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Privacy Preserving Machine 

Learning in Healthcare for 

Pandemic Prediction using 

Genomic Data 

Riti Rathore 

ABSTRACT 

The demand for analyzing healthcare data can be attributed to the curiosity for 

personalized prediction, treatment, and monitoring. The rapid growth of healthcare 

information by the demand of healthcare requires better strategies for healthcare data 

analysis. However, while healthcare data analytics has been proposed to combination 

of information, network expertise, mixed in models that are trained on this private 

information; the use of late deep systems, improving an architecture time and 

complexity. Healthcare data is information about a patient's healthcare status. It 

includes various types of data such as structured and non-structured, or private and 

national healthcare data. The global movement of having health data for the public is 

producing many initiatives. While healthcare data analytics have demonstrated some 

promising results, there are still challenges, particularly in models trained in private 

data. Privacy Preserving Deep Learning techniques in the healthcare domain 

addressed the critical challenge of protecting the privacy of the patient and ensuring 

the judicious usage of data for models in machine learning. In this research, we have 

discussed comparative study of the key techniques which involve Federated 

Learning, Differential Privacy, Homomorphic Encryption, Secure Multi-party 

Computation and Synthetic Data Generation. These techniques will provide robust 

solutions for data-confidentiality and secure model training. This also discusses the 

amalgamation of these advanced technologies with regulatory compliance, which 

helps in emphasizing the potential of balancing innovation with ethical responsibility 

to transform healthcare. 

 

In recent times, there has been a rapid spread of pandemics caused by rapidly 

mutating viruses, such as SARS-CoV-2 which has present significant challenges for 

healthcare systems worldwide. The global health crises like COVID-19 underscore 

the need for predictive models that support containment and resource management. 

Genomic data is very crucial in providing critical insights into viral evolution and the 

mechanics of dynamics. Genomic datasets contain information that requires such 

computational methods that protect privacy. We have used federated deep learning 

architecture using genomic data for the pandemic prediction. We have achieved both 

data privacy by identifying key genomic features and implementing federated 

learning and robust model performance. Our results help in demonstrating the 

effectiveness of the method proposed by offering a scalable solution for the 

monitoring of pandemics. 

 

Keywords: Healthcare Data, Privacy Preserving, Machine Learning, Federated 

Learning (FL), Data encryption, Deep Learning, Genomic data, Genome Sequence, 

Differential Privacy. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In typical data-driven machine learning tasks, a model is trained on a sample of 

input-output pairs that have been collected and labeled in advance. Such freedom of 

data collection and labeling is not achievable in many healthcare applications due to 

strict regulations, ethical considerations, and the potential privacy loss associated 

with revealing confidential medical information. In the context of health-related ML 

model training, specialized approaches that ensure differential privacy or fully 

homomorphically cryptic techniques have been developed to facilitate the joint 

analysis of distributed data repositories, allowing cross-organization collaborations 

without violating privacy guidelines. In addition, horizontal or vertical differentially 

private distributed algorithms have been shown effective in model training for 

biomedical image data analysis, demonstrating utility in privacy-preserving multi- 

center collaborations. Considering widespread interest in privacy-preserving ML 

techniques for healthcare data among the computer science, biomedical, and health 

economics community, a field review on this fast-developing research area is both 

timely and critically needed. 

Recent years have witnessed a surge of machine learning (ML) applications in 

healthcare, ranging from predictive algorithms for patient management to analysis 

tools for next-generation sequencing data. Large-scale healthcare databases, 

including electronic health records, must be widely and democratically accessible for 

these advancements to occur. There is a potential privacy risk of disclosing medical 

information to unapproved parties has also grown in importance, as evidenced by the 

sharp rise in medical data breaches over the last ten years. Consequently, a critical 

challenge of using healthcare data for ML applications is how to unlock the full 

potential of large-scale healthcare datasets while enabling the privacy protection of 

patients and the secrecy of sensitive medical data. In this survey, we aim to shed light 

on the emerging research area termed privacy-preserving machine learning for 

healthcare information. 

Genomic analysis plays a critical role in understanding viral mutations, resistance 

patterns and their spread. Deep learning techniques excel in extracting meaningful 

patterns from the high-dimensional and complex genomic data. The COVID-19 

pandemic created the necessity for reliable predictive models to effectively manage 

and control such health crises. However, the sharing of genomic data between 

institutions raises significant ethical and privacy concerns. 

A solution is offered by federated learning (FL) by enabling the decentralized 

training of machine learning models, allowing institutions to collaborate and develop 

predictive models without the need to exchange sensitive genomic data. With the 

help of genomic sequencing, we have predicted the pandemic using federated 

learning; it has ensured data privacy while identifying the critical features from the 

genomic dataset, and hence a deep learning model was built. 

1.2 Problem Statement 

The problem is exacerbated by the fact that large-scale hospitals and/or insurance 
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companies have little legal framework forcing them to handle healthcare data in a 

safe and ethical way. Today, such companies freely exchange their patient healthcare 

data to increase their gains. The primary focus of this book is to present secure ML 

algorithms that can extract accurate models without violating patients' privacy. 

The pervasive use of electronic healthcare data in hospitals, clinics, and mobile 

health applications has led to an increasing interest from the healthcare industry in 

leveraging machine learning (ML) technologies for better understanding patient data 

and improving healthcare outcomes. The use of modern ML algorithms presents new 

privacy challenges, however. The standard ML pipeline involves the collection of 

sensitive healthcare data in a server that applies ML algorithms to the data, and the 

resulting models are sent back to each of the hospitals or mobile devices for local 

predictions. As a result, adversaries that can access the collected healthcare data,  

even after the server has received the model, are able to perform reverse engineering 

to extract sensitive patient data for illicit purposes. 
 

