recent years, the reformulation of linear techniques using the kernel trick 
has led to the proposal of successful techniques such as kernel ridge regression [19]. 
Kernel PCA computes the principal eigenvectors of the kernel matrix, rather than those 
of the covariance matrix. The reformulation of PCA in kernel space is straightforward, 
since a kernel matrix is similar to the product of the data points in the high-
dimensional space that is constructed using the kernel function. 

Kernel PCA though suffers on the account is that the size of the kernel matrix is 
proportional to the square of the number of instances in the dataset. An approach to 
resolve this weakness is proposed in [20]. Also, Kernel PCA mainly focuses on 
retaining large pairwise distances. Kernel PCA has been successfully applied to large 
number of problems such as face recognition, speech recognition, and novelty 
detection. 

Weinberger et al. in [21] proposed a technique called Maximum Variance 
Unfolding (MVU, formerly known as Semidefinite Embedding) that attempts to 
resolve this problem by learning the kernel matrix. MVU learns the kernel matrix by 
defining a neighborhood graph on the data and retaining pairwise distances in the 
resulting graph. MVU is different from Isomap in that explicitly attempts to unfold the 
data manifold. It does so by maximizing the Euclidean distances between the data 
points, under the constraint that the distances in the neighborhood graph are left 
unchanged (i.e., under the constraint that the local geometry of the data manifold is not 
distorted). The resulting optimization problem can be solved using semidefinite 
programming. MVU has a weakness similar to Isomap i.e., short-circuiting may impair 
the performance of MVU because it adds constraints to the optimization problem that 
prevent successful unfolding of the manifold. Despite this weakness, MVU has been 
successfully applied to sensor localization and Deoxyribonucleic acid (DNA) micro 
array data analysis. 
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Roweis and Saul, in [22] present a Local Linear Embedding (LLE) technique 
that is similar to Isomap and MVU as it constructs a graph representation of the data 
points. However, in contrast to Isomap, it attempts to preserve solely local properties 
of the data. As a result, LLE is less sensitive to short-circuiting than Isomap, since only 
a small number of local properties are affected if short-circuiting occurs. Furthermore, 
the preservation of local properties allows for successful embedding of non-convex 
manifolds. 

The popularity of LLE has led to the proposal of linear variants of the algorithm 
[23-24] and to successful applications to super resolution and sound source 
localization. A possible explanation lies in the difficulties that LLE has when it is 
confronted with manifolds that contain holes. In addition, LLE tends to collapse large 
portions of the data very close together in the low-dimensional space, because the 
covariance constraint on the solution is too simple. Also, the covariance constraint may 
give rise to undesired re-scaling of the data manifold in the embedding [25]. 

Similar to LLE, Belkin and Niyogi, in [26] find a low-dimensional data 
representation by preserving local properties of the manifold. In Laplacian eigenmaps 
(LE), the local properties are based on the pairwise distances between near neighbors. 
LE computes a low-dimensional representation of the data in which the distances 
between a data point and its nearest neighbors are minimized. This is done in a 
weighted manner, i.e., the distance in the low-dimensional data representation between 
a data point and its first nearest neighbor contributes more to the cost function than the 
distance between the data point and its second nearest neighbor. Using spectral graph 
theory, the minimization of the cost function is defined as an eigen value problem. LE 
suffers from many of the same weaknesses as LLE, such as the presence of a trivial 
solution that is prevented from being selected by a covariance constraint. Despite these 
weaknesses, LE and its variants have been successfully applied to face recognition 
[27]. In addition, variants of LE may be applied to supervised or semi-supervised 
learning problems [28]. A linear variant of LE is presented in [29]. In spectral 
clustering, clustering is performed based on the sign of the coordinates obtained from 
LE [30]. 

Donoho and Grimes, in [31] present Hessian LLE that is a variant of LLE that 
minimizes the curviness of the high-dimensional manifold when embedding it into a 
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low-dimensional space, under the constraint that the low-dimensional data 
representation is locally isometric. This is done by an eigen analysis of a Hessian 
matrix that describes the curviness of the manifold around the data points. The 
curviness of the manifold is measured by means of the local Hessian at every data 
point. The local Hessian is represented in the local tangent space at the data point, in 
order to obtain a representation of the local Hessian that is invariant to differences in 
the positions of the data points. It can be shown that the coordinates of the low-
dimensional representation can be found by performing an eigen analysis of an 
estimator Hessian matrix of the manifold Hessian. 

Hessian LLE shares many characteristics with LE. It simply replaces the 
manifold Laplacian by the manifold Hessian. As a result, Hessian LLE suffers from 
many of the same weaknesses as LE and LLE. A successful application of Hessian 
LLE to sensor localization has been presented by [32]. 

Similar to Hessian LLE, Zhang and Zha, in [33] describe the approach Local 
Tangent Space Analysis (LTSA) which is a technique that describes local properties of 
the high dimensional data using the local tangent space of each data point. LTSA is 
based on the observation that if local linearity of the manifold is assumed there exists a 
linear mapping from a high dimensional data point to its local tangent space. And the 
linear mapping from the corresponding low dimensional data point to the same local 
tangent space also exits [34]. LTSA attempts to align these linear mappings in such a 
way that they construct the local tangent space of the manifold from the low 
dimensional representation. In other words, LTSA simultaneously searches for the 
coordinates of the low dimensional data representations and for the linear mappings of 
the low dimensional data points to the local tangent space of the high dimensional data. 
Like the other sparse spectral DR techniques, LTSA may be hampered by the presence 
of a trivial solution in the cost function. 

The non-linear methods mentioned are efficient at visualizing artificial data sets 
and powerful to handle non-linear data. However, they are unsupervised method, so 
fails to identity the types inter or intraclass of neighborhoods and unable to handle 
discriminatory information. To address these issues, supervised Isomap (S-Isomap) 
and supervised LLE (SLLE) have been proposed by enabling the inclusion of class 
labels directly [35-36]. SLLE guides the discriminant learning by increasing the pre 
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obtained distances artificially between interclass points and leaving the distances 
unchanged for those intraclass points. S-Isomap drives the discriminant learning 
through defining a new distance metric to enhance interclass dissimilarity over 
intraclass similarity. The idea of SLLE and S-Isomap is to pick the neighbors of each 
point from the same class and then separate interclass points through improving 
intraclass compactness. Satisfactory results are reported if data sets are well sampled 
with relatively convex intrinsic geometry. SLLE and S-Isomap are not so powerful for 
handing multiple class real cases. Pairwise Cannot-Link and Must-Link constraints 
[37-38] induced from the neighborhood graph into the Isomap are incorporated to 
guide the discriminant manifold learning.  

In contrast to the traditional linear techniques, the non-linear techniques have 
the ability to deal with complex non-linear data. On the other hand, such approaches 
also has several limitations such as the solutions do not yield an estimate of the 
underlying manifold’s dimensionality, the geometric properties preserved by these 
embedding are difficult to characterize and the resulting embeddings sometimes 
exhibit an unpredictable dependence on data sampling rates and boundary conditions. 
Moreover, the original LLE, Isomap and LE cannot deal with the out-of-sample 
problem [40] directly. Out-of-sample problem states that only the low dimensional 
embedding map of training samples can be computed but the samples out of the 
training set cannot be calculated at all. Hessian LLE is a variant of LLE that learns 
distance-preserving embeddings, with theoretical guarantees of asymptotic 
convergence [41].  

NLDR methods attempt to describe a given high-dimensional set of points as a 
low dimensional manifold by means of a non-linear map preserving certain properties 
of the data. Many NLDR techniques attempt to find a low dimensional representation 
for the data while preserving local properties. For example, the LLE algorithm tries to 
preserve the representation of each data point as a linear combination of its neighbors 
[22]. The Laplacian Eigenmaps algorithm uses the Laplacian operator for selecting 
low dimensionality coordinate functions based on its eigen functions [86]. The 
diffusion map generalizes this framework in the context of analysis of diffusion 
processes, making it more robust to non-uniform sampling density [87]. The Hessian 
LLE tries to use the proximity graph for finding coordinate functions that have a 
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minimal response to the Hessian operator of the surface, obtaining a truly locally 
linear mapping. 

Apart from these methods, Local Binary Pattern (LBP) as a novel low-cost 
image descriptor for texture classification has also been introduced to the field of 
facial expression analysis [47, 48]. LBP can efficiently encode the texture features of 
micro-pattern information in the face image which is effective information for both 
face recognition and facial expression recognition applications. The kernel sliced 
inverse regression algorithm generates a non-linear learning model in the original 
input pattern space. It reproduces kernel Hilbert space setting and emphasize on 
combining with other linear algorithms [49]. Vector based representations ignore the 
spatial structure of the image data which may be very useful for visual recognition. In 
tensor representation, Discriminant multi-linear projections are pursued to construct 
the Discriminant embedding [50]. 

The graph based DR algorithms on facial expression recognition are compared 
by employing leave one-subject-out strategy for cross validation [51]. A commonly 
used approach to improve robustness in classifying expression is to combine the 
results of several different methods [52]. Two hybrid facial expression recognition 
systems are proposed that employ the one-against-all classification strategy [53]. The 
first system decomposes the facial images into linear combinations of several basis 
images using Independent Component Analysis (ICA). Subsequently, the 
corresponding coefficients of these combinations are fed into Support Vector 
Machines (SVMs) that carry out the classification process. The basic description of 
SVMs can be phrased as a two class classification problem where data points are 
mapped into a high dimensional hyperspace so that they can be separated by a hyper 
plane [54]. A margin exists on each side of the hyper plane which is distanced to the 
nearest set of data points of each class. A high margin indicates good separation and 
good generalization. The multiclass SVMs problem solves only one optimization 
problem [55]. It constructs the basic facial expressions rules that separate training 
vectors of the class from the rest of the vectors by minimizing the objective function. 

 The developed techniques for non-linear dimensionality reduction have also 
been tested for detection of power quality (PQ) events. These events cover a broad 
frequency range with significantly different magnitude variations and can be non-
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stationary. Thus, accurate techniques are required to detect and classify these events. 
The major key issues and challenges in classifying PQ events are critically analyzed 
and presented. The selection of suitable features is extremely important for 
classification of any problem. An appropriately chosen feature set reduces the burden 
over the classifiers. This chapter also includes a comprehensive survey of various 
techniques which are used in PQ event detection and classification. 

Allen et al, in [56] and Altes et al, in [57] used Fourier Transform (FT) for 
extracting the frequency contents of the recorded signal. According to the frequency 
contents of the signal, some of the PQ problems can be detected. But FT is not 
suitable for non-stationary signals because it provides information only about the 
existence of a certain frequency component and does not give time information. A 
suitable way to obtain such information is to apply time-frequency (or time scale) 
signal decomposition where time-evolved signal components in different frequency 
bands can be obtained. 

Although, Short Time Fourier Transform (STFT) can partly alleviate this 
problem, but it still has the limitation of a fixed window width. The trade-off between 
the frequency resolution and the time resolution should be determined a priori to 
observe a particular characteristic of the signals [58]. Due to a fixed window width, 
STFT is inadequate for the analysis of the transient non-stationary signals. Therefore, 
more powerful and efficient techniques are required to detect and analyze non-
stationary disturbances. 

To resolve the fixed resolution problem of STFT, many researchers have 
proposed the use of the Wavelet Transform (WT) approach to analyzing the power 
system disturbances [59], [60], [61], [62]. The WT approach prepares a window that 
automatically adjusts to give proper resolutions of both the time and the frequency. In 
this approach, a larger resolution of time is provided to high-frequency components of 
a signal, and a larger resolution of frequency to low-frequency components. These 
features make the WT well suited for the analysis of the power system transients 
caused by various PQ disturbances. A model using adaptive wavelet networks has 
been proposed for the PQ event detection [63]. The reconstructed version of the 
original signal has been used by discarding all of the coefficients of few higher level 
details to detect and localize the disturbances in the presence of noise [64]. But 
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discarding all of the coefficients of higher resolution levels has a risk of losing high-
frequency transient features, completely or partially, depending upon their travel 
beyond the discarded scales. An approach has been proposed for the PQ disturbances 
classification based on the wavelet transform and self organizing learning array 
system [65]. The discrete wavelets transform and artificial neural network with fuzzy 
logic has been exploited for the characterization and classification of PQ events [66]. 
The authors have used Hilbert transform for feature extraction of distorted waveform 
[67, 68]. The Hilbert Transformer gives a better approximate only if the signal 
approaches a narrow band condition.  

Dash et al, in [69] introduced S-transform as a new PQ signal analysis and 
feature extraction tool. Chilukuri and Dash, in [70] extracted the features of seven 
simulated signals by calculating the minima and maxima of the S-transform absolute 
matrix. The S-Transform based probabilistic neural network model has been proposed 
[71-72]. Similar to the STFT, S-transform also requires significant amount of 
computational resources. This is due to the fact that the S-transform matrix is 
calculated by performing the inverse.  

  Keeping in view the trends, developments and limitations mentioned above, 
the work in the thesis has been carried out.  

 
1.3 Motivation 

From the review of literature survey, it is observed that further there is a lot of 
scope for improvement of existing techniques and development of novel techniques in 
the field of dimensionality reduction. All the reported work has the issues like higher 
order of complexity, presence of trivial optimal solutions, and large number of 
features. The systems need to be more robust and to have other discriminant features 
to work as a real system. The development of other linear as well as non-linear 
dimensionality reduction techniques is required which seek for better criteria for 
classification among various datasets. The above said issues create limitations to the 
reported technique for dimensionality reduction. In view of this author has 
endeavored to take up the following objectives that contribute to the field of 
dimensionality reduction.  
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1.4 Objectives 
(i) To develop a general framework for dimensionality reduction that considers 

both discriminant and geometric information of data.  
(ii) To improve stress function for efficiently handle non-linear manifolds. 
(iii) To develop Morphomap for non-linear dimensionality reduction techniques. 
(iv) To improve the Marginal Fisher’s Analysis for detection of forged signatures. 
(v) To design a novel framework for non-linear dimensionality reduction to 

extract prominent features using fuzzy lattices. 
(vi) Development of wavelet matched to the signal for application of data 

compression. 
 

1.5 Outline of Thesis 
The rest of the thesis is organized as follows: 
Chapter 2 introduces improved Marginal Fisher Analysis for signature 

recognition. Linear Discriminant Analysis fails when the discriminatory information 
is not in the mean but rather in the spread of the data. The Marginal Fisher Analysis 
overcomes this difficulty to a large extent as it uses a new criterion for classification. 
Moreover, the Marginal Fisher Analysis with suitable threshold value has been 
introduced for improving the recognition accuracy and detection of forged signatures.  

Chapter 3 discusses and compares spatial distance preserving techniques for 
reducing the dimensionality of the data. The preservation of the pairwise distances 
measured in a data set ensures that the low dimensional embedding inherits the 
geometric properties of the data like local neighborhood relationships.  

Chapter 4 reviews and compares the graph-based methods for manifold 
learning. The methods are efficient at visualizing artificial data sets and powerful to 
handle non-linear data. However, these are unsupervised methods and hence fails to 
identity the interclass or intraclass types of neighborhoods and unable to handle 
discriminatory information. To address these issues, constraint Isomap is proposed in 
this chapter that provides geometrical as well as discriminatory information of data. It 
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enhanced both interclass separation and intraclass compaction and delivering clear 
separation on the manifold embedding of multiple classes.  

Chapter 5 describes the extensions and analysis of local non-linear techniques. 
The original LLE, Isomap and Laplacian eigenmaps cannot deal with out of sample 
problem and cannot preserve local feature such as angle. To overcome the limitations 
of existing methods, extensions of local non-linear techniques have been discussed in 
this chapter. In the first proposed method, a low dimensional embedding is 
constructed that maximally preserves angles between nearby data points. Second 
proposed method, minimizes the cost function of a local non-linear technique for 
dimensionality reduction under the constraint that the mapping from the high-
dimensional to the low-dimensional data representation is linear.  

Chapter 6 focuses on characterizing the strict efficient solution to recognize 
prominent features of a person. The method is based on the concept of non-linear 
relation between the nearest neighborhood elements of the image. To detect non-
linearity, Gaussian membership functions have been used which results in formation 
of fuzzy lattices. Three fuzzy lattices having maximum energy are selected to extract 
the prominent features. Compared to earlier framework for analyzing high 
dimensional data that lie on or near a low dimensional manifold the proposed method 
has interesting property of representing any object with small set of features. 

Chapter 7 seeks to provide the generation of PQ events. The generated events 
are detected and classified using the very new developed technique based on the 
concept of local non-linear relation. It extracts any change occurring in the patterns of 
PQ events. The proposed technique efficiently distinguishes various real time PQ 
events in a single cycle. 

Chapter 8 intends to compress the PQ data using statistically matched wavelet. 
The proposed method overcomes the difficulty of choosing the appropriate wavelet 
for a given application and presents a new approach for compression of PQ data. To 
classify the detected events, Iterative Closest Point algorithm is used which classifies 
detected event even in presence of outlier points and Gaussian noise.  

Chapter 9 focuses on improvement over the well known non-linear 
dimensionality reduction techniques such as Isomap and LLE. Both of the methods 
require a user base input or calculation of nearest neighborhood elements which is 
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itself a computational burden. In the proposed method, the neighborhood graph 
construction is done by stacking image in third dimension using Morphological 
mapping that reduces the computational burden to a great extent.  

Chapter 10 summarizes the major findings of the entire investigations which 
also emphasizes the future scope for research in this area. 
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Chapter-2 
Linear Dimensionality Reduction Techniques 
and their Extension 
 

 
Most of the real world data applications such as fingerprint, face or signature 

recognition suffer from the curse of dimensionality. In order to handle this efficiently, 
its dimensionality needs to be reduced without much loss of information. Principal 
Component Analysis (PCA) is one of the most common and efficient technique for 
linear dimensionality reduction. However, it is not optimal for classification of data as 
there is no class discriminatory information in PCA. Linear Discriminant Analysis 
(LDA) could be used to perform dimensionality reduction along with classification of 
data classes. LDA works well for distributions which are Gaussian or similar in 
nature. If the densities are significantly non-Gaussian, LDA may not preserve any 
complex structure of the data required for the classification. The Marginal Fisher 
Analysis (MFA) overcomes this difficulty to a large extent as it uses a different 
criterion for classification. Moreover, the improved MFA has increased the 
recognition accuracy and detection of forged signatures by setting a suitable threshold 
value.  

 
2.1 Introduction 

From automated speech recognition, fingerprint identification, optical character 
recognition, DNA sequence identification and much more, it is clear that reliable 
accurate pattern recognition by machine would be immensely useful [89]. But the real 
world data suffers from the problem of high dimensions. With the advent of high 
quality signature capture devices, signature is attracting more attention as a biometric 
to develop practical applications. The difficulties inherent to signature based 
authentication are related to the great variability of signatures. Furthermore, the 
forgers can reproduce signatures with high resemblance to the user’s signatures. 
Hence, main concern is the dimensionality reduction that can be beneficial not only 
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for reasons of computational efficiency but also to improve the accuracy of the 
analysis. The chapter is organized as follows: Section 2.2 describes the theoretical 
characteristics and algorithms of the spatial distance preservation based techniques for 
dimensionality reduction. Section 2.3 details the improved Marginal Fishers 
Discriminant Analysis as an extension of linear dimensionality reduction. Section 2.4 
discusses the results of the experiments on all described techniques for dimensionality 
reduction. Finally, conclusions are drawn in Section 2.5. 

 
2.2 Linear Dimensionality Reduction Techniques  

In this section, linear dimensionality reduction (LDR) techniques such as PCA, 
LDA and improved MFA have been discussed for signature recognition. 

 
2.2.1 Principal Component Analysis 

The goal of PCA is to reduce the dimensionality of the data while retaining as 
much as possible the variation present in the original dataset. PCA allows computing 
a linear transformation that maps the data from a high dimensional space to a lower 
dimensional sub-space [5-6]. Dimensionality reduction leads to information loss. 
Thus, it aims to preserve as much information as possible. PCA projects the data 
along the directions where the data varies the most. These directions are determined 
by the eigenvectors of the covariance matrix corresponding to the highest eigenvalues.  

 
2.2.1.1   Algorithm: PCA 
Suppose 1 2, ,..., Mx x x are N X 1 vectors. 
Step 1:   Find mean of the data: 

1

1 M
i

i
x x

M

−

=

= ∑  

Step 2: Find zero mean matrix: 
 i ix xΦ = −   

Step 3:  Form the matrix 1 2[ ... ]MA = Φ Φ Φ , then compute co-variance matrix (C) that 
characterize the scatter of data:  
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Step 4: Compute eigenvalues and eigenvectors of C: 
          ( ) 0i iC I eλ− =                
Step 5: Select eigenvectors corresponding to the highest eigenvalues: 
           ie V=  
Step 6: Projecting higher dimensional data into lower dimensional space. 
          T

i iVΦ = Φ  
 
PCA is one of the most common and efficient technique for LDR. It minimizes 

the reconstruction error. Although, PCA efficiently reduces the number of dimensions 
but it does not have any class discriminatory information. Thus, data classification 
cannot be done using PCA. Also, reduction in dimension can only be achieved if the 
original variables are correlated. If the original variables are uncorrelated, PCA only 
helps in ordering them according to their variance. Hence, PCA cannot be used when 
need is to perform the dimensionality reduction along with class discrimination. LDA 
technique which is discussed in the next section can be used for dimensionality 
reduction along with class discrimination. 

 
2.2.2 Linear Discriminant Analysis                                  

LDA is basically a method used in statistics, pattern recognition and machine 
learning to find a linear combination of features which characterizes or separates two 
or more classes of objects. The main objective of LDA is to perform dimensionality 
reduction while preserving as much of the class discriminatory information as 
possible [8]. The Fisher Linear Discriminant is defined as the linear function that 
maximizes the criterion function as follows:  

2
1 2
2 2

1 2

( ) p p

p p

u u
J w

S S

−
=

+

                (2.1) 

where 1pu  is mean of the class iw  in projected feature space (y-space). 
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2ipS  is the variability within class iw  after projection on y space  
2 2

1 2p pS S+  is the variability within two classes after projection  

 

 

        (a) 
 

 

 
    (b) 
 

              Figure 2.1 Graphical Illustration of Techniques (a) LDA (b) MFA  
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A simple illustration of LDA has been shown in Figure 2.1(a). In this Figure, it 
is described that LDA focuses on the means of the classes for discrimination. It 
separates the means of various classes as farther apart as possible and also tries to 
make the scatter of individual classes as compact as possible. Thus, LDA reduces the 
dimensionality as well as separating the two data classes as farther apart as possible.  

 
2.2.2.1 Algorithm: LDA 
Step 1: In order to find a good projection vector, there is need to define a measure of 
separation. The mean vector of each class in x and y space is defined as follows: 

1 xi N x wi i
µ = ∑

∈
 

where iu  is means of the class iw  in original feature space (x-space). 
1 1 1T T Ty w x w x wiP iN N Ny w x w x wi i ii i i

µ µ= = = =∑ ∑ ∑
∈ ∈ ∈

 

where Ni  is the number of data points in ith class. 

Similarly, the difference between the projected means can be expressed in terms of 
the means in the original feature space. 

2 2( ) ( )  1 2 1 2
                  = ( )( )                              1 2 1 2

T Tu u w u w up p
T Tw u u u u w

− = −

− −

 

2( )1 2 Tu u S w S wp p bp b− = =                            (2.2) 

where bS  is between classes scatter matrix of the original features vectors and 

            bpS  is between classes scatter matrix of the projected features vectors. 

