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ABSTRACT 

Vitiligo is a chronic skin condition involving the progressive depigmentation of the 

skin because of melanocyte destruction or malfunction. Prompt and proper diagnosis 

of vitiligo is critical, since early treatment can considerably enhance outcome and 

improve the quality of life for those suffering from the disease. Manual diagnosis, 

however, tends to be qualitative and time-consuming, especially in low-resource 

clinical settings. In this thesis, a diagnostic framework based on deep learning is 

presented for automatically diagnosing vitiligo from skin images. The research starts 

with the evaluation of five leading convolutional neural networks (CNNs), namely 

VGG16, ResNet50, InceptionV3, EfficientNet, and DenseNet121, on a publicly 

distributed vitiligo dataset retrieved from Kaggle. 

The initial phase involved training and fine-tuning each CNN model to identify the top 

performers based on metrics such as accuracy, precision, recall, and F1-score. Among 

the evaluated models, VGG16, ResNet50, and DenseNet121emerged as the most 

effective, and were selected for further ensemble modeling. To enhance predictive 

reliability, three ensemble strategies were employed: bagging using Random Forest, 

boosting using XGBoost, and stacking with a logistic regression meta-learner. Beyond 

traditional ensemble methods, a Multilayer Perceptron (MLP)-based architecture was 

developed that fused deep features extracted from the three CNNs and learned complex 

inter-feature representations. 

Experimental evaluations demonstrated that the proposed MLP-based model 

significantly outperformed all other approaches, achieving a classification accuracy of 

99.22%, along with 99% precision, 99% recall, and 99% F1-score. Traditional 

ensembles such as Random Forest also performed well (98.43% accuracy), but were 

slightly less effective in terms of overall balance across evaluation metrics. These 

results confirm that feature-level fusion combined with neural modeling can yield 

superior classification outcomes in medical image analysis. 

This research not only demonstrates the viability of deep ensemble learning for vitiligo 

detection but also sets the foundation for developing intelligent dermatological 

screening tools. The proposed framework is scalable and may be extended to support 

multi-class classification and other skin conditions in future clinical decision support 

systems. 
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CHAPTER 1 

INTRODUCTION 

 
 

 

1.1 Motivation 
 

Vitiligo is a frequently occurring skin condition marked by patchy loss of 

pigmentation. It can either appear in small, localized areas or affect broader regions of 

the body. Across different global populations, its prevalence has been reported to range 

from 0.2% up to 1.8% in past researches[1][2]. Even though it is benign in nature, the 

toll of the disease on a patient is comparable to other diseases like seborrheic dermatitis 

and psoriasis[3]. Lesions on sites that are easily visible can trigger anxiety, shame and 

depression[4]. The enduring nature of vitiligo as well as the suboptimal treatments can 

considerably lower the well-being of the patient and might lead to deterioration of 

intrapsychic health[3-7].  

 

While Diagnosis of vitiligo might not be too complicated, evaluating how severe or 

widespread the condition is can be difficult. The lesions don’t follow a fixed pattern – 

can be of different size, shape or the location on the skin as well as the level of 

pigmentation loss. Also, when affected skin starts to repigment, can be due to treatment 

or naturally, it might not always come back evenly. This in turn can pose difficulty of 

tracking vitiligo[8][9]. Therefore, the motivation for this thesis to develop a reliable, 

AI-driven system that detects and analyses vitiligo lesions with remarkable accuracy. 

One that works across skin tones and doesn’t rely on specialised tools. If executed 

properly, it could be a faster diagnosis with better monitoring for the people who need 

it. 
 

1.2 Problem Statement 

Even with rising adoption of deep learning in dermatology, vitiligo has still 

remained a less-studied condition. Unlike other pigmented skin lesions, vitiligo is a 

depigmented patch that can often blend subtly with surrounding skin. Also, current 

studies frequently evaluate using only a single model and rarely uses the ensemble 

techniques for robustness. Since single model CNN architectures often struggle with 

the generalisation due to dataset limitations, class imbalance and sensitivity to image 

variability.  

Therefore, in order to fill these gaps, there is need for a comprehensive, comparative 

analysis of deep learning architectures for vitiligo detection, followed by the design of 

an ensemble feature based Neural classifier. Such a system can not only improve the 

detection accuracy but also provide a scalable real world clinical development. 
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1.3 Objectives 

This thesis aims to contribute significantly to the field of skin disease detection by 

examine the various deep learning models on the vitiligo detection task. Specifically, 

it seeks to achieve the following objectives: 

 To systematically evaluate and compare multiple deep convolutional neural 

networks—namely VGG16, ResNet50, InceptionV3, EfficientNet, and 

DenseNet121—on their ability to detect vitiligo from preprocessed dermoscopic 

and clinical skin images. This comparison is intended to identify the most suitable 

architectures for capturing depigmentation features critical to vitiligo diagnosis. 

 To construct robust ensemble classification models by integrating the deep features 

of the top-performing CNNs. This involves implementing bagging (Random 

Forest), boosting (XGBoost), and stacking methods, as well as designing a custom 

Multilayer Perceptron (MLP) that fuses the learned representations into a single 

architecture. These approaches aim to enhance prediction consistency and leverage 

the complementary strengths of individual models. 

 To critically analyze the diagnostic accuracy of each model based on clinically 

meaningful measures like accuracy, precision, recall, and F1-score, thus making 

sure that the system proposed is not only precise but sensitive and specific enough 

for practical use in dermatological screening. 

