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ABSTRACT 

 

Important operating parameters such dye concentration, light intensity, pH, and reaction 

duration have a big impact on photodegradation efficiency. An artificial neural network 

(ANN) model was used in this investigation to examine how these characteristics 

affected the degradation of methyl orange. An artificial neural network (ANN) was 

trained on 141 data points, optimizing the distribution of 33 neurons. With a mean 

squared error (MSE) value of 0.001438, the proposed model produced predictions that 

were correct. 3D surface plots were used to assess the fractional conversion of methyl 

orange and show how reaction time and crucial operating parameters relate to each other. 

According to the findings, fractional conversion falls as dye concentration rises, with 

lower MO concentrations (20–40 μM) showing the highest efficiency across longer time 

periods (100–160 minutes). While lower intensities by themselves do not achieve high 

degradation efficiency, higher light intensities (>80 mW/cm2) greatly increase 

conversion rates. Furthermore, pH has a significant impact on degradation performance; 

environments that are severely acidic (pH<5) or basic (pH>10) decrease efficiency, 

whereas neutral to slightly basic circumstances (pH 7–9) encourage the highest rates. 

The ANN model proved to be highly reliable in predicting deterioration trends, with a 

strong regression coefficient (R²) of 0.98 and a relative error of less than 10%. The 

simulation results also highlighted how important it is to optimize the operating 

parameters, as this plays a key role in accurately controlling the efficiency of the 

photodegradation process. 
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CHAPTER 1             

INTRODUCTION 

 

Methyl orange is the orange color that azo dye produces. Due to its widespread use in 

coloring techniques, it ends up in the sewage of the paper, plastic, and textile sectors, 

among others. This region is stable due to azo-based (consisting of –N=N– stable bond) 

MO dye, which necessitates the application of conventional physicochemical techniques 

[1][2]. Wastewater containing methyl orange may experience photodegradation, 

particularly photocatalysis. In order to produce reactive radicals that can break down 

complicated dye molecules into less hazardous and simpler compounds, photocatalysts 

usually use semiconducting materials like TiO₂ [3][4]. Photocatalysts are the favored 

methods for treating industrial wastewaters because of their various benefits, which 

include low cost, environmental friendliness, and the absence of secondary pollutants 

[4][5]. 

Numerous operating parameters, including initial dye concentration, solution pH, 

reaction duration, and light intensity, influence how well the photodegradation process 

works [5][6]. The overall degradation efficiency is influenced by the formation and 

lifetime of charge carriers in the photocatalyst, which also affects the efficiency of active 

species creation [7][8]. 

Titanium dioxide (TiO₂) was extensively researched as a photocatalyst for complex 

chemical compounds under light irradiation after the widely used azo dye methyl orange 

failed [4][9]. Photocatalytic degradation is a useful method for cleaning wastewater that 

contains harmful dyes like methyl orange. This process helps break down the dye into 

safe substances like carbon dioxide and water. How well this method works depends on 

several factors—such as how much dye is present, the amount of titanium dioxide (TiO₂) 

used, the pH level of the solution, and how long the water is exposed to light [9–12]. For 
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example, using more TiO₂ and keeping the pH at the right level can improve how the 

dye and the photocatalyst interact, which helps speed up the cleaning process [12][13]. 

TiO₂ is especially good at removing methyl orange from wastewater. Changing the 

structure of the photocatalyst and adjusting the conditions around it can make this 

process even more effective and help get rid of pollutants more completely [14]. 

To understand and predict how well this method works under different conditions, 

scientists often use models based on data. One common approach is to build a system 

that mimics how the human brain processes information. This system is made up of 

hidden layers, with each layer containing neurons that work together [15][16]. By 

changing how many layers are formed and neurons are used, the system can be made 

more accurate. Each neuron gives information, applies some rules to it, and then gives a 

result—helping to predict how well the wastewater treatment will work in different 

situations [16]. 

In this research, we have used the hyperbolic tangent sigmoid function as the transfer 

function. The evaluation of the performance of ANN is based on a loss function that 

assesses the difference between predicted outcomes and experimental data. The model 

is optimized by modifying the network weights through training called backpropagation. 

