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ABSTRACT 

 

The thesis on "URL-to-Knowledge: Automated Knowledge Extraction and Summarization from 

Web and Multimedia Sources using LLMs" addresses the challenge of extracting brief, insightful 

summaries from the vast and diverse content on the internet. In an age of information overload, 

users struggle to rapidly consume lengthier web articles and multimedia content. URL-to-

Knowledge, a new system presented in this paper, uses big language models (LLMs) to 

automatically produce correct and consistent summaries from both static web pages and YouTube 

videos. 

The system is meant to be very user-friendly, including a Streamlit-based interface that lets people 

enter URLs, choose summarization models, define summary length, and pose follow-up questions. 

It increases accessibility by supporting configurable outputs including downloadable text and 

audio summaries. The app can also manage multilingual input, converting material into English 

for more general use. 

A distilled version of LLaMA for lightweight tasks is used with cutting-edge LLMs—including 

LLaMA 3 (8B and 34B) and Gemma 2 (9B)—to combine extractive and abstractive techniques in 

the summarization pipeline. Comparative studies show that while higher-parameter models like 

LLaMA 3-34B and GPT-4 Turbo generate better summaries with higher factual correctness, but 

they also have more latency and processing expenses. Mid-sized models such as LLaMA 3-8B and 

Gemma 2-9B provide a fair competition, providing quick summarization with average quality. 

"URL-to-Knowledge" is a great tool for professionals, teachers and academics since it greatly 

lowers the work needed to get knowledge from various online material by combining sophisticated 

LLM features into a unified and interactive platform. 
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CHAPTER 1  

INTRODUCTION 

1.1 BACKGROUND 

Almost every conceivable subject from YouTube tutorials to blogs on science, education and 
business has information published. Extreme information proliferation across multimedia 
channels, however, presents users many difficulties. Trying to manually skim through every 
piece of material is far too time consuming. Furthermore, attention is a limited resource, people 
can only use so much of it. Automated Summarization Systems seek to close this gap by 
extracting relevant bits of information and compressing it into a more legible shape, so enabling 
far easier and faster navigation. Early approaches relied mostly on linguistic and statistical 
techniques using heuristic based algorithms. With transformer-based encoders and seq2seq 
models producing human-like prose to synthesize and rewrite material into more readily 
digestible summaries, we have far more sophisticated technology today. 

At the same time, the development of Large Language Models (LLMs) has brought strong zero 
and few shot capabilities for both comprehension and producing natural language. Models like 
GPT-4, LLaMA and Groq's Gemma series can parse lengthy texts, find fundamental concepts 
and create consistent summaries. The combination of speech to text modules also allows for the 
conversion of audio and video material into text transcripts, so extending summarization to 
multimedia sources. While interactive front-end frameworks like Streamlit let developers wrap 
complicated pipelines in user-friendly interfaces, document loaders and scraping systems enable 
automated retrieval of web page content. 

Though some of these tools need technical knowledge to use, support just one content type (text 
or video), or have limited criteria for summary length, language, or model selection. Processing 
material in several source languages and producing an English summary adds another degree of 
complexity by requiring strong language agnostic embeddings and translation skills. 
Furthermore, users could want to participate beyond passive consumption by asking follow-up 
questions depending on the summary or by turning text to audio for hands-free use. This 
dissertation presents "URL to Knowledge," a web application that meets these demands by 
means of a simplified interface combining state of the art LLM summarization chains. The 
system offers downloadable text and audio outputs, transcribes video where required, accepts 
both website and YouTube URLs, performs multilingual summarization into English and 
supports user specified summary lengths and model selection. This background lays the 
groundwork for a closer investigation of the particular contributions of this work, problem 
framing and motivations. 
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1.2 MOTIVATION 

Professionals and students both find it difficult to stay on top of the constant stream of digital 
information in the fast-paced society of today. While teachers have to distill important teaching 
resources, researchers have to comb through large amounts of literature to find pertinent results. 
Business analysts want quick market and competitor intelligence summaries. Long-form 
content's manual summarization or transcription uses precious time that could otherwise be spent 
on analysis, synthesis, or creative work. When material crosses several languages, these 
pressures are magnified: a researcher might discover a breakthrough paper in Spanish, Mandarin, 
or French but lack the ability to read the original. Although there are automated translation tools, 
combining them with summarization pipelines effortlessly is still rather difficult. 

From a technical perspective, recent developments in LLM architectures have opened a door to 
create more accurate and flexible summarization tools. By allowing models to generate 
consistent summaries even for long input, transformers and attention mechanisms shine at 
catching long range dependencies. The engineering work to consume various material kinds—
web pages with complicated HTML structures, videos needing speech to text conversion—and to 
coordinate LLM calls with parameter adjustment is considerable, though. Many times, current 
open-source systems force programmers to create boilerplate code, handle API keys and piece 
together prompt templates, transcription engines and document loaders. Non-expert users who 
might gain from automated summarization but lack programming knowledge find this 
complexity to be a barrier to entry. 

Moreover, user tastes differ greatly: some might prefer a deeper 1,000-word study, while others 
might want a brief bulleted summary of 100 words, some might choose a lighter model for 
speed, while others the maximum capacity LLM for complexity. Combining these customization 
choices into one coherent interface will significantly increase user happiness and adoption. The 
capacity to request follow-up questions depending on the summary enables users to investigate 
further without going back to the original source, therefore generating an interactive semantic 
layer over web and multimedia documents. Ultimately, offering audio versions of summaries 
appeals to auditory learners, those with visual disabilities, or circumstances where reading is 
inconvenient. 

A new, end to end web application was created by combining technical developments with 
various user requirements. It hides the complexity under a straightforward Streamlit interface, 
supports multilingual inputs, lets fine grained control over length and model and produces both 
text and audio outputs. The project aims to democratize access to strong LLM summarization 
tools, therefore enabling "URL to Knowledge" to be useful for professionals in many fields, 
academics, teachers and students. 
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Figure 1.1: Architecture of an LLM 

 

1.3 PROBLEM STATEMENT 

Using Large Language Models, this dissertation addresses the basic problem of how to design 
and operate an accessible, extensible system for automated knowledge extraction and 
summarization from heterogeneous web and multimedia sources. The challenges, in particular, 
can be stated as follows: 

1.3.1 Heterogeneous Material Procurement 

 Websites and streaming services have quite varied structures: HTML layouts, dynamic 
content loaded by JavaScript, embedded media and access controls make scraping and 
ingestion challenging. 

 Video material lacks easily available text, producing correct transcripts calls for strong 
speech to text integration handling several accents, background noise and domain 
particular vocabulary. 
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1.3.2 Multilingual Summary 

 Any of dozens of languages could be used to write source papers. Bridging these to an 
English summary calls for either flawless translation pipelines or language agnostic 
embedding models inside the summarization chain. 

 If the model does not natively support that language, direct LLM summarization of non-
English input runs the risk of losing nuance. 

1.3.3 User Driven Personalization 

 Users should determine summary length (in words) and select among LLM models based 
on tradeoffs in speed, cost and fidelity. 

 Including parameter inputs into prompt templates and controlling API keys safely is not 
simple in a web-based environment. 

1.3.4 Interactive Knowledge Discovery 

 Users sometimes want to ask clarifying questions or ask for more information outside of 
static summaries. The system has to keep conversational context and send pertinent 
material back to the LLM. 

 Reducing API consumption and latency for on-the-fly question answering calls for 
effective reuse of cached embeddings or retrieved documents. 

1.3.5 Accessibility of Output 

 Offering both downloadable text and audio summaries improves usability but increases 
complexity: streaming audio in the browser, managing temporary files and converting 
text to speech at scale. 

When considered together, these subproblems create a several-sided engineering and research 
problem. The aim is to combine current libraries with a simple front end serving end users. The 
problem statement therefore emphasizes creating a consistent pipeline that sequentially addresses 
every issue, therefore balancing performance, accuracy and usability. 

