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Next Word Likelihood using LLMs 

Mohini Yadav 

 

ABSTRACT 

 

 
This research work presents a comprehensive study of next word likelihood systems 

leveraging state-of-the-art natural language processing and machine learning 

techniques, including Chain Modelling, Recurrent Neural Networks, Long Short-Term 

Memory, Bidirectional LSTM, and Transformer-based models such as BERT, 

ALBERT, GPT, and GPT-Neo. The study incorporates a variety of preprocessing 

methods including tokenization, text stemming, n-gram generation, word embeddings, 

and vectorization to enhance model performance. 

These predictive systems are vital for improving communication efficiency, 

minimizing user input, and enhancing the user experience across multiple languages 

including English, Hindi, Bangla, Dzongkha, Urdu, and Japanese especially those with 

complex linguistic structures or low-resource availability. The research also 

emphasizes the integration of hybrid language models and self-attention mechanisms 

to address challenges such as morphological complexity, resource constraints, and 

cross-domain adaptability. 

Further, the research work explores strategies to improve model generalization, 

computational efficiency, and ethical considerations in real-world applications. The 

findings highlight the transformative potential of next-word prediction models in real- 

time operations, ranging from assistive technologies to multilingual text processing, 

and underline the growing importance of LLMs in bridging linguistic and accessibility 

gaps. 

 

Keywords: Word Embedding, Key stroke minimization, Attention, Tokenization, 

N-gram, Stemming, User experience enhancement. 
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CHAPTER 1 

INTRODUCTION 

 
This research work addresses the prediction of next word which is most 

likely to occur after the occurrence of the present word by the use of models of different 

kind such as N-gram models, Transformer models and the LLMs on the dataset of 

various languages like Hindi, Bangla, Urdu, and Dzongkha some of which are 

linguistically rich but are low resourced. 

 

 

1.1. BACKGROUND 

The evolution of Natural Language Processing has significantly 

transformed human and computer interaction, enabling a broad spectrum of 

applications such as text prediction, machine translation, virtual assistants, and 

educational tools. Among all these, next word prediction plays an essential role in 

enhancing communication effectively, by reducing user input and minimizing typing 

errors. These systems are now fundamental to mobile keyboards, convenient 

communication devices, and multilingual digital interfaces, providing value in both 

high resource and low resource language environments. Early predictive models 

primarily depended on statistical methods such as Markov chains and n-gram models. 

While computationally efficient, these techniques struggled with capturing long-range- 

dependencies of data and complex contextual relationships. The introduction of neural 

networks, including Recurrent Neural Networks, Long Short-Term Memory, and 

Bidirectional LSTM which addressed these limitations by enabling sequential memory 

and context control. Transformer based architectures such as BERT, GPT, GPT-Neo, 

and ALBERT have set a new benchmark in NLP by leveraging self-attention 

mechanisms and parallel processing for deep contextual embedding. 

 

 

1.2. OBJECTIVE 

The main objective of this research work is to develop and evaluate next- 

word prediction systems using Large Language Models across a variety of linguistic 

varieties. This involves a qualified study of fundamental models such as Markov 

Chains, neural architectures like LSTM and Bi-LSTM, and advanced transformer- 

based models including BERT, GPT, and Al-BERT. The research work seeks to 

analyze the effectiveness of these models on diverse textual datasets sourced from 

domains such as blogs, news articles, and social media platforms, whereby simulating 
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real-world language use. A vital focus is on the role of preprocessing techniques such 

as tokenization, stemming, and word embedding as better the data provided to the 

model, better result will be anticipated. In addition to evaluating prediction accuracy, 

the research also examines computational complexity and scalability to identify 

models suitable for deployment in low-resource environments. Ultimately, the 

research aims to propose adaptable and efficient solutions for multilingual and 

resource-constrained contexts, offering practical insights and best practices for 

enhancing the performance of next-word likelihood systems. 

 

1.3. PROBLEM STATEMENT 

In spite of, the success of modern language models which have high 

resource languages, substantial challenges persist when we apply these models to 

morphologically rich and low resource languages such as Hindi, Bangla, Urdu, and 

Dzongkha which have extremely less recourses and hard linguistic abilities. Languages 

with minor annotated data, rich grammar structures, and phonemic vagueness cause 

the performance and generality of standard models to degrade. Additionally, existing 

models typically involve costly computational expenditures and, therefore, are not 

user-friendly in low-resource settings. Consequently, there is a critical need for 

effective, scalable, and adaptive next-word forecasting systems that is tailored for 

varied linguistic environments. 

 

1.4. MOTIVATION 

The growing use of NLP technology in day-to-day life especially in 

multilingual and assistive environments calls for the need to develop inclusive, efficient, 

and precise next word prediction models. Low resource languages get disenfranchised in 

current NLP research despite having large speaking communities for the target language. 

Developing strong models for these languages not only advances linguistic parity but also 

lays the foundation for actual-world applications to enhance communication, literacy, and 

accessibility on the online world. Fueling the effort is the need to fill these gaps and work 

towards them in an authentic attempt to deliver leading-edge predictive modeling to a 

greater linguistic spectrum. 

 

1.5. THESIS ORGANIZATION 

This thesis is structured into five chapters, each addressing a key 

component of the research on next-word likelihood using large language models. 

Chapter 1 introduces the research topic, providing background on the evolution of 

Natural Language Processing and spotting the light on the objective of next-word 

prediction systems, particularly in the context of multilingual and low-resource 

languages. Chapter 2 presents a comprehensive review of the existing literature, 

covering classical statistical models, neural network-based approaches, and 

transformer architectures, while identifying gaps that motivate the current study. 

Chapter 3 details the data pre-processing techniques which are used to clean the data 

before providing it to the respective models. Chapter 4 discusses the dataset which we 
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have considered for the proposed work which contains three type of data that are, news, 

blogs and twitter data. Chapter 5 contains the fundamental models used in the natural 

language processing that are used in past for predicting the next word . Chapter 6 takes 

a dig on the proposed model which has GPT-2 model with three different approaches 

, the greedy approach, beam approach and the random sampling approach. Chapter 7 

provide us with the effective results of the models working on 70 epochs. .Chapter 8 

brings us the conclusion and summarizes the key findings, outlining the contributions 

of the work, and proposing directions for future research aimed at further enhancing 

the efficiency, scalability, and ethical deployment of next-word prediction systems. 

Then, comes the References which made this research work possible with the apt 

information and precise result . This thesis also contain the proofs of the acceptance of 

my research work at the very end. 
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CHAPTER 2 

LITERATURE SURVEY 

 

 

2.1. Related work 

R. Sumathy et al. [1] introduced a neurosis structure for next word 

prediction where research describes how NLP techniques can be integrated with deep 

learning to enhance the prediction of texts by leveraging sequential dependencies 

within the data through LSTM neural networks to predict the subsequent words based 

on contextual information. Operations like tokenization, embedding, and Bi-LSTM 

layers enabled the model to analyze the text bidirectionally, achieving an accuracy of 

91% after more than 40 epochs. Astonishingly, the model achieved high accuracy even 

with a relatively simple architecture and limited data, contradicting the assumption that 

large datasets and complex designs are required for NLP tasks. Character-to-word 

prediction also further improved performance and robustness against typographical 

errors, indicating potential applications in assistive typing technologies. Vishall Rathee 

et al. [2] focused on predicting the next word in a sentence by through the use of Bi- 

LSTM and LSTM networks by training on a web-scraped dataset with preprocessing 

steps such as tokenization and removal of characters, Bi-LSTM achieved 85% 

accuracy, which was much higher than LSTM’s 57%. The improvement is because the 

Bi-LSTM model can capture both past and future contexts. Surprisingly, the Bi-LSTM 

model even performs very well with little data, defeating the notion that NLP tasks 

require large datasets. This research has underlined the capability of Bi-LSTM in 

combination with preprocessing techniques to transform predictive text technologies 

and enhance communication systems. Shahid et al. [3] focused on Urdu language target 

generation and the authors developed a deep learning model for next word prediction. 

