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ABSTRACT 

 

Photodegradation is great and green method for taking away stubborn organic bad 

chemicals from water. This work uses a computer program that learns from examples to 

guess and make better the Methylene Blue (MB) breaking down by light using 

hexagonal prism-shaped Nb₂O₅ and Nb₂O₅.nH₂O catalysts. All 136 test points were used, 

with 82 for Nb₂O₅ and 54 for Nb₂O₅.nH₂O to make links between way things are done 

and how well they break down. The ANN model was trained using 17 neurons for Nb₂O₅ 

and 13 neurons for Nb₂O₅.nH₂O, obtained mean squared errors (MSE) of 22.164 and 

4.61; and regression coefficients (R²) of 0.98 and 0.99, respectively. Validation proved 

to be very accurate with relative errors less than 10%. Nb₂O₅ showed a linear decrement 

in degradation efficiency which implied controlled reaction kinetics; Nb₂O₅.nH₂O 

showed an exponential decrement which implied surface saturation effects. Additionally, 

dye concentration influenced degradation efficiency, with excessive dye hindering 

catalyst activation. Analysis of UVA and UVC radiation sources revealed that UVA 

facilitated faster degradation, whereas UVC provided sustained photocatalytic activity 

over extended durations. These findings highlight ANN-based modelling as an effective 

tool for optimizing photodegradation conditions.   

 

Index terms: Photodegradation, Artificial Neural Network (ANN), Nb₂O₅, Nb₂O₅·nH₂O, 

Methylene Blue, Dye Concentration, UVA Radiation, UVC Radiation 
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CHAPTER 1             

INTRODUCTION 

 

1.1 BACKGROUND ON METHYLENE BLUE AND ITS ENVIRONMENTAL 

IMPACT 

Methylene blue is a fabulous, great, wonderful synthetic dye extensively used in the 

textile and pharmaceutical industries, and research biology [1][2]. It does not 

biodegrade; it stays soluble in water; hence, MB proves to be very easy on pollution and 

hard on traditional methods of wastewater treatment to get rid of it [3][4]. Destruction 

of aquatic life balance regarding oxygen results in methylene blue contamination, harms 

biodiversity within water bodies, and disturbs the population of microorganisms [5][6]. 

If exposed to MB, potentially leads to mutagenesis effects on aquatic organisms but also 

ecological destruction, oxidative stress cytotoxic effects. This has raised concerns about 

environmental safety as well as public health [7][8]. It is from these toxic effects that a 

high degree of interest was initiated towards the development of advanced methods for 

treatment. 

 

Fig 1.1: Methylene Blue 

 

1.2 OVERVIEW OF PHOTODEGRADATION AS A TREATMENT METHOD 

Among the advanced treatment technologies, photodegradation has emerged as an 

applicable and eco-friendly process in the degradation of such persistent organic dyes as 

MB. It is an oxidative decomposition of dye molecules into harmless by-products 
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through the cooperation of energy light with photocatalysts creating reactive oxygen 

species (ROS) such as superoxide anions and hydroxyl anions [9][10]. Generally, 

because of their wide surface available area, strong absorption in UV light, and also 

stable chemically, metal oxide photocatalysts like zinc oxide (ZnO), niobium pentoxide 

(Nb₂O₅) has shown extraordinary effectiveness [11][12][13]. Very fast mineralization 

under UVC light has been proven to enormously enhance the rate of MB photocatalytic 

degradation besides eliminating secondary pollution about it [14][15]. 

 

 

Fig 1.2:Photodegradation of a dye in presence of catalyst 

 

1.3 NIOBIUM OXIDE AND ITS HYDRATED FORM AS A CATALYST 

Niobium-based materials Active Nb pentoxide Nb₂O₅ and its hydrated form Nb₂O₅.nH₂O 

are promising photocatalysts for the removal of methylene blue (MB).  

