
MOVIE RECOMMENDATION SYSTEM

USING WORD EMBEDDING

A Thesis Submitted

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

by

AMIT SINGH

(23/CSE/01)

Under the supervision of

DR. RAJESH KUMAR YADAV

Department of Computer Science and Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

May, 2025

ii

AKNOWLEDGEMENT

I have taken efforts in this thesis. However, it would not have been possible without

the kind support and help of many individuals and organizations. I would like to

extend my sincere thanks to all of them.

I am highly indebted to Dr. Rajesh Kumar Yadav for his guidance and constant

supervision as well as for providing necessary information regarding the project &

also for their support in completing this thesis. I would like to express my gratitude

towards the Prof. Manoj Kumar (Computer Science and Engineering, Delhi

Technological University) for their kind cooperation and encouragement which

helped me in the completion of this thesis. I would like to express my special gratitude

and thanks to all the Computer Science and Engineering staff for giving me such

attention and time.

Last but clearly not the least, I would thank The Almighty for giving me strength to

complete the thesis on time.

iii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I, Amit Singh, Roll No. 23/CSE/01 student of M.Tech (Computer Science and

Engineering), hereby certify that the work which is being presented in the thesis

entitled “Movie Recommendations System Using Word Embedding” in partial

fulfillment of the requirements for the award of the Degree of Master of Technology

in Computer Science and Engineering in the Department of Computer Science and

Engineering, Delhi Technological University is an authentic record of my own work

carried out during the period from August 2023 to Jun 2025 under the supervision of

Dr. Rajesh Kumar Yadav, Associate Prof, Dept of Computer Science and Engineering.

The matter presented in the thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

Place: Delhi Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the thesis and the statement made by the candidate is correct to the best

of our knowledge.

Signature of Supervisor

iv

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE

Certified that Amit Singh (Roll No. 23/CSE/01) has carried out the research work

presented in the thesis titled “Movie Recommendations System Using Word

Embedding”, for the award of Degree of Master of Technology from Department of

Computer Science and Engineering, Delhi Technological University, Delhi under my

supervision. The thesis embodies result of original work and studies are carried out by

the student himself and the contents of the thesis do not form the basis for the award

of any other degree for the candidate or submit else from the any other

University/Institution.

Dr. Rajesh Kumar Yadav

(Supervisor)

Department of CSE

Date: Delhi Technological University

v

ABSTRACT

As more movies are added online, it is becoming harder to decide what to watch. This

project is designed to give movie recommendations, considering not only the

keywords users type but also what those words truly mean. It employs Word2Vec to

go over the metadata of films, including the names, genres and keywords and find

interesting connections between them.

It was found that Word2Vec generated far better and more appropriate suggestions

when evaluated against using CountVectorizer. The Skip-Gram model in Word2Vec

was able to spot similar meaning between movies even when they didn’t both contain

the same words. The system learned from the TMDB dataset and its results were

measured using Precision@10, Mean Reciprocal Rank (MRR) and NDCG. It was

found that Word2Vec greatly improved the recommendations over strategies that

depend on word frequency.

In general, the study finds that adding context-aware ideas makes movie

recommendations more personal and meaningful to viewers. Improvements for the

future could involve mixing this technique with collaborative filtering to improve both

the accuracy and user enjoyment.

vi

TABLE OF CONTENTS

Aknowledgement .. ii

Candidate’s Declaration .. iii

Certificate ... iv

Abstract ... v

Table of Contents .. vi

List of Figures .. viii

List of Tables ... ix

CHAPTER 1 INTRODUCTION ... 1-3

1.2. Problem Definition .. 2

1.3. Types of Recommendation System ... 2

CHAPTER 2 LITERATURE SURVEY ... 4-11

CHAPTER 3 SYSTEM ARCHITECTURE AND METHODOLOGY 12-25

3.1. Workflow ... 12

3.2. Dataset ... 13

3.3. Data Preprocessing .. 15

3.4. Methodology ... 16

3.4.1. Document Preparation ... 16

3.4.2. Word2Vec-Based Recommendation System ... 17

3.4.3. CountVectorizer-Based Recommendation System 19

3.4.4. Cosine Similarity Computation ... 20

3.5. Hardware Requirements .. 22

3.6. Software Requirements ... 22

3.7. Libraries ... 22

3.7.1. Python Software Ecosystem .. 22

3.7.2. Project Modules/Labraries ... 24

CHAPTER 4 EXPERIMENTAL RESULTS ... 26-28

4.1. Performance Evaluation Metric ... 26

vii

4.2. Result ... 27

CHAPTER 5 CONCLUSION .. 29-29

5.1. Future Work .. 29

REFERENCES ... 30

viii

LIST OF FIGURES

Fig. 1. Working Flowchart ... 12

Fig. 2. Distribution of Movie Genres .. 13

Fig. 3. Movie Release Trends Over Time .. 14

Fig. 4. Genre Evolution Over Decades ... 14

Fig. 5. Dataset after pre-processing .. 15

Fig. 6. Architecture of Word2Vec Skip-Gram Model .. 18

Fig. 7. Cosine Similarity ... 21

Fig. 8. Recommendations for "Thor" using CountVectorizer and Word2Vec

SkipGram Models. .. 28

Fig. 9. Recommendations for "The Avengers " using CountVectorizer and

Word2Vec SkipGram Models. .. 28

ix

LIST OF TABLES

Table 1. Comparative analysis of movie recommendation system approaches

highlighting models used, datasets, evaluation metrics, advantages, and limitations.. 9

Table 2. Parameter of Word2Vec Skip-Gram Model, Bold text is decided after

hyperparameter-tuning. .. 26

Table 3. Performance Metric after hyperparameter-tuning of the Word2Vec Model.

 .. 27

1

CHAPTER 1

INTRODUCTION

1.1. Overview

This technology exists as Recommendation System – A predictive system that

predicts user preferences to generate item recommendations through mechanisms

used by streaming platforms and e-commerce sites and social media and

professional networks and search engines. Through recommendation engines

users can discover various items such as movies and music as well as books and

products all curated from their past actions. The post interaction activity on

Facebook enables the platform to understand preferences in content consumption.

The e-commerce platform uses its insight that during the rainy season raincoat

purchasers also buy umbrellas to recommend this item to raincoat consumers.

Users in modern society require more than general categories which lack details.

User engagement decreases whenever app expectations remain unmet which leads

to dissatisfaction among users such as when a music streaming app produces

unrelated songs to the user. Organizations have intensified their focus on smart

recommender system development because of this reason. Many factors exist

which create issues when enterprises aim to improve their work quality while

developing logical and logistic systems. The preferences between users tend to

differ permanently and temporarily for each parameter since user choices change

with the day and season and also depend on weather as well as occupation

circumstances.

Text similarity plays an indispensable part in information retrieval systems

because it helps determine document relevance and supports other Natural

Language Processing methods including recommendation systems and sentiment

analysis and feature selection in text. Historically we depended on word frequency

statistics that include Term Frequency-Inverse Document Frequency (TF-IDF)

and CountVectorizer although sometimes deep semantic meanings of words fail

to connect properly because the system frequently misses key information.

Word2Vec possesses popularity as a deep learning model specifically for NLP

tasks because it generates word vector spaces and maintains contextual word

relationships.