Shahid in particular discusses improving next-word prediction in Urdu using LSTM 

and BERT models trained on a 1.1 million-sentence corpus from diverse domains. 

BERT achieved 73.7% accuracy, significantly outperforming LSTM's 52.4% and pre- 

trained Urdu BERT models, highlighting the importance of dataset diversity and scale. 

BERT’s bidirectional understanding is crucial for Urdu and the optimal context 

window size to achieve accuracy would be three words. This work provides a 

benchmark for deep learning in Urdu with the potential of tailored NLP tools for low- 

resource languages as well as advanced linguistic applications. Yukino Ikegami et al. 

[4] introduced a hybrid language model of next word prediction using Japanese 

language as the subject of research. They presented a hybrid language model 

combining RNN-LM with n-gram models to boost the input of Japanese text on mobile 

platforms so that Japanese text can be suggested while typing. Running RNN-LM on 

remote servers and executing n gram models locally reduces perplexity by 10% while 

being more efficient and saving input time by 16% and keystrokes by 34% over 

Google’s Mozc IME. Notably, n-gram integrated with RNN-LM had balanced 
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computational efficiency and prediction accuracy. This hybrid model also minimized 

keystroke variability among users and improved accessibility. The study emphasized 

the ability of hybrid models to tackle multilingual and sophisticated language issues 

and engineer user-oriented communication technologies. Jayr Alencar Pereira et al. [5] 

offered a BERT model variant for predicting the next pictogram in AAC systems. It 

applies word-sense embeddings and context-sensitive information to attain semantic 

consistency, which performs much better than n-gram models. Surprisingly, fine 

tuning loads it with the capability to dynamically adjust according to user-specific 

vocabularies so that it can make accurate predictions even in less structured 

environments. Modular in its design, personalization is enabled to support different 

needs in pictogram communication in order to deal with complexity. This strategy 

raises the bar for predictive modelling applied in AAC systems marrying linguistic 

accuracy and flexibility. Karma Wangchuk et al. [6] obtained a patent for their 

automatic syllable remover designed for language in the Dzongkha language context 

utilizing a Long Short Term Memory neural networks model. They discussed the 

typing problems in Dzongkha, a Sino-Tibetan language where syllables and words 

need to be typed by multiple keystrokes. An LSTM-based system that predicts the top 

five most likely next syllables has been designed, which would minimize the typing 

effort and time. The model achieved 78.33% accuracy on a dataset of 222,844 syllables 

and was deployed with a user-friendly interface for interactive selection. Surprisingly, 

the single-layer LSTMs performed better than the more complex Bi-LSTM and CNN- 

LSTM models, capturing semantic relationships effectively despite Dzongkha’s 

syntactic complexity. This study thus opens up a potential avenue for low-resource 

languages, allowing wider digital communication in Dzongkha. Radhika Sharma et al. 

[7] embarked on the use of deep learning methods through Long Short-Term Memory 

and Bidirectional LSTM models to predict the next word in Hindi. This explores 

advanced machine learning models, LSTM and Bi-LSTM, for next-word prediction in 

Hindi, aiming to reduce user keystrokes. Trained on a subset of the IIT Bombay 

English-Hindi Parallel Corpus, Bi-LSTM achieved 81.07% accuracy, outperforming 

LSTM’s 59.46%, with fewer epochs needed for convergence due to its bidirectional 

context processing. The investigation has underlined that word-level modelling 

outperforms character-level processing by reducing ambiguity and decreasing 

computational complexity in Hindi. Moreover, the practical applications are the 

mitigation of spelling errors and support for non-native learners; hence, it proves to be 

a useful system. This work places Bi LSTM as an effective approach toward Hindi 

natural language processing and opens up avenues for further applications. Aditya 

Tiwari et al. [8] explored LSTM and Bi-LSTM models for next-word prediction in 

Hindi, trained on a 5,000-sentence subset of the IIT Bombay English-Hindi Parallel 

Corpus. Bi-LSTM achieved 89.14% validation accuracy, slightly outperforming 

LSTM’s 88.38%, demonstrating LSTM’s adequacy for modelling Hindi’s 

complexities. The study highlights the advantages of word-level over character-level 

modelling, reducing computational complexity and addressing Hindi’s phonetically 

similar characters. Practical deployments include reduced typing effort and increased 

input speeds. The current work validates that LSTM-based architectures are effective 

solutions for low-resource languages, which enables the growth of natural language 

processing applications. Md. Robiul Islam et al. [9] introduced a system, specifically 

targeted towards Bangla language users, which involved next word prediction and 
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completion by employing Bi-LSTM techniques. They suggested a Bi-LSTM model 

that has been trained over Bangla news corpora on Bdnews24 and Prothom Alo. The 

model attained excellent accuracy by employing datasets from uni-gram to 5-gram; in 

fact, for 4-gram predictions, it attained a high of 99% accuracy, while the 5-gram 

attained 99.74%. This is interesting, as the model could maintain reliable accuracy for 

any length of input and integrate Bi-LSTM well with n-gram models for handling 

sparse data and contextually coherent sentence prediction. Kyume Abdul et al. [10] 

suggested a framework for the context based sequential word prediction and sentence 

creation in the Bangla language based on a Bi-directional Long Short-Term Memory 

Networks with a self-attention mechanism. They presented a Bi-LSTM architecture 

with Self-Attention. The proposed system aims to enhance the predictability of typing 

and sentence generation for Bangla. It was experimented by training on n-grams from 

bi-grams up to 7-grams which achieved accuracy rates at 97.98% for 7-grams, and 

97.91% for 5-grams. The reduction of the training epochs to 200 with the Self- 

Attention mechanism leads to efficiency, contextual focus, and synonym prediction, 

which can be used to improve typing. The applications include education, healthcare, 

and finance, by enabling the model to predict up to seven consecutive words. Finally, 

these findings open up the path for future benchmarking Bangla NLP, thereby feeding 

assistive technologies and content generation for low-resource languages. Yuyun et al. 

