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Vitista Tyagi 
 

ABSTRACT 
 
 
Soil moisture plays a pivotal role in agricultural productivity, water resource management, 
and climate regulation. Traditional methods for soil moisture estimation often fall short in 
addressing the spatial and temporal variability of soil conditions, necessitating modern, 
intelligent alternatives. This thesis explores the development and evaluation of cost-
effective, IoT-enabled machine learning models for accurate soil moisture prediction. 
First, an in-depth overview of recent developments regarding Long Short-Term Memory 
networks, encoder-decoder architectures, and multimodal systems integrating satellite 
imagery and meteorological readings is given to put the present technological context into 
perspective. From such readings, an applied system consisting of low-cost Internet of 
Things sensors that record multi-sensor data in terms of temperature, humidity, and rain 
is constructed. The data collected are subjected to preprocessing methods such as 
normalization and imputation before being presented to ensemble learning-based 
modeling to improve prediction performance. The proposed system is validated using 
performance metrics such as RMSE, MAE, and R², demonstrating superior accuracy and 
real-time applicability in field conditions. This work not only bridges the gap between 
theory and practice but also offers scalable solutions for precision irrigation and drought 
mitigation in the context of sustainable agriculture. 
 
Keywords: Soil Moisture Prediction, Machine Learning, IoT Sensors, Random Forest, 
XGBoost, Smart Agriculture 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 
1.1. Background 

The amount of water stored between particles of soil, is an important 
environmental factor controlling agricultural productivity, hydrological cycling, and 
ecosystem function. Soil moisture is central to plant development, nutrient movement, and 
evapotranspiration, and as such, is an important parameter for irrigation scheduling, crop 
yield forecasting, and drought detection. To optimize the use of soil moisture, minimize 
losses from agriculture, and encourage sustainable farming, and as a consequence, 
understanding and reliable estimation of soil moisture is, therefore, fundamental. 
Traditional soil moisture content measurement methods like gravimetric analysis, TDR, 
and neutron probes, while accurate, tend to be costly, intrusive, and inappropriate for real-
time, large-scale applications. These methods involve a lot of manual effort, are spatially 
and temporally restricted, and generally do not cater to the needs of contemporary 
precision agriculture, especially in resource-poor settings. As such, there is a heightened 
demand for alternative methods that are cost-efficient, non-invasive, scalable, and able to 
provide real-time and precise soil moisture estimates. 

 
 

1.2. Motivation 

The Internet of Things (IoT) is a revolutionary technology within smart 
agriculture by allowing networks of devices connected to each other and to the internet 
with sensors and communication modules. These sensors can automatically collect and 
transmit environmental measurements such as temperature, humidity, rain, and soil 
moisture and thereby enable real-time field observation. IoT-based systems reduce human 
reading reliance and increase the rate of agricultural decision-making. Sensors are the core 
of this technology. Sensors such as capacitive moisture sensors in soil, digital temperature 
and humidity sensors, barometric pressure sensors, and rain gauges convert environmental 
data into valuable digital information. Such information, when combined with wireless 
technology as well as with cloud platforms, are the basis of smarter agricultural systems 
that can potentially automate irrigation as well as make decisions regarding farm 
management. Machine Learning (ML), which is one of the artificial intelligence variants, 
further strengthens this system by providing the computational power that will enable it 
to process amounts of varied information and create understandable patterns therefrom. 
Models of ML have the ability to learn intricate nonlinear relationships from actual and 
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historical sensor data to foresee soil moisture precisely. Methods like Random Forest, 
SVR, and XGBoost have demonstrated strong predictive power across a range of 
agricultural applications. Long Short-Term Memory networks and encoder-decoder 
models are inherently suited to process time-series data, learn long-term dependencies, 
and enhance the generalization capacity of the model. Current studies have also 
investigated the application of hybrid methods and metaheuristic optimization algorithms, 
e.g., Chaotic Whale Optimization Algorithm, to improve model performance with low 
computational overhead. The synergy of ML and IoT has brought into existence soft 
sensing architectures where the soil moisture is inferred indirectly with the help of related 
environmental parameters instead of actual physical measurements. The advantages that 
such systems have over the others include low cost, increased scalability, and increased 
adaptability across varying geography and climatic conditions. Also, these provide 
opportunities to deploy intelligent and automated systems in areas of weak technical 
infrastructure or tight economic means. Despite progress in research and technology, there 
is still a critical need for low-cost, real-time, and scalable systems capable of accurately 
estimating soil moisture using data-driven techniques. This is particularly important for 
smallholder farmers and agricultural regions in developing countries where traditional 
monitoring systems are financially and technically inaccessible. This thesis presents the 
design and validation of an IoT-based machine learning system for soil moisture 
prediction from multi-sensor data. The system leverages low-power, low-cost sensors to 
acquire environmental data, which is preprocessed and fed into a variety of machine 
learning models for prediction. Feature engineering techniques such as normalization, 
missing value imputation, and appending cumulative and lag-based features are employed 
to improve data quality and model accuracy. The performance of the models is assessed 
based on conventional performance metrics such as RMSE, MAE, and the coefficient of 
determination (R²). The study also analyzes the viability of employing a system such as 
this in real farm environments in terms of cost, efficiency, and sustainability. By merging 
machine learning and IoT technologies, this research tries to span the gap between lab-
based theoretical studies and field-level deployment, towards the realization of smart yet 
affordable precision agriculture systems. It is anticipated that the outcomes would assist 
in developing scalable, data-based tools for crop optimization and water resource 
management, thus alleviating some of the most crucial issues in contemporary agriculture. 

 
 

1.3. Models 

1.3.1. Long Short-Term Memory 

The use of Long Short-Term Memory   networks in soil moisture forecasting 
has significantly enhanced data-driven approaches by improving accuracy, scalability, and 
cost-effectiveness. LSTM has been successfully used to improve satellite-derived soil 
moisture datasets employing wireless signal-based humidity estimation, and enhance 
long-distance forecasts using encoder-decoder architectures. LSTM is trained on the use 
of SMAP Level 3 and Level 4 soil moisture products, including assimilation of 
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meteorological variables like precipitation, temperature, radiation, humidity, and wind 
speed, as well as static land features like soil texture, vegetation cover, and topography. 
Additionally, a hybrid approach that combines LSTM with the Noah LSM outperforms 
the performance of physics-only-based models by a wide margin, especially in sparsely 
instrumented areas, and is thus an efficient tool for long-term soil moisture forecasting 
and climate science [1]. After the utilization of satellite data, Long Short-Term Memory 
network-based soft sensors have been engineered as a cost-efficient alternative to 
traditional soil moisture sensors, thereby reducing hardware-based measurement method 
dependency thereby avoids the use of expensive soil moisture sensors, which are likely to 
have high failure rates, complex calibration processes, and maintenance issues. By 
applying deep learning to predict soil moisture levels from indirect environmental cues, 
the LSTM model can predict soil moisture with high accuracy. Comparison with Fully 
Recurrent Neural Networks and regression trees illustrates that LSTM is always more 
accurate and flexible, thereby being an extremely scalable solution [10]. Basic architecture 
of LSTM is shown in Fig 1.1. 

