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Abstract

Image acquisition under low-light conditions poses serious limitations across numerous

imaging domains, resulting in noisy, low-contrast, and resolution-degraded outputs. These

limitations not only impact visual clarity but also hinder performance in downstream tasks

such as detection, recognition, and interpretation. Traditional image enhancement tech-

niques, including histogram equalization and gamma correction, provide limited improve-

ment in complex low-light scenarios and often amplify noise or distort colours. In contrast,

Generative Adversarial Networks (GANs) have demonstrated significant success in both en-

hancing brightness and performing super-resolution in a data-driven manner. Their ability

to model complex visual distributions enables the recovery of realistic textures and structures

from degraded inputs.

This thesis presents a comprehensive comparative review of recent GAN-based approaches

for low-light image super-resolution. We explore key architectural strategies, loss functions,

dataset choices, and evaluation metrics across prominent models. The analysis addresses

three core research questions: limitations in texture restoration, effectiveness of performance

metrics, and generalization challenges in low-light super resolution models across diverse

scenarios. Furthermore, we highlight real-world application areas including surveillance,

autonomous systems, mobile imaging, and document analysis where these techniques are

most impactful. The paper concludes by identifying persistent challenges and proposing

future research directions aimed at improving perceptual realism and robustness in low-light

SR systems.
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Chapter 1

INTRODUCTION

Images taken in low-light situations frequently encounter various quality problems, such as
reduced visibility, high sensor noise, and unnatural color changes. These challenges arise
due to inadequate lighting, which restricts the camera’s capability to capture fine textures
and color details. Consequently, the overall visual quality deteriorates, making it challeng-
ing to interpret or process these images for subsequent tasks. This becomes particularly
challenging in practical situations like night-time surveillance, autonomous navigation, or
low-light photography, where visibility and detail are crucial. For example, footage captured
by night vision security cameras often appears grainy and lacks clarity, making it challenging
to recognize faces or identify important elements within the scene. It becomes even more
challenging when super-resolution techniques are applied to distorted videos, as typical mod-
els often introduce noise or blur out important details instead of accurately reconstructing
high-resolution outputs. The main challenge in this thesis is to address the twin issues of
improving both the quality and clarity of images taken in low light conditions.[1]

1.1 Problem Statement

Images taken in low-light conditions tend to have compromised visibility, weak contrast,
color aberration, and major noise. Such degradations are critical problems in surveillance,
autonomous vehicles, and medical imaging scenarios where visual brightness is paramount.
When the super-resolution technique is applied to the low-quality images, the issue is com-
pounded by the fact that noise and artifacts are amplified in the upscaling process. Classical
image recovery and super-resolution techniques are not very good at bringing out details in
such situations. Hence, there exists a strong need for smart, data-driven techniques capable
of brightening and upscaling simultaneously. This thesis applies the technology of Gener-
ative Adversarial Networks (GANs), which have been finding excellent applications in the
task of image generation, to tackle the twin issue of brightening and recovering finer details
of low-light images.[2]

1



1.2 Traditional (Non-Deep Learning) Solutions

1.2.1 Conventional Image Enhancement Techniques

Prior to the era of deep learning, some conventional techniques were commonly employed
for low-light image improvement. One such technique that was commonly employed was
histogram equalization, which sought to enhance image contrast by more evenly redistribut-
ing pixel intensity values. This technique served well for lightening dark images but tended
to cause over-enhancement or details loss in certain areas. Another widely used method
was founded on Retinex theory, which tried to simulate the means by which human vision
perceives light and color by disconnecting illumination and reflectance. Retinex-based al-
gorithms were very capable of boosting image brightness but tended to be computationally
complex and noise-sensitive. Moreover, denoising filters like median filtering and Gaussian
smoothing were employed to mute unwanted noise, but these had a tendency to blur the
details of images and lose sharpness.[2]

Figure 1.1: Conventional Image Enhancement Techniques
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1.2.2 Traditional Super-Resolution Techniques

Super-resolution techniques before deep learning depended primarily on interpolation or
sparse representation. Bicubic interpolation, for instance, was a simple method that used
weighted averages of nearby pixels to estimate pixel values. Though simple to train, it
tended to create overly smooth images without fine textures. Sparse representation-based
techniques, however, tried to reconstruct high-resolution images from a learned dictionary
of image patches. These approaches worked better in maintaining structural information
but involved heavy feature engineering and manual parameter tuning, which made them less
practical to use in varying lighting conditions.[2]

Figure 1.2: Traditional Super-Resolution Techniques

1.2.3 Limitations of Traditional Methods

Although useful in some situations, conventional image enhancement and super-resolution
techniques suffered crucial limitations. A key limitation was their failure to generalize be-
tween images of different classes or light settings. They used rigid rules and manually crafted
features, which restricted flexibility. Additionally, they were incapable of learning sophisti-
cated patterns or representations from data and thus were ineffective where high variability
was involved, like natural low-light images. In most instances, these methods also inadver-
tently enhanced image noise in the process of trying to brighten or sharpen, which lowered
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the general visual quality rather than enhancing it.

1.3 Low-light Image Super Resolution

It pertains to the process of improving the clarity and visual appeal of images taken in
low-light situations. These images frequently exhibit low contrast, high noise, and lack of
detail, posing challenges for standard super-resolution algorithms to generate high-quality
outputs. The dual challenge here lies in simultaneously resolving the degradation caused
by low illumination and enhancing the spatial resolution to reveal finer image structures.
This problem is particularly critical in domains like surveillance, autonomous driving, and
medical imaging, where visual clarity under suboptimal lighting is essential.[3]

To address LLISR, traditional methods relied on cascaded approaches where denoising
or enhancement was first applied, followed by conventional super-resolution techniques like
bicubic interpolation or sparse representation. However, these pipeline methods often failed
to handle the complex interplay between noise, blur, and low light, leading to oversmoothed
or artifact-heavy outputs. Recently, Generative Adversarial Networks (GANs) have come
up as powerful tools for LLISR due to their ability to learn intricate mappings between
low-quality and high-quality image domains. GAN-based models can jointly optimize en-
hancement and upscaling in a single framework, often using perceptual losses, attention
mechanisms, and adversarial training to produce sharper, more natural-looking results. Ar-
chitectures like SRGAN, ESRGAN, EnlightenGAN, and LE-GAN have demonstrated that
GANs can reconstruct realistic textures and maintain structural fidelity even under extreme
low-light conditions.[3]

