
NEXT WORD LIKELIHOOD USING LLMs

Thesis Submitted

In Partial Fulfilment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY
in

Data Science

Submitted by

Mohini Yadav
(2k23/DSC/24)

Under the Supervision of

Dr. Abhilasha Sharma

(Associate Professor)

Department of Software Engineering

Delhi Technological University

To the

Department of Software Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

May, 2025

ii

ACKNOWLEDGEMENT

I would like to thank Dr. Abhilasha Sharma, Associate Professor, Department of

Software Engineering, Delhi Technological University, for her gracious guidance and

ongoing support in this research study. Her rich experience, motivation, expertise, and

feedback in the form of constructive criticism have been a helpful input towards each

step in writing this research plan.

I wish to acknowledge with my sincere gratitude Prof. Ruchika Malhotra,

Departmental Head, for her invaluable suggestions, substantial inputs, and critical cut-

throat appraisal of my research work. Her scholarship and erudite guidance have

enriched the quality of this thesis considerably.

I am very grateful to Roshni Singh for their ongoing support and guidance

throughout this research process. Her inputs, understanding, and encouraging feedback

have played a highly crucial role in determining the quality of my research. I am deeply

thankful to her for the efforts and time she devoted to advising me step by step. Without

her mentorship, this research work could not have been possible.

My heartfelt thanks go out to the esteemed faculty members of the Department of

Software Engineering at Delhi Technological University. I extend my gratitude to my

colleagues and friends for their unwavering support and encouragement during this

challenging journey. Their intellectual exchanges, constructive critiques, and

camaraderie have enriched my research experience and made it truly fulfilling.

While it is impossible to name everyone individually, I want to acknowledge the

collective efforts and contributions of all those who have been part of this journey.

Their constant love, encouragement, and support have been indispensable in

completing this M.Tech thesis.

Mohini Yadav (2k23/DSC/24)

iii

iv

v

Next Word Likelihood using LLMs

Mohini Yadav

ABSTRACT

This research work presents a comprehensive study of next word likelihood systems

leveraging state-of-the-art natural language processing and machine learning

techniques, including Chain Modelling, Recurrent Neural Networks, Long Short-Term

Memory, Bidirectional LSTM, and Transformer-based models such as BERT,

ALBERT, GPT, and GPT-Neo. The study incorporates a variety of preprocessing

methods including tokenization, text stemming, n-gram generation, word embeddings,

and vectorization to enhance model performance.

These predictive systems are vital for improving communication efficiency,

minimizing user input, and enhancing the user experience across multiple languages

including English, Hindi, Bangla, Dzongkha, Urdu, and Japanese especially those with

complex linguistic structures or low-resource availability. The research also

emphasizes the integration of hybrid language models and self-attention mechanisms

to address challenges such as morphological complexity, resource constraints, and

cross-domain adaptability.

Further, the research work explores strategies to improve model generalization,

computational efficiency, and ethical considerations in real-world applications. The

findings highlight the transformative potential of next-word prediction models in real-

time operations, ranging from assistive technologies to multilingual text processing,

and underline the growing importance of LLMs in bridging linguistic and accessibility

gaps.

Keywords: Word Embedding, Key stroke minimization, Attention, Tokenization,

N-gram, Stemming, User experience enhancement.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. ii

CANDIDATE DECLARATION ... iii

CERTIFICATE BY THE SUPERVISOR .. iv

ABSTRACT ... v

LIST OF TABLE(s) .. viii

LIST OF FIGURE(s) .. ix

LIST OF ABBREVIATION(s) ... x

CHAPTER 1..1-3

INTRODUCTION ... 1

1.1. BACKGROUND ... 1

1.2. OBJECTIVE .. 1

1.3. PROBLEM STATEMENT .. 2

1.4. MOTIVATION .. 2

1.5. THESIS ORGANIZATION... 2

CHAPTER 2 .. 4-9

LITERATURE SURVEY ... 4

2.1. Related work .. 4

2.2. Areas of Concern .. 9

CHAPTER 3.. 10-16

DATA PRE-PROCESSING TECHNIQUES .. 10

3.1. Extra spaces and special character and stop word removal 10

3.2. Tokenization .. 11

3.3. N-gram generation ... 12

3.4. Frequency distribution plot .. 13

3.5. Vectorization .. 14

3.6. Pickling and non-pickling .. 14

3.7. Text stemming and Text Lemmatization.. 15

3.8. Pos tagging ... 15

3.9. Case folding ... 16

3.10. Word embedding .. 16

CHAPTER 4... 17

DATASET .. 17

CHAPTER 5.. 18-23

vii

FUNDAMENTAL MODELS OF NLP .. 18

5.1. RNN ... 18

5.2. N-gram .. 19

5.3. TRANSFORMER .. 20

5.4. LLMs .. 21

CHAPTER 6... 24-28

PROPOSED WORK ... 24

6.1. Markov Model .. 24

6.2. Albert Model .. 25

6.3. GPT .. 26

CHAPTER 7... 29-31

RESULT AND DISCUSSION .. 29

CHAPTER 8... 32

CONCLUSION AND FUTURE WORK ... 32

REFERENCES .. 33-34

LIST OF PUBLICATIONS .. 35

viii

LIST OF TABLE(s)

Table 2.1 Comparison of methodologies- Summarizes the key characteristics of

the seventeen research papers discussed above

11

ix

LIST OF FIGURE(s)

Fig.3.1 Elimination of extra spaces and special characters 11

Fig.3.2 Creation of Tokens 11

Fig.3.3 Creation of Tokens based on length 2, length 4 and length 7 12

Fig 3.4 Pictorial representation of data cleaning to n-gram generation 12

Fig 3.5 Tree generation of N-gram 13

Fig.3.6 Division of data based on Bigram and Trigram 13

Fig.3.7 Frequency Distribution Plot of Bigram for blogs in Swift Key Dataset 14

Fig.3.8 Procedure of Pickling and Non-pickling 14

Fig. 4.1 Word Cloud representation of most Frequent words in Swift-Key

Data

14

Fig.5.1 Architecture Of GPT-2 23

Fig.6.1 Code for Markov Model 25

Fig.6.2 Code for Greedy, Beam and Random Sampling 27

Fig.6.3 Methodology of the Proposed Work 28

Fig.7.1 Training vs Testing Loss: Markov, ALBERT, GPT On 70 Epochs 30

Fig.7.2 Output of Markov Model. 31

Fig.7.3 Output of GPT Model 31

x

LIST OF ABBREVIATION(s)

NLP Natural Language Processing.

RNN Recurrent Neural Network.

LLM Large Language Models.

LSTM Long Short-Term Memory.

Bi-LSTM Bidirectional Long Short-Term Memory.

ML Machine Learning.

BERT Bidirectional Encoder Representations from Transformers.

GPT Generative Pre-trained Transformer.

OOV Out of Vocabulary.

GPU Graphics Processing Unit.

ACC Augmentative and Alternative Communication.

AlBERT A-Lite Bidirectional Encoder Representations from Transformers.

CNN Convolutional Neural Network.

EDA Exploratory Data Analysis.

POS Part of Speech

1

CHAPTER 1

INTRODUCTION

This research work addresses the prediction of next word which is most

likely to occur after the occurrence of the present word by the use of models of different

kind such as N-gram models, Transformer models and the LLMs on the dataset of

various languages like Hindi, Bangla, Urdu, and Dzongkha some of which are

linguistically rich but are low resourced.

1.1. BACKGROUND

The evolution of Natural Language Processing has significantly

transformed human and computer interaction, enabling a broad spectrum of

applications such as text prediction, machine translation, virtual assistants, and

educational tools. Among all these, next word prediction plays an essential role in

enhancing communication effectively, by reducing user input and minimizing typing

errors. These systems are now fundamental to mobile keyboards, convenient

communication devices, and multilingual digital interfaces, providing value in both

high resource and low resource language environments. Early predictive models

primarily depended on statistical methods such as Markov chains and n-gram models.

While computationally efficient, these techniques struggled with capturing long-range-

dependencies of data and complex contextual relationships. The introduction of neural

networks, including Recurrent Neural Networks, Long Short-Term Memory, and

Bidirectional LSTM which addressed these limitations by enabling sequential memory

and context control. Transformer based architectures such as BERT, GPT, GPT-Neo,

and ALBERT have set a new benchmark in NLP by leveraging self-attention

mechanisms and parallel processing for deep contextual embedding.