The Google researchers introduced Word2Vec as their 2013 model which enables

learning word representations efficiently. Word 2 Vectors presents a modern view

of duty co-occurrence while surpassing traditional approaches such as TF-IDF and

CountVectorizer and their co-occurrence methods. SkipGram proved to be an

2

effective method for predicting nearby terms from a target word thus aiding the

understanding of semantic relationships. For several years Word2Vec remained a

key influence on various present-day deep learning systems including FastText,

GloVe and BERT because it enabled continuous advancement of word embedding

methods. The recommendation system industrial standard consists of two primary

sources namely the Internet Movie Database (IMDB) and Movie Database

(TMDB). The metadata components found on these platforms extend to titles

alongside genres keywords and cast members and crew names along with user

assessment reviews of the movies. The contextual similarities between movies

become easier to capture through Word2Vec thanks to this useful information

during its model training process. TMDB provides an open API in addition to

crowd-sourced data and operates under Amazon ownership with a database that

drives streaming platform functionality.

The recommendation system development incorporates collaborative filtering

with content-based filtering and deep learning model applications. The

incorporation of Word2Vec among NLP techniques helps recommend additional

movies to users through analysis of movie description alongside reviews and

metadata.

1.2. Problem Definition

The problem that we are addressing in the project is the lack of an easy- to-use

free and accurate movie recommendation system. The recommendation system we

are proposing to build will be easily accessible to laymen without any requirement

to subscribe to a pay-as- you-go system.

1.3. Types of Recommendation System

1.3.1. Content-Based Filtering

Content-based filtering analyzes item attributes through the evaluation of genre

together with description in order to match items to user preferences. The

algorithm recommends complementary films according to actors or genre

preferences of customers who prefer action movies. Through previous user

activity analysis this model creates a user profile from which it rates items

according to their match with user preferences.

The method exhibits effectiveness when data appears scattered across systems

since it does not depend on other users and concentrates on personalizing

suggestions [14]. The filter bubble challenge exists because users encounter

similar products while system requests complete metadata for each displayed

item.

3

1.3.2. Collaborative Filtering

The output generation of collaborative filtering depends on user-item relationship

data to generate recommendations. The methodology operates under two premises

that users with matching preferences have maintained their consistent patterns

thus predicting their upcoming preference behaviors. Collaborative Filtering is

divided into:

User-Based Collaborative Filtering: This filtering suggests products which

users enjoying similar preferences would appreciate. Two users become

recommendation matches whenever they award the same movie with maximum

points.

Item-Based Collaborative Filtering: The central goal in Item-Based

Collaborative Filtering systems is to establish object similarities. The system

guides users toward similar products through user rating analysis after they have

dealt with a particular item.

The system provides benefits for pattern detection of user preferences but faces

limitations due to its need for a big dataset to operate effectively and its sensitivity

to new items and users [11].

1.3.3. Hybrid Approach

Several recommendation approaches unite in hybrid recommendation systems to

generate precise and custom-made suggestions according to [8, 10 12, 13]. The

solution merges content-based filtering with collaborative filtering into one

system that solves their independent shortcomings. Netflix combines content-

based filtering technology with collaborative filtering through their system that

checks similar tastes between users. Word2Vec and Transformers among other

deep learning models might be used sometimes to analyze complex relationships.

Recommendations become more appropriate and varied and suited to individual

user taste preferences through this dual recommendation methodology.

4

CHAPTER 2

LITERATURE SURVEY

Joseph and Nair [1] examine methods for making movie recommendations by

applying CF and develop a content-based system. User-user, item-item and matrix

factorization techniques are discussed, with the authors highlighting problems of

data sparsity and cold-start. The researchers choose to use similarity techniques

such as Cosine, Adjusted Cosine and Correlation, while discussing the influence

of metrics such as Euclidean on their recommendations. The team uses the

MovieLens data to conduct user-based and item-based CF through the use of

Cosine similarity. The user-based model works better (RMSE 1.5 versus 2.5), as

does the MAE (1.2 versus 2.2). Afterward, the team forms binarized data (genres

and average rating) for films and they calculate the top recommendations for each

user using a weighted mean. It accomplishes accuracy of ~80 percent with this

system. They argue that CF needs a vast amount of ratings and content-based

filtering doesn’t perform well at suggesting unfamiliar goods. Authors encourage

further work on using content features and clustering techniques in hybrid CF–

content approaches to improve personalization, make recommendations faster and

show less popular items.

Author Nousheen Taj et al. [2] introduce a method for personalized movie

recommendations that appears in films with cosine similarity and uses combined

categories of genre, actors, director and plot keywords in their approach. A

Streamlit interface has been included so that users can add movies and download

new updates of the recommendations. 4806 movies are processed by putting plot,

keyword and genre data into TF-IDF vectors and measuring their similarity with

cosine similarity to suggest the 10 most popular, most-voted or highest-rating

similar movies. A toy evaluation involves finding cosine similarity and modifying

the threshold to ensure recommendations are right 80% of the time. Divergences

are addressed such as cold-starting, discrepancies in the quality of provided

reviews/ratings and a reliance on which movies are most popular, with the authors

emphasizing how the system keeps up-to-date on movie listings. They judge that

cosine similarity is essential for delivering accurate recommendations and propose

applying the approach to recommending books or medicines.

According to Sable et al. [3], a movie recommendation system that uses cosine

similarity and sentiment analysis helps give personalized suggestions along with

all the important details. From sources, TMDB and Wikipedia, the system collects

metadata such as cast, genres, director, plot summary and release date, cleans and

organizes it with Jupyter Notebooks and makes TF-IDF and Count Vectorizer

representations for all movies. A movie title entered by the user prompts NLTK

and a multinomial Naive Bayes classifier to assign scores of user opinions for

5

enhanced decision support. All the elements in the database are compared to the

queried movie by calculating cosine similarity, then the top ten results are those

that have the shortest Euclidean distance. The results are displayed on a web page,

built with AJAX, HTML and JSON, so users can see ratings, when the show first

aired and a basic summary of its reviews. The authors say that less work for

humans and fast movie selection are clear benefits and propose future solutions

such as location-based recommending, integrating other recommendation

algorithms and regular database updates.

Ishika Naskar and Niju Joseph [4] describe a movie-recommending system that

puts together content-based, demographic filtering and sentiment analysis to help

make recommendations more personal and meaningful. They use a limited

number of 4,890 MovieLens entries, match metadata like genres, keywords and

cast data and generate “tag” vectors with CountVectorizer. Using cosine

similarity, a movie selection engine will suggest titles that are like what a user

likes and a demographic angle uses IMDb’s rating system to sort films by

popularity. Movie reviews are obtained from IMDb, then processed (cleaned,

broken down, stop-words removed), fired through a “ControX/Sen1” BERT

model (which correctly sorts 93.8% of the times) and the outcome is summarized.

Afterward, the movies in the first set are checked to select those with mostly good

sentiments. The system gets a cosine similarity of 0.9931 between the sampled

movies and their suggestions which means the recommendations are mostly

aligned. Future improvements will cover adding real-time input, increasing the

variety of data and looking into new types of hybrid network structures.

The authors [6] create a combined movie recommendation system using CB, Item-

CF and User-CF methods to handle information overload and enhance

personalization. This system is made up of a front-end, recommendation business,

training using TensorFlow, data processing using Spark and live data handling

with Flink so that both responsiveness and scaling are possible. The process of

feature engineering applies correlation coefficients to contextual (time), item

(genre, release date, rating) and user (rating history, demographic tags) statistics

to compute similarities. By blending outputs from all three algorithms, ranking

candidates according to the scenarios and displaying comparable and personalized

movie lists, we can make personalized recommendations. In a qualitative report,

200 users gave satisfaction scores of 4 or 5 at 90%, while analysis reveals the

hybrid approach achieved 81% accuracy and 70% coverage, finishing ahead of

CB (72% accuracy, 62% coverage), Item-CF (76%, 65%) and User-CF (74%,

64%). Further, researchers will consider using deep learning in recommendations

and ensure the system remains safe.