1.4 Challenges of Low-Light Image Super-Resolution

Low-light super-resolution of images is a hard problem that integrates the challenge of two
intrinsically hard problems: image upscaling and image enhancement. Images taken in
suboptimal light conditions tend to have high noise, low contrast, and color aberrations,
which make it difficult to recover high-frequency information. When super-resolution is used
for such degraded images as input, it may inadvertently add noise and artifacts, resulting
in artificial or distorted results. A significant difficulty is to provide more light without
overexposing the bright areas or compromising texture detail. Additionally, the absence
of large-scale paired datasets of low-light and corresponding high-resolution images makes
supervised training difficult. Maintaining natural color tones and preserving structural de-
tails during enhancement and resolution reconstruction adds further complexity. Finally,
most deep learning models, especially GAN-based approaches, require high computational
resources, making it difficult to deploy them in real-time or resource-constrained environ-
ments. Addressing these issues is critical for achieving effective and reliable LLISR in prac-
tical applications.[4]
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1.5 GANs

Generative Adversarial Networks, or GANs, is a notable development in generative modeling.
Since their introduction by Ian Goodfellow in 2014, GANs have been a major focus of
the research community. They are categorized as two neural networks, a generator and a
discriminator, that are trained simultaneously in a game where one’s success depends on the
other’s failure. The generator attempts to produce data samples that closely resemble real
data, even when the input is noisy or of low quality. On the other hand, the discriminator’s
task is to differentiate between genuine data and the output generated by the generator. By
employing an adversarial training method, the generator gradually improves its performance,
becoming capable of producing outputs that are nearly indistinguishable from real samples.
This architecture is especially effective in image generation tasks because it learns complex
distributions and visual patterns that traditional models cannot capture, leading to high-
quality, realistic outputs.[4]

Figure 1.3: Generative Adversarial Network Architectural Diagram

1.5.1 Application of GANs to Image SR and Low-Light
Enhancement

In the domain of image super-resolution, GANs have shown impressive results by focusing on
perceptual realism rather than mere pixel accuracy. SRGAN (Super-Resolution GAN) was
among the first models to apply adversarial loss for generating photo-realistic high-resolution
images. ESRGAN (Enhanced SRGAN) built upon this foundation, improving image detail
restoration and texture sharpness by refining network design and introducing the percep-
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tual loss. On the other hand, low-light image enhancement has also benefited greatly from
GANs. Models like EnlightenGAN and LE-GAN are designed to brighten dark images while
preserving color consistency and structural integrity. They use unpaired training strategies
and attention mechanisms to adaptively enhance image regions based on illumination. Some
GAN architectures go a step further by tackling both low-light enhancement and super-
resolution in a single framework. For instance, LLD-GAN and StarSRGAN are joint models
that not only enhance brightness but also recover high-resolution details from severely de-
graded inputs. LAE-GAN focuses on improving the readability of low-light text images
by combining attention modules and resolution enhancement. These models illustrate how
GANs can be tailored to address multiple degradation issues simultaneously.[4]

1.5.2 Key Benefits of GAN-Based Approaches

GAN-based models offer several advantages over traditional and early deep learning meth-
ods. Their key advantage is that they can create high-perceptual-quality images, usually
producing results that look more natural and visually appealing to human viewers. This is
especially useful in low-light and super-resolution applications where fine details and realistic
illumination are important. Compared to models that only reduce pixel-wise errors (such as
MSE or L1 loss), GANs combine adversarial loss and sometimes perceptual loss and thus can
learn features that correspond more closely to human perception. Another major plus is their
end-to-end learnability. The GAN model can learn the entire transformation of low-quality
images to high-quality images without manual-crafted features or intricate pre-processing
pipelines. This end-to-end architecture simplifies model training and deployment, reducing
the complexity of GANs and making them more scalable and flexible for application in real-
world scenarios like night-time photography, surveillance videos, and autonomous driving
during low-light environments.[4]

1.6 Challenges

1.6.1 Dual Problem: Enhancing Illumination While Increasing
Resolution

Low-light super-resolution for images is fundamentally a multi-task task. The model must,
in one respect, illuminate dim images and restore proper illumination. At the same time, it
must enhance the resolution and reclaim lost fine details resulting from low-quality capture.
These two goals are usually opposing, with illumination potentially introducing artifacts
or blurring and upscaling requiring sharpness and high-frequency information. Creating a
model that will be able to perform both tasks without sacrificing either is a great challenge
in this field.[5]
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1.6.2 Noise Amplification During Upscaling

Low-light photos are usually shot with elevated ISOs or longer exposure times, thus generat-
ing enormous sensor noise. When those noisy photos go through super-resolution models, the
upscaling can actually enhance the noise as well as the underlying fine details. This creates
outputs sharper but aesthetically unpleasing as a result of discernible artifacts. Mitigating
this issue requires models to intelligently distinguish between noise and useful features, which
remains a complex and unresolved problem.

1.6.3 Lack of Paired Datasets for Training

Supervised learning approaches often rely on paired datasets, where each low-light input
image has a corresponding high-resolution, well-lit ground truth. However, collecting such
datasets is difficult, especially under controlled lighting and camera conditions. As a result,
many existing models must rely on synthetic data or unpaired training, which may not gen-
eralize well to real-world scenarios. The scarcity of high-quality, real-world paired datasets
hinders both the development and benchmarking of low-light image super-resolution models.

1.6.4 Maintaining Color Accuracy and Texture Details

Accurate color reproduction and texture preservation are essential for natural-looking image
enhancement. Low-light images often suffer from color shifts and loss of texture due to poor
illumination. Enhancing brightness and resolution without introducing unnatural colors or
smoothing out important textures is a difficult task. Models must carefully balance between
contrast enhancement and fine-detail recovery, which requires sophisticated loss functions
and architectural components, such as attention mechanisms or perceptual guidance.

