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                                    ABSTRACT  
  
Even though counting people in crowded places is a demanding task in computer vision, 

it’s still highly valuable. Geography helps improve public safety, guide city planning and 

handle big events. The main issues are that in real life, traditional methods often fail since 

people’’ sizes in the frame (scale) vary, they get hidden (occlusion) and they might not be 

distributed evenly (non-uniformity). To deal with these issues, this thesis suggests a new 

deep learning system that combines two things: a reliable way to calculate crowd density 

and a method to measure the model’s confidence in its predictions. A ResNet-101 network 

is used as the foundation and a FPN is added on top to help the system detect and interpret 

people in groups from different positions and scales. Because of this arrangement, the 

model is better able to make density maps when scenes contain a lot of warping or uneven 

crowding. Here, the main novelty is including a Real NVP network that measures how 

reliable the estimates are. Essentially, global features are extracted by the network, then 

passed through a fully connected layer before going through RealNVP which converts 

them into a probabilistic state. The model estimates the trustworthiness of its predictions 

by judging the likelihood of such features under a normal distribution. To give this 

uncertainty true value, an additional loss function is introduced. With it, the model is only 

uncertain once it is likely to get the answer wrong. 

The method described in this paper is practical and offers interpretable results for crowd 

counting. It not only counts out the people in a shot, but also explains how certain it is 

about what it found. Transparent AI is an important move for making systems easier to 

explain. This approach can eventually be applied to video data, where tracking individuals 

over different times would be more valuable or to segmentation and object detection, both 

of which require dealing with uncertainty. 
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                                                 CHAPTER 1 

                                INTRODUCTION   

1.1 Overview  

In the field of computer vision, counting groups of people is a fundamental task important 

at events, transportation, political events and when emergencies arise. The key goal is to 

forecast how many people will be seen in a given image or video frame. Although face 

detection sounds easy, it turns out to be difficult in actual conditions, where the number 

of people is not always the same, many are unclear and hard to identify and the image 

scale differs because of various perspectives. Over the years, people have come to rely on 

deep learning and convolutional neural networks (CNNs) have proved to be the best way 

to turn input images into high-resolution density maps. 

How reliable or uncertain future predictions will be is often overlooked in most of the 

current machine learning models. In many important real world cases, it is as valuable to 

know how reliable a model’s output is as it is to actually learn the prediction. Assuming 

incorrectly or being too positive about a crowd or disaster can result in flawed actions that 

can be very serious. A key problem with traditional CNN-based models is that they cannot 

capture uncertainty, so such models are not suitable for high-risk uses. The need for 

interpretable trustworthy models arose because of this restraint.  

 

1.2 Motivation and objectives 

Motivation 

Over the last decade, counting people in groups has become very important because of 

requirements in security, event planning, urban planning and disaster response. A correct 

estimate of the number of people in crowded places can support better decisions on public 

security, choosing where to build infrastructure and tracking crowd movements. 
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Estimating crowds at transportation terminals allows you to set up suitable safety 

measures and checking crowd density live during events can help avoid swarms and 

crowds. They prove how important crowd counting is for making places more secure and 

tech-driven. Though there are important advances, it is still challenging to count crowds 

correctly in areas without controls. Real-life factors including intense occlusion, big 

differences in scene size and angle, a lack of similarity among people in a crowd and 

complex background details are the main reasons for problems. Such visual difficulties 

often lead basic object detection and regression models to either fail or to underperform. 

Although traditional handcrafted methods are fast in computers, they do not handle the 

large complexity of crowded scenes well. Learning from data, deep learning has 

demonstrated potential to solve some of these concerns by transforming the learned 

features into accurate density maps. Even so, these approaches frequently have results that 

are difficult to understand and do not address the uncertain elements they produce. 

A big issue with advance models at the moment is that they cannot express the level of 

confidence in what they predict. If surveillance or disaster response relies on a prediction 

that is not correct, the outcome an inappropriate assessment of the crowd in a disaster 

could mean either less than enough actions taken or a lot of time and resources wasted on 

unnecessary measures. When the consequences are high, we should not only see what our 

model predicts, but how sure it is about that outcome. Unfortunately, at present, most deep 

learning approaches are only deterministic and none of them provide means to examine 

how reliable their output is. 

For this reason, researchers turn to probabilistic models in the field of deep learning. 

Normalizing Flows and specifically RealNVP, are important generative models because 

they enable us to calculate exact likelihood values and change feature spaces in a 

reversible way. It is easy to use these models to find out how typical or unusual a certain 

pattern is, based on a given distribution of possible behaviors. When part of a crowd 
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counting framework such models work as an uncertainty model and enhance the system’s 

accuracy and trustworthiness. 

Objectives 

The purpose of this study is to make a hybrid deep learning system that can count the 

number of people in a crowd, while adding a way to assess how certain the predictions 

are. Incorporating both tasks helps to overcome a problem with current state-of-the-art 

models which typically do not include ways to estimate uncertainty. It is meant to bring 

together the strong points of both certain convolutional networks and uncertain modeling 

methods to make the model both better and more explainable. To improve the result 

further, a head for regressing density is included to develop a fine-quality density map for 

figuring out the total number of people in the image. In addition to deterministic models, 

a Real-valued Non-Volume Preserving (RealNVP) flow model is added to provide an 

understanding of the uncertainty in the predictions. Modeling image features around the 

world, the flow-based module gives a negative log-likelihood score that represents how 

reliable its results are. A coupling loss is applied to match this unknown uncertainty with 

actual count errors, making the confidence measures more trustworthy. We also wish to 

set up a multi-part loss function that achieves accuracy of density estimates, count 

consistency and proper uncertainty calibration. Having this loss function guarantees that 

the chances of error in the model’s output are used during the training. The model has 

been trained and tested using the tough QNRF dataset which has many scenes with varied 

crowd complexity, making it a suitable test ground. 
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                                      CHAPTER 2                                              