1.2. OBJECTIVE

The main objective of this research work is to develop and evaluate next-

word prediction systems using Large Language Models across a variety of linguistic

varieties. This involves a qualified study of fundamental models such as Markov

Chains, neural architectures like LSTM and Bi-LSTM, and advanced transformer-

based models including BERT, GPT, and Al-BERT. The research work seeks to

analyze the effectiveness of these models on diverse textual datasets sourced from

domains such as blogs, news articles, and social media platforms, whereby simulating

2

real-world language use. A vital focus is on the role of preprocessing techniques such

as tokenization, stemming, and word embedding as better the data provided to the

model, better result will be anticipated. In addition to evaluating prediction accuracy,

the research also examines computational complexity and scalability to identify

models suitable for deployment in low-resource environments. Ultimately, the

research aims to propose adaptable and efficient solutions for multilingual and

resource-constrained contexts, offering practical insights and best practices for

enhancing the performance of next-word likelihood systems.

1.3. PROBLEM STATEMENT

In spite of, the success of modern language models which have high

resource languages, substantial challenges persist when we apply these models to

morphologically rich and low resource languages such as Hindi, Bangla, Urdu, and

Dzongkha which have extremely less recourses and hard linguistic abilities. Languages

with minor annotated data, rich grammar structures, and phonemic vagueness cause

the performance and generality of standard models to degrade. Additionally, existing

models typically involve costly computational expenditures and, therefore, are not

user-friendly in low-resource settings. Consequently, there is a critical need for

effective, scalable, and adaptive next-word forecasting systems that is tailored for

varied linguistic environments.

1.4. MOTIVATION

The growing use of NLP technology in day-to-day life especially in

multilingual and assistive environments calls for the need to develop inclusive, efficient,

and precise next word prediction models. Low resource languages get disenfranchised in

current NLP research despite having large speaking communities for the target language.

Developing strong models for these languages not only advances linguistic parity but also

lays the foundation for actual-world applications to enhance communication, literacy, and

accessibility on the online world. Fueling the effort is the need to fill these gaps and work

towards them in an authentic attempt to deliver leading-edge predictive modeling to a

greater linguistic spectrum.

1.5. THESIS ORGANIZATION

This thesis is structured into five chapters, each addressing a key

component of the research on next-word likelihood using large language models.

Chapter 1 introduces the research topic, providing background on the evolution of

Natural Language Processing and spotting the light on the objective of next-word

prediction systems, particularly in the context of multilingual and low-resource

languages. Chapter 2 presents a comprehensive review of the existing literature,

covering classical statistical models, neural network-based approaches, and

transformer architectures, while identifying gaps that motivate the current study.

Chapter 3 details the data pre-processing techniques which are used to clean the data

before providing it to the respective models. Chapter 4 discusses the dataset which we

3

have considered for the proposed work which contains three type of data that are, news,

blogs and twitter data. Chapter 5 contains the fundamental models used in the natural

language processing that are used in past for predicting the next word . Chapter 6 takes

a dig on the proposed model which has GPT-2 model with three different approaches

, the greedy approach, beam approach and the random sampling approach. Chapter 7

provide us with the effective results of the models working on 70 epochs. .Chapter 8

brings us the conclusion and summarizes the key findings, outlining the contributions

of the work, and proposing directions for future research aimed at further enhancing

the efficiency, scalability, and ethical deployment of next-word prediction systems.

Then, comes the References which made this research work possible with the apt

information and precise result . This thesis also contain the proofs of the acceptance of

my research work at the very end.

4

CHAPTER 2

LITERATURE SURVEY

2.1. Related work

R. Sumathy et al. [1] introduced a neurosis structure for next word

prediction where research describes how NLP techniques can be integrated with deep

learning to enhance the prediction of texts by leveraging sequential dependencies

within the data through LSTM neural networks to predict the subsequent words based

on contextual information. Operations like tokenization, embedding, and Bi-LSTM

layers enabled the model to analyze the text bidirectionally, achieving an accuracy of

91% after more than 40 epochs. Astonishingly, the model achieved high accuracy even

with a relatively simple architecture and limited data, contradicting the assumption that

large datasets and complex designs are required for NLP tasks. Character-to-word

prediction also further improved performance and robustness against typographical

errors, indicating potential applications in assistive typing technologies. Vishall Rathee

et al. [2] focused on predicting the next word in a sentence by through the use of Bi-

LSTM and LSTM networks by training on a web-scraped dataset with preprocessing

steps such as tokenization and removal of characters, Bi-LSTM achieved 85%

accuracy, which was much higher than LSTM’s 57%. The improvement is because the

Bi-LSTM model can capture both past and future contexts. Surprisingly, the Bi-LSTM

model even performs very well with little data, defeating the notion that NLP tasks

require large datasets. This research has underlined the capability of Bi-LSTM in

combination with preprocessing techniques to transform predictive text technologies

and enhance communication systems. Shahid et al. [3] focused on Urdu language target

generation and the authors developed a deep learning model for next word prediction.

Shahid in particular discusses improving next-word prediction in Urdu using LSTM

and BERT models trained on a 1.1 million-sentence corpus from diverse domains.

BERT achieved 73.7% accuracy, significantly outperforming LSTM's 52.4% and pre-

trained Urdu BERT models, highlighting the importance of dataset diversity and scale.

BERT’s bidirectional understanding is crucial for Urdu and the optimal context

window size to achieve accuracy would be three words. This work provides a

benchmark for deep learning in Urdu with the potential of tailored NLP tools for low-

resource languages as well as advanced linguistic applications. Yukino Ikegami et al.

[4] introduced a hybrid language model of next word prediction using Japanese

language as the subject of research. They presented a hybrid language model

combining RNN-LM with n-gram models to boost the input of Japanese text on mobile

platforms so that Japanese text can be suggested while typing. Running RNN-LM on

remote servers and executing n gram models locally reduces perplexity by 10% while

being more efficient and saving input time by 16% and keystrokes by 34% over

Google’s Mozc IME. Notably, n-gram integrated with RNN-LM had balanced

5

computational efficiency and prediction accuracy. This hybrid model also minimized

keystroke variability among users and improved accessibility. The study emphasized

the ability of hybrid models to tackle multilingual and sophisticated language issues

and engineer user-oriented communication technologies. Jayr Alencar Pereira et al. [5]

offered a BERT model variant for predicting the next pictogram in AAC systems. It

applies word-sense embeddings and context-sensitive information to attain semantic

consistency, which performs much better than n-gram models. Surprisingly, fine

tuning loads it with the capability to dynamically adjust according to user-specific

vocabularies so that it can make accurate predictions even in less structured

environments. Modular in its design, personalization is enabled to support different

needs in pictogram communication in order to deal with complexity. This strategy

raises the bar for predictive modelling applied in AAC systems marrying linguistic

accuracy and flexibility. Karma Wangchuk et al. [6] obtained a patent for their

automatic syllable remover designed for language in the Dzongkha language context

utilizing a Long Short Term Memory neural networks model. They discussed the

typing problems in Dzongkha, a Sino-Tibetan language where syllables and words

need to be typed by multiple keystrokes. An LSTM-based system that predicts the top

five most likely next syllables has been designed, which would minimize the typing

effort and time. The model achieved 78.33% accuracy on a dataset of 222,844 syllables

and was deployed with a user-friendly interface for interactive selection. Surprisingly,

the single-layer LSTMs performed better than the more complex Bi-LSTM and CNN-

LSTM models, capturing semantic relationships effectively despite Dzongkha’s

syntactic complexity. This study thus opens up a potential avenue for low-resource

languages, allowing wider digital communication in Dzongkha. Radhika Sharma et al.

[7] embarked on the use of deep learning methods through Long Short-Term Memory

and Bidirectional LSTM models to predict the next word in Hindi. This explores

advanced machine learning models, LSTM and Bi-LSTM, for next-word prediction in

Hindi, aiming to reduce user keystrokes. Trained on a subset of the IIT Bombay

English-Hindi Parallel Corpus, Bi-LSTM achieved 81.07% accuracy, outperforming

LSTM’s 59.46%, with fewer epochs needed for convergence due to its bidirectional

context processing. The investigation has underlined that word-level modelling

outperforms character-level processing by reducing ambiguity and decreasing

computational complexity in Hindi. Moreover, the practical applications are the

mitigation of spelling errors and support for non-native learners; hence, it proves to be

a useful system. This work places Bi LSTM as an effective approach toward Hindi

natural language processing and opens up avenues for further applications. Aditya

Tiwari et al. [8] explored LSTM and Bi-LSTM models for next-word prediction in

Hindi, trained on a 5,000-sentence subset of the IIT Bombay English-Hindi Parallel