Step 2: The measure of the scatter in multivariate feature space is denoted as scatter 
matrices can be defined as follows: 

( )( )

,  1 2

TS x xi i i
x wi

S S Sw

µ µ= − −∑
∈

= +
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where  iS is the co-variance matrix of class iw  and  wS is known as class scatter 
within the original feature space. 
Now, the scatter of the projection y can then be expressed as a function of the scatter 
matrix in feature space x as follows: 

2 2 2( ) ( )                  

     = ( )( )

Tip ip iw wi i
T T Ti iwi

T i

S y u w X

w X w X w

w S w

µ

µ µ

= − = −∑ ∑

− −∑

=

 

2 2
1 2 1 2( )T TP P w wpS S w S S w w S w S+ = + = =                (2.3) 

where wpS  is the within class scatter in the projected feature space y 
Step 3: The Fisher criterion can be expressed in terms of wS  and bS  using (2.1), 
(2.2) and (2.3) as follows: 

2
1 2
2 2

1 2
( ) p p

Tp p w

Tu u w S wbJ w
S S w S w

−
= =

+
                (2.4) 

Hence ( )J w  is a measure of the difference between class means (encoded in the 
between class scatter matrix) normalized by a measure of the within class scatter 
matrix. 
Maximum ( )J w  is found by differentiating and equating (2.4) to zero and we get: 

( ) 0
tw S wbJ w tw w w S ww

 ∂ ∂  = = ∂ ∂  
 

Step 4: Solving the generalized eigenvalues problem: 
1S S w ww b λ− =    

Yields  
1* ( )1 2w Sw µ µ−= −                   (2.5) 

Step 5: The low dimensional embedding is given as follows: 
( *)TY w X=                    (2.6) 
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This low dimensional embedding provides class discrimination information 
assuming data of each class has Gaussian distribution. Marginal fisher Analysis 
(MFA) technique discussed in next section can be used for dimensionality reduction 
along with class discrimination for all types of the data. 
 
2.3 Extension of Linear Dimensionality Reduction   

Techniques  
LDA is developed based on the assumption that the data of each class has a 

Gaussian distribution. However, the property of Gaussian distribution often does not 
exist in real world problems. To overcome this limitation of LDA, MFA is proposed 
by developing a new criterion that characterized the intraclass compactness and the 
interclass separability to obtain the optimal transformation [90-91].  

 
2.3.1 Marginal Fisher Analysis and its Extension 

In MFA, the intrinsic graph characterizes the intraclass compactness, which 
connects each data point and its neighboring points of the same class. The interclass 
graph characterizes the interclass separation, which connects the marginal points. In 
the low-dimensional space, MFA tries to keep neighboring points close if they have 
the same label and prevents points of other classes from entering the neighborhood 
[90].  

The difference between the criteria of LDA and classical MFA for class 
discrimination is clearly illustrated in Figure 2.1 (a) and (b). LDA focuses on the 
means of the classes for discrimination as it separates the means of various classes as 
farther apart as possible and also tries to make the scatter of individual classes as 
compact as possible at the same time. MFA takes care of the boundaries of the 
neighboring classes to avoid intermixing. It makes the neighboring points as farther 
apart as possible if they have different class labels, and hence, increasing the inter 
class separability. It keeps the neighboring points as close as possible if they have 
same class label, and hence, reducing intraclass scatter. This criterion makes MFA 
independent of type of data distribution.  
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         Here, the threshold value has been defined for detection of forged signatures. 

( ) ( )1 2
max

{( ... ) ( )}Threshold ( ) min . . ( )1
n m

m m
d d d dt d S Dev d d

n
 + + + −= − + + − − 

(2.7)  

where md = minimum among the Euclidean distance 
 maxd = maximum among the Euclidean distance 

1 2, ,..., nd d d = Euclidean distances between the projected sample point of the 
pattern to be tested and the projected samples of the patterns existing in the database.  
 
2.3.1.1 Algorithm: Improved MFA 
Step 1: Find the K nearest neighbors (KNN) per datapoint. 
Step 2: Construct intraclass graph: 

1; ( ) ( )1 1
0;

if x N x or x N xw i k j j k iwij otherwise
+ + ∈ ∈ =   ∈ 

              (2.8) 

( )  nearest neighbourhood of  of same class1 1 jN x k xk j+ =  
Intraclass compactness is characterized by: 

( )( ){ }2
,J ( ) 2      T T T w w Tw i ji j wA A x A x w tr A X D W X Aij  = − = −∑     

( )( ){ } ( ){ }           =2 2T w T T wtr A X L X A tr A Z A   =                   (2.9) 

Where Xi is the data matrix, wZ  is the intraclass compactness matrix. 
wD  is the diagonal matrix with w wd wjij ij= ∑  

Step 3: Construct interclass graph: 
1; ( ) ( )2 2
0;

if x N x or x N xb i k j j k iwij otherwise
− − ∈ ∈ =   ∈ 

            (2.10) 

( )  nearest neighbours of  of different classes2 2 jN x k xk j−
=  

Interclass seperability is defined by: 

( )( ){ }2
,( ) 2T T T b b Tb i ji j bJ A A x A x w tr A X D W X Aij  = − = −∑     
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           ( )( ){ } ( ){ }2 2T b T T btr A X L X A tr A Z A   = =                 (2.11) 

Where bZ  is the interclass seperability matrix   
bD is the diagonal matrix with b bd wjij ij= ∑  

Step 4: Eigen decomposition of the matrix 1 b
wZ Z
−  

Step 5: Check for detection of forged signatures using (2.7)  
For every test, if 1 md d=  and it t> , it corresponds to recognized pattern. If it t< , it 
corresponds to the forged signature. 

 
2.4 Results  

The performance of PCA, LDA and improved MFA techniques has been 
checked for classification of data of two classes and signature recognition. MFA with 
suitable threshold value has also been tested for detection of forged signatures. The 
data points of two different classes represented by different colors have been shown in 
Figure 2.2(a). The red dot shows data belongs to one class and blue dot shows data 
belongs to other class. The data is two dimensional (2-D) and objective is to convert 
this into one dimension (1-D) by projecting the sample points in such a way that the 
two classes could be discriminated as clearly as possible.  

The projected data points with reduced dimension after applying PCA and LDA 
on data samples have been shown in Figure 2.2 (b) and Figure 2.2 (c) respectively. 
From the Figures, it is observed that there is an intermixing among the data samples 
of different classes in PCA. In LDA, data samples of different classes are well 
separated. Thus, performance of LDA is much better than PCA for classification. 
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(a) 

 
(b) 

 

                                                                 (c) 
  
Figure 2.2 Projection of sample points in (a) original 2-D space (b) 1-D space 
using PCA c) 1-D space using LDA 
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Figure 2.3 Sample images from database of signature images 
 

 

 
 

Figure 2.4 Sample images from database of forged signature images 
 
 

The proposed algorithm is also tested for signature recognition and detection of 
forged signatures. Thirty signature classes have been taken as database and each class 
consists of twenty signatures. Only a small variation in the size, position, and 
orientation of the objects in the images are allowed. The recognition is based on the 
Euclidean distances of the projected sample point of the testing pattern to the 
projected samples of the existing patterns. Sample images from signature databases 
and forged signature images are shown in Figure 2.3 and 2.4 respectively. 



25 
 

The sample point corresponding to the minimum Euclidean distance from the 
pattern to be tested is selected as the recognized pattern. If i md d= (where id  is any 
value among 1 2, ,..., nd d d ) and it t> , it corresponds to the recognized pattern. 
 

 
(a) 
 

 
                      (b) 
Figure 2.5 Plots of PCA, LDA and Improved MFA (a) Recognition Accuracy (b) 
Error Margin    
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  Table 2.1 Comparison between PCA, LDA and Improved MFA for signature recognition 
Methods Dimensions 2 3 4 5 6 7 8 10 20 

PCA Accuracy (%) 45 40 45 55 60 65 75 80 80 
Mean error margin 16.49 7.11 7.85 16.7 21.13 24.35 23.05 22.60 24.52 
Execution time (sec.) 7.95 8.61 8.60 8.92 9.1 9.75 9.76 9.90 10.94 

LDA Accuracy (%) 50 40 55 65 70 70 75 80 85 
Mean error margin 17.79 16.21 10.5 20.7 24.73 34.15 34.05 30.60 37.56 
Execution time (sec.) 7.90 8.31 8.65 8.72 8.81 8.95 9.02 9.10 9.90 

Improved 
MFA 

Accuracy (%) 70 75 70 70 80 80 85 85 90 
Mean error margin 17.75 21.65 21.29 22.66 25.33 26.02 25.13 25.80 26.35 
Execution time (sec.) 9.10 9.35 9.76 9.96 10.25 10.75 11.16 11.60 12.51 
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The error margin in recognition gives the value that if subtracted from it , gives 
the correct result. Thus, more the error margin, less prone is the result to error. The 
negative value in error margin means that the particular result is incorrect. The results 
of recognition accuracy, mean error margin and execution time for PCA, LDA and 
improved MFA are depicted in Table 2.1. 

The recognition accuracy and error margin are ploted with respect to the 
number of dimensions in Figures 2.5 (a) and (b) respectively. From the Figure 2.5 and 
Table 2.1, it can be observed that improved MFA outperforms both PCA and LDA for 
all the dimensions (from 2 to 20) in terms of signature recognition. The results of 
mean error margin in improved MFA are better than LDA in lower dimensions. 
Improved MFA is performing better than both PCA and LDA at little extra 
computational most. 

 

2.5 Conclusions 
PCA is an efficient technique for linear dimensionality reduction. However, it is 

not optimal for classification of data. LDA finds the projection that maximizes the 
ratio of between-class scatter to the within-class scatter to achieve class 
discrimination. While in MFA the optimal projection is obtained by maximizing the 
ratio of inter-class separation to intra-class compactness. For classification, 
performance of MFA is significantly better than LDA. In LDA, it is assumed that the 
data of each class has a Gaussian distribution while MFA is applicable for all types of 
data. Moreover, the Marginal Fisher Analysis with suitable threshold value improves 
the recognition accuracy and detection of forged signatures. 
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Chapter-3 
Spatial Distance Preservation based Techniques  
 
 

This chapter deals with methods that reduce the dimensionality of data by using 
distance preservation as criteria. The preservation of the pairwise distances measured 
in a data set ensures that the low dimensional embedding inherits the main geometric 
properties of the data, like the global shape or local neighborhood relation. In this 
chapter, spatial distance preserving techniques such as Multidimensional Scaling, 
Sammon’s non-linear mapping and Curvilinear Component Analysis have been 
discussed and compared for dimensionality reduction. They rely on different 
optimization procedures to determine the embedding. 
 
3.1 Introduction 

The distance preservation is the first criterion used to achieve dimensionality 
reduction in a non-linear way [92]. In the linear case, simple criterion like maximizing 
the variance preservation or minimizing the reconstruction error, combined with a 
basic linear model, lead to robust methods like PCA. In the non-linear case, the use of 
same simple criteria requires the definition of more complex data models, which is a 
little bit difficult. In this context, distance preservation appears as a non-generative 
way to perform dimensionality reduction [93]. The motivation behind distance 
preservation is that any manifold can be fully described by pairwise distance. Hence if 
low-dimensional representation can be built in such a way that the initial distances are 
reproduced, then the dimensionality reduction is successfully achieved. If close points 
are maintained and if far points remain far, then the initial manifold and its low 
dimensional embedding share the same shape [94-95]. This is the basic approach, 
which is used in techniques discussed in this chapter. This chapter is organized as 
follows: Section 3.2 describes the details of CCA and Sammon’s non-linear mapping. 
Experimental results are shown in Section 3.3. Finally in Section 3.4, the conclusions 
are drawn. 
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3.2 Spatial Distance Preservation based Techniques 
Spatial distances, like the Euclidean distance, are the most natural way to 

measure distances in the real world. The word spatial indicates that these metrics 
compute the distance of two separating points of space, without considering to any 
other information like the presence of a submanifold. In this computation, only the 
coordinates of two points matter. The next three sections review the spatial distance 
preservation based techniques. 

 
3.2.1 Multidimensional Scaling (MDS) 

Multidimensional Scaling (MDS) is a spatial distance preserving technique and 
is a strictly linear technique. In its classical version, metric MDS preserves pairwise 
scalar products instead of pairwise distances. It relies on a simple generative model. 
More precisely, only an orthogonal axis separates the observed variable in x and the 
latent ones stored in y, can be represented mathematically as follows: 

 

 y Wx=                  (3.1)   

Here, x is the data points in high dimensional data space whose dimensions is 
D, y is the data point in embedded space whose dimension is d, and W is the 
transformation matrix of size D x d.  

Let us consider that the total numbers of data points are N. Then in matrix form 
it can be written as follows: 

 

( )( ){ }2
,J ( ) 2  T T T w w Tw i ji j

wA A x A x w tr A X D W X Aij  = − = −  ∑                   (3.2)   

 X = […, x(i), …, x(j),…] 
 

The scalar product between vectors ( )x i  and ( )x j  is given by: 
 

( , ) ( ( ), ( )) ( ). ( )xs i j s x i x j x i x j= = 〈 〉               (3.3) 

The eigen value decomposition of the Gram matrix S is done as follows:                                                                                                                                  

 TS U U= Λ                      (3.4) 
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     1/2 1/2( )( )TU U= Λ Λ  
     1/2 1/2( )( )T TU U= Λ Λ                                                             
  
where ‘U’ is an N-by-N orthonormal matrix and ‘Λ ’ is an N-by-N diagonal matrix 
containing the eigen values. If the eigen values are sorted in descending order, then 
the estimated d-dimensional latent variables can be computed as follows: 
 

 1/2ˆ T
d NY I U×= Λ               (3.5) 

To minimize the error, Error Stress Function is defined as follows: 
 

2
, 1

( ( , ) ( ). ( ) )  N
x

i j
E S i j Y i Y j

∧ ∧

=

= − 〈 〉∑               (3.6) 

If instead of Gram matrix, given data consists of Euclidean distance then it has 
to be converted into Gram matrix. In terms of norms, Euclidean distance can be 
defined as Scalar Product given below: 

 

 

22( , ) ( ) ( )
( ( ) ( )).( ( ) ( ))
( ). ( ) 2 ( ). ( ) ( ). ( )
( , ) 2 ( , ) ( , )

x x

x x x x

x x x x x x

d i j i jx
i j i j
i i i j j i

s i i s i j s j jx x x

= −

= − −

= − +

= − +

 

 

Thus, Scalar Product can be computed as follws: 

( )1 2( , ) ( , ) ( ). ( ) ( ). ( )2 x x x xx xs i j d i j i i j j= − − −               (3.7) 

Assume that pairwise distances are squared and stored in an N x N matrix D, then: 
 

 2[ ( , )]1 ,D d i jx i j N= ≤ ≤               (3.8) 

The operation of D is called as Double Centering. It simply consists of 
subtracting from each entry of D, the mean of the corresponding row and the mean of 
the corresponding column, and adding back the mean of all entries. In matrix form it 
can be written as follows: 
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2
1 1 1 1( )2

T T T T
N N N N N N N NN

= − − − +S D D1 1 1 1 D 1 1 D1 1
N N

             (3.9) 

This is the transformation of Euclidean distance into Gram Matrix. 
 
3.2.1.1 Algorithm: MDS 
Step 1: If available data consist of vectors gathered in X, then center them, compute 
the pairwise scalar products TS X X= , and go to step 3. 
Step 2: If available data consist of pairwise Euclidean distance, transform them into 
scalar products: 
(i) Square the distances and build D. 
(ii)   Perform the double centering of D using (3.9), this yields S.  
Step 3: Compute the eigen value decomposition using (3.4).  
Step 4: The low-dimensional representation is obtained by computing the product 
using (3.5). 
 

MDS is suitable for linear data. In the following section, spatial techniques for 
non- linear dimensionality reduction have been discussed. 
 
3.2.2 Sammon’s Non-Linear Mapping 

It is a non-linear technique. The concept of Sammon’s Non-Linear Mapping 
(NLM) is closely related to MDS. But in this case, no generative model is used only a 
stress function is defined. Consequently, the low dimensional representation can be 
totally different from the distribution of the true latent variables. Sammon’s NLM 
minimizes the following stress function. 

 

2( ( , ) ( , ))1
( , )1,

d i j d i jN x yE c d i ji i j x
−

= ∑
= <

                           (3.10)   

where ( , )d i jy is a distance measured between ith and jth points in the low dimensional 
space, ( , )d i jx  is a distance measured between the ith and jth points in the high 
dimensional space and normalizing constant C is defined by (3.11). 
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( , )1,
Nc d i jxi i j= ∑= <            (3.11) 

The factor 1
( , )d i jx

in (3.10), which is not in case of MDS, is weighting the summed 

terms, which gives less importance to errors made on large distances. More precisely, 
the weighting factor simply adjusts the importance to be given to each distance in 
Sammon’s stress, according to its value. The preservation of long distances is less 
important than the preservation of shorter ones, and therefore, the weighting factor is 
chosen to be inversely proportional to the distance. The optimization technique, which 
is used to minimize above function is Quasi-Newton optimization form, is iterative in 
nature. From the concept of Quasi-Newton update rule, the parameter ( )y ik  can be 
updated as follows:  
 

( )( ) ( ) 2
2( )

E
y iky i y ik k E
y ik

α

∂
∂

← −
∂

∂

                                     (3.12) 

where α is called as magic factor and Sammon recommends its value between 0.3 and 
0.4.  
Sammon’s NLM minimizes a stress or error function, which is defined as follows: 

( , )
( ) ( , ) ( )

d i jE E y
y i d i j y ik y k

∂∂ ∂=
∂ ∂ ∂

                    

( , ) ( , ) ( , )2        ( , ) ( )1,
( , ) ( , ) ( ( ) ( ))2

( , ) ( , )1,

d i j d i j d i jN x y y
c d i j y ij j i x k

d i j d i jN y i y jx y k k
c d i j d i jj j i x y

− ∂ −=  ∑   ∂= ≠  
−  −−=  ∑  = ≠  

                    

( , ) ( , )2 ( ( ) ( ))( , ) ( , )1,
      

d i j d i jN x y y i y jk kc d i j d i jj j i x y
 −−   −∑  = ≠  

=                                  (3.13)                                                                                                                  

 

Similarly, the second derivative can be obtained as follows: 



33 
 

 

22 ( , ) ( , ) ( ( ) ( ))2
2 3( , ) ( , )( ) ( , )1,

d i j d i jN y i y jE x y k k
c d i j d i jy i d i jj j i y xk y

 − −∂ −  = −∑   ∂ = ≠  
          (3.14) 

Sammon’s NLM involves various parameters, especially due to its iterative 
optimization scheme. These are number of iterations and the magic factor α, also it is 
noteworthy that initialization may play a part in the final result. 
 

3.2.2.1 Algorithm: Sammon’s NLM 
Step 1: Compute all pair wise distances ( , )xd i j in the D-dimensional data space. 
Step 2: Initialize the d-dimensional coordinates of all points ( )y i , either randomly or 
on the hyper plane spanned by the first d principal components of the data set. 
Step 3: Compute the right hand side of (3.12) for the coordinates of all points ( )y i  
and update the coordinates of all points of ( )y i . 
Step 4: Return to step 3 until the value of stress function does not decreases further.  

 

Compared to classical metric MDS, Sammon’s NLM linear mapping can 
efficiently handle non-linear manifolds, at least if they are not too heavily doped.  
 
3.2.3 Curvilinear Component Analysis             

The Curvilinear Component Analysis (CCA) is the first method to combine 
vector quantization [93] with a non-linear dimensionality reduction achieved by 
distance preservation. Like dimensionality reduction, vector quantization can be 
defined as a way to reduce the size of a data set. However, instead of lowering the 
dimensionality of the observation, vector quantization reduces the number of 
observation.  

 

 
 

Figure 3.1One Dimensional Vector Quantization 
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Vector quantization is basically an optional preprocessing of the data. It can be 
applied to reduce the number of data points in large databases. For small databases or 
sparsely sampled manifolds, however, it is often better to skip vector quantization in 
order to fully exploit the available information. In order to reduce the data points, 
round-off value or mean value between the various data points can be taken. The 
concept of vector quantization is shown in Figure 3.1 
CCA minimizes a stress or error function, which is defined as follows: 

1 2(( ( , ) ( , )) ( ( , ))2 1, 1
NE d i j d i j F d i jx y yi j λ= −∑

= =
                                                (3.15)    

To maintain the global shape of the manifold, preserving the short distance is 
required as compared to longer distance. Thus, Fλ  is typically chosen as a 
monotonically decreasing function of its argument. While in Sammon’s stress 
function, the weighting depends on the constant distance measured in the data space. 
The optimization procedure, which is used to determine the minimization of (3.15) 
can be calculated as follows: 
 

( ) ( )
dE E y

y i d y ik y k
∂∂ ∂=

∂ ∂ ∂ ( ) ( )
dE E y

y i d y ik y k
∂∂ ∂=

∂ ∂ ∂
 

( ) ( )'( )(2 ( ) ( ) ( ))( ) 1
N y j y iE d d F d d d F dx y y x y yy i dj yλ λ

−∇ = − − −∑
=

                      (3.16) 

where ( )Ey i∇  represents the gradient of E with respect to vector ( )y i . The 
minimization of E by a gradient descent gives the following update rule. 

 

( ) ( ) ( )y i y i Ey iβ← − ∇                                                                                           (3.17) 

where β  is a positive learning rate scheduled according to the Robbins-Monro 
condition. 

The embedding of highly folded manifolds requires focusing on short distances. 
Longer distances have to be stretched in order to achieve the unfolding and their 
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contribution must be lowered in stress function E. Therefore, Fλ is usually chosen as 
a positive and decreasing function. For example 

( ) exp
d yF dyλ λ

 = −   
                                                           (3.18)

                                                           
where λ controls the decrease. 
 

3.2.3.1 Algorithm: CCA 
Step 1: Perform the vector Quantization to reduce the size of data set, if needed. 
Step 2: Compute all pairwise Euclidean distances ( , )xd i j  in the high-dimensional 
data space. 
Step 3: Initialize the d-dimensional coordinates of all the points ( )y i , either randomly 
or on the hyper plane spanned by the first principal components. Let q be equal to 1. 
Step 4: Give the learning rate β  and the neighborhood width λ their scheduled value 
of epoch no. q. 
Step 5: Select a point ( )iy , and update all other ones according to update rule using 
(3.17).  
Step 6: Return to step 5 until all points ( )y i  have been selected exactly once during 
the current epoch. 
Step 7: Increase q, and if convergence is not reached return to step 4. 
 

Comparing with Sammon’s NLM, CCA proves much more flexible, mainly 
because the user can choose and parameterize the weighting function Fλ . This allows 
limiting the range of considered distances and focusing on the preservation of 
distances on a given scale only. Moreover the weighting function Fλ depends on the 
distances measured in the embedding space, this results in tearing some regions of the 
manifold. This is better solution than crushing the manifold.  
  

3.3 Results 
In this section, the results of the spatial distance preservation based techniques  
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such as MDS, Sammon’s non-linear mapping and CCA are tested on artificially 
generated data set.  