                             LITERATURE REVIEW 

Lately, the main progress in crowd counting has come from using convolutional neural 

networks (CNNs) which efficiently produce density maps from scenes that are hard to 

understand. Handcrafted improvements were not sufficient because they failed to handle 

cases of varying scale and covered surfaces. For this reason, new approaches called multi-

column and scale-aware networks were used, enabling the model to spot features at 

different sizes. In the past couple of years, researchers have added Feature Pyramid 

Networks (FPNs) and attention-based techniques to concentrate on identifying and 

learning from dense regions. Yet, despite better accuracy, most models are not able to say 

how confident their predictions are. Because the standard methods cannot ensure 

confidence, Bayesian models and RealNVP have appeared to fill this gap by helping with 

confidence evaluation. Using these methods in crowd counting, models can be made both 

correct and reliable. 

 

2.1 Introduction 

Over the last two decades, major improvements in crowd counting have come from the 

increasing need for intelligent systems to handle the counting and management of human 

groups in various locations. Managing cities, traffic, security and crowds has become 

much more important thanks to real-time counting and estimating crowd density. Earlier 

systems, while practical, mostly used features made by hand and basic statistical statistics, 

so they struggled to work with scenes that kept moving. Consequently, approaches in 

tracker literature moved towards handling problems better by including data and handling 

the effects of occlusion, varying angles and differences in how crowds are arranged. At 

first, detection-based methods were frequently used in automated analyzing crowds. 
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Attempts were made to locate individual humans in a picture using classifiers or sliding 

windows [14]. While it is easy to understand how detection-based methods work, they 

had great difficulty splitting overlapping individuals in crowded areas, making the task 

nearly impossible. Because of these limitations, regression-based techniques were 

developed. They worked by teaching the system to map image features straight to the 

number of people in the crowd [3]. While successful in crowded areas, these methods 

usually did not contain enough spatial details to be useful in some applications. When 

CNNs were introduced, the field went through a major change. CNNs quickly became the 

most popular way for crowd counting thanks to their skill in learning layered features 

directly from image data [9], [18]. To start, CNN models were constructed with a single 

column and were able to directly calculate crowd counts from images [19]. Still, these 

models weren’t able to fix the problem of individuals being drawn differently due to 

changes in distance from the camera. As a result, CNNs with several side-by-side columns 

were created. The network could spot the same features whether the image was displayed 

in large or small sections since the architectures handled data at multiple image sizes at 

one time. 

As an example, the Multi-Column Convolutional Neural Network (MCNN) [17] gained 

considerable recognition and directly affected the design of other models. With growth in 

the area, the aim was to increase performance by bringing in spatial features and boosting 

image quality. FPNs were introduced because they allow the network to combine details 

found at every level with the important formal information. The presence of localization 

in these networks resulted in more accurate density map creation for crowd regions [20], 

[21]. Even with considerable progress, model uncertainty was mostly overlooked. The 

vast majority of methods today just provide a number for the crowd size, not telling how 

accurate the model believes its prediction is. This issue becomes very important in fields 

such as handling disasters or security surveillance, as making the wrong estimate could 

cause huge problems. Because of this problem, some experts are now integrating 



                                                                      6 

 

probabilistic modeling into how they do crowd counting. Many researchers like Bayesian 

deep learning and uncertainty-aware networks, since they allow the model to give out both 

a forecast and its confidence level. Because RealNVP can exactly estimate likelihoods 

and is invertible, it has been shown as a promising tool for understanding uncertainty in 

deep learning. Mixing deterministic neural networks with probabilistic methods is only 

just beginning to be explored in the field of crowd counting. They try to unite aspects of 

accuracy in density estimation from CNNs and the reliability of uncertainty produced by 

flow-based or Bayesian approaches. When used in places where action is needed rapidly 

such as in real-time surveillance such systems can guide actions based on the algorithm’s 

results. 

When these systems show a confidence score alongside their estimated count, they allow 

others to review or fix predictions that may be uncertain which raises the overall 

dependability of their work. Generally, the research on counting crowds has advanced 

steadily from traditional approaches to smarter deep learning methods that are accurate 

and ready to handle more data [4], [7], [8]. Yet, the rise in the complexity of real-world 

situations means models now must ensure transparency and reliability as well as being 

accurate. 

 

2.2 Surveys and Case Studies 

These days, much research has shifted toward automated crowd counting due to the need 

for public safety measures, smarter surveillance and development of smart urban systems. 

Studies using surveys have examined how techniques advanced from primitive methods 

[1], [5], [6], [15], [16]. Professionals in this field agree after these surveys that going from 

detecting and regressing density maps through traditional methods to using CNNs made 

the results much more accurate in places where a lot of things obscure vision or where the 

image size changes a lot. The study explains that methods based on detection succeed in 

situations with relatively few persons, but fail when people are packed together because 
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of overlap. Regression models solved this by turning on all features of the image into 

counts, but they could not detect information about given locations [3]. According to 

multiple sources, when density mapping approaches were developed, models started to 

determine spatial distribution as well as number which is key for both surveillance and 

urban analytics [21]. 

These models were foundational but had limitations in depth and semantic feature 

extraction. Following this, deeper models like CSRNet [23] leveraged dilated 

convolutions on VGG backbones to maintain spatial resolution while increasing depth. 