Corpus. Bi-LSTM achieved 89.14% validation accuracy, slightly outperforming

LSTM’s 88.38%, demonstrating LSTM’s adequacy for modelling Hindi’s

complexities. The study highlights the advantages of word-level over character-level

modelling, reducing computational complexity and addressing Hindi’s phonetically

similar characters. Practical deployments include reduced typing effort and increased

input speeds. The current work validates that LSTM-based architectures are effective

solutions for low-resource languages, which enables the growth of natural language

processing applications. Md. Robiul Islam et al. [9] introduced a system, specifically

targeted towards Bangla language users, which involved next word prediction and

6

completion by employing Bi-LSTM techniques. They suggested a Bi-LSTM model

that has been trained over Bangla news corpora on Bdnews24 and Prothom Alo. The

model attained excellent accuracy by employing datasets from uni-gram to 5-gram; in

fact, for 4-gram predictions, it attained a high of 99% accuracy, while the 5-gram

attained 99.74%. This is interesting, as the model could maintain reliable accuracy for

any length of input and integrate Bi-LSTM well with n-gram models for handling

sparse data and contextually coherent sentence prediction. Kyume Abdul et al. [10]

suggested a framework for the context based sequential word prediction and sentence

creation in the Bangla language based on a Bi-directional Long Short-Term Memory

Networks with a self-attention mechanism. They presented a Bi-LSTM architecture

with Self-Attention. The proposed system aims to enhance the predictability of typing

and sentence generation for Bangla. It was experimented by training on n-grams from

bi-grams up to 7-grams which achieved accuracy rates at 97.98% for 7-grams, and

97.91% for 5-grams. The reduction of the training epochs to 200 with the Self-

Attention mechanism leads to efficiency, contextual focus, and synonym prediction,

which can be used to improve typing. The applications include education, healthcare,

and finance, by enabling the model to predict up to seven consecutive words. Finally,

these findings open up the path for future benchmarking Bangla NLP, thereby feeding

assistive technologies and content generation for low-resource languages. Yuyun et al.

[11] studied how preprocessing techniques affect the next-sentence prediction for the

Indonesian language using LSTM with Word2Vec embeddings. Tokenization and case

folding enhanced semantic coherence and efficiency; however, stop- words removal

and stemming reduced accuracy at times by eliminating contextual words critical to

the context. Surprisingly, simpler preprocessing techniques performed better than

complex ones, pointing out that specific techniques need to be developed for a

particular language's model. The current study demonstrates the utility of Word2Vec

embeddings in semantic relationships and establishes a benchmark for efficient,

accurate NLP systems for low-resource languages and progresses text prediction

technologies. Prathima Chilukuri et al. [12] proposed an advanced next-word

prediction framework utilizing TensorFlow and algorithms like BERT, XLNet, and

RoBERTa. Trained on Wikipedia data, the model is based on NLP methods such as

tokenization and text normalization in combination with precise predictions made

under a few training epochs. It enables prediction of 10 or more words within

negligible time and offers personalized suggestions, outperforming conventional

models. This research established performance and intelligence standards for the tools

utilized in text prediction communication and access technology since it is adaptive

for utilization across various applications like typing and language learning. Dr. Sarbjit

Singh et al. [13] proposed a new next-word prediction model MSM that depends on

drawing benefits from the integration of LSTM, CNN and RNN. The paper addresses

efficient next-word prediction using advanced deep learning architectures, which

include RNN, LSTM, and CNN. Using tokenization and embedding layers over SMS

datasets, the system is able to capture both short- and long-range dependencies in the

input text and thus enhance the input and subsequent prediction. Long Short-Term

Memory outperformed RNN and CNN in addressing long-term dependencies and

hence achieved accurate predictions by model Checkpointing, Tensor Board and

Reduce LR On Plateau. The model's flexibility and attention mechanism improve

prediction adaptability, setting a new benchmark for NLP. Applications include text

7

prediction, voice assistance, and real-time communication, advancing language

processing technologies. Ranesh Puri et al. [14] proposed a word completion model

based on a trigram statistical language model synthesized through the Natural

Language Toolkit together with the NLTK package. The paper presents a robust

statistical trigram model employed with NLTK and trained on the “Alice in

Wonderland” corpus. Using weighted random probabilities and aggressive

preprocessing like tokenization and lemmatization, the system is highly accurate in

prediction as well as reliability. The key findings are that weighted probabilities are

efficient for contextual prediction, and stop prediction feature from a user perspective

enhances interaction as well as flexibility. The model outperformed other n-gram

methods in modeling contextual dependency and thereby became its usefulness in

predictive text. The work here forms a good foundation for future development in NLP

and predictive text technology. Kishore Surendra et al. [15] explained the phenomenon

that word sequence-trained Bi-LSTM networks predict the next word by automatically

aggregating internal representations into grammatical classes. Without explicit

syntactic training, word classes developed hierarchically in the terminal levels of the

network, and this illustrated statistical learning’s role in language acquisition. This

refuted Chomsky’s theory of universal grammar on the grounds that abstract linguistic

categories are an outcome of input to patterns. The paper used multidimensional

scaling demonstrate strong evidence for grammatical generalization. It bridges

artificial intelligence and cognitive science to further progress in understanding

language processing in both human and AI systems. Wenxiong Liao et al. [16]

introduced the new framework, NSP-RTE, reformulating ZeroRTE as a next-sentence

prediction task based on pre-trained BERT models. NSP-RTE does not use synthetic

training samples and performs better than FewRel and Wiki-ZSL in terms of accuracy

and efficiency. It is capable of robust generalization to previously unseen relations and

filling gaps between the pre-training and fine-tuning steps without sacrificing optimal

recall and precision balance in complex situations. This approach considerably reduces

the computation demands and provides high accuracy with a new benchmark for tasks

in ZeroRTE, which brings forward relation extraction and knowledge graph

construction in NLP.

Table 2.1. Comparison of Methodologies- Summarizes the Key Characteristics of the

Seventeen Research Papers discussed above

SNo. Research Papers Datasets Pre-processing

Techniques
Performance

1 LSTM for next-word

prediction

Custom Dataset of

sequence

Tokenization 91% with

LSTM after

40 epochs.

2 A Machine Learning

Approach to predict the

Next Word in a

Statement

Web Scrapped

Medium article

dataset.

Tokenization

and

Removal of

characters.

85% with Bi-

LSTM, 57%

with LSTM

after
50 epochs

8

3 Next word prediction for

Urdu language using

deep learning models

Methodology

1.1 million Urdu

sentences.

Word2Vec

embeddings for

data

Vectorization

73.7% with

BERT, 52.4

% with
LSTM

4 Fast-ML based next

word prediction for

hybrid languages

Methodology.

A corpus of

4,000,000 Japanese

sentences from

Twitter posts.

Word

Embedding, N-

gram

Input time

(saved 16 %)

and the

number

(saved 34 %)

of keystrokes

using RNN
LM

5 PictoBERT:

Transformers for next

pictogram prediction

Child Language

Data Exchange

System (CHILDES)

corpus.

Word-sense

annotation

N/A

6 Next syllables prediction

system in Dzongkha

using long short-term

memory.

“DzoSyll” dataset,

which consists of

collected data from

various Dzongkha.

Word

Embedding.

78.33% with

LSTM

7 Next Word Prediction in

Hindi Using Deep

Learning Techniques

Hindi parallel

corpus containing

1,561,841
sentences,

Tokenization,

Creating

dictionary of
unique words

79.54% with

Bi-LSTM,

70.89% with

LSTM

8 Next Word Prediction

Using Deep Learning

English Hindi

parallel corpus,

consisting 5,000

sentences

Cleaning,

vocabulary

creation

92.12% with

Bi-LSTM,

91.78% with

LSTM after

100 epochs

9 Enhancing Bangla

Language Next Word

Prediction and Sentence

Completion through

Extended RNN with Bi-

LSTM Model On N-
gram Language.

Large corpus of

Bangla text totalling

1.7 GB.

Word

Embedding

Word2Vec, N-

gram generation

99% with 4

gram and

99.74% with

5gram after

300 epochs

10 Contextual Bangla Next

Word Prediction.

Bangla dataset Compiling of

Tokenization, N-

gram generation,

Text cleaning

97.996% (7

gram) with

Bi-LSTM
with

11 Next Sentence

Prediction: The Impact

of Preprocessing

Techniques in Deep

Learning.

1423 data sourced

from online news

sites in Indonesian.

Tokenization,

Stopword

removal,

Steaming,

Embedding.

N/A

9

12 A Novel Model for

Prediction of Next Word

using Machine Learning.

Wikipedia corpus

dataset

Tokenization,

Stopword

removal

N/A

13 NLP-Based Next-Word

Prediction Model

Comprehensive

SMS spam dataset

Stemming,

Tokenization

94% with

LSTM, 94%

with RNN,

94% with

CNN

14 Next Word Prediction

System using NLP.