 
                                 (a)                                                          (b)                                                                                                   

Figure 3.2 Artificial generated data set (a) Swiss Roll (b) Helix 
 
 
 

 
(a) 
                     

 

 
(b)    (c)      

Figure 3.3 Results of Dimensionality Reduction on Swiss Roll Data Set (a) MDS 
(b) Sammon’s NLM (c) CCA  
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Figure 3.4 Results of Dimensionality Reduction on Helix Data Set (a) MDS (b) 

Sammon’s NLM (c) CCA  
 

Figure 3.2 shows the artificially generated dataset such as Swiss roll and helix. 
The artificial generated data set consists of 2,000 samples. The result of MDS, CCA 
and Sammon’s NLM on Swiss roll and Helix Data set are shown in Figures 3.3 and 
3.4 respectively. From results, it is observed that MDS is not able to unfold the 
manifold. There is overlapping between the data points in embedded space as 
compare to original data space. In case of Helix data set, the results of Sammon’s 
NLM are disappointing. But the results of CCA are much more convincing. From 
Figures 3.3 and 3.4, it is observed that the results are almost superposition free in 
CCA. Euclidean distance between the data points is maintained in a much closer sense 
in the embedding space too. This is the first criteria from visualization point of view. 
Other parameters of comparison are time complexity and space complexity.  

 
Table 3.1 Performance Comparison between MDS, NLM and CCA 

 MDS Sammon’s NLM CCA 
Vector Quantization No No Could be used 
Space Complexity O(N2) O(N2) O(P2) 
Time Complexity O(N2D) O(N2d) O(N2P) 
Embedding disappointing turns are superposed superposition free 



38 
 

Table 3.1 depicts the summary of comparison between the three techniques. In 
CCA, space complexity is much less as compared to Sammon’s NLM because the 
number of data points gets reduced after vector quantization. Here, data points are 
reduced from N to P. Time complexity for both the data set is also less in CCA as 
compared to Sammon’s NLM and MDS.  
 
3.4 Conclusions 

Compared to MDS, Sammon’s NLM can efficiently handle non-linear 
manifolds, at least if they are not heavily doped. As a main drawback, NLM lacks the 
ability to generalize the mapping to new points. Another shortcoming of NLM is its 
optimization procedure, which may be slow or inefficient for some data sets. Thus, 
comparative analysis of Sammon’s NLM and CCA shows that CCA is much more 
flexible because the user can choose and parameterize the weighting function. From a 
computational point of view, the optimization procedure of CCA works much better 
than the quasi-Newton rule of NLM. On the other hand, the interpretation of CCA 
error criteria is difficult, since weighing function is changing when CCA is running. 
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Chapter-4 
Graph Based Techniques and their Extension  
 
 

The graph based techniques have been used extensively for non-linear 
dimensionality reduction. In this chapter, graph-based techniques namely Isomap, 
Maximum Variance Unfolding, Local linear Embedding and Laplacian Eigenmaps 
have been reviewed and compared for manifold learning. These techniques are 
efficient at visualizing artificial data sets and powerful to provide geometrical 
information of data. However, these are unsupervised technique, so fails to identity 
inter or intraclass types of neighborhoods and unable to provide discriminatory 
information. To address these issues, constraint Isomap is proposed that provides 
geometrical as well as discriminatory information of data. 
 
4.1 Introduction 

In contrast to the traditional linear techniques, the non-linear techniques have 
ability to deal with complex non-linear data. For real world data, the non-linear 
dimensionality reduction techniques may offer an advantage, because real world data 
is likely to form a highly non-linear manifold. Previous studies have shown that non-
linear techniques outperform their linear counter parts on complex artificial tasks. For 
instance, the swiss roll dataset comprises a set of points that lie on a spiral like two-
dimensional manifold that is embedded within a three-dimensional space. A vast 
number of non-linear techniques are perfectly able to find this embedding, whereas 
linear techniques fail to do so.  

Motivated by the lack of a systematic comparison of graph based dimensionality 
reduction techniques, this chapter presents a comparative study of the most important 
graph based dimensionality reduction techniques: Isomap, Maximum Variance 
Unfolding, Locally Linear Embedding, and Laplacian Eigenmaps. Though capable of 
revealing highly non-linear structure, graph-based techniques for manifold learning 
are based on highly tractable polynomial time optimizations such as shortest path 



40 
 

problems, least squares fits, semidefinite programming, and matrix diagonalization. In 
[35, 36], S-Isomap and SLLE has been proposed by inclusion of class label. In this 
work, pairwise Cannot-Link (CL) and Must-Link (ML) constraints [38] induced from 
the neighborhood graph into the Isomap are incorporated to guide the discriminant 
manifold learning. More importantly, pairwise constraints sets are flexible in 
regulating the supervised information.  

The chapter is organized as follows: Section 4.2 describes the theoretical 
characteristics and algorithms of the graph based techniques for dimensionality 
reduction. Section 4.3 describes the constraint Isomap as an extension of graph based 
techniques for non-linear dimensionality reduction. Section 4.4 discusses the results of 
experiments of all described techniques on artificially generated dataset and real face 
datasets. Moreover, it identifies weaknesses and points of improvement of the 
mentioned non-linear techniques. Finally, conclusions are drawn in Section 4.5. 
 
4.2   Graph Based Techniques  

The non-linear dimensionality reduction techniques find meaningful hidden low 
dimensional structure in high dimensional space. If the data is confined to a low 
dimensional subspace, then simple linear methods can be used to discover the 
subspace and estimate its dimensionality. More generally, though, if the data lies on 
or near a low dimensional submanifold, then its structure may be highly non-linear, 
and linear techniques are bound to fail. Graph based techniques have recently emerged 
as a powerful tool for non-linear dimensionality reduction and manifold learning. 
These techniques are able to reveal low dimensional structure in high dimensional 
data from the top or bottom eigenvectors of specially constructed matrices. To 
analyze data that lies on a low dimensional submanifold, the matrices are constructed 
from sparse weighted graphs whose vertices represent input patterns and whose edges 
indicate neighborhood relations. This section provides the review of four such graph 
based learning algorithms Isomap, Maximum Variance Unfolding, Local Linear 
Embedding, and Laplacian Eigenmaps for non-linear dimensionality reduction. 
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4.2.1 Local Linear Embedding  
In Local Linear Embedding (LLE), the local properties of the data manifold are 

constructed by writing the high-dimensional data points as a linear combination of 
their nearest neighbors [22].  

 
4.2.1.1 Algorithm: LLE  
The input X is a matrix  

{ , ,....... },1 2X X X XN= Where Xi DR∈   
Where D is the number of dimensions of the input data 
The output Y is a matrix 
 1 2{ , ,....... },NY Y Y Y= Where Y d

i R∈   and d << D 
Where d is the number of dimensions of the output data. 
 
 

 
 

Figure 4.1 Pictorial Representation of LLE 
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 For each vector Xi , following three steps has to be repeated: 
Step 1: Find K nearest neighbors  { , ,....... },1 2Xi X Xi iN  per data point using 
Euclidean distance as shown in Figure 4.1. 
Step 2: It is assumed that the manifold is well sampled, i.e., there are enough data and  
each data point and its nearest neighbors lie on or close to a locally linear patch of the 
manifold. The Xi  can be approximated by a linear combination of its neighbors. The 
weight matrix W has to be found between pair of neighbors using (4.1). 
 

{ 1,2,..., ; 1,2,..., },,W W i N j Kij= = =                            (4.1)    
That minimizes cost function given as follows: 

2
( )

1 1
X Xi ij

N kε W Wiji j
= −∑ ∑

= =
                                 (4.2)  

Under the conditions: 1
1

k Wijj
=∑

=
and 0Wij =   if Xj  is not the neighbor ofXi . 

Step 3: Find d-dimension embedding vector using weights, which minimizes the cost 
function given as follows: 

  
2

Φ( )
1 1
Y Yi j

N kY Wiji j
= −∑ ∑

= =
                                                                                (4.3) 

 By creating sparse matrix M given by (4.4), compute the bottom q+1 eigen vectors of 
M. 

(1 ) '*(1 )M W W= + +                                                                                   (4.4) 
The bottom q+1 eigen vectors are reduced dimensions of input, which contain almost 
all the important information. 

LLE attempts to preserve solely local properties of the data. As a result, LLE is 
less sensitive to short-circuiting than Isomap, because only a small number of local 
properties are affected if short-circuiting occurs. Furthermore, the preservation of 
local properties allows for successful embedding of non-convex manifolds. However, 
LLE is reported to fail in the visualization of even simple synthetic biomedical 
datasets. LLE performs worse than Isomap in the derivation of perceptual motor 
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actions. A possible explanation lies in the difficulties that LLE has when confronted 
with manifolds that contain holes. In addition, LLE tends to collapse large portions of 
the data very close together in the low-dimensional space, because the covariance 
constraint on the solution is too simple [25]. Also, the covariance constraint may give 
rise to undesired rescaling of the data manifold in the embedding.  
 
4.2.2 Laplacian Eigenmaps  

Similar to LLE, Laplacian Eigenmaps (LE) finds a low-dimensional data 
representation by preserving local properties of the manifold [26].  

 

 
Figure 4.2 Pictorial representation of LE 

 
LE computes a low-dimensional representation of the data, in which the 

distances between a data point and its k nearest neighbors are minimized as shown in 
Figure 4.2. This is done in a weighted manner, i.e., the distance in the low-
dimensional data representation between a data point and its first nearest neighbor 
contributes more to the cost function than the distance between the data point and its 
second nearest neighbor. Using spectral graph theory, the minimization of the cost 
function is defined as an eigen problem. 
 
4.2.2.1 Algorithm: LE 
The LE algorithm can be described as follows: 
Step 1: It constructs a neighborhood graph, in which every data point xi  is connected 
to its k nearest neighbors.  



44 
 

Step 2: For all points xi  and x j  in graph that are connected by an edge, the weight of 
the edge is computed using the Gaussian kernel function defined by (4.5), which leads 
to a sparse adjacency matrix W. 
 

 

2

22

x xi j
σijw e

− −
   =    

                (4.5) 

Step 3: In the computation of the low-dimensional representations, the cost function 
that is minimized is given asfollows:  
 

2Φ( )Y y yi j wijij
= −∑                 (4.6) 

In the cost function, large weights wij  correspond to small distances between 

the high-dimensional data points xi  and x j . Hence, the difference between their low-
dimensional representations yi  and y j  highly contributes to the cost function. As a 
consequence, nearby points in the high-dimensional space are put as close together as 
possible in the low-dimensional representation. 

The computation of the degree matrix M and the graph Laplacian L of the graph 
W allows for formulating the minimization problem in (4.6) as an eigen problem 
[117]. The degree matrix M of W is a diagonal matrix, of which the entries are the 
row sums of W (i.e., jij ijm w∑= ). The graph Laplacian L is computed by L = M−W. 
It can be shown that the following holds. 

2Φ( ) 2 TY y y Y LYi j wijij
= − =∑                            (4.7) 

Hence, minimizing Φ( )Y  is proportional to minimizing TY LY subject to 
TY MY=In , a covariance constraint that is similar to that of LLE. The low-

dimensional data representation can thus be found by solving the generalized eigen 
value problem for the d smallest nonzero eigen values using (4.8).  
Lv = Mvλ                                                                                                                 (4.8) 
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The d eigenvectors v i corresponding to the smallest nonzero eigen values form the 
low dimensional data representation Y. 

Laplacian eigenmaps suffers from many of the same weaknesses as LLE, such 
as the presence of a trivial solution that is prevented from being selected by a 
covariance constraint. Despite these weaknesses, Laplacian eigenmaps has been 
successfully applied to face recognition and the analysis of functional magnetic 
resonance imaging (fMRI) data. In addition, variants of Laplacian eigenmaps may be 
applied to supervised or semi-supervised learning problems.  
 
4.2.3   Maximum Variance Unfolding  

Maximum Variance Unfolding (MVU), formerly known as Semidefinite 
Embedding learns the kernel matrix by defining a neighborhood graph on the data and 
retaining pairwise distances in the resulting graph [21]. MVU explicitly attempts to 
unfold the data manifold by maximizing the Euclidean distances between the data 
points, under the constraint that the distances in the neighborhood graph are left 
unchanged as shown in Figure 4.3. The resulting optimization problem can be solved 
using semidefinite programming (SDP).  

 

 
Figure 4.3 Pictorial representation of MVU 
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4.2.3.1 Algorithm: MVU 
Step 1: MVU starts with the construction of a neighborhood graph G, in which each 
data point xi  is connected to its k nearest neighbors ijx  (j = 1, 2, . . . , k).  
Step 2: Subsequently, MVU attempts to maximize the sum of the squared Euclidean 
distances between all data points, under the constraint that the distances inside the 
neighborhood graph G are preserved. In other words, MVU performs the following 
optimization problem.  

Maximize  2
,

y yi ji j
−∑  subject to (4.9),  

2 2
,

y y x xi j i ji j
− = −∑   for ( , )i j G∀ ∈                   (4.9) 

Step 3: MVU reformulates the optimization problem as a SDP [41] by defining the 
kernel matrix K as the outer product of the low-dimensional data representation Y. 
The optimization problem then reduces to the following SDP, which learns the kernel 
matrix K.  
Maximize trace (K) subject to (4.10), (4.11), and (4.12), 

2
2 x xi jk k kij jj ij+ − = −   for  ( , )i j G∀ ∈                             (4.10) 

0,,
ki ji j

=∑                 (4.11) 

0k �                                          (4.12) 

The low-dimensional data representation Y is obtained by performing an eigen 
decomposition of the kernel matrix K that is constructed by solving the SDP. MVU 
has a weakness that short circuiting may impair the performance of MVU, because it 
adds constraints to the optimization problem that prevent successful unfolding of the 
manifold. Despite this weakness, MVU is successfully applied to sensor localization 
and DNA microarray data analysis. 
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4.2.4 Isomap  
Classical scaling has proven to be successful in many applications, but it suffers 

from the fact that it mainly aims to retain pairwise Euclidean distances, and does not 
take into account the distribution of the neighboring data points.  

 

 
 

Figure 4.4 Illustrations of Geodesic and Euclidean Distance 
 

If the high-dimensional data lies on or near a curved manifold, such as in the 
swiss roll dataset, classical scaling might consider two data points as near points, 
whereas their distance over the manifold is much larger than the typical inter point 
distance as shown in Figure 4.4.  

Isomap [14] is a technique that resolves this problem by attempting to preserve 
pairwise Geodesic (or curvilinear) distances between data points. The Geodesic 
between two points is defined as the shortest curve on the manifold connecting the 
two points. These techniques are efficient at visualizing data sets and are powerful to 
handle non-linear data. Overall, it is observed that Isomap find coordinates on lower 
dimensional manifold that best preserve Geodesic distances instead of Euclidean 
distances. In Isomap, the Geodesic distances between the data points are computed by 
constructing a neighborhood graph, in which every data point is connected with its k 
nearest neighbors in the dataset. The shortest path between two points in the graph 
forms an estimate of the Geodesic distance between these two points and can easily be 
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computed using Floyd’s or Dijkstra’s shortest-path algorithm [74, 88]. The Geodesic 
distances between all data points are computed, thereby forming a pairwise Geodesic 
distance matrix. The low-dimensional representations are computed by applying 
classical scaling on the resulting pairwise Geodesic distance matrix. 
 
4.2.4.1 Algorithm: Isomap  
Isomap algorithm can be described in three steps as follows: 
Step 1: Neighbors of each point are determined.  
 

  
                           (a)                                         (b)          (c) 
 
 Figure 4.5(a) Neighbors with ε radius approach (b) Neighbors with k-nearest 
neighborhood approach (c) edges of weight dX (i.j) between neighboring points 
 

The neighbors are chosen as points, which are within the ε distance or using k-
nearest neighbor approach as shown in Figure 4.5 (a) and (b) respectively. These 
neighborhood relations are represented as a weighted graph over the data points as 
shown in Figure 4.5(c).  

For selecting the neighborhood points, two techniques such as ε-radius and k-
neighborhood are used. In ε -radius method, radius is fixed and all the data points, 
which are coming under this radius are considered as a neighborhood points. While in 
k-neighborhood method, number for k is fixed like 4-5 and k-number of data points 
which are nearest to the selected data points is considered as a neighborhood points 
for the selected data point.  

After selecting the neighborhood point, next task is to assign weight to the 
edges, which are connecting the neighborhood data points. The edge weight in this 
case is equal to the Euclidean distance between the data points, which is illustrated in 
Figure 4.5 (c).  
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Step 2: Isomap estimates the Geodesic distances between all pairs of points on the 
manifold by computing their shortest path distance in the graph.  
 

 
 

Figure 4.6 Dijkstra algorithm 
 

The shortest path can be found by using Dijkstra algorithm as shown in Figure 
4.6. If i and j are nearest neighbors then relations are represented as (4.13). If pair of 
points is not nearest neighbors the relations are represented as (4.14). 

 

( ) ( ), ,G xd i j d i j= ,     Neighboring i, j                                         (4.13) 

( ),Gd i j = ∞                   Otherwise              (4.14) 

Using shortest path algorithm, main task is to assign some finite values to all the 
edges of the graph. It can be done as follows: 
 

1,2,...,for k N=  
( ) ( ) ( ) ( ){ }, min , , , ,G x x xd i j d i j d i k d k j= +              (4.15) 

Step 3: The final step applies classical MDS to the matrix of graph distances 
constructing an embedding of the data in a d-dimensional Euclidean space that best 
preserves the manifold’s estimated intrinsic geometry. The coordinate vectors are 
chosen to minimize the cost function as given below: 

2( )G Y(D ) D LE τ τ= −                  (4.16) 



50 
 

Where ( , )Y i jD i j y y= −   

( , ) ( , )G GD i j d i j= and 

.21 1 1
2( ) ( ) ( )N ND I D Iτ −

= − −  

where YD , denotes the matrix of Euclidean distance in the embedded space and 
( )YDτ , is the corresponding Euclidean inner product matrix. ( )GDτ  is the shortest 
path inner product matrix. In a least square sense, Isomap expects TY Y to be close 
to ( )GDτ . The τ  operator converts distances to inner products, which uniquely 
characterize the geometry of the data in a form that supports efficient optimization. 
The global minimum of (4.16) is achieved by setting the coordinates yi  to the top d 
eigenvectors of the matrix ( )GDτ . The true dimensionality of the data can be 
estimated from the decrease in error as the dimensionality of Y is increased.  

An important weakness of the Isomap algorithm is its topological instability 
[15]. Isomap may construct erroneous connections in the neighborhood graph. Such 
short circuiting [16] can severely impair the performance of Isomap. Several 
approaches have been proposed to overcome the problem of short circuiting by 
removing datapoints with large total flows in the shortest path algorithm [74, 88] or 
by removing nearest neighbors that violate local linearity of the neighborhood graph 
[75]. A second weakness is that Isomap may suffer from hole in the manifold. This 
problem can be dealt with by tearing manifolds with holes [16]. A third weakness of 
Isomap is that it can fail if the manifold is non-convex [14]. Despite these three 
weaknesses, Isomap is successfully applied on tasks such as wood inspection, 
visualization of biomedical data, and head pose estimation. 

Graph based techniques are efficient at visualizing artificial data sets and 
powerful to handle non-linear data. However, these are unsupervised method, so 
cannot make use of any supervised prior information for discrimination. Also, they 
fails to identity inter or intraclass types of neighborhoods and unable to handle 
multiple class real problems. To address these issues constraint Isomap is proposed 
that is described in the next section. 
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4.3 Extension of Graph Based Techniques  
In this section, constrained Isomap is proposed for visualization and non-linear 

dimensionality reduction. It considers both discriminant information and geometrical 
information of data. Here, pairwise constraints (PCs) are proposed that can provide 
more supervision information compared with the class labels. 
 
4.3.1 Constraint Isomap 

The constraint Isomap for manifold learning is proposed that is based on 
constraint margin maximization [CMM] criteria [38]. The pairwise CL and ML 
constraints are used to specify the types of neighborhoods. ML constraint helps in 
increasing the compactness of neighboring pairs while high separation between inter 
classes is achieved through CL constraint. In this way, interclass dissimilarity and 
intraclass compactness is introduced. Constraint Isomap computes the shortest path 
distances over constrained neighborhood graphs and guides the non-linear 
dimensionality reduction through separating the interclass neighbors. As a result, 
large margins between both inter and intraclass clusters are delivered and enhanced 
compactness of intra cluster points is achieved at the same time. Since this technique 
integrates the pairwise constraints and exhibits large margins between different 
clusters, it is referred as constrained Isomap.  
Let 1 2[ , ,..., ]NX x x x= is the data set and { }( ) 1, 2,3,..., ,il x C∈  where 1,2,3,...,i N= are 
the class labels. 

With the help of k nearest neighbor search, neighbor of each point are 
determined based on Euclidean distance between the points.  
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Figure 4.7 ML and CL constraints sets for constraint Isomap 
 

Figure 4.7 shows the ML and CL constraints set for constraint Isomap that can be 
defined as follows: 
 { }( , ) ( , ) 1, , , ( ) ( )ML i j i j i j j is x x e x x v V v V l x l x= = ∈ ∈ =                                            (4.17) 

{ }( , ) ( , ) 1, , , ( ) ( )CL i j i j i j j is x x e x x v V v V l x l x= = − ∈ ∈ ≠              (4.18) 

The weights { }0,1, 1∈ − to the edge ( , )i je x x E∈  linking ix  and jx are defined as 
follows: 
( , ) 1i je x x = , if i and j are neighbors and belong to same class 
( , ) 1i je x x = − , if i and j are neighbors and belong to different class 
( , ) 0i je x x = , if i and j are not neighbors 
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Figure 4.8 Graphical representations of proposed Constraint Isomap criteria 
 
In this technique, graph is divided into two separate graphs according to the 

weight of the edge. ML-constraint graph is constructed by removing edges with 
negative weights and CL-constraint graph by removing edges with positive weights. 
From Figure 4.7, it can be seen that when negative edges are removed from the graph 
G, ML constrained neighborhood graph MLG  is constructed. Similarly when positive 
edges are removed from the graph G, CL constrained neighborhood graph CLG  is 
constructed. Figure 4.8 clearly shows that constraint Isomap creates margin between 
two different clusters. For efficient dimensionality reduction and feature extraction, it 
is desired that the compactness of neighboring pairs constrained by ML can be 
enhance, while high separation between neighboring pairs constrained by CL can be 
achieved. Cluster is defined as a set of data points consisting of similar data, which 
belong to same class. Figure 4.8 shows two clusters of two different class i.e. class1 
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and class 2. Data of same class are compacted and data of different class are separated 
by applying concept of constraint Isomap. 
 

4.3.3.1 Algorithm: Constraint Isomap  
Constraint Isomap algorithm can be described in three steps as follows: 

 

Step 1: Neighbors of each point are determined. The neighbors are chosen as points, 
which are within the ε distance or using k-nearest neighbor approach as shown in 
Figure 4.5(a) and (b) respectively. Accordingly the ML and CL constraint set can be 
computed and constraint neighborhood graphs MLG and CLG are constructed, 

The weights ( , )MLX i j i jd x x x x= −  and ( , )CLX i j i jd x x x x= − are set on the edges of 

the graph MLG and CLG  where ( , )MLX i jd x x is the Euclidean distance between two 

points in Must-Link constraint graph and ( , )CLX i jd x x is the Euclidean distance 
between two neighboring points in cannot-Link constraint graph.    
 

Step 2: In step 2 like Isomap, the Geodesic distances ( , )MLM i jd x x and ( , )CLM i jd x x       
between all pairs of constraint points on the manifold are estimated or two 
independent graphs MLG and CLG  respectively. For ML-graph, goal is to increase the 
compactness between the points. It can be done by normalizing edge weight.  
 

( )( , ) ( , ) ( , ) max( )MLML ML MLX i j X i j X i j Xd x x to d x x d x x d=�                                       (4.19) 

Where ( )ML
Xd is the largest value of edge weight in ( , )MLX i jd x x . 