Standard backpropagation algorithms are gradient descent, Newton’s method, conjugate 

gradient, Levenberg–Marquardt algorithm, and Quasi-Newton method. In this research, 

the Levenberg–Marquardt algorithm was the one chosen for the study because it is 

efficient at minimizing prediction errors while convergence speed is kept at an 

acceptable level [16][17]. 

The components of an artificial neural network (ANN) are organized into hierarchy 

levels, commonly referred to as the input, hidden, and output layers. The initial steps in 

the network learning process feature the setting of weights, determining the output to 

inputs, and adjusting weights which occur sequentially [15]. The forming of clusters 

happens through supervised and unsupervised learning, which allows ANN to go 

through many processes and learning cycles, effectively enhancing performance [16]. 

The use of ANN modeling permits researchers to easily deduce highly adaptable 
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photocatalytic systems using university-grade components for wastewater treatment 

systems [15][18-20]. 

 

Fig 1.1: Structure of TiO2. 

 

1.1 BACKGROUND 

TiO₂ is well known for its low cost, chemical stability, excellent photocatalytic activity, 

and non-toxicity. TiO₂ produces reactive oxygen species (ROS), including hydroxyl 

radicals, when exposed to ultraviolet (UV) light; these ROS can mineralize complex 

chemical molecules into innocuous byproducts like CO₂ and H₂O [14]. Notwithstanding 

its promise, operational factors—such as catalyst dose, initial dye concentration, 

solution pH, and irradiation duration—significantly affect the TiO₂-assisted 

photodegradation process’s performance [12]. It is difficult to optimize the process using 

conventional empirical or statistical methods because of the intricate, nonlinear 

interactions between these parameters. Artificial neural networks have been shown to 

provide robust, accurate modeling of such nonlinear photocatalytic systems [21–23].    

1.2 SIGNIFICANCE 

This study intends to close the gap between experimental research and real-world 

application of photocatalytic wastewater treatment by utilizing the power of artificial 

neural networks. The creation of a trustworthy predictive model can greatly cut down 

on the need for expensive and time-consuming tests, allowing for more effective process 

design, optimization, and scaling up. Previous work has successfully applied ANN 

models to predict degradation kinetics in TiO₂-based photocatalytic systems, 

demonstrating high accuracy and generalizability [21]. In addition to boosting 

environmental engineering, this study shows how artificial intelligence is increasingly 

being used to develop sustainable solutions [22][24]. 
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CHAPTER 2          

 PROBLEM STATEMENT AND PROCEDURE 

 

2.1 PROBLEM STATEMENT  

The textile, printing, and leather industries' release of artificial dyes like Methyl Orange 

(MO) into natural water bodies is a serious environmental and public health risk. In 

addition to being aesthetically unpleasing, these dyes are poisonous, chemically stable, 

and biodegradable [1][4]. Because of its effectiveness in converting complex organic 

molecules into less hazardous byproducts, photocatalysis employing titanium dioxide 

(TiO₂) under ultraviolet (UV) light has drawn a lot of interest among the several 

treatment methods [14][21]. The efficiency of the photocatalytic process depends on 

several factors, like dye concentration, amount of catalyst used, pH level, and how long 

the material is exposed to light [12][14]. 

Finding the best conditions using traditional experiments can take a lot of time and 

money, especially when dealing with complex systems that have many variables. This 

is where Artificial Neural Networks (ANNs) can be a great alternative [15][21]. 

ANNs are useful for modeling environmental systems, but they haven’t been widely 

used for predicting how dyes like methyl orange break down through photocatalysis. To 

make full use of this technology, a reliable ANN-based predictive model needs to be 

developed. Such a model can quickly estimate photodegradation efficiency under 

different conditions. This helps improve the process, making it more cost-effective and 

eco-friendlier for wastewater treatment [22][25]. 