1.4 Overview 

The thesis is organised in the following sections: Chapter 1 highlights the motivation, 

problem statement and objectives behind the study. Chapter 2 discusses the research 

related to this field done till now. Chapter 3 elaborates the methodology in detail. The 

experimentation and results are analysed in Chapter 4. The thesis is finally completed 

with the concluding statements and future prospects in Chapter 5. 
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CHAPTER 2 

RELATED WORK 

Vitiligo, an acquired, chronic pigmentary skin disorder, is often misunderstood and 

misdiagnosed due to its similarity to other hypopigmented conditions. Affecting 

between 0.5% to 1% of the global population, vitiligo presents not only dermatological 

challenges but also profound psychological distress due to visible skin discoloration 

(Tanvir et al., 2024)[10]. Although it's not life-threatening, the disease often leads to 

anxiety, embarrassment, and in severe cases, social withdrawal. Conventionally, 

dermatologists rely on clinical inspection, often supported by Wood's lamp 

examination, to identify vitiligo. Yet this kind of diagnosis is still subjective and 

extremely variable depending on clinician experience, access to equipment, and 

lighting (Zhang et al., 2021) [11]. Particularly within primary healthcare or 

teledermatology arrangements, with limited availability of tools, diagnosis can be 

unreliable and imprecise.  

Against this background, deep learning (DL) and machine learning (ML) methods 

have emerged as credible alternatives. These can result in data driven and replicable 

conclusions, minimizing reliance on human interpretation. Tanvir et al. (2024) [10] 

conducted a systematic literature review with the aid of computer assisted methods for 

the detection of vitiligo. They selected from an original list of 244 studies ten that were 

strict criteria-based—these included direct application of ML on skin images, provided 

quantitative accuracy measures, and did not include purely qualitative or non-image-

based studies. Their results identified how ML can outperform or at least equal 

performance with dermatologists in certain diagnostic situations, most importantly 

distinguishing between vitiligo and look-alike disorders like pityriasis alba or tinea 

versicolor. 

Additionally, Zhang et al. (2021) [11] compared the performance of convolutional 

neural networks (CNNs) like VGG-13, ResNet-18, and DenseNet-121 on both in-

house and public datasets. They trained the models on thousands of clinical close-up 

images, and then tested them gains against the judgment of 14 human raters—

dermatologists, residents, and general practitioners. Interestingly, the CNNs matched 

expert dermatologists. On the public dataset, DenseNet-121 resulted in an F1 measure 

of 0.9684, higher than the expert raters' 0.9221. These results highlight that with 

adequate training data, CNNs can provide diagnostic performance comparable to 

human experts—even without Wood's lamp imagery. The results also offer hope for 

rural or underserved regions lacking experienced dermatological professionals.  

Still, classification alone is not enough. A more advanced approach was proposed by 

Guo et al. (2022) [12], who developed a hybrid deep learning model capable of both 

detecting and evaluating vitiligo lesions in terms of size and pigmentation. Their model 

comprised three stages: YOLOv3 for lesion detection, UNet++ for segmentation, and 

post-processing metrics (VAreaA, VAreaR, VColor) for morphometric and 

colorimetric analysis. Trained on a large dataset of DSLR-acquired images from 

Chinese patients with Fitzpatrick skin types III and IV, the model achieved 92.91% 
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sensitivity in lesion detection. For segmentation tasks, UNet++ attained a Jaccard 

Index of 0.79, outperforming other networks like UNet and PSPNet. Although the 

model performed slightly worse on lighter and darker skin tones (Fitzpatrick types I, 

II, and V), it still offered a reproducible and objective framework that matched 

dermatologists in precision and surpassed them in consistency. 

However, training high-performance models requires abundant and diverse data. In 

medical imaging, especially dermatological datasets, image scarcity is a serious 

limitation. This is where generative models such as GANs come into play. Mondal et 

al. (2020) [13] addressed this issue by using Wasserstein GAN with Gradient Penalty 

(WGAN-GP) to generate synthetic skin lesion images—including vitiligo. Their 

pipeline involved three main steps: dataset preprocessing (including contrast 

normalization and morphological filtering), synthetic sample generation using 

WGAN-GP, and classification using CNNs. After augmenting the dataset with 1,504 

synthetic images, the model (DenseNet-121) reached a classification accuracy of 

94.25%, nearly 11% higher than the non-augmented baseline. These results emphasize 

how data augmentation via GANs can significantly improve DL model performance, 

especially when dealing with underrepresented skin conditions like vitiligo. 

Despite the optimism, there are limitations. One concern repeatedly mentioned in the 

literature is the lack of standardization across datasets. Many studies focus on single-

race populations or are limited to specific skin types, reducing the generalizability of 

results. For example, the hybrid AI model by Guo et al. (2022) [12] worked best on 

Fitzpatrick types III–IV but underperformed on types I and V. Another issue is 

interpretability. While CNNs can classify and segment with high accuracy, the black-

box nature of these models still raises skepticism among clinicians. Without clear 

visual or statistical explanation, many are reluctant to adopt AI-driven tools into their 

workflow. Moreover, as Tanvir et al. (2024) [10] rightly argue, several studies still 

report insufficient methodological rigor—such as small sample sizes, poor validation 

techniques, or lack of follow-up studies—making the results difficult to replicate or 

deploy in clinical settings. 

Nonetheless, these limitations open the door for further research. Larger multi-ethnic 

datasets, explainable AI frameworks, and integration of clinical metadata (e.g., patient 

history, lesion progression) can help build robust diagnostic pipelines. Ensemble 

techniques that combine CNN outputs with dermatological scoring systems like VASI 

or VETF might also improve interpretability and clinical trust. And perhaps most 

importantly, all models must be tested not only on benchmark datasets but in real-

world clinical scenarios to ensure usability. 