By doing so compactness between the points are increased for ML-constraint graph. 
Step 3: Constraint Isomap uses the trace ratio optimization [39] to the matrices 

{ ( , )} { ( , )}ML ML CL CLG G i j G G i jD d x x and D d x x= =� for computing the embedding of the 
original samples in a reduced d-dimensional Euclidean space. Isomap seeks the matrix 
( )YDτ over all points to be as close to ( )GDτ as possible. As a result, for some 
complex distributed real data sets, the interclass neighbors are likely to be 
congregated in the reduced output space. Unlike Isomap, to deliver large margins for 
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interclass discrimination, constraint Isomap handles the ML and CL constrained 
points independently. For the ML constraint set, constraint Isomap optimizes the 
following criterion. 

2
( , )

( ) min ( , ) ( , )ML MLML G i j Y i jY x x MLi j
J Y d x x d y y

∈

= −∑                        (4.20) 

For CL constraint graph, the goal is to maximize the distance between the two points. 
It can be explained mathematically as follows:  

2
( , )

( ) max ( , ) ( , )CL CLCL G i j Y i jY x x CLi j
J Y d x x d y y

∈

= −∑            (4.21) 

From the concept of MDS, (4.20) and (4.21) can be rewritten as follows: 
 

2

( , )
min ( , ) ( , ) max ( )M L M L ML Ti j i j GYGx x MLY i j

d x x d y y Y D Y
∈

− = Γ∑          (4.22) 

Similarly, 
   

2

( , )
max ( , ) ( , ) min ( )CL CL CL Ti j i j GYGx x CLY i j

d x x d y y Y D Y
∈

− = Γ∑           (4.23) 

To implement constraint Isomap, both (4.22) and (4.23) have been implemented using 
the concept of Trace Ratio Optimization given as follows: 
 

* ( )max
( )

ML TG
CL TTYY I G

trY D YY
trY D Y
τ

τ=

=                         (4.24) 

Subject to constraint TYY  = I.  
Trace Ratio Optimization tries to maximize the ratio of two traces. In this ratio, 

numerator represent in between scatter, which measures how well the classes are 
separated in the projected space. The denominator part represents the within scatter, 
which measure how well the intraclass points are closed. Thus, the entire concept of 
constraint Isomap works on reducing the distance between intraclass point and at the 
same time increasing the distance between interclass points.  
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4.4 Results 
All the graph based techniques are implemented on artificial generated datasets. 

The artificial datasets on which the algorithms are implemented are swiss roll, helix 
and twin peaks dataset. The datasets are specifically selected to investigate how the 
dimensionality reduction techniques deal with data that lies on a low dimensional 
manifold that is isometric to Euclidean space and data lying on a low dimensional 
manifold that is not isometric to Euclidean space. 

  
 

Figure 4.9 Artificially generated datasets (a) Swiss Roll (b) Helix (c) Twinpeak 
 

Table 4.1: Parameter values for the experiments 
Technique Parameter settings 
Isomap 5 ≤ k ≥ 15 
MVU   5 ≤ k ≥ 15 
LLE    5 ≤ k ≥ 15 
Laplacian eigenmaps 5 ≤ k ≥ 15  σ =1 

 
Figure 4.9 shows artificial generated datasets. All artificial datasets consist of 

5,000 samples. The experiments are run for all parameter settings listed in Table 4.1. 
The parameter k is the nearest neighbors of data point and σ is the bandwidth in LE. 
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Figure 4.10 Results of dimensionality reduction techniques on Swiss roll dataset 
(a) Swiss roll (b) Isomap (c) MVU (d) LLE (e) LE 

 
Figure 4.11 Results of dimensionality reduction techniques on helix dataset (a) 
helix (b) Isomap (c) MVU (d) LLE (e) LE 
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Figure 4.12 Results of dimensionality reduction techniques on twinpeak dataset 
(a) twinpeak (b) Isomap (c) MVU (d) LLE (e) LE 
 

Figures 4.10, 4.11 and 4.12 show the results of graph based non-linear 
dimensionality reduction techniques on swiss roll, helix and twinpeak datasets. The 
results reveal the strong performance of dimensionality reduction techniques based on 
neighborhood graphs (Isomap, MVU, LLE, and LE). The performance of LLE on the 
helix dataset is notably worse than its performance on the swiss roll dataset. The other 
techniques based on neighborhood graphs (Isomap, MVU, and LE) perform strong on 
the helix dataset, despite the non-isometric nature of the dataset. 

 
Table 4.2 Computational and memory complexity 

Technique  Parameters Computational  Memory 
Isomap k O(n3) O(n2) 
MVU k O((nk) 3) O((nk) 3) 
LLE σ, k O(pn2) O(pn2) 
Laplacian eigenmaps k O(pn2) O(pn2) 

   
In Table 4.2, the four dimensionality reduction techniques are listed by three 

general properties: (1) the main free parameters that have to be optimized, (2) the 
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computational complexity of the main computational part of the technique, and (3) the 
memory complexity of the technique.  

  For property 1, Table 4.2 shows that the objective functions of most of the 
non-linear dimensionality reduction techniques have free parameters that need to be 
optimized. Moreover, LLE uses a regularization parameter in the computation of the 
reconstruction weights. The presence of free parameters has both advantages and 
disadvantages. The main advantage of the presence of free parameters is that they 
provide more flexibility to the technique, whereas their main disadvantage is that they 
need to be tuned to optimize the performance of the dimensionality reduction 
technique.  

  For properties 2 and 3, Table 4.4 provides insight into the computational and 
memory complexities of the techniques. The computational complexity of a 
dimensionality reduction technique is determined by (1) properties of the dataset such 
as the number of data points n and their dimensionality D, and (2) by parameters of 
the techniques, such as the target dimensionality d and the number of nearest 
neighbors k. Isomap performs an eigen analysis of an n × n matrix using a power 
method in O(n3). Because these full spectral techniques store a full n × n kernel 
matrix, the memory complexity of these techniques is O(n2).  

In addition to this, MVU solves a SDP with nk constraints. Both the 
computational and the memory complexity of solving an SDP are cube in the number 
of constraints. Since there are nk constraints, the computational and memory 
complexity of the main part of MVU is O((nk)3).  

 Sparse spectral techniques (LLE and Laplacian eigenmaps) perform an eigen 
analysis of an n × n matrix. However, for these techniques the n × n matrix is sparse, 
which is beneficial, because it lowers the computational complexity of the eigen 
analysis. Eigen analysis of a sparse matrix has computational complexity O(pn2), 
where p is the ratio of nonzero elements in the sparse matrix to the total number of 
elements. The memory complexity is O(pn2) as well.  

The above analysis provides some insight into the differences between Isomap, 
MVU, Laplacian eigenmaps, and LLE. The metrics induced by Isomap and MVU are 
related to Geodesic and local distances, respectively, on the submanifold, from which 
the input patterns are sampled. On the other hand, the metric induced by the graph 
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Laplacian is related to the commute times involve all the connecting paths between 
two nodes on a graph, not just the shortest one. The kernel matrix induced by LLE is 
roughly analogous to the square of the kernel matrix induced by the graph Laplacian.  

The effectiveness of the constraint Isomap is tested on real databases from 
Olivetti and Oracle Research Laboratory (ORL), Brendan, Aleix Martinez and Robert 
Benavente (AR) databases [96-98]. The ORL database contains 400 face images of 40 
persons. The images are captured at different time and have different variations 
including facial expressions (open/closed eyes, smiling/ not smiling), and facial 
details (glasses/ no glasses) against a dark homogenous background. The face images 
of 40 persons have been used that created 40 class problem. The AR database 
contains 116 face images, 26 images are available for each person. The AR database 
is captured with different expressions, illumination conditions and occlusions (scarf 
and sunglasses). In the AR database, besides the lighting from the left and the right, 
lighting from both sides of each face is also adopted. The Brendan’s faces database is 
represented by 1965 face images taken from sequential frames of small video. 
 

 
              (a) 
 

       
(b) 
 

     
(c) 

 
Figure 4.13 Sample facial expressions from (a) ORL database (b) AR database 
(c) Brendan database 
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The images constitute various poses and expressions (neutral, smiling, laughter, 
sad, anger and surprise) of Brendan’s faces. Sample face images from the ORL 
database, AR database and Brendan’s database are displayed in Figure 4.13 (a), (b) 
and (c) respectively.  

 

  
(a) 

  

 
(b) 

 

                                            (c) 
 

Figure 4.14 Result of 2-D embedding of (a) ORL face database (b) AR face 
database (c) Brendan face database   
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The 2-D embedding of ORL face images and AR face images are shown in 
Figure 4.14 (a) and (b) respectively, where each point corresponds to a face. From 
Figure 4.14 (a) and (b), it is observed that the face images of same person are grouped 
together and of different persons are separated from each other. At the same time, 
different face expressions of a person are separated from each other and similar ones 
grouped together. Similarly, the 2-D embedding of Brendan’s face database is shown 
in Figure 4.14 (c), where each point corresponds to a face and it is observed that the 
different face expressions are separated from each other and similar ones grouped 
together. 

Constraint-Isomap highlights the natural clusters of the faces and show separate 
clusters between dissimilar faces. They make similar face of the same individual lie in 
the vicinity of the face image space and make dissimilar faces from different 
individuals appear far away in their reduced embedding spaces. Compared with the 
other techniques, constraint-Isomap increases the margins between images of different 
persons and at the same time enhanced compactness between similar face images of a 
person. 

The k means algorithm has been applied to the embedded data for computing 
clustering accuracy. Here, k is set to 20 for each method. The constraint Isomap is 
compared with LLE, Laplacian and Isomap algorithms. 

 
Table 4.3 Clustering accuracy of ORL database 
Techniques Clustering accuracy (%) 
LLE 62 
LE 64 
Isomap 58 
Constraint Isomap  81 

 
 

Table 4.4 Clustering accuracy of AR Database 
Techniques Clustering accuracy (%) 
LLE 61 
LE 64 
Isomap 52 
Constraint Isomap  79 
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Table 4.5 Clustering accuracy of Bredan’s Database 
Techniques Clustering accuracy (%) 
LLE 52 
LE 53 
Isomap 48 
Constraint Isomap  75 

 
 
The experimental results of clustering accuracy of ORL, AR and Brendan face 

database are tabulated in Tables 4.3-4.5 respectively. The comparative results clearly 
demonstrate that the constraint Isomap works well to separate faces of different 
persons and gather the faces of same person. Experimental results clearly demonstrate 
that for all the databases, constraint Isomap outperforms other DR techniques for 
clustering accuracy. LLE cannot separate faces of different persons visually, their 
clustering results, which are comparable, are worse in this data set. The results of the 
LLE, Laplacian eigenmaps and Isomap algorithms are comparative with each other in 
all the cases. The clustering performance is greatly improved with constraint-Isomap, 
compared with the other techniques. Isomap is efficient in visualizing synthetic 
dataset but usually delivers unsatisfactory results in real datasets while constraint 
Isomap is powerful for handling multiple-class real problems.  
 
4.5   Conclusions 

Each of the graph based techniques for non-linear dimensionality reduction has 
its own advantages and disadvantages. In several datasets, the correct features could 
only be extracted with the non-linear approaches. However, Isomap is more reliable 
and accurate than LLE. It is less sensitive to the chosen neighborhood size as well as 
to noisy or sparse data. Further, it is usually sufficed with smaller neighborhood sizes, 
which leads to faster calculations. Advantage of MVU is its flexibility to be adapted to 
particular applications as it determines the best kernel from the data. On the other side, 
MVU proves to be drastically slow due to the complexity of SDP step. Although 
Laplacian eigenmaps use a Gaussian kernel function to define local neighborhoods, the 
relationship between their uses of this neighborhood has yet to be explored.  

Isomap is efficient in visualizing synthetic dataset but usually delivers 
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unsatisfactory results in real datasets while maximizing margin constraint Isomap is 
powerful for handling multiple-class real problems. A maximizing margin constraint 
Isomap enhanced both interclass separation and intraclass compaction. Clustering 
results obtained by constraint-Isomap are better than other graph based techniques. 
From the experimental results, it is observed that constraint Isomap is delivering clear 
separation on the manifold embedding of multiple classes.  
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Chapter-5 
Extensions of Local Non-Linear Techniques 

 

 

In this chapter, Conformal Eigenmaps (CE) and Neighborhood Preserving 
Embedding (NPE) have been proposed as extensions of local non-linear techniques. 
Existing non-linear dimensionality reduction techniques, such as LLE and Laplacian 
eigenmaps are not explicitly designed to preserve local features such as angles. In 
proposed CE technique, a low dimensional embedding is constructed that maximally 
preserves angles between nearby data points. The embedding is derived from the 
bottom eigenvectors of LLE by solving an additional problem in semidefinite 
programming (SDP). In second proposed technique, NPE minimizes the cost function 
of a local non-linear technique for dimensionality reduction under the constraint that 
the mapping from the high-dimensional to the low-dimensional data representation is 
linear. The idea is to modify the LLE by introducing a linear transform matrix. The 
effectiveness of the proposed techniques is demonstrated on synthetic datasets. 
Experimental results on several data sets demonstrate the merits of proposed 
techniques.  
 

5.1 Introduction 
In the last decade, a large number of non-linear techniques for dimensionality 

reduction have been proposed [10-13]. In previous chapter, several manifold 
embedding based non-linear techniques such as LLE [22], Isomap [14] and LE [26] 
are discussed. They all utilized local neighborhood relation to learn the global 
structure of non-linear manifolds. But they have quite different motivations and 
objective functions. In contrast to the traditional linear techniques, the non-linear 
techniques have the ability to deal with complex non-linear data. On the other hand, 
such approaches also have several limitations such as the solutions do not yield an 
estimate of the underlying manifold’s dimensionality. The geometric properties 
preserved by these embedding are difficult to characterize and the resulting 
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embeddings sometimes exhibit an unpredictable dependence on data sampling rates 
[99]. Moreover, the original LLE, Isomap and LE cannot deal with the out-of-sample 
problem directly [40]. Out-of-sample problem states that only the low dimensional 
embedding of training samples can be computed but the samples out of the training 
set cannot be calculated at all. Hessian LLE is a variant of LLE that learns isometries, 
or distance-preserving embeddings, with theoretical guarantees of asymptotic 
convergence [31], [41]. Like LLE, however, it does not yield an estimate of the 
underlying manifold’s dimensionality.  

In this work, an extended analysis has been provided to remedy the key 
deficiencies of LLE and LE. It is shown how to construct a more robust, angle-
preserving embedding from the spectral decompositions of these algorithms as well as 
linear approximations to local non-linear techniques. The rest of this chapter is 
organized as follows: Section 5.2 described the proposed techniques, CE and NPE. 
Experimental results are shown in Section 5.3. Finally, conclusions are drawn in 
Section 5.4. 
 
5.2 Extensions of Local Non-Linear Techniques 

The capability of local non-linear techniques to successfully identify complex 
data manifolds has led to the proposal of its several extensions. The original LLE, 
Isomap and LE cannot deal with out of sample problem and cannot preserve local 
feature such as angle. To overcome the limitations of existing techniques, extensions 
of local non-linear techniques have been discussed in this section.  
 

5.2.1 Conformal Eigenmaps 
A conformal mapping is a transformation that preserves the angles between 

neighboring datapoints when reducing the dimensionality of the data. Conformal 
Eigenmaps (CE) are based on the observation that local non-linear techniques for 
dimensionality reduction do not employ information on the geometry of the data 
manifold that is contained in discarded eigenvectors correspond to relatively small 
eigen values. Conformal Eigenmaps initially perform LLE (or alternatively, another 
local non-linear technique for dimensionality reduction) to reduce the high-
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dimensional data D to a dataset of dimensionality m. Conformal Eigenmaps use the 
resulting intermediate solution in order to construct a d-dimensional embedding 
(where d < m < D) that is maximally angle-preserving. 

A conformal map is a low-dimensional embedding where the angles formed by 
three neighboring points in the original high dimensional dataset are equal to the 
angles between those same three points in the embedding. Consider the point xi and 
its neighbors x j  and xk  in d-dimensional space. Also, consider zi , z j and zk  to be 
the images of those points in the final embedding. If the transformation is conformal 
map then the triangle formed by the x points would have to be similar to that formed 
by the z points. In the triangle formed by the x points the expression 
x xi k− represents the length of one side of the triangle while the expression 

z zi k− represents the corresponding side in the embedding. Since, the triangles are 

similar there must exist s i such that: 
 

x x x xx xj k i ji ksi z z z zjz z i k ij k

− −−
= = =

− −−

                                                                   (5.1) 

2 22

2 2 2
x x x xx xj k i ji ksi z z z zjz z i k ij k

− −−
= = =

− −−

                                                (5.2) 

It is usually not possible to find a perfect embedding where all of the triangles 
are exactly similar to each other. Therefore, the goal is to find a set of z coordinates 
such that the triangles are as similar as possible. This leads to the following 
minimization. 

22 2min, ,
z z s x xj i jk kz s j ki

 − − −∑                   (5.3)
     

 

Where xi  represents the initial points and zi  denotes the points in the final 
embedding. Let yi represent the points in the embedding produced by LLE (or LE). 
The yi points represent an intermediate step in the algorithm and so go part of the way 
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to solving for zi . Once LLE has produced, goal of the algorithm becomes a search for 
a transformation matrix L such that z Lyi=  where the zi  value satisfy the 
minimization in (5.3). 

222min
, ,

Ly Ly s x xi k i j kL s j ki
 − − −∑   

               (5.4) 

This should be done for all points xi and with the condition that the points x j and 

xk are the neighbors of xi . 
222min

, ,
η η Ly Ly s x xij ik i k i j kL s i j ki

 − − −∑ ∑   
                         (5.5) 

Where η  is an indicator variable. Its value is 1ηij = , only if x j is neighbor of xi , 

otherwise 0ηij = . The value for si can be calculated via least squares and the initial 
minimization (5.5) can be rewritten as follows: 
Minimize           t       

Such that     
0,
( ) 1,

1 ( ) 0,
( )

P
trace P

RVec P
T tRVec P

=
   

�

�               (5.6)

 

Where TP L L= , t is an unknown scalar, I and R are m2 X m2 matrices, I denote the 

identity matrix, while R depends on{ }, 1
nx yi i i = , but is independent of optimization 

variables P and t. The condition ( ) 1trace P =  is added to avoid the trivial solution 
where P=0. The optimization is an instance of SDP problem over elements of 
unknown matrix P [41]. After solving the SDP, the matrix can be decomposed back 
into TL L  and the final embedding can be found by iz Ly=  for all i. Conformal 
Eigenmaps introduced the interesting idea of using spectral methods like LLE and LE 
to find the low dimensional manifold and further modifying the output to produce a 
conformal map. Another extension of local non-linear dimension reduction technique 
is discussed in the section that follows: 
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5.2.2   Neighborhood Preserving Embedding  
Neighborhood Preserving Embedding (NPE) is the linear approximation to local 

non-linear technique. In contrast to traditional linear techniques such as PCA, local 
non-linear techniques for dimensionality reduction are capable of successful 
identification of complex data manifolds such as swiss roll. This capability is due to 
the cost functions that are minimized by local non-linear dimensionality reduction 
techniques, which aim at preserving local properties of the data manifold. However, 
in many learning settings, the use of a linear technique for dimensionality reduction is 
desired, when an accurate and fast out-of-sample extension is necessary, when data 
has to be transformed back into its original space, or when one wants to visualize the 
transformation that is constructed by the linear dimensionality reduction technique. 
NPE is a technique that aims at combining the benefits of linear and local non-linear 
techniques for dimensionality reduction.  It is done by finding a linear mapping that 
minimizes the cost function of LLE. NPE minimizes the cost function of a local non-
linear technique for dimensionality reduction under the constraint that the mapping 
from the high dimensional to the low dimensional data representation is linear.  

Similar to LLE, NPE starts with the construction of a nearest neighbor graph, in 
which every datapoint is connected to its nearest neighbors. The weights of the edges 
in the graph are computed and subsequently solves the generalized eigen value 
problem. 
Given a set of points { , ,....... },1 2X X X XN= in D� ,  
NPE attempts to seek an optimal transformation matrix P to map high-dimensional 
data X onto a low-dimensional dataY , such that 

TY P X=  
Where 1 2{ , ,....... },NY Y Y Y= in d

� (d << D), in which the local neighborhood structure 
of X can be preserved. 
NPE algorithm can be stated in three steps.  
 

Step 1: Constructing an adjacency graph: Let G denote a graph with m nodes. The ith 
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 node corresponds to the data point X i . There are two ways to construct the adjacency 
graph. 
(i) K nearest neighbors (KNN): Put a directed edge from node i to j if X j  is among 

the K nearest neighbors of X i . 

(ii) ε neighborhood: Put an edge between nodes i and j if ε− ≤x xi j  

The graph constructed by the first technique is a directed graph, while the one 
constructed by the second technique is an undirected graph. In many real world 
applications, it is difficult to choose a good ε. In this work, the KNN method is 
adopted to construct the adjacency graph. When computational complexity is a major 
concern, one may switch to ε neighborhood method.  
Step 2: Computing the weights: In this step, the weights on the edges are computed. 
Let W denote the weight matrix with Wij  having the weight of the edge from node i 
to node j, and 0 if there is no such edge. The weights on the edges can be computed 
by minimizing the following objective function: 

2
min X Xi ijWiji j

−∑ ∑                             (5.7) 

Where 1, 1, 2,...,W j mijj
= =∑ , and weight matrix can easily be obtained by 

minimizing the cost function (5.7).
  Step 3: Computing the projections: In NPE, if data points x in space D� can be 

reconstructed by W, then the corresponding point by iy  in space d
� can be 

reconstructed by W also. Therefore, the mapping transformation matrix P can be 
obtained by solving the following minimization problem: 

2
argmin

1
Y Yi j

k Wopt iji jP

  = −∑ ∑ =  
P                       (5.8) 

( )argmin T Ttr
A

P XMX P  
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Where 1, (1 ) (1 )T T TM W W= = − −P XMX P   
 

Where I represent the n x n identity matrix 
By simple algebraic operations, the minimization problem of (5.8) becomes a 
generalized eigen value problem. 
 

XMX P XX PT Tλ=                   (5.9) 
TY P X=                  (5.10) 

where Y  is a low-dimensional embedding that combines the benefits of linear and 
local non-linear techniques. 
 
5.3 Results 

In this section, results of proposed algorithms are presented for synthetic 
datasets. The datasets are specifically selected to investigate how the dimensionality 
reduction techniques deal with data that lies on a low-dimensional manifold.  

The synthetic datasets, on which the algorithms are implemented are the swiss 
roll, helix, and twin peaks datasets. Figure 5.1 shows plots of these artificially 
generated datasets. All artificial datasets consist of 5,000 samples. The experiments 
are run for parameter k (nearest neighbors of data point) ranges from 5 to 15.  
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Figure 5.1 Artificially generated datasets (a) Swiss Roll (b) Helix (c) Twinpeak  
 
 

 

 
 
Figure 5.2 Results of dimensionality reduction on swiss roll dataset (a) Swiss roll 
(b) Conformal (c) NPE (d) LLE 
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Figure 5.3 Results of dimensionality reduction on Helix dataset (a) Helix (b) 
Conformal (c) NPE (d) LLE 
 

 
 
Figure 5.4: Results of dimensionality reduction on Twinpeaks dataset (a) 
Twinpeaks (b) Conformal (c) NPE (d) LLE 
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Figures 5.2-5.4 show the results of Conformal Map and NPE dimensionality 
reduction techniques on swiss roll, helix, and twinpeak dataset respectively. From the 
results, it is clear that the angle preserving embedding more faithfully preserves the 
shape of the underlying manifold’s boundary. The distance preserving embedding of 
SDE has variance in more dimensions than the angle preserving embedding, 
suggesting that the latter has exploited the extra flexibility of conformal versus 
isometric maps. The semidefinite program in (5.6) mixes all of the bottom 
eigenvectors from LLE to obtain the maximally angle-preserving embedding. 

