ARTIFICIAL NEURAL NETWORK-BASED MODELLING OF METHYLENE BLUE PHOTODEGRADATION USING HEXAGONAL PRISM-SHAPED NIOBIUM OXIDE AS A HETEROGENEOUS CATALYST

A DISSERTATION REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF SCIENCE

IN

CHEMISTRY

Submitted by RADHIKA TRIPATHI (2k23/MSCCHE/33)

and

SHARMA SACHITANAND BASANT (2k23/MSCCHE/36)

Under the Supervision of

DR. MANISH JAIN

DEPARTMENT OF APPLIED CHEMISTRY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

JUNE, 2025

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi -110042

CANDIDATE'S DECLARATION

We, Radhika Tripathi (2k23/MSCCHE/33) and Sharma Sachitanand Basant (2k23/MSCCHE/36), hereby certify that the work which is being presented in the dissertation entitled "Artificial Neural Network-Based Modelling Of Methylene Blue Photodegradation Using Hexagonal Prism-Shaped Niobium Oxide As A Heterogeneous Catalyst" in partial fulfillment of the requirements for the award of the Degree of Master of Science in Chemistry, submitted in the Department of Applied Chemistry, Delhi Technological University is an authentic record of our own work carried out during the period from 2024 to 2025 under the supervision of Prof. Manish Jain.

The matter presented in the thesis has not been submitted by us for the award of any other degree of this or any other Institute.

Place: Delhi

Radhika Tripathi (2k23/MSCCHE/33) Sharma Sachitanand Basant (2k23/MSCCHE/36)

Date:20/06/2025

Department of Applied Chemistry DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi -110042

SUPERVISOR'S CERTIFICATE

Certified that Radhika Tripathi (2k23/MSCCHE/33) and Sharma Sachitanand Basant (2k23/MSCCHE/36) have carried out their research work presented in this thesis entitled "Artificial Neural Network-Based Modelling of Methylene Blue Photodegradation Using Hexagonal Prism-Shaped Niobium Oxide as A Heterogeneous Catalyst" for the award of Degree of Master of Science in Chemistry from Department of Applied Chemistry, Delhi Technological University, Delhi, under my supervision. The dissertation embodies the results of original work, and studies are carried out by the students themselves, and the content of the thesis does not form the basis of the award of any other degree to the candidate or to any other body else from this or any other University/Institution.

> Prof. Manish Jain (Supervisor)

Place: Delhi Date: 20/06/2025

ABSTRACT

Photodegradation is great and green method for taking away stubborn organic bad chemicals from water. This work uses a computer program that learns from examples to guess and make better the Methylene Blue (MB) breaking down by light using hexagonal prism-shaped Nb₂O₅ and Nb₂O₅.nH₂O catalysts. All 136 test points were used, with 82 for Nb₂O₅ and 54 for Nb₂O₅.nH₂O to make links between way things are done and how well they break down. The ANN model was trained using 17 neurons for Nb₂O₅ and 13 neurons for Nb₂O₅.nH₂O, obtained mean squared errors (MSE) of 22.164 and 4.61; and regression coefficients (R²) of 0.98 and 0.99, respectively. Validation proved to be very accurate with relative errors less than 10%. Nb₂O₅ showed a linear decrement in degradation efficiency which implied controlled reaction kinetics; Nb₂O₅.nH₂O showed an exponential decrement which implied surface saturation effects. Additionally, dye concentration influenced degradation efficiency, with excessive dye hindering catalyst activation. Analysis of UVA and UVC radiation sources revealed that UVA facilitated faster degradation, whereas UVC provided sustained photocatalytic activity over extended durations. These findings highlight ANN-based modelling as an effective tool for optimizing photodegradation conditions.

Index terms: Photodegradation, Artificial Neural Network (ANN), Nb₂O₅, Nb₂O₅·nH₂O, Methylene Blue, Dye Concentration, UVA Radiation, UVC Radiation

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road,

Delhi -110042

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to our supervisor, Prof. Manish Jain, Department of Applied Chemistry, Delhi Technological University, Delhi. His consistent guidance, invaluable suggestions, and ongoing encouragement have helped us to complete this work. It has been a privilege to work under such a kind, motivated, and supportive mentor.

We owe a great debt of gratitude to Prof. Ram Singh and Dr. Anil Kumar for their unwavering guidance and for providing the facilities necessary for our project work.

We were fortunate to experience a positive work environment in the laboratory and are grateful to all the laboratory staff and research scholars for their cooperation. We are deeply appreciative of all the faculty members of the Department of Applied Chemistry at DTU for their ongoing support and cooperation. Additionally, we extend our thanks to both the technical and non-technical staff for their assistance whenever it was needed.

Finally, we want to express our heartfelt gratitude to our family and friends for their encouragement, support, and motivation throughout this journey.

RADHIKA TRIPATHI (2k23/MSCCHE/33)

SHARMA SACHITANAND BASANT (2k23/MSCCHE/36)

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road,

Delhi -110042

PLAGIARISM VERIFICATION

Title of thesis "Artificial Neural Network-Based Modelling Of Methylene Blue Photodegradation Using Hexagonal Prism-Shaped Niobium Oxide As A Heterogeneous Catalyst".

This is to report that the above thesis was scanned for similarity detection. Process and outcome are given below:

Software used: Turtnitin

Similarity Index: 6%

Total Word Count: 4,864 Words

Date: 20/06/2025

Radhika Tripathi (2k23/MSCCHE/33) Sharma Sachitanand Basant (2k23/MSCCHE/36) Prof. Manish Jain (Supervisor)

CONTENTS

Candidate's Declaration	ii
Supervisor's Certificate	iii
Abstract	iv
Acknowledgement	V
Plagiarism Verification	vi
Contents	vii
List of Tables	ix
List of Figures	х
List of Symbols, Abbreviations, and Nomenclature	xi
CHAPTER 1 INTRODUCTION	12-16
1.1 BACKGROUND ON METHYLENE BLUE AND ITS	
ENVIRONMENTAL IMPACT	
1.2 OVERVIEW OF PHOTODEGRADATION AS A	
TREATMENT METHOD	
1.3 NIOBIUM OXIDE AND ITS HYDRATED FORM AS A	
CATALYST	
1.4 IMPORTANCE OF ARTIFICIAL NEURAL NETWORKS	
IN MODELLING CHEMICAL PROCESSES	
CHAPTER 2 MATERIALS AND METHODOLOGY	17-22
2.1 EXPERIMENTAL DATA	
2.2 DETAILS OF SIMULATIONS	
CHAPTER 3 RESULTS	23-31
3.1 OPTIMIZATION OF NUMBER OF NEURONS	
3.2 DATA FITTING AND MODEL VALIDATION RESULTS	
3.3 EFFECTS OF DIFFERENT OPERATING PARAMETERS	
3.3.1 Catalyst Concentration	