 

1.4 OBJECTIVES OF THE STUDY 

This study intends to provide a practical implementation for end-to-end automated 
summarization of web and multimedia material as well as theoretical insights. The particular 
goals are: 
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1. Create a unified retrieval system 

o Create modular parts to take in video URLs and text. 

2. Use several languages to summarize 

o Include LLM chains that consistently produce succinct English summaries of user 
defined length from non-English input. 

o Consider first translation choices as opposed to direct multilingual summarization. 

3. Allow model selection and customization 

o Show parameters (model selection, word limit) in the front-end UI. 

o Dynamically abstract prompt templates to include these variables in the 
summarization chain. 

4. Encourage interactive question answering 

o Design a follow up QA system using the original document context for quick, 
precise replies. 

5. Offer audio and downloadable outputs 

o Allow people to download summary text files and listen using browser streamed 
audio produced using pyttsx3. 

o Control web file I/O safely. 

6. Assess system performance 

o Measure summary quality (ROUGE, human evaluation), transcription accuracy 
and system usability by means of case studies and user testing. 

o Look at speed and cost trade-offs over model choices (e.g., llama3 8b vs gemma2 
9b). 

By means of these goals, the research will show how to coordinate state of the art components 
into a unified application fulfilling user requirements across content kinds, languages and 
modalities. 

 

1.5 SCOPE AND CONTRIBUTIONS 

This dissertation addresses the end-to-end process for summarizing multimedia and web material 
inside a single web application. The range covers: 
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 Content Type: Static HTML pages and YouTube videos only, platforms needing 
authentication (e.g., paywalled articles) and non-YouTube video sources are out of scope. 

 Languages: Summarization into English from non-English input is supported and 
translation back into other target languages is not addressed. 

 Models: Groq's Gemma2 and Meta's LLaMA3 series are combined, assessment of other 
commercial APIs, e.g., Anthropic, is postponed for future work. 

 Deployment: The prototype is run locally using Streamlit. Containerization and cloud 
deployment issues are outside the scope of this work. 

The novel contributions of this work are: 

 A single loader abstraction that manages both web page scraping and YouTube 
transcription invisibly to the user. 

 Dynamic prompt templates driven by user inputs for word count and model selection help 
non-technical users to lower the barrier. 

 A built-in question answering system using the original content context that doesn't need 
users to go back to source material. 

 Accessibility Improvements: Features of audio playback and downloadable summaries 
included in the UI address various user preferences and requirements. 

 A methodical comparison of summarization quality and performance trade-offs across 
several LLMs and material domains. 

These works taken together push the state of the art in available, configurable summarization 
tools for varied online material. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 OVERVIEW OF WEB AND MULTIMEDIA DATA SOURCES 

The modern Internet is a vast ecosystem encompassing heterogeneous data types, from static 

HTML pages to dynamic multimedia streams. Web pages often contain a mixture of structured 

elements (tables, lists, metadata) and unstructured text (paragraphs, comments), requiring robust 

parsing to extract meaningful content. Early efforts in web crawling and scraping relied on rule-

based parsers such as BeautifulSoup and XPath selectors to navigate the Document Object Model 

(DOM) and isolate text nodes (Richards & Lardilleux, 2009; Richardson, 2007). However, the rise 

of JavaScript‐driven single‐page applications introduced challenges: content is loaded 

asynchronously, necessitating headless browsers or JavaScript emulation libraries like Selenium 

to capture the fully rendered HTML (Shaikh et al., 2011). 

Multimedia data sources, primarily video and audio, present additional complexities. Unlike text, 

raw video streams require transcription to convert spoken words into analyzable text. Traditional 

automatic speech recognition (ASR) systems such as CMU Sphinx and Kaldi provided 

foundational capabilities for speech‐to‐text but struggled with noisy backgrounds and diverse 

accents (Povey et al., 2011; Lamere et al., 2003). More recently, end‐to‐end deep neural ASR 

models (e.g., DeepSpeech, Transformer‐based speech recognizers) have dramatically improved 

transcription accuracy, supporting a wide array of languages and dialects (Hannun et al., 2014; 

Dong et al., 2018). 

Beyond raw transcription, multimedia content extraction often involves keyframe detection, scene 

segmentation and speaker diarization to identify logical units of interest within videos (Zhang et 

al., 2003; Truong & Venkatesh, 2007). Open‐source toolkits such as FFmpeg enable frame 

extraction, while libraries like pyannote.audio facilitate speaker identification (Bredin, 2017). For 

web‐based video platforms like YouTube, APIs (e.g., YouTube Data API) and specialized wrappers 

(e.g., yt dl p) allow programmatic retrieval of video metadata, transcripts and captions where 

available. 
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In sum, the web and multimedia sources landscape is rich but fragmented, demanding a suite of 

tools for effective ingestion. A robust system must handle asynchronous page loads, diverse HTML 

structures and video streaming protocols, while also integrating state‐of‐the‐art ASR and media 

processing modules to produce clean text inputs for downstream summarization and analysis. 

 

2.2 TECHNIQUES FOR TEXT AND VIDEO CONTENT EXTRACTION 

Traditionally, web page content extraction depends on HTML parsing and boilerplate elimination. 

Early systems like Boilerpipe (Kohlschütter et al., 2010) differentiated main content from ads or 

navigation menus using heuristics based on text density and link ratio. Using DOM tree analysis 

and comparable density heuristics, readability algorithms (Grzegorczyk & Cohill, 2007) extracted 

article bodies. More recent models use machine learning: HMM-based taggers find content blocks 

and neural techniques apply sequence labeling on HTML tokens (Kumar et al., 2018). 

The first essential stage for video material is transcription. Conventional pipeline ASR 

architectures split acoustic modeling, language modeling and decoding; deep learning 

developments merged these into end-to-end systems (Amodei et al., 2016). With little labelled 

data, transformer-based speech recognizers (Dong et al., 2018) and wav2vec-style self-supervised 

models (Baevski et al., 2020) have been demonstrated to generalise across languages. Natural 

language processing (NLP) pipelines do sentence segmentation, tokenization and part-of-speech 

tagging following transcription to ready text for summarization (Bird et al., 2009). 

Video processing also includes multimedia-specific activities: shot boundary detection (SBD) uses 

color histograms or deep features to identify scene changes (Potapov et al., 2014), while keyframe 

selection uses clustering to select representative frames (Zhang et al., 2003). Speaker diarization 

models segment audio by speaker identity, a required step when extracting conversation transcripts 

(Anguera et al., 2012). While more high-level libraries like PySceneDetect manage scene detection 

and splitting, open-source frameworks like ffmpeg-python automate media decoding. 

Combining multimedia extraction and web scraping into a single pipeline presents synchronization 

difficulties. Systems have to handle asynchronous calls to HTTP endpoints, cache transcripts and 

deal with API quota and rate limit variation. Modular architectures, where web scraping, ASR and 
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media processing components interact through well-defined interfaces, allow extensibility and 

fault isolation (Chakrabarti et al., 2012). 

 

2.3 TEXT SUMMARIZATION APPROACHES (EXTRACTIVE VS ABSTRACTIVE) 

Historically, text summarization has been classified into extractive and abstractive paradigms. 

Extractive summarization picks out important sentences or phrases straight from the source 

material. Classic algorithms are Latent Semantic Analysis (LSA)‐based techniques that lower 

document matrices using singular value decomposition to find important themes (Steinberger & 

Ježek, 2004) and TextRank (Mihalcea & Tarau, 2004), which builds a graph of sentence nodes 

weighted by lexical similarity and uses PageRank to score sentences. Since they recycle original 

sentences, extractive techniques are quite coherent; yet, they may not be very brief or fail to 

paraphrase repetitive material. 

By contrast, abstract summarization creates new sentences that condense and paraphrase source 

material. Template-based generation and statistical machine translation techniques were used by 

early abstractive systems (Knight & Marcu, 2002). Abstractive summarization got better fluency 

and paraphrasing with the arrival of neural sequence-to-sequence (seq2seq) models with attention 

mechanisms (Bahdanau et al., 2015). Pointer‐generator networks (See et al., 2017) allowed models 

to copy rare words while producing new tokens by combining extractive selection with generative 

capabilities. 