Conformal transformations cast a new light on older algorithm, such as LLE. 
Viewing these bottom eigenvectors as a partial basis for functions on the data set, it is 
shown how to compute a maximally angle-preserving embedding by solving an 
additional problem in semidefinite programming. At little extra computational cost, 
Conformal Eigenmaps significantly extends the utility of LLE, yielding more faithful 
embeddings as well as a global estimate of the data’s intrinsic dimensionality.  

The proposed NPE is able to search a direction projected, in which 
neighborhood relations are preserved along the curve of the manifold. From Figures 
5.2(c), 5.3(c) and 5.4(c), it is observed that NPE cannot always unfold the manifold as 
LLE. Furthermore, many neighbors are collapsed into a single point in the low 
dimensional space. The reason is that, NPE is a linear transform instead of non-linear 
one like LLE. Nevertheless, the NPE has favorable properties against other linear 
transform methods such as PCA. 

 
Table 5.1 Performance Comparison between LLE, Conformal Map and NPE 

 LLE Conformal Map NPE 
Speed  Fast Slow Very Fast 
Handle Curvature Maybe Yes No 
Handle Noise No Yes No 
Preserve angles No Yes No 

 
 
The LLE, Conformal Map and NPE  techniques are compared based on various 
parameters such as speed, noise, non-convexity, curvature, non-uniform sampling. 
The performance comparison between LLE, Conformal Map and NPE is shown in 
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Table 5.1. First, it is observed that for swissroll dataset, LLE is pretty slow and cannot 
handle this data. For twin peaks, LLE fold up the corners of a plane because it 
introduces curvature to plane. LLE distort mapping the most. For helix dataset, LLE 
cannot recover the circle and noise is added to the helix sampling. 
 
5.4 Conclusions 

CE and NPE are proposed as extension of LLE and LE. In Conformal map, the 
three angles formed by a triangle, consisting of three neighboring points in the high 
dimensional space, is preserved in the lower dimensional embedding. However, the 
effectiveness of conformal mapping is limited by the computational complexity of 
SDP solver. NPE is a linear approximation to LLE. Comparing to the recently 
proposed manifold learning algorithms such as Isomap and LLE, NPE is defined 
everywhere, rather than only on the training data points. NPE is less sensitive to 
outliers than PCA. In general, it is observed that proposed approaches complements 
and extends earlier approaches at very modest extra cost. 
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Chapter 6 
Non-Linear Dimensionality Reduction using 
Fuzzy Lattices  

 
 
Previously discussed techniques are based on the concept that local is linear 

while this work is based on concept of local is non-linear. To detect non linearity, 
relation between the nearest neighborhoods elements of the image have been 
expressed in terms of Gaussian membership functions. All the elements of the image 
are connected with the nearest neighborhood elements with some membership degree 
of the Gaussian functions. It results in the formation of number of fuzzy lattices. The 
lattices have been expressed in the form of Schrödinger equation, to find the kinetic 
energy (KE) used, corresponding to change occurring in the facial activity of a 
person. Finally, the KE embedded in three dimensional spaces is used to distinguish 
non-linear changes during occurrence of various facial activities. Experimental results 
show that proposed technique is effective in recognition of facial expressions as it 
focuses on extracting the non-linear features corresponding to contours of maximum 
energy, which are appearing over various expressions.  

 
6.1 Introduction 

Algorithms such as Isomap [14], MDS [42], LLE [22], GPLVM [43], Laplacian 
[44] and Hessian [45] share a common characteristic. They first include a local 
neighborhood structure on the data and then use this local structure to globally map 
the manifold to a lower dimensional space. Gabor wavelets [46] are trying to extract 
contour structure of face images. They do produce local features, but they suffer from 
the disadvantages of too much computation and very high dimension of feature space. 
Apart from these techniques, LBP as a novel low-cost image descriptor for texture 
classification has also been introduced to the field of facial expression analysis [47, 
48]. LBP can efficiently encode the texture features of micro-pattern information in 
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the face image, which is effective information for both face recognition and facial 
expression recognition applications.  

Another kind of technique to represent faces is to model the appearance changes 
of faces. Holistic spatial analysis including PCA [76], LDA [77], ICA [53] and Gabor 
wavelet [46] analysis have been applied to either the whole-face or specific face 
regions to extract the facial appearance changes while the proposed technique is based 
on detecting non-linear features that correspond to lattices of the maximum energy. It 
is based on extracting the non-linear features corresponding to contours of the face, 
which are appearing due to different expressions. Three fuzzy lattices having 
maximum energy are selected as top three dimensions of the face as they contain most 
of the expression related data. The chapter is organized in the following manner. The 
details of proposed non-linear dimensionality reduction technique using fuzzy lattices 
are described in Section 6.2. The multiclass SVMs used for classification is presented 
in Section 6.3. Section 6.4 describes the simulation results for facial expression 
recognition. Finally, the concluding remarks are given in Section 6.5. 
 
6.2 Proposed Fuzzy Lattice based Technique 

The features of a pattern are significant for the recognition process. The strong 
features of a pattern result in simple classifier design. The proposed technique is 
based on detection of non-linear features corresponding to contours of the face, which 
are appearing due to different expressions.  

 

                             
   

(a)                               (b) 
 

Figure 6.1 (a) Original image of Mahatma Gandhi (b) Sketch of Mahatma 
Gandhi 
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Figure 6.1 (a) shows the original image of Mahatma Gandhi. Figure 6.1 (b) 
shows the sketch of Mahatma Gandhi. From Figure 6.1 (b), it is observed that the face 
of a person can be represented as a sketch with minimum lines corresponding to 
contours of the face, which are appearing due to different expressions. Fuzzy lattice 
based technique is developed to extract these prominent features, which are sufficient 
to recognize a person.  

 
6.2.1 Block Diagram   

The block diagram of the proposed fuzzy lattice based technique for the 
application of facial expression recognition is shown in Figure 6.2. 
 
 

  

 

 
 

Figure 6.2 Block diagram of fuzzy lattice based technique 
 
The Gaussian functions have been used to describe non-linear relation between 

the nearest neighborhood elements of the image. All the elements of the image have 
non-linear relation with the nearest neighborhood elements. It results in the formation 
of number of fuzzy lattices that have been used for feature extraction. The information 
generated due to any change in facial expression represents KE involved 
corresponding to change occurring in the facial expressions. Schrödinger equation is 
an important tool to ascertain the extent of the non-linearity. Thus, analysis of the 
fuzzy lattices to obtain the KE has been carried out using solution of Schrödinger's 
equation. Three fuzzy lattices having the maximum KE are selected for top three 
features (dimensions) of the face image as they contain most of the facial expressions 
related data. The KE value is embedded in three dimensional space and then 
multiclass SVMs have been used to distinguish various facial expressions. The 
mathematical details of the fuzzy lattice based technique for non-linear dimensionality 
reduction are described in the section that follows:  

Fuzzy Lattices 
for features 

Embedding of 
KE 

Multiclass SVMs 
for Classification 

Expression 
Recognition  

    Face Data 

 Gaussian Vector Features Selection 
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6.2.2 Mathematical Analysis 
The proposed non-linear dimensionality reduction technique is based on 

rejecting features not related to facial expressions. 
 

           
 

Figure 6.3 Representation of local non-linear relation 
 
 
 

 
 

Figure 6.4 Gaussian membership functions 
 

 
To capture features of the face that vary due to different expressions, the 

relation between the nearest neighborhood elements of the image is assumed to be 
non-linear as shown in Figure 6.3. The judgment of the feature amount is done by 
membership functions. Here, the Gaussian functions that have been used as fuzzy 



80 
 

membership function to describe non-linear relation between the nearest 
neighborhood elements that can be described as follows: 

 

( )
22( )

jz m i
σ iµ z eij

− −

=                                                            (6.1) 
 

where m and σi  are the mean and variance of the membership function , 1,..., 4µ iij = ; 

1,..., 4j =  and z is the gray level values of elements of the image. Using (6.1), sixteen 
Gaussian functions of different center, width and shape would appear as shown in 
Figure 6.4. If i and j are chosen greater than four than Gaussian functions nearly equal 
to impulse functions, thus not useful to detect non-linear features. All the gray level 
values of the elements belong to the nearest neighborhood elements with some 
membership degree of the Gaussian function. It results in the formation of number of 
fuzzy lattices [78-79] as shown in Figure 6.3. The fuzzy lattices that have been used in 
our approach are described as follows: 

 

( )
22

jz m i
σ iL ed i j

− −

= ∪        For 1,...,d D=                                          (6.2)                   

where D is the number of the fuzzy lattice formed in the image. Whenever any change 
occurs in the pattern of the facial expressions, its lattice deform accordingly. In order 
to select the useful information, the gray level value of the neighboring elements 
should lie in the range of the Gaussian membership functions. It results in the 
formation of number of fuzzy lattices and some isolated elements. The isolated 
elements have been discarded that results in removal of unimportant data. Each fuzzy 
lattice corresponds to dimension (feature) of the image. Three fuzzy lattices of the 
maximum KE are selected as top three dimensions of the image. 

 
 
 
 
 
 
 



81 
 

Let { }: 1,...,S L d Dd= =  be the set of all the existing fuzzy lattices.  

The set S is partitioned as follows: 
 

( ){ }. . :1L Max K E L L Sd dd
= ∈                                             (6.3) 

( ){ }. . \ 12L Max K E S L
d

=                  (6.4) 

( ){ }. . \ 1 23L Max K E S L L
d

= ∪                                                       (6.5) 

Eq. (6.3) shows that the fuzzy lattice of maximum KE is considered as first 
dimension of the image. Eq. (6.4) shows that the fuzzy lattice of maximum KE 
excluding 1L is considered as second dimension of the image. Similarly, (6.5) shows 
that the fuzzy lattice of maximum KE excluding 1L and 2L  is considered as third 
dimension of the image. The information generated due to any change in facial 
activity represents KE. The analysis of the fuzzy lattices to obtain the KE has been 
carried out using solution of the Schrödinger's equation. Therefore, to obtain the non-
linearity corresponding to the particular point, the Schrödinger equation is solved at 
every point of control. The KE is obtained by solving second order differential 
equation (Schrödinger's equation). Differentiating (6.2) with respect to z, (6.6) is 
obtained as follows:  

 

( )
( )

221( )22

jz m i
L j σj iz m eiz σi

− −
∂ − −= −∂                                                                    (6.6) 

( )
2 222 2 2( ) ( 1) ( )2 2 22 2

jz m i
j jL σj j iz m j z m ei iz σ σi i
    

− −
− −∂ − −= − + − −

∂
                       (6.7)    

                                                        
Similarly, the lattices formation occur in x and y directions where x and y 

denote spatial coordinate of the image. The lattice in x direction can be represented by 
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replacing z with x in (6.2). After replacing z with x in (6.2), 
2
2
L

x
∂
∂

 can be obtained as 

follows: 
( )

2 222 2 2( ) ( 1) ( )2 2 22 2

jx m i
j jL σj j ix m j x m ei ix σ σi i
    

− −
− −∂ − −= − + − −

∂
                        (6.8)  

 

Similarly, the lattice in y direction can be represented by replacing z with y in (6.2). 

After replacing z with y in (6.2), 
2

2
L

y
∂
∂

 can be obtained as follows: 

( )
2 222 2 2( ) ( 1) ( )2 2 22 2

jy m i
j jL σj j iy m j y m ei iy σ σi i
    

− −
− −∂ − −= − + − −

∂
                    (6.9) 

 

The KE in x, y and z directions are computed separately using (6.7), (6.8) and (6.9) 
respectively. Finally, the embedding of KE computed in x, y and z direction is 
obtained as follows: 

 

2 2 2
2 2 2 L KE
x y z

    
∂ ∂ ∂+ + =
∂ ∂ ∂

                                                        (6.10)    

where x, y and z are three orthogonal dimensions of the energy space. The value of 
embedded kinetic energy is then fed to Multiclass SVMs for facial expression 
classification. The steps of whole process have been described in algorithm given as 
follows: 

 
6.2.3 Algorithm  

Step 1: Read in grayscale face images 
Step 2: Creation of non-linear associative membership sets using (6.1) 
Step 3: Fuzzy Lattice formation using non-linear membership function applied on the 
face images using (6.2) 
Step 4: Dividing top three dimensions into three orthogonal components 
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Step 5: Computing KE of lattices in x, y and z directions separately using (6.7), (6.8) 
and (6.9) 
Step 6: Embedding of the extracted KE parameter in three dimensional space using 
(6.10) 
Step 7: Multiclass SVMs for expression classification 

In this section fuzzy lattices formation and computation of their energy have 
been described. Then three lattices of highest energy are selected as top three features. 
In next section, multiclass SVMs is described to distinguish various facial 
expressions. 
 
6.3 Classification using Multiclass SVMs 

The basic description of support vector machines (SVMs) can be phrased as a 
two class classification problem where data points are mapped into a high 
dimensional hyperspace so that they can be separated by a hyper plane [54]. A margin 
exists on each side of the hyper plane, which is distanced to the nearest set of data 
points of each class. A high margin indicates good separation and good 
generalization. The data points that sit on the margin are known as support vectors. 

For facial expressions classification, the embedded KE vectors , 1,...,g j Nj =  
are used as input to the SVMs system. All the classes are considered for the 
experiments, each one representing one of the basic facial expressions. The output of 
the SVMs system is a label that classifies the embedded KE under examination to one 
of the basic facial expressions. 

The training data ( , ),..., ( , )1 1 1g l g lN , where Lg j ∈ℜ , are the KE vectors and 

{ }1,...,6l j ∈ , are the facial expression labels of the embedded KE. The training data 
are the facial expression labels of the embedded KE value. The multiclass SVMs 
problem solves only one optimization problem [55]. It constructs basic facial 
expressions rules, where the kth  function ( )wT g bk j kφ +  separates training vectors of 
the class k from the rest of the vectors, by minimizing the objective function: 
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61min
2 1 1

w w
w,b,ξ

NT kC ξk k jk j k l j
+∑ ∑ ∑

= = ≠
                (6.11) 

Subject to the constraints 

( ) ( ) 2

                ,      j=1,...,N,    k{1,...,6}\l                    

w wT T kg b g bj l k j k jl jj
k oj j

φ + ≥ φ + + −

≥

ξ

ξ
                                    (6.12) 

where φ  is the function that maps the deformation vectors to a higher dimensional 
space, where the data are supposed to be linearly or near linearly separable. C is the 
term that penalizes the training errors and w is the normal vector to the hyper plane. 
The vector [ ... ]1 6b Tb b= is the bias vector and 1 6[ ,..., ,..., ]1 k T

i N= ξ ξ ξξ is the slack 
variable vector. Then, the decision function is: 

 

 ( ) argmax ( ( ) )
1,...,6
wg gTh bk k

k
= +
=

φ                                                                             (6.13) 

Using this procedure, a test feature vector is classified to one of the basic facial 
expressions using (6.13). Once the multiclass SVMs system is trained, it can be used 
for testing, i.e., for recognizing facial expressions on new facial image sequences.  

 
6.4 Results 

The proposed algorithm for facial expression recognition is tested on Cohn-
Kanade (CK), Japanese Female Facial Expression (JAFFE), Aleix Martinez and 
Robert Benavente (AR) and Static Facial Expressions in the Wild (SFEW) databases 
[80-84]. Sample images from CK, JAFFE, AR and SFEW databases are shown in 
Figure 6.5-6.8 respectively. The CK database contains 97 subjects, which posed in a 
lab situation for the six universal expressions and the neutral expression. The 
proposed fuzzy lattice technique is tested on database of 53 different subjects of CK 
database. In order to maximize the amount of training and testing data, the classifier 
accuracy is measured using the leave-one-subject-out cross-validation approach. 
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Figure 6.5 Sample Images from CK database 
 
 

 

 
           

Figure 6.6 Sample Images from JAFFE database  
       

 

  
Figure 6.7 Sample Images from AR database 

 
 

 

  
Figure 6.8 Sample Images from the SFEW database 



86 
 

For this test, database is divided in 5 sets, which contain the sequences 
corresponding to 10 or 11 subjects (three sets with 11 subjects, two sets with 10 
subjects). The sequences are used from a set as test sequences and the remaining 
sequences are used as training sequences. This test is repeated five times, each time 
leaving a different set out.  

The JAFFE database contains 213 images of seven facial expressions (six basic 
expressions and neutral expression also) posed by 10 Japanese female models. The 
classifier accuracy has been measured using the leave-one-subject-out cross-
validation approach i.e., every time, expression images of 9 out of 10 subjects are 
used as the training set and the images of the remaining subject are used as the testing 
set. The process is repeated for each subject. 

AR database contains 4000 images corresponding to 126 subjects with 4 
different facial expressions of each subject. The AR database is captured with 
different expressions, illumination conditions and occlusions (scarf and sunglasses). 
In the AR database, besides the lighting from the left and the right, lighting from both 
sides of each face is also adopted. The pictures are taken under strictly controlled 
conditions. No restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. 
have been imposed to participants. The experiment is conducted using the leave-one-
subject-out cross-validation approach. In order to compute error rate with respect to 
certain facial expression, the image associated with it is used as test image. In order to 
recognize the test image, all images excluding the test one, are projected to reduced 
space. Then the test image is projected as well as recognition is performed. 

The CK, JAFFE and AR databases have been captured in controlled lab 
environment. However, all three databases do not capture the conditions found in real 
world situations well. For experimental validation of the proposed algorithm in real-
world environments, the database is needed that is captured in tough conditions. The 
Static Facial Expressions in the Wild (SFEW) is a dataset that has captured facial 
expressions in tough conditions. The word wild here refers to the challenging 
conditions, in which the facial expressions occur. The database covers unconstrained 
facial expressions, varied head poses, large age range, occlusions, varied focus, and 
different resolution of face and close to real world illumination. The SFEW database 
contains 700 images of seven facial expressions (angry, disgust, fear, happy, sad, 
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surprise and neutral) of 95 subjects. The Strictly Person Independent (SPI) Protocol 
for the SFEW database has been used for validation of the proposed algorithm that is 
divided into two sets. The sets are created in a strict person independent manner. Each 
set has seven subfolders corresponding to the seven expression categories. The images 
are divided on the basis of their expression labels in their respective expression folder. 
There are 346 images in set 1 and 354 images in set 2. For the evaluation of proposed 
algorithm, the experiment is conducted using twofold: first, the set one has been used 
for training and set two for testing and then vice-versa. 

The expression analysis on data captured in lab-controlled and real world 
environment requires more sophisticated techniques at all stages of the approach, such 
as robust face localization/tracking, illumination and pose invariance. A unified model 
has been used for face detection, pose estimation and landmark localization using a 
mixture of trees with a shared pool of parts [85]. Every facial landmark has been 
modeled as a part and use global mixtures to capture topological changes due to 
viewpoint. The model is effective on standard face dataset as well as in the wild 
annotated dataset. 

The multiclass SVMs has been used as classifier for computing recognition 
accuracy. The KE of fuzzy lattices has been computed using solution of the 
Schrödinger equations given by (6.7), (6.8) and (6.9). Three fuzzy lattices having 
maximum kinetic energy are selected. Finally, the KE parameter is embedded in three 
dimension space using (6.10). The embedded KE value is used as an input to a 
multiclass SVMs system for expression recognition. The training data are the facial 
expression of various face databases. The output of the SVMs system is a label that 
classifies the embedded KE value under examination to one of the basic facial 
expressions. Using this procedure, a test feature vector is classified to one of the basic 
facial expressions. 
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Table 6.1 Confusion matrix for fuzzy lattice technique on Cohn-Kanade 
database  

 
 

Table 6.2 Confusion matrix for fuzzy lattice technique on JAFFE database 

 
 
 

Table 6.3 Confusion matrix for fuzzy lattice technique on AR database 
 
 

 

 
 
 
 

 
 
 
 
 
 

Expressions Anger  
(%) 

Disgust 
(%) 

Fear 
(%) 

Sad 
(%) 

Happy  
(%) 

Surprise 
(%) 

Neutral 
(%) 

Anger 83.1 5.7 4.1 2.2 1.3 0 3.6 
Disgust 7.0 85 1.8 1.8 0.6 0.8 3.0 
Fear 5.6 3.2 83 4.3 1.1 1.2 1.6 
Sad 0.3 0.2 0.9 97 0 0.3 1.3 
Happy 1.0 0.8 0.2 0 96.5 0 1.5 
Surprise 0 0.3 0.9 0 0 97 1.8 
Neutral 5.8 7.4 2.3 4.1 1.1 1.3 78 

Expressions Anger  
(%) 

Disgust 
(%) 

Fear 
(%) 

Sad 
(%) 

Happy  
(%) 

Surprise 
(%) 

Neutral 
(%) 

Anger 87.9 4.1 1.7 0.4 0 0.1 5.8 
Disgust 4.5 84.5 5.2 0.4 0.8 0.3 4.3 
Fear 3.1 4.4 81.1 3.5 0.5 0.7 6.7 
Sad 1.2 3.9 0.9 90.7 0.2 0.8 2.3 
Happy 0.2 0.1 0.1 0.3 98.2 0.1 1.0 
Surprise 1.1 0.3 0.5 0 0 97.4      0.7 
Neutral 7.8 4.0 5.9 1.0 0.7 1.2 79.4 

Expressions Neutral 
(%) 

Smile 
(%) 

Anger 
(%) 

Scream 
(%) 

Neutral 89.1 3.3 2.0 5.6 
Smile  1.4  90.9 4.2 3.5 
Anger 6.6  3.8 87.6 2.0 
Scream 1.5 1.5 2.6 94.4 
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Table 6.4 Confusion matrix for fuzzy lattice technique on SFEW database 

 

 
 
The confusion matrices obtained with fuzzy lattice technique on CK, JAFFE, 

AR and SFEW databases are shown in Tables 6.1-6.4 respectively. The diagonal 
entries of the confusion matrix are the rates of facial expressions that are correctly 
classified, while the off-diagonal entries correspond to misclassification rates. An 
analysis of the confusion matrices for CK database (Table 6.1) and JAFFE database 
(Table 6.2) suggests that the best recognized categories are happy and surprise. The 
other expressions are highly confused with each other. An analysis of the confusion 
matrix for AR database (Table 6.3) suggests that expressions captured under different 
illumination have also been recognized accurately using proposed technique 

The technique is based on detecting three lattices of the maximum features 
variations that corresponds to expressions. Thus, the effect of light variation is 
neutralized in the proposed technique. An analysis of the confusion matrix for SFEW 
database (Table 6.4) suggests that the most difficult to recognize is fear expression, 
which is highly confused with anger and disgust. It is also blended with neutral 
expression and hence a lower detection value. It is evident that proposed technique 
has high recognition accuracy on CK, JAFFE and AR but comparatively lower 
accuracy for SFEW database. This is due to the fact that SFEW database has been 
captured in uncontrolled environment conditions.  