In [7], Sumathi et al. introduce a means of recommending movies using cosine

similarity between different content elements and what users like. They use

TMDB data on credits and movies, check the datasets for errors and combine cast,

crew, genres, keywords, director, vote count and average to compute a new score.

6

Vectorization of features in texts is done by count vectorization, so we can use

cosine similarity to compare movies. Using only movies that have a rating of 9

and higher, the system groups similar movies using details in their metadata. If

you examine hypotheses for John Carter and Spider-Man 3, you’ll notice the

pattern. The system generates suggestions using what items are like, not based on

what users are like, to ensure privacy is maintained. Prior to training, the authors

describe how they removed common words, performed stemming and picked

important features. According to the study, cosine similarity is effective in

discovering movie similarities and recommending relevant shows and it explains

how hybrid and updateable methods may be added for enhancement.

The model is introduced by Wei Zhao et al. [8] and is called LSIC. LSIC use

adversarial training to combine long-term (MF) and short-term (RNN) data about

movies and users. The generator uses features based on matrix factorization as

well as dynamic LSTM information, while the discriminator in LSIC relies on a

Siamese network to tell apart real high-rated movies from what is recommended.

Cold-start problems are resolved by having the authors use ResNet-101 to encode

movie posters, then directly input these visual features into the RNN at the

beginning. A number of four hybrid approaches were investigated and LSIC-V4

attention weights the significance of both propagating and static factors more

effectively than others. Using both the Netflix and MovieLens datasets, it is clear

that LSIC outperforms earlier methods (like BPR, IRGAN, RNN) by up to 7.45%

for Precision@5 and a high accuracy of 81% with 70% coverage. Future research

includes trying to boost machine functions and look into how parts of the machine

pay attention to each other.

Authors Sahu et al. [10] recommend a system with three modules meant to predict

how well a movie will perform and who its main audience will be, during the

initial phase of creating it. In the first module, I use genre, cast, director, keywords

and description to compute TF-IDF vectors and cosine similarity to get the ten

most similar movies from TMDb. In this module, ratings and votes for similar

movies found on IMDb are used to develop a CNN that puts upcoming movies

into six popularity classes. It records a significant 96.8% correct rate, making it

better than traditional machine learning. The third module uses fuzzy c-means

clustering on data for both age-wise voting and ratings to guess what each age

group prefers, grouping them into junior, teenage, mid-age and senior groups.

Thanks to the integrated setup, the process supports both early judgment calls and

helps build content for particular viewers. In the near future, multimedia and

analyses of emotions could be incorporated.

Mondal et al. [11] introduce a new movie recommendation system for Indian

viewers that uses cross-attention methods. rather than focusing on written words

and numbers, like ordinary methods do, this model analyzes audiovisual aspects

from Hindi trailers and uses feedback from users noting if they like, dislike or feel

neutral about the movies. Data from the Flickscore dataset is used to train the

7

system which consists of information about 510 Hindi films and details from more

than 16,000 user-movie interactions. New innovations are the introduction of a

GenreLike-score (GL-score) for comparing user genre preferences and movies

and weighting user embeddings by how well their preferences fit with movie

genres. We process audio with wav2vec2 and video is encoded using

TimeSformer and keyframes selected equally. Multi-head cross-attention is

applied to connect user and movie information to help predict what a user likes.

Results show that the GL-score gives clearer accuracy, with audio outperforming

video and liked-movie embeddings doing even better. Looking forward,

researchers plan to enhance fusion methods, extend the variety of data and use

technology that can identify emotions.

Kumar et al. [12] present a hybrid recommender system by combining CF, CBF

and Twitter sentiment to increase how accurate the recommendations are. The

system works with the MovieTweetings dataset which maps movie ratings to

Twitter accounts and completes movie information using TMDb. We remove

common words from tweets and standardize their text, then analyze them using

VADER to score the sentiment of each movie. To fuse these scores, we combine

metadata-based similarity (using a weighted model that follows social graph

connections) and we apply a similar approach to the combined scores. The

recommendation consists of a mix between the similarities of metadata and

sentiment. The proposed approach is better in Precision@5 and Precision@10

than the baseline hybrid and sentiment-only models, obtaining scores of 2.54 and

4.97 respectively. The study demonstrates that a film’s sentiment and IMDb rating

are likely to move in the same direction. Future development will utilize

information from multiple languages and formats and depend on emotion data to

make better recommendations.

The authors [13] published an in-depth review highlighting RS that base

recommendations on textual data such as reviews by users, articles, blogs and

academic literature. From 2010 to 2020, the research sorts published literature into

four main groups: datasets, ways to extract data, computational methods and ways

to assess results. It notes that using TF-IDF, WordNet, ontologies, as well as

Word2Vec, Doc2Vec are the key feature extraction ways. Because they capture

semantic relationships well, word embeddings have become the technology most

often used in the NLP field. The survey also investigates different computing

methods, covering traditional metrics (cosine, Jaccard), machine learning

algorithms and advanced deep models such as CNNs, RNNs and autoencoders,

pointing out that shifting toward neural and hybrid systems can improve both how

accurate and diverse the recommendations are. Additionally, the framework

explains what precision, recall, F-measure and serendipity mean, as well as what

coverage does. According to the paper, using hybrid and deep learning techniques

is fast becoming necessary for efficient textual recommendations.

Mngomezulu and Ajoodha [14] explain that by using TF-IDF and RAKE to

8

extract movie keywords, their proposed method results in better recommendations

than those made by classic collaborative filtering. From the MovieLens data, they

get the movie plots and then use both extractors to make feature vectors that are

used to compute similarity matrices. The system suggests 20 movies for each title

entered and about half the time (7 out of 20), recommendations match up between

the two methods. The highest percentage match (10) was seen for Casino, showing

that both extractors could be used successfully together. It also uses the

MovieLens 100K ratings dataset to help users make joint film choices. For the

predictive task, the performances of SVD, KNN, SVD++ and CoClustering are

checked with RMSE and MAE measures. I obtained the best results using SVD++

which had RMSE = 0.90 and MAE = 0.71. Results show that recommender

systems work better if they rely on both keyword-based methods and collaborative

filtering.

In their study, Izdihar et al. [17] build a movie recommendation system using

Neo4j to examine connections between several attributes from the Netflix movies.

The system puts movies, actors, directors, genres, countries and years into graph

nodes, connecting them using edges labeled as ACTED_IN, DIRECTED and

IN_CATEGORY. FastRP technology is used to produce low-dimensional vectors

for each node that retain the structural resemblance between them. The system

uses the embeddings to calculate how much two movies match, using the k-NN

algorithm. With a perfect match score (1.0) for 270 films and thousands of others

with similarity under 1.0, the method demonstrated how it can discover

meaningful movie links. The analysis shows that mixing FastRP and k-NN inside

Neo4j is a suitable way to make personalized recommendations and emphasizes

the ability of graph architectures to scale and show context. It is also useful for

making personalized updates and user preference models based on context.

Manwal et al. [18] introduce a movie recommendation system that compares

movies by matching their textual features using TF-IDF and Bag-of-Words

approach. The system uses a movie title as input and searches for similar films

using cosine similarity which is more precise when there are lots of dimensions to

consider. After preprocessing, the title, description and genre are made into

vectors and compared to all other movie features. The similarity score serves to

sort and present recommendations. Streamlit allows a web application interface to

work, so that users can look for movies and see personalized recommendations,

plus the posters of those movies. Because it depends on movie information and

does not need users’ historical behavior, the system resolves some major problems

with collaborative filtering systems. They show that linking TF-IDF and BoW to

movie plots improves the outcomes, resulting in better recommendations.