Transformer‐based architectures (Vaswani et al., 2017) further revolutionized abstractive 

summarization: models like BART (Lewis et al., 2020) and PEGASUS (Zhang et al., 2020) 

pretrain on enormous corpora with denoising goals tailored for summarization, achieving state‐of‐

the‐art results on benchmarks such as CNN/DailyMail. Though they may be prone to 

hallucinations—creating reasonable but unsupported claims—these models strike a balance 

between factual consistency and linguistic quality (Maynez et al., 2020). 

User limitations can also direct summarization. Length‐controlled summarization methods either 

directly condition models on target summary length or include budget limits into beam search 

(Keskar et al., 2019). Either through multilingual pretrained encoders (mBART, Liu et al., 2020) 
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or cascaded translation-then-summarization pipelines (Islam et al., 2021), multilingual 

summarization spreads abstractive models across languages. 

 

2.4 LARGE LANGUAGE MODELS IN NATURAL LANGUAGE PROCESSING 

Large Language Models (LLMs) like GPT-3 (Brown et al., 2020), LLaMA (Touvron et al., 2023) 

and Gemma (Chung et al., 2024) have shown emergent abilities in comprehending and producing 

coherent text across domains. These models, built on transformer encoder–decoder or decoder-

only architectures, scale parameters into the hundreds of billions, capturing nuanced linguistic 

patterns through massive pretraining on web-scale corpora (Raffel et al., 2020). 

By means of prompt engineering, LLMs enable zero- and few-shot learning without task-specific 

fine tuning, so supporting a range of NLP tasks including summarization, translation and question 

answering (Wei et al., 2022). LLMs can be called for summarization using template prompts 

("Summarize the following text in N words") or chain-of-thought techniques that decompose tasks 

into substeps (Zhou et al., 2022). Frameworks such as LangChain allow developers to create 

modular pipelines combining retrieval, chain execution and output formatting by abstracting these 

patterns (Mueller, 2023). 

Although bigger models sometimes produce better results, they are more expensive to run and take 

more time. This has spurred work on distillation and parameter-efficient tuning (LoRA, Hu et al., 

2021), allowing smaller models to near the performance of bigger counterparts with a fraction of 

the resources. Furthermore, unlike private APIs, open source LLMs promote openness and 

repeatability. 

 

2.5 PRIOR WORK ON WEB BASED SUMMARIZATION AND KNOWLEDGE 

EXTRACTION 

Many systems have tried to add web document summarization features. By means of statement 

and citation extraction, ScholarPhi (Chen et al., 2018) allowed interactive investigation of 

scholarly publications. WebSummarizer (Li et al., 2019) produced article previews by means of 

extractive summarization mixed with web scraping. More recent tools combine ASR for 
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multimedia: Vid2Text (Chen et al., 2022) pairs video captioning with text summarization models, 

while SUMM-RL (Zhao et al., 2021) employs reinforcement learning to maximize abstractive 

video summarization. 

LangChain (Mueller, 2023) and Haystack (de Vries et al., 2022) offer pipelines for retrieval-

augmented generation, enabling document or chunk retrieval prior to LLM invocation. These 

systems, meanwhile, sometimes call for considerable programming and have no built-in audio 

output or multilingual summarization capabilities. Though still closed ecosystems, commercial 

platforms—such as OpenAI's ChatGPT plugins—have started to tackle web content 

summarization. 

2.6 SUMMARY OF GAPS IN EXISTING RESEARCH 

Still, there are discrepancies despite these developments. First, most systems lack a genuinely 

unified interface for text and video summarization available to non technical users. Second, 

multilingual summarization pipelines can call for distinct translation processes, which could cause 

delays and possible translation mistakes. Third, web based tools have not been thoroughly 

investigated for interactive follow up questioning on summarized material. Rarely are accessibility 

elements like audio playback and downloadable summaries integrated end to end. At last, there is 

little comparative study of several open source LLMs, e.g., LLaMA vs. Gemma, in the setting of 

web and multimedia summarization. By providing an end to end, user friendly application - "URL 

to Knowledge"—that combines content retrieval, LLM based summarization, interactive QA and 

audio/text outputs in a single Streamlit interface, this dissertation seeks to fill in these gaps. 
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CHAPTER 3  

WEB APPLICATION IMPLEMENTATION 

3.1 INTRODUCTION TO STREAMLIT FRAMEWORK 

An open-source Python library meant to streamline the development of bespoke web applications 

for data science and machine learning initiatives, Streamlit. Streamlit allows developers create 

interactive dashboards and interfaces using only Python scripts by means of abstraction away the 

complexity of conventional front-end development. Using a reactive model, the framework 

automatically runs the pertinent portions of the code whenever the underlying script changes or a 

user interacts with a widget, so altering the display without manual event handling. Applications 

driven by data created by fast prototyping and iterative techniques fit this model. 

Fundamentally, Streamlit's design is built on the division of application state and rendering logic. 

Streamlit launches a Python interpreter session maintaining memory state when a user runs the 

application. Defined declaratively in the script, widgets are text inputs, sliders and buttons; their 

values are kept in a session state object so downstream code can react dynamically. For instance, 

a slider controlling summary length can be referenced straight in next function calls, Streamlit 

guarantees that modifications to the slider cause a re-execution of the script up to the point of 

display. 

Several factors influenced Streamlit's selection for the Knowledge application URL. First, its low 

configuration and no boilerplate setup let the development team focus on integrating LLM chains 

and document loaders rather than HTML, CSS and JavaScript. Second, the built-in components of 

Streamlit directly support the needs of the application for multimedia output, including file 

uploaders and audio players. Third, the framework's support for progressive loading and spinner 

animations provides clear feedback during long-running operations like speech to text transcription 

and LLM inference, so improving the user experience. 

Using Python's rich ecosystem of NLP and machine learning libraries, Streamlit as the presentation 

layer lets one quickly construct a polished, interactive web application. The following subsections 

describe how the UI was constructed, how inputs are managed and how back-end services interact 

smoothly with the Streamlit interface. 
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3.2 USER INTERFACE DESIGN AND WORKFLOWS 

 

Figure 3.1: User interface of the website 

 

Helping users to build and interact with summaries therefore helps to fulfill the purpose of URL-

to-Knowledge app's user interface (UI), which is meant to be straightforward and intuitive. Key 

design concepts are accessibility, responsiveness and clarity. Users should be able to load a URL, 

define summarization criteria, view progress comments and consume findings with least friction. 

When the app launches, the sidebar provides simple input controls. Labeled "Enter URL," the first 

control is a text input field accepting website links as well as YouTube video links. Below this, a 

dropdown menu called "Select Model" lets users choose from among supported LLM options (e.g., 

LLaMA 3 8B, Gemma 2 9B). A slider tool called "Summary Length (words)" lets users specify 

their desired summary size from 100 to 1,000 words. An optional checkbox "Enable Follow up 

QA" toggles the display of the question answer panel after the summary is produced. 
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Figure 3.2: Architecture of LLaMA model 

 

 

Figure 3.3: Architecture of Gemma model 
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Figure 3.4: Sidebar of the website 
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Status messages and buttons control main pane operations. Pressing the "Summarise" button 

begins the pipeline: Streamlit displays a progress spinner along with step descriptions. Every stage 

triggers orchestrator module callbacks that reads widget values from st.session_state and processes 

accordingly. Long running tasks either run asynchronously using Python's asyncio library or 

delegate work to background threads, so ensuring the front end does not freeze and the UI remains 

responsive. 

 

Figure 3.5: Summary generation from a YouTube video URL 
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The UI displays the summary in a scrollable text area with syntax highlighting for readability when 

it is finished. Beside the text box are two download buttons: one for the audio; the other for the 

summary as a .txt file.This function is made simple by Streamlit's st.download_button tool. Below 

the summary, an audio player lets st.audio generated audio play in browser. 

"Enable Follow up QA" should be checked; a text input field below the audio player says "Ask a 

question about the summary". Submitting a question starts a secondary pipeline: the QA module 

retrieves relevant components from cached embeddings, creates a prompt and runs the LLM for a 

response. The response appears as plain text and users can obtain the Q&A transcript. 