To sum up, deep learning models are showing remarkable promise in vitiligo detection 

and analysis. CNN-based architectures like DenseNet, UNet++, and YOLOv3 offer 

superior classification and segmentation capabilities. When augmented with GAN-

generated synthetic data, these models overcome the challenge of limited training 

samples. Hybrid systems, as developed by Guo et al. (2022) [12], demonstrate that 

morphometric and colorimetric lesion analysis can be fully automated, supporting both 

research and clinical applications. Still, to make AI an integral part of dermatological 
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diagnostics, future studies must address gaps in dataset diversity, model explainability, 

and real-world validation. 

Vitiligo, an acquired, chronic pigmentary skin disorder, is often misunderstood and 

misdiagnosed due to its similarity to other hypopigmented conditions. Affecting 

between 0.5% to 1% of the global population, vitiligo presents not only dermatological 

challenges but also profound psychological distress due to visible skin discoloration 

(Tanvir et al., 2024) [10]. Although it's not life-threatening, the disease often leads to 

anxiety, embarrassment, and in severe cases, social withdrawal. Conventionally, 

dermatologists rely on clinical inspection, often supported by Wood's lamp 

examination, to identify vitiligo. However, this diagnostic approach remains subjective 

and varies widely based on clinician experience, equipment access, and lighting 

conditions (Zhang et al., 2021) [11]. Especially in primary healthcare or 

teledermatology setups, where access to tools is minimal, diagnosis can be both 

inconsistent and inaccurate. 

Against this background, deep learning (DL) and machine learning (ML) methods 

have emerged as credible alternatives. These can result in data driven and replicable 

conclusions, minimizing reliance on human interpretation. Tanvir et al. (2024) [10] 

conducted a systematic literature review with the aid of computer assisted methods for 

the detection of vitiligo. From an initial pool of 244 studies, they shortlisted ten that 

met strict criteria—these involved direct use of ML on skin images, reported 

quantitative accuracy metrics, and excluded purely qualitative or non-image-based 

research. Their findings highlighted how ML could outperform or at least match 

dermatologists in some diagnostic settings, particularly in distinguishing vitiligo from 

look-alike conditions such as pityriasis alba or tinea versicolor. 

Further, Zhang et al. (2021) [11] evaluated the performance of convolutional neural 

networks (CNNs) such as VGG-13, ResNet-18, and DenseNet-121 across both in-

house and public datasets. They trained these models on thousands of clinical close-

up images, then tested them against the judgment of 14 human raters—including 

dermatologists, residents, and general practitioners. Remarkably, the CNNs performed 

comparably to expert dermatologists. On the public dataset, DenseNet-121 yielded an 

F1 score of 0.9684, exceeding the expert raters’ 0.9221. These findings underscore that 

with proper training data, CNNs can achieve diagnostic accuracy that rivals human 

experts—even in the absence of Wood’s lamp imagery. The results also offer hope for 

rural or underserved regions lacking experienced dermatological professionals. 

Still, classification alone is not enough. A more advanced approach was proposed by 

Guo et al. (2022) [12], who developed a hybrid deep learning model capable of both 

detecting and evaluating vitiligo lesions in terms of size and pigmentation. Their model 

comprised three stages: YOLOv3 for lesion detection, UNet++ for segmentation, and 

post-processing metrics (VAreaA, VAreaR, VColor) for morphometric and 

colorimetric analysis. Trained on a large dataset of DSLR-acquired images from 

Chinese patients with Fitzpatrick skin types III and IV, the model achieved 92.91% 

sensitivity in lesion detection. For segmentation tasks, UNet++ attained a Jaccard 

Index of 0.79, outperforming other networks like UNet and PSPNet. Although the 
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model performed slightly worse on lighter and darker skin tones (Fitzpatrick types I, 

II, and V), it still offered a reproducible and objective framework that matched 

dermatologists in precision and surpassed them in consistency. 

However, training high-performance models requires abundant and diverse data. In 

medical imaging, especially dermatological datasets, image scarcity is a serious 

limitation. This is where generative models such as GANs come into play. Mondal et 

al. (2020) [13] addressed this issue by using Wasserstein GAN with Gradient Penalty 

(WGAN-GP) to generate synthetic skin lesion images—including vitiligo. Their 

pipeline involved three main steps: dataset preprocessing (including contrast 

normalization and morphological filtering), synthetic sample generation using 

WGAN-GP, and classification using CNNs. After augmenting the dataset with 1,504 

synthetic images, the model (DenseNet-121) reached a classification accuracy of 

94.25%, nearly 11% higher than the non-augmented baseline. These results emphasize 

how data augmentation via GANs can significantly improve DL model performance, 

especially when dealing with underrepresented skin conditions like vitiligo. 

Despite the optimism, there are limitations. One concern repeatedly mentioned in the 

literature is the lack of standardization across datasets. Many studies focus on single-

race populations or are limited to specific skin types, reducing the generalizability of 

results. For example, the hybrid AI model by Guo et al. (2022) [12] worked best on 

Fitzpatrick types III–IV but underperformed on types I and V. Another issue is 

interpretability. While CNNs can classify and segment with high accuracy, the black-

box nature of these models still raises skepticism among clinicians. Without clear 

visual or statistical explanation, many are reluctant to adopt AI-driven tools into their 

workflow. Moreover, as Tanvir et al. (2024) [10] rightly argue, several studies still 

report insufficient methodological rigor—such as small sample sizes, poor validation 

techniques, or lack of follow-up studies—making the results difficult to replicate or 

deploy in clinical settings. 

Nonetheless, these limitations open the door for further research. Larger multi-ethnic 

datasets, explainable AI frameworks, and integration of clinical metadata (e.g., patient 

history, lesion progression) can help build robust diagnostic pipelines. Ensemble 

techniques that combine CNN outputs with dermatological scoring systems like VASI 

or VETF might also improve interpretability and clinical trust. And perhaps most 

importantly, all models must be tested not only on benchmark datasets but in real-

world clinical scenarios to ensure usability. 