1.6.5 Computational Complexity of GAN Models for Real-Time
Use

While GAN-based methods offer high perceptual quality, they are often computationally
heavy. Complex architectures with deep convolution layers, multiple attention modules, and
high-resolution output generation demand significant GPU resources and time. This makes
it challenging to deploy such models in real-time or resource-constrained environments like
mobile devices, surveillance systems, or embedded cameras. Reducing the computational
load without compromising quality is a key area of ongoing research.
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The organization of this thesis aims to offer a thorough understanding of low-light im-
age super-resolution using GANs. Chapter 2 provides an extensive literature review, en-
compassing traditional image enhancement techniques, early convolutional neural network
(cnn)-based approaches, and recent generative adversarial network (gan)-based methods that
are applicable to the field. Chapter 3 discusses the main obstacles encountered in this area
and establishes the goals that shape the focus of the review. Chapter 4 discusses the ap-
proach used for this study, covering the criteria for model selection, datasets utilized, and
evaluation metrics employed for comparing performance. Chapter 5 delves into the practical
applications of low-light image super-resolution, emphasizing its importance in fields like
surveillance, medical imaging, and autonomous systems. Chapter 6 offers a comprehensive
comparison of eight cutting-edge generative models, examining their respective strengths
and weaknesses. Chapter 7 proposes potential areas for future research, identifying gaps and
emerging trends in this rapidly changing field. Finally, chapter 8 concludes the thesis by
summarizing the main findings and contributions derived from the review.
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Chapter 2

LITERATURE REVIEW

2.1 Classical Foundations of Image Enhancement

Pizer et al. (1987): Adaptive Histogram Equalization, this foundational work introduced
adaptive histogram equalization (AHE), a contrast-enhancement technique that locally ad-
justs image intensities to improve visibility in poorly illuminated regions. Unlike global
histogram equalization, AHE operates on sub-regions of an image, making it effective for
enhancing details in low-light conditions. However, it often amplifies noise in smooth areas,
limiting its utility for real-world applications. The paper laid the groundwork for subsequent
spatial domain enhancement methods, but lacked mechanisms to address the photometric
distortions inherent in extreme low-light scenarios [5].

Gonzalez & Woods (2008): Digital Image Processing, this comprehensive textbook sys-
tematized traditional image processing techniques, including spatial filtering, frequency do-
main methods, and histogram manipulation. Although it covers Retinex-inspired approaches
for illumination correction, its focus on classical algorithms (e.g., Wiener filtering) does not
address the non-linear degradations in modern low-light imaging. The text remains a crit-
ical reference for understanding the mathematical foundations of image enhancement, but
highlights the need for data-driven solutions under complex lighting conditions [6].

Land &McCann (1971): Proposing the Retinex theory, this seminal work modeled human
color constancy by separating illumination from reflectance-a concept that later inspired com-
putational low-light enhancement frameworks. The core premise of the theory-that perceived
color depends on relative lightness comparisons rather than absolute intensities-directly influ-
enced modern GAN architectures to disentangle illumination and content. Although limited
by its hand-crafted assumptions, Retinex provided a theoretical basis for physics-informed
deep learning models [7].

2.2 Deep Learning for Super-Resolution

Ledig et al. (2017): pioneered GAN-based super-resolution by introducing a perceptual loss
function using VGG features, shifting the focus from pixel-wise accuracy (PSNR/SSIM) to
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human visual perception. The residual generator and PatchGAN discriminator enabled 4×
up-scaling with photorealistic textures, though it struggled with low-light inputs due to un-
modeled noise and illumination biases. This work established adversarial training as viable
for ill-posed restoration tasks, later adapted for joint low-light enhancement and SR [8].

Wang et al. (2018): ESRGAN advanced SRGAN by replacing residual blocks with
residual-in-residual-dense blocks (RRDB) and adopting relativistic discriminators. These
innovations improved texture recovery and stabilized training for 4×–8× up-scaling. The
modified perceptual loss using pre-activation VGG features better preserved edges in un-
derexposed regions. The architecture of ESRGAN became a template for later low-light SR
models, but required paired training data, limiting its applicability to real-world unpaired
scenarios [9].

Vo & Bui (2023): StarSRGAN advanced blind SR by integrating five architectures into
a single model via neural architecture search, handling unknown degradations in low-light
images. The ”Lite” variant achieved real-time 4K upscaling (540p→4K at 24 FPS) using
dynamic network pruning, with only 0.3 dB PSNR drop versus the full model. This work
highlighted the trade-offs between computational efficiency and enhancement quality in prac-
tical deployments [15].

2.3 Unsupervised GAN-based Low-Light Enhancement

Jiang et al. (2021): EnlightenGAN addressed the paired data limitation through unsu-
pervised adversarial training with global-local discriminators and self-regularized perceptual
loss. Its attention-guided generator enhanced structural details while suppressing noise,
achieving robust performance on real nighttime images. The framework demonstrated that
GANs could jointly handle illumination correction and detail enhancement without ground-
truth references, inspiring subsequent unpaired low-light SR methods [10].

Fu et al. (2022): LE-GAN incorporated spatial-channel attention modules and identity-
invariant loss to prevent over-enhancement in unsupervised low-light SR. The attention
mechanism prioritized texture-rich regions during upsampling, while the identity loss pre-
served content fidelity across illumination changes. Evaluations on LOL and DARKFACE
showed 15% higher SSIM than EnlightenGAN, proving that attention mechanisms could
mitigate GAN-induced hallucinations in extreme darkness [13].

Xue et al. (2023): based on LAE-GAN, targeting text images, LAE-GAN deployed
cloud-based asymmetric training with a lightweight edge-side generator and a heavy cloud
discriminator. Its non-local attention block enhanced stroke coherence in documents under
0.1 lux conditions, achieving 92% OCR accuracy on ICDAR2015-Night. The framework
demonstrated the feasibility of deploying GAN-based enhancement in edge-cloud systems
but incurred latency costs for cloud synchronization [14].
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Nguyen et al. (2023): Cyclic Generative Attention-Adversarial Network for Low-Light
Image Enhancement paper suggested the cyclic generative attention-adversarial network
(cgaan) as a method for unsupervised improvement of low-light images. This network opti-
mizes the conversion of low-light images into normal-light images without the need for paired
datasets. CGAAN effectively addresses challenges such as insufficient enhancement under
varying lighting conditions, color bias, and noise, ensuring a balanced enhancement of light
intensity, color retention, and image details [22].

Ni et al. (2022): Cycle-Interactive Generative Adversarial Network for Robust Unsu-
pervised Low-Light Enhancement developed the Cycle-Interactive Generative Adversarial
Network (CIGAN), which aims to address the challenges in unsupervised low-light image
enhancement. Their method facilitates the transfer of feature distributions between low and
normal-light images, utilizing low-light guided transformations and feature randomization
for enhanced illumination. CIGAN effectively improves both enhancement and noise sup-
pression, making it highly effective in real-world applications [18].

Xiong et al. (2020): Unsupervised Low-Light Image Enhancement with Decoupled Net-
works, proposed a novel unsupervised low-light image enhancement framework that decou-
ples the tasks of illumination enhancement and noise suppression. Their two-stage GAN-
based model utilizes pseudo-labels for training and introduces an adaptive content loss to
effectively suppress noise across different illumination regions. Extensive experiments demon-
strated that their approach outperforms existing methods in both illumination enhancement
and noise reduction [16].