 

 

Fig 1.3: Nb2O5 hexagonal prism shaped structure 

 

These compounds high surface acidity and pseudohexagonal crystalline structures allow 

them to absorb sunlight and thus show photocatalytic activity [16][17]. Because it has a 

larger surface area, hydroxyl groups, and better capacity for dye adsorption, the hydrated 

form in particular performs better [18][19][20]. Studies comparing the anhydrous and 
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hydrated forms of Nb₂O₅.nH₂O show that the latter exhibits greater degradation 

efficiency under UVA and UVC irradiation [21][22][23]. Thus, it is an easy material for 

large-scale wastewater cleanup. This catalyst inserted into treatment systems is effective 

simple cheap eco-friendly way to reduce dye pollution [24][25]. 

 

1.4 IMPORTANCE OF ARTIFICIAL NEURAL NETWORKS IN MODELLING 

CHEMICAL PROCESSES 

In a broad sense, machine learning (ML) involves various computational tools that can 

identify patterns from large datasets; learn different non-linear process; and simulate 

them mathematically to predict outputs [36]. Among these, for modelling and optimizing 

photocatalytic degradation systems, quite recently, more popular have become Artificial 

Neural Networks (ANNs), which establish the relation between input and output in a 

multivariate and nonlinear interaction [26][27]. The ANNs are artificial neurons 

interconnected in some or the other way and arranged in layers. They perform non-linear 

computation. One of the most widely-used ANN configurations is multi-layer 

perceptron (MLP) which has a feed-forward architecture wherein input neurons first 

process data and pass it on to the hidden layers for further computation before finally 

leading to output calculation [37]. 

 

Fig 1.4: Neural network architecture 

 

The input-output configuration of an ANN is termed either as architecture or topology. 

One can adjust the number of hidden layers and neurons to get optimized results 

[24][38]. Neurons are comprised of a summing junction that mixes weighted inputs and 
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biases into an argument which is then processed by a transfer function [30][38]. In this 

study, the tansig (S) transfer function was selected due to its ability to model complex 

degradation behaviors effectively [34]. Mathematically, this function is represented as: 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑠) =
2

1 + 𝑒2𝑛
− 1 

… (1) 

A loss function assesses the performance of the Artificial Neural Network (ANN). We 

use Mean Square Error (MSE), which is the most common, as a way of minimizing the 

difference between experimental and predicted responses when training [35][39]. 

Adjusting network weights to achieve accuracy optimization can also be called training 

or even considered synonymous with the learning problem. Calculation of MSE as: 

𝑀𝑆𝐸 =
1

𝑁𝑀
∑∑[𝑦_𝑒𝑖

𝑗
− 𝑦_𝑡𝑖

𝑗
]
2

𝑀

𝑗=1

𝑁

𝑖=1

 

… (2) 

N indicates the number of training patterns, M indicates output nodes; 𝑦_𝑒𝑖
𝑗
 is the 

predicted output, and 𝑦_𝑡𝑖
𝑗
 is the target experimental response.  

Backpropagation (BP) algorithms include gradient descent, Newton's methods, 

conjugate gradient, Levenberg-Marquardt, and Quasi-Newton methods. The algorithm 

used in this study is the Levenberg-Marquardt algorithm which improves computational 

speed in minimizing prediction error; therefore, it utilized various complicated 

degradation paths. It enhances the performance of ANN training because uses the 

gradient vector and Jacobian matrix instead of the Hessian matrix [26]. 

In photocatalytic applications, artificial neural networks become a data-driven substitute 

for conventional kinetic modelling, which alleviates experimental efforts and results in 

better control of the process. For example, an ANN model has been integrated into the 

Nb₂O₅ based catalyst system and it has shown improved efficiency in dye removal 

[32][33]. This work is going to implement an MLP architecture with nonlinear activation 

functions in simulating environmental degradation behaviors. Just like in the training 

and validation stages, testing further enables ANNs to generalize learned patterns 

towards optimizing operating parameters and predicting efficiencies of degradation 

under any other conditions [28][30][31]. 
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Recent studies affirm that ANN integration significantly improves model accuracy, 

enables predictive control in photocatalytic systems, and reduces experimentation 

efforts [26][38][39]. By merging advanced catalytic materials with computational 

techniques, researchers can develop wastewater treatment systems that are highly 

efficient, adaptable, and sustainable.  
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CHAPTER 2          

 MATERIALS AND METHODOLOGY 

 

This section covers the simulation methodology, the performance parameters, and the 

experimental results used to train the Artificial Neural Network (ANN). 