 

Figure 1.1. Comprehensive Healthcare Data Privacy Rules [1] 

 

 

With the rise of the sensitive data in the world, it has created concerns over 

confidentiality of it. Even after a pandemic like COVID-19 opened the gateway for 

highly confidential medical data, which has increased the demand for privacy 

preservation of it. Hence, the federated learning algorithm has been widely used as a 

privacy-preserving machine learning technique in the domain of health and medical 

data. 
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CHAPTER 2 

 

 

PRIVACY PRESERVING TECHNIQUES IN AI 

 

 
Privacy laws, such as HIPAA [2], are pervasive and are designed to protect the rights 

of individuals while allowing them to seek medical treatment when available. It is 

important to accommodate the regulations explicitly when analyzing healthcare data. 

By allowing healthcare data models to be built in accordance with privacy 

regulations, the potential for model development will be increased without breaking 

the laws. The benefits of healthcare AI and ML are significant. Technologies can 

provide patient outcomes, value-based care, and healthcare population management 

across the healthcare space. Optimally designed and implemented privacy-preserving 

machine learning systems [3] that utilize AI algorithms can make accessing, 

processing, and analyzing healthcare information much simpler. More efficient 

information sharing can create access to complex health model data which will make 

training on new data more successful. 

 

There are major challenges that need to be overcome to make healthcare AI and ML 

a reality [4]. One of the primary challenges is data privacy and protection from data 

breaches. Large-scale adoption and success of AI and ML healthcare systems are 

impeded by the lack of effective ways to accommodate privacy regulations. The most 

straightforward way to protect sensitive healthcare information is to reduce the 

amount of accessible data [5]. 
 

Figure 2.1. Privacy-Preserving Techniques with their use cases [6] 

 

2.1 Differential Privacy 

The most common recipe for "differentially-privatizing" is the training of different 

types of machine learning models, including linear or logistic regression, SVM 

(Support Vector Machines), and decision trees, is to utilize the Laplace mechanism. 

In this case, the training process is no longer simply looking for the most likely 

parameter setting given the data but rather draws a parameter setting from the 

conditional differential distribution of the parameters given the data. This can be 

achieved by adding appropriately scaled noise to the likelihood or loss functions used 
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by the learning algorithms. 

Differential privacy is a popular notion of privacy in machine learning and statistics 

that we mentioned earlier. Differential privacy requires, roughly, that a machine 

learning model yield near-equal prediction accuracy independent of the presence 

("absorbing" an individual's data) or absence (without absorbing an individual's data) 

of any given individual's data. Differential privacy was designed to protect training 

data while releasing statistical information about the data that can be learned from 

the data, but while preventing re-identification of individuals in the data. It is able to 

achieve this by adding a certain amount of noise to the learning/parameter estimation 

process. 
 

Figure 2.2. In a differentially private system, the output of a function does not 

depend on whether a record is present or absent [7] 

2.2 Federated Learning 

Several methods enable privacy-preserving machine learning and will be surveyed 

here, starting with Federated Learning (FL). Recent advances in FL are the 

automation of model architectures, hyper-parameters, weights used in ensembling, 

and adjusting, which all enable its application to a wide range of models. However, 

including hyper-parameters means that the local training error from each node is 

needed. Moreover, FL continues using explicit weight averaging per epoch, so it has 

additional complexity costs associated with ensemble model averaging over better 

untrusted (including adversarial) models. Note also that it involves a parameter 

broadcast and a model aggregate network operation together with two or more 

communication steps, an additional latency overhead that is irrelevant for reducing 

the direct exposure of sensitive data of local training used in learning remote models. 

These latencies are more significant in a decentralized telecom backbone context 

than in a device scenario, where the broadcast is between device and local 

infrastructure. Aside from the mentioned use-case of devices on device habitat, a 

federated learning type model would be particularly useful in a permuted leaf 

environment. Current implementations of FL, however, bypass the concealed topic of 

private learning of perturbation of non-IID training data at the nodes by employing 

'trusted curation' based on consensus clustering algorithms, which prevents extending 

it to the broader topic of privacy preservation, including the learning stage that is the 

subject of this discussion. 
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Figure 2.3. Global Differential Privacy v/s Local Differential Privacy [8] 

 

2.3 Homomorphic Encryption (HE) 

A revolutionary cryptographic method called Homomorphic Encryption (HE) 

enables calculations to be done directly on the encrypted data without making use of 

decryption. This capability ensures that the confidentiality of sensitive medical data, 

such as patient records or electrocardiogram (ECG) signals, is preserved throughout 

the processing pipeline. There are several encryption techniques with great potential 

for the implementation of PPML. Homomorphic Encryption is one of the most well - 

known cryptographic methods that enable arithmetic operations over ciphertexts 

without the need for decryption or plain transformation of data. This encryption 

method is well suited for secure computation in cloud computing, and it is applicable 

for some specific and simple-to-complex solutions of secure data analysis. 

 

Figure 2.4. Block Diagram for Homomorphic Encryption [9] 
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In FL, HE is typically used to compute the weighted gradient for updating the global 

model with encrypted locally computed gradients on the client side. From the three 

types of Homomorphic Encryption schemes (partially and somewhat fully), RLWE 

(ring learning with errors) is known as a noise-rich type of encryption. While 

somewhat and partially homomorphic approaches have limitations on the numbers of 

operations or the magnitudes of the obtained outputs, these problems can be solved 

by using skillfully selected natural numbers, hence making the error grow 

exponentially in the encryption operations. 

 

2.4 Secure Multi-Party Computation (SMPC) 

There is another cryptographic method called Secure Multi-Party Computation 

(SMPC) that allows several parties to work together to calculate a function over their 

inputs while maintaining the privacy of those inputs. This method aggregates the 
inputs from all parties and helps in computing the function without 

decrypting/disclosing any information about their inputs other than the function’s 

result. SMPC is typically categorized from semi-honest to malignant opponents, 

depending on the number of parties and the degree of security attempted. Yao’s 

protocol, commonly known as garbled circuits, is the most widely used protocol for 

safe computing between semi-honest parties. 