More advanced architectures have since adopted ResNet-based backbones for their 

superior feature hierarchy, which has been validated across case studies using datasets like 

ShanghaiTech, UCF-QNRF, and WorldExpo'10 [22], [24], [25]. Case studies focusing on 

applications in surveillance have provided insights into the real-world performance of 

these models. In one practical deployment, researchers used CSRNet on footage from a 

public train station, finding that density-based estimation was far more reliable than 

bounding-box detection, particularly during rush hour congestion. The study reported that 

traditional object detectors (e.g., YOLO) undercounted in such scenes, while density-

based models produced consistent estimates with less computational overhead during 

inference. 

Interest in Feature Pyramid Networks (FPN) has arisen among both researchers and 

practical implementers. Many studies in this area, especially those by Lin et al., 

demonstrate how FPN connects high- and low-level features smoothly on various scales, 

resulting in more accurate detection of objects in scenes with various densities. Models 

using FPN were found to handle shadows, varying lighting and obstructions very well 

during pedestrian counting on city streets at all hours of the day. Incorporating robust 

backbones such as ResNet101, allows these architectures to achieve good performance in 

varied density and demonstrate effective transferability. At the same time, some research 

is now examining crowd counting models that can deal with uncertainty. RealNVP is 
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popular among normalizing flows because it allows models to both predict a number of 

events and measure the certainty of that prediction. On the UCF-QNRF dataset, a model 

combining RealNVP was able to outperform other approaches when faced with label noise 

which is a common problem in annotating crowds. 

By using a ResNet-FPN backbone, it was possible to count pedestrians at busy 

intersections in a smart traffic monitoring system and the RealNVP branch offered scores 

that showed how reliable the traffic forecasts were. This made it possible to change the 

signals on the spot, boosting the safety of people on foot. Various reports and firsthand 

examples agree that improved crowd counting results are consistently achieved by using 

hybrid deep learning compared to older ways. While adding RealNVP for uncertainty 

estimation is recent, it is now being valued for its usefulness in everyday applications. The 

approach we have developed—joining ResNet101, FPN and RealNVP—responds to the 

increasing need for better and more understandable systems to estimate crowds. For this 

reason such models guarantee more accurate forecasts and safer decision-making in risks 

situations. 

 

2.3 Recent Studies 

Advancements in Deep Learning Architectures 

Recent studies have brought the novelty of deep learning architectures that advance 

accuracy and efficiency in crowd counting. Notable among them is the introduction of 

Feature Pyramid Networks (FPN) to ResNet101 backbones. It enables the extraction of 

features at different scales, very important in estimating the density of crowds within 

images where scale and occlusion happen to be variable. FPN allows for feature fusion 

from both low-level and high-level sources enabling the model to extract fine details and 

meaningful semantic information which will probably improve performance in complex 

crowd scenarios [10]. 
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Semi-Supervised and Self-Supervised Learning Approaches 

Lack of annotated data still poses a considerable problem in the crowd counting задачах. 

That said, some recent studies have explored the possibilities offered by semi-supervised 

and self-supervised approaches. Wang et al. critically analyzed different learning 

strategies applied to crowd counting and divided them into supervised, unsupervised, and 

semi-supervised methodologies. According to their results, supervised methods achieve 

the highest accuracy; by contrast, semi-supervised approaches perform better than others 

by taking advantage of unlabeled data in these cases, which are common during model 

training. In the same spirit, Khan et al. [2] study the application of Curriculum Learning 

(CL) on crowd counting models. Their results showed that CL helps improve learning 

efficiency and convergence speed by training models on simpler examples first and more 

complex examples afterwards. 

 

Video-Based Crowd Counting 

The invention of video surveillance systems has transformed crowd counting from simple 

images into video sequences. This change is shown through the growth of The 

Lightweight Multi-Stage Temporal Inference Network (LMSTIN). With its small amount 

of parameters, LMSTIN enhances the effectiveness of temporal dependency modeling 

across video frames, improving the efficiency of crowd counting methods based on video 

analysis. Studies comparing receive-real time-results-checked LMSTIN against other 

complex-advanced systems and found it to be less demanding and more responsive in 

real-time settings, proving its value in monitoring crowded spaces. 
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                                         CHAPTER 3 

                                    METHODOLOGY 

3.1 Convolutional Neural Networks (CNNs) and Image Processing 

Fundamentals 

Convolutional Neural Networks (CNNs) are examples of a subtype of deep learning 

algorithms oriented to understanding and processing data that is arranged in a two-

dimensional structure like pictures. These networks are capable of learning spatial features 

right from the raw pixel values using layers of filters. These filters, during convolution, 

capture basic visual constituents like edges, corners, and textures. CNNs incorporate 

fundamental concepts of image processing like edge detection, filtering, and manipulation 

of pixel intensities into their frameworks. 

 

3.1.1 Overview of CNNs and Image Preprocessing 

The capability of learning important patterns from image data, without the need for feature 

engineering, makes CNNs especially useful in computer vision. They have several layers, 

with each layer performing a certain transformation of the input image at increasing levels 

of abstraction. 

Convolutional Layers: The primary step in the hierarchical model involves filtering each 

image. As the image is processed at different levels, small kernels also known as filters, 

are used to identify and detect; curves, lines as well as textures like features.  

Activation Functions: These activation functions make it possible for the network to 

resolve complex relationships within the data by integrating non-linearities which is a 

requisite for solving practical sight problems. 
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Pooling Layers: Max pooling is one of the most recognizable name in pooling techniques 

whose aim is to lower the dimensions of featured maps. It capture the highest value in a 

specified area fragment. 

Fully Connected Layers: It have layers that connect neuron to every neuron in the 

previous layer, which allows network to make final predictions based on the learned 

features. 

Output Layer: This is the final layer which produces the output, such as class 

probabilities in classification tasks or density maps in crowd counting. 