Improvements can be achieved by mixinG recommendation summaries with user

behavior data to improve both accuracy and the ability to adjust over time.

9

Table 1. Comparative analysis of movie recommendation system approaches highlighting

models used, datasets, evaluation metrics, advantages, and limitations.

Author

& Year

Models Used Performan

ce

Parameter

s

Datasets Advantages Disadvantag

es

Joseph &

Nair

(2022)

User-User &

Item-Item CF,

Content-Based

RMSE,

MAE,

Accuracy

(~80%)

MovieLe

ns

CF model

comparison,

content for

cold-start

CF suffers

from

sparsity,

lacks novelty

Noushee

n Taj et

al. (2024)

Content-Based

(Cosine

Similarity, TF-

IDF)

Accuracy

(~80%)

MovieLe

ns (4806

movies)

UI with

Streamlit,

dynamic

keyword

filtering

Cold-start for

users,

popularity

bias

Sable et

al. (2021)

Content-Based

+ Sentiment

(Naive Bayes,

Cosine)

Not

numerically

detailed

TMDB,

IMDb

reviews

Sentiment

integration,

detailed UI

Limited

metrics,

dependent on

review

quality

Naskar &

Joseph

(2024)

Hybrid

(Content +

Demographic +

Sentiment,

BERT)

Cosine

similarity

(0.9931)

MovieLe

ns, IMDb

Fuses metadata

and sentiment

Complex

system, lacks

feedback

loop

Pu & Hu

(2023)

Hybrid (User-

CF, Item-CF,

CB,

TensorFlow)

Accuracy

(81%),

Coverage

(70%)

Not

specified

Scalable,

integrates deep

learning

Complex to

deploy, lacks

cold-start

focus

Sumathi

et al.

(2023)

Content-Based

(Cosine

Similarity, TF-

IDF)

Qualitative

recommend

ations

TMDB Simple, easy to

interpret

No

performance

metrics, lacks

user data

Wei

Zhao et

al. (2020)

LSIC

(Adversarial

MF + RNN +

Visual

Embedding)

Precision@

5 (+7.45%),

Accuracy

(81%)

Netflix,

MovieLe

ns

Cold-start via

image,

dynamic user

modeling

High

computationa

l cost

Sahu et

al. (2022)

Content-Based

(TF-IDF +

CNN + Fuzzy

C-Means)

CNN

Accuracy:

96.8%

TMDB,

IMDb

Early-stage

prediction,

target audience

classification

Not real-

time,

dependent on

past trends

Mondal

et al.

(2024)

Multimodal

(Audio/Video +

Cross-

Attention)

GL-score,

qualitative

Flickscor

e

Indian

audience focus,

genre-sensitive

modeling

Small

dataset, lacks

numerical

accuracy

Kumar et

al. (2020)

Hybrid (CF +

CB + Twitter

Sentiment)

Precision@

5: 2.54,

Precision@

10: 4.97

MovieTw

eetings,

TMDB,

Twitter

Social media

insights via

sentiment

Sparse tweet

coverage, no

deep model

10

Kanwal

et al.

(2021)

Survey of Text-

Based RS

Qualitative

review

Various

(2010–

2020)

Comprehensive

literature

overview

No

experiments

or results

Mngome

zulu &

Ajoodha

(2022)

Content-Based

+ CF (TF-IDF,

RAKE, SVD,

KNN)

RMSE

(0.90–0.97),

MAE

(0.70–0.77)

MovieLe

ns

Combines

keyword

extractors with

CF

Limited

keyword

overlap, UI

simplicity

Izdihar et

al. (2024)

Graph-Based

(Neo4j, FastRP,

k-NN)

Similarity =

1 for 270

pairs

Netflix

Movie

Dataset

Graph model,

interpretable

links

No

precision/rec

all, Netflix-

specific

Manwal

et al.

(2023)

Content-Based

(TF-IDF +

BoW + Cosine

Similarity)

Qualitative

(via

Streamlit)

Not

explicitly

named

Simple, user-

friendly web

deployment

No

evaluation

metrics, lacks

hybrid

modeling

A variety of approaches to developing movie recommendation systems are found

in the reviewed research papers. Studies such as Joseph & Nair (2022) choose

collaborative filtering based on user actions, but they usually meet problems due

to the unavailability of user history or when few users have interacted on the

website. Other researchers such as Nousheen Taj et al. (2024) and Sumathi et al.

(2023), have examined content-based filtering by using the TF-IDF and cosine

similarity methods. Such models are easy to use, but they are not strong enough

to catch users’ true preferences and tend not to show the measurable outcomes we

require. Using a selection of techniques together, more advanced systems work

more accurately and flexibly.

Likewise, Naskar & Joseph (2024) join demographic statistics and sentiment

analysis via BERT and Pu & Hu (2023) use deep learning methods to generate

recommendations for large groups. The reason these hybrid systems work better

is that they are more difficult to operate and harder to manage. A few researchers

rely on outside information such as reviews and discussion on social media. These

papers (Sable et al., 2021 and Kumar et al., 2020) improve their recommendations

with sentiment analysis, though this approach requires the text processed to be of

a given quality and accessible.

Few research studies examine the latest possibilities. Wei Zhao et al. (2020)

address the cold-start issue by building a deep learning model with visual

representations and Mondal et al. (2024) work with Indian creators using text,

images and videos, including cross-attention features. Izdihar et al. (2024) use

Neo4j and a graph system to describe movie relationships, making insights

flexible, but evaluation is not fully explored. To conclude, Kanwal et al. (2021)

present text-based recommendation techniques and provide a summary of 10

years’ worth of work, highlighting the major trends without including a novel

model.

11

All in all, though basic content-based approaches are accessible and simple,

hybrid methods and systems using deep learning are more powerful and flexible.

Which approach to use depends on how simple the model needs to be, how right

it is, how complex the systems are and how much data is available.

12

CHAPTER 3

SYSTEM ARCHITECTURE AND METHODOLOGY

3.1. Workflow

The process of machine learning model creation and appraisal becomes clear

through Fig. 1 . The content-based movie recommendation system requires

collecting a dataset which includes movie information about titles keywords

genres and cast details. Before analysis the raw data requires processing to achieve

proper organization and cleaning of information.

Fig. 1. Working Flowchart

The Count Vectorizer transforms textual data by generating a frequency-based

matrix which displays token statistics for numerical representation. The pre-

processed data consists of word embeddings together with token counts which

serve as fundamental features for movie information extraction. The system

utilizes feature vector cosine similarity calculation to evaluate the degree of movie

similarity. The system yields recommended movies to users through their

submitted movie titles by evaluating the calculated similarities in content. Users

13

receive individual recommendations of films with comparable themes or story

elements after the system generates the suggestions. The recommendation system

provides contextually appropriate results through Word2Vec and Count

Vectorizer advanced techniques.

3.2. Dataset

By examining the TMDB 5000 dataset users gain access to extensive movie data

since this dataset allows exploration of genre popularity trends as well as

production durations together with thematic elements. A thorough pre-processing

step enabled significant findings about cinematic trends to appear from the

analysis of the dataset through exploratory data methods. A study of Fig. 2

demonstrates Drama takes the lead position among movie genres since it contains

2,000 entries while Comedy and Thriller rank as second and third. These genres

position themselves at the top because issues and approach that appeal to everyone

make them widely popular—Drama touches viewers with deep emotions and

Comedy delivers laughter through joyous content. The specialized audience base

of Westerns along with foreign releases and TV Movies explains the low number

of films in each category. The data exhibits a wide array of film content that

emphasizes the major positions of mainstream cinematic categories.