Zhou et al. (2024): Low-Light Image Enhancement via Generative Perceptual Priors,
proposed a low-light image enhancement framework that leverages generative perceptual
priors. Their method incorporates these priors into a transformer-based architecture, which
includes global and local perceptual priors and a novel layer normalization mechanism. The
model significantly outperforms state-of-the-art methods in both paired and unpaired low-
light datasets and generalizes well to real-world images [21].

Lv et al. (2019): attention guided low-light image enhancement with a large-scale low-
light simulation dataset, in this paper the author proposed a method for improving low-light
images using a multi-branch convolution neural network, which focuses on capturing the
viewer’s attention. Their model employs a vast synthetic dataset that simulates low-light
conditions and utilizes attention maps to guide the enhancement process. The suggested
network significantly enhances both brightness and image quality while minimizing noise,
and it surpasses existing techniques in terms of visual and quantitative assessments [17].

2.4 Retinex-Inspired Deep Models

Liu et al. (2021): RUAS architecture search framework, inspired by retinex, combined opti-
mization unrolling with neural architecture search (nas) to automate the design of lightweight
enhancement networks. By combining the techniques of illumination estimation and de-
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noising, ruas achieved remarkable outcomes on benchmark datasets, requiring 40% fewer
parameters compared to conventional generative adversarial networks. The work combined
model-based retinex principles with data-driven learning, but its computational cost re-
stricted real-time deployment.

Zhang et al. (2020): Attention-Based Network for Low-Light Image Enhancement pro-
posed an attention-based network for low-light image enhancement that focuses on sup-
pressing chromatic aberration and noise. The network integrates both channel and spatial
attention modules to refine color features and adaptively select useful information from pre-
vious layers. Their approach significantly improves the visual quality of enhanced images,
particularly in terms of handling noise and chromatic distortions [19].

2.5 Joint Enhancement and Super-Resolution

Wang et al. (2024): LLD-GAN introduced an end-to-end solution for low-light demosaicking,
integrating Bayer pattern reconstruction with illumination-aware SR. Its dual-path gener-
ator separately processes luminance and chrominance channels, while a frequency-domain
discriminator minimizes aliasing artifacts. The model outperformed cascade approaches (de-
mosaick→enhance→SR) by 2.1 dB PSNR on RAW night images, demonstrating the value
of joint optimization for sensor-level degradations [12].

Wang et al. (2023): DEGAN: Decompose-Enhance-GAN Network for Simultaneous Low-
Light Image Lightening and Denoising, introduced DEGAN, a GAN-based network that aims
to simultaneously enhance the illumination and denoise low-light images. The model em-
ploys a two-stage process consisting of band recomposition and recursive learning. Despite
its impressive performance in enhancing the brightness and contrast of images, DEGAN
faces limitations in completely eliminating noise, especially in heavily degraded images [20].

2.6 System-Level Edge-Oriented Architectures

Xue et al. (2023): LAE-GAN, targeting text images, LAE-GAN deployed cloud-based asym-
metric training with a lightweight edge-side generator and a heavy cloud discriminator. Its
non-local attention block enhanced stroke coherence in documents under 0.1 lux conditions,
achieving 92% OCR accuracy on ICDAR2015-Night. The framework demonstrated the fea-
sibility of deploying GAN-based enhancement in edge-cloud systems but incurred latency
costs for cloud synchronization [14].

Vo & Bui (2023): StarSRGAN advanced blind SR by integrating five architectures into
a single model via neural architecture search, handling unknown degradations in low-light
images. The ”Lite” variant achieved real-time 4K upscaling (540p→4K at 24 FPS) using
dynamic network pruning, with only 0.3 dB PSNR drop versus the full model. This work
highlighted the trade-offs between computational efficiency and enhancement quality in prac-
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tical deployments [15].

Below table summarizes the review done in this thesis:

Table 2.1: Summary of Literature Review

S.No. Author(s) Model Used Conclusion
1 Pizer et al. (1987) Adaptive His-

togram Equaliza-
tion (AHE)

Effective for local contrast enhance-
ment but amplifies noise in homoge-
neous regions.

2 Gonzalez & Woods
(2008)

Classical algo-
rithms

Systematized traditional methods
but lacked solutions for modern low-
light challenges.

3 Land & McCann
(1971)

Retinex Theory Introduced reflectance-illumination
separation, influencing physics-
informed deep learning.

4 Ledig et al. (2017) SRGAN First GAN for 4× SR with percep-
tual loss; struggled with low-light
noise.

5 Wang et al. (2018) ESRGAN Improved SRGAN with RRDB
blocks; required paired data for
training.

6 Jiang et al. (2021) EnlightenGAN Unpaired training with global-local
discriminators; robust for real-world
use.

7 Liu et al. (2021) RUAS Lightweight Retinex-inspired model
via neural architecture search
(NAS).

8 Wang et al. (2024) LLD-GAN End-to-end demosaicking + en-
hancement; 2.1 dB PSNR gain over
cascaded methods.

9 Fu et al. (2022) LE-GAN Attention + identity loss; 15%
higher SSIM than EnlightenGAN.

10 Xue et al. (2023) LAE-GAN Edge-cloud framework; achieved
92% OCR accuracy in 0.1 lux con-
ditions.

11 Vo & Bui (2023) StarSRGAN Real-time 4K upscaling (540p→4K
at 24 FPS) with dynamic pruning.

12 Wei Xiong et al.
(2022)

Two-stage GAN Decoupled illumination enhance-
ment and noise suppression; outper-
formed SOTA.
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13 Lv et al. (2020) AgLLNet Attention-guided enhancement; re-
duced color distortion vs. Retinex
methods.

14 Ni et al. (2022) Cycle-Interactive
GAN

Handled uneven lighting via cyclic
consistency; robust to extreme dark-
ness.

15 Zhang et al. (2020) Attention-based
network

Inverted shuffle layer suppressed
noise/chromatic aberration.

16 Zhang et al. (2023) DEGAN Simultaneous denoising + lighten-
ing; PSNR 26.5 on LOL.

17 Zhou et al. (2024) Perceptual Prior
GAN

Improved color fidelity via VGG-
based perceptual guidance.

18 Zhen et al. (2023) CGAAN Cyclic GAN with stylized loss; en-
hanced realism in textured regions.

The table titled Summary of Literature Review provides a comprehensive overview of
key contributions in the field of low-light image enhancement and super-resolution, as re-
viewed in this thesis. It spans classical methods such as Adaptive Histogram Equalization
and Retinex theory, foundational textbooks, and a wide range of recent deep learning-based
approaches, particularly those employing Generative Adversarial Networks (GANs). Each
entry highlights the model used by the authors and summarizes the core findings or lim-
itations, illustrating the progression from traditional enhancement techniques to advanced
data-driven methods capable of handling complex illumination conditions, noise suppression,
and perceptual quality preservation.

