
i

ANALYSIS AND DEVELOPMENT OF TEXT-TO-SQL

TRANSLATION SYSTEM USING LARGE

LANGUAGE MODELS (LLMs)

Thesis Submitted

in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF TECHNOLOGY
in

Data Science

by

Pradyumn Shukla
(2K23/DSC/14)

Under the supervision of

Dr. Sanjay Patidar

Assistant Professor, Department of Software Engineering,

Delhi Technological University

Department of Software Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Bawana Road, Delhi - 110042, India

May, 2025

ii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE DECLARATION

I, Pradyumn Shukla, hereby certify that the work which is being presented in the thesis entitled

Analysis and development of Text-to-SQL Translation system Using Large Language

Models(LLMs) in partial fulfillment of the requirements for the award of the Degree of Master

of Technology submitted in the Department of Software Engineering, Delhi Technological

University in an authentic record of my work carried out during the period from August 2023

to May 2025 under the supervision of Dr. Sanjay Patidar.

The matter presented in the thesis has not been submitted by me for the award of any other

degree of this or any other Institute.

 Pradyumn Shukla

This is to certify that the student has incorporated all the corrections suggested by the examiner

in the thesis and the statement made by the candidate is correct to the best of our knowledge.

Signature of Supervisor Signature of External Examiner

iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road,Delhi-42

CERTIFICATE BY THE SUPERVISOR

I hereby certify that Pradyumn Shukla (Roll no 2K23/DSC/14) has carried out their research

work presented in this thesis entitled “Analysis and development of Text-to-SQL Translation

system Using Large Language Models (LLMs)” for the award of Master of Technology from

the Department of Data Science, Delhi Technological University, Delhi under my supervision.

The thesis embodies results of original work, and studies are carried out by the student himself

and the contents of the thesis do not form the basis for the award of any other degree to the

candidate or to anybody else from this or any other University/Institution. To the best of my

knowledge this work has not been submitted in part or full for any Degree or Diploma to this

University or elsewhere.

 Dr. Sanjay Patidar

 Assistant Professor

Department of Software Engineering

DTU-Delhi,

India

Place: Delhi

Date:

iv

Analysis and development of Text-to-SQL Translation system Using Large

Language Models (LLMs)

Pradyumn Shukla

ABSTRACT

The increasing reliance on data-driven decision-making has brought intuitive database access

into limelight, particularly for inexperienced users. Text-to-SQL technologies bridge this

shortcoming by converting natural language queries to SQL queries and thereby render

database interaction more intuitive. Large Language Models have also influenced the

Text2SQL system paradigm towards predicting correct and context-aware SQL. This survey

maps the historical development of Text2SQL approaches from rule-based systems to LLM-

based neural models. Extensive efforts have gone into using prompt engineering, schema

alignment methods, and domain fine-tuning to ensure higher accuracy and generality. The

models now exhibit significant progress in understanding complex queries as well as precise

SQL code generation through emergent Large Language Model capabilities. The early

systems had extremely strong template-based or rule-based mechanisms, whereas generation

these days is extremely advanced neural systems brimming with domain knowledge and

highly specialized embeddings. Although LLMs, particularly GPT and BERT, have really set

the bar high for query interpretability and execution accuracy, there are significant challenges

regarding meeting the needs of domain specificity, intricate queries, and scalability across

heterogeneous schemas. It also pointed out how the RAG generation mechanism has been

integrated and called for a paradigm shift towards adopting TAG for richer schema interaction.

Future directions involve developing explainable models, fine-tuning multiturn

conversational capabilities, and optimizing computational efficiency toward robustness and

ease of use for Text2SQL systems. By addressing the gaps, the study lays the foundations for

innovations in database querying, using LLMs to redefine accessibility and usability for a

wide range of users.

Keywords - Text-to-SQL, Large language models (LLMs), Retrieval augmented Generation

(RAG), Prompt Engineering, Query Interpretability, Cross-Domain Generalization, TAG,

Complex Queries, Data-Driven Decision-Making.

v

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my project guide Dr. Sanjay Patidar,

Assistant Professor, Department of Software Engineering, Delhi Technological

University, for his guidance with unsurpassed knowledge and immense

encouragement. I am also grateful to Prof. Ruchika Malhotra, Head of the Department,

Software Engineering, for providing us with the required facilities for the completion

of the Dissertation.

I'd also like to thank our lab assistants, seniors, and peer group for their aid and

knowledge on a variety of subjects. I would like to thank my parents, friends, and

classmates for their encouragement throughout the project period.

Pradyumn Shukla

2K23/DSC/14

vi

TABLE OF CONTENTS

CANDIDATE’S DECLARATION ii

CERTIFICATE BY THE SUPERVISOR(s) iii

ABSTRACT iv

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER 1: INTRODUCTION 1

1.1 Background 3

1.2 Motivation 5

1.3 Research Gap 6

1.4 Objectives 7

1.5 Thesis Structure 8

CHAPTER 2: RELATED WORK 9

CHAPTER 3: METHODOLOGY 18

 3.1 Problem Formulation 20

 3.2 Data Description 20

 3.3 RAG-Based Design 19

 3.4 Data Preprocessing 21

 3.5 Training and Fine-tunning 22

 3.6 Inference Mechanism 22

CHAPTER 4: EXPERIMENTAL SETUP 23

CHAPTER 5: RESULTS AND ANALYSIS 25

CHAPTER 6: CONCLUSION & FUTURE WORK 33

REFERENCES 35

vii

LIST OF TABLES

Table 2.1 Comparison of different Datasets and their characteristics 13

Table 2.2 Comparison of different research techniques and contributions 15

Table 5.1 Comparison of accuracy on different SQL queries 29

viii

LIST OF FIGURES

Fig. 1.1 Framework Diagram 5

Fig. 3.1 Flowchart/Transition Diagram 19

Fig. 3.2 Representation of Table schema 21

Fig. 4.1 Evolution of Language Models 24

Fig. 5.1 Predicted query of result 28

Fig. 5.2 Standard query of result 28

Fig. 5.3 Resultant Predicted query 28

Fig. 5.4 Resultant Standard query 28

Fig. 5.5 Analysis of Generated Query results 31

ix

LIST OF ABBREVIATIONS

NLP Natural Language Processing

SQL Structured Query Language

RAG Retrieval-Augmented

Generation

TAG Table-Augmented Generation

EM Exact Match

EX Execution Accuracy

PLM Pretrained Language Model

EDA Exploratory Data Analysis

BERT Bidirectional Encoder

Representations from

Transformers

API Application Programming

Interface

NLIDB Natural Language Interface to
Database

1

CHAPTER 1

INTRODUCTION

The SQL again secured top spot in the IEEE Spectrum 2023 "Top 10

Languages" report, proving that it is still highly relevant within the job market. That

is because SQL plays an important role in data-driven decision-making and, thus, is a

very important skill in a wide variety of professions: from DBMS administrators or

DBAs, and developers to Business Intelligence analysts or BI. Besides these technical

roles, SQL proves to be helpful in product management, operations, compliance, and

business strategy. However, it becomes very difficult for nontechnical staff to learn,

as it requires in-depth knowledge of how databases are structured and the language of

SQL itself.[1]

Text-to-SQL, which focuses on transforming natural language text inputs into accurate

SQL queries, has emerged as a growing area of research at the intersection of database

management and NLP [2]. The early works on this field had come from the database

community, which indeed presented custom template-based methods, as by Zelle and

Mooney in 1996.[3] Even though these early methods had revolutionized the era time,

they also tended to be often time-consuming and therefore not scalable and flexible.[4]

NLP has contributed immensely to human-computer interaction by transforming it

into a much easier and simpler. This is particularly evident in the development

regarding querying databases, which hitherto required specialized knowledge in SQL

as described by [5]. Text-to-SQL, commonly referred to as Text2SQL, systems ease

this burden by translating natural language queries into their SQL statements, thus

enabling even the non-technically savvy user to access data.