 
 
 
 
 

Expressions Anger  
(%) 

Disgust 
(%) 

Fear 
(%) 

Sad 
(%) 

Happy  
(%) 

Surprise 
(%) 

Neutral 
(%) 

Anger 75.4 5.2 3.2 4.1 4.7 5.1 2.3 
Disgust 6.9 71.2 4.9  9.9 1.3  2.2 3.6 
Fear 7.8 7.6 63.8 3.0 3.5 2.7 11.6 
Sad 7.1 9.1 1.9 71.2  1.5  1.7 7.5 

Happy 1.3 2.2 2.9 2.4 81.3 4.2 5.7 
Surprise 1.3 1.8 2.2 4.4 2.8 81.6 5.9 
Neutral 3.0 8.1 1.5 5.8 1.8 1.3 78.5 
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Table 6.5 Recognition accuracy of Cohn Kanade database 
Techniques PCA LDA Isomap LLE GVLVM LBP Gabor 

feature 
Fuzzy 
Lattice 

Dimensions 43 5 18 30 48 52 56 3 
Recognition 
accuracy (%) 

72.4 74.7 77.2 77.9 66.2 80.2 78.4 88.51 

 
 

Table 6.6 Recognition accuracy of JAFFE database 
Techniques PCA LDA Isomap LLE GVLVM LBP Gabor 

feature 
Fuzzy 
Lattice 

Dimensions 43 5 18 30 48 52 56 3 
Recognition 
accuracy (%) 

74.1 75.6 79.9 80.7 68.0 81.6 79.1 88.46 

 
 

Table 6.7 Recognition accuracy of AR database 
Techniques PCA LDA Isomap LLE GVLVM LBP Gabor 

feature 
Fuzzy 
Lattice 

Dimensions 45 5 18 30 48 52 56 3 
Recognition 
accuracy (%) 

71.1 74.6 77 78.2 64.30 79.1 78.2 90.50 

 
 

Table 6.8 Recognition accuracy of SFEW database 
Techniques PCA LDA Isomap LLE GVLVM LBP Gabor 

feature 
Fuzzy 
Lattice 

Dimensions 43 5 18 30 48 52 56 3 
Recognition 
accuracy (%) 

51.8 52.2 54.0 54.9 47.0 18.7 59.2 74.1 

 
 
 

The proposed fuzzy lattice technique is compared with PCA, LDA, Isomap, 
LLE, GVLVM, LBP and Gabor feature based techniques. The experimental results of 
recognition accuracy along with dimensions of embedded space on CK, JAFFE, AR 
and SFEW databases are shown in Tables 6.5-6.8 respectively. Facial expression 
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recognition rates changes with the dimensions of the embedding space. It is observed 
that the recognition rates increase with the dimensions of the embedding space at the 
beginning, but when the dimension of the embedding space reaches to a value as 
shown in Tables 6.5-6.8, the expression recognition rates reach nearly to their 
maximum values. Fuzzy lattice technique is based on extracting the non-linear 
features corresponding to contours of the face, which are appearing due to different 
expressions. It is observed that three contours having maximum energy are sufficient 
to represent the facial expression. When the dimensions of the embedding space 
increases to three, the recognition rates reaches nearly to its maximum value. All the 
tests for expression recognition have been performed using Multiclass SVM classifier. 
SVM makes binary decisions, so the multiclass classification here is accomplished by 
using the one-against-rest technique, which trains binary classifiers to discriminate 
one expression from all others, and outputs the class with the largest output of binary 
classification.  

The results demonstrate that the techniques, which perform very well on the 
CK, JAFFE, AR datasets that have been developed on lab controlled data, are not 
robust when it applied to SFEW dataset captured in more real world like conditions. 
However, the proposed technique has significantly improved recognition accuracy on 
CK, JAFFE, AR datasets as well as SFEW dataset captured in uncontrolled 
environment conditions. The proposed technique is based on detecting three lattices of 
the maximum feature variations that corresponds to facial expressions. Thus, the 
effect of pose and light variation is neutralized in the proposed technique and the 
expressions captured under different pose, illumination and occlusion have also been 
recognized accurately. It is observed that the proposed technique consistently 
performed better than other techniques achieving the highest accuracy at reduced 
dimensions of three. 

 
6.5 Conclusions 

An application oriented technique has been developed that directly 
accommodates the local non-linear behavior of facial expressions. The message being 
conveyed or expression being expressed by a person can be known efficiently by 
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proposed technique. The experimental results show that the recognition accuracy of 
proposed technique is better than PCA, LDA, Isomap, LLE, GVLVM, LBP and 
Gabor feature based techniques. It is showing promising results on data captured in 
lab controlled conditions as well as real world like environment. It also has advantage 
of very low dimension of feature space. The technique can also be applied for lips 
recognition, hand writing recognition and image tracking. 
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Chapter-7 
Fuzzy Lattice based Technique for 
Classification of PQ Events 

 
 
 

In this chapter, proposed fuzzy lattice based technique is used for classification 
of PQ events. The proposed technique is different from others, in respect that, it is 
based on the concept of local non-linear relation. It uses non-linear fuzzy functions to 
extract the feature specific data. To extract any change during change in the patterns 
of PQ events, non-linear Gaussian functions have been used, which results in the 
formation of fuzzy lattices. The fuzzy lattices have been expressed in the form of 
Schrödinger equation, to find the KE used, corresponding to any change occurring in 
the PQ events. Finally, the KE value embedded in 2-D space has been used to 
distinguish various PQ events. The proposed technique efficiently distinguishes 
various PQ events in a single cycle and works perfectly in real time. 

 
7.1 Introduction 

Power quality (PQ) has become an important issue to electricity consumers due 
to the wide use of delicate electronic devices. Voltage disturbances, interrupting 
manufacturing processes and microcontrollers are some of the major causes of poor 
PQ. Voltage swell and sag can occur due to lightning, capacitor switching, motor 
starting, nearby circuit faults, or accidents, and can lead to power interruptions. 
Harmonic currents due to non-linear loads throughout the network also degrade the 
quality of services to the sensitive high-tech customers, such as India’s IT parks in 
Bangalore, Hyderabad and many other places. The massive rapid transit system, 
Metro Railways in Delhi and few other places in India have facilitated the massive 
use of semiconductor technologies in the auto-traction systems, resulting in the 
increased level of harmonic distortion. The solution to the PQ related problems 
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requires continuous monitoring and the acquisition of large amount of data from the 
distribution system.  

The need of an automated PQ detection and classification system to determine 
the cause of PQ disturbances is emphasized in [100]. Several signal processing and 
statistical analysis tools have been presented for the detection and classification of PQ 
events [61]. Signal processing is generally called upon when there is a need to extract 
specific information from the raw data, which typically in power systems are the 
voltage and current waveforms. The objectives of collecting data through 
measurements or simulations largely dictate, which signal processing technique is to 
be utilized. Using such steady state data, statistical signal processing can be used to 
predict performance or the health condition of voltage regulators on distribution 
circuits. The necessity of improved detection performance for continuous monitoring 
of electric signals has motivated the development of several techniques that show a 
good trade-off between computational complexity and performance.  

The local linear constraint does not work to extract minor (non-linear) changes 
from the pattern of PQ events, and such techniques lost the contents while embedding 
[17] and [22]. The proposed work has classified the PQ events by considering local 
data set as non-linear and used the concept of fuzzy non-linear lattices to extract any 
change in the pattern of the PQ events. To extract any change occurring in the patterns 
of PQ events, non-linear Gaussian functions have been used, which results in 
formation of fuzzy lattices. Finally, the change in KE during the change in pattern of 
PQ events is extracted by expressing the fuzzy lattice equations in terms of 
Schrödinger equation. The paper is organized in the following manner. Section 7.2 
describes the configuration of the model for generation of PQ events. The details of 
proposed technique based on fuzzy lattice for features extraction is described in 
Section 7.3. The simulation results for classification of PQ events are discussed in 
Section 7.4. Finally, the concluding remarks are given in Section 7.5. 
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7.2 Power Quality Events Generation 
The PQ events have been generated in the Power System Laboratory at Delhi 

Technological University (Formerly Delhi College of Engineering). The events are 
generated according to IEEE std. 1159-1995 laid down in monitoring manual [105].  

 

 
 

Figure 7.1 Configuration of the model for generation of PQ events 
 
Figure 7.1 shows the configuration of the model used for generation of PQ 

events. The laboratory receives a 3-φ AC supply of 415 volts (Root mean square 
(RMS), line-to-line) with 50 Hz frequency. The PQ events generally occur due to 
sudden switching-on of a large load, such as induction motors (IMs); non-linear 
elements in the power system; circuit breakers; capacitor switching; lightning; or 
system faults. The events generated under different load conditions and system faults 
in the aforementioned laboratory are described below.  
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(a) 
 

 
(b) 
 

Figure 7.2 (a) Circuit representing occurrence of voltage sag (b) Output 
waveform of voltage sag 

 
 

Voltage sag or dip refers to a fall in the voltage waveform at the receiver’s end 
for a small interval of time. Voltage sags are caused due to the sudden switching-on of 
a large load, such as IM. Figure 7.2(a) represents a generalized circuit, which causes 
the occurrence of voltage sag due to the sudden switching-on of an arbitrary large 
load. The switch S represents the sudden switching operation. If the load is suddenly 
connected to the line then obtained output is shown in Figure 7.2(b).  

Voltage swell refers to a rise in the voltage from 1.0 p.u. (or 230V RMS) to a 
value above it. It generally occurs due to charging capacitors connected to the line, 
when the line is lightly loaded. All transmission lines contain some capacitance 
between the conductors of individual phases, in addition to a capacitance to earth.  
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(a) 
 

 
(b) 
 

 
(c)  
 

Figure 7.3 (a) Circuit representing occurrence of voltage swell (b) Phasor 
Diagram for Ferranti Effect (c) Output waveform of voltage swell 
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During periods of light loads, i.e., when the current flowing in the line is very 
low, the entire sending end voltage of the transmission line effectively appears across 
the capacitors, since the series impedance of the line causes a negligible voltage drop. 
This causes the capacitors to draw a charging current, which leads the input voltage. 
Thus, the net voltage at the receiving end, which is the phasor sum of the sending end 
voltage and the voltage drop across the series impedance due to this charging current, 
is greater than the sending end voltage, resulting in voltage swell. This is called 
Ferranti Effect.  

The circuit used for recording voltage swell is shown in Figure 7.3(a). The 
phasor diagram displaying Ferranti Effect is shown in Figure 7.3(b). The voltage 
waveform shown in Figure 7.3(c), shows the occurrence of swell when the load on the 
line is suddenly decreased to a very low value.  

Harmonic distortion means an undesirable change in the wave shape of the 
voltage waveform from the regular sinusoidal shape. Distortion also occurs due to the 
use of non-linear loads. Magnetic circuits, which are an indispensable part of all 
electromechanical devices like transformers, induction motors, DC motors etc, have 
non-linear characteristics, i.e., the relation between flux flowing through a magnetic 
path and the magnetic motive force (MMF) causing that flux to flow is highly non-
linear. Thus, if one of the two quantities is a sinusoid, the other is non-sinusoidal.  
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(a) 
 

 
(b) 
 

Figure 7.4 (a) Circuit representing occurrence of harmonic distortions (b) 
Output waveform of harmonic distortion 
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(a) 
 

 
(b) 

 
Figure 7.5 (a) Circuit representing occurrence of transient   (b) Output 

waveform of transient    
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Figure 7.6: Multiple events (a) swell and transient (b) swell and harmonics (c)      
sag and harmonics (d) sag, transient and harmonics (e) sag and transient 
 
 

 
 

Figure 7.7 Photo of setup for generation of PQ events 
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AC voltage controllers are thyristor based devices that convert fixed AC voltage 

to variable AC without a change in the frequency. The circuit of a 1-φ full-wave AC 
voltage controller used for speed control of a 1-φ induction motor is shown in Figure 
7.4(a). The firing angles for thyristors are controlled in such a way so as to obtain the 
desired RMS voltage at the input terminals of the motor. The waveform of the voltage 
at the input of the motor is shown in Figure 7.4(b).  

Transient is commonly known as switching surges or voltage spike. They can be 
caused by circuit breakers out of adjustment, capacitor switching, lightning, or system 
faults. They are characterized by a sudden non power change in frequency, high 
amplitude, fast rise and decay times, and high energy concern. Figure 7.5(a) shows 
the circuit used for recording transient caused due to the sudden switching on of a 
large load, such as 3-φ IM connected to the line through a switch, in parallel with 
household lighting load. Figure 7.5(b) shows its voltage waveform. 

A multiple event refers to that cycle of the signal, which has more than one type 
of event. The occurrence of sag and transient in a single cycle of a signal is an 
example of multiple PQ events. In other words, there are cases when two events 
almost occur at the same time called multiple events. When capacitive load with 
switch is used, initially transient and then swell occurs as shown in Figure 7.6(a). 
Harmonics with swell occurs in case of capacitive and inductive load as shown in 
Figure 7.6(b). In case of resistive and inductive load, harmonics with sag occurs as 
shown in Figure 7.6(c). In case of fast trip breaker after a short circuit, sag, harmonics 
and transient occurs as shown in Figure 7.6(d). In case of heavy load switching, 
transient with sag occurs as shown in Figure 7.6(e).  

The photo of setup for generation of PQ events is shown in Figure 7.7. These 
generated events are recorded through data acquisition board (DAQ) NI USB-9215 
and a computer, which performed all the required signal processing. The sampling 
rate of the DAQ was set to 50kS/s. The recorded events in computer are classified by 
implementing the proposed algorithm using MATLAB. All the data (waveform) of 
events are generated and recorded in Power System laboratory at Delhi Technological 
University. The events are not generated from MATLAB simulink. Only the circuits 
corresponding to real time generated events are drawn in MATLAB simulink for 
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better symbolic representation of components and equipments used in laboratory. The 
technique used to accomplish the task of classification of PQ events is described in 
the next section.  

 
7.3 Fuzzy Lattice based Technique for Events 
Classification 

 

In this chapter, non-linear dimensionality reduction technique has been used to 
extract any substantial change occurring in the patterns of the PQ events. To describe 
the non-linear relation between two nearest neighborhood elements, the Gaussian 
vector as membership function has been used. It represents the non-linearity and can 
easily interpolate the non-linear relation between elements. In addition, Gaussian 
membership functions have been carried out because their shapes are easily specified 
and Gaussian curves are intuitive and easy to manipulate. The non-linear relationship 
among elements provides more realistic view of the quantized event. Therefore, it has 
been used to detect any changes in the patterns of the PQ events. 

 
7.3.1 Block Diagram 

The Gaussian functions with various mean and variance have been used to 
represent non-linear relation between elements of PQ events, which results in 
formation of the fuzzy lattices. The information generated due to any change in power 
quality pattern represents KE involved corresponding to change occurring in the 
events. Schrödinger equation is an important tool to ascertain the extent of the non-
linearity. Thus, analysis of the fuzzy lattices to obtain the KE parameter has been 
carried out using solution of Schrödinger's equation. It contains all the dynamic 
information about a signal. Two fuzzy lattices having maximum KE are selected for 
top two features of the events as they contain most of the important information of 
data. Finally, the KE parameter embedded in 2-D space has been used to distinguish 
various PQ events. 
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Figure 7.8 Block diagram of fuzzy lattice technique for PQ Events classification 

 
The block diagram of the proposed fuzzy lattice based technique for 

classification of PQ events is shown in Figure 7.8. The fuzzy lattice based technique 
is used for extracting useful features of the PQ events. The use of fuzzy lattice appears 
to be interesting where the non-linearity is involved. The change in the features of the 
pattern results in equivalent KE. These fuzzy lattices have been represented in terms 
of Schrödinger equation to find the equivalent KE, which is obtained by solving 
second order differential equation (Schrödinger's equation). Thus, the values of KE 
depend upon amount of the change occurring in the patterns of events. The two fuzzy 
lattices having maximum KE are selected as top two dimensions of the events. 
Finally, the KE parameter embedded in 2-D space has been used to distinguish 
various PQ events. The mathematical details of the proposed technique (fuzzy lattice 
based technique) for classification of PQ events are described in the section that 
follows: 

7.3.2 Mathematical Analysis  
The proposed non-linear dimensionality reduction technique using fuzzy lattices 

is based on reducing most of the redundant data not related to features. To describe 
non-linear relation between the two nearest neighborhood elements, the Gaussian 
vector as membership function has been used. It represents non-linearity and can 
easily interpolate the non-linear relation between two nearest neighborhood elements. 
The non-linear relationship among elements provides more realistic view of the 
quantized event. Therefore, it has been used to detect any change in the patterns of the 
PQ events. The Gaussian function that has been used as fuzzy membership function to 
represent the non-linearity can be represented as follows: 
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2( ) / 2( )

jy m σi iµ y eij
− −

=                                                                        (7.1)     

Where mi  and σi  are the centre and width of the membership function 
, 1,..., ,µ i rij = 1,...,j s=  and y is the amplitude at time x of the PQ event.  
All the values of the PQ event belong to nearest neighborhood values with some 

membership degree of the Gaussian function. The Gaussian membership functions 
with different mean and power have been used to check the non-linear relation 
between two nearest neighborhood elements of the PQ event. It results in formation of 
the fuzzy lattices [78, 79].  

These fuzzy lattices are in turn Gaussian vectors as they hold the property 
described as follows: 
If the vector ( ,..., )1TG G Gn=  is Gaussian, all its components are thus Gaussian 
random variable. If the components , 1,...,G k nk =  of a random vector G are 
Gaussian and independent, the vector G is thus also Gaussian. If Gk  are Gaussians 
then ,  kG k∪ ∀  are Gaussian: ,   G G k lk l∩ ≠∅ ≠  
The fuzzy lattice that has been used can be described as given below: 
 

2( ) / 2jy m σi iL D R D e− −
= ∈ =                   (7.2)            

The set L is a fuzzy lattice and binary relation ≤ is defined as follows:  

sup( , ) max( , )1 2 1 2D D D D L= ∈                                                     (7.3) 

inf( , ) min( , )1 2 1 2and D D D D L= ∈                                       (7.4) 

From definition, it is clear that lattice asymptotically increases. But, in proposed 
technique lattice structure can increases or decreases depending on relation between 
PQ elements. Due to this fuzzy relation, it is called fuzzy lattice. In fuzzy lattice, 
whenever any change occurs in the patterns of the PQ events, its lattice deforms 
accordingly. In order to select the useful information, the value of neighboring 
elements should lie in the range of Gaussian membership function. It results in 
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formation of number of fuzzy lattices and some isolated elements. These isolated 
elements have been discarded, which results in removal of unimportant features. Each 
fuzzy lattice corresponds to dimension (feature) of the PQ event that can be described 
as follows: 

 

2( ) / 2jy m σi iD eq
− −

=                                                        (7.5) 

All the dimensions of the event are independent, non-redundant, and non-
overlapping and so they are orthogonal to each other. Whenever any change occurs in 
the power quality patterns, there is corresponding change in KE used. The two fuzzy 
lattices having maximum KE are selected as top two dimensions.  
Let { }: 1,...,S L q Qq= = be the set of all the existing lattices.  

The set S is partitioned as follows: 
 

{ }{ }. . :1D Max K E L L Sq q= ∈                            (7.6) 

{ }{ }. . \2 1D Max K E S D=                                                     (7.7) 

Equations (7.6) and (7.7) represent the selection criteria of choosing the best 
two fuzzy lattices required. Schrödinger's equation is an important tool to ascertain 
the extent of the non-linearity. Thus, the analysis of the fuzzy lattices to obtain the KE 
parameter has been carried out using solution of Schrödinger equation. It contains all 
the dynamic information of a signal. Therefore, to obtain the non-linearity 
corresponding to the particular PQ event, the Schrödinger equation is solved at every 
point of control. The information generated due to change occurs in the PQ pattern 
represents KE used. This KE is obtained by solving the second order differential 
equation (Schrödinger's equation).  
Differentiating (7.5) with respect to y, 
 

2( ) / 21( )22

jy m σD j i ijy m eiy σi

− −∂ − −= −∂                                      (7.8)   



107 
 

22 ( ) / 22 2 2( ) ( 1) ( )2 2 22 2

jy m σD j j j i ijy m j y m ei iy σ σi i

  − −∂ − − − − = − + − − ∂  
 (7.9)              

2
2
D
x
∂
∂

, can be obtained on the similar lines   

22 ( ) / 22 2 2( ) ( 1) ( )2 2 22 2
jx m σD j j j j i ix m j x m ei ix σ σi i

  − −∂ − − − − = − + − − ∂  
(7.10) 

KE in x and y directions are computed separately using (7.9) and (7.10). Finally, 
embedding of the KE computed in x and y direction is obtained as follows: 

 

2 2
.2 2 D K E

x y
 ∂ ∂ + = ∂ ∂ 

                                                           (7.11)  

The value of embedded kinetic energy has been used for distinguishing various 
PQ events. The steps of whole process have been described in algorithm given as 
follows:   

 
7.3.3 Algorithm  
Step 1:   Read in power quality waveform 
Step 2:   Creation of non-linear associative membership set using (7.1) 
Step 3:   Fuzzy Lattice formation using non-linear membership function applied on 

the PQ events using (7.2) 
Step 4:   Dividing top two dimensions into two orthogonal components 
Step 5:  Computing the 2-D Kinetic Energy parameter separately using (7.9) and 
(7.10) 
Step 6:   Embedding of the extracted KE parameter in 2-D space using (7.11) 
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7.4 Results 
To prove the effectiveness and efficiency of any algorithm used for detection 

and classification PQ events, it is important to implement the algorithm on events that 
occur in practical circumstances. The proposed algorithm is tested on real time 
generated PQ events that are recorded in the Power System Laboratory at Delhi 
Technological University (Formerly Delhi College of Engineering) as mentioned in 
Section-7.2. Five hundred samples of PQ events have been used for testing of 
proposed algorithm. These events have been generated and recorded in 10 different 
conditions and 50 events have been recorded in each condition. The sag is recorded 
for 10 different load conditions; swell for 10 different values of capacitive load with 
switch; transient is recorded for switching with induction load at different values and 
harmonics are recorded for different non-linear loads. Similarly the multiple events 
(sag, transient and harmonic, swell and transient, sag and transient, swell and 
harmonic, sag and harmonic) are recorded as mentioned in Section 7.2.  

 

Table 7.1 Range of the embedded kinetic energy for PQ Events 
S.No. PQ Events Range of embedded  KE 
1 Sag, transient and harmonic 1982-2125 
2 Swell and transient 1825-1981 
3 Sag and transient 1654-1824 
4 Swell and harmonic 1455-1650 
5 Sag and harmonic 1200-1454 
6 Transient 1001-1199 
7 Swell 600-999 
8 Harmonic 421-599 
9 Sag 298-420 
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Table 7.2 Confusion matrix for fuzzy lattice technique on PQ events 

 
PQ Events 

sag,  
transient 
and 
harmonics 

swell and 
transient 

sag  
and 

 transient 
swell  
and 

harmonics 
sag  
and 

harmonics 
transient swell harmonics sag 

sag,  transient 
and harmonics 

498 2  
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

swell and 
transient 

1 498 1 - - - - - - 

sag and 
transient 

- 1 499 - -     

 swell and 
harmonic 

- - - 498 2 - - - - 

sag and 
harmonic 

- - - 2 497 1 - - - 

transient - - - - 01 499    

swell - - - - -  498 02  

  harmonic - - - - -  01 499  

sag - - - - -   01 499 
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Table 7.3 Classification accuracy of PQ events 
Technique Classification accuracy (%) 
S-transform 96.17 
Wavelet-based neural network 95.24 
Fuzzy lattice 99.67 

 
 
The proposed technique for classification of real time generated PQ events 

based on embedded KE has been implemented using MATLAB. The results of the 
range of embedded kinetic energy for five hundred samples of each PQ events: sag, 
swell, transient, harmonic distortions and multiple events are depicted in Table 7.1. 
The information generated due to any change in events represents KE involved 
corresponding to the change occurring in the events. This, KE is obtained by solving 
the second order differential equation. Thus, the values of KE depend upon amount of 
the change occurring in pattern of events. Like the total change during occurrence of 
multiple events (sag, transient and harmonics) is maximum in compare to other 
events, so KE is also maximum. Similarly, values of KE for other events depending 
on change in pattern of PQ event are depicted in Table 7.1. The problem of finding 
the KE at different instances for the same type of PQ event has also been considered.  