 
Figure 1.1. Long Short-Term Memory (LSTM) cell 

Improved LSTM-based soil moisture prediction which includes an encoder-
decoder LSTM model with residual connections to improve long-term soil moisture 
prediction [10]. While traditional LSTM models are effective, they are hindered by 
capturing long-range dependencies owing to vanishing gradients and over fitting 
problems. The technique of adding residual connections highlights the potential of tuning 
LSTM frameworks for enhancing predictive accuracy, thus reinforcing its usability in 
climate monitoring and sustainable water resource management [3]. Further, deploying 
LSTM models on real-time cloud-based monitoring platforms would enable continuous, 
automated, and scalable soil moisture predictions, making them extremely beneficial for 
climate resilience, precision agriculture, and drought management. 
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1.3.2. Novelty or Anomaly Hunter 

NOAH i.e., to improve the accuracy of long-term predictions of soil moisture. 
As a process-based hydrological model, Noah simulates land surface processes with soil 
moisture dynamics, evapotranspiration, and runoff utilizing atmospheric forcing data such 
as precipitation, temperature, radiation, humidity, and wind speed. The study utilized 
SMAP Level 3 and Level 4 soil moisture products, and North American Land Data 
Assimilation System. By integrating Noah with LSTM-extended SMAP forecasts, the 
researchers aimed to improve soil moisture estimation, particularly where direct satellite 
observation is not available. Findings verified that although Noah performed well in 
regions with high-quality meteorological input, its predictive capability suffered in 
regions with sparse observational data. The Noah-LSTM hybrid model superior to the two 
models, providing more accurate soil moisture estimates for longer durations. A bias and 
error analysis was also conducted, which concluded that Noah was less biased in deeper 
layers of soil, hence closer to in situ observations [1]. However, Noah tended to 
overestimate or underestimate soil moisture values during extreme dry-down conditions, 
a shortcoming which SMAP and LSTM forecasts effectively alleviated. One of the 
strongest aspects of the Noah-LSTM hybrid model was that it was able to enhance soil 
moisture forecasts over long time scales, especially in terms of being able to effectively 
detect inter-annual trends. The LSTM was extremely effective at learning temporal 
dependencies from past soil moisture observations, which improved the predictive 
capability of Noah sparse coverage of meteorological data. 

 
 

1.3.3. Support Vector Machine 

SVM model has been successfully applied for forecasting soil moisture, 
particularly when combined with optimization techniques to improve precision and 
generalizability. SVM was combined with the Chaotic Whale Optimization Algorithm i.e. 
CWOA to dynamically adjust its hyper parameters, thus improving its predictive potential 
for estimating soil moisture in maize crops [2]. The data used, consists of soil moisture 
sensor readings from in-situ measurements, meteorological variables like temperature, 
humidity, rainfall, and radiation, and soil texture parameters like porosity and organic 
matter content. One of the biggest challenges in SVM modeling is the selection of the 
optimal regularization parameter “C” and kernel width “γ” as the hyper parameters have 
a critical influence on the efficiency of the model. The notable analysis of the research 
showed that SVM-CWOA improved soil moisture prediction accuracy significantly. The 
optimized model showed a decrease in root mean square error and increase in correlation 
with observed soil moisture data. Machine learning models, especially the combination of 
SVM with optimization methods, are effective options for real-time soil moisture 
monitoring, thereby enabling improved water resource management and enhanced 
agricultural productivity. Separation of two classes using SVM is shown in Fig 1.2. 
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Figure 1.2. Classification of two classes using SVM 

 
1.3.4. Polynomial Regression Model 

Polynomial Regression Model is used to simulate nonlinear relationships 
between meteorological variables and soil moisture. As variations in soil moisture are 
typically governed by complex interactions among atmospheric and land surface 
parameters, polynomial regression extends the basic linear regression model by adding 
higher-degree terms, enabling the model to represent curved patterns in soil moisture 
variations [6]. However, polynomial regression models are susceptible to overfitting, 
especially when high-degree terms introduce complexity, reducing their generalizability 
to new data. 

 
 

1.3.5. Ridge Regression Model 

In a bid to fight overfitting and improve predictive robustness [6], the study 
employed Ridge Regression which employ regularization techniques. Ridge Regression 
applies L2 regularization, penalizing large coefficients in a bid to reduce model 
complexity and enhance stability. This makes it particularly suitable for application when 
dealing with high-dimensional datasets, such as datasets containing different 
meteorological and remote sensing variables.  Ridge Regression are more stable. 

 
 

1.3.6. Random Forest Regression 

Random Forest Regression Model is an ensemble learning algorithm that 
aggregates multiple decision trees to improve prediction accuracy and reduce variance [6]. 
Unlike regression models, Random Forest identifies complex, nonlinear relationships 
between soil moisture and climate variables by recursively splitting the dataset based on 
optimal feature thresholds. The model was trained using bootstrap sampling and feature 
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bagging, which offered high robustness against overfitting and improved generalization 
with varying climatic conditions. Random Forest performed better than conventional 
regression models in accuracy, as it effectively leveraged interaction between land surface 
temperature, vegetation indices, and soil texture to improve soil moisture prediction. It 
outperformed regression-based models in prediction, particularly where complex 
environmental conditions and sparsely observed data prevailed. [6]. Working of Random 
Forest Algorithm is shown in Fig. 1.3. 

 

 
 Figure 1.3. Random Forest Algorithm 

 
1.4. Thesis Organization 

This thesis is structured into distinct chapters, each focusing on a different 
aspect of developing and evaluating an IoT-enabled machine learning framework for cost-
effective soil moisture estimation.  

 
 Chapter 1: Introduction- The first chapter presents the thesis by discussing why 

soil moisture is important in agriculture and the shortcomings of current sensing 
techniques. The motivation behind the utilization of IoT and machine learning to 
provide affordable, scalable prediction is clarified. The chapter goes on to discuss 
the overview of the models employed and finally presents the structure of the 
thesis. 