[11] studied how preprocessing techniques affect the next-sentence prediction for the 

Indonesian language using LSTM with Word2Vec embeddings. Tokenization and case 

folding enhanced semantic coherence and efficiency; however, stop- words removal 

and stemming reduced accuracy at times by eliminating contextual words critical to 

the context. Surprisingly, simpler preprocessing techniques performed better than 

complex ones, pointing out that specific techniques need to be developed for a 

particular language's model. The current study demonstrates the utility of Word2Vec 

embeddings in semantic relationships and establishes a benchmark for efficient, 

accurate NLP systems for low-resource languages and progresses text prediction 

technologies. Prathima Chilukuri et al. [12] proposed an advanced next-word 

prediction framework utilizing TensorFlow and algorithms like BERT, XLNet, and 

RoBERTa. Trained on Wikipedia data, the model is based on NLP methods such as 

tokenization and text normalization in combination with precise predictions made 

under a few training epochs. It enables prediction of 10 or more words within 

negligible time and offers personalized suggestions, outperforming conventional 

models. This research established performance and intelligence standards for the tools 

utilized in text prediction communication and access technology since it is adaptive 

for utilization across various applications like typing and language learning. Dr. Sarbjit 

Singh et al. [13] proposed a new next-word prediction model MSM that depends on 

drawing benefits from the integration of LSTM, CNN and RNN. The paper addresses 

efficient next-word prediction using advanced deep learning architectures, which 

include RNN, LSTM, and CNN. Using tokenization and embedding layers over SMS 

datasets, the system is able to capture both short- and long-range dependencies in the 

input text and thus enhance the input and subsequent prediction. Long Short-Term 

Memory outperformed RNN and CNN in addressing long-term dependencies and 

hence achieved accurate predictions by model Checkpointing, Tensor Board and 

Reduce LR On Plateau. The model's flexibility and attention mechanism improve 

prediction adaptability, setting a new benchmark for NLP. Applications include text 
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prediction, voice assistance, and real-time communication, advancing language 

processing technologies. Ranesh Puri et al. [14] proposed a word completion model 

based on a trigram statistical language model synthesized through the Natural 

Language Toolkit together with the NLTK package. The paper presents a robust 

statistical trigram model employed with NLTK and trained on the “Alice in 

Wonderland” corpus. Using weighted random probabilities and aggressive 

preprocessing like tokenization and lemmatization, the system is highly accurate in 

prediction as well as reliability. The key findings are that weighted probabilities are 

efficient for contextual prediction, and stop prediction feature from a user perspective 

enhances interaction as well as flexibility. The model outperformed other n-gram 

methods in modeling contextual dependency and thereby became its usefulness in 

predictive text. The work here forms a good foundation for future development in NLP 

and predictive text technology. Kishore Surendra et al. [15] explained the phenomenon 

that word sequence-trained Bi-LSTM networks predict the next word by automatically 

aggregating internal representations into grammatical classes. Without explicit 

syntactic training, word classes developed hierarchically in the terminal levels of the 

network, and this illustrated statistical learning’s role in language acquisition. This 

refuted Chomsky’s theory of universal grammar on the grounds that abstract linguistic 

categories are an outcome of input to patterns. The paper used multidimensional 

scaling demonstrate strong evidence for grammatical generalization. It bridges 

artificial intelligence and cognitive science to further progress in understanding 

language processing in both human and AI systems. Wenxiong Liao et al. [16] 

introduced the new framework, NSP-RTE, reformulating ZeroRTE as a next-sentence 

prediction task based on pre-trained BERT models. NSP-RTE does not use synthetic 

training samples and performs better than FewRel and Wiki-ZSL in terms of accuracy 

and efficiency. It is capable of robust generalization to previously unseen relations and 

filling gaps between the pre-training and fine-tuning steps without sacrificing optimal 

recall and precision balance in complex situations. This approach considerably reduces 

the computation demands and provides high accuracy with a new benchmark for tasks 

in ZeroRTE, which brings forward relation extraction and knowledge graph 

construction in NLP. 

 

Table 2.1. Comparison of Methodologies- Summarizes the Key Characteristics of the 

Seventeen Research Papers discussed above 

 

SNo. Research Papers Datasets Pre-processing 

Techniques 
Performance 

1 LSTM for next-word 

prediction 

Custom Dataset of 

sequence 

Tokenization 91% with 

LSTM after 

40 epochs. 

2 A Machine Learning 

Approach to predict the 

Next Word in a 

Statement 

Web Scrapped 

Medium article 

dataset. 

Tokenization 

and 

Removal of 

characters. 

85% with Bi- 

LSTM,  57% 

with LSTM 

after 
50 epochs 
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3 Next word prediction for 

Urdu language using 

deep learning models 

Methodology 

1.1 million Urdu 

sentences. 

Word2Vec 

embeddings for 

data 

Vectorization 

73.7% with 

BERT, 52.4 

% with 
LSTM 

4 Fast-ML based next 

word prediction for 

hybrid languages 

Methodology. 

A corpus of 

4,000,000 Japanese 

sentences from 

Twitter posts. 

Word 

Embedding, N- 

gram 

Input time 

(saved 16 %) 

and the 

number 

(saved 34 %) 

of keystrokes 

using RNN 
LM 

5 PictoBERT: 

Transformers for next 

pictogram prediction 

Child   Language 

Data Exchange 

System (CHILDES) 

corpus. 

Word-sense 

annotation 
 

N/A 

6 Next syllables prediction 

system in Dzongkha 

using long short-term 

memory. 

“DzoSyll” dataset, 

which consists of 

collected data from 

various Dzongkha. 

Word 

Embedding. 

78.33% with 

LSTM 

7 Next Word Prediction in 

Hindi Using Deep 

Learning Techniques 

Hindi parallel 

corpus containing 

1,561,841 
sentences, 

Tokenization, 

Creating 

dictionary of 
unique words 

79.54% with 

Bi-LSTM, 

70.89% with 

LSTM 

8 Next Word Prediction 

Using Deep Learning 

English Hindi 

parallel corpus, 

consisting 5,000 

sentences 

Cleaning, 

vocabulary 

creation 

92.12% with 

Bi-LSTM, 

91.78% with 

LSTM after 

100 epochs 

9 Enhancing Bangla 

Language Next Word 

Prediction and Sentence 

Completion through 

Extended RNN with Bi- 

LSTM  Model  On  N- 
gram Language. 

Large corpus of 

Bangla text totalling 

1.7 GB. 

Word 

Embedding 

Word2Vec, N- 

gram generation 

99% with 4 

gram and 

99.74% with 

5gram after 

300 epochs 

10 Contextual Bangla Next 

Word Prediction. 

Bangla dataset Compiling of 

Tokenization, N- 

gram generation, 

Text cleaning 

97.996% (7 

gram) with 

Bi-LSTM 
with 

11 Next Sentence 

Prediction: The Impact 

of Preprocessing 

Techniques in Deep 

Learning. 

1423 data sourced 

from online news 

sites in Indonesian. 

Tokenization, 

Stopword 

removal, 

Steaming, 

Embedding. 

 

 

N/A 
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12 A Novel Model for 

Prediction of Next Word 

using Machine Learning. 

Wikipedia corpus 

dataset 

Tokenization, 

Stopword 

removal 

 

N/A 

13 NLP-Based Next-Word 

Prediction Model 

Comprehensive 

SMS spam dataset 

Stemming, 

Tokenization 

94% with 

LSTM,  94% 

with RNN, 

94% with 

CNN 

14 Next Word Prediction 

System using NLP. 

Lewis Carroll's 

novel “Alice’s 

Adventures in 

Wonderland” 

Weighted 

probability 
 

N/A 

15 Word class 

representations 

spontaneously emerge in 

a deep neural network 

trained on next word 

prediction. 

German novel “Gut 

gegen Nordwind” 

by Daniel Glattauer 

POS tagging, 

Embeddings 

 

 

N/A 

16 Zero-shot relation triplet 

extraction as Next 

Sentence Prediction. 

Wikipedia articles 

and Wiki data 

knowledge base. 

NSP with entity 

detection 
 

N/A 

 

2.2. Areas of Concern 

The literature review culminations that previous automatic crack 

classification methods may not presently aid agencies in conducting pavement surface 

condition surveys. Key areas of concern identified include: 

1. Data Scarcity in Low-Resource Languages: A major limitation across studies 

is the lack of large, diverse, and annotated datasets for languages like Hindi, 

Urdu, Bangla, Dzongkha, and Indonesian. This directly affects model 

generalization and performance. 