Useful Formulae for CNNs: 

Convolution O/P Size:          

                                                   

  Where: 

O: O/P size 

I: I/P size 

K: Kernel size 

P: Padding 

S: Stride 

ReLU Activation Function: 

 

                                                          𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

Max Pooling Operation (with 2x2 kernel):
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Pixels are the tiny units of a digital image arranged in a grid. For a black-and-white (or 

grayscale) image, every pixel has some value between 0 and 255. A value of 0 means the 

pixel is totally black, while 255 would mean total white. All intermediate values would 

then correspond to various shades of gray. Color images are much more complicated. They 

contain three color layers: red, green, and blue (RGB model).  

 

To the kernel, or filter, convolution is of paramount importance, gradually being 

introduced into more computer vision procedures. The mathematical underpinning is 

straightforward; an image is traversed by a small matrix whose entries interact with 
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corresponding pixel values in the image. This affects the image in a particular manner, 

such as emphasizing edges, blurring, or pattern detection. 

 

3.1.2 Convolutional Layers and Feature Extraction 

At the heart of Convolutional Neural Networks (CNNs) are the convolutional layers, 

which extracting meaningful features from image data. They handle input arranged in the 

form of a grid such as pixel-based images by using several filters, also called kernels. 

These filters, which contains trainable weights, slide over the input image and perform 

element-wise multiplications followed by summation. 

Operation performed in a convolutional layer can be mathematically expressed as: 

                                                

 

y(i, j) is output feature map value and position (i, j) 

x(i+m, j+n) is input pixel value and position (i+m, j+n) 

w(m, n) is weight of the filter and position (m, n) 

M and N are height and width of filter, respectively. 

 

By employing the local receptive field concept, a neuron from the convolutional layer will 

only attend to a certain area of the input image to detect localized spatial features. As extra 

layers are added to a network, features get more abstract and general-purpose; considered 

in stages, first edges are drawn in the initial layers, and in latter layers, the drawing 

transforms into features, e.g., hands, legs, body parts, or maybe configurations of objects.  

In tasks like counting people in crowds or estimating how packed an area is, the features 

picked up by convolutional layers are incredibly important. The early layers act like sharp-

eyed spotters, picking out small details such as the outline of a person’s head or the shape 

of a shoulder. As we dive deep into the network, these layers start to look at the bigger 
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picture as they notice patterns that tell whether an area is densely packed or if people are 

overlapping. This step by step way of seeing the scene is especially helpful in tightly 

packed crowds, where it’s hard to tell one person from another. 

3.1.3 Activation Functions and Pooling Operations 

Activation functions and pooling layers constitute the main components of a 

Convolutional Neural Network (CNN). This allows the network to pick out complex, 

nonlinear patterns in the data, whereas shrinking the feature maps also brings down the 

computational load. After every convolutional layer, an activation function is enforced to 

allow for nonlinearity.  

The most popular activation function used in deep learning is the Rectified Linear Unit or 

ReLU. It is defined by the equation:                             

                                                 

A simple activation function which returns zero for any negative value and passes any 

positive input as such is activated by a layer. This simple operation makes ReLU a favorite 

among practitioners due to solver convenience and prevention of the vanishing gradient 

problem by ensuring a gradient of unity for any positive value. 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

Pushed into the Scenario: Because of the values ranging between (0,1), the sigmoid 

activation is good to estimate probability but is less used in hidden layers due to saturation 

and slow convergence. Tanh is another non-linear function that scales inputs between -1 

and 1 and is defined as:                                                                           
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3.1.4 Fully Connected Layers and Classification 

Fully connected layers are situated at the end of the CNN to generate the ultimate 

prediction. This means that when features are extracted and refined by convolutional and 

pooling layers, these features are handed down to the fully connected layers. 

These layers are instrumental when it comes to classification problems, where the aim is 

to classify any input image into one of many predefined categories. For instance, in image 

classification, fully connected layers help to assign the input image with the higher-level 

abstract features generated by earlier layers to a particular classifier that represents the 

image best. The outputs can be either a single class label or a probability value for each 

of the possible categories across the field. They do not directly perform classification in 

crowd counting and density estimation. Instead, crowd-interpretation of the scene or its 

context is done by fully connected layers to assist with size estimation or compensate for 

uncertainty. 

 

3.1.5 Transfer Learning and Fine-Tuning 

Transfer learning is a deep learning technique where a model trained on one task is again 

reused for a related task which helps in saving time and resources especially when labeled 

data is limited. In Convolutional Neural Networks pre-trained models like ResNet, VGG, 

and Inception which have been trained on large datasets such as ImageNet which can be 

adapted for new tasks. Previous of these models capture general features like edges and 

textures that are useful across various vision problems, while only the later, task-specific 

layers usually need to be fine-tuned for applications such as crowd counting or density 

estimation. 

The mathematical idea behind transfer learning is simple. Let 𝒇pretrained(𝒙; 𝛉) represent the 

feature extractor with pre-trained weights θ, and g(x; ϕ) represent the new task-specific 

layers with parameters ϕ. The new model can be expressed as: 

𝑦 = 𝑔(𝑓pretrained(𝑥; 𝜃); 𝜙) 
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In this setup, θ is either kept fixed (feature extraction) or updated slightly (fine-tuning), 

while ϕ is trained from scratch to adapt to the new task. 

Fine-tuning involves modifying the weights of a pre-trained model to enhance its 

effectiveness on a new task. This process usually includes unlocking several of the upper 

layers in the original model and retraining them using the target dataset with a reduced 

learning rate. Fine-tuning works best when the original and new tasks share similarities, 

enabling the model to adjust more accurately to specific features of the new domain. 