2.1 EXPERIMENTAL DATA 

To construct an ANN model for predicting Methylene Blue (MB) photodegradation 

efficiency, experimental data on catalyst performance under varying operating 

conditions is essential for effective training. While multiple studies have investigated 

MB degradation using heterogeneous catalysts, only a limited number provide detailed 

experimental data on the effects of parameters such as catalyst concentration, dye 

concentration, and radiation source. 

In this study, two forms of niobium oxide catalysts—Nb₂O₅ and Nb₂O₅.nH₂O—were 

utilized to assess their photocatalytic efficiency. The hydration level in Nb₂O₅.nH₂O 

alters its surface characteristics, potentially influencing its performance in Methylene 

Blue degradation. Experimental results from [40] were adapted to train the ANN model, 

ensuring accurate predictions of Methylene Blue degradation efficiency across different 

catalyst compositions. 

A comparative analysis of ANN predictions and experimental data for Nb₂O₅ is 

presented in Table 1, while Table 2 provides similar comparisons for Nb₂O₅.nH₂O, 

allowing for a systematic evaluation of the impact of catalyst hydration on degradation 

performance. 

Table 1:Experimental Data of Nb₂O₅ from [40] 

S.No. 
Catalyst concentration 

(mg/L) 

Dye 

concentration 

(mg/L) 

Time (min) Photodegradation % 

1 1 10 5.744431419 0.946142649 

2 1 10 17.23329426 2.518195051 

3 1 10 33.23563892 4.788937409 

4 1 10 49.64830012 6.069868996 

5 1 10 64.41969519 7.423580786 

6 1 10 96.83470106 8.296943231 
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7 1 10 130.07034 8.85007278 

8 1 10 194.4900352 9.490538574 

9 1 10 226.4947245 9.723435226 

10 1 10 258.9097304 9.927219796 

11 1 42.5 16.00234467 1.310043668 

12 1 42.5 32.41500586 3.930131004 

13 1 42.5 49.23798359 8.005822416 

14 1 42.5 65.65064478 14.11935953 

15 1 42.5 97.24501758 15.86608443 

16 1 42.5 130.07034 22.41630277 

17 1 42.5 162.8956624 24.74526929 

18 1 42.5 194.9003517 30.27656477 

19 1 42.5 226.905041 34.35225619 

20 1 42.5 259.3200469 41.19359534 

21 1 42.5 291.3247362 42.3580786 

22 1 42.5 323.7397421 45.85152838 

23 1 85 4.923798359 0.291120815 

24 1 85 17.23329426 1.164483261 

25 1 85 32.00468933 1.018922853 

26 1 85 48.82766706 1.892285298 

27 1 85 64.83001172 5.094614265 

28 1 85 97.24501758 6.550218341 

29 1 85 129.2497069 8.588064047 

30 1 85 162.0750293 10.91703057 

31 1 85 194.9003517 14.55604076 

32 1 85 226.905041 17.03056769 

33 1 85 259.3200469 18.63173217 

34 1 85 291.3247362 20.08733624 

35 1 85 323.7397421 21.54294032 

36 0.25 85 40.25821596 0.877192982 

37 0.25 85 55.45774648 1.315789474 

38 0.25 85 70.24647887 1.900584795 

39 0.25 85 85.85680751 4.970760234 

40 0.25 85 115.0234742 6.871345029 

41 0.25 85 145.8333333 8.479532164 

42 0.25 85 175 10.96491228 

43 0.25 85 204.9882629 14.76608187 

44 0.25 85 234.9765258 16.95906433 

45 0.25 85 265.786385 18.71345029 

46 0.25 85 294.9530516 20.46783626 

47 0.25 85 325.7629108 21.78362573 

48 0.5 85 30.39906103 0.438596491 

49 0.5 85 39.43661972 2.631578947 

50 0.5 85 55.8685446 4.824561404 

51 0.5 85 71.06807512 6.286549708 

52 0.5 85 85.03521127 9.356725146 

53 0.5 85 115.4342723 12.13450292 

54 0.5 85 145.4225352 15.64327485 
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55 0.5 85 175.8215962 19.73684211 