2. High Computational Requirements of Transformer Models: Advanced models 

like BERT and GPT offer strong performance but demand substantial 

computational resources, making them less practical for deployment in low- 

power or real-time applications. 

3. Morphological and Linguistic Complexity: Complex grammar, syllabic 

structures, and phonemic ambiguities in many non-English languages 

introduce challenges in modelling accurate word predictions, especially with 

character-level or naive models. 

4. Importance of Preprocessing and Model-Specific Tokenization: Language- and 

model-specific preprocessing (e.g., tokenization, stemming, sub word 

segmentation) critically affects performance. Incorrect preprocessing can 

eliminate context or introduce noise. 
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CHAPTER 3 

 

 

DATA PRE-PROCESSING TECHNIQUES 

 

 

 
Data preprocessing is an essential step in any NLP or machine learning 

procedure, converting dirty and raw data into structured and meaningful input to 

provide to models. Data operations to clean, normalize, feature select, and encode are 

used to improve data quality and consistency. Tokenization, stop word removal, 

stemming, lemmatization, and vectorization are used in NLP to normalize text for 

semantic interpretation. These processes facilitate models to learn context, filter noise, 

and enhance overall predictive performance. Preprocessing efficiently minimizes 

computation, speeds up training, and avoids model degradation from unnecessary or 

conflicting inputs. This enables models to learn from clean signals instead of noise. 

Lastly, preprocessing moves beyond raw data and clever observations and thus 

becomes the pillar of any effective AI system. 

 

 

3.1. Extra Spaces and Special Character and Stop Word Removal. 

Special character removal and redundant space checking is a significant 

preprocessing step in Exploratory Data Analysis of SwiftKey data, i.e., Twitter, Blogs, 

and News text. Special characters such as "@, #,!?, %," don't provide anything useful 

to next-word probability models and add unnecessary noise. The inclusion of these 

leads to inconsistencies in tokenization and vectorization, word segmentation errors, 

and decrease prediction accuracy. Unnecessary spaces and symbols can distort the text 

organization, creating split words and incorrect word relationships in word 

representations such as Word2Vec and GloVe [7] [8] [11] [14]. Text normalization in 

the datasets is particularly crucial because Twitter has informal aspects such as 

hashtags, mentions, and emoticons, while Blogs and News may have HTML tags, 

special punctuation, and layout marks. Removal of these characteristics implies fewer 

wasteful calculations, which implies faster training and utilization of memory. It also 

enhances N-gram analysis with correct word sequences maintained critical in 

establishing the probability of the next words. The elimination of redundant characters 

and spaces makes the handling of text cleaner and more organized leading to enhanced 

performance of models in NLP with different datasets. 
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Fig.3.1 Elimination of Extra Spaces and Special Characters 

3.2. Tokenization 

Tokenization is a process of splitting a text into the smallest units in terms 

of words or sub words for easy NLP model processing. This can be considered an input 

preprocessing, which ensures the input is clean because text segmentation often 

removes all punctuation or special characters. As such, text can be tokenized to get 

structured formats, such as embeddings, and so enhance the correctness of the Hindi, 

Urdu, and Bangla model. Challenges include handling phonetically similar characters 

and maintaining accuracy in morphologically rich languages. It is often combined with 

other techniques like stemming and lemmatization to enhance model performance. 

Overall, tokenization bridges raw text and advanced NLP models which enables 

effective language understanding [6][7][10][15][14] as shown in Fig.3.2 and Fig. 3.3. 
 

Fig.3.2 Creation of Tokens 
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Fig.3.3 Creation of Tokens Based on Length 2, Length 4 and Length 7. 

 

3.3. N-gram Generation 

The N-gram generation is the process of producing sequences of ‘n’ 

consecutive words or tokens taken from a given text in NLP. This captures contextual 

relationships within a given window size and is the basis of many predictive and 

analytical tasks, such as language modelling, next-word prediction, and text 

classification [9][14][13] as shown in Fig.3.2[16] has use N-gram for the feature 

development of the data so that it can be further used in Markov Model. The word 

cloud of 200 most frequent words for the swift key dataset is shown in Fig. 4.1. 

 

Fig 3.4 Pictorial Representation of Data Cleaning to N-gram Generation.[3] 
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Fig 3.5 Tree Generation of N-gram.[3] 

 

Fig.3.6 Division of Data Based on Bigram and Trigram. 

 

 

3.4. Frequency Distribution Plot 

A frequency distribution graph is vital in next-word prediction since it 

displays how frequently words or word combinations appear in a dataset, aiding 

models to give more priority to potential predictions. By studying these distributions, 

models such as Markov or n-gram estimate transition probabilities, allowing word 

predictions for specific contexts. For instance, if “I want to” precedes “eat” 40% of the 

time and “go” 30%, the model gives more weight to “eat”. This method aids in 

improved accuracy, context sensitivity, and generalization, particularly in how it 

handles both common and rare word patterns in training data.[9]. Fig.3.6 is the 

frequency chart for a bigram dataset which can further be plotted into a frequency 

distribution plot for better statistical outlook of the dataset. This helps in the better 

visualization of the data so that dataset can be interpreted better just like the 

information extracted from the SwiftKey dataset “Twitter has the most entries but the 

fewest words per line. Blogs contain the longest sentences, making them ideal for 
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predicting text after longer word sequences, Twitter data is better suited for informal 

and short sequence predictions” such understanding of data comes with the better 

visualization [15] as shown in Fig.3.6. 

 

Fig.3.7 Frequency Distribution Plot of Bigram for Blogs in Swift Key Dataset.[17] 

 

3.5. Vectorization 

Vectorization in Natural Language Processing is the act of transforming 

text data into numerical forms so that machine learning models can effectively process 

and analyse it. Because raw text is unstructured, vectorization converts words into 

structured numerical forms so that they are ready for statistical analysis, visualization, 

and predictive modelling. During Exploratory Data Analysis of the SwiftKey dataset, 

comprising Twitter, Blogs, and News data, vectorization is required to comprehend 

text patterns, discover frequent words, and prepare data for next word prediction 

models. Methods like Word Embeddings for e.g. Word2Vec, GloVe, FastText 

[8][9][11][14], Bag of Words, and Term Frequency Inverse Document Frequency 

assist in retaining contextual significance while representing words numerically. By 

using vectorization, EDA can easily analyse word distributions, identify, find common 

phrases i.e. n-grams, and compare sentence structures between datasets. It also assists 

in clustering, dimensionality reduction, and text similarity analysis, which 

differentiates short informal texts from Twitter and longer structured content from 

Blogs and News. In next-word likelihood, vectorization allows models to learn 

relationships, semantic similarities, and contextual dependencies among words. 

 

 

3.6. Pickling and Non-pickling 

Pickling and non-pickling are not inherently a part of Exploratory Data 

Analysis i.e., EDA, but they are extremely crucial for storing and retrieving data during 

machine learning operations. Pickling refers to the serializing of Python objects such 

as data frames, tokenized text, and vectorized forms into a binary format for easy 

storage and reloading of processed data. Under the scenario of EDA, on large data such 

as SwiftKey, pickling is beneficial for time-saving by not repeating redundant 

preprocessing steps such as tokenization, StopWord removal, and vectorization. 