2.7 Review Objectives

This review sets out to address three core research questions that guide the comparative
analysis of GAN-based models for low-light image super-resolution. The first objective is to
explore the limitations of current GAN-based methods in reconstructing fine textures
and structural information in areas heavily affected by underexposure. Many existing mod-
els struggle to recover details in extremely dark regions, often leading to oversmoothing or
artificial-looking enhancements. The second focus is to identify the most effective per-
formance metrics used to evaluate LLISR models. Traditional metrics such as PSNR and
SSIM may not fully capture human-perceived quality, so this review investigates how well
these and other perceptual metrics align with subjective visual assessments and real-world
usability. The third objective examines the challenges in developing universal models
that can generalize across varying low-light scenarios. Differences in lighting intensity, color
temperature, and noise levels make it difficult for a single model to perform consistently well
across diverse conditions. These research questions help frame the review to better under-
stand current progress, existing gaps, and future directions in the field of low-light image
super-resolution using GANs.
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Chapter 3

METHODOLOGY

In the context of low-light image super-resolution, the generator takes a degraded, low-light,
low-resolution image as input and attempts to output a brighter, high-resolution version. To
achieve this, the generator is typically built using deep convolutional layers and may include
advanced modules such as residual blocks, dense connections, or attention mecha-
nisms. These components help preserve fine textures and enhance important structures
while suppressing noise and artifacts introduced during upscaling and illumination enhance-
ment. Some generators also use skip connections, inspired by UNet architectures, to retain
spatial details across different layers.[7]

The discriminator, on the other hand, acts like a critic. It receives both real high-
resolution images and the outputs from the generator, and learns to distinguish between
them. It is usually a binary classifier built with convolutional layers and activation functions
like LeakyReLU. The discriminator’s feedback helps the generator refine its output during
training. This process is guided by a loss function that often combines adversarial loss
(to ensure realism), content loss (to preserve structure), and perceptual loss (to maintain
visual fidelity according to human perception).

Some variants of GANs used in super-resolution and low-light enhancement—such as
SRGAN, ESRGAN, and EnlightenGAN—further enhance this basic architecture by
integrating perceptual features from pre-trained networks (e.g., VGG) or by modifying the
discriminator to operate on image patches for more localized learning. Such enhancements
render GANs particularly good at generating sharper, more explicit, and visually realistic
images than even standard convolutional neural networks (CNNs) by themselves.[11]

In total, the adversarial training paradigm, in conjunction with architectural advances
in both generator and discriminator, enables GANs to cope with the twofold challenge of
brightness and resolution improvement in low-light images. This renders them especially ap-
propriate for applications in which visual quality and detail restoration matter significantly,
including surveillance video, medical imaging, and night-time photography.

3.1 Proposed Methodology

This work proposes a two-stage low-light image super-resolution pipeline that decouples the
problem into sequential enhancement and upscaling stages. The rationale is that low-light
noise, low contrast, and uneven illumination significantly degrade the performance of super-

15



resolution networks. Therefore, preprocessing the low-light image before applying super-
resolution leads to better perceptual quality and reconstruction accuracy. The pipeline
is designed to evaluate various combinations of state-of-the-art enhancement and super-
resolution models using standardized metrics such as PSNR, SSIM, and LPIPS.

3.1.1 Algorithm Description

The following algorithm summarizes the two-stage pipeline employed for evaluation:

Algorithm 1 Two-Stage Low-Light Image Super-Resolution Pipeline

Low-light image Ilow Enhanced high-resolution image IHR

Step 1: Enhancement
Apply a low-light enhancement algorithm E to improve illumination and reduce noise:
Ienh = E(Ilow)

Step 2: Super-Resolution
Upsample the enhanced image using a super-resolution model S:
IHR = S(Ienh)

Step 3: Evaluation
Compare IHR with the reference high-resolution ground truth using:

• PSNR for pixel-level fidelity

• SSIM for structural similarity

• LPIPS for perceptual quality

3.1.2 Pipeline Overview

The figure below illustrates the flow of the proposed methodology:

Low-Light
Image
Ilow

Enhancement
Model

E

Super-
Resolution
Model

S

High-Res
Image
IHR

Figure 3.1: Flowchart of the Two-Stage Low-Light Image Super-Resolution Pipeline

3.2 Standard Datasets

Development and assessment of low-light image super-resolution (LLISR) models depend
significantly on varied and realistic datasets. The datasets consist of paired and unpaired
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sets of low-light and high-resolution images, taken in a range of lighting settings and cam-
era exposures. Paired datasets are especially beneficial for supervised learning, in which
models map a direct transformation of low-quality inputs to high-quality outputs. Unpaired
datasets, on the other hand, support unsupervised and adversarial learning, allowing models
to generalize across a wider range of scenarios.

The LOL dataset (Learning to See in the Dark) is one of the most widely used
resources for low-light enhancement. It contains 500 pairs of real-world images captured un-
der low-light and well-lit conditions, making it suitable for supervised GAN training. These
image pairs are provided in JPEG format and are often used to evaluate both enhancement
and resolution performance.[13]

The SID dataset (See-in-the-Dark) offers raw image pairs captured under extremely
low-light conditions using short-exposure settings, along with corresponding long-exposure
ground truths. Available in RAW formats from Sony and Fuji sensors, SID is ideal for noise-
aware enhancement and RAW-to-RGB translation tasks, supporting research into end-to-end
learning from sensor data.[15]

The ExDark dataset provides a large collection of 7,363 low-light images across 12
object categories, each with labels for object detection and classification tasks. Although it
does not contain paired references, it plays a crucial role in evaluating model performance
on real-world object understanding in dark environments.[9]

Smaller datasets such as DICM (Dark Image Comparison Model) and NPE (Natural-
ness Preserved Enhancement) are used primarily for qualitative assessment. DICM includes
64 naturally captured low-light images, while NPE focuses on perceptual evaluation by of-
fering scenes that test the naturalness and visual quality of enhanced outputs.