For example, in this thesis, the ResNet101 backbone is already trained on ImageNet and 

after that fine-tuned for the task of crowd counting using the QNRF dataset. The lower 

layers capture universal visual features but the upper layers are fine-tuned to interpret 

crowd related patterns, densities, and occlusions specific to the dataset. Transfer learning 

reduces training time along with computational costs while improving model 

performance, inspite fact that when annotated data is limited. It also provides a more stable 

learning process, as the model starts with weights that already capture useful visual 

representations. 

 

3.2 Feature Pyramid Networks (FPN) and Multi-scale Learning 

Feature Pyramid Networks (FPN) are a popular architecture for multi-scale learning, 

designed to upgrade the ability of deep learning model to detect objects at different sizes. 

FPN achieves this by constructing a pyramid of feature maps at different resolutions, 

allowing the network to process information at various scales. 

 

3.2.1 FPN Architecture and Multi-scale Feature Fusion 

Feature Pyramid Network is a robust architecture designed to handle multi-scale feature 

fusion inside computer vision task, especially for object recognition and segmentation. 

Traditional CNN architectures, like VGG or ResNet, primarily process images at a single 

scale, which can limit their ability to effectively recognize objects at varying sizes. FPN 
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addresses this challenge by constructing a feature pyramid—an efficient structure that 

allows the model to generate feature maps at many scales, thus improving its capacity to 

recognize objects at multiple scales FPNs leverage a top-down architecture, merging 

semantic context with detailed visual features. This pyramid structure is formed by linking 

feature maps across multiple scales through lateral connections, followed by an 

upsampling process that creates a top-down feature pyramid. 

 

                                                     

 

 

                                                                                    

  

Multi-scale feature fusion is an important aspect of deep learning that comes in handy for 

object detection, segmentation, and classification-image problems where objects or 

features in an image can vastly differ in size. In older CNNs, feature maps produced by 

every layer had a fixed resolution, which posed a challenge for the model to effectively 

process objects of larger or smaller sizes. Multi-scale feature fusion helps to circumvent 

this drawback by combining different features maps from different layers, each 

representing the image at different scales. 
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3.2.2 Role of FPN in Object Detection and Segmentation 

Feature Pyramid Networks (FPN) have become a fundamental building block in modern 

neural network-based learning models to identify and delineate objects in images. FPN’s 

primary role is to enhance the ability of convolutional neural networks to sense and 

segment objects at different scales by efficiently fusing multi-scale features which are 

from different levels of the network. Traditional CNN architectures, while effective at 

detecting large objects, struggle with small objects due to the diminishing spatial 

resolution as the image passes through deeper layers of the network. FPN correct this by 

including feature maps from lower layers that contain fine grained spatial details along 

with the high-level abstract representations from deeper layers. 

This fusion of features across layers ensures that network can both sense high-level 

semantic features for larger objects and preserve low-level spatial features necessary for 

detecting smaller objects. By combining these different levels of features, FPN produces 

a strong feature map for detecting objects which are of different sizes and complexities. 

For segmentation tasks, in semantic segmentation, the objective is to classify each 

individual pixel in an image with a specific category, which requires a model to understand 

both local details and global context. 

 

3.2.3 FPN for Handling Multiple Resolutions in CNNs 

Feature Pyramid Networks help Convolutional Neural Networks manage multiple image 

resolutions, which improves their capability to detect and interpret objects at different 

scales. Old CNNs, while powerful for feature extraction, often struggle with multi-scale 

object detection because the hierarchical nature of CNNs leads to a loss of spatial 

resolution as the feature maps pass through deeper layers. FPN addresses this issue by 

constructing a multi-scale representation of the image, thereby providing a strong 
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mechanism to capture features at various resolutions that are critical for both object 

detection and segmentation tasks.  

3.2.4 FPN’s Application in Density Estimation Models 

FPNs have significant advantages in density estimation models due to hierarchical and 

multi-resolution feature extraction. This multi-scale feature representation, which is the 

quintessence of FPNs, is beneficial to capture the global context as well as the local details 

of the scene, so that they are especially applicable to density estimation. FPNs perform 

better than bottom-up features by fusing high-level semantic information from deep 

layers with low-level fine-grained spatial details from shallow layers, generating more 

rich features to capture the density of objects for all kinds of scales in FPN. 

 

3.2.5 Integrating FPN with CNN for Enhanced Learning 

Incorporating FPNs into the CNN model provides a rich set of multi-resolution feature 

maps that retain both low-level and high-level semantics. FPNs provide low- and high-

level semantics by using lateral connections between layers of the CNN model and wealth 

of feature maps through feature fusion at different feature layers. These lateral connections 

allow for the combination of features of different resolutions seen in CNN's low- and high-

level detection. Collectively in typical implementations of FPNs, CNNs are winning 

performing the task of feature extraction, which includes convolutional multi-task 

processing and pooling. The convolutions extract features across resolutions, in essence, 

down-sampling the spatial resolution and up-sampling the extracted features' depth. 

Convolutional features, either from the original layer or myriad layers are taken together 

through FPN feature pyramids to realize the multi-resolution feature pyramids across 

scales, and in the grand state of a network learning to differentiate objects, scales are not 

rigid and do not have to be uniform or square in shape. The network will learn to detect 

an object at different levels of granularity, which will almost certainly depend on how 

practically distant the object from the receiver's resolution matrix and placement. 
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3.3 RealNVP Flow and Density Modeling  

RealNVP is a kind of normalizing flow utilized in density modeling. It uses a sequence of 

invertible transforms to transform complicated data distributions into simpler ones, e.g., 

a Gaussian distribution. The principle of RealNVP is to divide the input space into 

tractable pieces and use a sequence of affine transformations such that the transformations 

are invertible and the Jacobian determinant can be computed easily. This enables effective 

training and precise density estimation, which makes it specially helpful in domains such 

as generative modeling, where learning intricate data distributions is vital. 