Fig. 2. Distribution of Movie Genres

Production levels steadily rose through time which reached its peak point in 2010

according to the histogram depicted in Fig. 3 . The pre-1960s period showed

14

modest movie releases because both technology and economics created obstacles.

Movie production numbers surged dramatically throughout the post-1980s period

because of better film technology together with cinema globalization and the

development of blockbuster entertainment systems. A small drop seems to appear

after 2016 yet it could be due to either missing data or balanced production trends.

Technology advancements along with audience behavior patterns created the

pattern through which the film industry grew.

Fig. 3. Movie Release Trends Over Time

Fig. 4. Genre Evolution Over Decades

15

The research in Fig. 4 reveals interesting details about studio production

throughout history stretching back to 100 years. Production counts for the

Documentary genre along with other non-fiction films rose greatly during the

2000s as audiences became more interested in documentary artistic forms

focusing on real-world matters. Drama and Comedy genres demonstrate robust

consistency in their high numbers of yearly production because viewers

consistently find them appealing. Popularity of Science Fiction and Fantasy

movies during the 2000s and 2010s results from higher technology standards

which fuel creative storytelling in film. The cultural interest in Westerns has

decreased thus showing a decline in Western films numbers. Major war conflicts

of World War II demonstrate societal changes through the heatmap's display of

higher production numbers of War movies. This visual display demonstrates that

movie industry trends emerge from constantly shifting production dynamics

throughout changing popular fame genres.

3.3. Data Preprocessing

The TMDB dataset needed multiple processing operations that increased its

suitability for use in building a recommendation system. The 'genres' and

‘keywords’ columns held JSON-like structures when the data was initially

gathered. A simpler form of analysis became possible after genres received

separate extraction from keywords then merged into combined comma-separated

strings for distribution research. Such text processing capabilities make the

Word2Vec model effective for topic analysis.

Fig. 5. Dataset after pre-processing

16

The team generated the 'combine_tk' column that assembled different text

elements including titles and keywords into one unified text value. Word

embeddings benefit from the combination elements to produce accurate content-

based recommendations. A system of text normalization methods normalized all

text data by lowering case while eliminating special characters and punctuation

and removing stopwords from the text. Following tokenization the train-up phase

for Word2Vec began.

The database received pre-processing that included subdivision of numerical and

categorical elements while extracting the 'release_date' column values for time-

based research purposes. Null values in essential columns probably underwent

removal or imputation to keep the data quality high. Extra features that accounted

for text lengths as well as keyword counts could have been considered to analyze

movie complexity. During pre-processing the prepared dataset formed a collection

of movie data which included the main components Title, Overview, Genre,

Keywords, Cast, Release Year and Combined features composed of Title and

Keywods data shown in Fig. 5 . The processing sequence prepares data for

Word2Vec Skip-gram implementation by standardizing its text elements into

reliable features with high information density. Through the integration of

multiple text features the model receives training capabilities to understand

important word embeddings that express movie structural relationships. The

correct generation of content-based recommendations through cosine similarity

depends heavily on these processes. The pre-processed dataset creates strong base

conditions to examine genre development patterns and chronological patterns

along with building complex recommendation systems for the field of movie

analysis.

3.4. Methodology

This chapter details the design, implementation, and functioning of the two core

components of the proposed movie recommendation system: one based on

Word2Vec embeddings and the other using CountVectorizer. Both approaches fall

under the domain of content-based filtering, where the goal is to recommend

movies similar to a given movie based on its textual metadata (e.g., title,

keywords).

3.4.1. Document Preparation

The first step common to both models is to prepare a clean and meaningful textual

representation of each movie. This is achieved through the function

prepare_documents, which performs the following tasks:

• Combining Metadata: Concatenates the movie title and associated

keywords.

17

• Normalization: Converts text to lowercase.

• Tokenization and Filtering: Removes punctuation and filters out tokens

shorter than two characters.

• Reconstruction: Joins the cleaned tokens back into a whitespace-

separated string.

The result is a processed document for each movie that captures the semantic

essence of its content.

3.4.2. Word2Vec-Based Recommendation System

Word2Vec functions as a neural network algorithm that develops dense word

vectors although it specifically teaches models to interpret semantic concepts

through contextual word relationships. Through the implementation of the Skip-

Gram model users can predict surrounding words after providing a target word for

prediction. The embeddings produced by Skip-Gram become optimized through

a process which maximizes the probability of window-sized neighboring words

against traditional frequency-based TF-IDF or CountVectorizer models.

Mathematically, the model optimizes the following objective function:

𝑚𝑎𝑥 ∑ ∑ 𝑙𝑜𝑔⁡ 𝑃(𝑐|𝑤)

𝑐∈𝐶(𝑤)𝑤∈𝑉

 (1)

The model seeks to maximize the following target function where w stands for

vocabulary word w from vocabulary V and P(c|w) indicates the conditional

probability of context word c when given target word w and C(w) refers to the

context words which appear near w within a defined window scope.

A two-layer neural network architecture within the model accepts one-hot

encoded words from the input layer and passes them through hidden layers for

reducing dimensions before producing output layer predictions of context words

as depicted in Fig. 6 . The model processing efficiency rises because negative

sampling enables the weight update of only selected fractions. The research uses

a Skip-Gram model to process movie metadata featuring titles and keywords

which generates meaningful word representations in embedded space.

Semantically advanced associations become manifest in movie recommendations

through this advanced method leading to superior results than traditional

techniques.

18

Fig. 6. Architecture of Word2Vec Skip-Gram Model

➢ Training Word2Vec Embeddings

The function train_word2vec takes the preprocessed documents and trains a

Word2Vec model using the Skip-gram or CBOW algorithm. It supports tuning of

the following hyperparameters:

• vector_size: Dimensionality of the word vectors (default 150)

• window: Context window size (default 3)

• min_count: Minimum word frequency threshold (default 2)

• sg: Skip-gram (1) or CBOW (0) mode

19

• epochs: Number of training iterations

• negative: Number of negative samples

• sample: Downsampling rate for frequent words

The model outputs:

• The trained Word2Vec model

• Averaged document vectors for each movie

➢ Hyperparameter Tuning

To optimize the performance of the Word2Vec embeddings, the function

tune_word2vec_hyperparams performs a grid search over a specified parameter

space. Each combination is evaluated using an appropriate metric (e.g., cosine

similarity), and the best model is retained.

➢ Generating Recommendations

Once vector representations are generated, the function

recommend_similar_movies calculates the cosine similarity between the target

movie and all others. The top-N most similar movies are then recommended. This

is implemented inside getRecommendations_Word2Vec, which integrates the

above steps.

Advantages:

• Captures semantic similarity between words and contexts.

• Flexible and tunable.

• Performs well for sparse data.

Disadvantages:

• Training is resource-intensive.

• Sensitive to hyperparameter settings.

3.4.3. CountVectorizer-Based Recommendation System

The CountVectorizer model produces word-count matrices by implementing the

established bag-of-words (BoW) method on text data. The method splits text

documents into distinct words for building a common vocabulary and enables

document comparison using word frequency patterns. CountVectorizer serves

20

basic text processing operations adequately while it experiences multiple

limitations in its application. As a result of this approach word elements become

independent units that lack collaborative semantic meaning between words. The

transformation of high-dimensional sparse representations turns into an extensive

issue since CountVectorizer lacks efficiency with big datasets. With

CountVectorizer it becomes technologically impossible to study the relationships

between words since the algorithm uses word occurrence counts to generate

numerical vectors from movie descriptions. CountVectorizer delivers reliable

first-stage solutions for text similarity tasks despite having well-documented

constraints. This study compares CountVectorizer to Word2Vec Skip-Gram by

scoring their output similarity along with an evaluation of their performance in

generating movie recommendations.