 

Figure 3.6: Download, audio output and Q&A feature 
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All dynamic elements—status messages, spinners—provide text replacements so that visually 

impaired users receive equal response. The UI also adapts to tablet and mobile resolutions using 

Streamlit's responsive grid design, therefore ensuring controls and outputs reflow organically on 

smaller screens. 

Taken together, these processes create a consistent experience: users can ask questions, modify 

models and progressively improve parameters without leaving the page or restarting the 

application. Streamlit's declarative nature guarantees that session caching optimizes recurrent 

operations and UI state tracks user actions correctly. 

 

3.3 HANDLING URL AND YOUTUBE VIDEO INPUTS 

The program's main feature is its strong intake of user submitted URLs, which could create static 

web pages or YouTube videos. Processing should be directed at the appropriate loader after the 

system first verifies input format. Cascading techniques, error handling, loader selection logic and 

URL validation are all covered in this part. 

3.3.1 URL Validation 

The Streamlit script runs client-side input validation before any back-end calls. "Enter URL" in 

text input fails a simple regular expression test (^https?://). When the user clicks "Generate 

Summary," a validation function checks the string; if it fails the pattern, Streamlit generates an 

error message using st.error to help the user repair the link. Catching typos or missing protocols 

early on helps to avoid needless API calls. 
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Figure 3.7: URL sanity validation 

 

3.3.2 Loader Selection Logic 

Once the URL validates, the orchestrator examines the domain. If the domain of the URL contains 

"youtube.com" or "youtu.be", the request goes to the YouTube loader; otherwise, it uses the web 

page loader. YouTubeLoader or HTMLLoader objects either exist in the get_content_loader(url) 

factory function generated by this dispatch system. 

 HTML Loader: Wraps custom boilerplate removal heuristics around LangChain's 

UnstructuredURLLoader. It allows optional Selenium rendering for pages dynamically 

loading JavaScript content. Eliminating navigation and footer components from the entire 

rendered page produces a simple text string from the loader. 

 YouTube Loader: Aims for closed captions using the YouTube Data API. By default, the 

loader runs a local Whisper model and downloads the audio stream using "yt-dlp" in the 

lack of subtitles. Using a transient file, the ASR engine generates the transcript and records 

the audio. The loader also maintains video ID keyed transcripts in "st.session_state". 

 



 

20 
 

3.3.3 Error Handling and Fallbacks 

Gracefully handling timeouts, API rate limits and network failures is the ingestion pipeline. 

“HTML Loader's” HTTP timeouts start two automatic exponential backoff retries. Should the page 

generate an error code (404, 500), the UI displays a comprehensive message and recommends 

checking the URL or attempting again later. Should Data API quota exceedance, the “YouTube 

Loader” reverts to audio transcription; should ASR fail, the system uses the video description field 

as a minimal summary source. 

 

3.4 INTEGRATION OF SUMMARIZATION ENGINE INTO THE APP 

Central to the "URL-to-Knowledge" application, the summarization engine converts raw text into 

clear and concise English summaries. Including this engine into the Streamlit application calls for 

setting "LangChain" chains, controlling LLM API requests, managing token restrictions and 

displaying results in the UI. 

3.4.1 LangChain Summarization Chains 

LangChain provides abstractions for building multi step “chains” of LLM calls. In this application, 

a summarization chain comprises the following stages: 

1. Chunking: The raw text is segmented into overlapping chunks of configurable size. 

This ensures that long inputs exceeding the model’s context window are processed 

piecewise without loss of coherence. 

2. Chunk Summarization: Each chunk is fed to the LLM with a prompt template: 

"Please summarize the following text in approximately {word_limit} 

words:\n\n{chunk_text}". The "word_limit" parameter is derived from the user’s 

slider selection and adjusted proportionally based on the number of chunks. 

3. Aggregation: Partial summaries are concatenated. If the concatenated text exceeds 

the desired summary length, a second pass uses a “refinement” prompt to condense 

the aggregate into the exact word count. 
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These stages are encapsulated in a “SummarizationChain” class. The class constructor accepts 

parameters such as model name, chunk size and overlap and stores the prompt templates. A run 

(text, word_limit) method executes the full chain and returns the final summary. 

3.4.2 Model Abstraction and API Handling 

The application supports both local and remote models. A ModelClient factory reads the user’s 

selection and returns either: 

 LocalClient: Wraps a GPU-accelerated LLaMA-3 instance loaded via Transformers with 

4-bit quantization for efficiency. 

 RemoteClient: Connects to the Gemma-2 API, handling authentication and rate limits. 

Both clients implement a common generate(prompt) method that returns text output. The 

SummarizationChain class calls client.generate() for each chunk. 

3.4.3 Token Limit Management 

Every model has a maximum context window (e.g., 8,192 tokens for LLaMA 3 8B). The engine 

counts tokens in each chunk using the model's associated tokenizer before submission. A chunk is 

automatically resized if it nears the limit. The overlap parameter guarantees the preservation of 

boundary information, therefore minimizing possible context loss at chunk edges. 

3.4.4 UI Integration and Feedback 

The Streamlit script wraps the summarization phase in a with "st.spinner" block. The spinner text 

changes using "st.spinner" as each chunk is processed. Users are kept updated during longer runs 

by this gradual feedback. After successful completion the summary appears in a "st.success" and 

"st.text_area". 

3.4.5 Error Handling and Retry Logic 

The “SummarizationChain” catches network problems or model timeouts. The chain runs up to 

two retries per chunk using exponential backoff. Should a chunk keep failing, the engine records 

the error, notifies the user which part failed and continues with the other chunks to provide a partial 

summary. 
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The application provides consistent, configurable summaries by means of modularizing the 

summarization chain, abstracting model interfaces and closely integrating progress feedback into 

the UI, hence preserving reactivity and openness for the end user. 
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CHAPTER 4  

SUMMARISATION PIPELINE 

4.1 CONTENT ACQUISITION FROM URLS (WEB SCRAPING) 

The first and foremost crucial step is to obtain raw text from websites from different backgrounds. 

Our approach uses a unique web scraping methodology that maintains a balance between 

efficiency for high throughput and robustness against a variety of website architectures. Its primary 

components are a headless browser (Chromium via Selenium) and an HTML loader built on top 

of a lightweight HTTP client (requests with BeautifulSoup). After receiving a URL, the loader first 

attempts a simple HTTP fetch. If the content is mostly static or contains very little JavaScript, the 

HTML is parsed directly. This involves navigating the DOM tree and pruning boilerplate elements, 

such as headers, footers, navigation bars and advertisements, using heuristic rules based on tag 

frequency and text density. While inline scripts and style tags are completely eliminated, the main 

narrative is extracted using key semantic tags (such as <article>, <main> and <section>). 

Selenium is the system's fallback option for contemporary single-page apps or websites that 

significantly rely on client-side rendering. The headless browser loads the page in a sandbox and 

then waits for certain CSS selectors or network quiescence to occur before capturing the fully 

rendered HTML. This technique ensures that dynamically injected content, like AJAX-loaded 

sections and endless scroll feeds, will be extracted. To avoid excessive latency, a maximum 

rendering timeout (e.g., 15 seconds) is enforced, after which the loader degrades to a static parse 

and warns the user of potential incompleteness. 

A boilerplate removal algorithm examines text blocks by calculating the ratio of text characters to 

HTML tag overhead after raw HTML has been obtained. To produce a concatenated plain text 

string, low density blocks that represent menus or sidebar links are removed. In the summarization 

step, metadata like the page title, author and publication date (if they are in <meta> tags) are 

extracted independently and saved for context. 

The loader provides optional custom headers and cookie injection to support websites with 

paywalls or login requirements. Users can grant permission for the scraping of gated content by 

providing authentication cookies through the user interface (UI). The loader then adds these 
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cookies to subsequent requests. The system caches successful fetches in an in-memory store (such 

as Redis) for a configurable TTL to speed up subsequent visits and all network calls use 

exponential backoff retries on transient failures (HTTP 429/503). 