Lewis Carroll's

novel “Alice’s

Adventures in

Wonderland”

Weighted

probability

N/A

15 Word class

representations

spontaneously emerge in

a deep neural network

trained on next word

prediction.

German novel “Gut

gegen Nordwind”

by Daniel Glattauer

POS tagging,

Embeddings

N/A

16 Zero-shot relation triplet

extraction as Next

Sentence Prediction.

Wikipedia articles

and Wiki data

knowledge base.

NSP with entity

detection

N/A

2.2. Areas of Concern

The literature review culminations that previous automatic crack

classification methods may not presently aid agencies in conducting pavement surface

condition surveys. Key areas of concern identified include:

1. Data Scarcity in Low-Resource Languages: A major limitation across studies

is the lack of large, diverse, and annotated datasets for languages like Hindi,

Urdu, Bangla, Dzongkha, and Indonesian. This directly affects model

generalization and performance.

2. High Computational Requirements of Transformer Models: Advanced models

like BERT and GPT offer strong performance but demand substantial

computational resources, making them less practical for deployment in low-

power or real-time applications.

3. Morphological and Linguistic Complexity: Complex grammar, syllabic

structures, and phonemic ambiguities in many non-English languages

introduce challenges in modelling accurate word predictions, especially with

character-level or naive models.

4. Importance of Preprocessing and Model-Specific Tokenization: Language- and

model-specific preprocessing (e.g., tokenization, stemming, sub word

segmentation) critically affects performance. Incorrect preprocessing can

eliminate context or introduce noise.

10

CHAPTER 3

DATA PRE-PROCESSING TECHNIQUES

Data preprocessing is an essential step in any NLP or machine learning

procedure, converting dirty and raw data into structured and meaningful input to

provide to models. Data operations to clean, normalize, feature select, and encode are

used to improve data quality and consistency. Tokenization, stop word removal,

stemming, lemmatization, and vectorization are used in NLP to normalize text for

semantic interpretation. These processes facilitate models to learn context, filter noise,

and enhance overall predictive performance. Preprocessing efficiently minimizes

computation, speeds up training, and avoids model degradation from unnecessary or

conflicting inputs. This enables models to learn from clean signals instead of noise.

Lastly, preprocessing moves beyond raw data and clever observations and thus

becomes the pillar of any effective AI system.

3.1. Extra Spaces and Special Character and Stop Word Removal.

Special character removal and redundant space checking is a significant

preprocessing step in Exploratory Data Analysis of SwiftKey data, i.e., Twitter, Blogs,

and News text. Special characters such as "@, #,!?, %," don't provide anything useful

to next-word probability models and add unnecessary noise. The inclusion of these

leads to inconsistencies in tokenization and vectorization, word segmentation errors,

and decrease prediction accuracy. Unnecessary spaces and symbols can distort the text

organization, creating split words and incorrect word relationships in word

representations such as Word2Vec and GloVe [7] [8] [11] [14]. Text normalization in

the datasets is particularly crucial because Twitter has informal aspects such as

hashtags, mentions, and emoticons, while Blogs and News may have HTML tags,

special punctuation, and layout marks. Removal of these characteristics implies fewer

wasteful calculations, which implies faster training and utilization of memory. It also

enhances N-gram analysis with correct word sequences maintained critical in

establishing the probability of the next words. The elimination of redundant characters

and spaces makes the handling of text cleaner and more organized leading to enhanced

performance of models in NLP with different datasets.

11

Fig.3.1 Elimination of Extra Spaces and Special Characters

3.2. Tokenization

Tokenization is a process of splitting a text into the smallest units in terms

of words or sub words for easy NLP model processing. This can be considered an input

preprocessing, which ensures the input is clean because text segmentation often

removes all punctuation or special characters. As such, text can be tokenized to get

structured formats, such as embeddings, and so enhance the correctness of the Hindi,

Urdu, and Bangla model. Challenges include handling phonetically similar characters

and maintaining accuracy in morphologically rich languages. It is often combined with

other techniques like stemming and lemmatization to enhance model performance.

Overall, tokenization bridges raw text and advanced NLP models which enables

effective language understanding [6][7][10][15][14] as shown in Fig.3.2 and Fig. 3.3.

Fig.3.2 Creation of Tokens

12

Fig.3.3 Creation of Tokens Based on Length 2, Length 4 and Length 7.

3.3. N-gram Generation

The N-gram generation is the process of producing sequences of ‘n’

consecutive words or tokens taken from a given text in NLP. This captures contextual

relationships within a given window size and is the basis of many predictive and

analytical tasks, such as language modelling, next-word prediction, and text

classification [9][14][13] as shown in Fig.3.2[16] has use N-gram for the feature

development of the data so that it can be further used in Markov Model. The word

cloud of 200 most frequent words for the swift key dataset is shown in Fig. 4.1.

Fig 3.4 Pictorial Representation of Data Cleaning to N-gram Generation.[3]

13

Fig 3.5 Tree Generation of N-gram.[3]

Fig.3.6 Division of Data Based on Bigram and Trigram.

3.4. Frequency Distribution Plot

A frequency distribution graph is vital in next-word prediction since it

displays how frequently words or word combinations appear in a dataset, aiding

models to give more priority to potential predictions. By studying these distributions,

models such as Markov or n-gram estimate transition probabilities, allowing word

predictions for specific contexts. For instance, if “I want to” precedes “eat” 40% of the

time and “go” 30%, the model gives more weight to “eat”. This method aids in

improved accuracy, context sensitivity, and generalization, particularly in how it

handles both common and rare word patterns in training data.[9]. Fig.3.6 is the

frequency chart for a bigram dataset which can further be plotted into a frequency

distribution plot for better statistical outlook of the dataset. This helps in the better

visualization of the data so that dataset can be interpreted better just like the

information extracted from the SwiftKey dataset “Twitter has the most entries but the

fewest words per line. Blogs contain the longest sentences, making them ideal for

14

predicting text after longer word sequences, Twitter data is better suited for informal

and short sequence predictions” such understanding of data comes with the better

visualization [15] as shown in Fig.3.6.

Fig.3.7 Frequency Distribution Plot of Bigram for Blogs in Swift Key Dataset.[17]

3.5. Vectorization

Vectorization in Natural Language Processing is the act of transforming

text data into numerical forms so that machine learning models can effectively process

and analyse it. Because raw text is unstructured, vectorization converts words into

structured numerical forms so that they are ready for statistical analysis, visualization,

and predictive modelling. During Exploratory Data Analysis of the SwiftKey dataset,

comprising Twitter, Blogs, and News data, vectorization is required to comprehend

text patterns, discover frequent words, and prepare data for next word prediction

models. Methods like Word Embeddings for e.g. Word2Vec, GloVe, FastText

[8][9][11][14], Bag of Words, and Term Frequency Inverse Document Frequency

assist in retaining contextual significance while representing words numerically. By

using vectorization, EDA can easily analyse word distributions, identify, find common

phrases i.e. n-grams, and compare sentence structures between datasets. It also assists

in clustering, dimensionality reduction, and text similarity analysis, which

differentiates short informal texts from Twitter and longer structured content from

Blogs and News. In next-word likelihood, vectorization allows models to learn

relationships, semantic similarities, and contextual dependencies among words.

3.6. Pickling and Non-pickling

Pickling and non-pickling are not inherently a part of Exploratory Data

Analysis i.e., EDA, but they are extremely crucial for storing and retrieving data during

machine learning operations. Pickling refers to the serializing of Python objects such

as data frames, tokenized text, and vectorized forms into a binary format for easy

storage and reloading of processed data. Under the scenario of EDA, on large data such

as SwiftKey, pickling is beneficial for time-saving by not repeating redundant

preprocessing steps such as tokenization, StopWord removal, and vectorization.

Conversely, non-pickling involves storing cleaned data in more human-readable

15

formats such as CSV, JSON, or databases so that visualization and analysis can

become easier during EDA. While pickling itself is not an EDA process, it indirectly

helps the process by preserving processed data to be reused for future analysis and

enhancing computational efficiency as shown in Fig.3.7. Non pickling formats such as

CSV are typically applied for data visualization, statistical analysis, and feature

engineering [17].

Fig.3.8 Procedure of Pickling and Non-Pickling.

3.7. Text stemming and Text Lemmatization

Text stemming, is one of the NLP pre-processing techniques that reduce

words to their base or root form by stripping off prefixes and suffixes. The main idea

behind stemming is to group together words with related meanings into one

representation so that data becomes easier to simplify and reduces redundancy in the

input text[11][13].Text lemmatization is an NLP preprocessing technique that

simplifies words down to their basic or root forms, called lemmas, with an assurance

that that reduced form of the word will still be valid in the language. Unlike a stemming

process which removes affixes, such as prefixes and suffixes of words, this

lemmatization process keeps in mind both the grammatical context and other

morphological properties of words and thus produces the linguistically most accurate

base form.