To sum up, deep learning models are showing remarkable promise in vitiligo detection 

and analysis. CNN-based architectures like DenseNet, UNet++, and YOLOv3 offer 

superior classification and segmentation capabilities. When augmented with GAN-

generated synthetic data, these models overcome the challenge of limited training 

samples. Hybrid models, used by Guo et al. (2022) [12], show the potential of 

morphometric and colorimetric lesion analysis to be fully automated, paving the way 

for research and clinical applications. For AI to become a standard tool in 

dermatological diagnosis, however, the current research must bridge gaps in dataset 

diversity, model interpretability, and practical utility.  
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Previous work has indicated additional classification accuracy and interpretability 

enhancements with modern architectures. Zhong et al. (2024) [14] investigated the 

effectiveness of ResNet and Swin Transformer models in the diagnosis of vitiligo. 

Their paper published in Scientific Reports was targeted not only at performance 

measures but also towards enhancing model prediction interpretability.The application 

of the marriage of convolutional and transformer-based methods by researchers 

yielded encouraging results, vindicating hybrid deep learning's contribution models to 

dermatology.  

In another initiative, Kantoria et al. (2020) [15] investigated CNN-based classification 

models particularly for vitiligo with less complicated methodology. Having been 

published by the International Research Journal of Engineering and Technology 

(IRJET), their research explained how CNNs, even without being highly pretrained or 

augmented, could still perform good classification in accuracy when used with 

domain-specific tuning. Being less complicated than transformer models, their method 

is still worth it for quick deployment in resource-constrained environments. 

 

Another work by Bashar and Suliman (2022) [16] examined whether pre-trained CNN 

architectures can be used to classify vitiligo images. Their thesis too explored the 

economic implications of automating vitiligo detection at clinical levels. The study 

indicated how pretrained networks like VGG and ResNet can reduce diagnostic costs 

and optimize healthcare workflows without compromising diagnostic reliability. 

Similarly, Thanka et al. (2020) [17] proposed a multi-class skin disease classification 

system using deep CNNs. Although their study wasn’t focused solely on vitiligo, the 

framework included vitiligo as one of the disease classes. Published in the Journal of 

Green Engineering, the research showed high accuracy across multiple dermatological 

conditions and demonstrated how CNN-based approaches can be adapted for broad-

spectrum skin disease diagnosis, including vitiligo. 

Table 1 : Literature survey summary table 
 

S. No. Paper 

Refereneces 

Journal/Conference Year Performance Reported 

1 [12]  Annals of 

Translational 

Medicine 

2022 YOLOv3 detection 

sensitivity: 92.91%, 

UNet++ segmentation JI: 

0.79 

2 [11]  Frontiers in 

Medicine 

2021 DenseNet F1 Score: 0.96 

(public dataset); 

Outperformed expert 

raters 

3 [10]  BioMed Research 

International 

2024 Review paper – 

highlighted ML potential 

and gaps, no specific 
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performance metric 

4 [13]  IEEE 33rd 

International 

Symposium on 

Computer-Based 

Medical Systems 

(CBMS) 

2020 DenseNet-121 accuracy: 

94.25% with GAN 

augmentation 

5 [14]  Scientific Reports 2024 Reported enhanced 

accuracy and 

interpretability using 

ResNet and Swin 

Transformer; Accuracy: 

94% 

6 [15]  International 

Research Journal of 

Engineering and 

Technology (IRJET) 

2020 CNN-based vitiligo 

classification; 

performance validated 

through accuracy 

comparisons; 

Accuracy: 96.5% 

7 [16]  M.S. Thesis, KTH 

Royal Institute of 

Technology 

2022 ResNet Accuracy: 

85.6%; InceptionV3 

Accuracy : 91% 

8 [17]  Journal of Green 

Engineering 

2020 DCNN Accuracy: 96%  

 
 

 
 
 
 
 

 

 

 

 

 

 

 



 

9 

CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Framework Overview 
The proposed framework for vitiligo detection is designed as a multi-stage pipeline as 

shown in Figure 3.1 that integrates deep learning and ensemble methods to enhance 

classification performance. It begins with acqusition of skin images from the Kaggle 

Vitiligo dataset, followed by a series of preprocessing steps including resizing, 

normalisation. Five pre-trained CNN models – VGG16. ResNet50, InceptionV3, 

EfficientNet, DenseNet121 – are finetuned on the dataset to assess their individual 

classification accuracy. Based on their performance, the top three models (VGG16. 

ResNet50, DenseNet121) are selected for futher ensemble construction. These selected 

models are then used to generate deep features which are fed into three enseble 

strategies: bagging using Random Forest, boosting with XGBoost and stacking. In 

addition to these, a custom ensemble is developed where the deep features from three 

CNNs are concentrated and passed through a Multilayer Perceptron network, which 

ultimately achieved the highest accuracy and f1 score. The framework ensures that 

each phase – from preprocessing to ensemble fusion – is optimized to deal with the 

challenges of class imbalance. 

 

Figure 3.1 : Architecture of proposed methodology 

 

3.2 Dataset Profile 

The dataset used in this thesis is obtained from Kaggle, Titled ”Vitiligo Dataset”, 

which consits of labled skin images divided into two categories: ‘Healthy Skin’ and 

‘Vitiligo’. This dataset contains a total of 1271 RGB images. 891 images are labeled 

as healthy skin and 380 labled as vitiligo. Each Each image is a real-world clinical or 

dermoscopic capture, varying in resolution, background noise, lighting conditions, and 

skin tones, providing a diverse and realistic set of examples. Figure 3.2 shows sample 

image from the dataset having two classes in which one is healthy skin and another is 

vitiligo. 
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Figure 3.2 Sample Image from the dataset having two classes i.e. Healthy and Vitiligo 

To guarantee the model generalizability and balanced learning, the data was stratified 

and divided into three subsets:  

 Training Set (70%) – employed for model training and parameter tuning.  