➢ Vectorization with CountVectorizer

The function get_countvectorizer_vectors uses Scikit-learn's CountVectorizer to

transform each document into a vector of token counts. Configurable parameters

include:

• max_features: Limits vocabulary size

• ngram_range: Supports unigrams, bigrams, or higher

The output is a dense feature matrix and the fitted vectorizer.

➢ Generating Recommendations

Similar to the Word2Vec method, the function recommend_similar_movies

computes cosine similarity between the vector of the input movie and all others.

This logic is encapsulated in getRecommendations_countVectorizer.

Advantages:

• Easy to understand and implement.

• No training required.

• Fast and efficient.

Disadvantages:

• Ignores semantic similarity between different but related words.

Generates sparse, high-dimensional vectors.

3.4.4. Cosine Similarity Computation

The text representation similarity measurement uses Cosine similarity as its

algorithm which receives broad acceptance among researchers. The value of

cosine similarity derives from measuring the angle formed between two vectors

21

through mathematical calculation as shown in fig 7 . The calculated results span

between 0 to 1 so that 0 represents non-similar vectors while 1 stands for exactly

matching vectors. The formula for calculating cosine similarity is as follows:

𝑢⃗ ⋅ 𝑣 = |𝑢⃗ | ⋅ |𝑣 | 𝑐𝑜𝑠 𝜃 (2)

sim = 𝑐𝑜𝑠 𝜃 =
𝑢⃗⃗ ⋅𝑣⃗

|𝑢⃗⃗ |⋅|𝑣⃗ |
=

∑ 𝑢𝑖
𝑛

𝑖=1
⋅𝑣𝑖̇

√∑ 𝑢𝑖
2𝑛

𝑖=1
⋅√∑ 𝑣𝑖̇

2𝑛

𝑖=1

(3)

where 𝑢⃗⃗ and 𝑣⃗ are the feature vectors of two text representations, and |𝑢⃗⃗ | and |𝑣⃗ |
are their respective magnitudes.

The directional evaluation of text-based applications through cosine similarity

functions better than other methods because it addresses vector length

normalization and enhances directional comparisons without considering vector

size magnitude. The research uses cosine similarity to evaluate movie similarity

based on Word2Vec dense vectors and CountVectorizer sparse vectors. After

calculating similarity scores through computation tools, they get used for

recommendation generation where higher scores represent greater relevance. This

research analyzes the models' cosine similarity results which enables assessment

of Skip-Gram's semantic connection abilities against CountVectorizer's

frequency-dependent model.

Fig. 7. Cosine Similarity

22

3.5. Hardware Requirements

A software application's basic hardware requirements vary depending on the kind

of software being developed and the user's inclination towards programming tools

like Python, Google Colab, Kaggle Notebook or Visual Studio Code. Applications

with large object arrays might benefit from more RAM, but those that need faster

processing for intricate activities or computations might need a CPU with greater

performance.

Operating System : Windows 8/10/11

Processor : i5/i7

RAM : 4/8 GB

Hard Disk : 512 GB

3.6. Software Requirements

Practical demands and detailed description documents cover a wide range of

topics, such as product perspective, features, operational framework, workspace,

visual requirements, design limitations, and user manuals. These articles provide

a thorough evaluation of the project, highlighting its advantages, disadvantages,

and challenges in execution. By revealing issues and offering solutions, this

information facilitates the growth process.

Operating System - Windows8/10/11

Programming Language - Python 3.8

3.7. Libraries

This chapter outlines in detail the key Python libraries and software tools utilized

in the development of the content-based movie recommendation system presented

in this thesis. The choice of Python stems from its high-level simplicity, extensive

support for data science tasks, and an active open-source community that

continually enhances its capabilities.

3.7.1. Python Software Ecosystem

Python is among the most widely adopted programming languages for machine

learning, data analysis, and natural language processing due to its simplicity and

versatility. It supports a variety of models ranging from traditional classifiers like

23

Support Vector Machines (SVMs) using Scikit-learn to deep learning models such

as Convolutional Neural Networks (CNNs) implemented via TensorFlow and

Keras.

While our project is focused on content-based recommendation using textual

metadata, the broader capabilities of Python, including support for image and

speech processing, underline its significance in comprehensive AI applications.

The use of NLP tools like CountVectorizer and Word2Vec, integrated seamlessly

into Python, supports our system's ability to extract and model semantic

relationships from movie descriptions and keywords. Python’s advantages extend

further into rapid prototyping, platform independence, support for multiple

programming paradigms (object-oriented, functional), and interoperability with

other languages like C and C++.

➢ Advantages

• Vast Library Ecosystem: Python provides a massive collection of

libraries for diverse functionalities—web scraping (BeautifulSoup),

numerical computing (NumPy), data analysis (Pandas), machine learning

(Scikit-learn), natural language processing (NLTK, Gensim), and deep

learning (TensorFlow, PyTorch).

• Simplicity and Productivity: With its readable syntax and minimal

boilerplate code, Python accelerates development. Tasks that require

multiple lines in Java or C++ can often be completed in a few lines in

Python.

• Integration and Extensibility: Python integrates easily with C/C++, Java,

and .NET components, allowing performance bottlenecks to be addressed

with lower-level optimizations.

• Cross-Platform Portability: Python scripts can be run across Windows,

Linux, and MacOS with minimal changes.

• Community and Open Source: Its open-source nature means it is freely

available and continually updated by a global community.

• Object-Oriented and Functional Paradigms: Python’s support for both

paradigms allows developers to choose the best approach for the problem

at hand.

➢ Disadvantages

Although Python has many benefits, it's vital to take into account its drawbacks

before deciding to use it for a project. The following are some drawbacks to

consider:

24

• Limitations of Speed: In comparison to languages like C++ or Java,

Python might be slower because of its interpreted nature. Applications that

depend on performance could start to worry about this. However, Python's

advantages exceed its drawbacks for the majority of general- purpose jobs.

• Capabilities for browsing: Python is less often used in client-side

programming or in the creation of mobile apps and is mostly used on the

server side. Although there are frameworks for running Python in

browsers, such as Brython, their usage is restricted because of security

issues. This limits the use of Python in some fields.

• Limitations on Design: Because Python has dynamic typing, variables

can be assigned without explicitly defining their types. This flexibility can

increase the efficiency of programmers, but if not used appropriately, it can

also result in runtime issues. MyPy and other static type checking tools can

help to lessen this problem.

• Inadequate Connectivity to Databases: The database access layers in

Python are not as developed or commonly used as those in JDBC or

ODBC. Large businesses with intricate database needs may want to take

this into account as they may favour more well-established frameworks

and technologies.

3.7.2. Project Modules/Labraries

➢ Scikit learn

Scikit-learn is important in this project since it supplies the major functions used

in machine learning. Mainly, it is employed to perform CountVectorizer, a process

that converts the movie data to numerical form for calculating similarity. The

approach also has functions for computing cosine similarity between feature

vectors, so movies can be compared by what’s included in their content profiles.

This framework uses an intuitive API and fast processes to make it very effective

for building and launching filtering models.

➢ Matplotlib

Matplotlib is used to illustrate how different types of data are arranged and to

show how similar or different vector values are. Although it does not produce

recommendations, it is essential during the design and assessment of the system.

You can use visuals to learn about the way movie vectors connect in the feature

space and how well the clustering method groups identical content together. They

make it easier to diagnose and adjust issues with how recommendations are made.