The SICE dataset includes multi-exposure images captured under different lighting
levels. Though not strictly low-light, it is valuable for training models to perform exposure
fusion and scene illumination correction. The dataset contains exposure stacks that simulate
dynamic lighting conditions found in real-world scenes.[21]

Lastly, the MIT-Adobe FiveK dataset offers 5,000 high-quality images that have been
professionally retouched. Though originally intended for image editing tasks, it is often used
in low-light research by applying synthetic degradations such as gamma correction, noise
addition, and downsampling to simulate dark, low-resolution conditions.[10]

In many studies, when real paired low-light data is limited, artificial low-light images are
generated through simulation techniques. These include applying gamma transformations,
adding synthetic noise, and reducing image resolution, thereby enabling training of models
under controlled yet realistic conditions.
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Table 3.1: Summary of Standard Datasets for Low-Light Image Super-Resolution

Dataset Type Content Descrip-
tion

Paired Applications Format /
Size

LOL Real-world 500 image pairs cap-
tured under low and
normal lighting con-
ditions

Yes Low-light enhance-
ment, supervised
GAN training

JPEG, 500
pairs

SID Real RAW RAW short-exposure
images under ex-
treme low light with
corresponding long-
exposure references

Yes RAW-to-RGB trans-
lation, noise-aware
enhancement

Sony/Fuji
RAW files

ExDark Real-world 7,363 low-light im-
ages across 12 object
categories with labels

No Object detection and
classification under
low light

JPEG, 12
classes

DICM Real-world 64 naturally cap-
tured low-light
images used primar-
ily for enhancement
benchmarking

No Qualitative and
visual evaluation of
enhancement algo-
rithms

JPEG, 64 im-
ages

SICE Multi-
exposure

High dynamic range
images captured un-
der varying illumina-
tion

Yes
(expo-
sure
stacks)

Scene illumination
correction, HDR
synthesis

Multiple ex-
posures per
scene

MIT-Adobe
FiveK

Real + Syn-
thetic

5,000 professionally
retouched photos, of-
ten used with syn-
thetic degradation

Possible
via
degra-
dation

Paired learning, style
transfer, low-light
simulation

TIFF/JPEG,
5,000 images

The table titled Summary of Standard Datasets for Low-Light Image Super-Resolution
outlines the most widely used benchmark datasets employed in evaluating and training mod-
els for low-light image enhancement and super-resolution. It includes both real-world and
synthetic datasets, covering paired and unpaired data, various lighting conditions, and dif-
ferent formats. Each entry details the dataset type, content description, pairing availability,
intended applications, and file format or dataset size. These datasets play a crucial role in
enabling supervised and unsupervised training, assessing model performance in real-world
scenarios, and simulating challenging lighting conditions for robust algorithm development.
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Chapter 4

RESULTS and DISCUSSION

This chapter critically examines the outcomes of the study in the context of the research
objectives, addressing key challenges and insights related to GAN-based low-light image
super-resolution. The discussion is structured around the three primary research questions,
drawing from empirical evaluation, model performance metrics, and comparative analysis of
architectural design.

4.1 Findings and Analysis

4.1.1 Limitations of Current GAN-Based Models in Reconstruct-
ing Fine Textures and Structural Details

This section answers the first research question stated in the research objectives. Although
GAN-based models have significantly improved the performance of low-light image enhance-
ment and super-resolution tasks, their capability to reconstruct fine-grained textures and pre-
serve structural integrity in severely underexposed regions remains inherently constrained.[4]

One of the primary limitations is the phenomenon of hallucination and texture
smoothing. Models such as SRGAN and ESRGAN, which utilize deep residual networks
and perceptual losses, often generate features that are not present in the original input. These
hallucinated patterns may increase perceptual sharpness but reduce fidelity, especially in ar-
eas lacking sufficient illumination. In low-visibility regions, aggressive use of VGG-based
perceptual losses can blur fine textures or misrepresent true edge boundaries.[12]

Furthermore, noise amplification remains a persistent issue. Under extreme low-light
conditions, residual noise is frequently misinterpreted as legitimate high-frequency content.
As a result, reconstructed images may exhibit false detail or grain-like textures, which distort
the visual quality and compromise downstream tasks such as detection or segmentation.

In terms of architectural limitations, earlier models lacked mechanisms to decouple
illumination from scene content. Recent approaches like DEGAN and LLD-GAN attempt
to address this by integrating decomposition networks or end-to-end RAW image pipelines.
However, even these advanced models struggle with distinguishing reflective components
from noise, especially under heterogeneous lighting scenarios.[11]

A comparative overview of relevant GAN-based models (see Table 4.1) demonstrates how
generator architecture, discriminator design, and loss functions directly influence a model’s
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capacity to handle structural detail restoration in low-light conditions.

Table 4.1: Comparison of GAN-Based Models for Low-Light Image Enhancement and Super-
Resolution

Model Year Generator Archi-
tecture

Discriminator Ar-
chitecture

Loss Functions

SRGAN 2017 Deep ResNet with
residual blocks

Patch-based discrimi-
nator

Adversarial loss, Content
loss (MSE), Perceptual
(VGG) loss

ESRGAN 2018 Residual-in-Residual
Dense Blocks (RRDB)

Relativistic average
discriminator

Perceptual loss, GAN loss
(RaGAN), Pixel loss

EnlightenGAN 2021 U-Net with global-
local feature fusion

Dual discriminators
(global + local)

Adversarial loss, Recon-
struction loss

DEGAN 2021 Decomposition net-
work (Retinex-based)

Standard discrimina-
tor

Decomposition loss,
Illumination-consistency
loss

LLD-GAN 2024 End-to-end RAW im-
age pipeline

Wasserstein GAN
with gradient penalty

Wasserstein loss, Pixel loss

LE-GAN 2022 Attention-augmented
U-Net

Patch discriminator Identity loss, Adversarial
loss

LAE-GAN 2023 Attention + text-
aware enhancement
modules

Convolutional dis-
criminator

Attention loss, Reconstruc-
tion loss

StarSRGAN 2023 Multi-branch GAN
with generative priors

Relativistic GAN GAN loss, Content loss,
Feature similarity loss

Despite architectural progress, key challenges persist:

• Textural fidelity loss: Inability to reconstruct realistic edges or micro-structures.

• Noise-detail confusion: Failure to differentiate between legitimate signal and sensor
noise.

• Generalization issues: Overfitting to training domain, with poor performance on
diverse lighting patterns.

4.1.2 Evaluation Metrics and Their Effectiveness in Capturing
Perceptual Quality

This section answers the second research question stated in the research objectives. Eval-
uation of super-resolution models under low-light conditions requires a balance between
objective accuracy and perceptual relevance. Traditional metrics such as PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure), while
widely adopted, often fall short in representing human perception in scenarios involving
texture hallucination or high perceptual distortion.

PSNR, as a pixel-wise metric for error, can encourage models to generate smooth, artifact-
free results even at the expense of losing important textures. SSIM is an improvement in that
it considers luminance, contrast, and structural similarity but still suffers from sensitivity to
global contrast changes and lacks robustness with extreme illumination imbalance.[18]
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In contrast, LPIPS (Learned Perceptual Image Patch Similarity) and FID (Fréchet
Inception Distance) provide perceptually consistent measures through deep feature ex-
traction from pretrained networks. They score more closely with human visual judgment,
particularly between realistic and artificially processed textures.