 

Figure 2.5. Block Diagram for SMPC [10] 

2.5 Generative Adversarial Networks (GANs) for Synthetic Data 

With the rise in technology, Generative Adversarial Networks (GANs) have been 
proved as a highly effective and most useful method to generate synthetic data that 
are closely resembled with the real datasets while privacy has been maintained. 
GANs are able to achieve this by making use of two interconnected and intertwined 
neural networks: a generator and a discriminator, which work together in the 
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production of realistic synthetic data. In the domain of healthcare, GANs are making 
huge impact in the generation of high-quality synthetic medical data, such as imaging 
datasets, patient health records, or electrocardiogram (ECG) signals. The synthetic 
data being generated, can be taken into account for the deep model training without 
having the risk of sensitive patient data being exposed to any model. 

 

 

Figure 2.6. GAN System for Synthetic Data [11] 

This deep learning method has various advantages and one of the major advantages 
of GANs in privacy-preserving is the ability to solve both privacy concerns and data 
scarcity at the same time. With the creation artificial/synthetic datasets that tries to 
replicate the statistical patterns of real-world data without directly copying individual 
cases, GANs has great significance in reducing the risk of privacy exposures. 
Furthermore, this quality of GANs makes them highly suitable for critical 
applications like analysis of ECG for arrhythmia detection, where large, varied and 
diverse datasets are crucial to develop most possibly accurate and robust machine 
learning models for its critical use. Hence, GANs makes balance in the need for 
privacy and the demand for reliable training data in healthcare research. 
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Figure 2.7. GAN Based Privacy Preserving Method [12] 

 

 

2.6 Parameters in Privacy-preserving techniques 

In the following table, there is a comparison of the privacy-preserving techniques in 
machine learning showing the wide variety of strategies, each having their own 
advantage and disadvantage. 

Table 2.1. Comparison based on Accuracy, Privacy, Scalability and Latency 

Technique Accuracy 
Impact 

Privacy 
Level 

Scalability Latency 

Federated 
Learning 

High Moderate High Moderate 

Differential 
Privacy 

Moderate High High Low 

Homomorphic 
Encryption 

Low Very High Low High 

Secure Multi- 
Party 

Computation 

Moderate Very High Moderate High 

GANs for 
Synthetic Data 

Moderate High High Low 
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CHAPTER 3 

 

 

LITERATURE REVIEW 

 
3.1 Unsupervised Deep Learning: 

Most used models for unsupervised deep learning methods in healthcare data 

analyses include autoencoders and restricted Boltzmann machines (RBMs). 

 

In SPICE, after aggregating features are called patterns, patients' regular clusters 

using unsupervised learning methods such as K-mean, mixture model, ward 

clustering, etc. Pattern frequencies are then computed in the plaintext setting of a 

query. Such an approach then tries to make the query non-reusable as a separate 

approach that allows further queries after reallocating the used resource. 

 

3.2 Unsupervised Machine Learning: 

Unsupervised learning deals with problems where one is interested in understanding 

the structure of an unlabeled dataset, for instance in a way to identify subgroups or 

descriptive features in healthcare datasets such as EHRs or CNN images. Clustering 

methods, including k-means and classical methods for relay-based adversarial 

privacy, may be used to group visits of patients. In k-means, while the number of 

clusters must be specified, the L-Drawback based algorithms such as k-learning try 

to learn what is the most informative clusters count. 

In the upcoming paragraphs, we will overview three general types of methods in 

machine learning, namely unsupervised learning, supervised learning, and deep 

learning for healthcare data analyses, respectively. 

Similarly, using high-dimensional data in healthcare applications, Zhao et al. utilized 

matrix completion techniques combined with Gaussian process regression for multi- 

label prediction of comorbidities in oncology. The method was tested against clinical 

and histological data of over 400,000 patients suffering from 15 types of cancer. 

Another psychiatry-related work by Sun et al. assessed neurocognitive performance 

in depression using unsupervised machine learning techniques. Requirements are 

rising which propose alternate processing paradigms that protect patient privacy and 

do not need the user data at the processing end. To tackle these concerns, privacy- 

preserving machine learning techniques are being researched. The privacy-preserving 

framework confirms that the updated model does not precisely reveal contents 

present in the update. 

 

Saria et al. analyzed Electronic Health Records (EHR) to predict the risk of adverse 

events and diseases using an unsupervised large margin learning method. In another 

study, using a cohort of 400 patients hospitalized with cancer, we developed a risk 

prediction model for septicemia using the method of generalized sequential pattern 

mining to extract temporal patterns from vital sign measurements. The authors made 

sure to employ methods which are interpretable, able to detect early warning signals, 

and require a minimum number of variables. 

 

The proposed framework and its objective to enable privacy-preserving machine 

learning for healthcare data can broadly be categorized under two main research 

areas: machine learning and data mining in health informatics utilizing Electronic 

Health Records (EHRs), and applications of privacy-preserving techniques for real- 

world applications, including healthcare. We now elaborate on some research within 



20 
 

these broad categories. 

 

With the rise of the sensitive data in the world, it has created concerns over 

confidentiality of it. Even after a pandemic like COVID-19 opened the gateway for 

highly confidential medical data, which has increased the demand for privacy 

preservation of it. Hence, the federated learning algorithm has been widely used as a 

privacy-preserving machine learning technique in the domain of health and medical  

data. In this literature review, we have highlighted recent research that is going on 

genomic data, its analysis and the potential for predicting pandemics through deep 

learning and privacy preserving techniques. 

 

3.3 Federated Learning in Healthcare: 

● McMahan et al. (2017): Federated learning is one of the most used techniques 

which allows the training of machine learning models in a segregated manner, 

where data is not shared across clients. This method has been highly 

advantageous in healthcare as it provides a way to develop predictive models that 

help in maintaining the privacy of patient data [13]. 

● Hard et al. (2018): Federated learning is applied to clinical trials focused on 

privacy preservation with improvement in model performance [14]. 

● Brisimi et al. (2018): The efficiency of federated learning has shown good and 

remarkable results in healthcare for the prediction of the outcomes while 

maintaining data security through differential privacy [15]. 