If neither static nor dynamic parsing generates sufficient content (below a minimum word 

threshold), the system gracefully handles errors by displaying an informative error asking users to 

confirm the URL or provide alternative sources, such as PDF uploads. The content acquisition 

module consistently converts a range of web pages into readable, machine-readable text for 

subsequent summarization by combining static parsing, headless rendering, heuristic filtering and 

caching. 

 

4.2 VIDEO TRANSCRIPTION AND PROCESSING (SPEECH-TO-TEXT) 

The pipeline employs a two step process to improve the accuracy and decrease the latency and it 

begins by searching for user-provided or automatically generated subtitles (usually YouTube's 

caption tracks) using the video platform's API. Video content presents a unique challenge as the 

system must accurately translate spoken words into transcripts or captions instead of using easily 

available text. If there are captions, they are retrieved in SRT or WebVTT format, parsed and then 

combined to create a raw transcript. Because it is quicker and more in line with the author's 

intended text, this direct retrieval is recommended. 

The pipeline uses a lightweight wrapper around yt-dlp to download the audio stream in situations 

where captions are missing or insufficient. The audio is stored as a temporary WAV file to 

guarantee compatibility with the speech to text engine. The transcription engine itself consists of 

a local Whisper model and an optional cloud ASR service. A mid-sized Whisper model by default 

processes the entire audio file in programmable length segments (e.g., 30 seconds) with a brief 

overlap to preserve context at segment boundaries. A timestamp and confidence score are included 

in the output of each segment, allowing for post hoc filtering. Segments with confidence below a 

threshold (for example, 0.7) are marked for optional reprocessing through the cloud ASR API, 

which could provide greater robustness in difficult acoustic situations. 

Lastly, the transcript is checked for errors by comparing it to a minimum word count, if the total 

number of transcribed words is less than a predefined threshold (e.g., 50 words), the pipeline alerts 
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users to possible problems with the audio quality and recommends manual uploading of better 

captions. Successfully processed transcripts are cached by video ID to avoid recurrent ASR calls 

for follow-up QA questions or subsequent summarization requests. This multi-layered approach, 

which consists of post-processing, local ASR, cloud fallback and API retrieval, gives the video 

transcription module reliable, time-aligned text for summarization. 

 

4.3 TEXT PREPROCESSING AND CLEANING 

To ensure quality and consistency of the summarization process, raw text, whether from web 

scraping or video transcription, must go through a rigorous preprocessing step after it is made 

available. The preprocessing pipeline consists of the following steps: normalization, tokenization, 

sentence segmentation and noise filtering. 

4.3.1 Normalization 

First, non-UTF8 characters, whitespace and superfluous line breaks are removed. NFC form is 

used to normalize Unicode text, ensuring consistent combination of base characters and diacritical 

marks. The character equivalents of HTML entities (&, &nbsp;) and other HTML artifacts are 

decoded. Regular expression checks against a defined unique list of site-specific templates remove 

common boilerplate patterns like navigation breadcrumbs. 

4.3.2 Sentence Segmentation 

To handle cases like abbreviations ("Dr.," "e.g."), it employs a rule-based tokenizer with its own 

set of rules, which is very similar to spaCy's sentence boundary detector. and numeric dates. The 

chunking process is built upon the cohesive sentence units that emerge from this segmentation. 

While leading and trailing punctuation are removed, the internal organization of each sentence—

such as commas and semicolons—is maintained. 

4.3.3 Tokenization 

Sentences are then tokenized into target LLM-compatible sequences. The pipeline determines 

chunk sizing and counts tokens using the tokenizer that is suitable for each model, SentencePiece 

for Gemma2 and Byte Pair Encoding (BPE) for LLaMA3. To avoid segmentation errors, rare or 
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non-vocabulary tokens are mapped to special tokens. Tokenization metadata (e.g., token IDs and 

offsets) is stored for future mapping between the summary and original text so that highlight or 

traceability features can be enabled in the user interface. 

4.3.4 Noise Filtering 

ASR transcripts address common filler words ("um," "uh"), transcription artifacts (garbled 

sequences) and stuttering (repeated partial words). A list of curated stop words is used to delete 

filler words in transcription-based text. Moreover, portions which have low ASR level are either 

flagged for human review or excluded. Numerical sequences such as phone numbers and credit 

card numbers are masked to ensure privacy protection. 

Before being put back together into paragraphs that match logical discourse units (such as speaker 

turns in transcripts or thematic breaks in articles), the text is cleaned, segmented and tokenized. In 

order to support summarization chains that place a high value on paragraph level coherence, 

paragraph boundaries are maintained. After receiving the preprocessed text, the chunking module 

ensures that each chunk starts and ends at natural boundaries instead of in the middle of a sentence. 

Through meticulous normalization, segmentation, tokenization and filtering, the preprocessing 

pipeline generates high fidelity text inputs that enhance readability and summary accuracy. 

 

4.4 SUMMARISATION METHODS AND MODEL SELECTION 

The heart of the pipeline lies in transforming preprocessed text into concise, meaningful 

summaries. This section details the summarisation approaches—extractive and abstractive—and 

describes the model selection strategy that underpins user customization. 

4.4.1 Extractive Summarisation 

It operates by selecting salient sentences or phrases directly from the source. The system 

implements a graph-based ranking algorithm inspired by TextRank: each sentence is represented 

as a node and edges are weighted by sentence similarity computed via cosine distance of sentence 

embeddings (SentenceTransformers). After constructing the graph, the PageRank algorithm 

assigns importance scores to sentences and the top-ranked sentences that cumulatively approach 

the user’s word-count limit are extracted in their original order. Extractive methods guarantee 
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factual fidelity, as no new text is generated, but may sacrifice coherence when key ideas are 

distributed across non-contiguous sentences. 

4.4.2 Abstractive Summarisation 

It generates novel sentences that paraphrase and condense the input. Our system employs 

transformer-based LLMs—LLaMA3 and Gemma2—via a prompt-based chain. Prompt templates 

instruct the model to produce summaries of a specified length, e.g.: “Summarise the following text 

in approximately {word_limit} words, preserving the main arguments and eliminating repetition: 

\n\n{input_text}” 

Abstractive summarisation captures nuance and rephrases content but may occasionally introduce 

hallucinations—plausible yet unsupported statements. A post-generation factuality check (such as 

the entailment model) flags potentially incorrect sentences for manual review in order to lessen 

this. 

4.4.3 Model Selection 

It gives users the ability to strike a balance between quality, cost and speed. The models "LLaMA3 

8B (local, fast)," "LLaMA3 34B (local, high fidelity)," and "Gemma2 9B (remote API)" are listed 

in a dropdown menu in the user interface. Behind the scenes, a factory pattern instantiates the 

corresponding client: 

 Local LLaMA3-8B: Loaded via transformers with quantization for GPU acceleration; 

offers fast turnarounds but may simplify complex arguments. 

 Local LLaMA3-34B: Provides deeper context retention and richer language patterns at the 

expense of inference latency. 

 Gemma2-9B (Remote): Accessed via Groq’s API; delivers competitive performance with 

managed scaling but incurs per-call costs and network latency. 

Model clients share a unified generate(prompt) interface, enabling the summarisation chain to 

remain agnostic of deployment. The chain adjusts chunk sizes based on model context windows 

(e.g., 8K tokens for LLaMA3-8B, 16K for LLaMA3-34B). Users can also specify “Extractive 

Only” mode, in which the abstractive chain is bypassed in favor of the TextRank pipeline. 
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Empirical evaluations guide default settings: shorter inputs (<1,000 tokens) default to abstractive 

summarisation on LLaMA3-8B, while longer documents prompt a two-stage approach—

extractive prefiltering followed by abstractive condensation. This hybrid method reduces token 

consumption and maintains factual consistency. Ultimately, by offering both extractive and 

abstractive methods alongside a flexible model selection interface, the system caters to diverse 

user requirements and content types. 