In Table 7.2, confusion matrix shows the performance of the classifier based on 
proposed algorithm. It demonstrates the number of times the proposed technique 
distinguishes the events correctly. For example, when 500 samples of transient event 
are tested by proposed algorithm, 499 times classified correctly as transient and once 
misclassified as harmonic. The five hundred samples of each event have been tested 
by proposed technique for classification and the diagonal of the matrix shows the 
correct recognition of the events.  
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Figure 7.9 Results for PQ events Classification based on embedded KE 

 
For classification of events, the computed KE is embedded in a 2-D energy 

space which is shown in Figure 7.9 where each point corresponds to an event. From 
Figure 7.9, it is observed that the different events are separated from each other and 
similar ones are grouped together. Therefore, the fuzzy lattice based technique works 
well to discover the non-linear pattern of the events. 

The proposed algorithm is compared with the S-transform and wavelet-based 
neutral network algorithms. The experimental results of classification accuracy of PQ 
events are tabulated in Table 7.3. The comparative results clearly demonstrate that the 
proposed technique works well to discover the non-linearity of the various PQ events 
and outperforms other algorithms such as S-transform and wavelet-based neutral 
network. The proposed non-linear dimensionality reduction technique is based on 
detecting two lattices of features corresponding to maximum change.  
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7.5    Conclusions 
 
The technique is originally a dimension reduction technique and is very 

different as compared to the wavelet based techniques. The embedded KE has been 
used to distinguish various types of PQ events like sag, swell, transient, harmonic 
distortion and multiple events. It is demonstrated that the algorithm can efficiently 
distinguishes the PQ events based on variation of values for embedded KE The value 
of embedded KE shows a substantial change whenever there is any change in PQ 
event. As a result, the fuzzy lattice based algorithm can efficiently distinguish the real 
time generated PQ events in a single cycle while the earlier techniques based upon 
wavelets distinguishes the PQ events in the few cycles of the power signal.  
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Chapter 8 
Data Compression using Statistically Matched 
Wavelet  

 

 

In this chapter, the performance of the Discrete Wavelet Transform is improved 
using statistically matched wavelet as the mother wavelet for compression of power 
quality (PQ) events. The matched wavelet is designed based on the characteristic of 
PQ events. The concept of Fractional Brownian motion (FB-m) has been used to 
design the matched wavelet. The results are simulated using MATLAB and are 
compared with the mostly used Daubechies wavelet. 

 
8.1 Introduction 

In the recent past, wavelets have been using extensively for extracting distinct 
features of various types of PQ events [107]. A number of wavelets have been applied 
for detection of PQ events, like, Daubechies, Multi-wavelets, Dyadic and Symlets 
[115]. The wavelet multi-resolution analysis has been adopted by a number of 
researchers where an algorithm based on the energies of the decomposed signals has 
been proposed to distinguish different classes of PQ events [101]. Wavelet transform 
do not have a unique basis like Fourier Transform, which is one of the reasons that 
wavelets are finding applications in diverse fields. Since the basis is not unique, it is 
desired to find a wavelet that can provide the best representation of the signal. One of 
the exciting advantages of wavelet over Fourier analysis is the flexibility they afford 
in the shape and form of the analyzer, which cuts up and studies the signal of interest 
[106]. However, with flexibility comes the difficult task of choosing or designing the 
appropriate wavelet or wavelets for a given application. The proposed technique 
overcomes this difficulty and presents a new approach for detection of PQ events 
using wavelet statistically matched to characteristics of PQ events. Statistically 
matched wavelet provides better result of compression as the events can be detected 
up to six level of decomposition while mostly used Daubechies wavelet cannot allow 
event detection beyond four level of decomposition [108], [110], [111].  
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The PQ events detection and classification system have been presented using 
higher order cumulants with quadratic classifiers [101]. A technique for the PQ events 
classification using support vector machine has been proposed [102]. The covariance 
based behavior of several features, determined from the voltage waveform within a 
time window for PQ event detection and classification, has been analyzed [103]. All 
these techniques can detect the fault disturbances but the number of samples required 
is large which results in complex algorithm and does not work in the real time. 

The real time generated events are detected after compressing of events using 
statistically matched wavelet. The statistically matched wavelet is designed based on 
the characteristic of events using the concept of Fractional Brownian motion (FB-m). 
The proposed technique is compared with Daubechies wavelet to show its superiority 
in compression of the PQ events. To classify the detected events, Iterative Closest 
Point (ICP) algorithm is used which classifies detected event even in presence of 
outlier points and Gaussian noise. The technique is applied to classify the various PQ 
events like transient, sag, swell and harmonics. 

The chapter is organized in the following manner. Section 8.2 describes the 
proposed system applied for compression of PQ events. Section 8.2.1 discusses the 
concept of Fractional Brownian Motion to design the wavelet matched to PQ event. 
Section 8.2.2 explains the method for estimating self similarity index (H) of signal. 
Using estimated H, method to design statistically matched wavelet is described in 
Section 8.2.3. Based on statistically matched wavelet, the procedure used to design 
perfect reconstruction filter-bank is given in Section 8.2.4. These designed filters are 
applied for detection of events by compressing the PQ data. Performance parameter 
used to measure the quality of data compression is described in Section 8.3. Section 
8.4 discusses the simulation results for compression of PQ events. Section 8.5 
describes the technique for classification of PQ events. Section 8.6 discusses the 
simulation results for classification of detected event. Finally, concluding remarks are 
given in Section 8.7. 
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Figure 8.1 Proposed System of data compression using matched wavelet 
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8.1 Proposed System 
In the proposed method, wavelet is designed that is matched to a given signal in 

the statistically sense. Furthermore, the methods are presented to design perfect 
reconstruction filter-bank.  
 

 
 

Figure 8.2 Estimation of H parameter for matched wavelet 
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Figure 8.3 Estimation of Analysis wavelet filter coefficients 

 
 

 
Figure 8.4 Design scaling and wavelet functions of Bi-orthogonal wavelet 
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Estimated wavelet for different signals is compared with standard bi-orthogonal 
wavelets for the application of compression. The proposed system of designing 
wavelet that is matched to a given signal in the statistically sense is shown in Figure 
8.1. The FBm is used for designing of statistically matched wavelet. In first step, the 
estimation of self similarity index (H parameter) for PQ events is required for the 
designing of matched wavelet. Maximum Likelihood Estimation (MLE) has been 
used to estimate H parameter. This is described in Flowchart of Figure 8.2. In second 
step, using estimated H, analysis wavelet filter h1 is designed from the given event 
which is elaborated in Flowchart of Figure 8.3. In third step, Synthesis scaling filter g0 
is computed from h1. In fourth step, analysis scaling filter h0 is computed using g0 and 
then synthesis wavelet filter g1 is computed using h0. Furthermore, the scaling and 
wavelet functions have been designed from the scaling and wavelet filter using 2-
scale recursive relations. The filters are constructed using the properties of perfect 
reconstruction bi-orthogonal filter bank. The procedure of designing scaling and 
wavelet functions are described by Flowchart of Figure 8.4. The designed filters are 
applied for detection of PQ events by compressing the PQ data. The details of each 
flowchart are described in subsequent sections. 

 
8.1.1  Fractional Brownian motion 

The signals which are collected for the purpose of designing matched wavelet 
must be self similar. It is well known that a number of natural and man-made 
phenomenon exhibit self similar characteristics. Also known as fractal processes, 
these waveforms arises in natural landscape, ocean waves, and distribution of 
earthquakes. They have found profound applications in various engineering fields like 
image analysis, audio compression, and characterization of texture in bone 
radiographs etc. These processes are in general non stationary and they exhibit self-
similarity in the statistically sense. A class of these signals is called 1/fB processes, 
which have measured power spectral density that decays by a factor of 1/fB. Since 
1/fB processes simultaneously exhibit statistically scale invariance and time 
invariance thus wavelet-like bases having both scaling and shifting properties can 
represent these signals well. In a real world power system, voltages and especially 
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currents are practically always distorted from pure sinusoid thus they are random in 
nature. The exact behaviour of random signals cannot be predicted but if the signal is 
stationary its behaviour can be measured by its statistical properties like mean, 
variance and auto correlation. The entire PQ patterns are not stationary, as the time of 
generation of pattern is not known and ensemble average of PQ events is not same. 
Behavior of such signals has been detected so far by standard wavelets. But no work 
has been reported for designing of wavelet matched to the characteristic of PQ events. 
In the proposed technique, the concept of Fractional Brownian motion (FBm) denoted 
by ( )HB t  is used for designing of such wavelet [110], [113]. So far, it has been 
shown that FBm based methods are more appropriate to deal with non stationary 
signals. FBm is a continuous-time Gaussian process with the properties of stationary 
increments and self-similarity. FBm has stationary increments means the difference as 
given by (8.1) is independent of time. 
 

( ) ( ) ( )H H HB t B s B t s− ≈ −                                        (8.1) 

And self similarity means a self-similar object is exactly or approximately similar to a 
part of itself i.e. its statistical properties are scale invariant that can be expressed as 
follows: 
 

( ) ( )H H HB at a B t≈                                  (8.2) 

where the random process ( )HB t  is self similar with the similarity index H for any 
scale parameter a > 0. The equality in above equation holds in the statistically sense 
only. The estimation of self similarity index ‘H’ of signal is done by MLE [116] 
which is described in the next section. 

 
8.1.2 Estimation of H Parameter 

The Maximum likelihood estimator (MLE) can be used for estimation of self 
similarity index (H). In MLE, variance of this estimator nearly achieves the minimum 
bound. If the input process is m-FBm, then its mth-order incremental process results 
in an mth-order Fractional Gaussian Noise (m-FGn) stationary process. MLE is 
performed using a discrete m-FGn vector X and is denoted as follows: 
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max log log
1

NH Nm H m

− ∧  = − − − < <  

T 1T 1T 1T 1X R XX R XX R XX R XXXXX RRRRXXXX                 (8.3) 

where Rx autocorrelation matrix of a discrete m-FGn process and is given by: 

( )2 22( 1) ( 1), 2
σ Hmjm mHr n jH m m j= − ∑ − ++                     (8.4) 

where     ( ){ } ( ) ( )2 1 1/ 2 1 sinσ Var B gamma H HH H= = +               

       
8.1.2.1 Algorithm:  Estimation of H by MLE   
Step 1: Form the mth-order incremental process X (i.e., discrete m-FGn) from the 
given input signal starting from m=1using (8.5) 

( )( ) (1) ( ), ,0
m mm jX t B t jlH m H mjj

−= +∑
=

                                                (8.5) 

Step 2: For a = M, the process given in (8.2) can be written as follows:  
 

( ) ( )H H HB Mt M B t≈                                               (8.6) 

Step 3: The corresponding autocorrelation function of discrete input process is as: 
 

2 2 22 1 2( , )1 2 1 1 2 2
H H HHr Mk Mk M σ k k k ka H

 −= − − +                          (8.7) 

Step 4: Compute autocorrelation matrix of the resulting m-FGn process using (8.4) 
Step 5: Plot the graph of bracketed term in (8.3) for various values of H. If the graph 
is convex upward, the value of H corresponding to minima in the graph is the correct 
value of H. 
Step 6: If the graph is linear, increment m, and repeat steps 1, 2 and 3. 
Using the value of H, FB-m designs the wavelet based on characteristic of PQ event. 
 
8.1.3 Design of Statistically Matched Wavelet 

Using the characteristic of the input signal, it is desired to find a wavelet that 
can provide the best representation of the input signal. Similar to the two-band case, 
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one usually uses a multi-resolution analysis (MRA) with a scaling factor of M to 
construct M-band wavelets [112]. M-band wavelets have better results for 
compression in comparison to the 2-band wavelet. 
 

 
 

Figure 8.5 M -band Wavelet 
 

Figure 8.5 shows the analytical part of the M-band filter-bank. Here, s0(k) is 
applied as input that is the sampled version of given continuous time signal s(t). Here, 
h0 is the low pass filter, , ,...,1 2 2h h hM −

are band pass filters, and 1hM −  is the high 
pass filter such that a-1(k) represents the approximation coefficients at scale j = -1, 
and ( ) ( ) ( ), ,...,1,1 1,2 1, 1d k d k d kM− − − −

represents the finer information in wavelet 
subspaces at scale j = -1. Let us assume that the length of filter 1hM −

 is N=3 then, 
( )1, 1d kM− −

 can be written in terms of filter weights as given below: 

( ) [ (0) ( ) (1) ( 1) (2) ( 2)]1, 1d k h s Mk h s Mk h s MkM M i o M i o M i o= + + + +− − − − − (8.8) 

The signal ( )1, 1Md k
− −

provides the detail or high pass information. Therefore, we 
would like to express this signal as smoothening error signal. Now, if the centre 
weight 1(1)Mh −

 of the filter is set to unity, then (8.8) can be rewritten as given below: 

( ) ( ) { }1 (0) ( ) (2) ( 2)1, 1 0d k s Mk h s Mk h s MkM M i o M i o + = − − + +− − − −   

                ( ) ( )^
1 1 ( )00s Mk s Mk e k= + − + =               (8.9) 
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where   ( ) ( ){ }1 (0) ( ) (2) 20 0s Mk h s Mk h s MkM i o M i
∧  + = − + +− −      

 This equation plays a key role in the estimation of the matched wavelet. With the 

centre weight fixed to unity, ( )1s Mko
∧

+ is the smoother estimate of ( )0 1s Mk + from 
the past as well as from future samples. Thus, ( )1, 1d kM− −

 is the error in estimating 

( )0 1s Mk +  from its hood and hence represents finer information. Since ( )1, 1Md k
− −

 
represents error signal between the actual value and its estimated value, the mean 
square value of this error signal has to be minimized. Here, resulting filter 1Mh −

 is 
observed to be a high pass filter. Using (8.9), ( )1, 1Md k

− −
can also be computed as 

follows: 
( ) ( )1, 1 0 1d k s Mk JM = + −− −

TTTTF SF SF SF S0 00 00 00 0                                    (8.10) 

where J1= index of centre weight of filter 1Mh − , 
  

[ (0) (1)..... ( 1)
. ( 1)........... ( 1)]

F0 h h h JM i M i M i
Th J h NM i M i

= −− − −
+ −− −

  

( ) ( ) ( ) ( ) ( )1 ........ 1 ........ 1 ........ 10 0 0 0 1 0 1 0
TS s Mk s Mk s Mk J s Mk J s Mk N = − + + − + + + + − 

 

Mean square error from (8.10) is given as follows:    
 

( ) ( ) ( )2 2 20 1 0 1 0 0 0 0 0 0
T T TE e k E s Mk J E s Mk J F S E F S S F       ∴ = + − + +                 (8.11) 

 

To minimize E [e2 (k)], the derivative of E[e2 (k)], with respect to F0 is equal to zero.  
 

( ) ( )
2

0 12 2 0
E e k

E s Mk J
 ∂    = − + + = ∂ 0 0
0

R F
F

TTTT
0000SSSS       

                   ( )0 1 0E s Mk J ⇒ + = T
0 0S R F                                              (8.12) 

Therefore, if statistics of the input signal are known, then using (8.12), filter 1hM −
 

can be computed. 
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8.2.3.1 Algorithm: To design statistically matched wavelet  
Step 1: Assign the estimated value of H for the known signal as computed in Section 
3 and sampled values of input signal s0(k). 
 

Step2: Calculate the signal strength coefficient as described below:    

0 0 0 0 1 0 1 0[ ( ) ( 1)....... ( 1)... ( 1)... ( 1)]TS s Mk s Mk s Mk J s Mk J s Mk N= − + + − + + + − (8.13) 
 

Step 3: Compute the autocorrelation matrix R of s0(Mk) with fixed length N. 

( ) ( ) ( ) ( )12 2 22 1 1 2, 1 2 1 2 2 10 2 1
2, 1 1

j jmH H Hm jH H mB m H j
k kHr Mk Mk M σ k k k kj k k

−− ∑
=

       = − − − − +           
                                                                                                                 (8.14)   
            
where 2mσ σH H=   
 
Step 4: After the computation of S0  and autocorrelation matrix R0 , statistically 
designed filter coefficients F0  can be computed using (8.12) which can be given as 
follows: 
 * [ ( ) ]0 11 TF R S0 0 0E s Mk J−= +  
 

Step 5: The filter coefficients can be assigned as follows:  
[ (0) (1)....... ( 1) ( 1)...... ( 1)]1 1F0

Th h h J h J h NM i M i M i M i M i= − + −− − − − −  
 

Step 6: The resulting filter 1hM −  is the statistically matched wavelet. 
Next synthesis scaling filter, analysis scaling filter, and synthesis wavelet filter are 
computed using the properties of perfect reconstruction bi-orthogonal filter bank. 
 
8.1.4 Design of Perfect Reconstruction Filter-bank 

Here, bi-orthogonal wavelet is used for designing of perfect reconstruction 
filter-bank. The bi-orthogonal wavelet is a wavelet where the associated wavelet 
transform is invertible but not necessarily orthogonal. Designing bi-orthogonal 
wavelets allows more degrees of freedoms than orthogonal wavelets. This family of 
wavelet exhibits the property of linear phase which is needed for signal 
reconstruction. One additional degree of freedom is the possibility to construct 
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symmetric wavelet functions. To illustrate the perfect reconstruction property, Figure 
8.6 shows the 2-band perfect reconstruction bi-orthogonal filter-bank, which contains 
two decompositions filters h0 and h1 and two reconstructions filters g0 and g1. 
 

 
Figure 8.6  2-Band perfect reconstruction filter-bank 

 
 
For a perfect reconstruction bi-orthogonal filter-bank, the scaling filter g0 and its dual 
h0, wavelet filter g1 and its dual h1 are related as follows: 
 

( ) ( ) ( )1 0 11 nh k g N k= − −                (8.15)   

( ) ( ) ( )1 0 11 ng k h N k= − −                                      (8.16) 

In the bi-orthogonal case, there are two scaling functions, which may generate 
different multi-resolution analyses, and accordingly two different wavelet functions. 
So the numbers of coefficients in the scaling sequences may differ. The scaling 
sequences must satisfy the following bi-orthogonality conditions.  
 

( 2 ) ( 2 ) ( ),0 1 0 2 1 2 1 2h k m mg k m δ m m m m Z
n

− − = − ∀ ∈∑                           (8.17) 

1( ) ( ) 00h k h k
n

=∑                             (8.18) 

For the two-band wavelet system, the scaling function and wavelet function are 
defined by the two-scale difference equation as follows: 
 

( ) ( ) ( )2 20φ t g k φ t k
k

= −∑                                           (8.19) 
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( ) ( ) ( )Ψ 2 21t g k φ t k
k

= −∑                         (8.20) 

In case of M-band, (8.19) and (8.20) can be modified as follows:  
 
 

( ) ( ) ( )20φ t g k Mφ t k
k

= −∑                              (8.21) 

( ) ( ) ( )Ψ 21t g k Mφ t k
k

= −∑             `                                   (8.22) 

 
8.2.4.1 Algorithm: To design bi-orthogonal filter-bank  
Step 1: Estimate the statistically matched wavelet 1h  of the order N1 from given 
signal as described in Section 8.2.4. 
Step 2: If it is desired to design wavelet filter of order N2 > N1, then append extra 
zeros before and after such that its order is N2. 
Step 3: Use (8.15) to compute the synthesis-scaling filter g0. 
Step 4: Compute the analysis scaling filter 0h  using (8.17) and (8.18). Here 0h  is 
computed only for those values of m1 and m2 for which the vectors 0 ( 2 )f k m−  
overlap with 0 ( )h k . 
Step 5: Use (8.16) to compute the synthesis wavelet filter 1g . 
Step 6: Design the scaling and wavelet functions from the scaling and wavelet filter 
using 2–scale recursive relations given by (8.19) and (8.20) 
 
8.2 Performance Measurement 

Power quality patterns are detected after compressing the data using statistical 
matched wavelet. To assess the quality of compression, the signal to noise ratio 
(SNR) in decibels is used as the performance index. 
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0( ) 10log10 211

0

T
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s k s k
T k

 − ∑ = =  ∧− −∑  = 

                                           (8.23) 

where T is total number of samples in input signal, s(k) is the original signal and 
( )ks 0

∧  is the reconstructed signal. The parameter SNR provides measurement of 
similarity and mismatch between signal and matched wavelet. Higher SNR means 
higher the quality of reconstructed signal. 
 
8.3 Results of Statistically Matched Wavelet 

The PQ events are generated according to IEEE laid down in monitoring 
manual [105]. These events are detected by compressing the PQ event data using 
statistically matched wavelet. To estimate the H parameter for designing of 
statistically matched wavelet consider the segment of transient PQ event waveform. 
Now estimate the H parameter using (8.3) for the purpose of matching scaling 
function with the applied PQ event. For designing of statistically matched wavelet h0, 
h1, g0 and g1 are calculated as procedure explained in Section 5 and results are 
tabulated in Table 8.1. 
 

Table 8.1 Analysis and synthesis filter coefficients for transient event 
Event Value of 

H 
Filter 
Length 

Filter Coefficients 

Transient 3.1 N=13 h0(-n)=[0  0  -0.518  -0.1354  -0.2243  -0.2243  
-0.2243  -0.2243   -0.2243  -0.1888  -0.0150  0  
0] 
h1(-n)=[0  0  0  0  0.2602  0.0702  0.1000  -
0.3657  0.0908  0  0  0  0] 
f0(-n)=[0  0  0  0  -0.5181  0.1637  -1.0000  -
0.7383  -0.1500  0 0  0  0 ] 
f1(-n)=[0  0  0.0150  -0.1888  0.2243  -0.2243  
0.2243  -0.2243  0.2243  -0.1354  0.0518  0  0] 
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From the recursive relation using (8.19) and (8.20), the wavelet function and scaling 
function for the transient event are designed as shown in Figure 8.7. 
 

         
(a) 
 

      
                                           (b) 

           Figure 8.7 (a) Statistically matched wavelet (b) scaling function 
 

Designed filters are used for application of compression as a result the event is 
detected. Figure 8.8 shows the six level of decomposition for transient event. It is 
analysed that statistical matched wavelet provides compression up to six level of 
decomposition as compared to Daubechies four level. The results are shown for 
transient event as the objective signal can be any type of signal to be detected. 
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Figure 8.8 Decomposition of transient event using statistically matched wavelet  
(a)–(b) depicts first level decomposition having low pass information A1 and high 
pass information D1 (c)–(d) depicts second level decomposition having low pass 
information A2 and high pass information D2 (e)–(f) depicts third level 
decomposition having low pass information A3 and high pass information D3 
(g)–(h) depicts forth level decomposition having low pass information A4 and 
high pass information D4 (i)–(j) depicts fifth level decomposition having low pass 
information A5 and high pass information D5 (k)–(l) depicts sixth level 
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Table 8.2 SNR of Transient Event 
 1st level of 

decomposition 
2nd level of 
decomposition 

3rd level of 
decomposition 

4th level of 
decomposition 

5th level of 
decomposition 

6th level of 
decomposition 

Db1 33.7175 33.1647 30.2881 24.5309 22.7936 21.3397 
Db2 38.7732 34.4003 30.1748 25.7375 21.9717 21.3112 
Db4 44.3172 36.9045 32.0737 29.4073 23.9872 22.2787 
Db6 40.5654 35.6775 31.5412 27.9025 22.4232 21.6418 

Matched wavelet 48.3684 43.8273 38.1789 35.6121       33.1050 28.4110 
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decomposition having low pass information A6 and high pass information D6 
(m) original event (n) reconstructed event after six level of decomposition. 
  