56 0.5 85 205.399061 23.24561404 

57 0.5 85 234.5657277 28.50877193 

58 0.5 85 265.3755869 31.43274854 

59 0.5 85 295.3638498 34.64912281 

60 0.5 85 325.7629108 40.20467836 

61 1 85 29.98826291 1.900584795 

62 1 85 39.84741784 2.192982456 

63 1 85 55.8685446 7.16374269 

64 1 85 85.03521127 13.74269006 

65 1 85 115.8450704 19.15204678 

66 1 85 145.0117371 24.26900585 

67 1 85 176.2323944 29.09356725 

68 1 85 206.2206573 32.74853801 

69 1 85 236.2089202 38.74269006 

70 1 85 266.1971831 42.10526316 

71 1 85 296.185446 44.29824561 

72 1 85 324.9413146 52.04678363 

73 0.25 10 5.12195122 18.00302572 

74 0.25 10 16.2195122 32.22390318 

75 0.25 10 31.15853659 52.64750378 

76 0.25 10 45.24390244 64.90166415 

77 0.25 10 60.18292683 76.85325265 

78 0.25 10 90.91463415 85.17397882 

79 0.25 10 121.2195122 90.31770045 

80 0.25 10 181.402439 95.91527988 

81 0.25 10 210.8536585 98.18456884 

82 0.25 10 240.304878 100.3025719 
 

 

Table 2: Experimental Data of Nb₂O₅.nH₂O from [40] 

S.No. 
Catalyst concentration 

(mg/L) 

Dye 

concentrati

on (mg/L) 

Time (min) Photodegradation % 

1 1 10 5.744431419 3.056768559 

2 1 10 16.00234467 28.52983988 

3 1 10 32.82532239 59.6797671 

4 1 10 48.82766706 76.56477438 

5 1 10 64.83001172 87.04512373 

6 1 10 97.24501758 93.59534207 

7 1 10 130.4806565 99.41775837 

8 1 42.5 16.00234467 1.746724891 

9 1 42.5 32.41500586 11.79039301 

10 1 42.5 49.23798359 18.48617176 

11 1 42.5 65.24032825 28.52983988 

12 1 42.5 97.65533411 39.30131004 
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13 1 42.5 130.4806565 48.0349345 

14 1 42.5 161.2543962 51.67394469 

15 1 42.5 193.6694021 59.09752547 

16 1 42.5 226.905041 64.62882096 

17 1 42.5 258.4994138 68.26783115 

18 1 42.5 290.9144197 71.32459971 

19 1 42.5 324.5603751 75.69141194 

20 1 85 6.154747948 3.930131004 

21 1 85 10.66822978 6.550218341 

22 1 85 16.82297773 10.18922853 

23 1 85 32.82532239 15.13828239 

24 1 85 48.82766706 22.56186317 

25 1 85 97.24501758 31.58660844 

26 1 85 162.0750293 41.92139738 

27 1 85 226.905041 52.40174672 

28 1 85 258.9097304 56.18631732 

29 1 85 290.9144197 65.06550218 

30 1 85 323.7397421 65.21106259 

31 0.25 85 30.80985915 4.093567251 

32 0.25 85 35.3286385 6.140350877 

33 0.25 85 40.66901408 10.23391813 

34 0.25 85 55.45774648 14.76608187 

35 0.25 85 70.24647887 22.36842105 

36 0.25 85 115.4342723 31.57894737 

37 0.25 85 175 41.95906433 

38 0.25 85 235.7981221 53.07017544 

39 0.25 85 265.3755869 55.99415205 

40 0.25 85 295.7746479 65.35087719 

41 0.25 85 325.3521127 65.20467836 

42 0.5 85 29.57746479 9.649122807 

43 0.5 85 35.73943662 17.83625731 

44 0.5 85 41.07981221 22.07602339 

45 0.5 85 55.8685446 36.11111111 

46 0.5 85 70.24647887 54.67836257 

47 0.5 85 85.44600939 60.23391813 

48 0.5 85 115.0234742 69.59064327 

49 0.5 85 145.8333333 84.79532164 

50 0.5 85 175.4107981 87.71929825 

51 0.5 85 205.8098592 92.83625731 

52 0.5 85 234.9765258 96.05263158 

53 0.5 85 265.786385 97.51461988 

54 0.5 85 295.3638498 99.56140351 
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2.2 DETAILS OF SIMULATIONS 