Traditional Text2SQL systems rely mostly on rule-based or template-driven

approaches for their Accuracy and Efficiency, which hardly generalize for different

queries, let alone complex ones. Then came large language models, capable of

comprehension and generation of human-like textual content-a trans-formative

opportunity for enhancement in Text2SQL systems. [6] These models, pretrained on

vast amounts of text data, have shown remarkable proficiency in understanding

2

contextual nuances, making them well-suited for the challenges of converting Natural

language into SQL queries. This research investigates the integration of LLMs into

Text2SQL frameworks to overcome challenges in processing ambiguous queries,

improving accuracy with respect to complex database schema complexities, and

scalability issues.[7] In an endeavor to leverage the prowess of LLMs, the current

research focuses on designing a Text2SQL system more resilient and adaptable,

capable of arming users with fluent ways of accessing data by helping to understand

how such models can redefine database querying at this juncture.[8]

Seamless access to data is considered crucial in today's context when data-driven

decisions across industries are becoming indispensable to achieve progress. SQL is

still the main language for database querying; These systems ease the process of

database access, hence increasing productivity by simplifying database access and

manipulation without prior knowledge of SQL. LLMs such as GPT, BERT, and

Gemini Pro emerged as stronger performers in the whole range of NLP tasks from text

generation to semantic understanding and coding.[9][10] The ability of these LLMs to

understand subtle word relationships and respond accordingly made them good-fitting

competitors to break the limitations of the traditional Text2SQL paradigms.[11]

RAG (Retrieval Augmented Generation) currently, RAG has become an incredibly

prospective paradigm to enrich the factual correctness and contextual relevance of

large language models (LLMs). In contrast to the conventional encoder-decoder model

dependent on pre-trained knowledge in its raw form, RAG enriches the generation

with meaningful knowledge brought in real time from an external knowledge base.

This blended method is especially suitable for text-to-SQL models, where domain

knowledge and correct schema understanding are most critical. Incorporating retrieval

mechanisms within the generation pipeline, RAG enables models to make their output

valid in the real world and contextually relevant, thereby improving the fidelity of

SQL query generation. In the context of this research, we look at how integrating RAG

into text-to-SQL pipeline helps to increase performance, particularly in low-resource.

3

1.1 Background

currently, LLMs have revolutionized the face of Natural Language and are

significantly involved in how machines understand and generate human language.

These models trained on very large datasets are very strong in reading linguistic

patterns, context relationships, and semantic meaning, which makes them very useful

in solving hard NLP problems.[12] The biggest innovation of LLMs is how they

address contextual comprehension in language. In contrast to prior models that

operated on pre-crafted rules or shallow statistical approaches, LLMs analyze the

broader context of words within a sentence or paragraph. This allows it to manage

ambiguity and subtle nuances of human communication, which is very important for

sentiment analysis, machine translation, and conversational AI.[13][14] The LLMs

also bridge the gap in domain-specific languages and general communications. Their

pretraining on diverse datasets allows them to adapt with fine-tuning to specialized

applications, hence finding their applications in healthcare, legal, and finance. For

example, they can be fine-tuned to generate precise medical reports or understand

complex legal documents.[15] Furthermore, LLMs have brought about massive

revolutionizing in human-machine interaction. The application such as virtual

assistants, chatbots, and Text2SQL systems are much more intuitive and accurate, thus

making the inter-action of non-technical users with technology very easy. [16]

In short, LLMs form the backbone of modern NLP in view of their better con-textual

understanding, adaptation to different domains, and making AI applications more

available and efficient. Their ongoing development continues to shape the future of

language-based AI solutions.

1.1.1- Large Language Models (LLMs) In Text2SQL –

The Recent large language model developments have spawned a set of new methods

that take advantage of the unprecedented prowess in natural language understanding

with Text2SQL. It examines applications of LLMs to the Text2SQL task. It puts into

perspective foundation models, techniques for optimizing their performance by the

use of prompt engineering and fine-tuning, and benchmark datasets serving as test.

4

1.1.2- LLM and Text to SQL Framework –

Framework suggests the architecture and overall working of the text to SQL system

and its important factors described below -

User Interaction: The process will be triggered when a user sends a natural language

query such as "I want to know the average prices of all car brands." The system then

processes this query for further action.

Knowledge Base Integration: It also hooks up to a knowledge base describing most of

the salient details about the schema of the database, including table and column names

and data types. The knowledge base also supports sample SQL queries and

mathematical functions like avg (), which returns an average value.[8]

Prompt Engineering: To better understand it, a prompt template is designed. It

contains the user's query, the description of the task, and the database schema. There

are even allied resources that accompany it, such as similar SQL queries and allied

database operations. [9]

LLM Processing: The LLM next processes the formatted prompt in order to generate

a suitable SQL query: for instance, from a user's request for average car prices by

brand, the system would return a query such as "SELECT AVG(Price) FROM Cars

GROUP BY Brand;”.[10]

Fine-Tuning and Training: Moreover, a fine-tuning dataset is used in order to improve

the performance of the LLM. The fine-tuning dataset contains examples of natural

language queries with their corresponding database schema and correct SQL

queries.[12] The output produced by the LLM is compared with a reference "golden"

SQL query, and thus its accuracy is evaluated.[15]

Query Execution: Once the SQL query is generated, it is transmitted to the data-base

for execution. The database processes the query and retrieves the information

requested.

Response to User: Once this data has been retrieved by the system, it formats it into a

user-friendly format and presents it back to the user, and the cycle of inter-action is

complete.

Prompt Engineering: It increases the LLM's knowledge by contextualizing the

information in clear and structural terms, similar to database schema information.

Fine-Tuning: Real-world datasets and iterative feedback are used to fine-tune the

ability of the LLM to generate accurate queries.

Knowledge Base: The knowledge base acts as a central repository to enrich the LLM's

knowledge of the database schema and associated queries.

5

Fig 1.1 Architecture of the text-to-SQL system

1.2 Motivation

In numerous industries, the use of structured databases is becoming increasingly

common, which, in turn, creates a need for more user-friendly ways to access the data.

Even though querying databases via Structured Query Language (SQL) is often

regarded as one of the best methods to retrieve information, it is typically associated

with a high degree of difficulty. Because of this, technicians and non-technical staff

alike face a considerable challenge that limits their ability to access data, creating

problems within business intelligence, research, and operational workflows.

6

Users find it convenient to frame their database queries in natural or informal

language. Natural Language Interfaces to Databases (NLIDBs) also exist with the aim

of closing this gap by interpreting such queries and translating them into formal SQL

queries. But the creation of accurate and domain-independent NLIDBs has been a

long-standing problem. This is mainly because it is challenging to translate several

and vague natural language expressions into syntactically and semantically well-

formed SQL statements. Hence, despite all the advances made, the issue of building

universally dependable NLIDBs remains an open research problem.

The emergence of Large Language Models (LLMs) has shown considerable promise

with regard to natural language interfaces. They can represent text in a manner to

respond to different tasks and paraphrase queries efficiently—like translating a query

such as "What is the population of China?" to an organized SQL query. But their

performance would worsen on encountering domain-based databases, especially with

strict schemes and thin contextual clues. Here, a lack of context grounding and schema

knowledge results in extreme difficulty for exact SQL generation. the primary stages

involved in the Process of Text to-SQL powered by Large Language Models (LLMs).

It begins with a user submitting a query in natural language. Next, the process moves

to schema linking, where elements of the query are aligned with corresponding

components of the database schema. Using these mappings, the LLM generates an

appropriate SQL query, which is then executed on the database to retrieve the desired

information.

1.3 Research Gaps

Research Gap Questions and Answers –

1. How to improve the generalization capability of LLM-based Text-to-SQL models

across a broad variety of domains?