2.2 RESEARCH OBJECTIVES  

This study aims to develop and test an Artificial Neural Network (ANN) model to predict 

how efficiently methyl orange can be broken down using titanium dioxide (TiO₂) and 

ultraviolet (UV) light. By using ANN, we analyze key factors like catalyst concentration, 

dye concentration, solution pH, and irradiation time to find the best conditions for 

degradation. The results show that ANN is a powerful and accurate tool for 

understanding complex environmental processes, helping researchers reduce 
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experimental workload and improve wastewater treatment methods in a more cost-

effective and efficient way.  

2.3 DATA COLLECTION  

To properly break down methyl orange, having reliable experimental data is essential. 

This data helps understand how the catalyst reacts under different conditions. However, 

while many studies focus on the degradation of methyl orange using heterogeneous 

catalysts, only a few provide detailed insights into how factors like dye concentration, 

radiation source, or natural pH affect the process. Without this information, it becomes 

harder to optimize the reaction for better efficiency. In this work, the photocatalytic 

efficacy of TiO₂ with Methyl Orange at natural pH 6 is assessed. Since light intensity 

affects reaction kinetics and overall treatment effectiveness, it is crucial for attaining 

ideal photodegradation rates.  

To forecast MO degradation efficiency across a range of light intensities, dye 

concentrations, and pH levels, the ANN model was trained using the parametric data 

given in. Table 1 compares ANN predictions and experimental results, allowing for a 

systematic evaluation of the effects of light intensity and TiO₂ characteristics on 

degrading performance.  

Table 2.1:Experimental Data from [29] 

S.No. Light 

Intensity(

mW/cm2) 

Dye 

Concentr

ation(𝝁M

) 

pH Time(min) Fractional Conversion 

of MO 

1 3 20 6 19.84615816 0.028378347 

2 3 20 6 39.69230751 0.038888857 

3 3 20 6 60.23077157 0.047297298 

4 3 20 6 80.30768662 0.058858843 

5 3 20 6 100.1538536 0.071471504 

6 3 20 6 120.6923 0.090390375 

7 3 20 6 140.3076837 0.096696665 

8 3 20 6 159.4615536 0.105105106 

9 3 20 6 180 0.111411396 

10 16 20 6 20.30768955 0.023123091 

11 16 20 6 40.38462221 0.052552553 

12 16 20 6 60.23077157 0.068318319 

13 16 20 6 79.84615522 0.096696665 

14 16 20 6 100.1538536 0.109309326 

15 16 20 6 120.2307686 0.126126127 

16 16 20 6 140.076918 0.134534568 

17 16 20 6 159.6923016 0.148198224 

18 16 20 6 180 0.161861879 
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19 37 20 6 19.84615816 0.036786787 