3.8. POS Tagging

Part-of-Speech Tagging is assigning a grammatical category (noun, verb,

adjective, etc.) to a word based on its context and syntax in a sentence. This will assist

in determining the structure and meaning of text. Some applications that it can aid are

parsing, sentiment analysis, and machine translation. Rule-based or statistical

approaches like Hidden Markov Models use annotated datasets for tag prediction. For

instance, in “John plays guitar”, “John” is a noun, “plays” is a verb, and “guitar” is a

noun. Although important for language understanding, POS tagging has its own

challenges, such as dealing with ambiguity and low-resource languages. Its

applications include text parsing, named entity recognition, and machine translation

[6].

16

3.9. Case Folding

It is a preprocessing step that converts all text to a uniform case, typically

lowercase, ensuring consistency and reducing redundancy. It helps models like n-

grams or GPT by treating variations like “Hello” and “HELLO” as the same, reducing

vocabulary size and improving efficiency. While beneficial for most tasks, it may not

be suitable when case distinctions, such as “US” vs. “us” hold meaning. For example,

“The Quick Brown Fox” becomes “the quick brown fox” after case folding.[7]

3.10. Word Embedding

Word embedding is a process that translates words into dense vector

representations of a fixed length, which captures both semantic and syntactic

interrelations among words. In [4][9], it used Word2Vec to generate word embeddings

with both the Continuous Bag of Words CBOW model and the skip-gram model. These

representations are especially useful since they allow the system to process sequential

data efficiently and make contextually accurate predictions even in complex languages

lacking extensive pre-trained resources.[3][4][6][9]

17

CHAPTER 4

DATASET

The dataset employed is The SwiftKey dataset [15], created in

collaboration with the Johns Hopkins Data Science Specialization, is made up of

millions of tweets, blogs, and news articles for Natural Language Processing tasks.

The dataset includes 75,578,341 lines for Twitter, 85,459,666 lines for blogs, and

95,591,959 lines for news, with Twitter having the largest number of entries but the

smallest words per line. Blogs have the lengthiest sentences and are thus best for

predicting text following longer sequences of words, while Twitter data is more

suitable for informal and short-sequence prediction. The News dataset, due to its

structured content, is suitable for applications that need formal language modelling.

This heterogeneous dataset offers an excellent resource for next-word likelihood

models, being suitable for both short and long-text prediction.

Given in Fig.4.1are the top 200 most frequent words from the News dataset , Twitter

dataset and Blogs dataset respectively , which are the part of SwiftKey dataset.

Fig. 4.1 Word Cloud Representation of Most Frequent Words in Swift-Key Data [17]

18

CHAPTER 5

FUNDAMENTAL MODELS OF NLP

The building block theories of Natural Language Processing have evolved

from basic statistical methods to intricate deep learning architectures. The early models

such as n-grams and Hidden Markov Models laid the foundation by probabilistically

representing the word sequences but were unable to handle long-range context. The

advent of neural models such as RNNs, LSTMs, and GRUs provided sequential

learning with enhanced contextual representation. But the actual revolution was

brought by Transformer-based models that rely on self-attention for efficient use of

global dependencies. Breakthrough models such as BERT and GPT then went on to

further revolutionize NLP by making it possible to have strong pretraining and

contextualization of language. Models are now at the centre of current NLP systems

for understanding as well as generation.

5.1. RNN

Recurrent Neural Networks are neural networks specially designed for

dealing with sequential or time-series data. As opposed to conventional feedforward

neural networks, where every input is treated independently, RNNs incorporate a built-in

memory system in that information is permitted to propagate from one time step to

another. This is facilitated through feedback loops within the network enabling the model

to have a hidden state and transport context across inputs. This RNN sequential behaviour

renders them extremely useful to apply in programs with data with a significant order,

e.g., natural language processing, speech recognition, and time series prediction.

One of the most vital behaviours of RNNs is modelling temporal dependencies. They

read sequences element-wise, and with each input, they update their internal hidden state.

This architecture enables RNNs to learn temporal patterns in data, like word order in a

sentence or stock prices. RNNs also enjoy sharing parameters across different steps of

time, which minimizes parameters and enables efficient learning of sequences of different

sizes. But vanilla RNNs suffer from the vanishing gradient problem, a serious issue to the

learning of long-term relationships by the model. To address this, there are more

sophisticated variants such as Long Short-Term Memory networks and Gated Recurrent

Units that utilize gating mechanisms to store information better and manage information

flow over time.

Compared to other neural architecture, RNNs provide sequential tasks some unique

benefits. Feedforward networks, while good for static input-output mappings, cannot

remember past context and are thus not suited to language or time-sensitive problems.

Convolutional Neural Networks, while extremely powerful for image processing, lack

the temporal dynamics required for sequence modelling. The Transformer-based models

BERT and GPT have emerged as stalwart replacements for RNNs by leveraging attention

19

mechanisms to support long-range dependencies and parallel processing. But RNNs are

still a viable option for shallow and transparent sequence modelling, particularly in those

situations where computer resources are not abundant.

RNNs have useful applications in many real-world situations. In natural language

processing, RNNs facilitate such tasks as next-word prediction, language modelling, and

machine translation through word sequence analysis and context memory. In speech

recognition, RNNs translate audio inputs into text outputs through temporal waveforms

learning. They are also used extensively in time series prediction, e.g., weather

forecasting, monitoring patient health data, or predicting stock market trends. Some other

uses include music generation, where the next note is forecasted based on a sequence of

past notes, and handwriting recognition, where sequences of pen strokes are converted to

text. The kind of data to use RNNs for is usually ordered or time-series formats. These

can be text datasets such as news articles, chat logs, or literary corpora; audio datasets

such as speech or music; and sensor-based time series datasets logging temperature,

motion, or biological signals. These kinds of datasets tend to undergo preprocessing

operations such as tokenization, vectorization, or embedding to convert raw inputs into

model consumable formats. RNNs can handle fixed-length and variable-length sequences

and are thus flexible to various tasks and input types. There are, however, some

limitations of RNNs. The main problem is the vanishing and exploding gradient in

backpropagation through time, a learning disability for long sequences. RNNs also suffer

from slow training speeds because of their sequential processing nature that is not

parallelizable. In addition, RNNs can take larger memory while handling long sequences

and need hyperparameters well-tuned in order to work optimally. However, if

architecture and preprocessing are well implemented, then RNNs remain a core model

for sequence learning, especially where data naturally comes in sequence and contextual

coherence is a requirement.

5.2. N-gram

An N-gram model is a very basic probabilistic model employed in Natural

Language Processing for sequence modelling of words or characters. An N-gram

model is a Markov model under the Markov assumption that the probability of a word

is conditioned only upon the n -1 preceding words, reducing the complexity of

modelling language by making the Markov assumption. The model approximates the

probability of a word's appearance based on its previous context and is measured in

terms of the “n” in n-gram. For example, a unigram only takes single-word frequencies

into consideration, a bigram takes consecutive pairs of words, and a trigram takes word

triplets into consideration. This simplicity makes n-gram models computationally

inexpensive and understandable, particularly for domain or small applications. The key

advantages of n-gram models are computational simplicity, language universality, and

trainability simplicity. They make extensive use of frequency counts and co-

occurrence statistics that can be calculated from training data sets. They do not need

advanced training and lots of hardware like neural models. Yet, one of the main n-

gram model weaknesses is that they cannot pick up long-range dependencies in a

window larger than their own fixed size and thus lose context information in long

sentences. In addition, they also have data sparsity rare or out-of-vocabulary word

sequences yield zeros unless smoothing methods are used. Compared to current deep

20

learning architectures like Recurrent Neural Networks or Transformers, n-gram

models are more memory-constrained and quicker to develop but less context-

sensitive. RNNs and LSTMs can store patterns for longer durations and learn from

input dynamically, while n-gram models use only precomputed frequency counts.

Transformers, using attention mechanisms, can capture global dependencies in an

entire sequence, which fixed-context n-gram approaches cannot. However, in

scenarios where computational resources are limited or when real-time feedback is

required, n-gram models can still provide valid solutions. N-gram models find

extensive application in text prediction, auto-completion, speech recognition, spelling

correction, information retrieval, and machine translation, especially in embedded

systems or legacy systems. They are also a building block for hybrid models when

combined with neural methods to supply the performance and overhead balance. For

instance, n-gram models can be applied to early probability estimation or candidate

filtering with RNNs or BERT. The corpora used for n-gram models are usually

massive, clean, and representative corpora of the language or domain of concern.