 
 Chapter 2: Literature Survey- This chapter gives an overview of the literature 

available on soil moisture estimation through traditional, remote sensing, IoT-
based sensor systems, and machine learning algorithms. The chapter does thematic 
analysis of 13 notable papers describing their methodology, technologies, and 
results.  

 
 Chapter 3: Methodology- This chapter describes the research methodology 

adopted to develop and evaluate the soil moisture prediction framework. It covers 
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the process of collecting data through IoT-based sensors, data preprocessing with 
normalization and feature engineering, and training and validation of a large 
number of machine learning models. The chapter ends by giving a step-by-step 
detailed overview of the experimental setup, hardware used, and the Python 
libraries utilized. 

 
 Chapter 4: Results and Discussion- This section of the thesis summarizes 

experimental findings in training diverse machine learning models, namely 
Random Forest, XGBoost, SVR, and LSTM. Model performance comparison is 
shown with standard regression metrics like RMSE, MAE, and R² Score. It is 
facilitated with plots like loss curves and actual vs. prediction plots. The chapter 
is wrapped up with a technical discussion on model behavior, generalization, 
overfitting, and deployment implications in precision agriculture. 

 
 Chapter 5: Conclusion, Future Scope and Social Impact- This final chapter 

summarizes all the research findings in this study, then it discusses the future scope 
of this study, and at last it states the social impact of translation tasks in real world.  

 
 References- This section lists down all references cited in the thesis which were 

used for successful completion of experimental analysis and it also helps to support 
the credibility of this study.    
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CHAPTER 2 
 

 
LITERATURE SURVEY 

 
 
 
 
2.1. Deep Learning-Based Approaches 

K. Fang et al. [1] proposed a deep learning approach for long-term soil 
moisture estimation using the Soil Moisture Active Passive i.e SMAP mission data where 
they put in place a system that uses Long Short-Term Memory i.e. LSTM  networks to 
preserve high fidelity while extrapolating SMAP data for years after it has ended. To 
improve soil moisture forecasts, this method creates extended datasets and combines them 
with land surface models i.e. LSMs like Noah, addressing constraints such as SMAP’s 
short timespan and poor sensing depth. For applications including procedures like, 
drought monitoring, hydrological forecasting, and ecosystem management, the LSTM 
model showed strong performance in integrating SMAP data and capturing interannual 
changes. This demonstrates the potential of how deep learning can assist soil moisture 
prediction and remote sensing. Y. Cai et al.[11] developed an assumption on soil moisture 
forecasting model with deep learning by using soil and meteorological data in Beijing, 
they proposed a Deep Neural Network Regression i.e. DNNR model to predict soil 
moisture. This process estimates soil moisture fluctuations more precisely by integrating 
various meteorological parameters like temperature, precipitation, and humidity. The 
model can be used to optimize farm yields, prevent drought, and increase water-saving 
irrigation. Compared to other more traditional models like MLP, the DNNR model had 
superior generalization capability and forecasting accuracy that allowed it to become 
possible to supply effective recommendations in terms of the management of soil 
moisture.  R. Ding et al.[8] developed SoilId, an innovative RF-based soil moisture 
sensing system in which they used an innovative approach combining deep learning and 
IR-UWB radar mounted on UAV to estimate soil moisture of large regions without having 
to use battery-powered devices buried underground. Filtering algorithms are utilized by 
SoilId to correct problems such as UAV movement distortion and multipath interference. 
It also makes direct moisture estimations via a deep neural network named SoilIdNet. It 
can be utilized for agricultural optimization, environmental monitoring, and smart 
irrigation. SoilId witnessed its accuracy significantly increasing with a 50% quantile MAE 
of 0.23%, validating its feasibility for large-scale soil moisture monitoring systems. 
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2.2. Hybrid Machine Learning and Optimization Models 

Z. Ma et al. [2] presented a new method of maize soil moisture estimation by 
combining machine learning and optimization algorithms to enhance prediction, they 
proposed a hybrid model which combined regression-based methods with chaotic whale 
optimization. The system was designed for optimization of the parameters of regression 
models of soil moisture. The approach can be applied to enhance agricultural yields, 
enhance planning for irrigation, and facilitate precision farming. To effectively and 
precisely predict soil moisture, the approach applies advanced algorithms to process input 
parameters like crop information, soil characteristics, and weather data. Q. Li et al. [3] 
have proposed a more sophisticated approach in enhancing the soil moisture prediction by 
employing a transformer-decoder model with residual learning where they used an 
approach developed to address the issue of predicting soil moisture under different 
environmental conditions. To enhance the ability of the transformer-decoder and increase 
the efficiency of predictive performance, residual learning is incorporated into the model. 
Applications extend from mitigating climate variability, aiding farm planning, and 
optimizing the use of water resources. By handling complex information with complex 
deep learning algorithms, this approach enables better management and understanding of 
soil moisture patterns. J. Chen et al.[6] built machine learning models from remote sensing 
data to forecast land surface soil moisture in China to accurately compute soil moisture, 
they embraced advanced prediction systems integrating machine learning and satellite 
images. Environmental conservation, water resource management, and agriculture are 
significantly reliant on this method. Soil moisture prediction is important for land 
management optimization, disaster prevention, and the interpretation of ecosystem 
processes. To achieve maximum accuracy and scalability over China's diverse landscapes, 
the models incorporated multiple data sources and employed robust algorithms. G.Patrizi 
et al. [10] proposed low-cost soil moisture sensing based on sensor data and machine 
learning techniques which they implemented a system to optimize resource utilization and 
offer dependable real-time prediction of soil moisture. This is highly applicable for water 
saving, enhanced irrigation efficiency, and precision agriculture. The system offers 
economical and scalable soil monitoring applications using advanced machine learning 
methods for great environmental management and agricultural issues. 