20 37 20 6 40.15385651 0.08513512 

21 37 20 6 60.46153727 0.143993923 

22 37 20 6 80.30768662 0.199699701 

23 37 20 6 100.1538536 0.26171173 

24 37 20 6 120.2307686 0.289039042 

25 37 20 6 140.3076837 0.301651662 

26 37 20 6 160.153833 0.311111138 

27 37 20 6 180 0.318468463 

28 92 20 6 19.84615816 0.049399368 

29 92 20 6 40.38462221 0.122972942 

30 92 20 6 59.53845687 0.201801731 

31 92 20 6 80.30768662 0.282732751 

32 92 20 6 99.69230458 0.369969981 

33 92 20 6 120.0000029 0.456156176 

34 92 20 6 140.076918 0.503453474 

35 92 20 6 160.3846163 0.552852862 

36 92 20 6 180 0.589639649 

37 165 20 6 19.84615816 0.117717687 

38 165 20 6 39.46154181 0.200750777 

39 165 20 6 60.23077157 0.269069095 

40 165 20 6 78.69230913 0.334234229 

41 165 20 6 99.69230458 0.386786782 

42 165 20 6 119.7692372 0.455105101 

43 165 20 6 139.8461523 0.524474495 

44 165 20 6 159.6923016 0.582282303 

45 165 20 6 180 0.603303325 

46 165 2.5 6 19.726024 0.25931447 

47 165 2.5 6 39.67621251 0.630402408 

48 165 2.5 6 60.07471295 1 

49 165 5 6 20.17433593 0.2011923 

50 165 5 6 39.90036848 0.459016423 

51 165 5 6 59.178072 0.597615513 

52 165 5 6 79.8007455 0.789865873 

53 165 5 6 99.75091692 0.979135625 

54 165 10 6 20.17433593 0.157973146 

55 165 10 6 39.22788349 0.460506713 

56 165 10 6 59.62640103 0.655737711 

57 165 10 6 80.02490147 0.75260805 

58 165 10 6 100.1992459 0.839046217 

59 165 10 6 119.9252614 0.989567812 

60 165 20 6 19.95017996 0.117734743 

61 165 20 6 39.67621251 0.198211663 

62 165 20 6 60.07471295 0.271236962 

63 165 20 6 80.02490147 0.333830116 

64 165 20 6 99.30260499 0.384500778 

65 165 20 6 119.2527935 0.456035786 

66 165 20 6 139.427138 0.502235464 

67 165 20 6 159.8256555 0.551415835 

68 165 20 6 180 0.587183311 

69 165 40 6 20.39850899 0.055141646 

70 165 40 6 40.12452444 0.108792888 

71 165 40 6 59.85055699 0.140089437 

72 165 40 6 80.02490147 0.180327783 

73 165 40 6 100.6475579 0.230998559 
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74 165 40 6 119.4769495 0.284649687 

75 165 40 6 139.8754499 0.345752608 

76 165 40 6 160.0497944 0.38301043 

77 165 40 6 179.7758269 0.423248891 

78 165 60 6 19.50186804 0.028315968 

79 165 60 6 39.67621251 0.044709387 

80 165 60 6 60.29886892 0.070044775 

81 165 60 6 80.24905743 0.092399469 

82 165 60 6 100.4234019 0.116244453 

83 165 60 6 119.0286375 0.143070017 

84 165 60 6 139.8754499 0.171385985 

85 165 60 6 160.7222794 0.204172881 

86 165 60 6 180 0.232488735 

87 165 80 6 21.74346187 0.350223592 

88 165 80 6 19.27771207 0.016393419 

89 165 80 6 39.45205655 0.022354694 

90 165 80 6 60.52302488 0.034277243 

91 165 80 6 79.8007455 0.040238517 

92 165 80 6 100.1992459 0.058122226 

93 165 80 6 119.4769495 0.076005936 

94 165 80 6 139.6512939 0.086438195 

95 165 80 6 160.4981063 0.107302598 

96 165 80 6 180 0.128166888 

97 165 100 6 20.62266495 0.007451565 

98 165 100 6 39.90036848 0.010432259 

99 165 100 6 59.85055699 0.016393419 

100 165 100 6 79.8007455 0.025335388 

101 165 100 6 99.97508998 0.031296548 

102 165 100 6 119.9252614 0.050670662 

103 165 100 6 139.8754499 0.059612517 

104 165 100 6 159.8256555 0.0834575 

105 165 100 6 179.7758269 0.089418775 

106 165 20 6 20.07967601 0.110400024 

107 165 20 6 40.39840131 0.201599976 

108 165 20 6 60.95618504 0.267200012 

109 165 20 6 79.60159261 0.334399963 

110 165 20 6 99.92031791 0.388799988 

111 165 20 6 119.7609629 0.454399963 

112 165 20 6 139.840648 0.508799988 

113 165 20 6 159.9203331 0.550399963 

114 165 20 6 180 0.584 

115 165 20 7 20.07967601 0.065599976 

116 165 20 7 40.15936113 0.168 

117 165 20 7 59.7609659 0.241599976 

118 165 20 7 79.60159261 0.307200012 

119 165 20 7 99.68127773 0.377599976 

120 165 20 7 119.5219227 0.427200012 

121 165 20 7 140.0796882 0.483200012 

122 165 20 7 160.3984135 0.521599976 

123 165 20 7 180 0.566399963 

124 165 20 9 20.07967601 0.084799927 

125 165 20 9 39.44224059 0.203200012 

126 165 20 9 60.00000608 0.299200012 

127 165 20 9 79.84063279 0.387200012 

128 165 20 9 100.1593581 0.473599976 
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129 165 20 9 119.7609629 0.536 