 

3.3.1 Introduction to RealNVP Flow 

RealNVP flow, is a generative model that is a special case of the normalizing flows, a 

family of deep learning models still mainly used for density estimation and generative 

applications. While normalizing flows provides a framework for building complex 

distributions by mapping a basic, otherwise trivial (e.g. normal or uniform) distribution to 

a complicated single probability distribution using transformations (invertible 

transformations that are one-to-one, one-to-infinity, etc), RealNVP, coined by Dinh, Sohl-

Dickstein, and Bengio in 2016, can be thought of as a special case of a normalizing flow, 

consisting of a succession of affine couplings in order to map simple distributions (for 

example, standard Gaussian) to more testable and arguable distributions to represent data 

forms that have more complex structures (e.g. multimodal or waveforms). 

 

3.3.2 Coupling Layers and Latent Space Transformation 

Coupling layers are an important ingredient of normalizing flows, particularly with 

models such as RealNVP which learn complex probability distributions by transforming 

simple ones and coupling layers are flexible layers that transform data into two parts - one 

part is changed and one part is not. The purpose of the layer is to change portions of the 

data using an invertible transformation. From a computational point of view, this method 
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is efficient, allows for sampling, and maintains the important trait of an invertible model 

which allows for density estimation and generators. In normal coupling layers we apply 

the transformation to one half of the data while conditioning on the other half. The 

coupling always remains invertible, and the model satisfies both getting samples from the 

learned distribution and computing exact likelihoods. In the case of RealNVP, we couple 

the data into two distributions to learn a complex data distribution from normal 

distribution. One piece of the data goes through a learned function, while the other half of 

the data is unchanged by the transformation and the transformation still is reversible so 

we may undo the transformation with the learned function and generate new data.  

 

3.3.3 Optimizing RealNVP Flow for Density Estimation 

Optimizing a RealNVP flow for density estimation is a pressing need for realizing the 

complete utility of normalizing flows for representing complex data distributions. The 

core aim of density estimation is to construct a model that accurately captures the 

underlying probability distribution; that is to say that we want this model to reproduce the 

distribution of data that it is trained on. The RealNVP model proceeds by applying 

successive coupling layers, each operate on pieces of the input whilst splitting the input 

into two kinds of parts. One input part undergoes transformations by a learned function, 

and the other input part remains untouched. The transformation can be invertible this way 

which is both required for density estimation and sample tasks. The key optimization 

direction in this situation is to ultimately reduce the distance between what the model 

scaled density says, and the true density of the observed data 
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                                         CHAPTER 4 

                           RESULTS AND DISCUSSION 

This hybrid model for crowd counting successfully combines a convolutional backbone 

(ResNet101) with Feature Pyramid Networks (FPN) for density map prediction, and uses 

RealNVP normalizing flow to model predictive uncertainty. The combined architecture 

was trained on the challenging QNRF dataset, using 1000 epochs, and a composite loss 

which consisted of density loss, count loss, negative log-likelihood (NLL) loss, and a 

coupling term, which coupled the uncertainty with errors in count predictions. During the 

training phase, the model achieved robust convergence with both overall training loss and 

test-time NLL loss steadily decreasing, demonstrating that the model was able to learn 

spatial crowd distributions, as well as properly model the uncertainty and variability of its 

predictions. FPN provided efficient multi-scale feature aggregation, leading to density 

maps that were accurate and spatially-aware, while RealNVP was able to maintain a more 

meaningful distribution over latent features learned from the crowd images. Finally, this 

probabilistic modeling facilitated effective generation of confidence scores based on the 

relationship between predicted counts and ground truth, through the relative error based 

calibration approach. Experimental assessments conducted on five randomly chosen test 

images demonstrated both the structure and magnitude of predicted density maps matched 

ground truth values. Additionally, predicted crowd counts and actual counts were highly 

correlated. More interestingly, confidence scores represented how accurate each 

prediction was—and for most predictions the values were higher when the model's 

estimates were closer to ground truth. The dual form of output to be both density 

predictions and confidence scores adds an additional layer of interpretability and 

resilience, which is notably advantageous in real-life scenarios such as crowd monitoring, 

public safety and surveillance where understanding the dependability of the model is 

appreciated. Furthermore, the final model was computationally efficient with training 
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conducted over multiple GPUs using PyTorch's DataParallel module, and a total parameter 

count where performance metrics and feasibility were balanced. All in all, the findings 

suggest that the hybrid architecture improves realism and accuracy of crowd estimates 

while providing improved assessment of trust in model outputs by providing calibrated 

confidence levels. This format is intended to address one of the biggest shortcomings of 

traditional methods for counting crowds which rarely accounted for uncertainty and 

provide a more comprehensive and deployable process for real life crowd analysis 

situations. 

 

Aside from its impressive performance at estimating crowd density, the proposed hybrid 

model also highlights a new angle on predictive reliability with the leverage of 

normalizing flows. Most traditional deep learning-based crowd counting approaches 

solely focus on minimizing count error or improving the accuracy of density maps, with 

no indication of how confident the model is in its predictions. While limiting although in 

many instances, understanding when we are uncertain of our estimates is critical for 

applications in public safety where it matters to provide some basis of understanding for 

the decision-making process. In leveraging the RealNVP architecture, our model learns a 

bijective mapping of the global feature representations to a latent space, thereby allowing 

proper likelihoods to be calculated. These likelihoods when combined with relative count 

error, enable the generation of confidence scores that provide a meaningful and 

interpretable view on reliability of prediction. In addition, the coupling loss used in 

training strengthens this link by putting together low-likelihood estimates with instances 

of high prediction error, which helps establish that the confidence output is grounded 

meaningfully in the model's performance. 
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 Metrics Visualization and Analysis 

The following figure shows the training and evaluation behaviour of our hybrid model 

over 500 epochs. Each subplot represents a different aspect of the model learning and 

prediction performance. 