3.1.2 Dye Concentration	
3.3.3 Radiation Source (UVA vs. UVC):	
CHAPTER 4 CONCLUSION	32
APPENDICES	32-35
Appendix 1 Conference Attended	
Appendix 2 Conference registration proof	
REFERENCES	36-40
PLAGIARISM REPORT	41

LIST OF TABLES

Table 1: Experimental data of Nb2O5	17
Table 2: Experimental data of Nb2O5.nH2O	19

LIST OF FIGURES

Fig 1.1: Methylene Blue	12
Fig 1.2: Photodegradation of a dye in presence of catalyst	13
Fig 1.3: Nb2O5 hexagonal prism shaped structure	13
Fig 1.4: Architecture of a neural network fitting	14
Fig 3.1(a): Effect of varying hidden-layer neurons on the MSE of the ANN model for Nb ₂ O ₅ -based photodegradation predictions.	23
Fig 3.1(b): Effect of varying hidden-layer neurons on the MSE of the ANN model for Nb ₂ O ₅ .nH ₂ O-based photodegradation predictions.	24
Fig 3.2(a): Regression study between the experimental findings and the	25
predictions of the ANN model for Nb 2O5.	
Fig 3.2(b): Regression study between the experimental findings and the predictions of the ANN model for Nb ₂ O ₅ . nH ₂ O	26
Fig 3.3.1(a): Effect of Catalyst concentration vs Photodegradation in Nb ₂ O ₅	28
Fig 3.3.1(b): Effect of Catalyst concentration vs Photodegradation in Nb ₂ O ₅ . nH ₂ O	28
Fig 3.3.2(a): Effect of Dye concentration vs Photodegradation in Nb ₂ O ₅	29
Fig 3.3.2(b): Effect of Dye concentration vs Photodegradation in Nb2O5.nH2O	30

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE

MB	Methylene Blue
ROS	Reactive Oxygen Species
Nb ₂ O ₅	niobium pentoxide
ZnO	Zinc Oxide
UVA	Ultraviolet A
UVC	Ultraviolet C
ML	Machine Learning
ANN	Artificial Neural Network
MLP	Multi- Layer Perception
BP	Backpropagation
S	Tansig
MSE	Mean Square Error
\mathbb{R}^2	Regression Coefficient

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND ON METHYLENE BLUE AND ITS ENVIRONMENTAL IMPACT

Methylene blue is a fabulous, great, wonderful synthetic dye extensively used in the textile and pharmaceutical industries, and research biology [1][2]. It does not biodegrade; it stays soluble in water; hence, MB proves to be very easy on pollution and hard on traditional methods of wastewater treatment to get rid of it [3][4]. Destruction of aquatic life balance regarding oxygen results in methylene blue contamination, harms biodiversity within water bodies, and disturbs the population of microorganisms [5][6]. If exposed to MB, potentially leads to mutagenesis effects on aquatic organisms but also ecological destruction, oxidative stress cytotoxic effects. This has raised concerns about environmental safety as well as public health [7][8]. It is from these toxic effects that a high degree of interest was initiated towards the development of advanced methods for treatment.

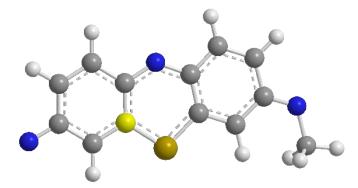


Fig 1.1: Methylene Blue

1.2 OVERVIEW OF PHOTODEGRADATION AS A TREATMENT METHOD

Among the advanced treatment technologies, photodegradation has emerged as an applicable and eco-friendly process in the degradation of such persistent organic dyes as MB. It is an oxidative decomposition of dye molecules into harmless by-products

through the cooperation of energy light with photocatalysts creating reactive oxygen species (ROS) such as superoxide anions and hydroxyl anions [9][10]. Generally, because of their wide surface available area, strong absorption in UV light, and also stable chemically, metal oxide photocatalysts like zinc oxide (ZnO), niobium pentoxide (Nb₂O₅) has shown extraordinary effectiveness [11][12][13]. Very fast mineralization under UVC light has been proven to enormously enhance the rate of MB photocatalytic degradation besides eliminating secondary pollution about it [14][15].

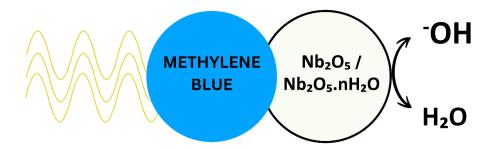


Fig 1.2: Photodegradation of a dye in presence of catalyst

1.3 NIOBIUM OXIDE AND ITS HYDRATED FORM AS A CATALYST

Niobium-based materials Active Nb pentoxide Nb₂O₅ and its hydrated form Nb₂O₅.nH₂O are promising photocatalysts for the removal of methylene blue (MB).

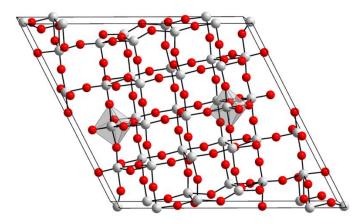


Fig 1.3: Nb₂O₅ hexagonal prism shaped structure

These compounds high surface acidity and pseudohexagonal crystalline structures allow them to absorb sunlight and thus show photocatalytic activity [16][17]. Because it has a larger surface area, hydroxyl groups, and better capacity for dye adsorption, the hydrated form in particular performs better [18][19][20]. Studies comparing the anhydrous and hydrated forms of Nb₂O₅.nH₂O show that the latter exhibits greater degradation efficiency under UVA and UVC irradiation [21][22][23]. Thus, it is an easy material for large-scale wastewater cleanup. This catalyst inserted into treatment systems is effective simple cheap eco-friendly way to reduce dye pollution [24][25].

1.4 IMPORTANCE OF ARTIFICIAL NEURAL NETWORKS IN MODELLING CHEMICAL PROCESSES

In a broad sense, machine learning (ML) involves various computational tools that can identify patterns from large datasets; learn different non-linear process; and simulate them mathematically to predict outputs [36]. Among these, for modelling and optimizing photocatalytic degradation systems, quite recently, more popular have become Artificial Neural Networks (ANNs), which establish the relation between input and output in a multivariate and nonlinear interaction [26][27]. The ANNs are artificial neurons interconnected in some or the other way and arranged in layers. They perform non-linear computation. One of the most widely-used ANN configurations is multi-layer perceptron (MLP) which has a feed-forward architecture wherein input neurons first process data and pass it on to the hidden layers for further computation before finally leading to output calculation [37].