The parameter SNR is used in order to measure the quality of proposed method. For 
the transient event, Table 8.2 shows that the value of SNR is optimal for statistically 
matched wavelet in compare to Daubechies wavelet for all level of decomposition.  

Therefore, in statistically matched wavelet, numbers of samples are reduced by 
1/64 as compare to 1/16 in Daubechies wavelet. So detection by statistically matched 
wavelet takes less time to detect events and work well in real time. The detected 
events are classified using classifier based on Iterative Closest Point algorithm which 
is described in next section.  
 
8.1 Iterative Closest Point Algorithm 

In power engineering, problems of PQ are not limited only to detection and 
localization of disturbances. More important is the ability to classify various types of 
PQ disturbance [107], [109]. This section explains the classification process based on 
Iterative Closest Point (ICP) algorithm followed to support a particular event.  

 ICP is an algorithm employed to match two clouds of points. The ICP is 
designed to fit points in a target signal to points in a control signal. It is important that 
an initial estimate is made regarding where the overlay of the signals should be. The 
base component of the algorithm calculates the smallest distance between each point 
in the target signal to a point in the control signal. These calculated points are then 
used to form a translation vector that is applied over all points in the target signal to 
adjust them towards the control signal. This process is repeated numerous times, with 
the end result being a target signal with points that are within a specified squared error 
distance of their corresponding points in the control signal. The algorithm is very 
simple and it iteratively estimates the transformation between two raw scans. 
 
8.1.1 Algorithm: ICP 
Step 1: Establish correspondence between pairs of features in the two structures that 
are to be aligned based on proximity,  
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Step 2: Estimate the rigid transformation that best maps the first member of the pair 
onto the second member. 
Step 3: Apply that transformation to all features in the first structure.  
Step 4: These three steps are then reapplied until convergence is concluded. The ICP 
algorithm always converges monotonically to a local minimum with respect to the 
mean square error distance as objective function.  
 
8.2 Results of Classification     

The PQ event when tested with ICP algorithm has given the results in the 
corresponding ranges of the translation values as depicted in Table 8.3. Based on 
resulting translation vector, the event is recognized.  
 

Table 8.3 Range of translation vector 
S No. Event Max. value Min value Range 
1 Transient 0.0979 0.0541 0.0438 
2 Sag 0.0079 0.0053 0.0026 
3 Swell 0.0199 0.0172 0.0027 
4 Harmonic 0.0375 0.0318 0.0057 

 
 

Table 8.4 Classification of PQ events 
 Transient Sag Swell Harmonics 

Transient 96 02 01 01 
Sag 0 97 03 0 
Swell 0 8 92 0 

Harmonic 02 04 04 0 
 

 
In Table 8.4, confusion matrix is showing the performance of ICP algorithm 

based classifier. It demonstrates the number of times the ICP method could 
successfully distinguish among the various PQ events. The diagonal of the matrix 
shows the correct recognition of the PQ events. The ICP works very well with signals 
of high resolution and gives values of translation vector to be approximately zero in 
case of matching patterns, or horizontally and vertically shifted patterns. In the case of 
tilted or unaligned patterns, the method is found to give varied results.   
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8.3 Conclusions 
 The effectiveness of designed statistically matched wavelet has been tested for 

detection of real time generated PQ events. The statistically matched wavelet provides 
compression up to six level of decomposition as compared to Daubechies four level of 
decomposition. Thus, number of samples to detect PQ events is reduced using 
statistically matched wavelet as compared to Daubechies wavelets. The proposed 
technique takes very less time to detect PQ events and works efficiently in real time. 
For classification of detected events, ICP algorithm has been used. The results carried 
out on 100 samples show that proposed classifier based on ICP algorithm gives better 
results of classification. It classifies events correctly in presence of outlier points and 
Gaussian noise. 
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Chapter 9 
Morphmap for Non-Linear Dimensionality 
Reduction  
 
 

The proposed method is an improvement over the well known non-linear 
dimensionality reduction techniques such as Isomap and LLE. In the proposed method 
neighborhood graph construction is topology based instead of a constant epsilon or k 
nearest neighborhood method. Isomap and LLE methods require a user base input or 
calculation of k, which is itself a computational burden. In the proposed method, 
neighborhood graph construction is done by stacking image in third dimension using 
Morphological mapping (Morphmap). The Cohn-Kanade (CK), Japanese Female 
facial expression (JAFFE) and Aleix Martinez and Robert Benavente (AR) face 
database have been used to evaluate the performance of the proposed method. The 
results of proposed method show the improvement over computationally expensive 
Geodesic distances method used in Isomap. 
 
9.1 Introduction 

Human being has a very intelligent and fast system. For example while moving 
in a bus, it comes across a very large number of scenes but does not get exhausted. 
The recognition using computers is fast with reduced dimensions. While studying 
various dimensionality reduction techniques, it has been noticed that though the 
techniques are getting faster but the qualitative information content in the low 
dimensional space is going down. Any dimensionality reduction technique cannot 
work practically till it is computationally efficient and at the same time the features 
inherent in the scene are not lost. 

Isomap preserves global properties, like the Geodesic distances, approximated 
as shortest paths on the proximity graph. Semidefinite embedding algorithm 
maximizes the variance in the data set while keeping the local distances unchanged, 
thereby approximately preserving Geodesic distances in the manifold [41]. Finally, 
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the Isomap algorithm considers both local and global invariants [17]. Short Geodesic 
distances are assumed to be equal to Euclidean distances, and longer ones are 
approximated as shortest paths length on the proximity graph, using standard graph 
search methods like Dijkstra’s algorithm [88]. Isomap then uses multidimensional 
scaling, attempting to find an m-dimensional Euclidean representation of the data, 
such that the Euclidean distances between points are as close as possible to the 
corresponding Geodesic ones. All such methods are based upon the neighborhood 
information. Such methods fail when the data is spread over the image having a 
multiple number of clusters. 

An important point regarding the embedding of the points in the lower 
dimensions is the preservation of the small changes as well as the large changes in the 
overall manifolds of the objects under observations. For this, the method of 
computation of minimum residual variance is proposed which requires the calculation 
of variance for all values of k for selecting optimum value of k. The proposed method 
gives an alternative to the computationally expensive Geodesic distance approach. 
This approach also leads to the birth of the concept of group vectors, a cluster of 
vectors depicting the valid connections of any selected point with neighboring points 
lying in the next traversed stacked layer.  

The paper is organized in the following manner. The details of proposed non-
linear dimensionality reduction method using Morphmap are described in Section 9.2. 
The multiclass SVMs used for classification is presented in Section 9.3. Section 9.4 
describes the simulation results for face expression recognition. Finally, the 
concluding remarks are given in Section 9.5.  

 
9.2 Proposed Morphmap Method 

In proposed method, the neighborhood graph construction is topology based 
instead of k nearest neighbors or constant epsilon (ε) method, both the methods 
require a user base input. In earlier methods, the calculation of k or ε is a 
computational burden. They do not take the topology of intensity variation of object 
in consideration.  
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In proposed method, the depth information present in the image has been 
stacked in third dimension for each significant object present in the image. The 
concept of Morphological mapping has been used for visualizing an image in three 
dimensions: two spatial coordinates versus gray levels (by stacking image in third 
dimension). The representation of the depth has been taken into account within small 
area in these objects by applying the intensity attenuation function used in graphical 
modeling. 

 

1( ) 2( )0 1 2
F d

a a d a d
=

+ +
                 (9.1) 

 

where , and0 1 2a a a are variants used to depict shading information with respect to 
light source. Usually in case of large distances 1a is negligible and in case of small 
distances 2a  is negligible.  
 

 
Figure 9.1 Separations of neighborhood pixels 

 
Reciprocating the (9.1),  
 

2 1( )0 1 2 ( )a a d a d F d+ + =                  (9.2) 
 

Using (9.2) for pixels p and q in Figure 9.1, (9.3) and (9.4) are obtained as given 
below: 
 

2 1( )0 1 1 2 2 ( )1a a z a z F z+ + =                  (9.3) 
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2 1( )0 1 1 2 2 ( )2a a z a z F z+ + =                 (9.4) 
 

Since pixels p and q are extremely close, factor a2 can be neglected. Thus subtracting 
(9.3) and (9.4), (9.5) is obtained as follows: 
 

1 1 .( )1 2 1( ) ( )2 1 a z zF z F z− = −                 (9.5) 
 

Addition of the extra factor 1a  in the planar Euclidean distance between two pixels 
makes the total Euclidean distance as follows: 
 

2 2 2 2 1/ 2(( ) ( ) ( ) )2 1 2 1 1 2 1p q x x y y a z z− = − + − + −                         (9.6) 
 

This leads to the requirement of an algorithm for further connection of points 
not connected to each other. As can be seen in the surface intensity plot of the face 
shown in Figure 9.2, regions or layers of the intensity are created based on intensity 
threshold crossing in each object of interest. For example, in this case the only objects 
of interest in the image are faces. The intensity threshold is iteratively performed on 
the faces starting from the global intensity minima to the edges detected by watershed 
transform. The edges of these layers as traversing up the stack are of common 
intensity. The applications of the proposed method could be done within group 
vectors of two adjacent layers of the stack in a fully connected way as shown in 
Figure 9.2. 

 

 
Figure 9.2 Connected edge pixels in the two adjacency layers 

 
The connection of edge pixels in the two adjacency layers are shown in Figure 

9.2. The solid lines show the valid vectors in group and the dashed lines denote the 
erroneous vectors. This is because the dashed lines are attempting to connect points 
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by traversing through the object. Now consider the two adjacent layers of the object to 
be consecutive cross-sections of a right circular cone as shown in Figure 9.3.  

 

 
Figure 9.3 Adjacent layers of the stack represented as part of the cone 
 
Radii of any pixel in both regions can be found by two dimensional Euclidean 

distances between any edge pixel and centroid of region. Now if any edge pixel has 
radius as R which is the Euclidean distance from the centroid, the angle of divergence 
is given as follows: 

 ( )2. 2.Rd n R n= =                        (9.7) 
 

where n is the number of edge pixels in a circle of radius R. The pixels in the a 
consecutive layers can be connected using the intensity attenuation function given by 
(9.1). The pixels in the layer with the larger area which come directly under the angle 
of divergence of an edge pixel in the smaller layer can form a part of group vector and 
such an approach leads to benefit of removal of erroneous vectors. Further, the 
approach tends to optimize the connections between the two layers which lead to 
further drastic reduction in the computation required for finding the distance matrix. 
The idea of using group vectors is unique to extract the advantage of properly seeking 
relation between points of interest based on the concept of layers. Pixels in non 
adjacent layers are connected using shortest path algorithm. The network of connected 
pixels is then passed through MDS in distance matrix form. MDS has the capability to 
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convert high dimensional data present in the distance matrix into a two-dimensional 
embedding while retaining the distance relations among the points.  
 
9.2.1 Algorithm: Morphmap 
Step 1: Construct neighborhood graph 
(i) The Morphological mapping is used for visualizing an image in three 

dimensions. 
(ii) Number of edge pixels in a circle of radius r connected to consecutive layers 

using intensity attenuation function given by (9.1). 
(iii) The pixels in the layer with the larger area which come under angle of 

divergence given by (9.7) of an edge pixel in the smaller area can form a part of 
group vectors with that pixel and other vectors are removed.  

Step 2: Compute shortest paths 
Pixels in non adjacent layers are connected using shortest path algorithm. 

Step 3: Construct the low dimensional embedding 
The network of connected pixels is then passed through MDS in distance matrix 
form.  

Step 4: Recognition 
     Recognition is performed by multiclass SVM classifier. 

 

In next section, multiclass SVMs is described to distinguish various facial 
expressions. 
 
9.3 Classification using Multiclass SVMs 

The basic description of support vector machines (SVMs) can be phrased as a 
two class classification problem where data points are mapped into a high 
dimensional hyperspace so that they can be separated by a hyper plane [54]. A margin 
exists on each side of the hyper plane which is distanced to the nearest set of data 
points of each class. A high margin indicates good separation and good 
generalization. The data points that sit on the margin are known as support vectors. 
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For facial expressions classification, the embedded KE vectors , 1,...,jg j N=  
are used as input to the SVMs system. All the classes are considered for the 
experiments, each one representing one of the basic facial expressions. The output of 
the SVMs system is a label that classifies the embedded KE under examination to one 
of the basic facial expressions. 

The training data ( , ),..., ( , ) where 1 1 1 Lg l g lN ∈ℜg j  are the KE vectors and 

{ }1,...,6jl ∈  are the facial expression labels of the embedded KE. The training data 
are the facial expression labels of the embedded KE value. The multiclass SVMs 
problem solves only one optimization problem [55]. It constructs basic facial 
expressions rules, where the kth  function ( )wT g bk j kφ +  separates training vectors of 
the class k from the rest of the vectors, by minimizing the objective function: 

 

61min
2 1 1

w w
w,b,ξ

NT kC ξk k jk j k l j
+∑ ∑ ∑

= = ≠
                  (9.8) 

Subject to the constraints 
 

( ) ( ) 2

                ,      j=1,...,N,    k{1,...,6}\l                    

w wT T kg b g bl j l k j k jj j
k oj j

ξ

ξ

φ + ≥ φ + + −

≥
                                      (9.9) 

where φ  is the function that maps the deformation vectors to a higher dimensional 

space, where the data are supposed to be linearly or near linearly separable. C is the 
term that penalizes the training errors and w is the normal vector to the hyper plane. 

The vector [ ... ]1 6b Tb b= is the bias vector and 1 6[ ,..., ,..., ]1 k Ti Nξ ξ ξ=ξ is the slack 

variable vector. Then, the decision function is defined as follows: 
 

 ( ) argmax ( ( ) )
1,...,6
wg gTh bk k

k
= +
=

φ                                                                             (9.10) 
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Using this procedure, a test feature vector is classified to one of the basic facial 
expressions using (9.10). Once the multiclass SVMs system is trained, it can be used 
for testing, i.e., for recognizing facial expressions on new facial image sequences.  
 
9.4 Results 
 

The proposed method for FER has been tested on the CK [80-81], JAFFE [82] 
and AR databases [83]. The CK database contains 97 university students with all six 
expressions (Happiness, Sad, Surprise, Fear, Anger and Disgust). The JAFFE 
database contains 213 images of seven facial expressions (six basic expressions and 
neutral expression also) posed by 10 Japanese female models.  

 

                        
(a)                                      (b) 

    

 
               (c) 
 
Figure 9.4 Sample images from (a) CK database (b) JAFFE database (c) AR 
database 
 

The AR database contains 116 face images, 26 images are available for each 
person. The AR database is captured with different expressions, illumination 
conditions and occlusions (scarf and sunglasses). In the AR database, besides the 
lighting from the left and the right, lighting from both sides of each face is also 
adopted. Sample Images from Cohn-Kanade, JAFFE and AR databases are displayed 
in Figures 9.4 (a), (b) and (c) respectively. In all the databases, single image per 
expression of each subject is selected as training image. 
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Figure 9.5 Morphological plot of a face 
 
 

The proposed method takes topology of intensity variation of each object in 
consideration by selecting each layer on intensity threshold criterion. The 
morphological plot of a face has been shown in Figure 9.5. The pixels in non adjacent 
layers are connected using shortest path algorithm. The network of connected pixels is 
then passed through MDS in distance matrix form. The MDS seeks to preserve the 
intrinsic geometry of the data as captured in the morphological manifold distance 
between all pair of data points [42].  

The 2-D embedding of CK and AR face images are shown in Figure 9.6 (a, b) 
respectively, where each point corresponds to a face. From Figures 9.6 (a, b), it is 
observed that the face images of same person are grouped together and of different 
persons are separated from each other. At the same time, different face expressions of 
a person are separated from each other and similar ones grouped together. Similarly, 
the 2-D embedding of JAFFE face database is shown in Figure 6 (c) where, each point 
corresponds to a face. From Figure 9.6 (c), it is observed that the different face 
expressions are separated from each other and similar ones grouped together. 

Morphmap highlights the natural clusters of the faces and show separate clusters 
between dissimilar faces. They make similar face of the same individual lie in the 
vicinity of the face image space and make dissimilar faces from different individuals 
appear far away in their reduced embedding spaces. 
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Figure 9.6 Two-dimensional embedding by Morphmap of (a) CK database (b) 
AR database (c) JAFFE database 
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The multiclass SVMs has been used as classifier for computing recognition 
accuracy. The output of the SVMs system is a label that classifies the one of the basic 
facial expressions under examination. Using this procedure, a test feature vector is 
classified to one of the basic facial expressions using (9.10). It is observed that 
expressions captured under different illumination have also been recognized using 
proposed method. 

 
Table 9.1 Recognition Accuracy of CK Database 

Method Recognition accuracy (%) 
LLE 77.9 

Isomap 77.2 
Morph map 79.2 

 
 

Table 9.2 Recognition Accuracy of JAFFE Database 
Method Recognition accuracy (%) 
LLE 80.7 

Isomap 79.9 
Morph map 81.6 

 
 

Table 9.3 Recognition Accuracy of AR Database 
Method Recognition accuracy (%) 
LLE 78.2 

Isomap 77.0 
Morph map 78.8 

 
 

The proposed method has been compared with LLE and Isomap. The results of 
recognition accuracy for CK, JAFFE and AR databases are depicted in Tables 9.1, 9.2 
and 9.3 respectively. The recognition accuracy of Morphmap based method is better 
than LLE and Isomap. The computational complexity of Morphmap is much less as 
compared with other LLE and Isomap. The comparative results clearly demonstrate 
that the proposed method works well to discover the non-linearity of the various facial 
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expressions. The results of facial expression recognition are better than the LLE and 
Isomap methods and it is also much efficient in terms of computation cost.  
 
9.5 Conclusions 

The proposed Morphmap based method has improved the computationally 
expensive Geodesic distance method used in Isomap. The proposed method may be 
applied, when non-linear geometry complicates the use of Isomap, LLE or related. 
The proposed method help in better understanding of how the brain comes to 
represent the dynamic appearance of objects and suggest a central role for Geodesic 
transformations on non-linear manifolds. 
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Chapter 10 
Conclusions and Scope of Future Research 
 
 

In this chapter, the main results from the different chapters have been clubbed 
together with general conclusions. Finally, some exploratory extensions of this work 
are proposed. 

 
10.1 Conclusions 

In this thesis, firstly linear dimensionality reduction techniques have been 
discussed and an improved MFA is introduced which is performing significantly 
better than LDA for classification of data. The LDA works on the assumption that the 
data of each class has a Gaussian distribution while MFA is applicable for all types of 
data. Moreover, the MFA with suitable threshold value has improved the recognition 
accuracy and detection of forged signatures.  

Secondly, the stress function is improved for efficiently handle non-linear 
manifolds. Sammon’s NLM can efficiently handle non-linear manifolds, at least if 
they are not too heavily doped. As a main drawback, Sammon’s NLM lacks the 
ability to generalize the mapping to new points. Another shortcoming of NLM is its 
optimization procedure, which may be slow or inefficient for some data sets. CCA is 
much more flexible because the user can choose and parameterize the weighting 
function. From a computational point of view, the optimization procedure of CCA 
works much better than the quasi-Newton rule of Sammon’s NLM. On the other hand, 
the interpretation of CCA error criteria is difficult, since weighing function is 
changing when CCA is running. 

The existing non-linear methods are efficient at visualizing artificial data sets 
and powerful to handle non-linear data. However, they fail to identity inter or 
intraclass types of neighborhoods and unable to handle discriminatory information. To 
address these issues, constraint Isomap is proposed that provides geometrical as well as 
discriminatory information of data and powerful for handling multiple-class real 
problems. Clustering results obtained by constraint-Isomap are better than existing 
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non-linear dimensionality reduction methods. From the experimental results, it is 
observed that constraint Isomap is delivering clear separation on the manifold 
embedding of multiple classes.  

 A novel framework for non-linear dimensionality reduction has been proposed 
to extract prominent features of a person using fuzzy lattices.  The developed method 
directly accommodates the local non-linear behaviour of any object. The message 
being conveyed or expression being expressed by a person can be known efficiently 
by proposed method. The experimental results show that the recognition accuracy of 
proposed method is better than PCA, LDA, Isomap, LLE, GVLVM, LBP and Gabor 
feature based methods. It is showing promising results on data captured in lab 
controlled conditions as well as real world like environment. It also has advantage of 
less numbers of dimensions of feature space. The method can also be applied for lips 
recognition, hand writing recognition and image tracking. Compared to earlier 
framework for analyzing high dimensional data that lie on or near a low dimensional 
manifold, the proposed method has interesting property of representing any object 
with small set of features. 

The fuzzy lattice based technique has also been tested to distinguish various 
types of PQ events. It is demonstrated that the algorithm can efficiently distinguish 
the PQ events based on variation of embedded KE value. The value of embedded KE 
shows a substantial change whenever there is any change in PQ event. As a result, the 
fuzzy lattice based algorithm can efficiently distinguish the real time generated PQ 
events in a single cycle. While the earlier techniques based upon wavelets, 
distinguishes the PQ events in the few cycles of the power signal.  

The wavelet statistically matched to the signal has been developed and applied 
for application of data compression. The effectiveness of designed statistically 
matched wavelet has been tested for detection of real time generated PQ events. The 
statistically matched wavelet provides compression up to six level of decomposition 
as compared to Daubechies four level of decomposition. Thus, number of samples to 
detect PQ events is reduced using statistically matched wavelet as compared to 
Daubechies wavelets. The proposed technique takes very less time to detect PQ 
events and works efficiently in real time. For classification of detected events, ICP 
algorithm has been used. The results carried out on 100 samples show that proposed 
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classifier based on ICP algorithm shows better results of classification. It classifies 
events correctly in presence of outlier points and Gaussian noise. 

Another proposed Morphmap based method has improved the computationally 
expensive Geodesic distance method used in Isomap. The proposed method may be 
applied when non-linear geometry complicates the use of Isomap, LLE or related. The 
proposed method help in better understanding of how the brain comes to represent the 
dynamic appearance of objects and suggest a central role for Geodesic 
transformations on non-linear manifolds. 
 

10.2 Scope of Future Research 
Nonetheless, there remain many issues to explore, and I hope this work inspires 

further research. In future, development of non-linear dimensionality reduction 
techniques can be carried out that do not suffer from the presence of trivial optimal 
solutions and do not rely on hood graphs to model the local structure of the data 
manifold. The other concern in the development of novel techniques for 
dimensionality reduction is their optimization, which should be computationally and 
numerically feasible in practice thus allowing it to be applied to a wider section of 
datasets.  

However, many of the commonly used non-linear dimensionality reduction 
techniques, such as Locally Linear Embedding or Laplacian Eigenmaps, do not 
produce conformal maps. Post-processing techniques formulated as instances of semi-
definite programming problems can be applied to the output of either Locally Linear 
Embedding or Laplacian eigenmaps to produce a conformal map. However, the 
effectiveness of this approach is limited by the computational complexity of SDP 
solvers. In future, an alternative post processing algorithm can be developed that 
produces a conformal map but does not require a solution to SDP problem and thus, 
more computationally efficient. 
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