 Validation Set (10%) – utilized for hyperparameter tuning and avoiding 

overfitting.  

 Test Set (20%) – used for performance benchmarking and model final assessment.  

Due to imbalance of class—fewer vitiligo images compared to normal images—data 

augmentation techniques such as rotation, horizontal flip, zoom, and brightness 

adjustments were applied during training. All the images were resized to 224×224 

pixels. 

 

3.3 Data Preprocessing 

Effective preprocessing is essential in medical image analysis, especially for 

conditions like vitiligo where lesion visibility is often subtle and image quality can 

vary. To prepare the dataset for deep learning models and ensure consistency across 

the input pipeline, several preprocessing steps were applied. 

All input images were first resized to 224×224 pixels, which is the standard input 

dimension required by most pre-trained CNN architectures such as VGG16, ResNet50, 

and DenseNet121. This resizing step ensures compatibility and reduces computational 

overhead while preserving essential visual features. 

Next, to improve the local contrast of skin regions, especially the depigmented patches 

characteristic of vitiligo, Contrast Limited Adaptive Histogram Equalization 

(CLAHE) was applied. CLAHE enhances the contrast of each image in a localized 

manner, allowing better distinction between affected and unaffected skin areas without 

over-amplifying noise. 
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Following enhancement, all pixel values were normalized to a range of [0, 1] by 

dividing the RGB values by 255. This normalization helps stabilize the training 

process and ensures faster convergence of the neural networks. 

To address the issue of class imbalance and enhance the model’s robustness, data 

augmentation techniques were applied exclusively to the training set. These 

augmentations introduced variability in the input images, helping the model generalize 

better to unseen data. Specifically, the images were randomly rotated up to ±20 

degrees, flipped both horizontally and vertically, and subjected to zooming and spatial 

shifting to simulate different viewing perspectives. Additionally, brightness and 

contrast jittering were incorporated to mimic variations in lighting conditions. These 

transformations expanded the diversity of the training data without altering the 

semantic content of the images, thereby improving the network’s ability to detect 

vitiligo under varied clinical scenarios. 

Finally, all images were converted into NumPy arrays and reshaped into the 

appropriate tensor formats required for model training. This standardized 

preprocessing pipeline ensured that both deep learning and ensemble models received 

high-quality, uniformly formatted input for optimal learning and evaluation. 

3.4  Base CNN Models Evaluation 
 

In an effort to develop a reliable ground for vitiligo classification, five state-of-the-art 

convolutional neural network (CNN) models were chosen and evaluated VGG16, 

ResNet50, InceptionV3, EfficientNet, and DenseNet121. The models were chosen 

because they had already demonstrated success in other object or image inspection 

task, from medical imagery to dermatological assessment. All the models offer unique 

architectural features, hence their applicability to comparative performance analysis 

when used in the scope of vitiligo detection.  

All models were pre-trained with ImageNet-pretrained weights to leverage transfer 

learning. The last classification layers were substituted with special fully connected 

layers appropriate for binary classification (Healthy vs. Vitiligo). For maintaining 

uniformity, the same input size (224×224×3) was fed to each model, and they were 

trained on the same preprocessed dataset with the same training-validation splits.  

Training was performed for 20 epochs, subject to early stopping behavior tracked via 

validation loss. The Adam optimizer with a low learning rate was utilized for fine-

tuning convolutional layers without destabilizing pretrained features. Binary cross-

entropy loss was selected as the objective function because the task of classification is 

binary.  

For equitable comparison, the performance was evaluated with the same test set and 

standard parameters like accuracy, precision, recall, and F1-score. These values 

enabled the quantification of not only the overall accuracy of predictions but also the 

sensitivity and specificity of the model towards identifying vitiligo lesions, which is 

highly relevant in medical diagnosis.  
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The outcomes indicated that the five models all worked fairly well, but VGG16, 

ResNet50, and DenseNet121continuously surpassed InceptionV3 and EfficientNet on 

all the measures. 

 

3.5  Feature Extraction 

Following the evaluation of individual CNN models, the top three performing 

architectures—VGG16, ResNet50, and DenseNet121—were selected for feature 

extraction. Rather than using their final softmax predictions directly, the proposed 

framework leverages the deep feature representations generated by these models to 

serve as input for subsequent ensemble learning. 

Each of the selected CNNs was modified such that the classification head was 

removed. Instead, features were extracted from the penultimate layer, typically the 

global average pooling layer, which captures high-level semantic information while 

preserving spatial invariance. This layer outputs a fixed-length feature vector for each 

image that encapsulates the learned representations from the convolutional filters.For 

every image in the dataset, the corresponding deep features were extracted 

independently using each of the three CNNs. This resulted in three separate feature 

vectors per image, each corresponding to a different model. These vectors were then 

concatenated to form a comprehensive feature representation combining insights from 

all three networks. This fusion of multi-model features was designed to exploit the 

diversity in the internal representations of the models—VGG16’s structured 

simplicity, ResNet50’s residual connections, and DenseNet121’s dense block 

connectivity. 

This approach also reduces computational complexity in the ensemble stage, since the 

heavy lifting of feature extraction is handled by the pre-trained CNNs, and the 

downstream classifiers deal only with fixed-size vector representations. Additionally, 

the extracted features retain model-specific patterns which, when fused, offer a more 

robust and generalizable representation of vitiligo lesions across varying skin tones, 

lighting conditions, and image qualities. 