25

➢ Pandas

Pandas is commonly chosen when loading and processing data. It helps manage

tables of data and manipulate movie information without difficulty. Performing

activities such as processing CSV files, handling missing data, joining datasets

and creating metadata strings is made simple with Pandas. The DataFrame

structure plays a big role in making movie names and keywords well-suited for

use in vectorization tools.

➢ Numpy

NumPy and Pandas work well together, since NumPy gives great functionalities

for working with numbers. In the project, arrays and matrices are used, especially

to find measures of similarity and organize vector data. Having the ability to

quickly handle big arrays is very important for processing both CountVectorizer

and Word2Vec data. Thanks to its efficiency and trustworthiness, NumPy is a

main tool in the vector processing workflow.

➢ Gensim

NLP is very important for understanding and interpreting text data, mostly in

content-based recommendation systems. Word2Vec and in particular the Skip-

gram architecture are significant methods in NLP used to learn word

representations. This project applies Word2Vec through Gensim, a Python library

for NLP. Skip-gram uses a target word to predict related context words and thus

finds semantic links between them when they appear in a window. In contrast to

method relying on frequency data, Skip-gram can represent words along a

continuous vector axis so that similar words are grouped closer in the space.

Metadata such as movie titles and keywords are seen as input documents and the

Skip-gram model’s goal is to learn embeddings based on them. The results are

used to form a vector for every movie, allowing the overall system to match up

and suggest movies with comparable themes. Because Skip-gram is used, movies

can be linked to recommend each other, even if their exact matches are sparse.

We used Gensim for this work to enable training of Word2Vec models using the

written information of films. It supports the development of thick vector

representations for words that include more than how often a term appears. Using

Skip-gram and CBOW algorithms, Gensim gives users the ability to work with

word contexts in different ways. The main advantage of Word2Vec embeddings

is that they allow the system to choose movies with similar concepts.

26

CHAPTER 4

EXPERIMANTAL RESULTS

4.1. Performance Evaluation Metric

For this chapter, we evaluate the effectiveness of our proposed Word2Vec-based

movie recommendation system using widely used metrics from these two areas.

Examples are Precision@k, Mean Reciprocal Rank (MRR), Mean Average

Precision (MAP@k) and Normalized Discounted Cumulative Gain (NDCG@k)

and 'k' in each case is the number of top recommendations reviewed. The

implementation we choose uses 10 suggested movies to assess each metric.

Precision@10 calculates the percentage of the top 10 recommendations that are

connected to the input film. This means you can see how accurate the user will be

when making a decision. The MRR measures the position of the first useful result

in the ranked list, telling us how efficiently the model can present the best choice.

By calculating mean precision among all queries, MAP@10 judges which systems

often rank higher those items that are the most useful. NDCG@10 shows how

relevant each item is and also considers the position of all relevant items, assigning

a bigger penalty to items ranked at the bottom to highlight the importance of how

well the ranking is done.

We ensured top performance by adjusting the hyperparameters used for the

Word2Vec Skip-gram model. The hyperparameters were set using a grid search

approach on the number of dimensions for vectors (vector_size), the size of the

training window (window), the minimum number of words needed (min_count)

and the number of training epochs (epochs). The candidate values considered

while tuning were gathered in Table 2:

Table 2. Parameter of Word2Vec Skip-Gram Model, Bold text is decided after

hyperparameter-tuning.

Parameter Values

vector_size [10, 30, 50, 100, 300]

window [10, 20, 30]

min_count [1, 2, 5]

epochs [10, 20, 30]

The hyperparameter configuration that delivered the best results was: vector_size

= 50, window = 20, min_count = 2, and epochs = 10. This setup balanced vector

quality and computational efficiency.

27

Following the hyperparameter tuning, we evaluated the model’s effectiveness

using the aforementioned metrics. The results, presented in Table 2, demonstrate

strong performance across all evaluation dimensions:

Table 3. Performance Metric after hyperparameter-tuning of the Word2Vec Model.

Metric Value

Precision@10 0.782297852900868

MRR 0.8907395926240147

MAP@10 0.8400695485015148

NDCG@10 0.9042125372714982

These results indicate that the model performs well in recommending relevant

movies, not only retrieving relevant items but also ranking them effectively. The

high MRR and NDCG scores reflect the system’s ability to place relevant

recommendations at the top of the list, thus enhancing user experience. The

combination of strong MAP and Precision values suggests that the model

maintains consistent performance across different user queries. This evaluation

confirms the suitability of the Word2Vec-based content filtering approach for

real-world movie recommendation tasks.

4.2. Result

Analysis reveals the effectiveness with which a system understands meaningful

relationships between movies during this section. The recommendation model

needs to imitate human thought by establishing connections between movies

according to their themes alongside narrative elements and contextual context

instead of basic word comparison. Streaming platforms today select Word2Vec

deep learning models because they deliver contextually precise suggestions and

ultimately give better recommendation services to users. In fig. 8, and 9 shows

recommendation of “Thor”, and “The Avengers” movie respectively.

CountVectorizer mainly functions through word frequency analysis and exact text

matching with the dataset contents. The recommendation system based on

CountVectorizer regurgitates movies that share identical terminology rather than

movies with deep semantic meaning. Word2Vec goes beyond CountVectorizer

because it recognizes word meaning by examining their patterns in context.

Word2Vec SkipGram proves its capacity to match films that display matching

themes together with comparable narratives and character profiles.

28

Fig. 8. Recommendations for "Thor" using CountVectorizer and Word2Vec SkipGram

Models.

Fig. 9. Recommendations for "The Avengers " using CountVectorizer and Word2Vec

SkipGram Models.

29

CHAPTER 5

CONCLUSION

The research evaluated how movie recommendation systems change when using

text-processing methods Word2Vec Skip-Gram and CountVectorizer. Simple

word frequency in CountVectorizer cannot detect complex links between movies.

Word2Vec Skip-Gram establishes contextual relations between words which

produces recommendations that are more significant and natural to understand

[15, 16]. The research indicates that deep learning algorithms that use Word2Vec

prove superior to basic frequency-based techniques because they understand

cinematic connections that extend further than general keyword overlap. Current

real-world applications require the resolution of several obstacles including

programming complexities and initial beginning hiccups and expansion

limitations.

5.1. Future Work

The future improvement of recommendation accuracy can be achieved through

integrating deep learning methods with collaborative filtering models according

to [10]. New generation recommendation algorithms will enhance streaming

service user experiences through better content recommendations for each viewer

to find their preferred content.

30

REFERENCES

[1] A. A. Joseph and A. M. Nair, "A Comparative Study of Collaborative

Movie Recommendation System," 2022 International Conference on Electronics

and Renewable Systems (ICEARS), Tuticorin, India, 2022, pp. 1579-1583, doi:

10.1109/ICEARS53579.2022.9752015.

[2] N. Taj, M. H. Varun and V. Navya, "Advanced Content-based Movie

Recommendation System," 2024 5th International Conference on Smart

Electronics and Communication (ICOSEC), Trichy, India, 2024, pp. 1693-1698,

doi: 10.1109/ICOSEC61587.2024.10722333.

[3] N. P. Sable, A. Yenkikar and P. Pandit, "Movie Recommendation System

Using Cosine Similarity," 2024 IEEE 9th International Conference for

Convergence in Technology (I2CT), Pune, India, 2024, pp. 1-5, doi:

10.1109/I2CT61223.2024.10543873.

[4] H. Khatter, N. Goel, N. Gupta and M. Gulati, "Movie Recommendation

System using Cosine Similarity with Sentiment Analysis," 2021 Third

International Conference on Inventive Research in Computing Applications

(ICIRCA), Coimbatore, India, 2021, pp. 597-603, doi:

10.1109/ICIRCA51532.2021.9544794.