The Artificial Neural Network (ANN) models were created using functions from 

MATLAB´s Deep Learning Toolbox [42], including 'train,' 'perform,' and 

'plotregression' functions. In total, 136 experimental results were used to train, validate 

and test the ANN [26] with 82 data points for Nb₂O₅ and 54 data points for Nb₂O₅.nH₂O 

(details provided in Table 1 and 2). The datasets were randomly split into three subsets, 

with 70% of the dataset designated for training, while 15% was allocated for validation 

and the rest 15% designated for testing. For the Levenberg-Marquardt backpropagation 

method, the performance function was Mean Square Error (MSE). Additionally, a tansig 

(S) transfer function was employed. 

The created ANN models were composed of three layers. One hidden layer (any number 

of neurons), one input layer (number of neurons equal to the number of experimental 

input parameters), and one output layer (one neuron representing photodegradation 

efficiency). The general ANN structure is outlined in Table 1 and Table 2. The selected 

input parameters included catalyst type (Nb₂O₅ or Nb₂O₅.nH₂O), catalyst concentration 

(mg/L), dye concentration (mg/L), and radiation source (UVA or UVC). The output 

parameter was Methylene Blue degradation efficiency (%). 

For improved ANN performance, degradation efficiency values were normalized to fall 

within the range [-1,1] based on minimum and maximum values (Eq. (3)): 

𝐷𝑎𝑡𝑎𝑛𝑒𝑤=
2𝐷𝑎𝑡𝑎𝑖-(𝐷𝑎𝑡𝑎𝑚𝑖𝑛+𝐷𝑎𝑡𝑎𝑚𝑎𝑥)

𝐷𝑎𝑡𝑎𝑚𝑎𝑥-𝐷𝑎𝑡𝑎𝑚𝑖𝑛
 

… (3) 

Where: 

• Datanew is the normalized degradation efficiency, 

• Datai is the experimental degradation efficiency to be normalized, 

• Datamax and Datamin are the maximum and minimum experimental degradation 

efficiency values, respectively. 

We trained different models with a different number of neurons in the hidden layer to 

find the ideal ANN architecture. The model with the lowest MSE was used for prediction 

of the output parameters. MATLAB was used to create 3D surface plots by plotting the 

results against the input parameters. The plots gave insight into the effect laboratory 
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conditions, catalyst type, catalyst concentration, dye concentration, and radiation source 

had on photodegradation efficiencies.  
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CHAPTER 3              

 RESULTS 

 

 

3.1 OPTIMIZATION OF NUMBER OF NEURONS 

The best number of neurons in an ANN's hidden layer was established by trial & error. 

Models with varying number of neurons were trained and the MSE calculated, recorded, 

and subsequently examined. As depicted in Fig. 3.1(a), the lower MSE was found after 

using thirteen hidden layer nodes for Nb₂O₅, while Fig. 3.1(b) presents the optimization 

results for Nb₂O₅.nH₂O. Consequently, ANN models with seventeen hidden-layer 

neurons were selected for further predictions and analysis of Methylene Blue 

photodegradation using the respective catalysts. 

 

Fig 3.1(a): Effect of varying hidden-layer neurons on the MSE of the ANN model for 

Nb₂O₅-based photodegradation predictions. 
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Fig 3.1(b): Effect of varying hidden-layer neurons on the MSE of the ANN model for 

Nb₂O₅.nH2O-based photodegradation predictions. 

 

3.2 DATA FITTING AND MODEL VALIDATION RESULTS 

The ANN models developed for Nb₂O₅ and Nb₂O₅.nH₂O were optimized with thirteen 

neurons and seventeen neurons in the hidden layer, respectively, based on their 

performance in predicting Methylene Blue (MB) photodegradation efficiency. The 

regression plots between the output (ANN predictions) and target (experimental results) 

for both models are presented in Fig. 3.2(a) for Nb₂O₅ and Fig. 3.2(b) for Nb₂O₅.nH₂O. 