 
 

2.3. IoT-Driven and Low-Power Soil Moisture Monitoring 

 L.D.Rodic et al. [7] advanced a novel low-power and cost-effective soil 
humidity sensing approach using LoRa-based systems and machine learning where they 
put in place a system that uses the Received Signal Strength Indicator i.e RSSI in place of 
direct humidity sensors to assess soil moisture. The system used signal strength data from 
overground gateways and subterranean LoRa beacons to estimate soil moisture using SVR 
and LSTM algorithms. This technique is important because it provides an energy-efficient 
substitute for conventional sensor systems in applications like smart irrigation and 
precision agriculture. The study showed that deep learning models, especially LSTM, 
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performed more accurately than traditional techniques. O. Maei et al.[13] advanced a data 
mining system for real-time soil moisture prediction using sensor networks and machine 
learning algorithms to precisely estimate soil moisture levels, they put in place a system 
that combined real-time data collection with predictive analytics. This system supports 
agricultural and irrigation management decision-making by utilizing sensor and 
environmental data. Applications include increasing crop productivity, facilitating 
precision farming, and optimizing the use of water resources.  Soil moisture monitoring 
that is precise, scalable, and robust for a range of agricultural settings is ensured by the 
application of data mining techniques. 

 
 

2.4. Remote Sensing and Multimodal Data Fusion 

M.Schonauer et al.[4] introduced a spatio-temporal soil moisture and soil 
strength forecasting model based on depth-to-water maps where they applied a method 
which employs depth-to-water data as a critical input to analyze and predict soil qualities 
from time and space perspectives. It is a critical tool for many applications, e.g., 
environmental monitoring, infrastructure development, precision agriculture. Soil 
firmness and water content are key determinants of whether a parcel of land is suitable for 
construction, farming, and sustenance. The method described here utilizes advanced 
geographic and temporal modeling techniques to enhance the quality of predictions and 
enable informed choices to be made. Wang et al.[5] developed a technique to estimate the 
content of soil moisture in cities from multimodal remote sensing data wherein they 
utilized a case in Beijing, China, to fuse different remote sensing modalities like radar and 
optical data for the estimation of soil moisture. All these render this technique the choice 
for water resource management, environmental monitoring, and urban planning. It is 
necessary to estimate the urban soil moisture content to know about hydrological 
processes, plant health, and climate resilience in cities. The study illustrates how advanced 
data fusion methods can improve the accuracy and applicability of soil moisture 
measurements in cities. A. Singh et al. [12] gave a critical appraisal of the methods of 
measurement of soil moisture, i.e., conventional methods, automated sensors, remote 
sensing, and machine learning based on bibliometric analysis of research papers 
published, they have referred to random forest as the most employed algorithm for 
simulating soil moisture and Time-Domain Reflectometry i.e.  TDR  as the most prevalent 
in-situ technique. This examined developments in remote sensing, including microwave 
images and the possible application of NASA-ISRO’s NISAR mission for estimating soil 
moisture. Applications include climate research, agriculture, and hydrology. The study 
integrated in-situ measurements with remote sensing data, emphasizing the relevance of 
machine learning in improving the accuracy of soil moisture prediction.  

 
In summary, by incorporating machine learning and deep learning, one has 

made gigantic strides in enhancing the modeling accuracy of soil moisture in terms of 
spatial and temporal resolution shown in Table 2.1. Among such techniques employed 
include LSTM network, encoder decoder models, as well as using data fusion-based 
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models. Satellite data, IoT sensors, and other meteorological information can predict more 
effectively under such models and algorithms. Meanwhile, hybrid models using 
optimization algorithms ensure cost-effectiveness and computational efficacy, making 
scale up for predicting soil moisture practical. This review will focus on the intersection 
of AI methodologies and point to the possibilities of metamodel-based approaches for 
future research and applications. 

 
Table 2.1 Comparison of Techniques - summarizes the key findings of the 

thirteen research papers discussed in this section 
Ref. Techniques Datasets Metrics Findings Accuracy 

1 LSTM-based deep 

learning 

combined with 

Noah model 

SMAP data and 

in situ soil 

moisture data 

RMSE, 

accuracy 

Combination 

of LSTM 

and Noah 

outperforms 

traditional 

methods 

95% 

2 Chaotic Whale 

Optimization 

Algorithm 

Maize soil 

moisture data 

Optimizati

on metrics 

for soil 

moisture 

estimation 

Shows 

enhanced 

prediction 

accuracy for 

maize soil 

moisture 

92% 

3 Encoder-Decoder 

model with 

residual learning 

Synthetic and 

real-world soil 

moisture 

datasets 

MAE, 

RMSE 

Effective for 

spatio-

temporal soil 

moisture 

prediction 

90% 

4 Depth-to-water 

maps and spatio-

temporal analysis 

Geospatial 

datasets of soil 

strength and 

water depth 

Correlatio

n metrics 

Improves 

understandin

g of soil-

water 

dynamics 

88% 
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5 Multimodal 

remote sensing 

with RF data 

fusion 

Remote sensing 

data of Beijing, 

China 

Prediction 

accuracy, 

RMSE 

Enhances 

soil moisture 

estimation in 

urban 

settings 

93% 

6 Machine learning 

models like RF, 

SVR 

Chin’s soil 

moisture 

datasets 

Prediction 

accuracy, 

feature 

importanc

e metrics 

Highlights 

importance 

of feature 

selection in 

prediction 

accuracy 

91% 

7 LoRa-based 

sensing with 

LSTM and SVR 

IoT-based RSSI 

data 

Prediction 

accuracy, 

energy 

efficiency 

metrics 

Provides 

cost-

effective and 

efficient 

solutions for 

remote 

monitoring 

87% 

8 UAV-mounted 

IR-UWB radar 

with deep 

learning 

Radar signal 

datasets 

MAE, 

signal 

quality 

metrics 

Achieves 

high 

accuracy 

without in-

ground 

sensors 

96% 

9 Low-cost sensors 

with machine 

learning 

algorithms 

Field soil 

moisture data 

Cost-

effectivene

ss, 

prediction 

accuracy 

Demonstrate

s a practical 

and scalable 

low-cost 

solution for 

85% 
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field 

deployment 

10 Virtual soil 

moisture sensing 

using LSTM 

IoT-based 

environmental 

sensor data 

Prediction 

accuracy, 

scalability 

metrics 

Enables 

cost-

effective, 

accurate 

predictions 

over large 

areas 

89% 

11 Deep Learning 

Regression 

Networks 

Meteorological 

and soil 

moisture data of 

Beijing 

Taylor 

diagram, 

MAE, 

RMSE 

High 

accuracy and 

generalizatio

n for soil 

moisture 

prediction 

94% 

12 Review on 

traditional and 

ML methods, 

bibliometric 

analysis 

Global soil 

moisture 

datasets and 

satellite images 

Literature 

citation 

metrics, 

bibliometri

c 

indicators 

Highlights 

trends and 

future 

directions 

for soil 

moisture 

studies 

None 

13 Real-time 

prediction using 

data mining 

systems 

Dynamic soil 

and 

meteorological 

data 

Latency, 

real-time 

prediction 

accuracy 

Provides 

immediate 

predictions 

for adaptive 

irrigation 

systems 

90% 
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CHAPTER 3 
 

 
METHODOLOGY 

 
 
 
 

This section outlines the overall framework adopted for implementing a cost-
effective soil moisture prediction system using multi-sensor environmental data and 
machine learning techniques. The methodology represented in Fig. 3.1. builds upon 
Nguyen et al. [9] and integrates improved feature engineering, model evaluation, and real-
time adaptability.  