[5] I. Naskar and N. P. Joseph, "Implementation of Movie Recommendation

System Using Hybrid Filtering Methods and Sentiment Analysis of Movie

Reviews," 2024 IEEE International Conference for Women in Innovation,

Technology & Entrepreneurship (ICWITE), Bangalore, India, 2024, pp. 513-518,

doi: 10.1109/ICWITE59797.2024.10502695.

[6] Q. Pu and B. Hu, "Intelligent Movie Recommendation System Based on

Hybrid Recommendation Algorithms," 2023 International Conference on

Ambient Intelligence, Knowledge Informatics and Industrial Electronics

(AIKIIE), Ballari, India, 2023, pp. 1-5, doi:

10.1109/AIKIIE60097.2023.10389982.

[7] S. S, M. S, S. R, S. M, S. M and S. S, "Certain Investigations on Cognitive

based Movie Recommendation system using Pairwise Cosine Similarity," 2023

9th International Conference on Advanced Computing and Communication

Systems (ICACCS), Coimbatore, India, 2023, pp. 2139-2143, doi:

10.1109/ICACCS57279.2023.10112790.

[8] W. Zhao et al., "Leveraging Long and Short-Term Information in Content-

Aware Movie Recommendation via Adversarial Training," in IEEE Transactions

on Cybernetics, vol. 50, no. 11, pp. 4680-4693, Nov. 2020, doi:

10.1109/TCYB.2019.2896766.

[9] Chollet, F., et al. (2015). Keras. GitHub. Retrieved from

https://github.com/fchollet/keras.

[10] S. Sahu, R. Kumar, M. S. Pathan, J. Shafi, Y. Kumar and M. F. Ijaz,

"Movie Popularity and Target Audience Prediction Using the Content-Based

Recommender System," in IEEE Access, vol. 10, pp. 42044-42060, 2022, doi:

10.1109/ACCESS.2022.3168161.

31

[11] P. Mondal, P. Kapoor, S. Singh, S. Saha, J. P. Singh and A. K. Singh,

"Genre Effect Toward Developing a Multi-Modal Movie Recommendation

System in Indian Setting," in IEEE Transactions on Consumer Electronics, vol.

70, no. 1, pp. 2517-2526, Feb. 2024, doi: 10.1109/TCE.2023.3324009.

[12] S. Kumar, K. De and P. P. Roy, "Movie Recommendation System Using

Sentiment Analysis From Microblogging Data," in IEEE Transactions on

Computational Social Systems, vol. 7, no. 4, pp. 915-923, Aug. 2020, doi:

10.1109/TCSS.2020.2993585.

[13] S. Kanwal, S. Nawaz, M. K. Malik and Z. Nawaz, "A Review of Text-

Based Recommendation Systems," in IEEE Access, vol. 9, pp. 31638-31661,

2021, doi: 10.1109/ACCESS.2021.3059312.

[14] M. Mngomezulu and R. Ajoodha, "A Content-Based Collaborative

Filtering Movie Recommendation System using Keywords Extractions," 2022

International Conference on Engineering and Emerging Technologies (ICEET),

Kuala Lumpur, Malaysia, 2022, pp. 1-6, doi:

10.1109/ICEET56468.2022.10007345.

[15] Bird, Steven, Ewan Klein, and Edward Loper. Natural language processing

with Python: analyzing text with the natural language toolkit. " O'Reilly Media,

Inc.", 2009.

[16] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp.

2825-2830, 2011.

[17] A. H. Izdihar, N. D. Tsaniyah, F. Nurdini, B. R. Mufidah and N. A.

Rakhmawati, "Building a Movie Recommendation System Using Neo4j Graph

Database: A Case Study of Netflix Movie Dataset," 2024 ASU International

Conference in Emerging Technologies for Sustainability and Intelligent Systems

(ICETSIS), Manama, Bahrain, 2024, pp. 614-618, doi:

10.1109/ICETSIS61505.2024.10459699.

[18] M. Manwal, D. Rawat, D. Rawat, K. C. Purohit and T. Choudhury, "Movie

Recommendation System Using TF-IDF Vectorizer and Bag of Words," 2023

12th International Conference on System Modeling & Advancement in Research

Trends (SMART), Moradabad, India, 2023, pp. 163-168, doi:

10.1109/SMART59791.2023.10428182.

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis__

Total Pages __________________ Name of the Scholar__

Supervisor (s)

(1)__

(2)__

(3)__

Department___

This is to report that the above thesis was scanned for similarity detection. Process and outcome is given

below:

Software used: _________________________ Similarity Index: _______, Total Word Count: _________

Date: ____________

Candidate's Signature Signature of Supervisor(s)

MOVIE RECOMMENDATION SYSTEM USING WORD EMBEDDING

40 AMIT SINGH

DR. RAJESH KUMAR YADAV

COMPUTER SCIENCE AND ENGINEERING

TURNITIN 7 % 9, 672

30/05/2025

Delhi Technological University

Amit_Thesis.pdf

Amit

Document Details

Submission ID

trn:oid:::27535:98218587

Submission Date

May 28, 2025, 10:56 PM GMT+5:30

Download Date

May 28, 2025, 11:02 PM GMT+5:30

File Name

Amit_Thesis.pdf

File Size

675.4 KB

40 Pages

9,672 Words

60,540 Characters

Page 1 of 44 - Cover Page Submission ID trn:oid:::27535:98218587

Page 1 of 44 - Cover Page Submission ID trn:oid:::27535:98218587

7% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Quoted Text

Cited Text

Small Matches (less than 10 words)

Match Groups

28 Not Cited or Quoted 7%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

5% Internet sources

3% Publications

6% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 44 - Integrity Overview Submission ID trn:oid:::27535:98218587

Page 2 of 44 - Integrity Overview Submission ID trn:oid:::27535:98218587

Match Groups

28 Not Cited or Quoted 7%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

5% Internet sources

3% Publications

6% Submitted works (Student Papers)

Top Sources
The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Submitted works

dtusimilarity on 2024-05-29 3%

2 Internet

www.coursehero.com 1%

3 Submitted works

CSU, San Jose State University on 2024-05-07 <1%

4 Internet

sallyfitzgibbonsfoundation.com <1%

5 Internet

artificialintelligence-notes.blogspot.com <1%

6 Internet

dspace.dtu.ac.in:8080 <1%

7 Internet

www.dominikkowald.info <1%

8 Internet

exascale.info <1%

9 Submitted works

Arab Open University on 2024-11-07 <1%

10 Submitted works

GLA University on 2015-05-02 <1%

Page 3 of 44 - Integrity Overview Submission ID trn:oid:::27535:98218587

Page 3 of 44 - Integrity Overview Submission ID trn:oid:::27535:98218587

11 Publication

Prabir Mondal, Pulkit Kapoor, Siddharth Singh, Sriparna Saha, Jyoti Prakash Singh… <1%

12 Internet

ethesis.nitrkl.ac.in <1%

13 Internet

www.compuserve.com <1%

14 Publication

Amjad A. Alsuwaylimi. "Arabic dialect identification in social media: A hybrid mod… <1%

15 Publication

P. Pavan Kumar, S. Vairachilai, Sirisha Potluri, Sachi Nandan Mohanty. "Recomme… <1%

16 Submitted works

University of Limerick on 2022-08-23 <1%

17 Internet

etd.uwc.ac.za <1%

18 Internet

tel.archives-ouvertes.fr <1%

19 Internet

thesai.org <1%

20 Internet

umpir.ump.edu.my <1%

Page 4 of 44 - Integrity Overview Submission ID trn:oid:::27535:98218587

Page 4 of 44 - Integrity Overview Submission ID trn:oid:::27535:98218587