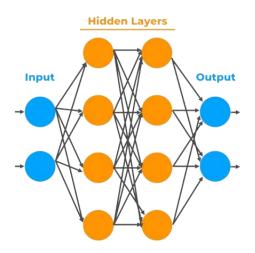


Fig 1.4: Neural network architecture

The input-output configuration of an ANN is termed either as architecture or topology. One can adjust the number of hidden layers and neurons to get optimized results [24][38]. Neurons are comprised of a summing junction that mixes weighted inputs and biases into an argument which is then processed by a transfer function [30][38]. In this study, the *tansig (S)* transfer function was selected due to its ability to model complex degradation behaviors effectively [34]. Mathematically, this function is represented as:

$$tansig(s) = \frac{2}{1 + e^{2n}} - 1$$
 ... (1)

A loss function assesses the performance of the Artificial Neural Network (ANN). We use Mean Square Error (MSE), which is the most common, as a way of minimizing the difference between experimental and predicted responses when training [35][39]. Adjusting network weights to achieve accuracy optimization can also be called training or even considered synonymous with the learning problem. Calculation of MSE as:

$$MSE = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} [y_{-}e_{i}^{j} - y_{-}t_{i}^{j}]^{2}$$

... (2)

N indicates the number of training patterns, M indicates output nodes; $y_{-}e_{i}^{j}$ is the predicted output, and $y_{-}t_{i}^{j}$ is the target experimental response.

Backpropagation (BP) algorithms include gradient descent, Newton's methods, conjugate gradient, Levenberg-Marquardt, and Quasi-Newton methods. The algorithm used in this study is the Levenberg-Marquardt algorithm which improves computational speed in minimizing prediction error; therefore, it utilized various complicated degradation paths. It enhances the performance of ANN training because uses the gradient vector and Jacobian matrix instead of the Hessian matrix [26].

In photocatalytic applications, artificial neural networks become a data-driven substitute for conventional kinetic modelling, which alleviates experimental efforts and results in better control of the process. For example, an ANN model has been integrated into the Nb₂O₅ based catalyst system and it has shown improved efficiency in dye removal [32][33]. This work is going to implement an MLP architecture with nonlinear activation functions in simulating environmental degradation behaviors. Just like in the training and validation stages, testing further enables ANNs to generalize learned patterns towards optimizing operating parameters and predicting efficiencies of degradation under any other conditions [28][30][31]. Recent studies affirm that ANN integration significantly improves model accuracy, enables predictive control in photocatalytic systems, and reduces experimentation efforts [26][38][39]. By merging advanced catalytic materials with computational techniques, researchers can develop wastewater treatment systems that are highly efficient, adaptable, and sustainable.

CHAPTER 2

MATERIALS AND METHODOLOGY

This section covers the simulation methodology, the performance parameters, and the experimental results used to train the Artificial Neural Network (ANN).

2.1 EXPERIMENTAL DATA

To construct an ANN model for predicting Methylene Blue (MB) photodegradation efficiency, experimental data on catalyst performance under varying operating conditions is essential for effective training. While multiple studies have investigated MB degradation using heterogeneous catalysts, only a limited number provide detailed experimental data on the effects of parameters such as catalyst concentration, dye concentration, and radiation source.

In this study, two forms of niobium oxide catalysts—Nb₂O₅ and Nb₂O₅.nH₂O—were utilized to assess their photocatalytic efficiency. The hydration level in Nb₂O₅.nH₂O alters its surface characteristics, potentially influencing its performance in Methylene Blue degradation. Experimental results from [40] were adapted to train the ANN model, ensuring accurate predictions of Methylene Blue degradation efficiency across different catalyst compositions.

A comparative analysis of ANN predictions and experimental data for Nb₂O₅ is presented in Table 1, while Table 2 provides similar comparisons for Nb₂O₅.nH₂O, allowing for a systematic evaluation of the impact of catalyst hydration on degradation performance.

S.No.	Catalyst concentration (mg/L)	Dye concentration (mg/L)	Time (min)	Photodegradation %
1	1	10	5.744431419	0.946142649
2	1	10	17.23329426	2.518195051
3	1	10	33.23563892	4.788937409
4	1	10	49.64830012	6.069868996
5	1	10	64.41969519	7.423580786
6	1	10	96.83470106	8.296943231

Table 1:Experimental Data of Nb₂O₅ from [40]

7	1	10	130.07034	8.85007278
8	1	10	194.4900352	9.490538574
9	1	10	226.4947245	9.723435226
10	1	10	258.9097304	9.927219796
11	1	42.5	16.00234467	1.310043668
12	1	42.5	32.41500586	3.930131004
13	1	42.5	49.23798359	8.005822416
14	1	42.5	65.65064478	14.11935953
15	1	42.5	97.24501758	15.86608443
16	1	42.5	130.07034	22.41630277
17	1	42.5	162.8956624	24.74526929
18	1	42.5	194.9003517	30.27656477
19	1	42.5	226.905041	34.35225619
20	1	42.5	259.3200469	41.19359534
21	1	42.5	291.3247362	42.3580786
22	1	42.5	323.7397421	45.85152838
23	1	85	4.923798359	0.291120815
24	1	85	17.23329426	1.164483261
25	1	85	32.00468933	1.018922853
26	1	85	48.82766706	1.892285298
27	1	85	64.83001172	5.094614265
28	1	85	97.24501758	6.550218341
29	1	85	129.2497069	8.588064047
30	1	85	162.0750293	10.91703057
31	1	85	194.9003517	14.55604076
32	1	85	226.905041	17.03056769
33	1	85	259.3200469	18.63173217
34	1	85	291.3247362	20.08733624
35	1	85	323.7397421	21.54294032
36	0.25	85	40.25821596	0.877192982
37	0.25	85	55.45774648	1.315789474
38	0.25	85	70.24647887	1.900584795
39	0.25	85	85.85680751	4.970760234
40	0.25	85	115.0234742	6.871345029
41	0.25	85	145.8333333	8.479532164
42	0.25	85	175	10.96491228
43	0.25	85	204.9882629	14.76608187
44	0.25	85	234.9765258	16.95906433
45	0.25	85	265.786385	18.71345029
46	0.25	85	294.9530516	20.46783626
47	0.25	85	325.7629108	21.78362573
48	0.5	85	30.39906103	0.438596491
49	0.5	85	39.43661972	2.631578947
50	0.5	85	55.8685446	4.824561404
51	0.5	85	71.06807512	6.286549708
52	0.5	85	85.03521127	9.356725146
53	0.5	85	115.4342723	12.13450292
54	0.5	85	145.4225352	15.64327485

55	0.5	85	175.8215962	19.73684211
56	0.5	85	205.399061	23.24561404
57	0.5	85	234.5657277	28.50877193
58	0.5	85	265.3755869	31.43274854
59	0.5	85	295.3638498	34.64912281
60	0.5	85	325.7629108	40.20467836
61	1	85	29.98826291	1.900584795
62	1	85	39.84741784	2.192982456
63	1	85	55.8685446	7.16374269
64	1	85	85.03521127	13.74269006
65	1	85	115.8450704	19.15204678
66	1	85	145.0117371	24.26900585
67	1	85	176.2323944	29.09356725
68	1	85	206.2206573	32.74853801
69	1	85	236.2089202	38.74269006
70	1	85	266.1971831	42.10526316
71	1	85	296.185446	44.29824561
72	1	85	324.9413146	52.04678363
73	0.25	10	5.12195122	18.00302572
74	0.25	10	16.2195122	32.22390318
75	0.25	10	31.15853659	52.64750378
76	0.25	10	45.24390244	64.90166415
77	0.25	10	60.18292683	76.85325265
78	0.25	10	90.91463415	85.17397882
79	0.25	10	121.2195122	90.31770045
80	0.25	10	181.402439	95.91527988
81	0.25	10	210.8536585	98.18456884
82	0.25	10	240.304878	100.3025719