 

 
Figure 3.1. Flowchart 

 
This section outlines the overall framework adopted for implementing a cost-

effective soil moisture prediction system using multi-sensor environmental data and 
machine learning techniques. The methodology builds upon Nguyen et al. [9], integrating 
improved feature engineering, robust model evaluation, and real-time adaptability [19], 
[22] for deployment on edge devices. Figure 3.2. illustrates the layered architecture of the 
proposed system, showcasing its modular design for scalable and efficient operation. The 
system is structured into five key layers: 
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Fig 3.2. Block diagram 

 
A. Data Acquisition Layer 

IoT-based sensors are deployed in the field to collect environmental data at fixed 
intervals. These include: 

● DHT11 sensors for temperature and humidity, 
● Rain gauges for precipitation, and 
● Barometric pressure sensors [20]. 

The sensor nodes transmit data using lightweight protocols such as MQTT or 
HTTP to a central server or cloud platform. This layer ensures continuous, real-
time environmental monitoring [21]. 
 

B. Preprocessing Layer 
Raw sensor data could contain noise, inconsistencies, and missing values. This 
layer performs: 

● Noise reduction using smoothing filters (e.g., moving average), 
● Normalization of input values to a common scale, 
● Timestamp alignment across heterogeneous sensor streams, 
● Missing value imputation via linear interpolation or mean substitution [19], 

[22]. 
This step ensures data quality and readiness for downstream analysis. 
 

C. Feature Engineering Layer 
This layer derives informative attributes from the raw sensor readings to enhance 
model performance. Engineered features include: 

● Cumulative rainfall over fixed time windows, 
● Temperature variation (e.g., daily delta), 
● Humidity index, and 
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● Lagged values to capture temporal dependencies [18], [25]. 
Such features provide better representation of soil-water dynamics and support 
accurate learning [24]. 
 

D. Prediction Layer 
Three machine learning models Random Forest, XGBoost, and SVR are trained to 
predict soil moisture content based on the preprocessed and engineered features. 
Model selection is driven by the need to: 

● Capture non-linear relationships, 
● Handle feature importance ranking (especially with RF/XGBoost), 
● And generalize well across time and sensor variability [24]. 

Hyperparameter tuning is conducted using GridSearchCV with cross-validation. 
 

E. Evaluation & Deployment Layer 
Model performance is evaluated using metrics such as: 

● Root Mean Square Error, 
● Mean Absolute Error, and 
● Coefficient of Determination [15]. 

The best-performing model is exported and deployed on an edge device (e.g., 
Raspberry Pi or ESP32) using lightweight inference frameworks like TensorFlow 
Lite or ONNX Runtime [22], [23]. Real-time prediction enables local decision-
making, such as irrigation triggering or alert generation. 

 
 

3.1. Dataset 

3.1.1. Dataset Description 

The data used here form a multivariate time-series dataset that comprises 
environmental and soil parameters measured with an IoT-based sensing network. The 
parameters are important environmental variables determining the soil moisture regime: 
ambient temperature (°C), relative humidity (%), rainfall (mm), and atmospheric pressure 
(hectopascals). In certain embodiments, wind speed (m/s) has also been measured to 
consider its ancillary impact on evaporation and transpiration coefficients [20], [21]. Soil 
moisture content (%) is the response variable, measured using in-situ capacitive soil 
moisture sensors installed at a constant depth in the root zone [23]. 
The data were sampled hourly, depending on sensor availability, in an effort to provide 
high temporal resolution adequate for time-series modeling. The data were collected 
during a prolonged period of around three months, including changing weather conditions, 
and environmental conditions, and the data are thus representative for testing and training 
the model under various scenarios [15], [17]. 
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3.1.2. Data Preprocessing 

In order to avoid machine learning model preparation and prediction stability, 
minimal preprocessing was carried out. Removal and detection of outliers was first 
performed using z-score filtering in which the data points whose z-scores were above a 
value predetermined earlier were removed. This reduced the impact of suspicious readings 
due to sensor malfunction or interference [19]. After treatment of outliers, all the numeric 
features were normalized using Min-Max normalization to scale values into a similar 
range of 0 to 1. Normalization is specifically required for feature magnitude-sensitive 
algorithms like Support Vector Regression and neural networks [24]. To ensure temporal 
consistency of the multivariate dataset, a time-indexed schema was imposed. The schema 
ensured synchronization of every environmental input feature with the respective 
corresponding soil moisture observation at the same instance in time. The synchronized 
dataset enabled exact time-series forecasting and permitted integration of lag-based and 
cumulative features at the stage of feature engineering [25]. Following accurate 
preprocessing, the dataset was cleaned of noise and made ready to enhance the quality of 
data for optimal machine learning models of estimation of soil moisture. 
 
 
3.2. Feature Engineering 

This process of converting raw data to meaningful representations that 
enhance the quality of machine learning models. Feature engineering is an important 
activity in soft sensing applications such as soil moisture prediction, where indirect 
variables (temperature, humidity) are employed to infer a target variable (soil moisture) 
that cannot be directly measured or reliably monitored [18], [24]. In this project, feature 
engineering was needed to attain dependencies on time, environment interactions, and 
non-linear relationships that do not intuitively reveal themselves in unprocessed sensor 
readings without it. The following derived features were computed to enhance 3 model's 
robustness and accuracy: 
Temperature delta (daily max-min): Captures diurnal temperature variation, which is 
calculated by Eqn. (3.1) and correlated with evapotranspiration and soil moisture loss. 
Method: For each day: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  𝑇௠௔௫ − 𝑇௠௜௡ (3.1) 
 

A. Values were computed from the highest and lowest temperature readings within a 
24-hour period. High deltas generally indicate more evaporation, potentially 
reducing soil moisture. 