 

4.5 POST-PROCESSING AND OUTPUT FORMATTING 

After the generation of the final text by the summarization chain, a post-processing step refines 

the output for readability and consistency. This step includes cleaning up routines, structural 

enhancement and packaging into different formats. 

4.5.1 Text Clean-Up 

It eliminates unnecessary whitespace, redundant line breaks and any remaining prompt artifacts. 

Common transformation patterns include collapsing multiple blank lines into a single paragraph 

break and making sure that every sentence starts with an uppercase letter. Named entity checks 

detect truncated entities (e.g., a person name split across sentences) and merge or correct them 

using a straightforward rule-based merging algorithm that looks at capitalization and part of speech 

tags. 

4.5.2 Stylistic Adjustments 

It applies consistent formatting rules: replacing straight quotes with typographic quotes, converting 

hyphens to dashes in number ranges and enforcing Oxford comma usage when lists appear. A 

readability pass computes Flesch–Kincaid scores; if readability falls below a threshold (e.g., grade 

level 12), the pipeline may re invoke a “simplify” prompt on particularly complex sentences. 

4.5.3 Factuality and Consistency Checks 

It uses an entailment model (e.g., a lightweight RoBERTa fine tuned on natural language inference) 

to compare each summary sentence against the source text. Sentences with low entailment 
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probabilities are flagged. The system highlights these sentences in the UI and optionally replaces 

them with the most similar source sentence from the extractive pass, preserving factual grounding. 

4.5.4 Metadata Embedding 

The source title, publication date, author and URL are prepended or appended in a standardized 

citation block, which enhances the summary with contextual information that was extracted during 

acquisition. This metadata block can be turned on or off by users. Furthermore, the summary can 

be wrapped in markdown format and for multi-point summaries based on sentence clustering, 

bullet lists and headings are automatically generated. 

4.5.5 Audio Rendering 

The cleaned summary text is transformed into speech. To create audio segments, the text is divided 

into paragraphs and sent to the TTS engine (pyttsx3 or a cloud service). The resulting file is saved 

as MP3 or WAV after these segments are concatenated with short silence buffers. Metadata tags 

(ID3) embed the summary title, author (system name) and timestamp. An inline audio player in 

the UI enables playback, while a download button offers the audio file for offline use. 

4.5.6 File Packaging 

It bundles summary artifacts into a ZIP archive: the .txt summary, the audio file and a JSON 

metadata file containing embeddings or QA context if requested. The pipeline provides a JSON 

response with fields for summary_text, audio_url, metadata and optional qa_index to API 

consumers. Every artifact is made available to all UI users independently through Streamlit's 

"st.download_button". 

4.5.7 Logging and Analytics Hooks 

By methodically cleaning, validating, improving and packaging outputs, the post processing stage 

makes sure that summaries are not only succinct but also polished, accessible and prepared for a 

variety of user pool and their interests. It logs summary length, model used, processing time and 

user interactions (such as QA queries) to a telemetry service, which informs future optimizations 

and model selection defaults. 
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CHAPTER 5  

COMPARATIVE ANALYSIS OF LANGUAGE MODELS 

5.1 SELECTION OF LARGE LANGUAGE MODEL 

This study's selection of language models for comparative analysis strikes a balance between 

parameter scale, architectural diversity and real-world deployment considerations. Two open-

source models were chosen to illustrate different design philosophies and performance trade-offs: 

Groq's Gemma 2 (9 billion parameters) and Meta's LLaMA 3 (in its 8 billion parameter and 34 

billion parameter variants). LLaMA 3's transformer-only decoder architecture prioritizes effective 

scaling and wide community support; its 8B variant allows for quick inference on commodity 

GPUs, while the 34B configuration offers more contextual understanding at a higher 

computational cost. By using quantization and model pruning techniques, Gemma 2 promises low 

latency and optimized throughput while focusing on inference acceleration on specialized 

hardware (Groq chips). 

In order to assess the effects of severe parameter compression, a smaller baseline model—an 800 

million parameter distilled version of LLaMA 3—was added. This model illustrates how resource-

constrained environments can be supported by lightweight architectures for summary tasks. Lastly, 

OpenAI's GPT 4 Turbo, a commercial API-based model, was used as an external reference to 

evaluate open-source solutions against a proprietary standard known for its coherence and few 

shot capabilities. 

Context window capacities were also taken into consideration when choosing a model: Gemma 2 

supports up to 16K tokens, allowing longer inputs without segmentation, while LLaMA 3 variants 

support up to 8K tokens. Standard 4K windows are maintained by GPT 4 Turbo and the baseline 

distilled LLaMA. The evaluation examines the effects of parameter count and context size on 

summary fidelity, coherence and hallucination rates. 

Uniform interfaces were used to access each model: remote API calls for Gemma 2 and GPT 4 

Turbo and local inference for LLaMA 3 and its distilled version using Hugging Face Transformers 

with quantization libraries. Asynchronous throttling was used to maintain rate limits and 

environment variables were used to securely manage authentication credentials. In order to 
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guarantee that variations in output are due to model capabilities rather than prompt engineering 

biases, all models were given the same prompt templates. 

All things considered, this choice guarantees coverage of a variety of configurations—small versus 

large, open source versus proprietary, limited versus extended context windows—offering a 

thorough environment for comparative analysis. The following sections describe the metrics that 

were computed, the qualitative findings from user studies and human evaluation and how these 

models were tested on controlled datasets. 

 

5.2 EXPERIMENTAL SETUP AND DATASETS USED 

The experimental framework was developed to assess summarization performance across a variety 

of content types and lengths. Thirty academic video transcripts (average length ~3,500 words, 

average duration 20 minutes) from open educational channels were included in the three datasets 

that were curated: (1) Web Articles, which comprised 100 articles from science and technology 

blogs (average length ~1,200 words); (2) Multilingual Posts, which included 50 news reports in 

languages other than English (Spanish, French and Mandarin) with English summaries prepared 

by qualified translators; and (3) YouTube Lectures. 

For web articles, original text was scraped and cleaned using the pipeline described in Chapter 5, 

then manually reviewed to ensure minimal boilerplate. Multilingual posts were fetched via their 

URLs and transcribed where necessary; reference summaries were produced independently by 

bilingual experts to serve as a gold standard. YouTube lectures were transcribed using Whisper, 

followed by manual correction of low confidence segments to maintain transcript accuracy above 

95 percent. 

Each dataset was split into training and evaluation subsets, though models were not fine tuned—

instead, evaluation was purely zero and few shot. Prompt templates remained consistent: an 

instruction to summarize in approximately N words, where N was set to 150 for short summaries 

and 300 for detailed ones. For each input, all models generated both short and detailed summaries, 

totaling 360 summarization instances per model (180 from web articles, 90 from multilingual 

posts, 90 from lectures). 
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Models were invoked under controlled hardware configurations: LLaMA 3 and its distilled variant 

running on local NVIDIA A100 GPUs with 4‐bit quantization; Gemma 2 via Groq’s API over a 

1 Gbps link; and GPT 4 Turbo through OpenAI’s rate limited endpoint. Each inference logged 

latency, GPU utilization and token consumption. Sampling parameters were fixed: greedy 

decoding for LLaMA variants to minimize variability, nucleus sampling (p=0.9) for Gemma 2 and 

GPT 4 Turbo to reflect their typical usage. 

All generated summaries, reference texts and logs were stored in a versioned database. For a subset 

of 20 samples per dataset, three annotators scored summaries on a five-point scale for coherence, 

informativeness and factual accuracy. The inter-annotator agreement (Cohen's κ) for each criterion 

was higher than 0.75, suggesting reliable evaluations. This rigorous experimental design ensures 

that a range of real-world content scenarios serve as the foundation for both qualitative assessments 

and quantitative metrics. 

 

5.3 EVALUATION METRICS 

This study uses both automated and human-centered metrics to capture various aspects of 

summarization quality. BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall Oriented 

Understudy for Gisting Evaluation) are examples of automated measures. In particular, the overlap 

of unigrams, bigrams and longest common subsequences between model outputs and reference 

summaries is evaluated by the ROUGE 1, ROUGE 2 and ROUGE L F1 scores. BLEU 4 provides 

information on lexical choice and fluency by assessing the accuracy of n-gram matches up to 

length four. ROUGE places a strong emphasis on recall, which is essential for retaining all 

important information. By providing precise focus, BLEU achieves a balance between coverage 

and accuracy. 