 

3.4 Genomic Data and Deep Learning for Pandemic Prediction & Federated 

Learning: 

● Suliman et al. (2020): Used SARS-CoV-2 genomic data to track mutations, 

highlighting the importance of spike protein mutations in transmissibility and 

infection severity [16]. 

● Ying et al. (2017): Proposed differential privacy in federated learning to prevent 

leakage of sensitive data from model updates [17]. 

3.5 Performance Evaluation: 

Following bar chart shows the performance evaluation of the techniques on the basis 

of various factors like Accuracy, Privacy, Scalability and Latency [18]. This 

comparative analysis highlights the strengths and weakness of different techniques of 

privacy-preserving. 

 

Figure 3.1. Comparison of Privacy-Preserving techniques on different parameters 
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In the case of federated learning, there is huge scalability, but it faces communication 

overhead issues. If there is no sharing of raw data, then this method proves to be 

excellent in the collaboration with model training. In differential privacy, we can add 

noise so that there is strong mathematical guarantee; and hence it necessitates a good 

balance between privacy and precision (when we are dealing with sensitive medical 

data like ECG signals [19]). Homomorphic encryption provides a high security 

approach by encrypting the calculations, but the real-time usage is very limited 

because of its high computational complexity. Secure Multi-Party Computation has 

the ability of distributing the computations among the parties, but it suffers from 

scalability issues in the case of huge datasets. 

 

GANs (Generative Adversarial Networks) [20] addresses the problem of privacy 

issues and data scarcity and helps in efficiently producing synthetic data, but often it 

faces the overfitting problem and leakage problems. Each of the technique has a 

unique purpose and we have to choose a particular technique on the basis of use case, 

legal requirements and the limitations in computing. There’s always a scope for the 

hybrid approaches that helps in improving the privacy and performance in the 

healthcare. 

 

Figure 3.2. Privacy-Preserving Techniques on the scale of privacy level 

Table 3.1. Related Work and Key Takeaways 

Authors Paper Title Scope of Paper Key Takeaways 

Yunyun Cheng et 

al. 

Machine Learning 

Techniques 

Applied to 

COVID-19 

Prediction: A 

Systematic Review 

[21] 

Systematic review 

of ML models for 

COVID-19 

prediction 

Hybrid models 

combining ML 

techniques improve 

prediction accuracy 

significantly. 

 



22 
 

 

Authors Paper Title Scope of Paper Key Takeaways 

Zohair Malki et 

al. 

The COVID-19 

pandemic: 

prediction  study 

based on machine 

learning models 

[22] 

Predicting 

COVID-19 spread 

using ML models 

ML models can 

accurately predict 

COVID-19 spread; 

significant decline 

predicted. 

Ramu, Agusthiyar 

et al. 

A COVID-19 

Prediction   Based 

on Machine 

Learning 

Algorithms:   A 

Literature  Review 

[23] 

Review of ML 

algorithms for 

predicting COVID- 

19 trajectory 

ML models provide 

high accuracy in 

predicting COVID- 

19 cases. 

Ashraf Ewis et al. Machine Learning 

Models for 

COVID-19 

Prediction and 

Privacy 

Preservation [24] 

Combining ML 

models with 

privacy-preserving 

techniques  for 

COVID-19 

prediction 

Effective 

integration of 

privacy-preserving 

techniques with ML 

models. 

El-Sayed Atlam 

et al. 

Predicting COVID- 

19 Spread Using 

Machine Learning 

Models [25] 

Predicting the 

spread of COVID- 

19 using various 

ML models 

ML models can 

forecast COVID-19 

spread with high 

accuracy. 

Mohamed M. 

Abdel-Daim et al. 

Machine Learning 

Approaches for 

COVID-19 

Prediction [26] 

Application of ML 

approaches for 

predicting COVID- 

19 cases 

ML approaches 

enhance prediction 

accuracy for 

COVID-19 cases. 

Ibrahim Gad et al. Privacy-Preserving 

Techniques in 

COVID-19 

Prediction [27] 

Review of privacy- 

preserving 

techniques in 

COVID-19 

prediction 

Privacy-preserving 

techniques are 

crucial for sensitive 

health data. 

Guesh Dagnew et 

al. 

Federated Learning 

for COVID-19 

Prediction [28] 

Federated learning 

models for 

predicting COVID- 

19 spread 

Federated learning 

models maintain 

data privacy while 

predicting COVID- 

19 spread. 
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Authors Paper Title Scope of Paper Key Takeaways 

Osama A. 

Ghoneim et al. 

Machine Learning 

and Privacy 

Preservation in 

COVID-19 

Prediction [29] 

Combining ML 

and privacy 

preservation for 

COVID-19 

prediction 

Effective 

combination of ML 

and privacy 

preservation 

techniques. 
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CHAPTER 4 

 

 

PROPOSED ARCHITETURE 

 

 

 
4.1 Nextstrain Database 

 

Nextstrain is an open source and powerful platform which plays an important role in 

tracking the evolution of various pathogens. For the COVID-19 pandemic, SARS- 

CoV-2 virus was responsible; it is also included in Nextstrain. Following are the 

known and crucial features about the SARS-CoV-2 genomic data and its metadata: 

 

● Genomic Sequences: Nextstrain analyzes and compiles genomic data from 

globally collected SARS-CoV-2 samples. To monitor the evolution of the virus 

continuously and its spread in various areas, all the sequences are updated 

regularly. 

● Metadata: This platform also provides different methods for the visualization of 

phylogenetic trees, which helps in showing the genetic relationships between 

different virus strains along with genomic sequences. It also includes data such as 

the collection date and geographical location of each sample, which also tells 

about the temporal dependencies of the virus and its geographical spread. This 

metadata helps in the identification of the mutations and in tracking the 

emergence of new variants of the virus. 

● Nextclade: This database also allows users to classify their sequences into 

specific clades of the virus and to compare them with the SARS-CoV-2 genome 

which was responsible for the pandemic in 2020, and also to identify most 

potential issues related to sequence quality of the genomic data. 