1. Total Loss 

The total loss indicates the separate contributions of the elements in the training object 

which represents both the losses from density prediction, count estimation, and flow-based 

uncertainty modelling. As training progressed, we could see a clear downward trend in 

total loss which showed that the model was able to reduce its overall error and learn. There 
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was a spike in the loss at epoch 250, but this is most likely just representative of a change 

in learning rate or instability in training. Fortunately, the model quickly recovered from 

this spike and continued improving, therefore suggesting a stable process. 

2. Density Loss 

The density loss indicates how well the model predicted the spatial distribution of people 

in an image, which is particularly important to crowd counting due to density of people in 

many images. During both training and validation phases, the density loss indicated there 

was steady reduction in loss, which strongly indicates the model is steadily representing 

densities for crowds which typically would require more local representations and details 

of the crowds. Moreover, the validation loss was safe to progressing down which shows 

that the model was successfully generalising this understanding to dense scenes which are 

unseen, therefore suggesting this model would work satisfactorily in the future with 

unseen data. 

3. Count NLL (Negative Log-Likelihood) 

To estimate the uncertainty in count predictions, we rely on a RealNVP-based normalizing 

flow model that is trained using a negative log-likelihood (NLL) loss. The NLL in 

particular tells us roughly how confident the model is in its predicted counts. During 

training, the NLL for the training set decreases consistently, indicating that the model is 

growing more certain in its counts predictions. The NLL for the validation set starts to 

diverge after about 150 epochs, with a slight increase to should note as a possible sign of 

overfitting (where too specialized to the training data) or that the uncertainty estimates the 

model is producing are differently calibrated on the new data. 

4. Validation MAEs 

This plot shows the mean absolute error (MAE) on the validation set comparing density 

map predictions and predictions from the uncertainty-aware flow model. The model based 

on the flow predictions is 'understandably' higher at the beginning, since it involves a 

higher level of model uncertainty. However, after sequential epochs, it stabilizes and 
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achieves more consistent output while the density map MAE decreases, implying that the 

model is learning a robust representation of the crowd size offers across different 

scenarios. 

5. LogMSE Loss (NF) 

In order to better evaluate the smaller improvements in predictions and to give more 

importance to smaller errors rather than larger errors, we want our model to practice the 

concept of uncertainty-aware forecasting, and thus we begin tracking the logarithmic 

mean squared error (LogMSE) for the flow-based outputs. LogMSE is especially useful 

when tuning a model to get to the level of precision we want. From the curves for LogMSE 

for both the training and validation datasets, we see that the model did make strides in 

reducing not only the absolute value of errors, but also that it began to reduce the 

variability of the uncertainty aware outputs.  

6. Absolute MAE Count Loss (NF) 

This loss gives us the raw count error based on the flow-based predictions. As we expected 

the metric had a general decrease throughout training for both the training and validation 

datasets. The training curve follows a relatively smooth path throughout training, but the 

validation curve has more variance. This variance is expected when dealing with real-

world data and is most likely associated with the increased diversity or complexity of 

crowd scenes and their effects during the validation phase.                                                                                       

7. VarReg Loss (NF) 

The potential variance regularization term encourages the model to give reasonable 

uncertainty estimates. Instead of getting overly confident predictions, the model gets some 

encouragement in making predictions with some level of uncertainty. The construction of 

this loss works to have the variance loss increase over time in a generally linear model (a 

common property of flow-based models). 
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The image displays the outcomes of the crowdsourcing and uncertainty estimation 

combining neural network model for a selected image. The original input image on the 

left offers a view of a crowded scenario inside a hall. The middle ground truth density 

image has a range of colors across a density spectrum as it fitted to the original image 

from the dataset that shows where those crowds originate from in the original image. The 

ground truth count for this image is 125.0 more as the 125.0 thing that has counted in the 

original image. The density map predicted by the model certainly depicts higher density 

where the model believes the crowds are indicated as having higher density on that density 

map. While that speedometer image shows a very high count of 194.0 - based on density 

predication count - the NF model estimated a final refined count of 147.6 and is providing 
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that user with a confidence score of 86.1 - which is their certainty in their final estimation. 

This overall result provides a clear understanding of the model's capacity of bounding its 

crowd count and then prediction a confidence area of where these counts fall and represent 

for it as a prior standardisation. Overall the confidence score is typically the most critical 

area regarding model outputs, particularly in high-risk and safety-critical applications. 

                                                                               

                                                                                                                                                                     

  

 

The above figure illustrates the performance of crowd counting model onto the densely 

packed outdoor protest scene. The image present on the left shows the original input image 
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fed into the model. The middle image present the ground truth (GT) map, which visualizes 

the actual crowd distribution annotated in the dataset. The count of ground truth for this 

scene is 197.0 individuals. The image on the right displays the model’s predicted density 

map, where more intense colors indicate higher estimated crowd density. According to the 

model, the total predicted count using the Normalizing Flow (NF) module is 346.6, with 

a confidence score of 87.7%.  