130 165 20 9 139.6015896 0.603200012 

131 165 20 9 160.3984135 0.667200012 

132 165 20 9 180 0.707199982 

133 165 20 11 19.84063583 0.145599976 

134 165 20 11 40.15936113 0.329599976 

135 165 20 11 60.00000608 0.465599976 

136 165 20 11 79.60159261 0.584 

137 165 20 11 99.92031791 0.673599976 

138 165 20 11 120.000003 0.747199982 

139 165 20 11 139.6015896 0.809599976 

140 165 20 11 160.1593551 0.84 

141 165 20 11 180 0.870399994 

 

2.4 ARTIFICIAL NEURAL NETWORK APPROACH (PROCEDURE)  

2.4.1 ANN ARCHITECTURE  

The ANN model developed for this study consists of an input layer, hidden layers, and 

an output layer. The input layer has three neurons, each representing one of the input 

parameters: run duration, instantaneous flux, and time. The output layer contains a single 

neuron corresponding to TMP. One or more hidden layers with varying numbers of 

neurons are used to capture the complex relationships between the inputs and the output. 

The optimal architecture, including the number of hidden layers and neurons, is 

determined through experimentation and validation [15][16][26]. 

 

Fig 2.4.1: Architecture of ANN Model 

2.4.2 TRAINING AND VALIDATION  

The ANN is trained by transmitting the input data into the network and judging the 

prediction error while tuning the weights. This is where the Levenberg–Marquardt (L-



20 
 

M) algorithm is used because of its effectiveness in solving nonlinear optimization 

problems [16][17][27]. The dataset is divided into training and validation as the training 

set to train the model and validation set to evaluate its performance. The model's 

performance is measured with metrics like Mean Squared Error (MSE) and R-squared 

value (R²) [15][28] 

2.5 EXPERIMENTAL PROCEDURE  

Under ultraviolet (UV) light, titanium dioxide (TiO₂) was used as a catalyst in an 

experiment meant to investigate the photocatalytic degradation of methyl orange (MO). 

To assess the impact of different operating settings on the degrading efficiency, a number 

of batch tests were carried out in a controlled laboratory environment. A 250 mL 

cylindrical glass reactor with a UV light source was used for all tests, which were 

conducted at room temperature to guarantee constant irradiation.  

TiO₂ powder (photocatalyst) was further placed into the mixture at the point of light 

application after weighing. Adsorption desorption equilibrium was reached, between 

dye molecules and surface of the catalyst, by stirring the slurry in dark for 0.5 h. Upon 

the equilibration period, the UV irradiation was turned on to initiate the photocatalytic 

reaction. Samples were withdrawn during irradiation at predetermined time intervals and 

immediately centrifuged or filtered to remove the TiO₂ particles. The photodegradation 

efficiency was calculated by taking ratio of breakdown of initial and final concentration 

of dye.  

• Dye concentration (0.1 - 1.0 μM)  

• pH (3 – 11)  

• Irradiation time (10 – 120 min)  

• Light intensity (3-165 mW/cm2) 
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CHAPTER 3              

 RESULTS 

 

 

3.1 OPTIMIZATION AND NUMBER OF NEURONS  

Through a rigorous trial and error process, we were able to discover the appropriate 

number of neurons to inhabit the hidden layer of the ANN. The performance of multiple 

network architectures trained, each with a different number of hidden layer neurons, was 

compared based on the model predicted Mean Squared Error (MSE). Considering the 

better prediction accuracy and generalization ability of the model for the TiO₂ catalyzed 

Methyl Orange photodegradation system, the model with 33 neurons was also chosen. 

The performance of a set of network topologies that we trained, with different number 

of neurons in the hidden layer, were evaluated using the Mean Squared Error (MSE) 

measured on the model predictions. With 33 neurons in the hidden layer, the model 

achieved its best performance, reducing the Mean Squared Error (MSE) to just 0.001438 

for the TiO₂-based degradation of methyl orange. This shows that the selected number 

of neurons helped improve accuracy and efficiency in predicting the breakdown process. 