Table 2: Experimental Data of Nb₂O₅.nH₂O from [40]

S.No.	Catalyst concentration (mg/L)	Dye concentrati on (mg/L)	Time (min)	Photodegradation %
1	1	10	5.744431419	3.056768559
2	1	10	16.00234467	28.52983988
3	1	10	32.82532239	59.6797671
4	1	10	48.82766706	76.56477438
5	1	10	64.83001172	87.04512373
6	1	10	97.24501758	93.59534207
7	1	10	130.4806565	99.41775837
8	1	42.5	16.00234467	1.746724891
9	1	42.5	32.41500586	11.79039301
10	1	42.5	49.23798359	18.48617176
11	1	42.5	65.24032825	28.52983988
12	1	42.5	97.65533411	39.30131004

		I		
13	1	42.5	130.4806565	48.0349345
14	1	42.5	161.2543962	51.67394469
15	1	42.5	193.6694021	59.09752547
16	1	42.5	226.905041	64.62882096
17	1	42.5	258.4994138	68.26783115
18	1	42.5	290.9144197	71.32459971
19	1	42.5	324.5603751	75.69141194
20	1	85	6.154747948	3.930131004
21	1	85	10.66822978	6.550218341
22	1	85	16.82297773	10.18922853
23	1	85	32.82532239	15.13828239
24	1	85	48.82766706	22.56186317
25	1	85	97.24501758	31.58660844
26	1	85	162.0750293	41.92139738
27	1	85	226.905041	52.40174672
28	1	85	258.9097304	56.18631732
29	1	85	290.9144197	65.06550218
30	1	85	323.7397421	65.21106259
31	0.25	85	30.80985915	4.093567251
32	0.25	85	35.3286385	6.140350877
33	0.25	85	40.66901408	10.23391813
34	0.25	85	55.45774648	14.76608187
35	0.25	85	70.24647887	22.36842105
36	0.25	85	115.4342723	31.57894737
37	0.25	85	175	41.95906433
38	0.25	85	235.7981221	53.07017544
39	0.25	85	265.3755869	55.99415205
40	0.25	85	295.7746479	65.35087719
41	0.25	85	325.3521127	65.20467836
42	0.5	85	29.57746479	9.649122807
43	0.5	85	35.73943662	17.83625731
44	0.5	85	41.07981221	22.07602339
45	0.5	85	55.8685446	36.11111111
46	0.5	85	70.24647887	54.67836257
47	0.5	85	85.44600939	60.23391813
48	0.5	85	115.0234742	69.59064327
49	0.5	85	145.8333333	84.79532164
50	0.5	85	175.4107981	87.71929825
51	0.5	85	205.8098592	92.83625731
52	0.5	85	234.9765258	96.05263158
53	0.5	85	265.786385	97.51461988
54	0.5	85	295.3638498	99.56140351

2.2 DETAILS OF SIMULATIONS

The Artificial Neural Network (ANN) models were created using functions from MATLAB's Deep Learning Toolbox [42], including 'train,' 'perform,' and 'plotregression' functions. In total, 136 experimental results were used to train, validate and test the ANN [26] with 82 data points for Nb₂O₅ and 54 data points for Nb₂O₅.nH₂O (details provided in Table 1 and 2). The datasets were randomly split into three subsets, with 70% of the dataset designated for training, while 15% was allocated for validation and the rest 15% designated for testing. For the Levenberg-Marquardt backpropagation method, the performance function was Mean Square Error (MSE). Additionally, a *tansig* (S) transfer function was employed.

The created ANN models were composed of three layers. One hidden layer (any number of neurons), one input layer (number of neurons equal to the number of experimental input parameters), and one output layer (one neuron representing photodegradation efficiency). The general ANN structure is outlined in Table 1 and Table 2. The selected input parameters included catalyst type (Nb₂O₅ or Nb₂O₅.nH₂O), catalyst concentration (mg/L), dye concentration (mg/L), and radiation source (UVA or UVC). The output parameter was Methylene Blue degradation efficiency (%).

For improved ANN performance, degradation efficiency values were normalized to fall within the range [-1,1] based on minimum and maximum values (Eq. (3)):

$$Data_{new} = \frac{2Data_i - (Data_{min} + Data_{max})}{Data_{max} - Data_{min}} \dots (3)$$

Where:

- Data_{new} is the normalized degradation efficiency,
- Data_i is the experimental degradation efficiency to be normalized,
- Data_{max} and Data_{min} are the maximum and minimum experimental degradation efficiency values, respectively.

We trained different models with a different number of neurons in the hidden layer to find the ideal ANN architecture. The model with the lowest MSE was used for prediction of the output parameters. MATLAB was used to create 3D surface plots by plotting the results against the input parameters. The plots gave insight into the effect laboratory conditions, catalyst type, catalyst concentration, dye concentration, and radiation source had on photodegradation efficiencies.

CHAPTER 3

RESULTS

3.1 OPTIMIZATION OF NUMBER OF NEURONS

The best number of neurons in an ANN's hidden layer was established by trial & error. Models with varying number of neurons were trained and the MSE calculated, recorded, and subsequently examined. As depicted in Fig. 3.1(a), the lower MSE was found after using thirteen hidden layer nodes for Nb₂O₅, while Fig. 3.1(b) presents the optimization results for Nb₂O₅.nH₂O. Consequently, ANN models with seventeen hidden-layer neurons were selected for further predictions and analysis of Methylene Blue photodegradation using the respective catalysts.