The correlation coefficient (R²) values were 0.98 for the Nb₂O₅-based ANN model and 

0.99 for the Nb₂O₅.nH₂O-based ANN model, indicating a very strong correlation 

between the experimental results and ANN predictions. The closer R² is to 1, the stronger 

the correlation between the variables plotted [26][41][42]. These values confirm that 

both models provide an excellent fit to the experimental data. 

A detailed comparison of experimental data and ANN simulation results for Nb₂O₅ is 

provided in Table 1, while results for Nb₂O₅.nH₂O are included in Table 2. The MSE for 

the Nb₂O₅-based ANN model was 22.164, whereas the Nb₂O₅·nH₂O based ANN model 
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had a significantly lower MSE of 4.6904, demonstrating the enhanced predictive 

accuracy of the latter. 

 

 

Fig 3.1(a): Regression study between the experimental findings and the predictions of the 

ANN model for Nb₂O₅. 
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Fig 3.2(b): Regression study between the experimental findings and the predictions of the 

ANN model for Nb₂O₅.nH2O. 

 

3.3 EFFECTS OF DIFFERENT OPERATING PARAMETERS 

Using the trained ANN model, we evaluated the effects of various operating parameters 

on Methylene Blue photodegradation efficiency. Predicted values for MB degradation 

efficiency were plotted versus each operating parameters and processing duration. The 

combined effect of catalyst type (Nb₂O₅ or Nb₂O₅.nH₂O), catalyst concentration, dye 

concentration, and radiation source on MB degradation was investigated by assessing 

the efficiency variations of MB degradation under these conditions.  

In the experimental study [40], Nb₂O₅ and Nb₂O₅.nH₂O were used as catalysts. The 

catalyst concentration was varied from 0.25 - 1 mg/L for both catalyst, dye concentration 
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ranged from 10 - 85 mg/L for both catalysts, and the radiation source was either UVA 

and UVC. The same ranges of operating conditions and reaction times were used in this 

study (Table 1 and 2). Each simulation was carried out by varying one operating 

condition while keeping all others constant. 

Detailed specifications of the operating conditions utilized during simulations are 

provided in Table 1 and 2. 

3.3.1 Effects of Catalytic Concentration 

 

Fig. 3.3.1(a) and Fig. 3.3.1(b) illustrate the impact of catalytic concentration on 

the photodegradation efficiency of Methylene Blue (MB) using Nb₂O₅ and 

Nb₂O₅.nH₂O as catalysts. The degradation efficiency increased with higher 

catalytic concentrations, as a greater number of active sites facilitated enhanced 

photocatalytic activity. However, results indicate that excessive catalyst loading 

beyond an optimal threshold led to decreased efficiency, likely due to 

agglomeration, which reduced the effective surface area for photoreactions. 

The variation of MB degradation efficiency over time at different catalytic 

concentrations is depicted in Fig. 3.1(a) and Fig. 3.2(b). At higher concentrations, 

degradation first took place rapidly and then levelled off, possibly due to particle 

agglomeration effects. Degradation continued at a steady rate with very little 

fluctuation, implying better catalyst dispersion. However, obvious degradation 

profiles existed for the two catalysts: 

• Nb₂O₅ showed a smooth decline in degradation efficiency with time. This 

implies more controlled kinetics of the reaction and stable catalytic behaviour. 

• Nb2O5.nH2O showed quick fall in ability, suggesting faster turning off 

due to possible surface filling up or clumping effects. 

These results show that different making of catalysts was seen at different 

amounts, affecting the total breaking down power. So, choosing a middle making 

amount is better to get the best MB breaking with best use of catalyst while 

thinking about the safety and speed of change of each catalyst. 
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Fig 3.3.1(a): Effect of Catalyst concentration vs Photodegradation in Nb2O5 

 

Fig 3.3.1(b): Effect of Catalyst concentration vs Photodegradation in Nb2O5.nH2O 

 

3.3.2 Effects of Dye Concentration 

Fig. 3.3.2(a) shows how dye concentration affects the photodegradation 

efficiency of Methylene Blue (MB) when using Nb₂O₅ as a catalyst. At first, as 
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we increased the dye molecules, we saw an uptick in degradation efficiency. 