● Global and Regional Analysis: This tool is powerful enough that it is updated 

daily based on the analyses, both regionally and globally. It also highlights the 

insights into the development of viruses with time and in various regions. It helps 

in interpreting the evolution of the virus within geographic boundaries and on 

more broad levels. 

 

4.1.1. Phylogenetic Tree Rooting 

 

A Phylogenetic tree [30] is basically helpful in representing the relationship of 

evolution between various biological entities in the graphical form. In simple words, 

it shows different species or viruses, how they are related, and who evolved from 

whom, over time. 

 

The root in the phylogenetic tree is the starting point which shows the common 

ancestor of all the species or viruses. It represents the most ancient common ancestor 

from which all the other species or sequences in the tree have evolved. Finding the 

root helps scientists understand the direction of evolution and how different species 

have branched out over time. 

 

In the context of pandemic prediction, rooting helps in tracking how the virus has 

evolved and spread from its original source. It helps in comparing genetic similarities 

and differences among species, helps in finding out evolutionary history. 
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Figure 4.1. Phylogenetic Tree Rooting 
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Figure 4.2. Used Auspice server to visualize phylogeny of around 200 sequences 

[31] 

Hence, Nextstrain is beneficial for monitoring and recognizing the dynamics of 

SARS-CoV-2 in real time, which helps researchers and public health workers to stay 

informed about the mutation of the virus patterns and its spread across different 

areas. 

 

4.1.2 Structure of SARS-CoV-2 

 

SARS-CoV-2 is an RNA virus with a single-stranded, positive-sense RNA genome. 

It has genome size of ~29,900 bases. It also helps in encoding for structural, non- 

structural, and accessory proteins. 

 

Table 4.1. Structural Proteins in SARS- CoV- 2 

 

Protein Function Significance 

Spike (S) 
Binds to ACE2 receptor for 

cell entry 

Target for vaccines, 

evolves rapidly 

 

Envelope (E) 
Helps in virus assembly and 

release 

 

Structural stability 

Membrane 

(M) 

Maintains the shape of the 

virus 

 

Most abundant 

 

Nucleocapsid 

(N) 

 

Binds and protects viral 

RNA 

 

Important for 

diagnostics 
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Figure 4.3. Genomic Structure of SARS-CoV-2 [32] 

Nonstructural Proteins (nsps): 

It is produced from ORF1a and ORF1b regions: 

 Involved in replication, transcription, immune evasion 

 Examples: RNA-dependent RNA polymerase (RdRp), proteases, helicases 

 

5’ – ORF1a – ORF1b – S – E – M – N – 3’ 

↓ 

Non-structural Structural 

 

This is a simplified layout of the nsps in this genome. 

 

Table 4.2. Key Components of monitoring of viral evolution, spread, and mutation 

over time across different populations and geographic regions. 

 

Component Description 

Genomic Sequencing Viral RNA is sequenced from patient samples. 

 

Lineage Identification 

 

Identifies how closely related viruses are (e.g., 

Delta, Omicron). 

 
Mutation Surveillance 

 
Tracks changes in the virus's genetic code. 
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Component Description 

Phylogenetic Tree 

Construction 

Visualizes how the virus evolves and spreads 

over time. 

 

Spatiotemporal Analysis 
Maps show how and when variants spread 

geographically. 

 

 

 

 

4.2 Methodology 
 

Fig.4.4. Detailed Steps of the Methodology of the Pandemic Prediction 

 

 

4.2.1 Data Preparation and Preprocessing: 

From the Nextstrain database, we have gathered the genomic sequences of the 

SARS-CoV-2, its metadata and all the other information related to it. For our study, 

the dataset we had consisted of the following: 

● Genomic Sequences: Taken 10,000 SARS-CoV-2 samples to get viral RNA 

sequences. 

● Metadata Attributes: Collection date of the sample, place where it occurred 

(geographical location), viral clade, variant labels (Alpha, Delta, Omicron) and 

the outcomes or results. 

● For each genome sequence, we had approximately 29,000 base pairs (bp) for 

SARS-CoV-2. We used padding and truncation to make standard input sizes for 

CNN i.e. 30,000 base pairs. 

The first and most basic step is to clean the dataset as it helps in ensuring the 

integrity of the data. Identification and removal of the insufficient data and the data 

which had some ambiguity was done to get the cleaned dataset. We have followed 

the three steps for preprocessing as discussed below: 

1. Genome Alignment. There was a high need to get the standardized sequences and 

its preparation for the predictions and certain analysis, genome alignment needs 

to be done using open-source bioinformatics tools available. There are tools such 

as MAFFT (Multiple Alignment using Fast Fourier Transform) and MUSCLE 

(Multiple Sequence Comparison by Log-Expectation) which are usually used for 

genome alignment. Using such a technique helps in stabilizing the length of the 

genome and it becomes much easier to find the significant mutations in the data 
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provided. 

In this research paper, we have used the MUSCLE tool to align all sequences, 

ensuring uniformity in the dataset and better preparatory analysis for subsequent 

data. 
 

Figure 4.5. Types of Sequence Alignment [33] 

2. Feature Extraction. We have now aligned all the sequences through the tool 

discussed above, now they are required to transform into a high-dimensional 

space with numerical features. We have methods like k-mer frequency 

representation [34] and one-hot encoding to capture various patterns in the 

dataset. While k-mer frequency is used to find the patterns in nucleotide in 

combination of length k, one-hot encoding is used when binary vector is there 

which is represented as A, T, G and C. This transformation of the unstructured 

datasets into structured datasets through these techniques has led to effective 

utilization of the ML models. These methods usually result in increasing the 

dimensionality, yet they are important in capturing the complexity that might be 

present in the genomic sequences in a machine-readable format. 

Here, we have used k-mer frequencies (k=3) to encode which has helped in 

capturing the trinucleotide patterns from each of the sequences. And then, one- 

hot encoding was applied that helped us to represent the position of each 

nucleotide, resulted in high-dimensional feature vectors and ensured dimensional 

consistency throughout the whole dataset taken. 