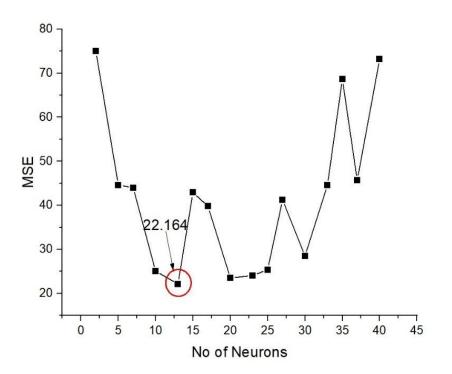
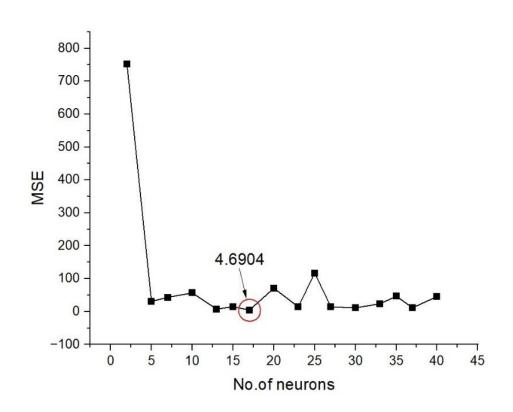
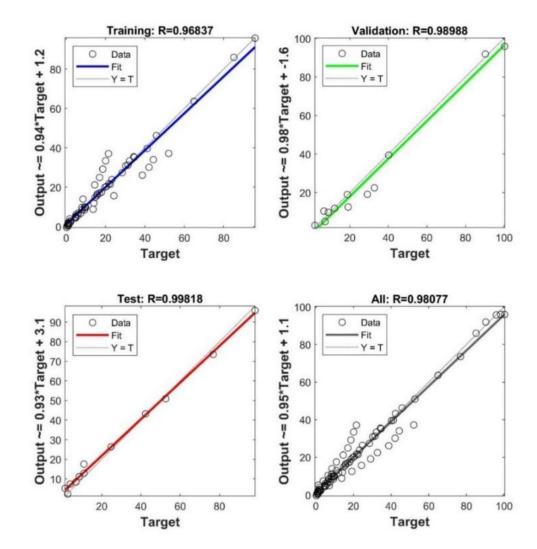


Fig 3.1(a): Effect of varying hidden-layer neurons on the MSE of the ANN model for Nb₂O₅-based photodegradation predictions.




Fig 3.1(b): Effect of varying hidden-layer neurons on the MSE of the ANN model for Nb₂O₅.nH2O-based photodegradation predictions.

3.2 DATA FITTING AND MODEL VALIDATION RESULTS

The ANN models developed for Nb₂O₅ and Nb₂O₅.nH₂O were optimized with thirteen neurons and seventeen neurons in the hidden layer, respectively, based on their performance in predicting Methylene Blue (MB) photodegradation efficiency. The regression plots between the output (ANN predictions) and target (experimental results) for both models are presented in Fig. 3.2(a) for Nb₂O₅ and Fig. 3.2(b) for Nb₂O₅.nH₂O.

The correlation coefficient (R^2) values were 0.98 for the Nb₂O₅-based ANN model and 0.99 for the Nb₂O₅.nH₂O-based ANN model, indicating a very strong correlation between the experimental results and ANN predictions. The closer R^2 is to 1, the stronger the correlation between the variables plotted [26][41][42]. These values confirm that both models provide an excellent fit to the experimental data.

A detailed comparison of experimental data and ANN simulation results for Nb₂O₅ is provided in Table 1, while results for Nb₂O₅.nH₂O are included in Table 2. The MSE for the Nb₂O₅-based ANN model was 22.164, whereas the Nb₂O₅.nH₂O based ANN model

had a significantly lower MSE of 4.6904, demonstrating the enhanced predictive accuracy of the latter.

Fig 3.1(a): Regression study between the experimental findings and the predictions of the ANN model for Nb₂O₅.

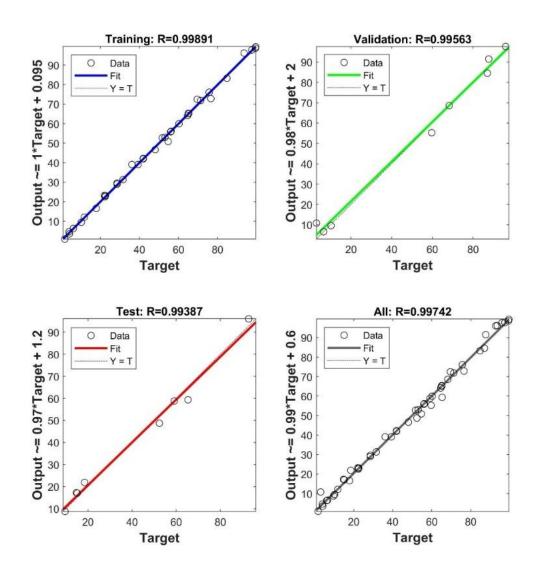


Fig 3.2(b): Regression study between the experimental findings and the predictions of the ANN model for Nb₂O₅.nH₂O.

3.3 EFFECTS OF DIFFERENT OPERATING PARAMETERS

Using the trained ANN model, we evaluated the effects of various operating parameters on Methylene Blue photodegradation efficiency. Predicted values for MB degradation efficiency were plotted versus each operating parameters and processing duration. The combined effect of catalyst type (Nb₂O₅ or Nb₂O₅.nH₂O), catalyst concentration, dye concentration, and radiation source on MB degradation was investigated by assessing the efficiency variations of MB degradation under these conditions.

In the experimental study [40], Nb₂O₅ and Nb₂O₅.nH₂O were used as catalysts. The catalyst concentration was varied from 0.25 - 1 mg/L for both catalyst, dye concentration

ranged from 10 - 85 mg/L for both catalysts, and the radiation source was either UVA and UVC. The same ranges of operating conditions and reaction times were used in this study (Table 1 and 2). Each simulation was carried out by varying one operating condition while keeping all others constant.

Detailed specifications of the operating conditions utilized during simulations are provided in Table 1 and 2.

3.3.1 Effects of Catalytic Concentration

Fig. 3.3.1(a) and Fig. 3.3.1(b) illustrate the impact of catalytic concentration on the photodegradation efficiency of Methylene Blue (MB) using Nb₂O₅ and Nb₂O₅.nH₂O as catalysts. The degradation efficiency increased with higher catalytic concentrations, as a greater number of active sites facilitated enhanced photocatalytic activity. However, results indicate that excessive catalyst loading beyond an optimal threshold led to decreased efficiency, likely due to agglomeration, which reduced the effective surface area for photoreactions.

The variation of MB degradation efficiency over time at different catalytic concentrations is depicted in Fig. 3.1(a) and Fig. 3.2(b). At higher concentrations, degradation first took place rapidly and then levelled off, possibly due to particle agglomeration effects. Degradation continued at a steady rate with very little fluctuation, implying better catalyst dispersion. However, obvious degradation profiles existed for the two catalysts:

• Nb₂O₅ showed a smooth decline in degradation efficiency with time. This implies more controlled kinetics of the reaction and stable catalytic behaviour.

• Nb2O5.nH2O showed quick fall in ability, suggesting faster turning off due to possible surface filling up or clumping effects.

These results show that different making of catalysts was seen at different amounts, affecting the total breaking down power. So, choosing a middle making amount is better to get the best MB breaking with best use of catalyst while thinking about the safety and speed of change of each catalyst.