Conversely, non-pickling involves storing cleaned data in more human-readable 
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formats such as CSV, JSON, or databases so that visualization and analysis can 

become easier during EDA. While pickling itself is not an EDA process, it indirectly 

helps the process by preserving processed data to be reused for future analysis and 

enhancing computational efficiency as shown in Fig.3.7. Non pickling formats such as 

CSV are typically applied for data visualization, statistical analysis, and feature 

engineering [17]. 
 

Fig.3.8 Procedure of Pickling and Non-Pickling. 

 

 

3.7. Text stemming and Text Lemmatization 

Text stemming, is one of the NLP pre-processing techniques that reduce 

words to their base or root form by stripping off prefixes and suffixes. The main idea 

behind stemming is to group together words with related meanings into one 

representation so that data becomes easier to simplify and reduces redundancy in the 

input text[11][13].Text lemmatization is an NLP preprocessing technique that 

simplifies words down to their basic or root forms, called lemmas, with an assurance 

that that reduced form of the word will still be valid in the language. Unlike a stemming 

process which removes affixes, such as prefixes and suffixes of words, this 

lemmatization process keeps in mind both the grammatical context and other 

morphological properties of words and thus produces the linguistically most accurate 

base form. 

 

 

3.8. POS Tagging 

Part-of-Speech Tagging is assigning a grammatical category (noun, verb, 

adjective, etc.) to a word based on its context and syntax in a sentence. This will assist 

in determining the structure and meaning of text. Some applications that it can aid are 

parsing, sentiment analysis, and machine translation. Rule-based or statistical 

approaches like Hidden Markov Models use annotated datasets for tag prediction. For 

instance, in “John plays guitar”, “John” is a noun, “plays” is a verb, and “guitar” is a 

noun. Although important for language understanding, POS tagging has its own 

challenges, such as dealing with ambiguity and low-resource languages. Its 

applications include text parsing, named entity recognition, and machine translation 

[6]. 
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3.9. Case Folding 

It is a preprocessing step that converts all text to a uniform case, typically 

lowercase, ensuring consistency and reducing redundancy. It helps models like n- 

grams or GPT by treating variations like “Hello” and “HELLO” as the same, reducing 

vocabulary size and improving efficiency. While beneficial for most tasks, it may not 

be suitable when case distinctions, such as “US” vs. “us” hold meaning. For example, 

“The Quick Brown Fox” becomes “the quick brown fox” after case folding.[7] 

 

 

3.10. Word Embedding 

Word embedding is a process that translates words into dense vector 

representations of a fixed length, which captures both semantic and syntactic 

interrelations among words. In [4][9], it used Word2Vec to generate word embeddings 

with both the Continuous Bag of Words CBOW model and the skip-gram model. These 

representations are especially useful since they allow the system to process sequential 

data efficiently and make contextually accurate predictions even in complex languages 

lacking extensive pre-trained resources.[3][4][6][9] 
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CHAPTER 4 

DATASET 

 
The dataset employed is The SwiftKey dataset [15], created in 

collaboration with the Johns Hopkins Data Science Specialization, is made up of 

millions of tweets, blogs, and news articles for Natural Language Processing tasks. 

The dataset includes 75,578,341 lines for Twitter, 85,459,666 lines for blogs, and 

95,591,959 lines for news, with Twitter having the largest number of entries but the 

smallest words per line. Blogs have the lengthiest sentences and are thus best for 

predicting text following longer sequences of words, while Twitter data is more 

suitable for informal and short-sequence prediction. The News dataset, due to its 

structured content, is suitable for applications that need formal language modelling. 

This heterogeneous dataset offers an excellent resource for next-word likelihood 

models, being suitable for both short and long-text prediction. 

Given in Fig.4.1are the top 200 most frequent words from the News dataset , Twitter 

dataset and Blogs dataset respectively , which are the part of SwiftKey dataset. 
 

 

 

 

Fig. 4.1 Word Cloud Representation of Most Frequent Words in Swift-Key Data [17] 
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CHAPTER 5 

FUNDAMENTAL MODELS OF NLP 

 
The building block theories of Natural Language Processing have evolved 

from basic statistical methods to intricate deep learning architectures. The early models 

such as n-grams and Hidden Markov Models laid the foundation by probabilistically 

representing the word sequences but were unable to handle long-range context. The 

advent of neural models such as RNNs, LSTMs, and GRUs provided sequential 

learning with enhanced contextual representation. But the actual revolution was 

brought by Transformer-based models that rely on self-attention for efficient use of 

global dependencies. Breakthrough models such as BERT and GPT then went on to 

further revolutionize NLP by making it possible to have strong pretraining and 

contextualization of language. Models are now at the centre of current NLP systems 

for understanding as well as generation. 

 

5.1. RNN 

Recurrent Neural Networks are neural networks specially designed for 

dealing with sequential or time-series data. As opposed to conventional feedforward 

neural networks, where every input is treated independently, RNNs incorporate a built-in 

memory system in that information is permitted to propagate from one time step to 

another. This is facilitated through feedback loops within the network enabling the model 

to have a hidden state and transport context across inputs. This RNN sequential behaviour 

renders them extremely useful to apply in programs with data with a significant order, 

e.g., natural language processing, speech recognition, and time series prediction. 

One of the most vital behaviours of RNNs is modelling temporal dependencies. They 

read sequences element-wise, and with each input, they update their internal hidden state. 

This architecture enables RNNs to learn temporal patterns in data, like word order in a 

sentence or stock prices. RNNs also enjoy sharing parameters across different steps of 

time, which minimizes parameters and enables efficient learning of sequences of different 

sizes. But vanilla RNNs suffer from the vanishing gradient problem, a serious issue to the 

learning of long-term relationships by the model. To address this, there are more 

sophisticated variants such as Long Short-Term Memory networks and Gated Recurrent 

Units that utilize gating mechanisms to store information better and manage information 

flow over time. 

Compared to other neural architecture, RNNs provide sequential tasks some unique 

benefits. Feedforward networks, while good for static input-output mappings, cannot 

remember past context and are thus not suited to language or time-sensitive problems. 

Convolutional Neural Networks, while extremely powerful for image processing, lack 

the temporal dynamics required for sequence modelling. The Transformer-based models 

BERT and GPT have emerged as stalwart replacements for RNNs by leveraging attention 
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mechanisms to support long-range dependencies and parallel processing. But RNNs are 

still a viable option for shallow and transparent sequence modelling, particularly in those 

situations where computer resources are not abundant. 

RNNs have useful applications in many real-world situations. In natural language 

processing, RNNs facilitate such tasks as next-word prediction, language modelling, and 

machine translation through word sequence analysis and context memory. In speech 

recognition, RNNs translate audio inputs into text outputs through temporal waveforms 

learning. They are also used extensively in time series prediction, e.g., weather 

forecasting, monitoring patient health data, or predicting stock market trends. Some other 

uses include music generation, where the next note is forecasted based on a sequence of 

past notes, and handwriting recognition, where sequences of pen strokes are converted to 

text. The kind of data to use RNNs for is usually ordered or time-series formats. These 

can be text datasets such as news articles, chat logs, or literary corpora; audio datasets 

such as speech or music; and sensor-based time series datasets logging temperature, 

motion, or biological signals. These kinds of datasets tend to undergo preprocessing 

operations such as tokenization, vectorization, or embedding to convert raw inputs into 

model consumable formats. RNNs can handle fixed-length and variable-length sequences 

and are thus flexible to various tasks and input types. There are, however, some 

limitations of RNNs. The main problem is the vanishing and exploding gradient in 

backpropagation through time, a learning disability for long sequences. RNNs also suffer 

from slow training speeds because of their sequential processing nature that is not 

parallelizable. In addition, RNNs can take larger memory while handling long sequences 

and need hyperparameters well-tuned in order to work optimally. However, if 

architecture and preprocessing are well implemented, then RNNs remain a core model 

for sequence learning, especially where data naturally comes in sequence and contextual 

coherence is a requirement. 