3.6  Ensemble Model Construction 

In order to further improve the robustness and precision of vitiligo classification, the 

research adopts several ensemble learning methods based on the deep features 

extracted from the top-performing three CNN models—VGG16, ResNet50, and 

DenseNet121. Ensemble methods are also known to enhance generalization by 

combining the strength of more than one base model and reducing their respective 

weaknesses. Three popular adopted ensemble methods were tested in this study: 

bagging, boosting, and stacking. 

3.6.1 Bagging: Random Forest Classifier 

The bagging approach, involves training several weak learners on random subsets of 

the dataset and aggregating their predictions. In this case, the Random Forest classifier 
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was used, which constructs several decision trees on different bootstrap samples of the 

data. Each tree receives the same concatenated deep feature vectors (from VGG16, 

ResNet50, and DenseNet121) as input. The final prediction is obtained through 

majority voting. Random Forest is especially good at reducing overfitting and works 

well with high-dimensional data, so it is a good choice for feature-level ensemble 

learning. 

3.6.2 Boosting: XGBoost Classifier 

The boosting approach, applied through XGBoost (Extreme Gradient Boosting), trains 

sequentially a chain of models where each model attempts to fix the mistakes 

committed by the previous one. The input to XGBoost is once more the merged feature 

set of the three CNNs. While bagging is primarily centered on easy-to-classify 

instances, boosting concentrates relatively more on difficult-to-classify samples and 

generally leads to improved bias reduction. In this analysis, XGBoost performed 

excellently because of its capability to deal with complicated feature interactions, and 

the in-built regularization prevented overfitting. 

3.6.3 Stacking Ensemble 

In the stacking ensemble, the predictions (probability scores) from the individual CNN 

models are treated as inputs to a meta-classifier, which learns to combine them into a 

final prediction. For this task, a logistic regression model was used as the meta-learner. 

Each base model (VGG16, ResNet50, and DenseNet121) was trained independently, 

and their outputs on the validation set were used to train the meta-classifier. The idea 

behind stacking is to allow the meta-learner to capture patterns and correlations in the 

predictions that individual models might miss. 

3.7  MLP – Based Feature Fusion Model 

The MLP architecture consists of several key components designed to effectively learn 

from the concatenated feature vectors derived from the top-performing CNN models. 

The input layer of the network receives a high-dimensional feature vector formed by 

combining the outputs from the global average pooling layers of VGG16, ResNet50, 

and DenseNet121. This fused vector carries rich semantic information from each 

model, capturing diverse patterns in the input images. 

Following the input, the architecture includes two or more hidden layers, each 

composed of dense (fully connected) neurons. These layers employ the ReLU 

activation function to introduce non-linearity, which allows the network to model 

complex interactions among features. The number of neurons in each layer was 

determined empirically to maintain a balance between computational efficiency and 

learning capacity. To address overfitting, dropout layers were incorporated between 

the dense layers. During training, dropout randomly disables a fraction of the neurons, 

which encourages the network to generalize better by not relying too heavily on 

specific nodes. The final layer of the model is a single neuron activated by a sigmoid 

function, producing a probability value indicating whether the input image is classified 
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as vitiligo or healthy skin. 

For training, the MLP was optimized using the Adam optimizer, known for its fast 

convergence and adaptive learning rates. A binary cross-entropy loss function was 

employed since the task involves binary classification. A small learning rate was 

selected to ensure stable fine-tuning of the network weights. The training process 

incorporated early stopping, where the validation loss was continuously monitored, 

and training was halted if no improvement was observed over several epochs. This 

helped prevent overfitting and ensured the model retained the best weights. 

__________________________________________________________________________ 

Algorithm 3.1: Vitiligo Detection Framework Based on CNN 

Feature Fusion and Ensemble Learning 

Given: 

 A labeled dataset 𝐷 = (𝑥𝑖,  𝑦𝑖)𝑖= 1
𝑁 , where 𝑥𝑖 ∈ 𝑅𝐻×𝑊×𝐶  are color skin images and 𝑦𝑖 ∈

{0,1} indicates the class (0 = healthy, 1 = vitiligo). 

 Pre-trained CNN models 𝑀1 ,𝑀2 , … ,𝑀5∈ {VGG16, ResNet50, InceptionV3, 
EfficientNet, DenseNet121}. 

Output: 

 Classification function  f:𝑅𝐻×𝑊×𝐶 →  {0,1} 

__________________________________________________________________________ 

Step 1: Preprocessing 

1.1 Resize:  

Each image 𝑥𝑖 → 𝑥𝑖
′  ∈  𝑅224×224×3 

1.2 CLAHE (Contrast Enhancement):  

Apply CLAHE transformation:  𝑥𝑖
′′ = 𝐶𝐿𝐴𝐻𝐸(𝑥𝑖

′) 

1.3 Normalization:  

Rescale each pixel value to [0,1]: 𝑥𝑖
′′′ =

𝑥𝑖
′′

255
 

1.4 Augmentation:  

Define augmentation transformations T={rotate,flip,zoom,jitter} and apply to 𝑥𝑖
′′′ for 

synthetic sample generation. 
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Step 2: CNN Model Training and Evaluation 

Train each model 𝑀𝑘  on the training set 𝐷𝑡𝑟𝑎𝑖𝑛 ⊂ D, and evaluate using: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, Precsion=

𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
𝐹1− 𝑠𝑐𝑜𝑟𝑒 =

2⋅Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Select top 3 models: 

𝑆 = {𝑀𝑉𝐺𝐺16 ,𝑀𝑅𝑒𝑠𝑁𝑒𝑡50, 𝑀𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡121} 
 

