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Analysis and development of Text-to-SQL Translation system Using Large 

Language Models (LLMs) 

Pradyumn Shukla 

ABSTRACT 

 
The increasing reliance on data-driven decision-making has brought intuitive database access 

into limelight, particularly for inexperienced users. Text-to-SQL technologies bridge this 

shortcoming by converting natural language queries to SQL queries and thereby render 

database interaction more intuitive. Large Language Models have also influenced the 

Text2SQL system paradigm towards predicting correct and context-aware SQL. This survey 

maps the historical development of Text2SQL approaches from rule-based systems to LLM-

based neural models. Extensive efforts have gone into using prompt engineering, schema 

alignment methods, and domain fine-tuning to ensure higher accuracy and generality. The 

models now exhibit significant progress in understanding complex queries as well as precise 

SQL code generation through emergent Large Language Model capabilities. The early 

systems had extremely strong template-based or rule-based mechanisms, whereas generation 

these days is extremely advanced neural systems brimming with domain knowledge and 

highly specialized embeddings. Although LLMs, particularly GPT and BERT, have really set 

the bar high for query interpretability and execution accuracy, there are significant challenges 

regarding meeting the needs of domain specificity, intricate queries, and scalability across 

heterogeneous schemas. It also pointed out how the RAG generation mechanism has been 

integrated and called for a paradigm shift towards adopting TAG for richer schema interaction. 

Future directions involve developing explainable models, fine-tuning multiturn 

conversational capabilities, and optimizing computational efficiency toward robustness and 

ease of use for Text2SQL systems. By addressing the gaps, the study lays the foundations for 

innovations in database querying, using LLMs to redefine accessibility and usability for a 

wide range of users. 

 

Keywords - Text-to-SQL, Large language models (LLMs), Retrieval augmented Generation 

(RAG), Prompt Engineering, Query Interpretability, Cross-Domain Generalization, TAG, 

Complex Queries, Data-Driven Decision-Making. 
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CHAPTER 1 

INTRODUCTION 

The SQL again secured top spot in the IEEE Spectrum 2023 "Top 10 

Languages" report, proving that it is still highly relevant within the job market. That 

is because SQL plays an important role in data-driven decision-making and, thus, is a 

very important skill in a wide variety of professions: from DBMS administrators or 

DBAs, and developers to Business Intelligence analysts or BI. Besides these technical 

roles, SQL proves to be helpful in product management, operations, compliance, and 

business strategy. However, it becomes very difficult for nontechnical staff to learn, 

as it requires in-depth knowledge of how databases are structured and the language of 

SQL itself.[1] 

Text-to-SQL, which focuses on transforming natural language text inputs into accurate 

SQL queries, has emerged as a growing area of research at the intersection of database 

management and NLP [2]. The early works on this field had come from the database 

community, which indeed presented custom template-based methods, as by Zelle and 

Mooney in 1996.[3] Even though these early methods had revolutionized the era time, 

they also tended to be often time-consuming and therefore not scalable and flexible.[4] 

NLP has contributed immensely to human-computer interaction by transforming it 

into a much easier and simpler. This is particularly evident in the development 

regarding querying databases, which hitherto required specialized knowledge in SQL 

as described by [5]. Text-to-SQL, commonly referred to as Text2SQL, systems ease 

this burden by translating natural language queries into their SQL statements, thus 

enabling even the non-technically savvy user to access data. 

Traditional Text2SQL systems rely mostly on rule-based or template-driven 

approaches for their Accuracy and Efficiency, which hardly generalize for different 

queries, let alone complex ones. Then came large language models, capable of 

comprehension and generation of human-like textual content-a trans-formative 

opportunity for enhancement in Text2SQL systems. [6] These models, pretrained on 

vast amounts of text data, have shown remarkable proficiency in understanding 
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contextual nuances, making them well-suited for the challenges of converting Natural 

language into SQL queries. This research investigates the integration of LLMs into 

Text2SQL frameworks to overcome challenges in processing ambiguous queries, 

improving accuracy with respect to complex database schema complexities, and 

scalability issues.[7] In an endeavor to leverage the prowess of LLMs, the current 

research focuses on designing a Text2SQL system more resilient and adaptable, 

capable of arming users with fluent ways of accessing data by helping to understand 

how such models can redefine database querying at this juncture.[8] 

Seamless access to data is considered crucial in today's context when data-driven 

decisions across industries are becoming indispensable to achieve progress. SQL is 

still the main language for database querying; These systems ease the process of 

database access, hence increasing productivity by simplifying database access and 

manipulation without prior knowledge of SQL. LLMs such as GPT, BERT, and 

Gemini Pro emerged as stronger performers in the whole range of NLP tasks from text 

generation to semantic understanding and coding.[9][10] The ability of these LLMs to 

understand subtle word relationships and respond accordingly made them good-fitting 

competitors to break the limitations of the traditional Text2SQL paradigms.[11] 

RAG (Retrieval Augmented Generation) currently, RAG has become an incredibly 

prospective paradigm to enrich the factual correctness and contextual relevance of 

large language models (LLMs). In contrast to the conventional encoder-decoder model 

dependent on pre-trained knowledge in its raw form, RAG enriches the generation 

with meaningful knowledge brought in real time from an external knowledge base. 

This blended method is especially suitable for text-to-SQL models, where domain 

knowledge and correct schema understanding are most critical. Incorporating retrieval 

mechanisms within the generation pipeline, RAG enables models to make their output 

valid in the real world and contextually relevant, thereby improving the fidelity of 

SQL query generation. In the context of this research, we look at how integrating RAG 

into text-to-SQL pipeline helps to increase performance, particularly in low-resource. 
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1.1 Background 

 

currently, LLMs have revolutionized the face of Natural Language and are 

significantly involved in how machines understand and generate human language. 