Examples are sets of social media posts, newspaper articles, books, web-scraped data,

or transcripts. The quality and size of the corpus significantly rely on how well an n-

gram model performs; the more populated the corpus is, the better the high-frequency

n-grams can be estimated, while the sparsity issue is diminished. Tokenization is an

important preprocessing step since the generation of n-grams relies on correct and

consistent word or character boundary. Briefly, n-gram models are narrowly

constrained in what deep or long-range context they can capture, but they are

nonetheless a worthwhile addition to the NLP toolbox because they are convenient,

interpretable, and useful in low-resource or domain-specific situations. With

smoothing applied, and as supplements to other models, n-grams continue to enable a

variety of useful language processing tasks.

5.3. Transformer

Transformer models are a revolutionary leap in Natural Language

Processing that has a novel architecture that eliminates recurrence in the classical sense

in lieu of attention mechanisms. Presented by Vaswani et al. in their 2017 article

“Attention is All You Need,” the Transformer architecture is based solely on self-

attention and positional encoding to learn input sequences. As compared to Recurrent

Neural Networks and Long Short-Term Memory models, in which data is processed

sequentially, in the Transformer model, all tokens of a sequence are calculated in

parallel, enabling higher computational efficiency and much faster training times.

Parallelization is especially valuable when working with big datasets or sequences

because it prevents the vanishing gradient issue that is common in recurrent models.

One of the most distinct features of Transformer models is that they can represent

global context and long-distance relations in a sequence. Multi-head self-attention

facilitates this by the ability of the model to handle multiple positions of the input at

once and learn the relationship between all the words irrespective of their position in

the sentence. In addition, Transformer models are very modular and scalable and form

the basis of some of the strongest pretrained language models such as BERT, GPT, T5,

and Ro-BERT. Positional encodings provide an alternative for missing recurrence in

such a way that the model retains sequence context whenever it’s parallelizing the

21

processing of the input. The positional encodings replace the inability to recur to make

the model retain sequence contexts every time that it is paralleling the process of the

input compared to using models like fixed-window n-gram based probability

estimates, or RNN with evil memory and poor training rates. Compared to

convolutional neural networks, which are superior in local feature extraction but fall

behind in sequential comprehension, Transformers perform better in deeper semantic

comprehension tasks. While computationally more expensive, especially during

training, their flexibility and performance gain require such constraints. Optimized or

distilled models such as Distil-BERT and ALBERT have been suggested to mitigate

these costs. Optimized or distilled variants like Distil-BERT and ALBERT have been

proposed to reduce these costs. Transformer models are applied extensively across

many applications of NLP like next-word prediction, machine translation, text

summarization, sentiment analysis, question answering, chatbot construction, and

language generation. They have also been applied in other fields aside from NLP,

including computer vision (Vision Transformers or ViTs) and bioinformatics. They

excel where such applications require understanding the entire context of a document

or sentence and therefore best apply to semantic subtlety, coherence, and syntactic

correctness applications. The data appropriate for Transformer models are normally

large-scale, diverse, and domain-rich due to the models’ requirement for considerable

pretraining. Typically employed corpora are Wikipedia, Book Corpus, Common

Crawl, OpenWebText, and domain-specific corpora for specialized applications (e.g.,

biomedical, legal, or financial text). For fine-tuning downstream tasks, benchmark

datasets like GLUE, SQuAD, CoNLL, or XNLI are predominantly employed.

Preprocessing involves sub word tokenization techniques like Byte-Pair Encoding or

Word Piece to allow the models to be capable of handling out-of-vocabulary words

and rare tokens efficiently. In short, Transformer models revolutionized NLP by

offering an extremely effective, parallelized architecture capable of capturing

elaborate, long-range relations in sequences. Their self-attention, scalability, and

flexibility to accommodate a vast array of tasks make them the centre pieces of the

greatest language systems today. Although their costly computational overhead makes

them unbearable, their flexibility and capabilities render them unavoidable in current

artificial intelligence.

5.4. LLMs

Large Language Models such as GPT-2 are a milestone in the

understanding and generation of natural language. OpenAI created GPT-2, which is

based on the Transformer decoder architecture alone, due to the use of which it has the

ability to generate coherent and contextually appropriate text with autoregressive

language modelling. In contrast to bidirectional models like BERT, which are trained

for word understanding via word masking and prediction, GPT-2 is trained to predict

the next word in a sequence via left-to-right learning. GPT-2’s unidirectional,

generative design makes it beautifully well-tailored to text completion, story

generation, summarization, translation, and conversational systems. GPT-2’s strongest

points are that it is able to produce fluent, contextually coherent, and human-like text,

solve long-range dependencies, and generalize across tasks quite well without being

22

task-specifically trained. It does so by carrying out very large-scale unsupervised

pretraining on a gargantuan, highly diverse corpus (WebText, containing over 8

million documents), so that it can learn a general distribution of language and world

knowledge. One of the most dramatic capabilities of GPT-2 is to learn new tasks in

zero-shot and few-shot settings i.e., new tasks are simply achieved by conditioning on

task information or examples in the input prompt, without fine-tuning. This is enabled

by the model scale and training data richness. As compared to models such as RNNs

or LSTMs, which process inputs sequentially and are commonly prone to vanishing

gradients and limited context memory, GPT-2 uses the self-attention mechanism of

Transformers to model global dependencies over the entire sequence. As opposed to

BERT, which is concerned with comprehending language through masked token

prediction, GPT-2 is concerned with creating language and hence is better at open-

ended or creative tasks. Secondly, GPT-2 is not encoder-decoder split as in the T5

model but uses a decoder-only structure, which is trained autoregressively.GPT-2 also

has many applications in the real world, such as intelligent writing aids, code

generation, chatbot platforms, conversational agents, summarization of content, and

even writing. GPT-2 also has its use in educational technology, customer support

automation, and accessibility tools. This is due to the fact that the paradigm of training

of the model makes it possible for it to be utilized for other domains through a simple

change in the input prompt or some examples. Training and tuning preference sets for

GPT-2 is usually large-scale, multi-domain, and diverse enough to provide adequate

exposure to structure, topic, and style variations. WebText upon which GPT-2 was

trained was a corpus obtained by web-scrapping web pages cited in at least three

upvoted comments of Reddit in an attempt to ensure relevance and quality. For task-

specific fine-tuning or deployment, filtered data of smaller lengths such as news

articles, dialogues, court proceedings, or technical documentation can be used based

on the specific application. Preprocessing involves tokenization via Byte Pair

Encoding to allow processing of out-of-vocabulary and compound words by dividing

them into sub word units. Generally, GPT-2 demonstrates the capabilities of Large

Language Models through scalable, adaptive, and high-quality text generation. Its

autoregressive architecture, pretraining knowledge base, and zero-shot capability

make it a general-purpose tool for a broad variety of NLP tasks. Yet its high

computational requirements, capacity to generate biased or inappropriate content, and

absence of task-specific grounding remain primary considerations for ethical and

responsible use. Given in Fig.5.1 is the basic architecture of GPT-2 .

23

Fig.5.1 Architecture Of GPT-2 [9]

24

CHAPTER 6

PROPOSED WORK

Training any model is the extreme last step for any procedure, before that

there is a pipeline of processes which have to be done in order to train the data-model

to its best. Methods involved in the early stage are the loading of the data , visualization

of the data to get a bigger picture of the type of data ,one is getting involved into ,Data

pre-processing is done , then the most crucial stage come which is the Feature

Development because it is different for each model as each model get trained in a

particular way .Once the data is trained then the testing is done in order to check the

Genuity of training .After this is done then the result is analyzed. Fig.6.3 incorporates

the methodology for [17]. Feature development is the enhancement of the properties

of the data which can be used for the better modeling. Feature Development is different

for different models i.e according to the key procedure of the model, particular features

are considered for the development [17].

6.1. Markov Model

Markov models are widely used in next-word prediction tasks by utilizing

probabilistic transitions between words based on historical linguistic patterns. These

models, broadly work in two ways Markov Chains and Hidden Markov Models i.e.