Step 3: Feature Extraction 

From each selected CNN model 𝑀𝑘  ∈ S, extract feature vectors from global average 

pooling layer: 

𝑓𝑖(𝑘) = 𝑀𝑘𝐺𝐴𝑃(𝑥𝑖
′′′)  ∈  𝑅𝑑𝑘 

Concatenate features: 

𝐹𝑖 = [𝑓𝑖(1) ∥ 𝑓𝑖(2) ∥ 𝑓𝑖(3)] ∈ 𝑅𝑑 ,  𝑑 = 𝑑1 + 𝑑2 + 𝑑3 
 

Step 4: Ensemble Classifier Construction 

Using Fi as input features, define classifiers: 

 Bagging: 𝑓𝑅𝐹(𝐹𝑖) → 𝑦𝑖 
 Boosting: 𝑓𝑋𝐺𝐵(𝐹𝑖) → 𝑦𝑖  
 Stacking: 𝑓𝑠𝑡𝑎𝑐𝑘(𝐹𝑖) = 𝑔(𝑓1(𝐹𝑖), 𝑓2(𝐹𝑖),𝑓3(𝐹𝑖)) 

Train all classifiers on 𝐹𝑡𝑟𝑎𝑖𝑛 = (𝐹𝑖, 𝑦𝑖) 

 

Step 5: Custom MLP Feature Fusion 

Define MLP as a function 𝑓𝑀𝐿𝑃: 𝑅
𝑑 → [0,1]: 

ℎ1 = 𝑅𝑒𝐿𝑈(𝑊1𝐹𝑖 + 𝑏1),  ℎ2 = 𝑅𝑒𝐿𝑈(𝑊2ℎ2 +𝑏2) 𝑦𝑖 = 𝜎(𝑊3ℎ2 + 𝑏3) 

Where σ is the sigmoid function. Optimize using binary cross-entropy: 

𝐿 = −[𝑦𝑖 log(𝑦𝑖) + (1− 𝑦𝑖) log(1 − 𝑦𝑖)] 
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Step 6: Model Evaluation 

Compare all models 𝑓𝐶𝑁𝑁 ,  𝑓𝑅𝐹 ,  𝑓𝑋𝐺𝐵 ,  𝑓𝑠𝑡𝑎𝑐𝑘,  𝑓𝑀𝐿𝑃  on the held-out test set using 

classification metrics. 

𝑓𝑏𝑒𝑠𝑡 = argmax
{ 𝑓

𝐹1− 𝑠𝑐𝑜𝑟𝑒(𝑓) 

__________________________________________________________ 
 

3.8  Model Evaluation Metrics 

For Objective evaluation and comparison of the performance of all models – individual 

CNNs, ensemble classifiers, and the proprietary MLP architecture – four broadly used 

evaluation measures were employed: accuracy, f1-score, recall, precision. 

Accuracy quantifies the overall accuracy of the model by measuring the ratio of 

correctly predicted samples to total samples. Although useful, it ma be deceptive in 

imbalanced datasets. Therefore, precision and recall were also taken into account. 

Precision measures the ratio of true positive predictions to total positive predictions, 

and this is important for minimising false positives. Recall , by contrast, tracks how 

well the model accurately identifies all positive cases that are actual, and this is critical 

in medicine where a missed case (false negative) may have severe consequences.  

For balancing recall and precision, the F1-score was utilized, which is the harmonic 

mean of the two. It offers one metric that takes both false positives and false negatives 

into account. These measures were calculated on the test set and utilized to fairly 

compare model performance to ensure that the top-performing model was accurate, 

but also consistent in finding vitiligo for different cases. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

This chapter presents the experimental results obtained from training and evaluating 

the proposed models on the vitiligo dataset. The performance of individual CNN 

models, ensemble learning techniques, and the custom MLP-based classifier were 

assessed using standard metrics—accuracy, precision, recall, and F1-score. These 

metrics provide a comprehensive understanding of each model’s classification 

capability, especially in the context of medical image analysis where both false 

positives and false negatives can have significant implications. 

Experimental results of training and testing the candidate models on the vitiligo dataset 

are descried in this chapter. The performance of a single CNN model, ensemble 

learning methods and an MLP based classifier developed by us was monitored using 

common metrics – accuracy, f1score, recall, precision. The metrics provide a 

rudimentary idea about the capability of each model to classify, specially in medical 

image processing where both the false positive and false negative can be significant 

4.1 Individual CNN Model Performance 

Five well-established convolutional neural networks were fine-tuned and tested on the 

vitiligo dataset. The objective was to evaluate their standalone performance and 

identify the most promising architectures for subsequent ensemble modeling. 

 VGG16 achieved an accuracy of 81.33%, with high precision (89%) but relatively 

low recall (70%), indicating it often failed to identify all vitiligo cases, though its 

predictions were mostly correct when positive as shown in figure 4.1 and figure 

4.2. 

 ResNet50 performed significantly better, with 92.12% accuracy, 95% precision, 

and 74% recall, highlighting its improved balance between sensitivity and 

specificity 0as shown in figure 4.3 and figure 4.4. 

 DenseNet121 also showed robust performance with 89.63% accuracy, 93% 

precision, and 66% recall, making it a strong candidate for feature extraction as 

shown in figure 4.5 and 4.6. 