 

5.2. N-gram 

An N-gram model is a very basic probabilistic model employed in Natural 

Language Processing for sequence modelling of words or characters. An N-gram 

model is a Markov model under the Markov assumption that the probability of a word 

is conditioned only upon the n -1 preceding words, reducing the complexity of 

modelling language by making the Markov assumption. The model approximates the 

probability of a word's appearance based on its previous context and is measured in 

terms of the “n” in n-gram. For example, a unigram only takes single-word frequencies 

into consideration, a bigram takes consecutive pairs of words, and a trigram takes word 

triplets into consideration. This simplicity makes n-gram models computationally 

inexpensive and understandable, particularly for domain or small applications. The key 

advantages of n-gram models are computational simplicity, language universality, and 

trainability simplicity. They make extensive use of frequency counts and co- 

occurrence statistics that can be calculated from training data sets. They do not need 

advanced training and lots of hardware like neural models. Yet, one of the main n- 

gram model weaknesses is that they cannot pick up long-range dependencies in a 

window larger than their own fixed size and thus lose context information in long 

sentences. In addition, they also have data sparsity rare or out-of-vocabulary word 

sequences yield zeros unless smoothing methods are used. Compared to current deep 
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learning architectures like Recurrent Neural Networks or Transformers, n-gram 

models are more memory-constrained and quicker to develop but less context- 

sensitive. RNNs and LSTMs can store patterns for longer durations and learn from 

input dynamically, while n-gram models use only precomputed frequency counts. 

Transformers, using attention mechanisms, can capture global dependencies in an 

entire sequence, which fixed-context n-gram approaches cannot. However, in 

scenarios where computational resources are limited or when real-time feedback is 

required, n-gram models can still provide valid solutions. N-gram models find 

extensive application in text prediction, auto-completion, speech recognition, spelling 

correction, information retrieval, and machine translation, especially in embedded 

systems or legacy systems. They are also a building block for hybrid models when 

combined with neural methods to supply the performance and overhead balance. For 

instance, n-gram models can be applied to early probability estimation or candidate 

filtering with RNNs or BERT. The corpora used for n-gram models are usually 

massive, clean, and representative corpora of the language or domain of concern. 

Examples are sets of social media posts, newspaper articles, books, web-scraped data, 

or transcripts. The quality and size of the corpus significantly rely on how well an n- 

gram model performs; the more populated the corpus is, the better the high-frequency 

n-grams can be estimated, while the sparsity issue is diminished. Tokenization is an 

important preprocessing step since the generation of n-grams relies on correct and 

consistent word or character boundary. Briefly, n-gram models are narrowly 

constrained in what deep or long-range context they can capture, but they are 

nonetheless a worthwhile addition to the NLP toolbox because they are convenient, 

interpretable, and useful in low-resource or domain-specific situations. With 

smoothing applied, and as supplements to other models, n-grams continue to enable a 

variety of useful language processing tasks. 

 

5.3. Transformer 

Transformer models are a revolutionary leap in Natural Language 

Processing that has a novel architecture that eliminates recurrence in the classical sense 

in lieu of attention mechanisms. Presented by Vaswani et al. in their 2017 article 

“Attention is All You Need,” the Transformer architecture is based solely on self- 

attention and positional encoding to learn input sequences. As compared to Recurrent 

Neural Networks and Long Short-Term Memory models, in which data is processed 

sequentially, in the Transformer model, all tokens of a sequence are calculated in 

parallel, enabling higher computational efficiency and much faster training times. 

Parallelization is especially valuable when working with big datasets or sequences 

because it prevents the vanishing gradient issue that is common in recurrent models. 

One of the most distinct features of Transformer models is that they can represent 

global context and long-distance relations in a sequence. Multi-head self-attention 

facilitates this by the ability of the model to handle multiple positions of the input at 

once and learn the relationship between all the words irrespective of their position in 

the sentence. In addition, Transformer models are very modular and scalable and form 

the basis of some of the strongest pretrained language models such as BERT, GPT, T5, 

and Ro-BERT. Positional encodings provide an alternative for missing recurrence in 

such a way that the model retains sequence context whenever it’s parallelizing the 
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processing of the input. The positional encodings replace the inability to recur to make 

the model retain sequence contexts every time that it is paralleling the process of the 

input compared to using models like fixed-window n-gram based probability 

estimates, or RNN with evil memory and poor training rates. Compared to 

convolutional neural networks, which are superior in local feature extraction but fall 

behind in sequential comprehension, Transformers perform better in deeper semantic 

comprehension tasks. While computationally more expensive, especially during 

training, their flexibility and performance gain require such constraints. Optimized or 

distilled models such as Distil-BERT and ALBERT have been suggested to mitigate 

these costs. Optimized or distilled variants like Distil-BERT and ALBERT have been 

proposed to reduce these costs. Transformer models are applied extensively across 

many applications of NLP like next-word prediction, machine translation, text 

summarization, sentiment analysis, question answering, chatbot construction, and 

language generation. They have also been applied in other fields aside from NLP, 

including computer vision (Vision Transformers or ViTs) and bioinformatics. They 

excel where such applications require understanding the entire context of a document 

or sentence and therefore best apply to semantic subtlety, coherence, and syntactic 

correctness applications. The data appropriate for Transformer models are normally 

large-scale, diverse, and domain-rich due to the models’ requirement for considerable 

pretraining. Typically employed corpora are Wikipedia, Book Corpus, Common 

Crawl, OpenWebText, and domain-specific corpora for specialized applications (e.g., 

biomedical, legal, or financial text). For fine-tuning downstream tasks, benchmark 

datasets like GLUE, SQuAD, CoNLL, or XNLI are predominantly employed. 

Preprocessing involves sub word tokenization techniques like Byte-Pair Encoding or 

Word Piece to allow the models to be capable of handling out-of-vocabulary words 

and rare tokens efficiently. In short, Transformer models revolutionized NLP by 

offering an extremely effective, parallelized architecture capable of capturing 

elaborate, long-range relations in sequences. Their self-attention, scalability, and 

flexibility to accommodate a vast array of tasks make them the centre pieces of the 

greatest language systems today. Although their costly computational overhead makes 

them unbearable, their flexibility and capabilities render them unavoidable in current 

artificial intelligence. 