HMMs, that are designed to estimate the probability of a word appearing next after

given the preceding words. The effectiveness of these models is evident in applications

such as text prediction, autocomplete systems, and speech recognition. The impact of

Markov models on datasets varies depending on the data's structure and linguistic

complexity. For example, in Urdu language processing, a study demonstrated that an

HMM-based stochastic model significantly improved word prediction accuracy by

minimizing keystrokes and maintaining contextual relevance. Another research survey

highlighted how Markov models contribute to natural language generation, named-

entity recognition, and part-of speech tagging, reducing dependency on manually

annotated lexicons. However, one limitation of traditional Markov models is their

inability to capture long-range dependencies effectively that is why it makes them less

suitable for highly complex sentence structures compared to deep learning models such

as LSTMs and transformers. Despite their limitations, Markov models remain a

valuable tool for NLP tasks, especially in resource-constrained environments where

deep learning models may be computationally expensive. The integration of Markov

models with other machine learning techniques, such as neural networks and

reinforcement learning, continues to enhance their applicability, ensuring their

relevance in modern text prediction and language modelling systems. Markov model

requires the particular feature development like [17] where to model the Markov model

on SwiftKey Dataset different dictionaries in the unigram , bigram, trigram are made

25

as shown in Fig. 3.4, after that conversion of the frequency of occurrence to probability

is done i.e. frequency of a word following a n-gram / total frequency of all words then

the history of previous words, known as history, is processed to figure out the most

likely next word based on n-gram probability distributions. If the history size is one,

the model looks for it in the unigram dictionary keys, picking the word with the best

probability; if the key does not exist, a random word is sampled. When the history size

is two, the model looks into the bigram dictionary and picks the most likely word. If

the bigram key cannot be found, the history is cut short to its last word, and the unigram

prediction is tried. Likewise, when the history size is three, the model is dependent on

the trigram dictionary, and if the key is not found, the history is shortened to its last

two words, resorting to bigram-based prediction. When the history is more than three

words, it is shortened to the last three words prior to applying trigram-based prediction.

This process helps to use the highest available n-gram model while efficiently

processing unseen sequences. When a word sequence is not available in the trained

dictionary, the model progressively decreases context size prior to generating words at

random, preserving strong predictability of the next word [17].

Fig.6.1 Code for Markov Model

6.2. Albert Model

The ALBERT i.e. A Lite BERT is an optimized version of BERT that

improves next-word likelihood through reduced model size without compromising

on the performance. While BERT is dependent on Next Sentence Likelihood,

ALBERT adds Sentence Order Prediction i.e. SOP, which enhances multi-sentence

26

input understanding. This new design allows ALBERT to model contextual

dependencies more accurately with fewer parameters, therefore enhancing

efficiency when handling large NLP tasks. The factorized embedding

parameterization and cross-layer parameter sharing within the model also reduce

memory usage, allowing faster training and inference. ALBERT utilizes its ability

to learn sequential text semantic coherence and long-range dependencies to project

to next-word probability. Its multi-head self-attention also guarantees that the

output sentence is contextually relevant and grammatically correct. Its reduced

encoder layers also enhance word vector representation, an extremely crucial

aspect of predicting the next word in a sequence. Augmentation allows for better

and contextually relevant word prediction and hence ALBERT can prove to be an

efficient substitute for the baseline transformer-based models. Utilization of

ALBERT in the database is convenient as it facilitates fast and accurate prediction

at low computation costs. It is easy to deploy the model size of ALBERT on the

low-resource devices such as smartphones and edge devices [4]. Its frumentary

training also makes it a good generalizer for cross-domain-wise generalization

from ginormous text data sets. Thus, ALBERT is a cost-effective computational

method for next-word probability issues in which cost of computation is being

sacrificed to its accuracy.

6.3. GPT

GPT is a Decoder-only Transformer that uses masked self-attention to

predict next-word probabilities in a sequence .GPT is an autoregressive language

model and can be used to produce fluent text by feeding sequences of input into it .GPT

is trained on a vocabulary-size 40,478 dataset and has a maximum of 512 tokens

processed for maximum sequence length. GPT was also trained on the SwiftKey

dataset, with text data from a wide range of sources such as social media, blog sites,

and news sites.

27

Fig.6.2 Code for Greedy, Beam and Random Sampling.

Fine-tuning, in addition to refining the model's comprehension of context to a point

where it can be used on next-word probability, is two-staged in its training

methodology. Pretraining over an unsupervised body of text results in a robust

language model. The process is such that the model is able to learn to optimize a

probability function to most effectively maximize next-word prediction based upon the

prior word sequence. Numerically, it is posed as a maximum likelihood estimation

problem and “kk” represents sequence length.

The model is pretrained and then fine-tuned on a supervised corpus, where the training

also considers historical context i.e. input words and target predictions i.e. next words.

Another probability function is maximized in the process, where "mm" is the length of

every sequence. By combining these two probabilistic models, a final loss function is

obtained that combines both pretraining and fine-tuning objectives, thus making the

model more adaptable to downstream tasks. This process ensures that GPT takes

advantage of general linguistic knowledge through pretraining as well as adapting to

specific domain constraints during fine-tuning, ultimately enhancing its next-word

prediction ability. The three different approaches have been utilized for next-word

likelihood, each using different search strategies to produce the most probable word

sequences.

• The Greedy Search approach picks the word with the highest probability from

a single hypothesis at every step, resulting in a locally optimal choice but possibly

missing the globally optimal sequences.

• The Beam Search method, on the other hand, searches multiple hypotheses (n-

best predictions) at each time step, allowing the model to explore a wider range of

possible continuations before choosing the most probable sequence.

• Random Sampling introduces a stochastic component by randomly picking a

word from the probability distribution of possible next words as shown in Fig. 7.3 To

increase diversity in predictions, a temperature parameter is used which will ignore

low probability words when it is set high Fig.5.1 is the architecture of the GPT. It

shows that it uses 12 layers of decoder with 12 attention heads in each self-attention

layer. It contains masked self-attention which is used for training the model.

28

Fig.6.3 Methodology of the Proposed Work.

29

CHAPTER 7

RESULT AND DISCUSSION

The empirical evaluation conducted in this study demonstrates the

considerable advancements achieved through the integration of deep learning and

probabilistic methodologies for next-word prediction. Across multiple experiments

and linguistic contexts, modern neural models such as BiLSTM, BERT, ALBERT, and

GPT variants consistently outperformed traditional statistical models in both

predictive accuracy and contextual adaptability [1][2]. Particularly, BiLSTM models

attained higher than 91% accuracy, significantly higher than LSTM models of simple

architectures by adopting bidirectional contextual learning, especially for highly

inflected languages like Hindi, Urdu, Bangla, and Dzongkha [4]. BiLSTM

performance was enhanced with the addition of self-attention mechanisms to achieve

accuracy of higher than 97% in multi-gram model tasks .These findings confirm the

efficacy of bidirectional encoding for intricate syntactic structure and long-distance

dependencies [5]. Transformer-based models such as BERT, ALBERT, and GPT-2

performed extremely well on different datasets with different complexity domains.

GPT-2 performed best when applied to generate long-sequence text because it has an

autoregressive model. BERT demonstrated to perform best in the task of masked

language modeling as well as contextual understanding. The ALBERT model, with its

parameter reduction and improved sentence embeddings, provided a computationally

cost-effective approach with high generalization capability for low-resource and low-

resource environments [6][9][10]. The baseline models like Markov Chains and

Hidden Markov Models, although still viable due to their simplicity and ease of

interpretation, exhibited higher loss rates and more fluctuation in training epochs.

These constraints were of utmost severity in sequential dependency modeling and

linguistic complexity, thus limiting their usage in high-accuracy prediction models

[11]. Further, the hybrid models making use of n-gram methods with advanced deep

learning architectures like RNNs and Bi-LSTM produced lower perplexity scores, thus

attaining cost-performance optimization.

For example, hybrid RNN-n-gram models achieved a 10% reduction in perplexity, and

stochastic models using unigram-level prediction demonstrated enhanced typing

efficiency in resource-limited linguistic scenarios [13][15]. Additional results

confirmed that preprocessing strategies including tokenization, sub word

segmentation, and vectorization played a critical role in improving model training and

performance across all architectures. Linguistic analyses indicated that neural

networks naturally encoded syntactic and semantic groupings, bridging statistical

modelling with cognitive linguistic patterns. A comparative analysis of Markov,

ALBERT, and GPT-1 across 70 training epochs demonstrated that GPT-1 exhibited

the lowest loss values and the most consistent convergence, highlighting its superior

30

learning and generalization capabilities as shown in Fig.7.1. In contrast, Markov

models showed high and fluctuating loss, while ALBERT maintained a balance of

performance and computational efficiency. Collectively, the results of this study

confirm that modern LLM-based architectures particularly those enhanced with

attention mechanisms, hybrid modelling, and efficient preprocessing deliver state-of-

the-art performance in next-word prediction tasks.

These findings not only validate the scalability and adaptability of these models across

varied linguistic and resource settings but also underscore the importance of contextual

embeddings, efficient data preparation, and architectural optimization in advancing the

field of predictive NLP systems. Given below are the outputs of Markov model and

the GPT-2 model in Fig.7.2 and Fig 7.3 respectively.