These models trained on very large datasets are very strong in reading linguistic 

patterns, context relationships, and semantic meaning, which makes them very useful 

in solving hard NLP problems.[12] The biggest innovation of LLMs is how they 

address contextual comprehension in language. In contrast to prior models that 

operated on pre-crafted rules or shallow statistical approaches, LLMs analyze the 

broader context of words within a sentence or paragraph. This allows it to manage 

ambiguity and subtle nuances of human communication, which is very important for 

sentiment analysis, machine translation, and conversational AI.[13][14] The LLMs 

also bridge the gap in domain-specific languages and general communications. Their 

pretraining on diverse datasets allows them to adapt with fine-tuning to specialized 

applications, hence finding their applications in healthcare, legal, and finance. For 

example, they can be fine-tuned to generate precise medical reports or understand 

complex legal documents.[15] Furthermore, LLMs have brought about massive 

revolutionizing in human-machine interaction. The application such as virtual 

assistants, chatbots, and Text2SQL systems are much more intuitive and accurate, thus 

making the inter-action of non-technical users with technology very easy. [16] 

In short, LLMs form the backbone of modern NLP in view of their better con-textual 

understanding, adaptation to different domains, and making AI applications more 

available and efficient. Their ongoing development continues to shape the future of 

language-based AI solutions. 

 

1.1.1- Large Language Models (LLMs) In Text2SQL –  

 

The Recent large language model developments have spawned a set of new methods 

that take advantage of the unprecedented prowess in natural language understanding 

with Text2SQL. It examines applications of LLMs to the Text2SQL task. It puts into 

perspective foundation models, techniques for optimizing their performance by the 

use of prompt engineering and fine-tuning, and benchmark datasets serving as test. 
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1.1.2- LLM and Text to SQL Framework – 

 

Framework suggests the architecture and overall working of the text to SQL system 

and its important factors described below -  

 

User Interaction: The process will be triggered when a user sends a natural language 

query such as "I want to know the average prices of all car brands." The system then 

processes this query for further action. 

Knowledge Base Integration: It also hooks up to a knowledge base describing most of 

the salient details about the schema of the database, including table and column names 

and data types. The knowledge base also supports sample SQL queries and 

mathematical functions like avg (), which returns an average value.[8] 

Prompt Engineering: To better understand it, a prompt template is designed. It 

contains the user's query, the description of the task, and the database schema. There 

are even allied resources that accompany it, such as similar SQL queries and allied 

database operations. [9] 

LLM Processing: The LLM next processes the formatted prompt in order to generate 

a suitable SQL query: for instance, from a user's request for average car prices by 

brand, the system would return a query such as "SELECT AVG(Price) FROM Cars 

GROUP BY Brand;”.[10] 

Fine-Tuning and Training: Moreover, a fine-tuning dataset is used in order to improve 

the performance of the LLM. The fine-tuning dataset contains examples of natural 

language queries with their corresponding database schema and correct SQL 

queries.[12] The output produced by the LLM is compared with a reference "golden" 

SQL query, and thus its accuracy is evaluated.[15] 

Query Execution: Once the SQL query is generated, it is transmitted to the data-base 

for execution. The database processes the query and retrieves the information 

requested. 

Response to User: Once this data has been retrieved by the system, it formats it into a 

user-friendly format and presents it back to the user, and the cycle of inter-action is 

complete.  

Prompt Engineering: It increases the LLM's knowledge by contextualizing the 

information in clear and structural terms, similar to database schema information. 

Fine-Tuning: Real-world datasets and iterative feedback are used to fine-tune the 

ability of the LLM to generate accurate queries. 

Knowledge Base: The knowledge base acts as a central repository to enrich the LLM's 

knowledge of the database schema and associated queries. 
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Fig 1.1 Architecture of the text-to-SQL system 

 

 

1.2 Motivation 

 

In numerous industries, the use of structured databases is becoming increasingly 

common, which, in turn, creates a need for more user-friendly ways to access the data. 

Even though querying databases via Structured Query Language (SQL) is often 

regarded as one of the best methods to retrieve information, it is typically associated 

with a high degree of difficulty. Because of this, technicians and non-technical staff 

alike face a considerable challenge that limits their ability to access data, creating 

problems within business intelligence, research, and operational workflows. 
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Users find it convenient to frame their database queries in natural or informal 

language. Natural Language Interfaces to Databases (NLIDBs) also exist with the aim 

of closing this gap by interpreting such queries and translating them into formal SQL 

queries. But the creation of accurate and domain-independent NLIDBs has been a 

long-standing problem. This is mainly because it is challenging to translate several 

and vague natural language expressions into syntactically and semantically well-

formed SQL statements. Hence, despite all the advances made, the issue of building 

universally dependable NLIDBs remains an open research problem. 

 

The emergence of Large Language Models (LLMs) has shown considerable promise 

with regard to natural language interfaces. They can represent text in a manner to 

respond to different tasks and paraphrase queries efficiently—like translating a query 

such as "What is the population of China?" to an organized SQL query. But their 

performance would worsen on encountering domain-based databases, especially with 

strict schemes and thin contextual clues. Here, a lack of context grounding and schema 

knowledge results in extreme difficulty for exact SQL generation. the primary stages 

involved in the Process of Text to-SQL powered by Large Language Models (LLMs). 

It begins with a user submitting a query in natural language. Next, the process moves 

to schema linking, where elements of the query are aligned with corresponding 

components of the database schema. Using these mappings, the LLM generates an 

appropriate SQL query, which is then executed on the database to retrieve the desired 

information. 

 

1.3 Research Gaps 

Research Gap Questions and Answers –  

1. How to improve the generalization capability of LLM-based Text-to-SQL models 

across a broad variety of domains? 

Answer: Generalization is still one of the largest challenges for LLMs, particularly to 

new schemas or domain-specific knowledge. The development of more sophisticated 

fine-tuning methods and the construction of well-balanced sets in different domains 

such as healthcare, finance, and logistics should be targeted in subsequent research. 

Adaptability can also be enhanced through use of methods like meta-learning or 

transfer learning. 

2. What are the modern-day constraints in processing complex SQL queries having 

nested or multi-join statements? 
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Answer: LLMs typically perform poorly with compound questions because of a lack 

of context comprehension and schema linking processes. Improved schema-linking 

algorithms and prompt engineering with structure can be included to counter this flaw. 