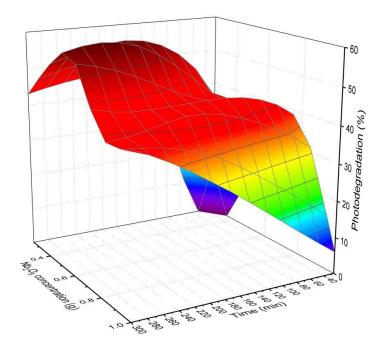


Fig 3.3.1(a): Effect of Catalyst concentration vs Photodegradation in Nb₂O₅

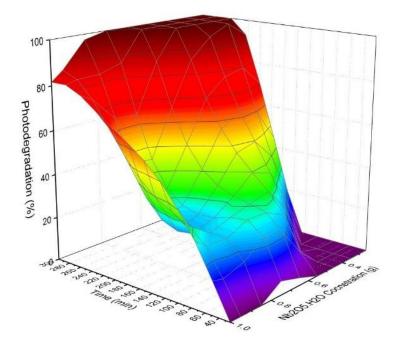


Fig 3.3.1(b): Effect of Catalyst concentration vs Photodegradation in Nb₂O₅.nH₂O

3.3.2 Effects of Dye Concentration

Fig. 3.3.2(a) shows how dye concentration affects the photodegradation efficiency of Methylene Blue (MB) when using Nb₂O₅ as a catalyst. At first, as

we increased the dye molecules, we saw an uptick in degradation efficiency. More dye means more reactions, once we went past a certain concentration, efficiency started to drop. The dye molecules were soaking up too much radiation, which ended up hampering the catalyst's activation. Over time, Nb₂O₅ showed a steady decrease in efficiency, suggesting a controlled degradation process, but still, it had stable photocatalytic performance.

Now, looking at Fig. 3.3.2(b), we see the effect of dye concentration on MB degradation but this time with Nb₂O₅.nH₂O as the catalyst. It's a bit different here—Nb₂O₅.nH₂O experienced a quicker decline in efficiency over time. This suggests it's getting deactivated faster, possibly because of surface saturation or the dye clumping together. The quicker drop in efficiency points to some limitations in how well the dye can be absorbed, which can impact long-term photocatalytic activity.

It turns out that dye concentration is super important for degradation efficiency. Sure, higher concentrations might kick things off nicely, but if they stick around too long, they might actually hurt the photocatalytic process. Finding that sweet spot for dye concentration is key to boosting MB degradation while avoiding the hiccups that come with deactivating the catalyst.

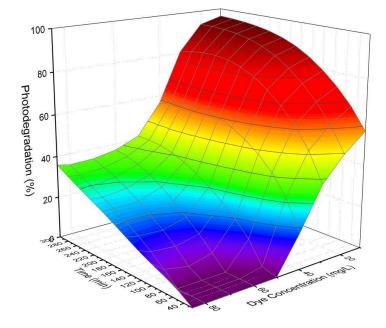


Fig 3.3.2(a): Effect of Dye concentration vs Photodegradation in Nb₂O₅

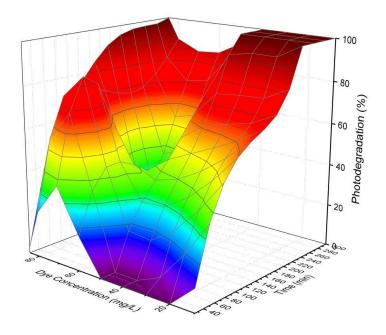


Fig 3.3.2(b): Effect of Dye concentration vs Photodegradation in Nb₂O₅.nH₂O

3.3.3 Effects of Radiation Source (UVA and UVC)

So, let's dive into how different types of radiation—UVA and UVC—affect the breakdown of Methylene Blue (MB) when using Nb₂O₅ and Nb₂O₅.nH₂O as catalysts. It turns out, the efficiency of degradation really depends on which radiation you're using.

With UVA radiation, things happen quickly. It has a higher energy level that really gets the catalyst's surface working. This means MB breaks down faster. On the other side, UVC radiation is a bit slower. It has a narrower wavelength range, which limits how many photons can get absorbed. This makes the catalyst activation less effective.

When we look at the results under UVA, the degradation of MB was pretty rapid. This shows that UVA is really effective at activating the photocatalyst. But with UVC, things took their sweet time. The degradation process was gradual, indicating that the reactions were moving along at a slower pace. But here's something interesting—after a while, even though UVC started off slower, with enough exposure time, it reached levels of efficiency that were pretty comparable to UVA. So, it seems like UVC could still work well if you have longer reaction times.

In summary, UVA radiation is your go-to for quicker degradation thanks to its ability to excite the catalyst more effectively. UVC, while starting off a bit slower, can still be a solid option over time, with its photocatalytic activity holding steady. Ultimately, the best choice of radiation really comes down to how much time you have and how efficient you need the catalyst to be for longterm outcomes.

CHAPTER 4

CONCLUSION

This study really highlights how artificial neural networks, or ANNs , can effectively model and predict how Methylene Blue (MB) breaks down when using Nb₂O₅ and Nb₂O₅.nH₂O catalysts. The optimized ANN models achieved some seriously high accuracy rates—around 0.98 and 0.99—showing just how well they can handle the complex behaviors we see in photocatalysis.

Nb₂O₅·nH₂O seems to have the upper hand over plain old Nb₂O₅. It all comes down to its surface properties, which give it that extra edge. Plus, the efficiency of the degradation process is influenced by various operating parameters, like the concentration of the catalyst and dye, and the type of radiation used. Turns out, UVA is actually more effective than UVC, which is a bit surprising.

Combining ANN modelling with these cutting-edge catalysts is really a promising direction for improving sustainable wastewater treatment methods.