Cumulative precipitation (last 3/7 days): Accounts for recent rainfall trends, which 
significantly affect soil saturation levels. Method: For each timestamp t, the cumulative 
rainfall is calculated by Eqn. (3.2): 

𝐶𝑢𝑚𝑅𝑎𝑖𝑛ଷ(𝑡)  =  Σ௜ୀ଴
ଶ 𝑅𝑎𝑖𝑛 (𝑡 − 𝑖) 𝑎𝑛𝑑 𝐶𝑢𝑚𝑅𝑎𝑖𝑛଻(𝑡)  =  𝛴௜ୀ଴

଺ 𝑅𝑎𝑖𝑛 (𝑡 − 𝑖) (3.2) 
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B. These rolling features help the model understand short-term precipitation patterns 
influencing moisture retention 15], [16]. 

Relative humidity index (normalized): Relative humidity influences evaporation and 
transpiration rates. Normalizing ensures consistent feature scaling across sensors and 
improves model convergence by Eqn. (3.3). Method: 

𝑅𝐻 𝐼𝑛𝑑𝑒𝑥 =  
𝑅𝐻 −  𝑚𝑖𝑛(𝑅𝐻)

𝑚𝑎𝑥(𝑅𝐻)  −  𝑚𝑖𝑛(𝑅𝐻)
 

(3.3) 

 
C. Values were scaled using min-max normalization to range between 0 and 1, 

ensuring comparability across locations and time periods [22].  
Lag features of target variable (1-day, 2-day soil moisture): Captures temporal 
autocorrelation in soil moisture levels, important for time-series models. Method: Let 
SM(t) be the soil moisture at time t, then lag features are calculated by Eqn. (3.4): 

𝐿𝑎𝑔ଵ =  𝑆𝑀(𝑡 − 1) 𝑎𝑛𝑑 𝐿𝑎𝑔ଶ =  𝑆𝑀(𝑡 − 2) (3.4) 
 

D. This temporal context allows the model to recognize persistence or decay trends 
in soil moisture. This step enhanced model interpretability and predictive power  
[25]. 

 
 
3.3. Model Design and Algorithms 

The primary aim of this analysis is to forecast soil moisture using multi-sensor 
environmental data through exploiting machine learning techniques capable of capturing 
intricate relationships, interactions, and patterns over time in Figure 3.3. From the insights 
gathered during the review study and considering other recent literature [12], we designed, 
implemented, and tested three supervised regression models: Random Forest Regressor, 
XGBoost Regressor, and Support Vector Regression (SVR) [6].  

A. Random Forest Regressor 
An ensemble of decision trees, Random Forest (RF), applies a bagging technique 
to partition the training dataset into subsets, constructing individual trees for every 
subset, and then combining their predictions to mitigate overfitting and improve 
generalization. Its strength in handling noisy data and depicting the importance of 
features makes it suitable for use with heterogeneous sensor datasets [12]. 

B. XGBoost Regressor 
Built on strong boosting principles, Extreme Gradient Boosting enhances speed 
and accuracy in structured data by building trees sequentially to fix errors made 
by previous ones. Soil moisture modeling is enhanced using XGBoost in scenarios 
where temporal and environmental dependencies are critical, making it effective 
in prior related tasks [9].  

In each model, hyperparameter tuning using grid search with cross-validation 
of 5 folds was applied. To guarantee comparability and model performance, all models 
were subjected to hyperparameter tuning using grid search and five-fold cross-validation: 



19 
 

 

A. Grid search: A brute force approach, has been defined where specific ranges of 
hyperparameters set beforehand (i.e., max_depth, n_estimators, learning_rate, 
etc.) are exhaustively evaluated [19]. 

B. 5-fold cross validation: Training Data Set is divided into 5 equal parts. Each model 
iteratively uses 4 parts for training while reserving the 5th as validation. This is 
done for each of the 5 parts, wherein outcome is averaged to reduce variation due 
to data partitions [25].  

 
Fig 3.3.Model Training Workflow 

 
 
3.4. Evaluation Metrics 

We used three conventional regression metrics - Root Mean Square Error, 
Mean Absolute Error, and Coefficient of Determination to analyze model performance. 
These indicators offer a comprehensive average error and a fit measure concerning the 
soil moisture estimation model and the soil’s moisture level, where accuracy, stability, 
and interpretability are significantly applicable.  

A. Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 =  ඨ
1

𝑛
𝛴௜ୀଵ

௡ (𝑦௜ − 𝑦పෝ)ଶ  

(3.5) 

 
Since larger errors are penalized more because of squaring the residuals, RMSE, 
as calculated by Eqn. (3.5), is sensitive to the precision of the model and its errors. 
It is useful to identify models with significant deviations from actual soil moisture 
values since sensor data accuracy is critical for making irrigation or drought 
monitoring decisions [14].  

B. Mean Absolute Error (MAE) 

𝑅𝑀𝑆𝐸 =
1

𝑛
𝛴௜ୀଵ

௡ |𝑦௜ − 𝑦పෝ| 
(3.6) 
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MAE, as defined in Eqn. (3.6), provides an interpretable average of the absolute 
deviation of estimated values from actual values by assuming an equal treatment 
for all errors. Useful in field applications that work on the premise that tolerable 
minor fluctuations exist because it's a reliable indication of how far predictions are 
on average [19].  

C. Coefficient of Determination (𝑅ଶ) 

𝑅ଶ = 1 −
𝛴௜ୀଵ

௡ (𝑦௜ − 𝑦ො)ଶ

𝛴௜ୀଵ
௡ (𝑦௜ − 𝑦ത)ଶ

 
(3.7) 

 
The extent to which predicted values account for the variance in actual values is 
evaluated. Predictive alignment is excellent if 𝑅ଶ is close to 1. Allows for 
comparison of model performance and generalization capability. Aim for high 𝑅ଶ 
scores by using Eqn. (3.7).  

 
 
3.5. Experimental Setup 

This section details the hardware, software, and procedural environment used 
to implement, train, and evaluate the proposed soil moisture prediction models. The 
experimental design aims to simulate a field-deployable, cost-effective soft sensing 
system, developed under realistic operational constraints while maintaining scalability 
and reproducibility for broader agricultural deployment [7]. 