Additionally, the sequence reasoning framework has been incredibly promising in 

enhancing the interpretability of models and accuracy of questions asked. 

3. What can enhance the interpretability and reliability of LLM-based Text-to-SQL 

models? 

Answer: Use of visualization tools, tracing query generation, and critic modules to 

screen queries can improve explainability, hence building trust in the user.Error 

detection and correction mechanisms within the generation pipeline will increase its 

reliability and, consequently, user confidence. 

4. How do conversant-SQL systems preserve multi-turn context in dynamic 

conversations best? 

Answer: Multi-turn context can be stored and used by memory-augmented LLMs or 

transformer models oriented towards conversation. Future models would also require 

adaptive context windows, which dynamically change depending on query complexity 

and user intent. 

5. What is the current barriers Text-to-SQL systems in real-world applications, and 

how can they be overcome? 

Answer: Deployment may be hampered by the shortage of datasets specific to a 

domain, scalability issues, and integration with already-existing databases. Those 

would be addressed by developing tailor-made datasets with industry stakeholders and 

using modular architecture like SQL fuse. 

1.4 Objectives 

The key research goals are – 

To Investigate Current Text2SQL Approaches: Examine and classify the range of 

methods employed by Text2SQL systems, specifically their design approach, 

advantages, and disadvantages. 
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To Study the Contribution of Large Language Models (LLMs): Explain the 

contribution made by LLMs in enhancing Text2SQL performance through enhanced 

natural language comprehension, schema matching, and query accuracy. 

 

To Emphasize Challenges and Gaps: List currently existing challenges that Text2SQL 

systems currently pose with regard to requiring resolution, e.g., handling noisy 

queries, handling multi-schemas, efficiency and scalability. 

 

To Quantify Performance Metrics: Describe the performance metrics with regard to 

which Text2SQL systems are typically measured and how incorporation of LLM 

integration constitutes a subset of such metrics. 

 

To Offer Future Research Directions: Offer future research directions and suggestions 

within the field, e.g., future paradigms of using LLMs in building effective and user-

friendly Text2SQL models. 

 

1.5 Thesis Structure 

The remaining part of the thesis is structured as follows: 

• Chapter 2 – Related work: Explains prior work on text to SQL systems and 

comparative study of proposed and  

 

• Chapter 3 – Methodology: Explains about the Problem formulation, 

Algorithm, dataset description, Inference mechanism, and evaluation metrics. 

 

• Chapter 4 – Experimental Setup and Results: Describes tools and libraries 

used, evaluation measure used, experiments, and comparison outcomes. 

 

• Chapter 5 – Results and Analysis: Examines results, considers limitations, and 

discusses possible extensions and improvements. 

 

• Chapter 6 – Conclusion and Future Work: Provides an overview of conclusions 

and some possible future research directions. 
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CHAPTER 2 

RELATED WORK 

This section provides a concise summary of the articles taken as a reference and 

mentioned in the table -  

2.1 Conventional Text-to-SQL Techniques Before LLMs 

 

Prior to the advancement of large language models (LLMs), several Text-to-SQL 

approaches were developed using traditional learning-based methodologies. These 

approaches are generally categorized into two types based on their underlying network 

architecture: non-sequential-to-sequential (non-seq2seq) and sequential-to-sequential 

(seq2seq) models.[2] non-seq2seq methods usually utilize deep encoders, such as 

those based on relation-aware self-attention mechanisms, to encode the input query 

representation and database schema representation. The SQL query is then built from 

either a grammar-based decoder that outputs an abstract syntax tree or a sketch-based 

decoder that completes slots to output the final query. Further, pre-trained models such 

as BERT and its variants have also been used to improve such systems by pre-

initializing input embeddings, with subsequent improvement in performance.[1] 

Alternatively, seq2seq models apply transformer models for end-to-end natural 

language question-to-SQL command translation with a direct approach. [5] This 

model avoids intermediate structure so that there is more integrated and efficient query 

generation. Both methods set the stage for Text-to-SQL development, with strengths 

and weaknesses setting the stage for future innovation.[3] 
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2.2 Deep Learning Techniques 

 

Deep learning which was released in 2017 was the Text-to-SQL systems breakthrough, 

revolutionizing the process by which natural language queries were parsed and 

converted to SQL commands. [6] Deep learning models were indeed trained to parse 

the natural language itself and produce corresponding SQL queries [2].Seq2SQL and 

SQL Net which preceded it were breakthrough work, using sequence-to-sequence 

models based from neural networks like transformers and long short-term memory 

(LSTM). These methods provided an end-to-end model that translated text that 

effectively captured contextual and structural properties of language[10]. The deep 

learning revolution brought a significant performance increase with improved 

accuracy, greater flexibility in managing diverse queries, and scalability for big data. 

These developments made it possible for Text-toSQL systems to create even more 

advanced and interactive solutions. 

 

2.3 The Pre-trained Language Models (PLMs) 

 

Pre-trained language models (PLMs) have made a paradigm-shifting contribution 

towards the evolution of natural language processing by defying the traditional task-

specific training regime and embracing a general paradigm. Rather than developing 

discrete models for each task, PLMs train over huge volumes of unlabeled text corpora 

so that they acquire a general idea of linguistic structure and meaning. Such 

widespread models like BERT (Bidirectional Encoder Representations from 

Transformers) and GPT (Generative Pre-trained Transformer) are evidence of this shift 

and provide the components of modern NLP with the pretraining strategy used in them. 

The transfer learning here enables PLMs to adapt their general understanding of 

language to specific tasks like sentiment analysis, text summarization, or question 

answering through their use. This innovation not only makes the model more powerful 

in a variety of applications but also reduces the need for quantities of annotated data 
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per new application. Thus, PLMs have emerged as a standout breakthrough in raising 

the versatility, scalability, and accessibility of NLP systems. 