Answer: Generalization is still one of the largest challenges for LLMs, particularly to

new schemas or domain-specific knowledge. The development of more sophisticated

fine-tuning methods and the construction of well-balanced sets in different domains

such as healthcare, finance, and logistics should be targeted in subsequent research.

Adaptability can also be enhanced through use of methods like meta-learning or

transfer learning.

2. What are the modern-day constraints in processing complex SQL queries having

nested or multi-join statements?

7

Answer: LLMs typically perform poorly with compound questions because of a lack

of context comprehension and schema linking processes. Improved schema-linking

algorithms and prompt engineering with structure can be included to counter this flaw.

Additionally, the sequence reasoning framework has been incredibly promising in

enhancing the interpretability of models and accuracy of questions asked.

3. What can enhance the interpretability and reliability of LLM-based Text-to-SQL

models?

Answer: Use of visualization tools, tracing query generation, and critic modules to

screen queries can improve explainability, hence building trust in the user.Error

detection and correction mechanisms within the generation pipeline will increase its

reliability and, consequently, user confidence.

4. How do conversant-SQL systems preserve multi-turn context in dynamic

conversations best?

Answer: Multi-turn context can be stored and used by memory-augmented LLMs or

transformer models oriented towards conversation. Future models would also require

adaptive context windows, which dynamically change depending on query complexity

and user intent.

5. What is the current barriers Text-to-SQL systems in real-world applications, and

how can they be overcome?

Answer: Deployment may be hampered by the shortage of datasets specific to a

domain, scalability issues, and integration with already-existing databases. Those

would be addressed by developing tailor-made datasets with industry stakeholders and

using modular architecture like SQL fuse.

1.4 Objectives

The key research goals are –

To Investigate Current Text2SQL Approaches: Examine and classify the range of

methods employed by Text2SQL systems, specifically their design approach,

advantages, and disadvantages.

8

To Study the Contribution of Large Language Models (LLMs): Explain the

contribution made by LLMs in enhancing Text2SQL performance through enhanced

natural language comprehension, schema matching, and query accuracy.

To Emphasize Challenges and Gaps: List currently existing challenges that Text2SQL

systems currently pose with regard to requiring resolution, e.g., handling noisy

queries, handling multi-schemas, efficiency and scalability.

To Quantify Performance Metrics: Describe the performance metrics with regard to

which Text2SQL systems are typically measured and how incorporation of LLM

integration constitutes a subset of such metrics.

To Offer Future Research Directions: Offer future research directions and suggestions

within the field, e.g., future paradigms of using LLMs in building effective and user-

friendly Text2SQL models.

1.5 Thesis Structure

The remaining part of the thesis is structured as follows:

• Chapter 2 – Related work: Explains prior work on text to SQL systems and

comparative study of proposed and

• Chapter 3 – Methodology: Explains about the Problem formulation,

Algorithm, dataset description, Inference mechanism, and evaluation metrics.

• Chapter 4 – Experimental Setup and Results: Describes tools and libraries

used, evaluation measure used, experiments, and comparison outcomes.

• Chapter 5 – Results and Analysis: Examines results, considers limitations, and

discusses possible extensions and improvements.

• Chapter 6 – Conclusion and Future Work: Provides an overview of conclusions

and some possible future research directions.

9

CHAPTER 2

RELATED WORK

This section provides a concise summary of the articles taken as a reference and

mentioned in the table -

2.1 Conventional Text-to-SQL Techniques Before LLMs

Prior to the advancement of large language models (LLMs), several Text-to-SQL

approaches were developed using traditional learning-based methodologies. These

approaches are generally categorized into two types based on their underlying network

architecture: non-sequential-to-sequential (non-seq2seq) and sequential-to-sequential

(seq2seq) models.[2] non-seq2seq methods usually utilize deep encoders, such as

those based on relation-aware self-attention mechanisms, to encode the input query

representation and database schema representation. The SQL query is then built from

either a grammar-based decoder that outputs an abstract syntax tree or a sketch-based

decoder that completes slots to output the final query. Further, pre-trained models such

as BERT and its variants have also been used to improve such systems by pre-

initializing input embeddings, with subsequent improvement in performance.[1]

Alternatively, seq2seq models apply transformer models for end-to-end natural

language question-to-SQL command translation with a direct approach. [5] This

model avoids intermediate structure so that there is more integrated and efficient query

generation. Both methods set the stage for Text-to-SQL development, with strengths

and weaknesses setting the stage for future innovation.[3]

10

2.2 Deep Learning Techniques

Deep learning which was released in 2017 was the Text-to-SQL systems breakthrough,

revolutionizing the process by which natural language queries were parsed and

converted to SQL commands. [6] Deep learning models were indeed trained to parse

the natural language itself and produce corresponding SQL queries [2].Seq2SQL and

SQL Net which preceded it were breakthrough work, using sequence-to-sequence

models based from neural networks like transformers and long short-term memory

(LSTM). These methods provided an end-to-end model that translated text that

effectively captured contextual and structural properties of language[10]. The deep

learning revolution brought a significant performance increase with improved

accuracy, greater flexibility in managing diverse queries, and scalability for big data.

These developments made it possible for Text-toSQL systems to create even more

advanced and interactive solutions.

2.3 The Pre-trained Language Models (PLMs)

Pre-trained language models (PLMs) have made a paradigm-shifting contribution

towards the evolution of natural language processing by defying the traditional task-

specific training regime and embracing a general paradigm. Rather than developing

discrete models for each task, PLMs train over huge volumes of unlabeled text corpora

so that they acquire a general idea of linguistic structure and meaning. Such

widespread models like BERT (Bidirectional Encoder Representations from

Transformers) and GPT (Generative Pre-trained Transformer) are evidence of this shift

and provide the components of modern NLP with the pretraining strategy used in them.

The transfer learning here enables PLMs to adapt their general understanding of

language to specific tasks like sentiment analysis, text summarization, or question

answering through their use. This innovation not only makes the model more powerful

in a variety of applications but also reduces the need for quantities of annotated data

11

per new application. Thus, PLMs have emerged as a standout breakthrough in raising

the versatility, scalability, and accessibility of NLP systems.

2.4 Text-to-SQL Techniques Leveraging Large Language Models

The cyclical progress in LLMs has given rise to new areas of further enhancing

human-relational database interaction. Researchers are continuing to investigate the

potential of employing LLMs to offer natural language interfaces for querying

databases, giving rise to a new trend known as LLM-based Text-to-SQL systems. Such

models perform markedly superior in domain generalization and zero-shot reasoning

and are best suited for cross-domain query generation tasks. This ability has resulted

in iterative developments in performance measures, as attested by such benchmarks

as the Spider leaderboard.[2] Among the most prominent methods is C3, a zero-shot

Text-to-SQL method based on ChatGPT that attains an execution accuracy of 82.3%

on the Spider leaderboard. C3 targets important features such as model input

optimization, bias reduction, and output generation improvement. Once more, a new

innovative approach, DIN-SQL, [8] is preceded by an 85.3% accuracy through sub-

partitioning the Text-to-SQL task into more tractable subtasks and thus improving

system performance overall. Besides that, DAIL-SQL also includes supervised fine-

tuning and systematic in-context learning strategy searching, again pushing

performance frontiers ahead. By employing these methods, DAIL-SQL advances

Spider accuracy to a record 86.6%, a new state-of-the-art for Text-to-SQL systems on

LLMs.[10] These results testify to the paradigm-shifting role of LLMs in

revolutionizing database querying to deliver more accurate, efficient, and more

convenient Text-to-SQL solutions to various application areas.

2.5 Datasets

WikiSQL has been identified as a milestone dataset of Text-to-SQL research that

provides a large corpus to train and compare machine learning-based Text-to-SQL

models. WikiSQL is also referred to as a cross-domain dataset and consists of more

12

than 80,000 question-SQL pairs and 325,000 tables extracted from various topics on

Wikipedia. [3] The SQL queries in WikiSQL are, however, quite simple and restrict

its capability of simulating real-world database interactions.