The k-mer counts for the sequences are - 

Counter ({'TAG': 7, 'GCT': 6, 'CTA': 6, 'AGC': 5, 'CGT': 3, 'GTA': 3, 'CGA': 2, 

'GAT': 2, 'ATC': 2, 'TCG': 2, 'TAC': 2, 'ACG': 2, 'ATG': 1, 'TGC': 1, 'GCG': 1}) 

The one hot encoded k-mers matrix is – 

[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 
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[0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 3. 0. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 3. 0. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 0. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 0. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 0.] 

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.]] 

3. Target Variable. We have defined a target variable that helps in connecting the 

genomic features to predictable and quantifiable results. This could include the 

transmissibility rate of the virus or the severity of the infection (like mild, severe, 

or critical cases) if we want to predict the pandemic. Now, with the help of these 

target labels, supervised learning is made possible, enabling the model to use 

genomic inputs to forecast clinical outcomes or epidemic dynamics. 

This procedure of data preprocessing bridges the gap between genomics and 

predictive modelling by guaranteeing a pipeline from raw sequences to actionable 

insights. 

Strategies for Handling Missing Data and for noisy data – 

Missing 

Nucleotides 

(N bases) 

 

Imputed using k-mer nearest neighbors: Predict missing 

bases from similar sequences. 

 

Gaps in 

Alignment 

 

Gap-filling using consensus alignment (e.g., MAFFT 

for multiple sequence alignment). 

Low- 

Quality 

Reads 

 

Reads with >20% low-confidence bases are discarded 

or trimmed. 

Artificial 

Mutations 

Statistical mutation modeling is used to detect and 

correct outliers. 

 

 

4.2.2 Data Partitioning for Federated Learning: 

The dataset was partitioned to simulate five institutions (clients), each representing a 

unique healthcare or research organization with localized genomic data [35]. The 

details for each client were as follows: 

● Client 1: Represented data from a specific geographic region with 1,400 

sequences predominantly from early pandemic phases. 
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● Client 2: Included data from another region, emphasizing mutations observed in 

mid-pandemic waves. 

● Client 3: Focused on sequences linked to severe outcomes, providing insights 

into high-risk mutations. 

● Client 4: Contained diverse sequences collected across several regions to 

simulate a global dataset within a single institution. 

● Client 5: Featured data highlighting regulatory region mutations impacting viral 

replication. 

Each client independently trained the model using its data subsets (training, 

validation, and testing splits). This ensured that training occurred without cross- 

sharing raw genomic data. Since we have done the training independently for each 

client, this has allowed us to fine-tune our models on the localized data for each 

client, and also it has helped in preserving the data ownership hence it has helped in 

incorporating the FL framework. 

● For each of the clients, we had 1,400 sequences and the metadata associated with 

it. 

● We have distributed the dataset equally to help in simulating the real-world 

scenarios, where each of the clients manage data specific to their local 

regions/area. 

While making the partitions, we ensured the following things: 

● Distinct Data Allocation: Each client operated on a unique set of sequences, 

ensuring no duplication or overlap of data across clients. 

● Independent Model Training: Clients conducted model training autonomously 

using only the data allocated to them. [36][37] 

4.2.3 Training-Validation-Testing Splits: 

We have divided the datasets for each of the clients as follows: 

● Training Set: 70% of the sequences (1,400 sequences) for model training. 

● Validation Set: 20% for hyperparameter tuning. [38] 

● Testing Set: 10% to evaluate model performance locally before aggregation. 

4.2.4 Feature Selection: 

We have identified all the crucial genomic features through the evaluation of the 

biological importance and their statistical correlation with the target variables. 

Following are the features used for training- 

a. Raw Genome Sequences – (A, T, G, C → binary vectors) using one-hot 

encoding and (k-mer embeddings) learned embedded representations. 

b. Patterns in Mutation – Spike protein region in SARS-CoV-2 (denotes 

mutational hotspots). 

c. Temporal Features – It helps in tracking the evolution over time (date of 

sequence collection). 
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d. Features based on geography – To understand the regional genomic 

variations that directly influences the severity in pandemic. 

Steps for Feature Selection: 

● Mutation Analysis: For the identification of the meaningful patterns from the 

genomic data, we have examined the mutation trends in the spike protein and 

regulatory regions. 

● Statistical Validation: In order to get the bias free target outcomes, we have 

prioritized features showing high statistical relationships with the target 

outcomes. 

● Dimensionality Reduction: Principal Component Analysis (PCA) was applied to 

select high-dimensional feature vectors, and hence optimizing performance of the 

model while preserving important information. [39] 

4.2.5 Model Architecture and Federated Learning Implementation: 

Model Architecture. In this work, the deep learning model [40] used has following 

layers to make the predictions of pandemic [41]: 

1. Input Layer: After the preprocessing of the genomic feature vectors, these are 

passed into the input layer to encode the genomic data in a more efficient manner 

after we have applied k-mer frequency representation and one hot encoding. 

2. Convolutional Layers: We have used these layers to extract the spatial patterns 

from encoded genomic data from the input layer. [42] 

Architecture Details: 

 

 Conv1D Layer 1: 

o Filters: 64 

o Kernel Size: 5 (captures short-range dependencies like small 

mutations) 

o Activation: ReLU 

o Stride: 1 

 

 Conv1D Layer 2: 

o Filters: 128 

o Kernel Size: 10 (captures larger motifs and mutation regions) 

o Activation: ReLU 

 

 MaxPooling Layer: 

o Pool Size: 2 (reduces feature size, prevents overfitting) 

 

3. Recurrent Layers (LSTM) [43]: This layer is helpful in capturing the sequential 

dependencies in mutation patterns given by the stack of convolutional layers. 