 

 

5.4. LLMs 

Large Language Models such as GPT-2 are a milestone in the 

understanding and generation of natural language. OpenAI created GPT-2, which is 

based on the Transformer decoder architecture alone, due to the use of which it has the 

ability to generate coherent and contextually appropriate text with autoregressive 

language modelling. In contrast to bidirectional models like BERT, which are trained 

for word understanding via word masking and prediction, GPT-2 is trained to predict 

the next word in a sequence via left-to-right learning. GPT-2’s unidirectional, 

generative design makes it beautifully well-tailored to text completion, story 

generation, summarization, translation, and conversational systems. GPT-2’s strongest 

points are that it is able to produce fluent, contextually coherent, and human-like text, 

solve long-range dependencies, and generalize across tasks quite well without being 
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task-specifically trained. It does so by carrying out very large-scale unsupervised 

pretraining on a gargantuan, highly diverse corpus (WebText, containing over 8 

million documents), so that it can learn a general distribution of language and world 

knowledge. One of the most dramatic capabilities of GPT-2 is to learn new tasks in 

zero-shot and few-shot settings i.e., new tasks are simply achieved by conditioning on 

task information or examples in the input prompt, without fine-tuning. This is enabled 

by the model scale and training data richness. As compared to models such as RNNs 

or LSTMs, which process inputs sequentially and are commonly prone to vanishing 

gradients and limited context memory, GPT-2 uses the self-attention mechanism of 

Transformers to model global dependencies over the entire sequence. As opposed to 

BERT, which is concerned with comprehending language through masked token 

prediction, GPT-2 is concerned with creating language and hence is better at open- 

ended or creative tasks. Secondly, GPT-2 is not encoder-decoder split as in the T5 

model but uses a decoder-only structure, which is trained autoregressively.GPT-2 also 

has many applications in the real world, such as intelligent writing aids, code 

generation, chatbot platforms, conversational agents, summarization of content, and 

even writing. GPT-2 also has its use in educational technology, customer support 

automation, and accessibility tools. This is due to the fact that the paradigm of training 

of the model makes it possible for it to be utilized for other domains through a simple 

change in the input prompt or some examples. Training and tuning preference sets for 

GPT-2 is usually large-scale, multi-domain, and diverse enough to provide adequate 

exposure to structure, topic, and style variations. WebText upon which GPT-2 was 

trained was a corpus obtained by web-scrapping web pages cited in at least three 

upvoted comments of Reddit in an attempt to ensure relevance and quality. For task- 

specific fine-tuning or deployment, filtered data of smaller lengths such as news 

articles, dialogues, court proceedings, or technical documentation can be used based 

on the specific application. Preprocessing involves tokenization via Byte Pair 

Encoding to allow processing of out-of-vocabulary and compound words by dividing 

them into sub word units. Generally, GPT-2 demonstrates the capabilities of Large 

Language Models through scalable, adaptive, and high-quality text generation. Its 

autoregressive architecture, pretraining knowledge base, and zero-shot capability 

make it a general-purpose tool for a broad variety of NLP tasks. Yet its high 

computational requirements, capacity to generate biased or inappropriate content, and 

absence of task-specific grounding remain primary considerations for ethical and 

responsible use. Given in Fig.5.1 is the basic architecture of GPT-2 . 
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Fig.5.1 Architecture Of GPT-2 [9] 
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CHAPTER 6 

PROPOSED WORK 

 
Training any model is the extreme last step for any procedure, before that 

there is a pipeline of processes which have to be done in order to train the data-model 

to its best. Methods involved in the early stage are the loading of the data , visualization 

of the data to get a bigger picture of the type of data ,one is getting involved into ,Data 

pre-processing is done , then the most crucial stage come which is the Feature 

Development because it is different for each model as each model get trained in a 

particular way .Once the data is trained then the testing is done in order to check the 

Genuity of training .After this is done then the result is analyzed. Fig.6.3 incorporates 

the methodology for [17]. Feature development is the enhancement of the properties 

of the data which can be used for the better modeling. Feature Development is different 

for different models i.e according to the key procedure of the model, particular features 

are considered for the development [17]. 

 

6.1. Markov Model 

Markov models are widely used in next-word prediction tasks by utilizing 

probabilistic transitions between words based on historical linguistic patterns. These 

models, broadly work in two ways Markov Chains and Hidden Markov Models i.e. 

HMMs, that are designed to estimate the probability of a word appearing next after 

given the preceding words. The effectiveness of these models is evident in applications 

such as text prediction, autocomplete systems, and speech recognition. The impact of 

Markov models on datasets varies depending on the data's structure and linguistic 

complexity. For example, in Urdu language processing, a study demonstrated that an 

HMM-based stochastic model significantly improved word prediction accuracy by 

minimizing keystrokes and maintaining contextual relevance. Another research survey 

highlighted how Markov models contribute to natural language generation, named- 

entity recognition, and part-of speech tagging, reducing dependency on manually 

annotated lexicons. However, one limitation of traditional Markov models is their 

inability to capture long-range dependencies effectively that is why it makes them less 

suitable for highly complex sentence structures compared to deep learning models such 

as LSTMs and transformers. Despite their limitations, Markov models remain a 

valuable tool for NLP tasks, especially in resource-constrained environments where 

deep learning models may be computationally expensive. The integration of Markov 

models with other machine learning techniques, such as neural networks and 

reinforcement learning, continues to enhance their applicability, ensuring their 

relevance in modern text prediction and language modelling systems. Markov model 

requires the particular feature development like [17] where to model the Markov model 

on SwiftKey Dataset different dictionaries in the unigram , bigram, trigram are made 
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as shown in Fig. 3.4, after that conversion of the frequency of occurrence to probability 

is done i.e. frequency of a word following a n-gram / total frequency of all words then 

the history of previous words, known as history, is processed to figure out the most 

likely next word based on n-gram probability distributions. If the history size is one, 

the model looks for it in the unigram dictionary keys, picking the word with the best 

probability; if the key does not exist, a random word is sampled. When the history size 

is two, the model looks into the bigram dictionary and picks the most likely word. If 

the bigram key cannot be found, the history is cut short to its last word, and the unigram 

prediction is tried. Likewise, when the history size is three, the model is dependent on 

the trigram dictionary, and if the key is not found, the history is shortened to its last 

two words, resorting to bigram-based prediction. When the history is more than three 

words, it is shortened to the last three words prior to applying trigram-based prediction. 

This process helps to use the highest available n-gram model while efficiently 

processing unseen sequences. When a word sequence is not available in the trained 

dictionary, the model progressively decreases context size prior to generating words at 

random, preserving strong predictability of the next word [17]. 
 

Fig.6.1 Code for Markov Model 

 

6.2. Albert Model 

The ALBERT i.e. A Lite BERT is an optimized version of BERT that 

improves next-word likelihood through reduced model size without compromising 

on the performance. While BERT is dependent on Next Sentence Likelihood, 

ALBERT adds Sentence Order Prediction i.e. SOP, which enhances multi-sentence 
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input understanding. This new design allows ALBERT to model contextual 

dependencies more accurately with fewer parameters, therefore enhancing 

efficiency when handling large NLP tasks. The factorized embedding 

parameterization and cross-layer parameter sharing within the model also reduce 

memory usage, allowing faster training and inference. ALBERT utilizes its ability 

to learn sequential text semantic coherence and long-range dependencies to project 

to next-word probability. Its multi-head self-attention also guarantees that the 

output sentence is contextually relevant and grammatically correct. Its reduced 

encoder layers also enhance word vector representation, an extremely crucial 

aspect of predicting the next word in a sequence. Augmentation allows for better 

and contextually relevant word prediction and hence ALBERT can prove to be an 

efficient substitute for the baseline transformer-based models. Utilization of 

ALBERT in the database is convenient as it facilitates fast and accurate prediction 

at low computation costs. It is easy to deploy the model size of ALBERT on the 

low-resource devices such as smartphones and edge devices [4]. Its frumentary 

training also makes it a good generalizer for cross-domain-wise generalization 

from ginormous text data sets. Thus, ALBERT is a cost-effective computational 

method for next-word probability issues in which cost of computation is being 

sacrificed to its accuracy. 