2.5.1 Dataset Overview for Text-to-SQL Systems –

The below table illustrates major datasets utilized in Text-to-SQL task as well as the

description of their nature and statistical information:

1. Cross-domain Datasets: WikiSQL, Spider, and DuSQL have been used extensively

to benchmark on a sequence of diverse topics and environments.

2. Context-aware Datasets: SParC and CoSQL both contain conversational questions,

which play an essential role in developing conversation-aware systems.

3. Knowledge-Augmented Datasets: SQUALL and BIRD both use external

knowledge to allow systems to answer hard questions.

4. Big Table Entries: KaggleDBQA and BIRD contain higher numbers of rows in each

database, ideal for scalability testing.

5. Robustness Testing: ADVETA evaluates system robustness through adversarial

table complications.

13

Table 2.1 Comparatinve analysis of various datasets

 2.6 Summary:

1. Dataset Building: WikiSQL and CoSQL built benchmark datasets for Text-to-SQL.

2. Model Innovations: Seq2SQL, SyntaxSQLNet, and RAT-SQL are some of the

models that introduced syntax awareness and relational schema comprehension

methods.

Dataset Examples
Databases

(DB)

Tables/

DB

Rows/

DB
Release Date Characteristics

WikiSQL 80,654 26,521 1 17 Aug-2017 Cross-domain

Spider 10,181 200 5.1 2K Sep-2018 Cross-domain

CoSQL 15,598 200 - - Sep-2019

Cross-domain,

Context-

dependent

SQUALL 11,468 1,679 1 - Oct-2020
Knowledge-

augmented

DuSQL 23,797 200 4.1 - Nov-2020
Cross-domain,

Cross-lingual

KaggleDB

QA
272 8 2.3 280K Jun-2021 Cross-domain

BIRD 12,751 95 7.3 549K
May-

2023

Cross-domain,

Knowledge-

augmented

ADVETA -

Based on

Spider and

WikiSQL

Advers

arial

table

- Dec-2022 Robustness

SParC -
Based on

Spider
- - Jun-2019

Context-

dependent

14

3. Domain-Specific Methods: IRNet and TypeSQL were domain-specialized in

managing cross-domain issues and type-awareness for schema mapping.

4. Dialogue Systems: Bridge and CoSQL open up to addressing multi-turn

conversational Text-to-SQL tasks.

2.6.1 Literature Review table-

Table is shown below to demonstrate a recent key contribution in this field –

15

Title Year Focus Area Methodologies Key

Contributions

A Survey on

Employing

Large

Language

Models for

Text-to-SQL

Tasks [1]

2024 Text-to-SQL using

Large Language

Models (LLMs)

Prompt

engineering, fine-

tuning

Comprehensive

review of

datasets,

benchmarks,

and fine-tuning

techniques for

Text-to-SQL

tasks.

LR-SQL: A

Supervised

Fine-Tuning

Method for

Text2SQL

Tasks [7]

2024 Efficiency in

Text2SQL fine-

tuning

Schema linking,

chain-of-thought

techniques

Introduced

GPU-efficient

fine-tuning

methods for

large databases

while

maintaining

accuracy.

Retrieval

Augmented

Generation

(RAG) and

beyond [6]

2024 RAG methods for

augmenting LLMs

with external data

Data augmentation,

stratification of

queries

Provided a

taxonomy for

RAG

applications

and strategies

for integrating

external data in

LLMs .

GPT4All:

Open-Source

Ecosystem [8]

2023

Democratizing LLMs

for public access

Open-source

training, dataset

curation

Developed an

open-source

ecosystem with

compressed

LLMs for

public use.

16

Text-to-SQL

Empowered by

Large

Language

Models: A

Benchmark

Evaluation [2]

2023

Benchmarking

LLMs for Text-to-

SQL

Benchmark

evaluation, prompt

engineering

Systematic

comparison of

prompt

engineering

methods;

proposed

DAIL-SQL,

achieving

86.6%

execution

accuracy on

Spider dataset.

A Survey on

Deep Learning

Approaches

for Text-to-

SQL [15]

2023 Deep learning

methods in Text-to-

SQL

Survey, taxonomy

creation

Detailed

taxonomy of

neural Text-to-

SQL systems,

highlighting

challenges and

future research

directions.

Recent

Advancement

in Text-to-

SQL: A Survey

of What We

Have and What

We Expect [9]

2022

Text-to-SQL progress

and expectations

Text-to-SQL

progress and

expectations

Progress

evaluation, survey

Summary of

recent progress

in Text-to-

SQL, as well as

the current

capabilities and

expectations

for the future.

Bridge:

Bridging Text-

to-SQL by

Combination

of Syntax and

Semantics [10]

2021 Syntax and semantic

fusion in Text-to-

SQL

Syntax-semantic

integration,

transformer-based

models

Proposed

Bridge model

to bridge

syntax and

semantic

representations

for better

accuracy.

17

Table 2.2 Comparison of different research techniques and contributions

RAT-SQL:

Relation-

Aware Schema

Encoding for

Text-to-SQL

Parsing [11]

2020 Relation-aware Text-

to-SQL

Graph neural

networks, relation-

aware self-

attention

Developed

RAT-SQL,

achieving state-

of-the-art

results on

Spider dataset

with relation-

aware

modelling.

SQLova: An

Augmented

Natural

Language to

SQL System

[18]

2019 Augmented Text-to-

SQL

Column-value

linking, contextual

understanding

Proposed

SQLova,

incorporating

question

semantics and

table column

linking for

improved

results.

TypeSQL:

Knowledge-

Based Type-

Aware Neural

Text-to-SQL

Generation

[12]

2018 Knowledge-aware

Text-to-SQL

Type-aware

generation, schema

linking

Utilized type

information for

better schema

linking and

SQL accuracy

on Spider

dataset.

WikiSQL: A

Large

Annotated

Dataset for

Natural

Language to

SQL

Generation

[13]

2017

Dataset creation for

Text-to-SQL

Dataset creation,

sequence

modelling

Introduced

WikiSQL

dataset, a large-

scale corpus for

Text-to-SQL

training and

evaluation.

18

CHAPTER 3

METHODOLOGY

This chapter summarizes the approach followed to translate free-text natural language

queries into SQL using a Retrieval-Augmented Generation (RAG) pipeline. The

procedure is segregated into some of the key steps: data preprocessing, knowledge

retrieval, model architecture selection, merging the RAG pipeline, training and

inference, and testing. Every step is constructed carefully so that accurate and context-

sensitive SQL generation from free-text input is achieved.

3.1 Problem Formulation

The problem is to translate a user's natural language query into an executable SQL

query, for a given relational database schema. The translation has to account for both

syntactic correctness in SQL and semantic correctness to the user's intention. Classical

LLMs are schema-independent or lack contextual memory, resulting in query

generation errors. The RAG solution sidesteps this by injecting schema-specific

information into the generation process through dynamic retrieval.

Let us suppose the set of natural language as Q and the set of structured SQL queries

as S. The goal is to find a mapping function: f: Q → S such that f(q) generates

syntactically correct and semantically equivalent SQL query s ∈ S from an input

question q ∈ Q.

In a typical RAG setup, this mapping is divided into two parts:

• A retrieval function R: Q → C, with the set C of contextual documents (e.g., schema

descriptions, examples).

• A generation function G: (q, c) → s, where c ∈ C is the context found as relevant to

q.

Therefore, the entire function is: f(q) = G(q, R(q))

Embedding and Retrieval -

Every document cᵢ ∈ C embedded to a high-dimensional vector space: v_cᵢ =

Embed(cᵢ). Likewise, the query q gets sent as v_q = Embed(q), The cosine similarity

is used to calculate similarity between q and each context cᵢ.

sim(v_q, v_cᵢ) = (v_q ⋅ v_cᵢ) / (||v_q|| * ||v_cᵢ||)

Top-k similar contexts are chosen:

R(q) = TopK_cᵢ∈C sim(v_q, v_cᵢ).