Reliance on n-gram overlap, however, may ignore coherence and factual consistency. Thus, by 

calculating the cosine similarity of token embeddings between candidate and reference summaries, 

a BERTScore evaluation adds to conventional metrics. According to recent studies, BERTScore 

correlates more strongly with human judgments and captures semantic alignment beyond exact n-

gram matches. 
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An Entailment Accuracy metric was used to evaluate factuality. A natural language inference 

(NLI) model that has already been trained determines whether a summary sentence is implied by 

the source by pairing it with the relevant source text segment. "Neutral" or "contradiction" labels 

suggest possible hallucinations, while the percentage of sentences labeled as "entailment" acts as 

a stand-in for factual correctness. 

Human evaluation completes automated measures. Three annotators rate each summary on a Likert 

scale from 1 (poor) to 5 (excellent) based on three criteria: readability (grammatical fluency), 

informativeness (coverage of important points) and coherence (logical flow). Annotators also point 

out any factual errors. The average of these scores yields the H Coherence, H Informativeness and 

H Readability metrics. Factual error rates are calculated as the proportion of summaries with at 

least one flagged error. 

Lastly, metrics for cost and latency measure actual performance. Averaged across all test cases, 

latency is calculated from timely submission to full summary generation. For models based on 

APIs, the cost is calculated by adding up the billing rates per 1,000 input tokens, normalized. GPU 

time multiplied by an industry-standard rate is used to estimate cost for local models. 

ROUGE, BLEU, BERTScore, entailment accuracy, human Likert ratings, latency and cost are all 

combined to create a multifaceted picture of each model's advantages and disadvantages, which 

informs both scholarly research and practical deployment choices. 

5.4 QUANTITATIVE PERFORMANCE COMPARISON OF LLMS 

Key automated metrics averaged across all datasets for each model are compiled in Table 5.1. 

LLaMA 3 8B achieves a ROUGE 1 F1 of 0.42, ROUGE 2 of 0.19 and BERTScore of 0.78, 

indicating solid performance in shorter summaries. The trade-off between size and coverage is 

demonstrated by the distilled LLaMA 3 0.8B model, which lags behind ROUGE and BERTScore 

by about 10%. By capturing more subtle bigrams and semantic relationships, LLaMA 3 34B 

outperforms the 8B variant and greatly increases recall (ROUGE 1: 0.48; ROUGE 2: 0.24; 

BERTScore: 0.82). Between the two LLaMA configurations, Gemma 2 9B records ROUGE 1 of 

0.45 and ROUGE 2 of 0.21; on longer lecture transcripts, its higher context window produces 

slight gains. GPT 4 Turbo leads with ROUGE 1 at 0.52, ROUGE 2 at 0.27 and BERTScore at 0.85, 

setting a high‐water mark for both n gram overlap and semantic similarity. 
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Entailment accuracy follows a similar trend: LLaMA 3 8B attains 82 percent sentence‐level 

entailment, while the distilled model dips to 75 percent. Both Gemma 2 9B and LLaMA 3 34B 

achieve about 88 percent, indicating fewer hallucinations. At 92 percent, GPT 4 Turbo exhibits 

the best factual grounding. 

Measurements of latency show sharp differences. On local GPUs, the distilled LLaMA model 

averages 2 seconds per summary, while the 34B variant takes 18 seconds and the LLaMA 3 8B 

takes 5 seconds. Gemma 2 9B via Groq’s API averages 7 seconds, including network overhead. 

GPT 4 Turbo, subject to remote queuing and rate limits, averages 12 seconds per summary. Cost 

analysis shows near zero marginal cost for local LLaMA variants (excluding GPU amortization), 

whereas Gemma 2 9B and GPT 4 Turbo incur approximately $0.04 and $0.12 per thousand input 

tokens, respectively. 

Table 5.1: Consolidated comparison of key quantitative metrics for each LLM model 

Model 
ROUGE-1 

F1 
ROUGE-2 

F1 
BERTScore Entailment Accuracy 

Latency 
(s) 

LLaMA 3-0.8B 
(distilled) 

0.38 0.17 0.70 75 % 2.0 

LLaMA 3-8B 0.42 0.19 0.78 82 % 5.0 

LLaMA 3-34B 0.48 0.24 0.82 88 % 18.0 

Gemma 2-9B 0.45 0.21 0.80 88 % 7.0 

GPT-4 Turbo 0.52 0.27 0.85 92 % 12.0 

 

5.5 QUALITATIVE RESULTS AND USER FEEDBACK 

Quantitative metrics provide a data-driven snapshot of model performance, whereas human 

evaluations highlight subtle aspects of summary quality. In user studies with 20 participants—

including graduate students, subject matter experts and lay readers—summaries from each model 

were evaluated for clarity, engagement and perceived trustworthiness. 

Participants consistently rated GPT 4 Turbo summaries as the most informative and coherent due 

to their ability to weave thematic threads and maintain author intent. GPT 4 Turbo increased reader 

engagement in a scientific blog post about quantum computing by breaking down technical terms 



 

35 
 

into relatable analogies. However, several users noted occasional verbosity, suggesting that the 

model occasionally included extraneous background information. 

Users gave LLaMA 3 34B high marks for fidelity and conciseness and commended it for its 

balanced coverage. In the multilingual dataset, LLaMA 3 34B handled idiomatic expressions in 

Spanish and French well, preserving nuance where other models made more generalizations. Some 

participants felt that its tone was somewhat formal, prioritizing objectivity over narrative flair. 

Despite producing summaries with content coverage comparable to LLaMA 3 34B, Gemma 2 9B 

contained occasional syntactic repetitions that were likely caused by quantization and made the 

text challenging for sensitive readers to understand. Participants who valued real-time interaction, 

however, praised the live lecture transcripts' quicker response times. 

LLaMA 3 8B was praised for its speed and clarity despite its shallow depth. Many users 

complained that complex arguments sometimes lacked important disclaimers, even though they 

thought the summaries were informative enough for brief overviews. Designed for edge 

deployments, the distilled 0.8B model performed well on short news stories but struggled with 

lecture transcripts, generating shortened or fragmented summaries. 

According to user feedback, the choice of model should generally be based on the priorities of the 

use case: high parameter models like LLaMA 3 34B or GPT 4 Turbo are better for reading deeply 

analytically, while LLaMA 3 8B or Gemma 2 9B are sufficient for quickly skimming content. The 

distilled model performs best in settings that require minimal usage and have limited resources. 

The importance of clear metadata (like source attribution) and a consistent stylistic tone—post-

processing elements that enhance usability and trust—was also emphasized by the participants. 

 

5.6 DISCUSSION OF COMPARATIVE FINDINGS 

The comparative analysis shows a distinct range of trade-offs between cost, computational 

efficiency and summary quality. Leading ROUGE, BERTScore and entailment accuracy metrics, 

along with the highest human ratings, demonstrate that GPT 4 Turbo continuously provides the 

best recall and semantic fidelity. However, its higher latency and API costs pose problems for real-

time and large-scale applications. Because the distilled LLaMA 3 model excels at speed and low 

resource usage at the expense of depth, it is only suitable for brief overviews or prototypes. 
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LLaMA 3 8B and Gemma 2 9B occupy the middle ground. LLaMA 3 8B demonstrates that a mid 

scale model with efficient quantization can produce summaries of acceptable quality for many 

routine tasks, with sub 10 second turnaround on commodity GPUs. Gemma 2 9B’s extended 

context window offers benefits for long form content, reducing the number of chunking iterations 

and preserving coherence across sections—but its proprietary hardware requirements and API 

costs must be factored into deployment decisions. 