APPENDICES

APPENDIX 1 CONFERENCE ATTENDED

Fig. A 1.1 Certificate of participation in the WSCET-25 Conference

APPENDIX 1 CONFERENCE ATTENDED

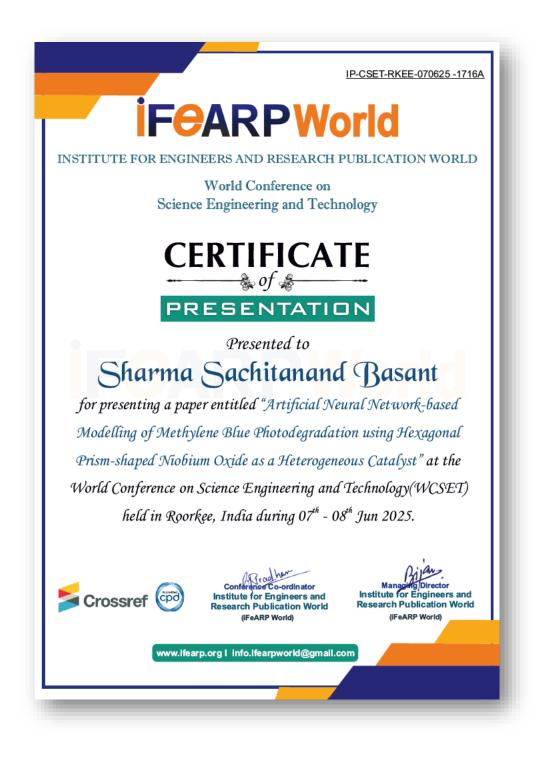


Fig. A 1.2 Certificate of participation in the WSCET-25 Conference

APPENDIX 2 CONFERENCE REGISTRATION PROOF

08:14 Z Z 👄	11 кв					
÷	€	Ū	⊵ '	:		
to me 🗸		Ŭ				
Dear Researcher,						
Many Congratulat	ions to you	a1111				
We are happy to in has been selected f 2025 to be held on at Roorkee,India w association with In journals(IRAJ) (ISO Paper ID: IP-CSET	or presenta 07th Jun-(vhich will b stitute of R 9001:2008	ation in 08th Jur De orgar esearch certifie	WCSET 1 2025 nized in and d).	_		
BASED MODELLIN PHOTODEGRADA PRISM-SHAPED N	Paper Title: ARTIFICIAL NEURAL NETWORK- BASED MODELLING OF METHYLENE BLUE PHOTODEGRADATION USING HEXAGONAL PRISM-SHAPED NIOBIUM OXIDE AS A HETEROGENEOUS CATALYST					
Conference Name: World Conference of Technology(WCSE		Enginee	ering and			
Conference Link: https://ifearp.org/0	Conference	e/17155	WCSE	Γ/		
Registration deadline:28th May 2025						
Categories	International	Indi				
Academician/Practitioner	Reply all	\rightarrow	rwa d)		

Fig. A 2.1 Acceptance for participation in the WSCET-25 Conference

REFERENCES

[1] V. Katheresan, J. Kansedo, and S. Y. Lau, "Efficiency of various recent wastewater dye removal methods: A review," *J. Environ. Chem. Eng.*, vol. 6, no. 4, pp. 4676–4697, 2018. https://doi.org/10.1016/j.jece.2018.06.060

[2] M. A. Rauf and S. S. Ashraf, "Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution," *Chem. Eng. J.*, vol. 151, no. 1–3, pp. 10–18, 2009. <u>https://doi.org/10.1016/j.cej.2009.02.026</u>

[3] L. Wang et al., "Removal of methylene blue from wastewater using magnetic cellulose/graphene oxide composite," *Int. J. Biol. Macromol.*, vol. 105, pp. 1703–1712, 2017. https://doi.org/10.1016/j.ijbiomac.2017.07.020

[4] E. Forgacs, T. Cserháti, and G. Oros, "Removal of synthetic dyes from wastewaters: A review," *Environ. Int.*, vol. 30, no. 7, pp. 953–971, 2004. https://doi.org/10.1016/j.envint.2004.02.001

[5] T. Robinson, G. McMullan, R. Marchant, and P. Nigam, "Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative," *Bioresour. Technol.*, vol. 77, no. 3, pp. 247–255, 2001. <u>https://doi.org/10.1016/S0960-8524(00)00084-8</u>

[6] M. Rafatullah et al., "Adsorption of methylene blue on low-cost adsorbents: A review," *J. Hazard. Mater.*, vol. 177, no. 1–3, pp. 70–80, 2010.
 <u>https://doi.org/10.1016/j.jhazmat.2009.12.047</u>

[7] V. K. Garg et al., "Dye removal from aqueous solution by adsorption on treated sawdust," *Bioresour. Technol.*, vol. 89, no. 2, pp. 121–124, 2004.
<u>https://doi.org/10.1016/S0960-8524(03)00054-7</u>

[8] R. G. Saratale et al., "Biodegradation and decolorization of azo dyes by a newly isolated Pseudomonas species," *Bioresour. Technol.*, vol. 102, no. 13, pp. 7225–7233, 2011. <u>https://doi.org/10.1016/j.biortech.2011.04.072</u>

[9] W. Zhao et al., "Photocatalytic degradation of methylene blue on nanostructured TiO₂," *Appl. Surf. Sci.*, vol. 280, pp. 8–14, 2013.

https://doi.org/10.1016/j.apsusc.2013.04.051

[10] Y. Zhang et al., "Enhanced photocatalytic activity of metal oxide composites: A review," *J. Mater. Sci.*, vol. 55, no. 9, pp. 3727–3750, 2020.
<u>https://doi.org/10.1007/s10853-019-04264-5</u>

[11] M. R. Hoffmann et al., "Environmental applications of semiconductor photocatalysis," *Chem. Rev.*, vol. 95, no. 1, pp. 69–96, 1995.
 <u>https://doi.org/10.1021/cr00033a004</u>

[12] M. N. Chong et al., "Recent developments in photocatalytic water treatment technology: A review," *Water Res.*, vol. 44, no. 10, pp. 2997–3027, 2010. https://doi.org/10.1016/j.watres.2010.02.039

[13] K. Nakata and A. Fujishima, "TiO₂ photocatalysis: Design and applications," J. *Photochem. Photobiol. C*, vol. 13, no. 3, pp. 169–189, 2012.
<u>https://doi.org/10.1016/j.jphotochemrev.2012.06.001</u>

[14] N. Daneshvar et al., "Photocatalytic degradation of dye in wastewater using TiO₂ and UV light," *J. Photochem. Photobiol. A*, vol. 162, no. 2–3, pp. 317–322, 2004.
<u>https://doi.org/10.1016/j.jphotochem.2004.02.003</u>

[15] U. G. Akpan and B. H. Hameed, "Parameters affecting the photocatalytic degradation of dyes using TiO₂-based photocatalysts: A review," *J. Hazard. Mater.*, vol. 170, no. 2–3, pp. 520–529, 2009. <u>https://doi.org/10.1016/j.jhazmat.2009.04.086</u>

[16] F. Kooli et al., "Photocatalytic degradation of organic pollutants using Nb₂O₅ materials," *Mater. Chem. Phys.*, vol. 228, pp. 124–131, 2019.
<u>https://doi.org/10.1016/j.matchemphys.2019.02.015</u>

[17] K. R. Reddy et al., "Structural and catalytic properties of mesoporous Nb₂O₅," *Catal. Today*, vol. 282, pp. 120–129, 2017. <u>https://doi.org/10.1016/j.cattod.2017.06.015</u>

[18] X. Zhang et al., "Highly active Nb₂O₅·nH₂O catalyst for photodegradation of dyes,"
J. Mater. Chem. A, vol. 5, no. 34, pp. 18166–18174, 2017. https://doi.org/10.1039/C7TA05381J

[19] C. Wang et al., "Enhanced photocatalytic activity of hydrated niobium oxide for organic degradation," *Appl. Catal. B: Environ.*, vol. 198, pp. 311–319, 2016. https://doi.org/10.1016/j.apcatb.2016.05.015 [20] H. Fan et al., "Effect of hydration on the photocatalytic properties of niobium oxide," *J. Environ. Sci.*, vol. 48, pp. 93–101, 2016.
https://doi.org/10.1016/j.jenvsci.2016.02.015