19

 Algorithm

 A [Start: Natural Language Question (q) ∈ Q]

 B [Embedding Layer v_q = Embed(q)]

 C [Document Store Context Documents C = {c₁, c₂, ..., cₙ}]

 D [Embed All Contexts v_cᵢ = Embed(cᵢ)]

 E [Similarity Computation sim (v_q, v_cᵢ) = (v_q • v_cᵢ)/(||v_q||·||v_cᵢ||)]

 F [Top-K Context Selection R(q) = TopK_cᵢ∈C sim (v_q, v_cᵢ)]

 G [Prompt Construction Prompt (q, R(q)) = [Instruction; Schema; Examples; q]]

 H [Transformer Encoding H = Encoder (Prompt)]

 I [SQL Generation sₜ ∼ softmax(Wₒ·hₜ + bₒ)]

 J [Final SQL Query s = (s₁, ..., sₜ)]

 K [Optional Fine-Tuning Loss: L = -Σ log P (sₜ | s₍<ₜ₎, q)]

 L [Evaluation EM, EX, BLEU Score]

 FIG 3.1 Flowchart

20

3.2 Dataset Description

We make use of datasets, which are relevant to use case made up of a sequence of

natural language questions and their corresponding SQL queries. Such datasets include

multiple types of SQL queries and databases with multiple schemata, appropriate for

training as well as testing generalizable models.

 A sample consists of:

 A natural language query.

 Its corresponding SQL query.

The schema metadata including column names and types.

In addition to stored data in a structured form, a schema declarations knowledge base,

inter-table relations, and sample queries are generated to support retrieval in the RAG

pipeline.

3.3 RAG-Based Design

The design is developed based on a Retrieval-Augmented Generation (RAG) model.

It includes two key modules:

Retriever: Stores the context related to the schema or query from an inadvance indexed

knowledge base using vector similarity search. FAISS (Facebook AI Similarity

Search) is used for dense vector representation retrieval effectively.

Generator: Employs a large language model like GPT or DeepSeek-Coder to generate

the SQL query from both the user query and the reserved context.

The system pipeline proceeds as follows: The question in natural language is

transformed into an embedding vector, Context relevant to the question (e.g., table

schema or comparable previous questions) is retrieved from the knowledge base. The

original question and retrieved context are combined and passed to the LLM. The

LLM produces the resultant SQL query.

Prompt engineering and Query generation is represented as –

The prompt is built as: Prompt(q, R(q)) = [Instruction; Schema; Examples; q].

21

This prompt is encoded by the transformer encoder: H = Encoder(Prompt(q, R(q))).

Then generation,

Let H = [h₁, h₂, ..., hₙ] denote the contextual hidden states.

Each token sₜ of the SQL query is generated with probability:

P(sₜ | s_<ₜ, H) = softmax(Wₒ · hₜ + bₒ).

The final SQL sequence s = (s₁, s₂, ..., sₜ) is decoded using greedy or beam search

FIG 3.2 Representation of Table schema

3.4 Data Preprocessing

In preparation for generation and retrieval, the following preprocessing is applied:

Schema Normalization: column and table names are normalized (lowercased,

underscore-separated) to minimize variation at retrieval time.

Embedding Generation: Contextual information such as table definitions and example

queries is embedded in vector representations via sentence transformers (e.g., all-

MiniLM-L6-v2).

Indexing: Context vectorized is indexed by FAISS to enable both efficient and accurate

similarity-based retrieval.

22

Instruction: Prompt formatting

Templates are used to structure the input to the LLM in a consistent manner, combining

the query and acquired knowledge.

3.5 Training and Fine-tuning

Although the retriever does not need to be supervised to train, the generator can

optionally be fine-tuned on domain text-to-SQL pairs for performance improvement.

Here, pre-trained models are employed without additional fine-tuning based on

prompt engineering and retrieval quality to keep it precise.

Fine-tuning, if done, would entail:

Applying teacher-forcing to train the model on input-output pairs.

Applying methods like reinforcement learning with human feedback (RLHF) for fine-

tuning.

Main objective of training is to reduce Loss and improve the model performance

mathematical intuition behind it represented by following equation –

The loss function minimized during training is:

L = - Σ₍ᵢ₌₁₎ⁿ Σ₍ₜ₌₁₎ᵗᵢ log P(s_{i,t} | s_{i,<t}, qᵢ).

3.6 Inference Mechanism

At inference time:

The user provides a natural language question.

The system executes retrieval from the indexed knowledge base.

The combined input (query + retrieved context) is fed into the LLM.

The produced SQL is output.

Care is taken to ensure that SQL generated is in the schema syntax and does not contain

hallucinated column or table names.

23

CHAPTER 4

EXPERIMENTAL SETUP

In this chapter we will discuss the requirements of different tools, library, framework

that has been used while developing the project-

Jupyter Notebook/Google colab: It is used for a wide variety of tasks of data science,

including exploratory data analysis (EDA), data wrangling (cleansing) and

transformation, data visualization, predictive modelling, machine learning, and deep

learning.

• LLM_API_key: Google Gemini pro API key has been used for the generation of the

response query.

• ChromaDB: To store the vectors for RAG (retrieval augmented generation).

• Pandas: It is a Python toolkit for working with data collections. It includes functions

for analyzing, wrangling, cleansing, and modifying data. The word "Pandas" refers to

both "Panel Data".

• Matplotlib: Matplotlib is a comprehensive Python package that permits you to create

static and interactive visualizations. Matplotlib allows for both easy and difficult tasks.

It helps us create plots that are suitable for visualization. It helps us create reciprocal

figures that can zoom, pan, and update.

• Seaborn: It is a Python package for plotting statistical graphs. It is built atop of

matplotlib and combines seamlessly with Pandas data structures.

24

• Scikit-learn: It is one of the most helpful machine learning libraries in Python. The

sklearn package includes several beneficial methods for machine learning and

statistical modelling, like classification, regression, clustering, and dimensionality

reduction.

• TensorFlow: It is an open-source library created by Google, mainly used

for deep learning applications. It also reinforces conventional machine

learning. It was primarily built for huge numerical computations without

taking deep learning into consideration.

FIG 4.1 Evolution of Language Models

25

CHAPTER 5

RESULTS AND ANALYSIS

In this section we will show the result we have obtained from a model based on

proposed work. We have provided input along with code to enhance the performance

of model using RAG technique –

5.1 Experimental setup

To test the performance of the proposed system, we developed a test involving an

SQLite database. The database had a schema for students table with columns: id,

name, and marks. We made different natural language queries to find out the precision

with which Gemini model, having RAG-style prompts, generated SQL queries.

Query Augmentation using BERT - Query augmentation in Text-to-SQL systems

means the process of creating more and diverse versions of a user's natural language

question to enhance the robustness, generalizability, and performance of the base

model (particularly LLMs such as Gemini, GPT, etc.)

Query augmentation is the process of generating artificial copies of natural language

queries. Two query augmentation techniques are employed in your code:

Back Translation:

Translate the query to another language (e.g., French) and then translate it back to

English.

Example:

Original: What is the average salary of employees in the sales department?

Augmented: What's the mean wage for staff in the sales unit?

Synonym Replacement:

Replace randomly non-stop words of the query with their synonyms.

26

Example:

Original: What is the average salary.

Augmented: What is the typical income.

These paraphrases are semantically equivalent but lexically different, enabling the

model to generalize across different alternative phrasing.

5.2 Evaluation Metrics

Text-to-SQL systems entail applying some metrics to measure the accuracy and

efficacy of the SQL queries produced. The metrics move beyond correctness checking

of the SQL output to studying the system performance in real database environments,

ensuring practical useability and efficiency, and are collectively categorized as

follows:

Exact Match (EM): EM = (1/N) Σ₍ᵢ₌₁₎ⁿ 𝟙(s_i^gen = s_i^gold).