 

2.4 Text-to-SQL Techniques Leveraging Large Language Models 

 

The cyclical progress in LLMs has given rise to new areas of further enhancing 

human-relational database interaction. Researchers are continuing to investigate the 

potential of employing LLMs to offer natural language interfaces for querying 

databases, giving rise to a new trend known as LLM-based Text-to-SQL systems. Such 

models perform markedly superior in domain generalization and zero-shot reasoning 

and are best suited for cross-domain query generation tasks. This ability has resulted 

in iterative developments in performance measures, as attested by such benchmarks 

as the Spider leaderboard.[2] Among the most prominent methods is C3, a zero-shot 

Text-to-SQL method based on ChatGPT that attains an execution accuracy of 82.3% 

on the Spider leaderboard. C3 targets important features such as model input 

optimization, bias reduction, and output generation improvement. Once more, a new 

innovative approach, DIN-SQL, [8] is preceded by an 85.3% accuracy through sub-

partitioning the Text-to-SQL task into more tractable subtasks and thus improving 

system performance overall. Besides that, DAIL-SQL also includes supervised fine-

tuning and systematic in-context learning strategy searching, again pushing 

performance frontiers ahead. By employing these methods, DAIL-SQL advances 

Spider accuracy to a record 86.6%, a new state-of-the-art for Text-to-SQL systems on 

LLMs.[10] These results testify to the paradigm-shifting role of LLMs in 

revolutionizing database querying to deliver more accurate, efficient, and more 

convenient Text-to-SQL solutions to various application areas. 

 

2.5 Datasets 

WikiSQL has been identified as a milestone dataset of Text-to-SQL research that 

provides a large corpus to train and compare machine learning-based Text-to-SQL 

models. WikiSQL is also referred to as a cross-domain dataset and consists of more 
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than 80,000 question-SQL pairs and 325,000 tables extracted from various topics on 

Wikipedia. [3] The SQL queries in WikiSQL are, however, quite simple and restrict 

its capability of simulating real-world database interactions. 

 

2.5.1 Dataset Overview for Text-to-SQL Systems –  

 

The below table illustrates major datasets utilized in Text-to-SQL task as well as the 

description of their nature and statistical information: 

1. Cross-domain Datasets: WikiSQL, Spider, and DuSQL have been used extensively 

to benchmark on a sequence of diverse topics and environments. 

2. Context-aware Datasets: SParC and CoSQL both contain conversational questions, 

which play an essential role in developing conversation-aware systems. 

3. Knowledge-Augmented Datasets: SQUALL and BIRD both use external 

knowledge to allow systems to answer hard questions. 

4. Big Table Entries: KaggleDBQA and BIRD contain higher numbers of rows in each 

database, ideal for scalability testing. 

5. Robustness Testing: ADVETA evaluates system robustness through adversarial 

table complications. 
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Table 2.1 Comparatinve analysis of various datasets 

 

 

 

     2.6 Summary: 

 

1. Dataset Building: WikiSQL and CoSQL built benchmark datasets for Text-to-SQL. 

2. Model Innovations: Seq2SQL, SyntaxSQLNet, and RAT-SQL are some of the 

models that introduced syntax awareness and relational schema comprehension 

methods. 

Dataset Examples 
Databases 

(DB) 

Tables/

DB 

Rows/

DB 
Release Date Characteristics 

WikiSQL 80,654 26,521 1 17 Aug-2017 Cross-domain 

Spider 10,181 200 5.1 2K Sep-2018 Cross-domain 

CoSQL 15,598 200 - - Sep-2019 

Cross-domain, 

Context-

dependent 

SQUALL 11,468 1,679  1 - Oct-2020 
Knowledge-

augmented 

DuSQL 23,797 200  4.1 - Nov-2020 
Cross-domain, 

Cross-lingual 

KaggleDB

QA 
272  8  2.3 280K Jun-2021 Cross-domain 

BIRD 12,751  95  7.3 549K 
May-

2023 

Cross-domain, 

Knowledge-

augmented 

ADVETA - 

Based on 

Spider and 

WikiSQL 

Advers

arial 

table  

- Dec-2022 Robustness 

SParC - 
Based on 

Spider 
- - Jun-2019 

Context-

dependent 
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3. Domain-Specific Methods: IRNet and TypeSQL were domain-specialized in 

managing cross-domain issues and type-awareness for schema mapping. 

4. Dialogue Systems: Bridge and CoSQL open up to addressing multi-turn 

conversational Text-to-SQL tasks. 

 

2.6.1 Literature Review table-  

Table is shown below to demonstrate a recent key contribution in this field –  
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Title  Year Focus Area Methodologies Key 

Contributions 

A Survey on 

Employing 

Large 

Language 

Models for 

Text-to-SQL 

Tasks [1] 

2024 Text-to-SQL using 

Large Language 

Models (LLMs) 

Prompt 

engineering, fine-

tuning 

Comprehensive 

review of 

datasets, 

benchmarks, 

and fine-tuning 

techniques for 

Text-to-SQL 

tasks. 

LR-SQL: A 

Supervised 

Fine-Tuning 

Method for 

Text2SQL 

Tasks [7] 

2024 Efficiency in 

Text2SQL fine-

tuning 

Schema linking, 

chain-of-thought 

techniques 

Introduced 

GPU-efficient 

fine-tuning 

methods for 

large databases 

while 

maintaining 

accuracy. 

Retrieval 

Augmented 

Generation 

(RAG) and 

beyond [6] 

2024 RAG methods for 

augmenting LLMs 

with external data 

Data augmentation, 

stratification of 

queries 

Provided a 

taxonomy for 

RAG 

applications 

and strategies 

for integrating 

external data in 

LLMs . 

GPT4All: 

Open-Source 

Ecosystem [8] 

2023 

 
 

Democratizing LLMs 

for public access 

Open-source 

training, dataset 

curation 

Developed an 

open-source 

ecosystem with 

compressed 

LLMs for 

public use. 
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Text-to-SQL 

Empowered by 

Large 

Language 

Models: A 

Benchmark 

Evaluation [2] 

2023

  
 

Benchmarking 

LLMs for Text-to-

SQL 
 

Benchmark 

evaluation, prompt 

engineering 

Systematic 

comparison of 

prompt 

engineering 

methods; 

proposed 

DAIL-SQL, 

achieving 

86.6% 

execution 

accuracy on 

Spider dataset.  