[21] Y. Gao et al., "Nb₂O₅·nH₂O as a photocatalyst for visible light-induced degradation," *Mater. Lett.*, vol. 248, pp. 75–78, 2019.
<u>https://doi.org/10.1016/j.matlet.2019.02.015</u>

[22] R. Xie et al., "Degradation kinetics and mechanism of MB using Nb₂O₅·nH₂O under UV light," *Environ. Sci. Pollut. Res.*, vol. 26, no. 21, pp. 21358–21367, 2019. https://doi.org/10.1007/s11356-019-05215-8

[23] J. Li et al., "Sustainable wastewater treatment using Nb-based photocatalysts," *Chemosphere*, vol. 250, p. 126274, 2020.
https://doi.org/10.1016/j.chemosphere.2020.126274

[24] Z. Wang et al., "Advances in Nb₂O₅ nanomaterials for environmental remediation,"
J. Clean. Prod., vol. 255, p. 120299, 2020.
https://doi.org/10.1016/j.jclepro.2020.120299

[25] Z. Fan et al., "Photocatalytic degradation by hydrated niobium oxides," ACS Appl. Mater. Interfaces, vol. 8, no. 12, pp. 7755–7762, 2016.
https://doi.org/10.1021/acsami.6b01234

[26] S. Mittal, M. Saxena, and K. U. Bhaskar, "Artificial neural network modelling for vacuum membrane distillation process," *Chem. Eng. Process. Process Intensif.*, vol. 164, p. 108403, 2021. <u>https://doi.org/10.1016/j.cep.2021.108403</u>

[27] S. Haykin, *Neural Networks: A Comprehensive Foundation*, 2nd ed. Prentice Hall, 1999. <u>https://doi.org/10.1007/978-0-13-300201-1</u>

[28] I. A. Basheer and M. Hajmeer, "Artificial neural networks: fundamentals, computing, design, and application," *J. Microbiol. Methods*, vol. 43, no. 1, pp. 3–31, 2000. <u>https://doi.org/10.1016/S0167-7012(00)00201-3</u>

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," *Nature*, vol. 323, no. 6088, pp. 533–536, 1986. https://doi.org/10.1038/323533a0 [30] Q. Zhang, X. Li, and Y. Yu, "ANN-based modelling of photocatalytic degradation of dyes: A comprehensive review," *J. Environ. Manage.*, vol. 206, pp. 158–165, 2018. https://doi.org/10.1016/j.jenvman.2018.02.015

[31] H. R. Maier and G. C. Dandy, "Neural networks for prediction and forecasting of water resources variables: A review of modelling issues and applications," *Environ. Model. Softw.*, vol. 15, no. 1, pp. 101–124, 2000. <u>https://doi.org/10.1016/S1364-8152(99)00007-9</u>

[32] S. Asadi, S. S. Amiri, and M. J. Mahdavinejad, "Application of artificial neural networks in environmental sciences: A review," *Ecol. Model.*, vol. 289, pp. 70–83, 2014. https://doi.org/10.1016/j.ecolmodel.2014.02.015

[33] R. Goyal et al., "Predictive modelling and optimization using ANN," *J. Clean. Prod.*, vol. 267, p. 122001, 2020. <u>https://doi.org/10.1016/j.jclepro.2020.122001</u>

[34] E. Alpaydin, *Introduction to Machine Learning*. MIT Press, 2020. https://doi.org/10.7551/mitpress/11212.001.0001

[35] K. M. Desai et al., "Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization," *Biochem. Eng. J.*, vol. 41, pp. 266–275, 2008. <u>https://doi.org/10.1016/j.bej.2008.02.015</u>

[36] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," *Nature*, vol. 521, no. 7553, pp. 436–444, 2015. <u>https://doi.org/10.1038/nature14539</u>

[37] H. Yu and B. M. Wilamowski, "Levenberg–Marquardt training," in *Industrial Electronics Handbook*, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds. CRC Press, pp. 12–1 to 12–16, 2011. <u>https://doi.org/10.1201/9781420052636</u>

[38] R. Porrazzo, A. Cipollina, M. Galluzzo, and G. Micale, "A neural network-based optimizing control system for a seawater-desalination solar-powered membrane distillation unit," *Comput. Chem. Eng.*, vol. 54, pp. 79–96, 2013. https://doi.org/10.1016/j.compchemeng.2013.02.015

[39] M. T. Hagan, H. B. Demuth, and M. Beale, *Neural Network Design*. PWS Publishing Co., 1997. <u>https://doi.org/10.1007/978-0-07-042991-5</u>

[40] N. P. de Moraes et al., "Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: Effect of catalyst dosage, dye

concentration, and radiation source," *Mater. Chem. Phys.*, vol. 214, pp. 95–106, 2018. https://doi.org/10.1016/j.matchemphys.2018.02.015

[41] A. Y. Alanis, C. Lopez-Franco, and N. Arana-Daniel, *Artificial Neural Networks for Engineering Applications*. Elsevier, 2019. <u>https://doi.org/10.1016/B978-0-12-818247-5.00001-2</u>

[42] P. Kim, *MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence*. Apress, 2017. <u>https://doi.org/10.1007/978-1-4842-2845-6</u>

PLAGIARISM REPORT

Radhika final thesis.docx

Delhi Technological University

Document Details

Submission ID	
trn:oid:::27535:101544042	25 Pages
Submission Date	4,864 Words
Jun 18, 2025, 11:45 PM GMT+5:30	29,317 Characters
Download Date	
Jun 18, 2025, 11:47 PM GMT+5:30	
File Name	
Radhika final thesis.docx	
File Size	
1.3 MB	

Page 2 of 29 - Integrity Overview

Submission ID trn:oid:::27535:101544042

6% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text
- Cited Text
- Small Matches (less than 8 words)

Match Groups

22 Not Cited or Quoted 6% Matches with neither in-text citation nor quotation marks

Missing Quotations 0%
 Matches that are still very similar to source material

- 0 Missing Citation 0% Matches that have quotation marks, but no in-text citation
- 0 Cited and Quoted 0% Matches with in-text citation present, but no quotation marks

Top Sources

- 4% 📕 Publications
- 2% 💄 Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Submission ID trn:oid:::27535:101537490

*% detected as AI

AI detection includes the possibility of false positives. Although some text in this submission is likely AI generated, scores below the 20% threshold are not surfaced because they have a higher likelihood of false positives.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions about a student's work. We encourage you to learn more about Turnitin's AI detection capabilities before using the tool.

Disclaimer

Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any academic missionduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?

The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin's AI writing detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was likely revised using an AI-paraphrase tool or word spinner.

False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.

AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).

The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted assignment in accordance with their school's policies.

What does 'qualifying text' mean?

Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.

Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the percentage shown.

Place: Delhi

Date: June 20,2025

DR. MANISH JAIN (SUPERVISOR)

RADHIKA TRIPATHI (23/MSCCHE/33)

SHARMA SACHITANAND BASANT (23/MSCCHE/36)