Execution Accuracy (EX): EX = (1/N) Σ₍ᵢ₌₁₎ⁿ 𝟙(R(s_i^gen) = R(s_i^gold)).

5.2.1 Content-Matching-Based Metrics

Content-matching metrics evaluate the structural similarity between the generated

SQL query and the gold query, focusing on components rather than execution results.

Two prominent sub-metrics under this category are:

a. Component Matching (CM): This metric ensures that the generated SQL query

includes the same key components as the gold query, such as the SELECT clause,

FROM clause, and WHERE conditions. For example:

Gold Query: SELECT station_name FROM Gas_Stations WHERE Power_Available

= 'Yes' AND Fuel_Available = 'Yes';

Generated Query: SELECT station_name FROM Gas_Stations WHERE

Fuel_Available = 'Yes' AND Power_Available = 'Yes';

Both queries refer to the same components, even if the order in the WHERE clause is

reversed. The metric identifies that all related part are present, marking the resulted

query correct.

b. Exact Matching (EM): The stricter measure is to match the synthesized query to

the gold query in a way that every one of its constituents is used in precisely the same

order and form. In the example at hand, although the constituents are the same,

27

swapping the order in the WHERE clause results in the two queries being mismatched,

thereby providing the difference between CM and EM.

5.2.2 Execution-Based Metrics

Execution-based metrics assess how well the generated SQL query executes when

executed on the same database, i.e., its function correctness and computation time.

a. Execution Accuracy (EX): This is a measure of the extent to which the gold query

and generated query return nearly identical results when executed. For example:

Gold Query and Generated Query:

SELECT station_ID

FROM Gas_Stations

WHERE Power_Available = 'Yes' AND Fuel_Available = 'Yes';

Both yield the same collection of gas station IDs, so that resulting query will be

functionally equivalent even if its syntax is different..

b. valid Efficiency Score (VES):

VES to determine at what computationally inexpensive rate the synthesized question

is -

compared with

the gold question. It can be computationally expensive but functionally valid

due to redundant calculation or redundant subqueries. Example:

SELECT station_name FROM Gas_Stations WHERE Distance < 5 AND

Fuel_Available = 'Yes' AND (SELECT COUNT(*) FROM Gas_Stations WHERE

Power_Available = 'Yes' AND Fuel_Available = 'Yes');

Whereas this question is returning properly, its construction is a combination of

redundant operations

(i.e., inner subquery). This redundancy is summarized in a VES score in the shape that,

i.e., SQL query generation efficiency is lower compared to that of the gold query.

Summary,

The assessment framework combines structure-based and execution-based measures

for robust evaluation of SQL query generation. Syntactic correctness of queries is

guaranteed by Component Matching and Exact Matching, while Execution Accuracy

and Valid Efficiency Score emphasize functional correctness along with computational

efficiency. With

Their combination, the design guarantees an excellence analysis of query generation

systems in meeting diverse real-world applications of natural language interfaces to

databases.

28

5.3 Results Analysis

The experiment tested the Gemini Pro-based RAG approach on a natural language

query corpus ranging from simple choices to conditionals and aggregation operations.

All resultant generated SQL outputs derived from it were compared against two

important measures:

The experimental result confirms that Gemini Pro, with well-crafted prompts and

limited schema grounding, is capable of generating extremely accurate SQL for simple

queries. Some notable observations have been made in the results:

Predicted SQL query:

FIG 5.1 Predicted Query

Gold Standard SQL Query:

FIG 5.2 Standard Query

Predicted SQL query:

FIG 5.3 Predicted Query

Gold Standard SQL Query:

FIG 5.4 Standard Query

The predicted SQL query matches the gold standard, confirming the system’s ability

to accurately handle department-based queries and produce correct SQL syntax.

29

Query Type Expected SQL Generated SQL EM

(%)

EX

(%)

Simple

SELECT

SELECT * FROM

students

SELECT * FROM

students

 100 100

Conditional

SELECT

(WHERE)

SELECT name

FROM students

WHERE marks > 80

SELECT name

FROM students

WHERE marks > 80

 100 100

Equality Filter SELECT name

FROM students

WHERE marks = 92

SELECT name

FROM students

WHERE marks = 92

100 100

Aggregate with

COUNT

SELECT

COUNT(*) FROM

students WHERE

marks > 80

SELECT

COUNT(*) FROM

students WHERE

marks > 80

100 100

Aggregation

with GROUP

BY

SELECT

department,

AVG(marks) FROM

students GROUP

BY department

SELECT

department,

AVG(marks)

FROM students

GROUP BY

department

90 95

30

SELECT with

ORDER BY

SELECT name

FROM students

ORDER BY marks

DESC

SELECT name

FROM students

ORDER BY marks

85 95

Nested Query SELECT name

FROM students

WHERE marks >

(SELECT

AVG(marks) FROM

students)

SELECT name

FROM students

WHERE marks >

AVG(marks)

70 80

Join with

another table

SELECT s.name,

d.dept_name FROM

students s JOIN dept

d ON s.dept_id =

d.id

SELECT name,

dept_name FROM

students JOIN dept

ON

students.dept_id =

dept.id

75 85

Synonym-based

Input

“List student names

who got scores

above 80” →

SELECT name

FROM students

WHERE marks > 80

SELECT name

FROM students

WHERE marks

> 80

95 100

Ambiguous

query

“Top students in

each subject”

SELECT name

FROM students

ORDER BY marks

DESC

60 70

Table 5.1 Comparison of accuracy on different SQL queries

31

FIG 5.3 Model Performance on Different Query Types (Gemini Pro)

The experimental result confirms that Gemini Pro, with well-crafted prompts and

limited schema grounding, is capable of generating extremely accurate SQL for simple

queries. Some notable observations have been made in the results:

5.3 Prompt Engineering Effectiveness

Clarity in prompts was important. Explicit schema mention in the prompt drastically

minimized vagueness, allowing the model to refer to correct columns and data types.

Alternatives to prompts lacking schema hints tended to produce hallucinated table

names or truncated SQL snippets.

32

5.3.1 Schema-Aware Context

Having the schema in plain English form prior to posing the question facilitated

overcoming the semantic gap between natural language and SQL syntax. The method

simulates the retrieval step of a complete RAG pipeline, wherein schema snippets are

retrieved and embedded together with the user query.

5.3.2 Execution-Based Validation

Adding SQL execution to the validation assisted in uncovering structurally valid but

semantically invalid queries. While Gemini Pro tended to generate correct SQL

overall, the execution validation provided a useful check, particularly for establishing

logical correctness as well as lexical equivalence.

5.3.3 Simplicity vs. Complexity

The high accuracy obtained was partly due to the simplicity of the queries and schema.

As observed in comparative work, e.g., Spider benchmark research, performance

degrades with:

Multi-table joins

Nested queries

Ambiguous language or domain-specific jargon

These subtleties will require further treatment mechanisms like more advanced

models, Agentic AI, extended prompt engineering, or complete RAG

implementations.

33

CHAPTER 6

CONCLUSION & FUTURE WORK

In conclusion, the rapid development of Text-to-SQL systems, most of which are

powered by large language models (LLMs), has greatly improved the accuracy and

efficiency of producing queries. Such progress is made possible in large part due to

the varied and challenging datasets like WikiSQL, Spider, and the recently released

CoSQL datasets which serve as necessary benchmarks to track model performance.

And also the RAG and knowledge graph techniques that allow the systems to connect

to additional knowledge sources have significantly increased their powers to

understand more complex and abstract queries. However, the current systems are still

limited in their generalization ability for different domains, complexity of databases

schemas, and the speed of execution.

This work began with a consideration of the limitations of the traditional rule-based

and neural approaches, including reliance on huge amounts of manually labeled data

and inability to generalize over a broad set of schemas. The complementarity of large

language models (LLMs), as introduced throughout the literature, offers a positive

solution through context comprehension and pretraining over gigantic language

collections.