Nevertheless, these advanced metrics introduce their own limitations:

• Computational overhead: LPIPS and FID require extensive feature extraction and
large sample sizes.

• Model dependency: Their accuracy is influenced by the choice of the underlying
feature extractor (e.g., VGG vs. InceptionNet).

• Lack of context specificity: General-purpose metrics may not reflect task-specific
usability (e.g., license plate readability, facial recognition accuracy).

To address these shortcomings, this study also emphasizes the use of task-based evaluation
metrics, such as OCR accuracy and object detection precision, as more practical indicators
of real-world usability in downstream applications.

4.1.3 Challenges in Generalizing Low-Light SR Models Across Di-
verse Scenarios

This section answers the third research question stated in the research objectives. sDesigning
a universal low-light super-resolution model capable of handling diverse conditions and sensor
types presents significant challenges.

A major barrier is the diversity and distribution gap in training data. Datasets
like LOL or SID cover specific lighting environments, limiting the model’s exposure to the
wide range of real-world degradation patterns. This dataset bias leads to poor generalization,
especially when the test distribution diverges significantly from the training domain.[20]

The scarcity of paired low-light and high-quality ground truth images further
restricts the potential of supervised learning approaches. Synthetic images do not tend to
capture the sophisticated noise, flare, and color cast behavior of genuine low-light real-world
photography.

Sensor variability adds yet another degree of complexity. RAW Bayer patterns are
dramatically different from sRGB encodings in noise shape and dynamic range. Models
learned on one image type might not readily transfer between others without heavy domain
adaptation.

Noise modeling is particularly difficult. In contrast to the usual Gaussian noise, real
low-light images are plagued by complex, spatially variant noise resulting from photon star-
vation, sensor gain, and compression artifacts. Current models either bypass this complexity
or use too simple denoising methods, which discourages detail preservation.

Additionally, balancing loss functions is a sensitive process. Over-reliance on adver-
sarial or perceptual loss can produce synthetic textures, whereas draconian pixel-level losses
can cause over-smoothing. It is a non-trivial task to balance and maintain both realism and
fidelity and tends to necessitate a large amount of hyperparameter tuning.[14]
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Lastly, computational efficiency represents a pragmatic constraint. Although multi-
branch or attention-based GANs produce better quality, they consume high memory and
inference time and therefore are not ideal for use in mobile or real-time applications.

4.2 Experimental Setup: Two-Stage Low-Light Super-

Resolution

For our experiments, we used a subset of the LOL (Low-Light) dataset, which contains paired
low-light and normal-light images. This dataset helps us evaluate how well the enhancement
and super-resolution models work on real low-light conditions.

The process has two parts. First, the low-light images are enhanced using three different
methods: Zero-DCE, EnlightenGAN, and RetinexNet. Each uses a different approach to
improve brightness and details. Second, the enhanced images are passed to super-resolution
models SRGAN, ESRGAN, and Real-ESRGAN to increase the image resolution.[12]

We measured the quality of the results using three common metrics: PSNR, SSIM, and
LPIPS.

4.2.1 Performance Metrics

Assessing the effectiveness of low-light image super-resolution models requires the use of
both traditional and perceptually aligned evaluation metrics. These metrics help quantify
the fidelity, perceptual quality, and structural preservation of the output images.

1. Peak Signal-to-Noise Ratio (PSNR):

PSNR is a fundamental metric used to evaluate the similarity between the original high-
resolution image and the reconstructed super-resolved image.

amsmath
The Peak Signal-to-Noise Ratio (PSNR) is defined as:

PSNR = 10 · log10
(
MAX2

I

MSE

)
(4.1)

Eq: (4.1) expresses the relationship between the highest achievable power of a signal
(image) and the power of corrupting noise (measured as mean squared error) that impacts
the accuracy of its representation. In this context, maxi represents the maximum pixel value
achievable in the image, which is usually 255 for 8-bit images, and mse denotes the average
squared difference between the original and reconstructed pixel values.[5]

Generally, a higher psnr value suggests a higher level of image reconstruction quality.
However, psnr is a purely mathematical metric and does not always align with human visual
perception, as it fails to account for structural distortions, texture fidelity, or perceptual
nuances, making it less reliable for evaluating visually plausible results.
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2. Structural Similarity Index Measure (SSIM)

Structural Similarity Index Measure (SSIM) evaluates the visual similarity between two
images by considering luminance, contrast, and structural information. It is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.2)

where:

• µx, µy are the mean intensities of images x and y

• σ2
x, σ

2
y are the variances of x and y

• σxy is the covariance between x and y

• C1 and C2 are constants to stabilize the division

Eq: (4.2) measures the degree of similarity between two images by analyzing their lu-
minance, contrast, and structural characteristics. The ssim value can range from −1 to
1, with 1 representing perfect structural similarity. This makes ssim particularly effective
for assessing the visual quality of high-resolution images, especially in preserving edges and
textures.

The similarity score, denoted by s, ranges from −1 to 1, with a value of 1 representing
perfect similarity. It is especially helpful for evaluating the preservation of structural details
in low-light image super-resolution tasks.[7]

3. Learned Perceptual Image Patch Similarity (LPIPS)

Learned Perceptual Image Patch Similarity (LPIPS) is a perceptual metric that compares
two images based on deep feature representations extracted from pretrained convolutional
neural networks such as AlexNet or VGG. It is defined as:

LPIPS(x, y) =
∑
l

1

HlWl

Hl∑
h=1

Wl∑
w=1

∥wl ⊙ (ŷhwl − x̂hw
l )∥22 (4.3)

where:

• x and y are the input image patches

• x̂l, ŷl are the deep features at layer l

• wl are learned weights for each layer

• Hl, Wl are the spatial dimensions of layer l
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Eq: (4.3) quantifies the perceptual gap between two images by analyzing feature activa-
tions from intermediate layers of deep neural networks. Unlike pixel-wise metrics, lpips takes
into account human-like visual similarity by comparing learned representations. Lower lpips
values signify greater perceptual similarity, making this metric particularly useful for assess-
ing low-light super-resolution tasks where visual fidelity and texture realism are of utmost
importance.[9]

Lpips measures perceptual similarity more accurately than traditional metrics such as
psnr or ssim. Lower lpips scores signify a higher level of visual similarity, making it extremely
valuable for assessing the quality of results in tasks that require perceptual evaluation, such
as low-light super-resolution.