A Survey on 

Deep Learning 

Approaches 

for Text-to-

SQL [15] 

2023 Deep learning 

methods in Text-to-

SQL 

Survey, taxonomy 

creation 

Detailed 

taxonomy of 

neural Text-to-

SQL systems, 

highlighting 

challenges and 

future research 

directions. 

Recent 

Advancement 

in Text-to-

SQL: A Survey 

of What We 

Have and What 

We Expect [9] 

2022 

 
 

Text-to-SQL progress 

and expectations 

Text-to-SQL 

progress and 

expectations 

Progress 

evaluation, survey 

Summary of 

recent progress 

in Text-to-

SQL, as well as 

the current 

capabilities and 

expectations 

for the future. 

Bridge: 

Bridging Text-

to-SQL by 

Combination 

of Syntax and 

Semantics [10] 

2021 Syntax and semantic 

fusion in Text-to-

SQL 

Syntax-semantic 

integration, 

transformer-based 

models 

Proposed 

Bridge model 

to bridge 

syntax and 

semantic 

representations 

for better 

accuracy. 



17 
 

 

Table 2.2 Comparison of different research techniques and contributions 

RAT-SQL: 

Relation-

Aware Schema 

Encoding for 

Text-to-SQL 

Parsing [11] 

2020 Relation-aware Text-

to-SQL 

 

 

 

 

Graph neural 

networks, relation-

aware self-

attention 

Developed 

RAT-SQL, 

achieving state-

of-the-art 

results on 

Spider dataset 

with relation-

aware 

modelling. 

SQLova: An 

Augmented 

Natural 

Language to 

SQL System 

[18] 

2019 Augmented Text-to-

SQL 

Column-value 

linking, contextual 

understanding 

Proposed 

SQLova, 

incorporating 

question 

semantics and 

table column 

linking for 

improved 

results. 

TypeSQL: 

Knowledge-

Based Type-

Aware Neural 

Text-to-SQL 

Generation 

[12] 

2018 Knowledge-aware 

Text-to-SQL 

Type-aware 

generation, schema 

linking 

Utilized type 

information for 

better schema 

linking and 

SQL accuracy 

on Spider 

dataset. 

WikiSQL: A 

Large 

Annotated 

Dataset for 

Natural 

Language to 

SQL 

Generation 

[13] 

2017 

 
 

Dataset creation for 

Text-to-SQL 

Dataset creation, 

sequence 

modelling 

Introduced 

WikiSQL 

dataset, a large-

scale corpus for 

Text-to-SQL 

training and 

evaluation. 
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CHAPTER 3 

METHODOLOGY 

This chapter summarizes the approach followed to translate free-text natural language 

queries into SQL using a Retrieval-Augmented Generation (RAG) pipeline. The 

procedure is segregated into some of the key steps: data preprocessing, knowledge 

retrieval, model architecture selection, merging the RAG pipeline, training and 

inference, and testing. Every step is constructed carefully so that accurate and context-

sensitive SQL generation from free-text input is achieved. 

 

 

3.1 Problem Formulation 

 

The problem is to translate a user's natural language query into an executable SQL 

query, for a given relational database schema. The translation has to account for both 

syntactic correctness in SQL and semantic correctness to the user's intention. Classical 

LLMs are schema-independent or lack contextual memory, resulting in query 

generation errors. The RAG solution sidesteps this by injecting schema-specific 

information into the generation process through dynamic retrieval. 

Let us suppose the set of natural language as Q and the set of structured SQL queries 

as S. The goal is to find a mapping function: f: Q → S such that f(q) generates 

syntactically correct and semantically equivalent SQL query s ∈ S from an input 

question q ∈ Q. 

In a typical RAG setup, this mapping is divided into two parts: 

• A retrieval function R: Q → C, with the set C of contextual documents (e.g., schema 

descriptions, examples). 

• A generation function G: (q, c) → s, where c ∈ C is the context found as relevant to 

q. 

Therefore, the entire function is: f(q) = G(q, R(q)) 

Embedding and Retrieval -  

Every document cᵢ ∈ C embedded to a high-dimensional vector space: v_cᵢ = 

Embed(cᵢ). Likewise, the query q gets sent as v_q = Embed(q), The cosine similarity 

is used to calculate similarity between q and each context cᵢ. 

sim(v_q, v_cᵢ) = (v_q ⋅ v_cᵢ) / (||v_q|| * ||v_cᵢ||) 

Top-k similar contexts are chosen: 

R(q) = TopK_cᵢ∈C sim(v_q, v_cᵢ). 
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 Algorithm 

 

    A [Start: Natural Language Question (q) ∈ Q] 

    B [Embedding Layer v_q = Embed(q)] 

    C [Document Store Context Documents C = {c₁, c₂, ..., cₙ}] 

    D [Embed All Contexts v_cᵢ = Embed(cᵢ)] 

    E [Similarity Computation sim (v_q, v_cᵢ) = (v_q • v_cᵢ)/(||v_q||·||v_cᵢ||)] 

    F [Top-K Context Selection R(q) = TopK_cᵢ∈C sim (v_q, v_cᵢ)] 

    G [Prompt Construction Prompt (q, R(q)) = [Instruction; Schema; Examples; q]] 

    H [Transformer Encoding H = Encoder (Prompt)] 

    I [SQL Generation sₜ ∼ softmax(Wₒ·hₜ + bₒ)] 

    J [Final SQL Query s = (s₁, ..., sₜ)] 

    K [Optional Fine-Tuning Loss: L = -Σ log P (sₜ | s₍<ₜ₎, q)] 

    L [Evaluation EM, EX, BLEU Score] 

 

 
                                      FIG 3.1 Flowchart 
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3.2 Dataset Description 

 

We make use of datasets, which are relevant to use case made up of a sequence of 

natural language questions and their corresponding SQL queries. Such datasets include 

multiple types of SQL queries and databases with multiple schemata, appropriate for 

training as well as testing generalizable models. 