 
 

3.5.1. Hardware Configuration 

The hardware setup consists of a collection of low-cost, power-efficient 
sensors and microcontrollers designed for continuous environmental monitoring. The 
DHT11 sensor was employed to measure ambient temperature and relative humidity. For 
soil moisture measurement, a capacitive soil moisture sensor v1.2 was used. This sensor 
offers non-corrosive measurement of volumetric water content and is more durable than 
resistive alternatives, making it suitable for long-term deployments. Precipitation data was 
collected using a custom-built tipping-bucket style rain gauge, allowing mechanical 
measurement of rainfall events [20]. The atmospheric pressure was recorded with the 
BMP180 barometric pressure sensor, which includes an optional temperature 
compensation. The group of sensors was interfaced with a NodeMCU (ESP8266) or 
ESP32 microcontroller due to its low power consumption, built-in Wi-Fi module, and 
support for cloud transmission data protocols [7]. For communication, the system used 
either data transfer via Wi-Fi via MQTT protocol for real-time cloud integration or local 
SD card logging for off-grid data acquisition applications. The sensors were powered via 
a stable 5V USB power supply with an optional addition of Li-ion batteries to mimic 
conditions of off-grid remote field usage. 
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3.5.2. Data Preprocessing 

In order to maintain the integrity and purity of the data used to train the 
machine learning models, preprocessing was carried out. Outliers were detected and 
discarded by z-score filtering, where observations that are far from the mean were 
eliminated in trying not to skew the model [22]. Linear interpolation was applied in 
replacing missing values to ensure continuity in the time-series without inducing any bias. 
All numerical attributes were then normalized via Min-Max scaling to generate values in 
a [0,1] interval for fair contribution to model learning, particularly for magnitude-sensitive 
algorithms. Data was also label-aligned for time-series forecasting application via addition 
of lag-based features and rolling aggregates for capturing temporal dependencies in soil 
moisture behavior [25]. 
 
 
3.5.3. Software and Tools 

The workflow of analysis and implementation was borrowed from a set of 
open-source Python libraries. Training, testing, and hyperparameter optimization of the 
models were done using scikit-learn. Ensemble learning was achieved by XGBoost using 
an optimized gradient boost algorithm with regularization parameters. Data manipulation 
and feature conversion were done using Pandas and NumPy, and result visualizations and 
exploratory plots were facilitated by Matplotlib and Seaborn. This library integration 
provided a smooth, end-to-end machine learning pipeline, from raw data import through 
predictive modeling and performance testing [18]. 
 
 
3.5.4. Model Training Protocol 

The data we used, was divided into 80% training and 20% test subsets in a 
manner allowing the models to be trained from a representative sample and withholding 
unseen data for final assessment. Grid search was utilized to optimize key 
hyperparameters on every model. For Random Forest, hyperparameters like the number 
of estimators (n_estimators), maximum tree depth (max_depth), and minimum number of 
samples (min_samples_split) needed to split an internal node were set for tuning. For 
XGBoost, hyperparameters like learning rate (learning_rate), number of estimators, and 
tree depth were also tuned to improve performance and avoid overfitting [2]. For a 
measure of model robustness, 5-fold cross-validation was used for all training sets. It 
divides the data into five subsets and tests the model in turn on different training-validation 
splits, thereby avoiding overfitting and estimating the performance more accurately. The 
ultimate choice of the model was made for the minimum RMSE and maximum R² value, 
hence guaranteeing accuracy and ability to generalize [3], [24].  
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CHAPTER 4 
 

 
RESULTS AND DISCUSSION 

 
 
 
 

The comprehensive results of soil moisture prediction using ML and DL 
models was evaluated to find the effectiveness of various algorithms, and to discuss their 
practical deployment potential. The analysis covered both traditional ensemble models 
(Random Forest, XGBoost, SVR and a sequential LSTM model trained over 
environmental sensor data captured through a low-cost IoT network. 
 
 
4.1. Performance of Supervised Machine Learning Models 

Three regression models were developed and evaluated: Random Forest 
Regressor, XGBoost Regressor, and SVR. These models were selected based on insights 
from the literature review and their proven ability to handle structured environmental data. 
The models were assessed using key metrics: RMSE, MAE, and Coefficient of 
Determination (R²). The results are summarized below. 

● Random Forest showed the best performance with an RMSE of 626.78, MAE of 
250.97, and R² score of 0.96, demonstrating strong generalization and robustness 
to outliers. Its ensemble nature helped capture non-linearities and variable 
interactions effectively. 

● XGBoost, known for handling high-dimensional data and capturing complex 
feature interactions, followed closely with an RMSE of 710.45, MAE of 270.12, 
and R² of 0.94. Although slightly more sensitive to noise, it still produced reliable 
forecasts. 

● SVR underperformed relative to the ensemble methods, yielding an RMSE of 
890.23, MAE of 355.78, and R² score of 0.88. SVR struggled with time-series 
lagged features and required fine-tuning for high-dimensional data. 

These outcomes validate the effectiveness of ensemble methods for soil moisture 
prediction in sensor-based IoT environments. 
 
 
4.2. Model Performance Visualization 

Fig. 4.1. provides a visual comparison of the three models based on the 
evaluation metrics: 
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Figure 4.1. Model Performance Comparison (RF vs XGBoost vs SVR) 
 

As shown in the bar graph Random Forest outperforms others across all 
metrics, XGBoost is comparable but slightly weaker in terms of MAE and RMSE, SVR’s 
metrics indicate reduced accuracy and suitability for this time-dependent, multivariate 
dataset. 
 
 
4.3. Feature Engineering Impact 

All models were enhanced with structured feature engineering, including: 
● Cumulative rainfall (3-day and 7-day windows), 
● Temperature delta (daily max-min), 
● Lag features of soil moisture (1-day and 2-day lags), 
● Normalized humidity index. 

These derived attributes significantly improved model interpretability and performance, 
especially for ensemble algorithms. They also aligned well with the autocorrelation 
characteristics observed in the dataset. 
 
 
4.4. Deep Learning Model Evaluation: LSTM 

To capture sequential dependencies in the soil moisture data, an LSTM-based 
deep learning model was developed. The architecture consisted of two LSTM layers with 
dropout and batch normalization, compiled using the MSE loss function and trained with 
the Adam optimizer. 
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4.4.1. Dataset Alignment Check 

The dataset used for LSTM training matches the sensor schema which 
includes: 

● Hourly readings of temperature, humidity, rainfall, and pressure, 
● Soil moisture captured via capacitive sensors at root-zone depth, 
● Preprocessed features aligned using a time-indexed schema with normalized input 

values. 
This ensures the training was conducted on temporally coherent and feature-

enriched data suitable for sequence modeling. 
 
 

4.5. Epoch Tuning and Overfitting Analysis 

Training was performed for both 15 and 25 epochs as shown in Fig. 4.2 and 
Fig 4.3, and the loss values for both training and validation datasets were tracked. 