The approach followed in this thesis was to create a light-weight knowledge base out

of database schema definitions and use embedding-based similarity search to recover

the correct context for any query. The prompt engineering step was essential in

translating the user's query and schema-specific context into a representation that

could be decoded by the language model. The system produced SQL queries using

Gemini Pro and tested them with structural comparison (Exact Match) as well as

execution checks.

34

Experimental results confirmed correctness of the system in producing accurate and

executable SQL over wide ranges of query types. While basic SELECT and

conditional queries were executed with high precision, more intricate operations like

joins, nested queries, and ambiguous commands exhibited occasional slowdown in

performance. These results are in line with anecdotal reports from benchmarking

experiments like Spider and CoSQL, where execution precision also degrades as query

complexity rises. However, the Gemini model demonstrated high flexibility and

stability provided that it was backed by well-designed prompts and schema grounding.

Future work may include, Improving Text-to-SQL methodologies must address the

current limitations in accuracy, scalability, and domain adaptability. Some potential

improvements include:

Enhanced Schema Linking: More sophisticated schema-linking mechanisms, also lead

to higher accuracy in future systems, especially for complex database structures.[17],

Domain-Specific Fine-Tuning: Fine-tune on domain-specific datasets and deploy for

specific industries, such as healthcare, finance, logistics, and the like, that otherwise

experience substandard results from the use of general models. This ensures

improvement in specialized settings.[7]

From Retrieval-Augmented Generation (RAG) to Table-Augmented Generation

(TAG) - The transition from Retrieval-Augmented Generation to Table-Augmented

Generation is a seminal innovation in the use of Large Language Models (LLMs) for

Text-to-SQL. A leap that overcomes critical challenges of contextual relevance,

schema consistency, and operational extent in querying databases. [9]

Fine-Tuned LLMs for the Target Domains TAG systems can leverage fine-tuned

LLMs pre-trained on schema-specific objectives, achieving best performance on

complex, industry-specific database queries.

Explainability and Interpretability Through explicit schema and table mappings, SQL

generation is anchored, generating trust and transparency in high-risk use such as legal

or healthcare use.

35

REFERENCES

[1] Hong, Zijin, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran

Huang, and Xiao Huang. "Next-Generation Database Interfaces: A Survey of LLM-

based Text-to-SQL." arXiv preprint arXiv:2406.08426 (2024).

[2] TZhang, Bin, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi

Harold Liu, Rui Zhao, Ziyue Li, and Hangyu Mao. "Benchmarking the text-to-sql

capability of large language models: A comprehensive evaluation." arXiv preprint

arXiv:2403.02951 (2024).

[3] Hong, Zijin, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, and Xiao

Huang. "Knowledge-to-sql: Enhancing sql generation with data expert llm." arXiv

preprint arXiv:2402.11517 (2024).

[4] Brunner, Ursin, and Kurt Stockinger. "Valuenet: A natural language-to-sql system

that learns from database information." In 2021 IEEE 37th International Conference

on Data Engineering (ICDE), pp. 2177-2182. IEEE, 2021.

[5] Zhao, Siyun, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K. Qiu, and Lili Qiu.

"Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on

How to Make your LLMs use External Data More Wisely." arXiv preprint

arXiv:2409.14924 (2024).

[6] Biswal, Asim, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu, Joseph E.

Gonzalez, Carlos Guestrin, and Matei Zaharia. "Text2sql is not enough: Unifying ai

and databases with tag." arXiv preprint arXiv:2408.14717 (2024).

[7] Wuzhenghong, Wen, Zhang Yongpan, Pan Su, Sun Yuwei, Lu Pengwei, and Ding

Cheng. "LR-SQL: A Supervised Fine-Tuning Method for Text2SQL Tasks under Low-

Resource Scenarios." arXiv preprint arXiv:2410.11457 (2024).

[8] Anand, Yuvanesh, Zach Nussbaum, Adam Treat, Aaron Miller, Richard Guo, Ben

Schmidt, GPT4All Community, Brandon Duderstadt, and Andriy Mulyar. "GPT4All:

An ecosystem of open source compressed language models." arXiv preprint

arXiv:2311.04931 (2023).

36

[9] Deng, Naihao, Yulong Chen, and Yue Zhang. "Recent advances in text-to-SQL: a

survey of what we have and what we expect." arXiv preprint arXiv:2208.10099

(2022).

[10] Lin, Xi Victoria, Richard Socher, and Caiming Xiong. "Bridging textual and

tabular data for cross-domain text-to-SQL semantic parsing." arXiv preprint

arXiv:2012.12627 (2020).

[11] Wang, Bailin, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew

Richardson. "Rat-sql: Relation-aware schema encoding and linking for text-to-sql

parsers." arXiv preprint arXiv:1911.04942 (2019).

[12] Yu, Tao, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. "Typesql:

Knowledge-based type-aware neural text-to-sql generation." arXiv preprint

arXiv:1804.09769 (2018).

[13] Khan, Mohaimenul Azam, Md. Saddam Hossain Mukta, Kaniz Fatema, Nur

Mohammad Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad,

Mohammed Eunus Ali, and Sami Azam. "A Review on Large Language Models:

Architectures, Applications, Taxonomies, Open Issues, and Challenges." IEEE Access

12 (2024): 3365742.

[14] Kumar, Rahul, Amar Raja Dibbu, Shrutendra Harsola, Vignesh Subrahmaniam,

and Ashutosh Modi. "BookSQL: A Large Scale Text-to-SQL Dataset for Accounting

Domain." arXiv preprint arXiv:2406.07860 (2024).

[15] Kumar, Ayush, Parth Nagarkar, Prabhav Nalhe, and Sanjeev Vijayakumar. "Deep

Learning Driven Natural Languages Text-to-SQL Query Conversion: A Survey."

arXiv preprint arXiv:2208.04415 (2022).

[16] Gao, Dawei, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and

Jingren Zhou. "Text-to-SQL Empowered by Large Language Models: A Benchmark

Evaluation." arXiv preprint arXiv:2308.15363 (2023).

[17] Finegan-Dollak, Cara, Jonathan K. Kummerfeld, Li Zhang, Kavya Ramanath,

Sneha Bendre, Michael J. Cafarella, and Rada Mihalcea. "Improving Text-to-SQL

37

Evaluation Methodology." Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (2018): 351–360.

[18] P. Wang, T. Shi, and C. K. Reddy, ‘‘Text-to-SQL generation for question

answering on electronic medical records,’’ in Proc. Web Conf., (2020), pp. 350–361.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.

Bert:Pre-training of deep bidirectional transformers for language preprint . (2018).

[20] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and

Dongmei Zhang. 2019. Towards complex text-to-sql in cross-domain database with

intermediate representation. (2019).

[21] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generatingstructured queries from

natural language using reinforcement learning,” (2017).

[22] H. Zhang, R. Cao, L. Chen, H. Xu, and K. Yu, “Act-sql: In-context learning for

text-to-sql with automatically-generated chain-of-thought,” (2023).

[23] A. Quamar, V. Efthymiou, C. Lei, and F. Özcan. Natural language interfaces to

data. Found. Trends Databases, 11(4), 2022.

[24] L. Wang, A. Zhang, K. Wu, K. Sun, Z. Li, H. Wu, M. Zhang, and H. Wang,

“Dusql: A large-scale and pragmatic chinese text-to-sql dataset,” in Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

2020

[25] S. Roychowdhury, A. Alvarez, B. Moore, M. Krema, M. P. Gelpi, P. Agrawal, F.

M. Rodr´ıguez, A. Rodr ´ ´ıguez, J. R. Cabrejas, P. M. Serranoet al., “Hallucination-

minimized data-to-answer framework for financial decision-makers,” in 2023 IEEE

International Conference on Big Data(BigData). IEEE, (2023).

[26] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” (2023).