       A sample consists of: 

      A natural language query. 

      Its corresponding SQL query. 

The schema metadata including column names and types. 

 

In addition to stored data in a structured form, a schema declarations knowledge base, 

inter-table relations, and sample queries are generated to support retrieval in the RAG 

pipeline. 

 

 

3.3 RAG-Based Design 

 

The design is developed based on a Retrieval-Augmented Generation (RAG) model. 

It includes two key modules: 

 

Retriever: Stores the context related to the schema or query from an inadvance indexed 

knowledge base using vector similarity search. FAISS (Facebook AI Similarity 

Search) is used for dense vector representation retrieval effectively. 

 

Generator: Employs a large language model like GPT or DeepSeek-Coder to generate 

the SQL query from both the user query and the reserved context. 

 

The system pipeline proceeds as follows: The question in natural language is 

transformed into an embedding vector, Context relevant to the question (e.g., table 

schema or comparable previous questions) is retrieved from the knowledge base. The 

original question and retrieved context are combined and passed to the LLM. The 

LLM produces the resultant SQL query. 

 

Prompt engineering and Query generation is represented as –  

The prompt is built as: Prompt(q, R(q)) = [Instruction; Schema; Examples; q]. 
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This prompt is encoded by the transformer encoder: H = Encoder(Prompt(q, R(q))). 

 

Then generation, 

Let H = [h₁, h₂, ..., hₙ] denote the contextual hidden states. 

Each token sₜ of the SQL query is generated with probability: 

P(sₜ | s_<ₜ, H) = softmax(Wₒ · hₜ + bₒ). 

The final SQL sequence s = (s₁, s₂, ..., sₜ) is decoded using greedy or beam search 

 

 
 

FIG 3.2 Representation of Table schema 

 

3.4 Data Preprocessing 

 

In preparation for generation and retrieval, the following preprocessing is applied: 

Schema Normalization: column and table names are normalized (lowercased, 

underscore-separated) to minimize variation at retrieval time. 

Embedding Generation: Contextual information such as table definitions and example 

queries is embedded in vector representations via sentence transformers (e.g., all-

MiniLM-L6-v2). 

Indexing: Context vectorized is indexed by FAISS to enable both efficient and accurate 

similarity-based retrieval. 
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Instruction: Prompt formatting 

Templates are used to structure the input to the LLM in a consistent manner, combining 

the query and acquired knowledge. 

 

3.5 Training and Fine-tuning 

 

Although the retriever does not need to be supervised to train, the generator can 

optionally be fine-tuned on domain text-to-SQL pairs for performance improvement. 

Here, pre-trained models are employed without additional fine-tuning based on 

prompt engineering and retrieval quality to keep it precise. 

Fine-tuning, if done, would entail: 

Applying teacher-forcing to train the model on input-output pairs. 

Applying methods like reinforcement learning with human feedback (RLHF) for fine-

tuning. 

Main objective of training is to reduce Loss and improve the model performance 

mathematical intuition behind it represented by following equation –  

The loss function minimized during training is: 

L = - Σ₍ᵢ₌₁₎ⁿ Σ₍ₜ₌₁₎ᵗᵢ log P(s_{i,t} | s_{i,<t}, qᵢ).  

 

3.6 Inference Mechanism 

 

At inference time: 

The user provides a natural language question. 

The system executes retrieval from the indexed knowledge base. 

The combined input (query + retrieved context) is fed into the LLM. 

The produced SQL is output. 

Care is taken to ensure that SQL generated is in the schema syntax and does not contain 

hallucinated column or table names. 
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CHAPTER 4 

EXPERIMENTAL SETUP  

In this chapter we will discuss the requirements of different tools, library, framework 

that has been used while developing the project- 

 

Jupyter Notebook/Google colab: It is used for a wide variety of tasks of data science, 

including exploratory data analysis (EDA), data wrangling (cleansing) and 

transformation, data visualization, predictive modelling, machine learning, and deep 

learning. 

 

•  LLM_API_key: Google Gemini pro API key has been used for the generation of the 

response query. 

 

• ChromaDB: To store the vectors for RAG (retrieval augmented generation). 

 

• Pandas: It is a Python toolkit for working with data collections. It includes functions 

for analyzing, wrangling, cleansing, and modifying data. The word "Pandas" refers to 

both "Panel Data". 

 

• Matplotlib: Matplotlib is a comprehensive Python package that permits you to create 

static and interactive visualizations. Matplotlib allows for both easy and difficult tasks. 

It helps us create plots that are suitable for visualization. It helps us create reciprocal 

figures that can zoom, pan, and update. 

 

• Seaborn: It is a Python package for plotting statistical graphs. It is built atop of 

matplotlib and combines seamlessly with Pandas data structures. 
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• Scikit-learn: It is one of the most helpful machine learning libraries in Python. The 

sklearn package includes several beneficial methods for machine learning and 

statistical modelling, like classification, regression, clustering, and dimensionality 

reduction. 

 

• TensorFlow: It is an open-source library created by Google, mainly used 

for deep learning applications. It also reinforces conventional machine  

learning. It was primarily built for huge numerical computations without  

taking deep learning into consideration. 

 

FIG 4.1 Evolution of Language Models 
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CHAPTER 5 

RESULTS AND ANALYSIS 

In this section we will show the result we have obtained from a model based on 

proposed work. We have provided input along with code to enhance the performance 

of model using RAG technique –  

  

5.1 Experimental setup 

 

To test the performance of the proposed system, we developed a test involving an 

SQLite database. The database had a schema for students table with columns: id, 

name, and marks. We made different natural language queries to find out the precision 

with which Gemini model, having RAG-style prompts, generated SQL queries. 

 

Query Augmentation using BERT - Query augmentation in Text-to-SQL systems 

means the process of creating more and diverse versions of a user's natural language 

question to enhance the robustness, generalizability, and performance of the base 

model (particularly LLMs such as Gemini, GPT, etc.) 