 
Figure 4.2: LSTM Loss Plot (15 Epochs) 

 
This plot indicates that both training and validation loss decrease smoothly 

and stabilize, suggesting optimal learning and generalization. The validation loss remains 
low and tracks closely with the training loss. 
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Figure 4.3: LSTM Loss Plot (25 Epochs) 

 
In contrast, training for 25 epochs led to clear signs of overfitting. While 

training loss remained low, the validation loss fluctuated wildly, suggesting that the model 
began memorizing training data and lost its generalization capability. This aligns with 
expectations in deep learning where models with high capacity require strict regularization 
and careful stopping. 
 
 
4.6. Actual vs Predicted Soil Moisture Alignment 

The predicted values from the best-performing models (Random Forest and 
15-epoch LSTM) were compared to actual soil moisture measurements from the sensors. 
The forecasts exhibited strong alignment, reflecting the models' capacity to capture 
environmental dynamics such as rainfall-induced spikes and evaporation-driven drops. 
This alignment further validates that feature selection correctly reflects soil-water 
interactions, time-series components like lag features effectively capture autocorrelation, 
and the model is well-suited for real-time deployment in agricultural settings. 
 
 
4.7. Practical Implications 

The results confirm that Random Forest and XGBoost are suitable for 
deployment on edge devices like ESP32 or Raspberry Pi due to: 

● High accuracy, 
● Low computation time, 
● Compatibility with TensorFlow Lite/ONNX for lightweight inference. 

LSTM, while highly accurate in short epochs, requires careful tuning and may 
be best suited for systems with stronger computational capacity or cloud-assisted setups. 
The models can be integrated into: 
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● Smart irrigation systems, 
● Drought early warning platforms, 
● Precision agriculture tools in data-scarce rural regions. 

The performance metrics, comparative evaluations, and deep learning insights 
all indicate the viability of low-cost, IoT-integrated, machine learning-based soil moisture 
prediction frameworks. The optimized models can enable real-time, accurate, and scalable 
solutions for modern precision farming and water conservation. 
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CHAPTER 5 
 

 
CONCLUSION, FUTURE SCOPE, AND SOCIAL IMPACT 

 
 
 
 
5.1. Conclusion 

This thesis has introduced the design, development, and assessment of an IoT-
capable machine learning framework for soil moisture forecasting, with an emphasis on 
cost-effectiveness, scalability, and flexibility for practical agricultural deployment. Using 
multi-sensor environmental observations of temperature, humidity, and precipitation, the 
system shows that inexpensive hardware can be used effectively in conjunction with 
ensemble machine learning algorithms like Random Forest, XGBoost, and Support Vector 
Regression to provide accurate and timely soil moisture predictions. Feature engineering 
methods like the addition of lagged variables and cumulative statistics were also 
instrumental in improving model performance, generalization, and robustness across 
heterogeneous climatic conditions. The research validates that the combination of Internet 
of Things and machine learning technologies has the potential to greatly enhance soil 
moisture monitoring in resource-limited settings. Through systematic preprocessing, 
modular system design, and light-weight algorithms, the suggested framework holds 
potential as a scalable precision agriculture solution, particularly in areas with no access 
to costly satellite or in-situ measurement facilities. 
 
 
5.2. Future Scope 

Despite these breakthroughs, some areas are left open for further exploration 
and development. The soil moisture prediction landscape is rapidly moving toward 
utilizing hybrid, real-time, and physics-informed models. Future research could involve 
bridging deep learning methods like LSTM networks and encoder-decoder models with 
physical hydrologic models like the Noah Land Surface Model to improve temporal 
precision and explainability, especially in areas with high hydrologic variability. The use 
of hybrid AI-physics models may provide a more integrated insight into the underlying 
soil-water dynamics. Furthermore, metaheuristic optimization algorithms like the Chaotic 
Whale Optimization Algorithm have already been demonstrated to dynamically and 
effectively tune hyperparameters. Such algorithms can be further researched and 
optimized to allow models to learn and adapt to changing environmental patterns and 
geospatial variations. Another line of promising research includes the creation of virtual 
soil moisture sensors using deep learning models, which have the ability to remove the 
dependence on hardware and improve scalability. Nevertheless, model stability and 
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accuracy over a variety of soil types, climatic zones, and sparse data regimes are still a 
significant challenge. Remote sensing remains a critical source of large-scale soil moisture 
information, but cloud contamination, low spatial resolution, and calibration errors are 
still issues. Future studies could explore the combination of multimodal satellite 
observations optical, microwave, and synthetic aperture radar with ground-level IoT 
observations to generate more accurate and bias-free predictions. In the same way, the 
combination of other environmental indicators like vegetation indices, soil texture, and 
atmospheric parameters could enhance regional prediction accuracy. The use of real-time 
cloud-based infrastructures to collect high-frequency data from sensors, to support 
instantaneous decision-making for irrigation and drought control, presents an additional 
key opportunity for research. Sensor miniaturization and incorporating autonomous 
sensing nodes like UAVs to work in association with radar and infrared imaging likewise 
offer new directions for autonomous measurement of soil moisture. Finally, 
interpretability, transferability, and energy efficiency of machine learning models should 
be given precedence to facilitate adoption at large scales. Future systems must be able to 
automatically determine the most appropriate algorithms from local environmental data, 
allowing adaptive and intelligent precision agriculture systems. In summary, the 
intersection of IoT-based sensing, machine learning, and optimization methods is 
empowering a transition from hardware-driven, manual observation to smart, data-
intensive soil moisture prediction systems. As deep learning, sensor technology, and cloud 
computing continue to improve, this work adds one step towards creating sustainable, 
real-time agricultural surveillance platforms that are affordable, efficient, and world-
reaching. 
 
 
5.3. Social Impact 

The system suggested has the capability of making a significant social impact, 
especially for agricultural uncertainty, water-scarce, and economically stressed areas. The 
system allows smallholder and marginal farmers to maximize water use efficiency, 
minimize reliance on estimation, and increase crop yield through low-cost, data-informed 
irrigation scheduling. This can make a valuable contribution towards food production 
resilience and rural livelihood insurance, especially for those countries experiencing 
climate-caused variability. In addition, the system is also sustainable because it avoids 
over-irrigation, saves groundwater, and ensures long-term farmland sustainability. 
Through the avoidance of application of costly remote sensing systems or high-power 
computing equipment, precision agriculture becomes affordable and accessible through 
the technology. With even more integration into mobile-based decision-support software 
and cooperative farming platforms, such technologies have the potential to close the 
digital divide in agriculture as well as ensure agricultural technology equity. 
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