 

6.3. GPT 

GPT is a Decoder-only Transformer that uses masked self-attention to 

predict next-word probabilities in a sequence .GPT is an autoregressive language 

model and can be used to produce fluent text by feeding sequences of input into it .GPT 

is trained on a vocabulary-size 40,478 dataset and has a maximum of 512 tokens 

processed for maximum sequence length. GPT was also trained on the SwiftKey 

dataset, with text data from a wide range of sources such as social media, blog sites, 

and news sites. 
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Fig.6.2 Code for Greedy, Beam and Random Sampling. 

 

 

Fine-tuning, in addition to refining the model's comprehension of context to a point 

where it can be used on next-word probability, is two-staged in its training 

methodology. Pretraining over an unsupervised body of text results in a robust 

language model. The process is such that the model is able to learn to optimize a 

probability function to most effectively maximize next-word prediction based upon the 

prior word sequence. Numerically, it is posed as a maximum likelihood estimation 

problem and “kk” represents sequence length. 

The model is pretrained and then fine-tuned on a supervised corpus, where the training 

also considers historical context i.e. input words and target predictions i.e. next words. 

Another probability function is maximized in the process, where "mm" is the length of 

every sequence. By combining these two probabilistic models, a final loss function is 

obtained that combines both pretraining and fine-tuning objectives, thus making the 

model more adaptable to downstream tasks. This process ensures that GPT takes 

advantage of general linguistic knowledge through pretraining as well as adapting to 

specific domain constraints during fine-tuning, ultimately enhancing its next-word 

prediction ability. The three different approaches have been utilized for next-word 

likelihood, each using different search strategies to produce the most probable word 

sequences. 

• The Greedy Search approach picks the word with the highest probability from 

a single hypothesis at every step, resulting in a locally optimal choice but possibly 

missing the globally optimal sequences. 

• The Beam Search method, on the other hand, searches multiple hypotheses (n- 

best predictions) at each time step, allowing the model to explore a wider range of 

possible continuations before choosing the most probable sequence. 

• Random Sampling introduces a stochastic component by randomly picking a 

word from the probability distribution of possible next words as shown in Fig. 7.3 To 

increase diversity in predictions, a temperature parameter is used which will ignore 

low probability words when it is set high Fig.5.1 is the architecture of the GPT. It 

shows that it uses 12 layers of decoder with 12 attention heads in each self-attention 

layer. It contains masked self-attention which is used for training the model. 



28 
 

 

 

Fig.6.3 Methodology of the Proposed Work. 
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CHAPTER 7 

RESULT AND DISCUSSION 

 
The empirical evaluation conducted in this study demonstrates the 

considerable advancements achieved through the integration of deep learning and 

probabilistic methodologies for next-word prediction. Across multiple experiments 

and linguistic contexts, modern neural models such as BiLSTM, BERT, ALBERT, and 

GPT variants consistently outperformed traditional statistical models in both 

predictive accuracy and contextual adaptability [1][2]. Particularly, BiLSTM models 

attained higher than 91% accuracy, significantly higher than LSTM models of simple 

architectures by adopting bidirectional contextual learning, especially for highly 

inflected languages like Hindi, Urdu, Bangla, and Dzongkha [4]. BiLSTM 

performance was enhanced with the addition of self-attention mechanisms to achieve 

accuracy of higher than 97% in multi-gram model tasks .These findings confirm the 

efficacy of bidirectional encoding for intricate syntactic structure and long-distance 

dependencies [5]. Transformer-based models such as BERT, ALBERT, and GPT-2 

performed extremely well on different datasets with different complexity domains. 

GPT-2 performed best when applied to generate long-sequence text because it has an 

autoregressive model. BERT demonstrated to perform best in the task of masked 

language modeling as well as contextual understanding. The ALBERT model, with its 

parameter reduction and improved sentence embeddings, provided a computationally 

cost-effective approach with high generalization capability for low-resource and low- 

resource environments [6][9][10]. The baseline models like Markov Chains and 

Hidden Markov Models, although still viable due to their simplicity and ease of 

interpretation, exhibited higher loss rates and more fluctuation in training epochs. 

These constraints were of utmost severity in sequential dependency modeling and 

linguistic complexity, thus limiting their usage in high-accuracy prediction models 

[11]. Further, the hybrid models making use of n-gram methods with advanced deep 

learning architectures like RNNs and Bi-LSTM produced lower perplexity scores, thus 

attaining cost-performance optimization. 

For example, hybrid RNN-n-gram models achieved a 10% reduction in perplexity, and 

stochastic models using unigram-level prediction demonstrated enhanced typing 

efficiency in resource-limited linguistic scenarios [13][15]. Additional results 

confirmed that preprocessing strategies including tokenization, sub word 

segmentation, and vectorization played a critical role in improving model training and 

performance across all architectures. Linguistic analyses indicated that neural 

networks naturally encoded syntactic and semantic groupings, bridging statistical 

modelling with cognitive linguistic patterns. A comparative analysis of Markov, 

ALBERT, and GPT-1 across 70 training epochs demonstrated that GPT-1 exhibited 

the lowest loss values and the most consistent convergence, highlighting its superior 
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learning and generalization capabilities as shown in Fig.7.1. In contrast, Markov 

models showed high and fluctuating loss, while ALBERT maintained a balance of 

performance and computational efficiency. Collectively, the results of this study 

confirm that modern LLM-based architectures particularly those enhanced with 

attention mechanisms, hybrid modelling, and efficient preprocessing deliver state-of- 

the-art performance in next-word prediction tasks. 

These findings not only validate the scalability and adaptability of these models across 

varied linguistic and resource settings but also underscore the importance of contextual 

embeddings, efficient data preparation, and architectural optimization in advancing the 

field of predictive NLP systems. Given below are the outputs of Markov model and 

the GPT-2 model in Fig.7.2 and Fig 7.3 respectively. 
 

Fig.7.1 Training vs Testing Loss: Markov, ALBERT, GPT on 70 Epochs 
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Fig.7.2 Output of Markov Model. Fig.7.3 Output of GPT Model. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 
This research work has examined the evolution and effectiveness of next- 

word prediction systems through the lens of modern Natural Language Processing 

(NLP) and deep learning methodologies. The comparative analysis of classical 

approaches such as Markov models alongside advanced architectures including Long 

Short-Term Memory, BERT, GPT, GPT-Neo, and ALBERT, has highlighted the 

growing efficacy of large language models in generating accurate and context-aware 

text predictions [9]. These models have demonstrated significant potential in 

addressing linguistic variability and morphological complexity, particularly in low- 

resource languages such as Hindi, Bangla, Urdu, and Dzongkha [3][10]. Despite the 

advancements achieved, the study identifies several persistent challenges that must be 

addressed in future research. Chief among these are data scarcity, handling of out-of- 

vocabulary terms, model interpretability, and the computational demands of training 

large-scale models [6]. Future directions should include the expansion of training 

datasets to encompass a wider range of textual domains, such as poetry, songs, 

conversational dialogues, and specialized corpora like Augmentative and Alternative 

Communication. This expansion will be instrumental in improving model 

generalization and robustness across varied linguistic settings [4]. Furthermore, the 

integration of hybrid modelling techniques combining statistical methods with neural 

architectures presents a promising avenue for enhancing sequence prediction accuracy 

while maintaining computational efficiency. The utilization of sub word tokenization 

strategies (e.g., byte-pair encoding, character-level embeddings) and advanced 

learning paradigms such as transfer learning, few-shot learning, and contrastive 

learning can also improve adaptability in low-resource scenarios. 
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