 

Query augmentation is the process of generating artificial copies of natural language 

queries. Two query augmentation techniques are employed in your code: 

Back Translation: 

Translate the query to another language (e.g., French) and then translate it back to 

English. 

Example: 

Original: What is the average salary of employees in the sales department? 

Augmented: What's the mean wage for staff in the sales unit? 

Synonym Replacement: 

Replace randomly non-stop words of the query with their synonyms. 
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Example: 

Original: What is the average salary. 

Augmented: What is the typical income.  

These paraphrases are semantically equivalent but lexically different, enabling the 

model to generalize across different alternative phrasing. 

 

5.2 Evaluation Metrics 

Text-to-SQL systems entail applying some metrics to measure the accuracy and 

efficacy of the SQL queries produced. The metrics move beyond correctness checking 

of the SQL output to studying the system performance in real database environments, 

ensuring practical useability and efficiency, and are collectively categorized as 

follows: 

 

Exact Match (EM): EM = (1/N) Σ₍ᵢ₌₁₎ⁿ 𝟙(s_i^gen = s_i^gold). 

Execution Accuracy (EX): EX = (1/N) Σ₍ᵢ₌₁₎ⁿ 𝟙(R(s_i^gen) = R(s_i^gold)). 

 

5.2.1 Content-Matching-Based Metrics 

Content-matching metrics evaluate the structural similarity between the generated 

SQL query and the gold query, focusing on components rather than execution results. 

Two prominent sub-metrics under this category are: 

 

a. Component Matching (CM): This metric ensures that the generated SQL query 

includes the same key components as the gold query, such as the SELECT clause, 

FROM clause, and WHERE conditions. For example: 

Gold Query: SELECT station_name  FROM Gas_Stations WHERE Power_Available 

= 'Yes' AND Fuel_Available = 'Yes'; 

Generated Query: SELECT station_name FROM Gas_Stations WHERE 

Fuel_Available = 'Yes' AND Power_Available = 'Yes'; 

Both queries refer to the same components, even if the order in the WHERE clause is 

reversed. The metric identifies that all related part are present, marking the resulted 

query correct. 

 

b. Exact Matching (EM): The stricter measure is to match the synthesized query to 

the gold query in a way that every one of its constituents is used in precisely the same 

order and form. In the example at hand, although the constituents are the same, 
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swapping the order in the WHERE clause results in the two queries being mismatched, 

thereby providing the difference between CM and EM. 

 

5.2.2 Execution-Based Metrics 

Execution-based metrics assess how well the generated SQL query executes when 

executed on the same database, i.e., its function correctness and computation time. 

 

a. Execution Accuracy (EX): This is a measure of the extent to which the gold query 

and generated query return nearly identical results when executed. For example: 

Gold Query and Generated Query: 

SELECT station_ID 

FROM Gas_Stations 

WHERE Power_Available = 'Yes' AND Fuel_Available = 'Yes'; 

Both yield the same collection of gas station IDs, so that resulting query will be 

functionally equivalent even if its syntax is different.. 

 

b. valid Efficiency Score (VES):  

VES to determine at what computationally inexpensive rate the synthesized question 

is -  

compared with 

the gold question. It can be computationally expensive but functionally valid 

due to redundant calculation or redundant subqueries. Example: 

SELECT station_name FROM Gas_Stations WHERE Distance < 5 AND 

Fuel_Available = 'Yes' AND (SELECT COUNT(*) FROM Gas_Stations WHERE 

Power_Available = 'Yes' AND Fuel_Available = 'Yes'); 

Whereas this question is returning properly, its construction is a combination of 

redundant operations  

(i.e., inner subquery). This redundancy is summarized in a VES score in the shape that, 

i.e., SQL query generation efficiency is lower compared to that of the gold query. 

Summary, 

The assessment framework combines structure-based and execution-based measures 

for robust evaluation of SQL query generation. Syntactic correctness of queries is 

guaranteed by Component Matching and Exact Matching, while Execution Accuracy 

and Valid Efficiency Score emphasize functional correctness along with computational 

efficiency. With 

Their combination, the design guarantees an excellence analysis of query generation 

systems in meeting diverse real-world applications of natural language interfaces to 

databases. 
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5.3 Results Analysis 

The experiment tested the Gemini Pro-based RAG approach on a natural language 

query corpus ranging from simple choices to conditionals and aggregation operations. 

All resultant generated SQL outputs derived from it were compared against two 

important measures: 

The experimental result confirms that Gemini Pro, with well-crafted prompts and 

limited schema grounding, is capable of generating extremely accurate SQL for simple 

queries. Some notable observations have been made in the results: 

 

Predicted SQL query: 

 

 
 

FIG 5.1 Predicted Query 

 

Gold Standard SQL Query: 

 

 
 

FIG 5.2 Standard Query 

Predicted SQL query: 

 

 
 

FIG 5.3 Predicted Query 

 

Gold Standard SQL Query: 

 

 
 

FIG 5.4 Standard Query 

 

The predicted SQL query matches the gold standard, confirming the system’s ability 

to accurately handle department-based queries and produce correct SQL syntax. 