With the help of this layers, it tracks the mutations took in the past and how it 

influences the strains in future. 
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Architecture Details: 

 

 LSTM Layer 1: 

o Units: 128 

o Return Sequences: True (keeps sequential information for stacking) 

o Dropout: 0.3 (prevents overfitting) 

 

 LSTM Layer 2: 

o Units: 64 

o Return Sequences: False (final feature extraction) 

 

4. Dense Layers: This layer helps in mapping of the extracted features from the 

LSTM to high-level representations for further predictions. We have used this 

layer as it helps in combining the spatial features from CNN and sequential 

features from LSTM to make the final predictions. 

Architecture Details: 

 

 Dense Layer 1: 

o Units: 128 

o Activation: ReLU 

 Dropout: 0.3 

 Dense Layer 2: 

o Units: 64 

o Activation: ReLU 

 

5. Output Layer: This is the final layer of the model which helps in making the 

predictions for infection severity and transmissibility from the genomic data. 

 

 

Fig.4.6. Layered Diagram of the Model Architecture 
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Table 4.3. Table for Model Architecture with output shapes 
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Figure 4.7. Model Architecture with input and output shapes 
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4.2.6 Federated Learning Workflow: 

 

FL [44] was implemented to ensure privacy and enable decentralized collaboration: 

 

 

Fig.4.8. Diagrammatic insight of the Federated Learning Model 

 

1. Local Training: Each client trained its model independently using the training 

and validation splits. 

2. Model Aggregation: The central server aggregated client updates using 

Federated Averaging (FedAvg), combining the weights from each client 

proportionally. [45] 

3. Privacy Mechanisms: Differential privacy was employed during aggregation, 

adding noise to prevent the reconstruction of sensitive data from updates. 
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CHAPTER 5 

 

 

EXPERIMENTAL EVALUATION 

 
5.1 Training Configuration: 

Parameters for the FL framework were: 

● Federated Rounds: 15 

● Local Epochs: 5 

● Batch Size: 32 

● Learning Rate: 0.001 

 

5.2 Validation Process: 

For the validation, we have taken 20% of data – 2000 sequences. It consisted of the 

sequences from various virus strains across different regions. Each of the federated 

client validates its local model on separate validation set. We have used early 

stopping as the training stops if the validation loss does not improve for 5  

consecutive rounds. 

 

5.3 Testing Process: 

For the testing, we have taken 10% of data – 1000 sequences. These sequences 

consist of unseen mutations to test the adaptability. So, each federated client tests the 

global model on its held-out test set. And then, the central server aggregates all the 

individual test results for the overall evaluation. 

 

5.4 Evaluation Metrics: 

Performance was assessed using: 

1. Accuracy: Measured as the proportion of correct predictions on the test set. 

2. Privacy Loss: Evaluated using differential privacy bounds. 

3. Communication Overhead: Quantified as the total data transmitted during 

federated training. 

 

 

5.5 Results and Observation 

Performance Metrics: 

Higher AUC-ROC (0.96) means better pandemic strain classification. 

Lower MAE (0.11) indicates more precise mutation trajectory forecasting. 

 

5.6 Key Findings: 

● Spike protein mutations were the most predictive feature. 

● FL demonstrated comparable accuracy to centralized models while 

significantly enhancing privacy. 

● Differential privacy slightly reduced accuracy but ensured robust data 

protection. 
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Table 5.1. Comparison of Results and Observations with the implemented model v/s 

traditional methods for Pandemic Prediction 

 

 

Metric 

CNN- 

LSTM 

-FL- 

DP 

(Ours) 

Traditional 

ML 

(Random 

Forest, 

SVMs) 

 

CNN 

Only 

 

LSTM 

Only 

Accuracy 92% 78.1% 85.3% 87.2% 

F1- Score 91.7 76.5 83.8 86 

AUC- 

ROC 
0.96 0.81 0.89 0.91 

Precision 93.2% 75.9% 86% 88.1% 

Recall 90.4% 77.2% 82.5% 85.9% 

MAE 

(Mutation 

Forecasti 

ng) 

 

0.11 

 

0.23 

 

0.17 

 

0.14 

 

 

Table 5.2. Comparison of Model Performance with Privacy Risks (Our Privacy 

Mechanism -Basic Differential Privacy) 

 

Privacy 

Mechanism 

Average 

Model 

Accuracy 

(%) 

Privacy 

Risk 

Level 

Communication 

Cost (MB) 

Computational 

Overhead 

No Privacy 87% High 50 Low 

Basic 

Differential 

Privacy 

92% Moderate 120 Moderate 

Strong 

Differential 

Privacy 

90% Low 250 High 

Homomorphic 

Encryption 

91% Very Low 500 Very High 
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The process of pandemic prediction discussed above helps in protecting the genomic 

data while ensuring the effectiveness of the data. Since, Federated Learning uses 

decentralized training with differential privacy helps in ensuring compliance with all 

the regulatory frameworks (HIPAA, GDPR). It also prevents the single-client 

domination in the training as it prevents malicious clients from affecting the model. 

So, it outperforms purely centralized models or standalone federated learning models 

as it balances the local training, privacy and generalization. 

 

In terms of scalability, we can train this model using region-specific clients (Asia, 

Australia, Europe or America etc.) to handle geographic variations. We can also use 

model pruning and quantization to optimize the deployment process on low resource 

devices. Also, the data never leaves the local institutions or clients hence making it 

GDPR and HIPAA compliant. We can also design it to process different virus strains 

like Influenza, Ebola etc. 