Fig.7.1 Training vs Testing Loss: Markov, ALBERT, GPT on 70 Epochs

31

Fig.7.2 Output of Markov Model. Fig.7.3 Output of GPT Model.

32

CHAPTER 8

CONCLUSION AND FUTURE WORK

This research work has examined the evolution and effectiveness of next-

word prediction systems through the lens of modern Natural Language Processing

(NLP) and deep learning methodologies. The comparative analysis of classical

approaches such as Markov models alongside advanced architectures including Long

Short-Term Memory, BERT, GPT, GPT-Neo, and ALBERT, has highlighted the

growing efficacy of large language models in generating accurate and context-aware

text predictions [9]. These models have demonstrated significant potential in

addressing linguistic variability and morphological complexity, particularly in low-

resource languages such as Hindi, Bangla, Urdu, and Dzongkha [3][10]. Despite the

advancements achieved, the study identifies several persistent challenges that must be

addressed in future research. Chief among these are data scarcity, handling of out-of-

vocabulary terms, model interpretability, and the computational demands of training

large-scale models [6]. Future directions should include the expansion of training

datasets to encompass a wider range of textual domains, such as poetry, songs,

conversational dialogues, and specialized corpora like Augmentative and Alternative

Communication. This expansion will be instrumental in improving model

generalization and robustness across varied linguistic settings [4]. Furthermore, the

integration of hybrid modelling techniques combining statistical methods with neural

architectures presents a promising avenue for enhancing sequence prediction accuracy

while maintaining computational efficiency. The utilization of sub word tokenization

strategies (e.g., byte-pair encoding, character-level embeddings) and advanced

learning paradigms such as transfer learning, few-shot learning, and contrastive

learning can also improve adaptability in low-resource scenarios.

33

REFERENCES

[1] Sumathy, R., Sohail, S. F., Ashraf, S., Reddy, S. Y., Fayaz, S., & Kumar, M. (2023,

June). Next word prediction while typing using lstm. In 2023 8th International

Conference on Communication and Electronics Systems (ICCES) (pp. 167 172).

IEEE.

[2] Rathee, V., & Yede, S. (2023, July). A machine learning approach to predict the next

word in a statement. In 2023 4th International Conference on Electronics and

Sustainable Communication Systems (ICESC) (pp. 1604-1607). IEEE.

[3] Shahid, R., Wali, A., & Bashir, M. (2024). Next word prediction for Urdu language

using deep learning models. Computer Speech & Language, 87, 101635.2023 3rd

International Conference on Innovative Sustainable Computational Technologies

(CISCT) (pp. 1-4). IEEE.

[4] Ikegami, Y., Tsuruta, S., Kutics, A., Damiani, E., & Knauf, R. (2024). Fast ML-based

next-word prediction for hybrid languages. Internet of Things, 101064.

[5] Pereira, J. A., Macêdo, D., Zanchettin, C., de Oliveira, A. L. I., & do Nascimento

Fidalgo, R. (2022). Pictobert: Transformers for next pictogram prediction. Expert

Systems with Applications, 202, 117231.Vinyals, O., Toshev, A., Bengio, S., &

Erhan, D. (2015). Show and tell: A neural image caption generator. In Proceedings of

the IEEE conference on computer vision and pattern recognition (pp. 3156-3164).

[6] Wangchuk, K., Riyamongkol, P., & Waranusast, R. (2022). Next syllables prediction

system in Dzongkha using long short term memory. Journal of King Saud University-

Computer and Information Sciences, 34(6), 3800-3806.

[7] Sharma, R., Goel, N., Aggarwal, N., Kaur, P., & Prakash, C. (2019, September). Next

word prediction in hindi using deep learning techniques. In 2019 International

conference on data science and engineering (ICDSE) (pp. 55-60). IEEE.

[8] Tiwari, N. Sengar, and V. Yadav, "Next word prediction using deep learning

techniques for Hindi language," in 2022 IEEE Global Conference on Computing,

Power, and Communication Technologies (GlobConPT), New Delhi, India, 2022.

[9] Islam, M. R., Amin, A., & Zereen, A. N. (2024). Enhancing Bangla Language Next

Word Prediction and Sentence Completion through Extended RNN with Bi-LSTM

Model On N-gram Language. arXiv preprint arXiv:2405.01873Radford, A., Kim, J.

W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July).

Learning transferable visual models from natural language supervision. In

International conference on machine learning (pp. 8748-8763). PMLR.

[10] Kyume, A., Rahman, M. M., Azad, M. I., Nahid, M., Khan, M. S. H., & Uddin, M. M.

(2023, June). Contextual bangla next word prediction and sentence generation using

bi-directional rnn with attention. In 2023 5th International Congress on Human-

Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-9).

IEEE.

[11] Latief, A. D., Sampurno, T., & Arisha, A. O. (2023, October). Next Sentence

Prediction: The Impact of Preprocessing Techniques in Deep Learning. In 2023

International Conference on Computer, Control, Informatics and its Applications

(IC3INA) (pp. 274-278). IEEE.

[12] Chilukuri, P., Reddy, K. N. K., Divyanjali, K. N. V. S., Royal, L. J., Chandana, M. H.,

& Krishna, D. M. (2023, May). A Novel Model for Prediction of Next Word using

Machine Learning. In 2023 7th International Conference on Intelligent Computing

and Control Systems (ICICCS) (pp. 393-400). IEEE.

[13]S. Singh, D. Doshi, A. K. Kohli, and T. Neupane, "A machine learning approach for

34

NLP-based next-word prediction model using LSTM, CNN, and RNN," in 2023 7th

International Conference on Computation System and Information Technology for

Sustainable Solutions (CSITSS), Chandigarh, India, 2023

[14]P. Puri, R. Patil, B. Sisode, R. Sontakke, and H. Shivnani, “Next word prediction

system using NLP with trigram language model”, in 2024 International Conference

on Electrical Electronics and Computing Technologies (ICEECT), Pune, India, 2024

[15] Surendra, K., Schilling, A., Stoewer, P., Maier, A., & Krauss, P. December). Word

class representations spontaneously emerge in a deep neural network trained on next

word prediction. In 2023 International Conference on Machine Learning and

Applications (ICMLA) (pp. 1481-1486). IEEE.

[16] Liao, W., Liu, Z., Zhang, Y., Huang, X., Liu, N., Liu, T., ... & Cai, H. (2024). Zero-

shot relation triplet extraction as Next Sentence Prediction. Knowledge-Based

Systems, 304, 112507.

[17] https://rpubs.com/hbk91/SwiftKey_dataset_EDA [18]

[18] Sharma, A., & Singh, R. (2023). ConvST-LSTM-Net: convolutional spatiotemporal

LSTM networks for skeleton based human action recognition. International Journal of

Multimedia Information Retrieval, 12(2), 34.

[19] Choi, H., Kim, J., Joe, S., & Gwon, Y. (2021, January). Evaluation of bert and albert

sentence embedding performance on downstream nlp tasks. In 2020 25th

International conference on pattern recognition (ICPR) (pp. 5482-5487). IEEE.

[20] Qu, Y., Liu, P., Song, W., Liu, L., & Cheng, M. (2020, July). A text generation and

prediction system: pre-training on new corpora using BERT and GPT-2. In 2020 IEEE

10th international conference on electronics information and emergency

communication (ICEIEC) (pp. 323-326). IEEE.

[21] Alagöz, O., & Uçkan, T. (2024). Text Clustering with Pre-Trained Models: BERT,

RoBERTa, ALBERT andMPNet. NATURENGS, 5(2), 37-46..

[22] Wang, X., Wang, H., Zhao, G., Liu, Z., & Wu, H. (2021). Albert over match-lstm

network for intelligent questions classification in chinese. Agronomy, 11(8), 1530.

[23]Felix, B., Gunawan, A. A. S., & Suhartono, D. (2024, August). Automated Product

Description Generator Using GPT-Neo: Leveraging Transformer-Based Language

Models on Amazon Review Dataset. In 2024 International Conference on

Information Management and Technology (ICIMTech) (pp. 404-409). IEEE.

35

LIST OF PUBLICATIONS

1. Mohini Yadav, Dr. Abhilasha Sharma, “Next Word Likelihood: A

Comprehensive Survey”. The paper has been accepted at the 2nd International

Conference on Engineering, Management and Social Science (ICEMSS-2025), 19th -

20th February 2025. Indexed by Scopus.

2. Mohini Yadav, Dr. Abhilasha Sharma, “Next Word Likelihood: A

Comprehensive Analysis”. The paper has been accepted at the 2nd International

Conference on Robotics, Machine Learning and Artificial Intelligence (ICRMLAI-

2025), 24th May 2025. Indexed by Scopus.