 InceptionV3 and EfficientNet underperformed, with 75.93% and 69.29% accuracy 

respectively as shown in figure 4.7 and figure 4.9. Their low recall and F1-scores—

24% recall for InceptionV3 and 50% recall for EfficientNet as shown in figure 4.8 

and figure 4.10—suggested that they were not reliable for detecting vitiligo cases 

and were excluded from further ensemble stages. 
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Figure 4.1 : VGG16 Accuracy Plot 

 

Figure 4.2 : VGG16 Loss Plot 
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Figure 4.3 : ResNet50 Accuracy Plot 

 

Figure 4.4 : ResNet50 Loss Plot 
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Figure 4.5 : DenseNet121 Accuracy Plot 

 

Figure 4.6 : DenseNet121 Loss Plot 
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Figure 4.7 : EfficientNet Accuracy graph 

 

Figure 4.8 : EfficientNet Loss graph 
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Figure 4.9 : InceptionV3 Accuracy graph 

 

Figure 4.10 : InceptionV3 Loss graph 
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4.2 Ensemble Model Results 

To overcome limitations of individual models, ensemble learning was explored using 

the top three performing CNNs: VGG16, ResNet50, and DenseNet121.  

 Random Forest (bagging ensemble) achieved 98.43% accuracy, 97% precision, 

98% recall, and 98% F1-score as shown in figure 4.11, indicating strong 

consistency and reliability. 

 XGBoost (boosting) and Stacking both reached 94.51% accuracy, with similar 

scores for precision (94%) and recall (93%) as shown in figure 4.12 & figure 

4.13. These models outperformed individual CNN but showed slightly lower 

generalization than Random Forest. 

 

Figure 4.11 : Bagging (Random Forest) Classification Report 

 

Figure 4.12 : Boosting (XGBoost) Classification Report 
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Figure 4.13 : Stacking Classification Report 

 

4.3 Custom MLP-Based Feature Fusion Model 

The most significant performance improvement was observed in the custom MLP 

classifier, which took the concatenated deep features from VGG16, ResNet50, and 

DenseNet121 as input. The MLP model achieved 99.22% accuracy, 99% precision, 

99% recall, and 99% F1-score as shown in figure 4.14, outperforming all other models. 

This demonstrated that feature-level fusion combined with a trainable neural classifier 

can capture complex relationships better than traditional ensemble voting schemes. 

 

Figure 4.14 : Proposed Model Classification Report 

 

4.4 Discussion 

The results validate that ensemble learning, particularly when implemented at the 

feature level rather than decision level, offers superior performance for vitiligo 

detection. Among the ensemble techniques, the MLP-based approach not only 
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achieved the best accuracy but also maintained high recall, a critical factor in clinical 

diagnosis where false negatives are risky. 

Furthermore, the disparity between precision and recall in models like InceptionV3 

and EfficientNet reveals that high precision alone is not sufficient in medical 

applications. A balanced model that consistently identifies affected cases (high recall) 

is preferred. The findings also highlight the importance of selecting complementary 

models for ensemble construction. The feature maps from VGG16, ResNet50, and 

DenseNet121 provided diverse and rich representations, which proved advantageous 

when fused in the MLP classifier. 

Overall, the experimental results show that carefully designed hybrid architectures 

combining multiple deep learning models can significantly enhance classification 

accuracy and reliability for vitiligo detection. 

 

Table 2 : Perfomance Metrics 

Model Accuracy 

(%) 

Precision (%) Recall (%) F1-Score 

(%) 

VGG16 81.33 89 70 81 

ResNet50 92.12 95 74 85 

InceptionV3 75.93 90 24 38 

EfficientNet 69.29 35 50 41 

DenseNet121 89.63 93 66 79 

Bagging 

(Random Forest) 

98.43 97 98 98 

Boosting 

(XGBoost) 

94.51 94 93 93 

Stacking 94.51 94 93 93 

Proposed 

Model 

99.22 99 99 99 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

 

5.1 Conclusion 

This thesis offers a thorough deep learning-based approach to vitiligo classification 

using skin image data. Several pre-trained architectures of CNN VGG16, ResNet50, 

InceptionV3, EfficientNet, and DenseNet121—were assessed for the best model for 

this particular dermatology task. Out of these, ResNet50, VGG16, and DenseNet121 

were the best models and were chosen for ensemble learning. 

Ensemble strategies including bagging (Random Forest), boosting (XGBoost), and 

stacking were implemented using deep features extracted from the top CNNs. 

Additionally, a custom MLP-based feature fusion model was developed, which 

significantly outperformed all other methods. 

The last results proved that the MLP fusion model performed best with 99.22% 

accuracy, 99% precision, 99% recall, and 99% F1-score, which showed a very reliable 

and generalizable diagnostic tool. In contrast, traditional models like InceptionV3 and 

EfficientNet underperformed, with lower recall and F1-scores, highlighting their 

limitations in vitiligo classification. Among the ensemble methods, Random Forest 

performed best with 98.43% accuracy, while XGBoost and stacking both reached 

94.51%, albeit with slightly lower recall values. 

These results clearly establish that combining multi-model features through a custom 

deep architecture provides superior performance over individual models and standard 

ensemble methods. The study validates the effectiveness of deep feature fusion and 

lays the foundation for future research in automated dermatological diagnostics. 

 

5.2 Future Scope 

While the proposed approach achieves excellent results, several areas remain open for 

further exploration: 

Larger and more diverse datasets could be incorporated to improve the model's 

robustness across various skin tones, age groups, and lighting conditions. The current 

system performs binary classification (vitiligo vs. healthy). Future work can extend it 

to multi-class classification, covering other skin disorders like melasma, psoriasis, or 

eczema. Incorporating explainable AI (XAI) techniques such as Grad-CAM or SHAP 

can improve transparency and support clinical validation by highlighting decision-

making regions in the images. Deployment in real-world clinical environments 

through mobile or web-based interfaces can help evaluate its practical utility and 
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usability by dermatologists. Finally, integrating semi-supervised or self-supervised 

learning may help make the framework adaptable in settings where labeled data is 

limited. 
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