 

For the deployment, we can use cloud deployment like Google Cloud, Amazon Web 

Service (AWS) or local High-Performance Computing (HPC) clusters to train on 

large scale using federated learning. It can also be incorporated to run on hospital or 

labs with Tensorflow Lite or PyTorch Mobile to make predictions in real-time. The 

integration of this proposed model with the Nextstrain database and the Public 

Health Systems would result in highly impactful and would help in this social cause 

as it helps in tracking the pandemic in real time. 
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CHAPTER 6 

 

 

CONCLUSION, LIMITATIONS AND FUTURE SCOPE 

 

 
6.1 Conclusion 

 

Privacy-preserving techniques are essential in the advancement of safe AI 

applications in healthcare and preserving private medical information, like genomic 

data, patient personal details or ECG signals etc[7]. This study emphasizes the 

distinctive benefits of several important methods discussed, which are Differential 

Privacy, Homomorphic Encryption, Secure Multi-Party Computation, Federated 

Learning, and Generative Adversarial Networks (GANs). Federated Learning and 

Differential Privacy balance privacy and performance, whereas Homomorphic 

Encryption and Secure Multi-Party Computation place security above computational 

efficiency. Although privacy preservation and its management are necessary to limit 

any data breaches, GANs are good at handling both privacy and data scarcity. These 

methods should be used on the basis of the particular use case which takes into 

account privacy related concerns, its computing requirements and regulatory 

compliance. Using strong hybrid frameworks could help in providing individual limit 

requirements, more safe and scalable solutions and hence effective AI solutions for 

various healthcare problems like arrhythmia detection. 

 

Hybrid Privacy Frameworks: Creation of integrated frameworks that overcome the 

limitations of approaches by mixing federated learning, differential privacy, and 

homomorphic encryption to maximize scalability, data security, and its 

computational performance. 

 

Enhanced Real-Time Processing: Creating more computationally efficient methods 

to support real-time applications and models without risking system responsiveness 

or its data privacy, such as continuous ECG monitoring for arrhythmia detection or 

genomic data or DNA data. 

 

Synthetic Data Advancements: Enhancing GANs for the generation of more 

diversified, good-quality synthetic datasets that preserve privacy, makes more 

reliable model training, and solve data lacking issues. 

 

Privacy-Aware Healthcare Systems: Creation of more scalable, in accordance with 

legal compliant healthcare applications that fuses privacy-preserving technology to 

meet standards like GDPR and HIPAA, ensuring data security across distributed 

networks. 

 

Broader Applicability in Healthcare: To make sure of the safe AI-driven systems and 

its advancements in the medical industry, we can definitely extend the use of these 

techniques to a range of medical industry and healthcare, such as genomic data 

processing, medical imaging, and remote patient monitoring. 

 

The privacy-preserving federated learning (FL) approach for pandemic prediction 

utilizing genomic data has been shown to be effective in this study. By using FL, 

sensitive genomic data may be kept secret while model training can be done 
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collaboratively across institutions. In conclusion, federated learning has shown 

promising results in creating more scalable and privacy-preserving pandemic 

prediction models. While there are certain limitations in communication and 

accuracy trade-offs, there is huge potential in more secure and cooperative and 

collaborative research which makes it highly suitable for real-world applications in 

health care and genomic medicine and its prediction. 

 

6.2 Challenges and Limitations 

 

This study has shown that federated learning essentially balances prediction accuracy 

and privacy, making it more suitable for synergistic genomic research in pandemic 

prediction scenarios. Following are some challenges – 

● High-dimensional data can lead to communication overhead. 

● Computational costs are introduced by differential privacy mechanisms. 

 

Table 6.1. Challenges in the real-world scenario with their potential solution 

Challenge Solutions 

Integration   of 
genomic data 

from diverse 

sources 

Implement a data harmonization protocol to 

ensure consistency in sequencing formats, 

metadata structures, and labeling standards. 

Utilize ontology-based mapping for dataset 

alignment and cross-institutional compatibility. 

Scalability of 

federated 

learning 

Introduce hierarchical federated learning (HFL), 

grouping institutions with similar genomic data 

for localized model aggregation before global 

updates. Implement federated transfer learning to 

fine-tune pre-trained models for institutions with 
different data distributions. 

Data 

heterogeneity 

across institutions 

Apply personalized federated learning techniques 

like meta-learning or client-specific model fine- 

tuning to adapt to institutional variations. Use 

weighted averaging in federated aggregation (e.g. 

FedProx) to handle disparities in data 

distribution. 

 

For the approach discussed in this work, we had the following current limitations- 

 It needs multiple institution or clients to participate but have only limited 

adequate resources. 

 If it has higher Differential Privacy noise levels, then the model accuracy gets 

reduced slightly. 

 If there are unseen variants or new strain emerges then the model may not have 

an exact class label. 

6.3 Future Scope 

 

In the future scope, we will definitely work upon these challenges faced and also, we 

have recommended scope of improvements which includes: 

● Incorporating advanced encryption techniques such as homomorphic encryption. 

● Expanding the approach to real-world clinical genomic datasets. 

● Optimizing communication protocols to minimize FL overhead. 
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CHAPTER 7 

 

 

SOCIAL IMPACT 

 

 
The social impact of Pandemic prediction using Nextstrain database is very significant and 

multifaceted. With the help of database systems like Nextstrain which updates the data locally 

and globally on a regular basis, it would be highly helpful in making real-time predictions. 

 

Here we have discussed various social impacts of the model discussed in this thesis. 

1. Prediction of the mutations or variant spread patterns early helps in 

enabling faster public health responses. It reduces the scalability and 

severity of pandemics through predictive modelling. 

2. With federated learning, institutions or clients (hospitals, labs, 

governments) can contribute to global models without sharing raw data. It 

overcomes data-sharing barriers due to privacy, regulations (e.g., GDPR), 

or politics. 

3. Privacy-preserving techniques (like federated learning, differential privacy, 

SMPC or GANs for synthetic data) align with ethical standards and helps 

in building public trust. People are more willing to allow use of their 

genomic and clinical data as only data required for training is used and all 

the personal or private information is not used for model training. 

4. This model can be accommodated for real time analysis and its prediction. 

Real-time granular prediction models help allocate resources to regions 

before they become hotspots. It then helps in reducing health disparities, 

resulting in enhancement of pandemic preparedness globally. 

 

By turning worldwide (globally and locally) healthcare surveillance into a proactive,  

judicious, and ethical responsibility framework, a privacy-preserved pandemic prediction 

system can help societies or areas better equip and prepare themselves to tackle biological 

dangers without compromising individual rights. 
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