4.2.2 Experimental Results

The full and partial results are shown in the table below:

Enhancement Method Super-Resolution Model PSNR (dB) SSIM LPIPS
None SRGAN 22.14 0.688 0.418
None ESRGAN 23.45 0.701 0.396
Zero-DCE SRGAN 24.18 0.724 0.371
Zero-DCE ESRGAN 25.12 0.741 0.342
EnlightenGAN SRGAN 24.35 0.718 0.359
EnlightenGAN ESRGAN 25.04 0.735 0.331
RetinexNet SRGAN 24.01 0.715 0.366
RetinexNet ESRGAN 24.91 0.731 0.337
Zero-DCE Real-ESRGAN 26.42 0.761 0.294
EnlightenGAN Real-ESRGAN 26.31 0.758 0.297
RetinexNet Real-ESRGAN 26.18 0.755 0.301

Table 4.2: Quantitative results of the two-stage low-light image super-resolution pipeline.

The table titled Quantitative results of the two-stage low-light image super-resolution
pipeline presents a comparative analysis of different combinations of low-light image en-
hancement methods and super-resolution models. It evaluates the performance using stan-
dard metrics: PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), and
LPIPS (Learned Perceptual Image Patch Similarity). The results clearly demonstrate that
integrating enhancement methods like Zero-DCE, EnlightenGAN, and RetinexNet prior to
super-resolution improves perceptual and structural quality. Among all combinations, the
pairing of Zero-DCE with Real-ESRGAN achieves the highest PSNR and SSIM while mini-
mizing LPIPS, indicating superior restoration quality in low-light scenarios.
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4.3 Visualization of Model Performance Across

Metrics

Figure 4.1: Visual Performance Analysis Using PSNR

Figure 4.2: Visual Performance Analysis Using SSIM
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Figure 4.3: Visual Performance Analysis Using LPIPS

4.4 Summary of Key Findings

• GANs are ever-improving, but imperfections in fine detail reconstruction, particularly
with severe underexposure, remain due to hallucination, noise misinterpretation, and
shallow feature reuse.

• Conventional metrics such as PSNR and SSIM are not adequate for perceptual evalua-
tion in low-light SR; perceptual metrics such as LPIPS provide higher correlation but
at the cost of computational complexity.

• Generalization is hindered by data sparsity, sensor diversity, and domain-specific over-
fitting, underlining the importance of more varied training sets and stronger domain
adaptation techniques.[19]

Finally, as promising as the suggested GAN-based models are, solving the in-depth challenges
described in this chapter is essential in order to push real-world implementations of low-light
image super-resolution forward.
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Chapter 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

GANs have also shown potential in improving the quality of images taken in difficult low-
light conditions. In this work, we inspected the development and performance of GAN-
based models for super-resolution of low-light images based on their capacity to restore
textures, preserve structure, and generate visually plausible outputs. From base models
like SRGAN to advanced models like StarSRGAN and LE-GAN, the area has witnessed
significant improvements in design complexity as well as perceptual results.[20]

With these developments, however, there are a number of ongoing limitations. Such
models tend to fail to recover subtle textures in highly underexposed areas owing to issues like
noise misinterpretation, hallucinated features, and excessive dependency on perceptual losses.
Metrics for evaluation like PSNR and SSIM, popular though they are, fail to measure the
kind of perceptual quality that human viewers appreciate. Lastly, less variability in available
training data sets and the dominance by domain-specific biases impede generalization of such
models to diverse real-world situations.[9]

This study emphasizes the need for models which integrate perceptual realism with struc-
tural accuracy, yet are flexible enough to accommodate varied illumination environments.
Achieving this balance calls for improved network architectures, better noise modeling tech-
niques, and the inclusion of task-specific metrics that reflect practical usability. By identify-
ing these critical gaps, the study provides a pathway toward developing more reliable, gen-
eralizable, and context-aware GAN-based solutions for low-light image super-resolution.[21]

5.2 Future Scope

The future of GAN-based low-light image super-resolution holds considerable promise, par-
ticularly as models become more refined, data becomes more diverse, and computational
resources continue to advance. Several directions can be explored to push the boundaries of
this field further:
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Cross-Domain Generalization: Future models should be trained on more heterogeneous
datasets that include a broader range of lighting conditions, environments, and sensor types.
Domain adaptation and unsupervised learning techniques can be employed to enable models
to generalize well across different devices and capture settings without extensive retrain-
ing.[17]

Integration with RAW Image Processing Pipelines: Incorporating RAW sensor data di-
rectly into the GAN pipeline, as done in models like LLD-GAN, can significantly improve
performance by leveraging richer image information before tone mapping or compression is
applied. This opens the door for end-to-end systems capable of both denoising and super-
resolving from sensor-level inputs.

Perception-Aligned Evaluation Frameworks: The development of new evaluation stan-
dards that align closely with human visual perception and real-world use cases is essential.
Future research could focus on creating hybrid metrics that combine deep feature distances
with application-specific performance (e.g., object detection accuracy or face recognition
rates).

Lightweight and Real-Time Models: To facilitate deployment in mobile and embedded
systems, attention should be given to designing efficient GAN architectures that reduce com-
putational demands without compromising on quality. Techniques such as model pruning,
quantization, and neural architecture search (NAS) can help in developing lightweight mod-
els for real-time applications.[13]

Use Cases and Practical Applications: Surveillance and Security: Enhancing surveillance
footage captured in poorly lit conditions can improve object detection, facial recognition,
and license plate identification, increasing the effectiveness of security systems.

Autonomous Vehicles: Nighttime driving involves critical low-light scenarios. Enhanced
visual inputs via GAN-based SR can aid in obstacle detection and path planning for au-
tonomous navigation systems.[16]

Medical Imaging: In fields such as endoscopy or low-light microscopy, improved resolu-
tion and contrast through GANs can lead to more accurate diagnostics and reduced need
for invasive procedures.

Astronomy and Remote Sensing: GANs can enhance details in space imagery where light
is minimal, assisting in clearer observation of celestial bodies or Earth’s surface from satel-
lites.

Consumer Photography: Smartphone cameras in low-light conditions often underper-
form. GANs integrated into post-processing apps or camera firmware can provide sharper,
cleaner images without flash.
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Disaster Response and Search Rescue: Low-light SR models can enhance drone or aerial
imagery captured in night-time operations, aiding in the detection of survivors or navigating
through difficult terrain.[20]

As GAN technology continues to evolve, combining perceptual intelligence with real-
world practicality will be essential. By addressing the current limitations and focusing on
adaptable, efficient, and task-oriented models, future research can unlock the full potential
of GANs in transforming how we capture, interpret, and utilize low-light imagery across
industries.
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