More dye means more reactions, once we went past a certain concentration, 

efficiency started to drop. The dye molecules were soaking up too much 

radiation, which ended up hampering the catalyst's activation. Over time, Nb₂O₅ 

showed a steady decrease in efficiency, suggesting a controlled degradation 

process, but still, it had stable photocatalytic performance. 

Now, looking at Fig. 3.3.2(b), we see the effect of dye concentration on MB 

degradation but this time with Nb₂O₅.nH₂O as the catalyst. It’s a bit different 

here—Nb₂O₅.nH₂O experienced a quicker decline in efficiency over time. This 

suggests it’s getting deactivated faster, possibly because of surface saturation or 

the dye clumping together. The quicker drop in efficiency points to some 

limitations in how well the dye can be absorbed, which can impact long-term 

photocatalytic activity. 

It turns out that dye concentration is super important for degradation efficiency. 

Sure, higher concentrations might kick things off nicely, but if they stick around 

too long, they might actually hurt the photocatalytic process. Finding that sweet 

spot for dye concentration is key to boosting MB degradation while avoiding the 

hiccups that come with deactivating the catalyst. 

 

Fig 3.3.2(a): Effect of Dye concentration vs Photodegradation in Nb2O5 
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Fig 3.3.2(b): Effect of Dye concentration vs Photodegradation in Nb2O5.nH2O 

 

3.3.3 Effects of Radiation Source (UVA and UVC) 

 

So, let’s dive into how different types of radiation—UVA and UVC—affect the 

breakdown of Methylene Blue (MB) when using Nb₂O₅ and Nb₂O₅.nH₂O as 

catalysts. It turns out, the efficiency of degradation really depends on which 

radiation you’re using. 

With UVA radiation, things happen quickly. It has a higher energy level that 

really gets the catalyst's surface working. This means MB breaks down faster. 

On the other side, UVC radiation is a bit slower. It has a narrower wavelength 

range, which limits how many photons can get absorbed. This makes the catalyst 

activation less effective. 

When we look at the results under UVA, the degradation of MB was pretty rapid. 

This shows that UVA is really effective at activating the photocatalyst. But with 

UVC, things took their sweet time. The degradation process was gradual, 

indicating that the reactions were moving along at a slower pace. But here’s 

something interesting—after a while, even though UVC started off slower, with 

enough exposure time, it reached levels of efficiency that were pretty comparable 
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to UVA. So, it seems like UVC could still work well if you have longer reaction 

times. 

In summary, UVA radiation is your go-to for quicker degradation thanks to its 

ability to excite the catalyst more effectively. UVC, while starting off a bit 

slower, can still be a solid option over time, with its photocatalytic activity 

holding steady. Ultimately, the best choice of radiation really comes down to 

how much time you have and how efficient you need the catalyst to be for long-

term outcomes. 

 

 

 

  



32 
 

 

CHAPTER 4        

 CONCLUSION 

 

This study really highlights how artificial neural networks, or ANNs , can effectively 

model and predict how Methylene Blue (MB) breaks down when using Nb₂O₅ and 

Nb₂O₅.nH₂O catalysts. The optimized ANN models achieved some seriously high 

accuracy rates—around 0.98 and 0.99—showing just how well they can handle the 

complex behaviors we see in photocatalysis. 

Nb₂O₅·nH₂O seems to have the upper hand over plain old Nb₂O₅. It all comes down to 

its surface properties, which give it that extra edge. Plus, the efficiency of the 

degradation process is influenced by various operating parameters, like the 

concentration of the catalyst and dye, and the type of radiation used. Turns out, UVA is 

actually more effective than UVC, which is a bit surprising. 

Combining ANN modelling with these cutting-edge catalysts is really a promising 

direction for improving sustainable wastewater treatment methods.   
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Fig. A 1.2 Certificate of participation in the WSCET-25 Conference 
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Fig. A 2.1 Acceptance for participation in the WSCET-25 Conference 
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