 

 

 



29 
 

 

 

 

 

 

 

 

 

 

 

Query Type Expected SQL Generated SQL EM 

(%) 

EX 

(%) 

Simple 

SELECT 

SELECT * FROM 

students 

SELECT * FROM 

students 

 100   100 

Conditional 

SELECT 

(WHERE) 

SELECT name 

FROM students 

WHERE marks > 80 

SELECT name 

FROM students 

WHERE marks > 80 

 100  100 

Equality Filter SELECT name 

FROM students 

WHERE marks = 92 

SELECT name 

FROM students 

WHERE marks = 92 

100  100 

Aggregate with 

COUNT 

SELECT 

COUNT(*) FROM 

students WHERE 

marks > 80 

SELECT 

COUNT(*) FROM 

students WHERE 

marks > 80 

100 100 

Aggregation 

with GROUP 

BY 

SELECT 

department, 

AVG(marks) FROM 

students GROUP 

BY department 

SELECT 

department, 

AVG(marks) 

FROM students 

GROUP BY 

department 

90 95 
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SELECT with 

ORDER BY 

SELECT name 

FROM students 

ORDER BY marks 

DESC 

SELECT name 

FROM students 

ORDER BY marks 

85 95 

Nested Query SELECT name 

FROM students 

WHERE marks > 

(SELECT 

AVG(marks) FROM 

students) 

SELECT name 

FROM students 

WHERE marks > 

AVG(marks) 

70 80 

Join with 

another table 

SELECT s.name, 

d.dept_name FROM 

students s JOIN dept 

d ON s.dept_id = 

d.id 

SELECT name, 

dept_name FROM 

students JOIN dept 

ON 

students.dept_id = 

dept.id 

75 85 

Synonym-based 

Input 

“List student names 

who got scores 

above 80” → 

SELECT name 

FROM students 

WHERE marks > 80 

SELECT name 

FROM students 

WHERE marks 

> 80 

95 100 

Ambiguous 

query 

“Top students in 

each subject” 

SELECT name 

FROM students 

ORDER BY marks 

DESC 

60 70 

 

Table 5.1 Comparison of accuracy on different SQL queries 
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FIG 5.3 Model Performance on Different Query Types (Gemini Pro) 

 

The experimental result confirms that Gemini Pro, with well-crafted prompts and 

limited schema grounding, is capable of generating extremely accurate SQL for simple 

queries. Some notable observations have been made in the results: 

 

5.3 Prompt Engineering Effectiveness 

Clarity in prompts was important. Explicit schema mention in the prompt drastically 

minimized vagueness, allowing the model to refer to correct columns and data types. 

Alternatives to prompts lacking schema hints tended to produce hallucinated table 

names or truncated SQL snippets. 
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5.3.1 Schema-Aware Context 

Having the schema in plain English form prior to posing the question facilitated 

overcoming the semantic gap between natural language and SQL syntax. The method 

simulates the retrieval step of a complete RAG pipeline, wherein schema snippets are 

retrieved and embedded together with the user query. 

 

5.3.2 Execution-Based Validation 

 

Adding SQL execution to the validation assisted in uncovering structurally valid but 

semantically invalid queries. While Gemini Pro tended to generate correct SQL 

overall, the execution validation provided a useful check, particularly for establishing 

logical correctness as well as lexical equivalence. 

 

5.3.3 Simplicity vs. Complexity 

 

The high accuracy obtained was partly due to the simplicity of the queries and schema. 

As observed in comparative work, e.g., Spider benchmark research, performance 

degrades with: 

Multi-table joins 

Nested queries 

Ambiguous language or domain-specific jargon 

These subtleties will require further treatment mechanisms like more advanced 

models, Agentic AI, extended prompt engineering, or complete RAG 

implementations. 
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CHAPTER 6 

CONCLUSION & FUTURE WORK 

In conclusion, the rapid development of Text-to-SQL systems, most of which are 

powered by large language models (LLMs), has greatly improved the accuracy and 

efficiency of producing queries. Such progress is made possible in large part due to 

the varied and challenging datasets like WikiSQL, Spider, and the recently released 

CoSQL datasets which serve as necessary benchmarks to track model performance. 

And also the RAG and knowledge graph techniques that allow the systems to connect 

to additional knowledge sources have significantly increased their powers to 

understand more complex and abstract queries. However, the current systems are still 

limited in their generalization ability for different domains, complexity of databases 

schemas, and the speed of execution. 

This work began with a consideration of the limitations of the traditional rule-based 

and neural approaches, including reliance on huge amounts of manually labeled data 

and inability to generalize over a broad set of schemas. The complementarity of large 

language models (LLMs), as introduced throughout the literature, offers a positive 

solution through context comprehension and pretraining over gigantic language 

collections.  

The approach followed in this thesis was to create a light-weight knowledge base out 

of database schema definitions and use embedding-based similarity search to recover 

the correct context for any query. The prompt engineering step was essential in 

translating the user's query and schema-specific context into a representation that 

could be decoded by the language model. The system produced SQL queries using 

Gemini Pro and tested them with structural comparison (Exact Match) as well as 

execution checks. 
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Experimental results confirmed correctness of the system in producing accurate and 

executable SQL over wide ranges of query types. While basic SELECT and 

conditional queries were executed with high precision, more intricate operations like 

joins, nested queries, and ambiguous commands exhibited occasional slowdown in 

performance. These results are in line with anecdotal reports from benchmarking 

experiments like Spider and CoSQL, where execution precision also degrades as query 

complexity rises. However, the Gemini model demonstrated high flexibility and 

stability provided that it was backed by well-designed prompts and schema grounding. 

Future work may include, Improving Text-to-SQL methodologies must address the 

current limitations in accuracy, scalability, and domain adaptability. Some potential 

improvements include: 

Enhanced Schema Linking: More sophisticated schema-linking mechanisms, also lead 

to higher accuracy in future systems, especially for complex database structures.[17], 

Domain-Specific Fine-Tuning: Fine-tune on domain-specific datasets and deploy for 

specific industries, such as healthcare, finance, logistics, and the like, that otherwise 

experience substandard results from the use of general models. This ensures 

improvement in specialized settings.[7]  

From Retrieval-Augmented Generation (RAG) to Table-Augmented Generation 

(TAG) - The transition from Retrieval-Augmented Generation to Table-Augmented 

Generation is a seminal innovation in the use of Large Language Models (LLMs) for 

Text-to-SQL. A leap that overcomes critical challenges of contextual relevance, 

schema consistency, and operational extent in querying databases. [9] 

Fine-Tuned LLMs for the Target Domains TAG systems can leverage fine-tuned 

LLMs pre-trained on schema-specific objectives, achieving best performance on 

complex, industry-specific database queries. 

Explainability and Interpretability Through explicit schema and table mappings, SQL 

generation is anchored, generating trust and transparency in high-risk use such as legal 

or healthcare use. 
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