 

Fig 3.1 : Impacts of Changing a Hidden Layer’s Neurons on the Study’s MSE of 

the ANN Model 
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3.2 DATA FITTING AND MODEL VALIDATION RESULTS  

Using 33 neurons, the ANN model could still make good predictions and helped improve 

how TiO₂ breaks down methyl orange. Figure 2 shows that the ANN’s predictions are 

very close to the real results, with an R² of 0.98, which means the model works well and 

can be trusted. An MSE of 0.001438 means the model predicted the efficiency of 

degradation very accurately, with only a small gap between expected and actual values. 

The independence of the ANN model in modeling the photocatalytic degradation process 

with TiO₂ is confirmed by the high R2 value, which is near 1. This value gives a great 

correlation between the predicted and experimental results. ANN has proven to be a 

reliable tool for accurately modeling and optimizing methyl orange degradation in 

various conditions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: Regression Analysis of ANN Model 
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3.3 EFFECT OF OPERATING PARAMETERS  

3.3.1 Effect of dye concentration     

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3.1: Effect of Dye Concentration in Presence of Catalyst vs Fraction 

Conversion of MO 

 

• Dye molecules may obstruct the TiO₂ active sites, decreasing catalytic 

performance; higher dye concentrations enhance solution color, restricting 

light penetration to the catalyst. 

• Low concentrations (20–40 μM) enhance the rate of reaction by allowing more 

light to activate the catalyst. 

• Light shielding and decreased active surface availability cause the conversion 

rate to decrease over 40 μM. 

 

3.3.2 Effect of light intensity 

• On the catalyst, the rate at which electron-hole pairs are generated is 

determined by the intensity of the light. 

• Degradation is accelerated by greater intensity (over 80 mW/cm²), which 

increases radical production. 
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• Poor conversion results from low intensity because it does not activate enough 

catalytic sites. 

• Without using too much energy, optimal intensity strikes a balance between 

energy input and deterioration yield. 

 

Fig 3.3.2: Effect of light intensity 

 

3.3.3 Effect of pH 

• The pH affects the surface charge and dye ionization of TiO₂. 

• The surface becomes positively charged at low pH (<5), which repels 

protonated MO. 

• Excess OH⁻ scavenges reactive radicals and decreases reaction efficiency at 

high pH values (>10). 

• The optimal pH range is 7–9, which is neutral to slightly basic and promotes 

maximal breakdown efficiency. 
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                                              Fig 3.3.3 Effect of pH  

 

3.3.4 Effect of reaction time  

• Because photocatalytic degradation is cumulative, more dye breakdown occurs 

over time. 

• Sustained radical production from prolonged exposure (100–160 min) increases 

conversion. 

• While very lengthy times provide declining results, very short times result in 

incomplete reactions. 

• According to the study, the ideal time-efficiency trade-off is between 120 and 

140 minutes. 
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CHAPTER 4        

 CONCLUSION 

 

In this report, ANN was used to see how well TiO₂ can remove methyl orange in 

different situations.We trained an ANN model with 33 hidden neurons and 141 data 

points. This produced a very good correlation between the actual and predicted data (R2 

= 0.98) and good predictive accuracy (relative mean square error 0.001438). 

Additionally, we discovered that while lower light intensity did not perform as well, 

higher light intensity (above 80 mW/cm2) increased the MO removal rate. Additionally, 

we observed that the degradation rate was enhanced by a decreased dye concentration, 

ranging from 20 to 40 μM.  

We did observe that excessively acidic or basic pH decreased effectiveness, and that the 

greatest results were obtained around neutral to basic pH values (pH 7–9). Additionally, 

we observed that the majority of the dye degraded during the first 100–160 minutes. To 

put it briefly, we created a model that demonstrated the various aspects that contribute 

to MO degradation, making it simple to choose the ideal treatment settings. Our method 

enhances the way we use photocatalysis to treat dye-contaminated water while saving 

time and effort in the lab.   
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