The 34 billion–parameter LLaMA 3 variant emerges as a compelling open-source alternative to 

proprietary offerings. Its broader context window and richer parameterization yield performance 

within 5 percent of GPT 4 Turbo on automated metrics and human judgments, while incurring only 

GPU occupancy costs. In academic or enterprise settings with available GPU resources, LLaMA 3 

34B presents a cost effective, self-hosted solution. 

Human evaluations corroborate quantitative findings yet also expose subtleties: users prefer 

concise, coherent prose even if minor factual details are omitted, suggesting that future work 

should explore controllable summarization objectives that balance brevity and completeness. The 

QA module’s performance further indicates that embedding based retrieval and LLM question 

answering are viable for interactive exploration, although smaller models require additional 

context reminders to maintain accuracy. 

The comparative analysis concludes by emphasizing that no single model consistently optimizes 

for every criterion. Rather, the application context—speed versus depth, financial limitations, 

hardware accessibility and user tolerance for sporadic errors—should dictate the model selection. 

Users can dynamically make these trade-offs using the URL to Knowledge system's flexible 

model-selection interface which guarantees that the summarization service can adjust to a variety 

of operational requirements. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 SUMMARY OF KEY CONTRIBUTIONS 

This dissertation presents “URL-to-Knowledge”, a unified framework for automated knowledge 

retrieval and summarization from web and multimedia sources using large language models. The 

primary contributions are threefold: 

 Seamless Multimodal Ingestion: We designed and implemented a loader abstraction that 

transparently handles both static web pages and YouTube videos. Static pages are parsed 

via a hybrid static‐and‐dynamic HTML scraper with boilerplate removal heuristics, while 

videos leverage caption retrieval and fallback ASR transcription, yielding clean text for 

downstream processing. 

 Customizable Summarization Pipeline: By integrating LangChain’s chain abstractions 

with user‐driven parameters—summary length and model choice—we produced a flexible 

summarization engine. The pipeline supports extractive and abstractive methods, dynamic 

chunking with overlap, hierarchical and refinement chains and context‐reminder prompts 

to manage model token limits and preserve coherence. 

 Interactive Question Answering and Accessibility: A QA module enriches summaries 

with retrieval augmented generation, allowing users to pose follow up queries within the 

same session. Downloadable text, audio output via text to speech and an accessible 

Streamlit interface cater to varied user preferences and needs, including support for non-

English source languages and hands free consumption. 

Empirical evaluations across web articles, multilingual posts and lecture transcripts demonstrate 

the system’s efficacy. Comparative experiments with LLaMA 3 (8B and 34B), Gemma 2 (9B) and 

GPT 4 Turbo reveal trade offs among quality, latency and cost. User studies confirm that high 

parameter models produce richer, more coherent summaries, while mid scale open source models 

deliver acceptable performance for rapid overviews. 
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Collectively, these contributions advance the state of the art in accessible, end to end 

summarization tools, lowering the barrier for non technical users to harness LLM capabilities on 

heterogeneous online content. 

 

6.2 MAJOR FINDINGS AND INSIGHTS 

The comparison study produced several ideas on the practical application of LLM–based 

summarization systems: 

 Parameter Scale vs. Performance: Larger models (LLaMA 3 34B, GPT 4 Turbo) 

consistently show less factual errors and higher ROUGE and BERTScore scores. But they 

cost more for API-based services and cause more delay. Mid-scale models such as LLaMA 

3 8B and Gemma 2 9B provide a fair summary quality for routine tasks with sub 10 second 

response times. 

 Extractive vs. Abstractive Trade-offs: Extractive techniques guarantee factual fidelity by 

reusing original text but can produce fragmented prose. Though it runs the danger of some 

hallucinations, LLMs' abstractive summarization creates more fluid stories. Hybrid 

pipelines, extractive prefiltering followed by abstractive condensation reduces these 

problems by providing coherent and fact based summaries. 

 User Engagement through QA: The interactive QA tool improves user knowledge by 

means of questions and answers, so enabling clarification without going back to original 

sources. Success relies on embedding based retrieval and concise context prompts. Model 

choice impacts answer accuracy: high parameter models offer reliable responses, whereas 

smaller models may struggle with nuanced queries. 

 Accessibility and Customization: Providing audio output and downloadable artifacts 

broadens usability. Giving users the option to choose the model and the length of the 

summary promotes agency and matches output to a range of requirements, from brief 

summaries to in-depth analyses. 

Best practices are guided by these findings: use extended contexts for lengthy documents, select 

the model scale according to task criticality and use hybrid summarization techniques to strike a 

balance between coherence and factual accuracy. 
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6.3 LIMITATIONS OF THE CURRENT WORK 

Despite its strengths, the URL-to-Knowledge system exhibits several limitations that warrant 

consideration: 

 Dependency on External APIs and Models: The system's performance is mostly reliant 

on third party services including YouTube Data API, ASR engines and LLM endpoints. 

API rate limits, network latency and service availability can all have an impact on 

responsiveness and dependability. Local inference for large models requires substantial 

GPU resources, limiting accessibility for users without high‐performance hardware. 

 Multilingual Summarization Constraints: Although non-English inputs are accepted, 

summarization is unidirectional (into English). Translation quality hinges on the LLM’s 

multilingual proficiency; domain specific terminology may be mistranslated, leading to 

semantic drift. The pipeline would benefit from a specific translation tool as it does not 

have it right now, especially for non-English sources. 

 Hallucination and Factuality Risks: Abstractive summarization can create errors. 

Though entailment checks highlight questionable phrases, automated filters cannot ensure 

error-free summaries. Specially in high-stakes situations, users have to be watchful. 

 Static UI and Scalability: Although Streamlit's interface is simple for prototyping, static 

UI and scalability could suffer under significant concurrent load. Beyond the scope of this 

work, real-world deployments could call for migration to a production-grade web 

framework and horizontal scaling techniques. 

 Limited Content Sources: The system only supports static HTML pages and YouTube 

videos. Unmentioned are other platforms—paywalled material, social media, academic 

publishers. Including those would call for more loaders and authentication processes. 

 Evaluation Scope: Though varied, the evaluation datasets are small. While human 

evaluations focused on a subset of samples, more general studies across sectors—legal, 

medical, financial—could help to confirm system resilience. 

Knowing these constraints guides future studies meant to increase dependability, broaden capacity, 

and improve scalability. 
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6.4 FUTURE RESEARCH DIRECTIONS AND ENHANCEMENTS 

Several paths may deepen and extend the "URL-to-Knowledge" system building on this work: 

 Bidirectional Multilingual Support: Include a specific translation pipeline, say, using 

mBART or MarianMT, to assist summarization both into and out of English. This would 

enable users to create summaries in several target languages, hence improving worldwide 

relevance. 

 Adaptive Summarization Strategies: Research dynamic summarization that changes 

technique (extractive vs. abstractive) depending on material traits. Machine learning 

classifiers could forecast best strategy for each document, so balancing coherence and 

factual correctness. 

 Enhanced Factuality Assurance: To reduce hallucinations, include more robust factuality 

modules—such as cross-document consensus checks or retrieval-augmented verification 

against knowledge bases. User interfaces could emphasize low-confidence claims and ask 

for user verification. 

 Scalable Deployment Architecture: Using technologies like FastAPI, container 

orchestration (Kubernetes) and serverless components, shift from Streamlit to a 

microservices architecture. This would guarantee great availability and support auto 

scaling under variable load. 

 Expanded Content Integrations: Create more loaders for enterprise document 

repositories (e.g., SharePoint), social media threads (e.g., Twitter, Reddit), and paywalled 

academic journals (via institutional proxies). API wrappers and authentication systems 

would increase source coverage. 

 Personalization and Learning: Over time, use user profiling to customize summarization 

style—tone, depth, formality. Prompt templates and summary preferences could be 

enhanced by user feedback-driven reinforcement learning. 

 Cross-Modal Summarization: Look into summarization combining text, audio and video 

frames to produce multimodal summaries with narrative text and representative keyframes 

or infographics. 
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By following these routes, future iterations of "URL-to-Knowledge" can be more flexible, reliable, 

and user-centric, hence democratizing access to quick, accurate insights from the always growing 

pool of online content. 
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