[27] Y. Sun, D. Tang, N. Duan, J. Ji, G. Cao, X. Feng, B. Qin, T. Liu, and M. Zhou,

“Semantic parsing with syntax-and table-aware sql generation,” in Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), (2018).

Delhi Technological University

2K23DSC14_MTechThesis_Pradyumn_Shukla.pdf

Pradyumn Shukla

Document Details

Submission ID

trn:oid:::27535:99976685

Submission Date

Jun 9, 2025, 11:33 AM GMT+5:30

Download Date

Jun 9, 2025, 11:34 AM GMT+5:30

File Name

2K23DSC14_MTechThesis_Pradyumn_Shukla.pdf

File Size

954.7 KB

37 Pages

7,792 Words

45,686 Characters

Page 1 of 42 - Cover Page Submission ID trn:oid:::27535:99976685

Page 1 of 42 - Cover Page Submission ID trn:oid:::27535:99976685

9% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Quoted Text

Cited Text

Small Matches (less than 10 words)

Match Groups

51 Not Cited or Quoted 9%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

5% Internet sources

3% Publications

5% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 42 - Integrity Overview Submission ID trn:oid:::27535:99976685

Page 2 of 42 - Integrity Overview Submission ID trn:oid:::27535:99976685

0% detected as AI
The percentage indicates the combined amount of likely AI-generated text as
well as likely AI-generated text that was also likely AI-paraphrased.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions
about a student’s work. We encourage you to learn more about Turnitin’s AI detection
capabilities before using the tool.

Detection Groups

0 AI-generated only 0%
Likely AI-generated text from a large-language model.

0 AI-generated text that was AI-paraphrased 0%
Likely AI-generated text that was likely revised using an AI-paraphrase tool
or word spinner.

Disclaimer
Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify
writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?
The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin’s AI writing
detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was
likely revised using an AI-paraphrase tool or word spinner.

False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.

AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).

The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted
assignment in accordance with their school's policies.

What does 'qualifying text' mean?
Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be
highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.

Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the
percentage shown.

Page 2 of 39 - AI Writing Overview Submission ID trn:oid:::27535:99976685

Page 2 of 39 - AI Writing Overview Submission ID trn:oid:::27535:99976685

Conference Paper Details

Paper 1 Details

Conference name - 3rd International Conference on Artificial Intelligence: Theory and

Applications (AITA 2025) to be organized by ICFAI Business School (IBS) Bangalore,

India

➢ Indexing of conference – Proceedings of AITA 2025 will be published in the SCOPUS

Indexed Springer Book Series, ‘Lecture Notes in Networks and Systems'.

➢ Paper Status - Accepted and registered

Thank you for submitting your manuscript to the 3rd International Conference on

Artificial Intelligence: Theory and Applications (AITA 2025) to be organized by ICFAI

Business School (IBS) Bangalore, India during August 01-02, 2025 in Hybrid Mode.

Proceedings of AITA 2025 will be published in the SCOPUS Indexed Springer Book

Series, ‘Lecture Notes in Networks and Systems'.

We are pleased to inform you that based on reviewers’ comments, your paper titled

"ADVANCEMENT IN TEXT-TO-SQL SYSTEM USING LARGE LANGUAGE

MODEL(LLMs): A REVIEW" has been accepted for presentation during AITA 2025,

and publication in the proceedings to be published in Scopus-indexed Springer Book

Series "Lecture Notes in Networks and Systems".

Paper 2 Details

Conference name - Third International Conference on Data Science and Network

Engineering

➢ Indexing of conference – Each submitted paper will go through single blind review

process after submission. The papers submitted by authors will be assessed on the basis

of their technical suitability, scope of work, plagiarism (maximum 20% is allowed),

novelty, clarity, completeness, relevance, significance, and research contributions. All

accepted, registered, and presented papers will be published in the Conference

Proceedings, i.e., Springer Book Series “Lecture Notes in Networks and Systems”

(https://www.springer.com/series/15179), which is indexed by SCOPUS, DBLP, and

many more.

➢ Paper Status – Communicated

DECLARATION

We/I hereby certify that the work which is presented in the Major Project-II/Research Work entitled

Analysis and development of Text-to-SQL Translation system Using Large Language Model (LLMs) in

fulfilment of the requirement for the award of the Degree of Bachelor/Master of Technology in

DATA SCIENCE and submitted to the Department of SOFTWARE ENGINEERING, Delhi

Technological University, Delhi is an authentic record of my/our own, carried out during a period

from Aug 2023 to May 2025, under the supervision of Dr. Sanjay Patidar.

The matter presented in this report/thesis has not been submitted by us/me for the award of any other degree

of this or any other Institute/University. The work has been published/accepted/communicated in SCI/ SCI

expanded/SSCI/Scopus indexed journal OR peer reviewed Scopus indexed conference with the following

details:

Title of the Paper: Advancement in TEXT-TO-SQL system using Large Language model (LLMs): A Review

Author names (in sequence as per research paper): Pradyumn Shukla, Dr. Sanjay Patidar

Name of Conference/Journal: 3rd International Conference on Artificial Intelligence: Theory and Applications

(AITA 2025) to be organized by ICFAI Business School (IBS) Bangalore, India

Conference Dates with venue (if applicable): ICFAI Business School (IBS) Bangalore, India during August
01-02, 2025 in Hybrid Mode.

Have you registered for the conference (Yes/No): Yes

Status of paper (Accepted/Published/Communicated): Accepted

Date of paper communication: 5/29/2025, 5:02:01 PM

Date of paper acceptance: 09/06/2025

Date of paper publication:

Student(s) Roll No., Name and Signature

SUPERVISOR CERTIFICATE

To the best of my knowledge, the above work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere. I, further certify that the publication and indexing information

given by the students is correct.

Place: Supervisor Name and Signature

Date:

NOTE: PLEASE ENCLOSE RESEARCH PAPER ACCEPTANCE /PUBLICATION /COMMUNICATION PROOF

ALONG WITH SCOPUS INDEXING PROOF

(Conference Website OR Science Direct in case of Journal Publication)

DECLARATION

We/I hereby certify that the work which is presented in the Major Project-II/Research Work entitled

Analysis and development of Text-to-SQL Translation system Using Large Language Model (LLMs) in

fulfilment of the requirement for the award of the Degree of Bachelor/Master of Technology in

DATA SCIENCE and submitted to the Department of SOFTWARE ENGINEERING, Delhi

Technological University, Delhi is an authentic record of my/our own, carried out during a period

from Aug 2023 to May 2025, under the supervision of Dr. Sanjay Patidar .

The matter presented in this report/thesis has not been submitted by us/me for the award of any other degree

of this or any other Institute/University. The work has been published/accepted/communicated in SCI/ SCI

expanded/SSCI/Scopus indexed journal OR peer reviewed Scopus indexed conference with the following

details:

Title of the Paper: Advancing TEXT to SQL system: A comprehensive review of techniques and LLM

Author names (in sequence as per research paper): Pradyumn Shukla, Dr. Sanjay Patidar

Name of Conference/Journal: Third International Conference on Data Science and Network Engineering
(ICDSNE 2025)
Conference Dates with venue (if applicable): National Institute of Technology Agartala (NIT Agartala), India,

in hybrid mode (online/in-person) on 25-26 July, 2025.

Have you registered for the conference (Yes/No)? No

Status of paper (Accepted/Published/Communicated): Communicated

Date of paper communication: 02/06/2025, 2:53:50 PM

Date of paper acceptance:

Date of paper publication:

Student(s) Roll No., Name and Signature

SUPERVISOR CERTIFICATE

To the best of my knowledge, the above work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere. I, further certify that the publication and indexing information

given by the students is correct.

Place: Supervisor Name and Signature

Date:

NOTE: PLEASE ENCLOSE RESEARCH PAPER ACCEPTANCE /PUBLICATION /COMMUNICATION PROOF

ALONG WITH SCOPUS INDEXING PROOF

(Conference Website OR Science Direct in case of Journal Publication)