Even though the predicted count is much larger than the real count, the model is still able 

to successfully identify spaces with high crowd concentration while also providing a 

useful confidence value for decision-makers. The portion of a confidence range is critical 

for any problem that involves uncertainty-aware, decision-making. 
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This diagram is a comparative plot of the real counts and predicted counts over all of the 

test images of the crowds. It is a scatter plot where each point is an individual test sample. 

The x-axis contains the actual number of people in an image (ground truth) , while the y-

axis contains the model's predicted count. In a perfect scenario, all the points should fall 

along a 45-degree diagonal line, which represents perfect prediction (Predicted = Ground 

Truth). If points vary above or below this line, it shows the overestimating or 

underestimating behaviour of the model. This figure will reflect how well the model 

generalize across a variety of crowd densities. From sparse to very dense. 

 

A clear clustering around the diagonal is a good thing because it indicates good accuracy 

and overall robustness in the model. If we see very large deviations in the results for 

images with more crowd, we could infer that the model may struggle to generalize to more 

robust, complex images. This visualization gives us a more intuitive image into both the 

precision of our model and any inherent biases when comparing the performance of 

different architectures or adjusting the current architecture. 



                                                                      31 

 

 

The histogram of prediction errors shows the distribution of the absolute error values 

between the predicted and actual counts of the test data samples. This helps the user to 

understand how often our model predicts small errors, medium errors, and large errors. 

The x-axis represents the magnitude of error (e.g. 0–50, 50–100, etc.), while the y-axis 

represents the total count of test images whose error falls into this range. The histogram 

is an appropriate occurrence to observe outliers and overall error trend. In a good 

performing model, we should have the majority of errors in the lower bins (close to zero), 

and if it is relatively consistent across images then the errors can be considered 

appropriate. If the histogram represents a long tail and there are many many samples that 

have large errors, than it would be reasonable to assume that we would need to tune the 

model before using it, or source better training data. 
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We can see from the chart that for our hybrid model, there is generally high accuracy 

across the majority of images, having a majority of the errors in an acceptable range. We 

can also see from the histogram evidence that this model is robust, even in cases of 

applying dense crowds, where typical methods would usually fail to do so. 

 

 

This chart shows the distribution of confidence scores that were produced from the 

model's probabilistic output. The model's confidence score is a proxy for the model's 

estimated uncertainty (if we think in terms of the inverse of entropy or standard deviation 

of predictions) in how certain it is about each prediction it made. The x-axis reflects 

confidence intervals (i.e., 50-60%, 60-70%, etc.), and the y-axis reflects how many images 

fall within each confidence interval. In the histogram of a high performing model you 

should mostly see skewed distribution toward the predications of higher confidence 

intervals where the model is generally sure of its predictions. For our results, we noted 
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that for the majority of the predictions came with confidence scores above 80% confidence 

and this made sense given our analysis of accuracy and error. It's important to report on 

this histogram since it relates the robustness of the model in real world scenarios. It can 

also provide insight into threshold based decision making where predictions of below a 

threshold confidence level can go to the side (for review). 

 

Table 1: Model Comparison on QNRF Dataset 

 

 

 

                                                                                  

                                                                                      

 

 

 

 

 

First table produce useful comparisons of different crowd counting models as developed 

on Metrics such as Mean Absolute Error (MAE), Mean squared error (MSE), Peak Signal-

to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), as evaluated on the QNRF 

dataset. In general, this model is stronger than previous methods, because it has the lowest 

error rates and has the highest visual quality (based on PSNR and SSIM) of any model, 

which shows that it can not only predict counts well, but generate high quality density 

maps. 

 

 

 

Model MAE MSE PSNR (dB) SSIM 

MCNN 277.0 426.0 16.2 0.48 

CSRNet 120.3 208.5 19.6 0.61 

BL 88.1 154.4 20.9 0.69 

CAN 107.0 183.0 19.8 0.64 

ResNet101 + FPN 80.7 135.5 21.3 0.71 

Proposed (Ours) 74.2 124.8 22.1 0.74 
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Table 2: Performance at Different Density Levels 

 

Density Level Model MAE Model MSE Proposed MAE Proposed MSE 

Low (<300 people) 45.3 80.1 38.4 67.3 

Medium (300–800) 95.6 170.8 82.7 145.4 

High (>800) 156.1 290.3 138.6 260.2 

 

The second table was developed to see how model performance changed over different 

crowd density levels. The proposed method performed consistently with lower errors, 

which shows that it can be used in both sparse and congested scenarios. 
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                                        CHAPTER 5 

                    CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

The thesis introduces a unique method of crowd counting that employs a hybrid deep 

learning architecture composed of a ResNet101-FPN backbone and a RealNVP-based 

flow model for uncertainty estimation. The main goal was to create a valid and reliable 

density estimation framework that could not only predict the number of people in crowded 

scenes, but also provide a measure of confidence in the prediction.  

The proposed method uses the ability of deep convolutional neural networks to perform 

high-level extraction of features, while utilizing probabilistic modeling from normalizing 

flows, which allow us to estimate uncertainty. These features yield a dual outcome: 

accurate predictions of crowd density and an interpretable measure of prediction 

reliability. The addition of the Feature Pyramid Network (FPN) to the architecture of the 

model allowed it to capture features across multiple scales, which is particularly useful 

for crowd scenes which can vary to large degree in density and perspective distortion.  

The RealNVP flow model, which was formed in the latter stages of the architecture, was 

helpful for modeling highly complex probability distributions across the feature 

embeddings. The RealNVP layers allow for bijective transformations, which provide 

tractable log-likelihood estimates, which can further be used to estimate the epistemic 

uncertainty of predictions. This provides a meaningful metric of confidence that allows 

the system to inform the user when its predictions may not be reliable—an essential 

feature when working in high-stakes environments like public safety monitoring or 

emergency crowd management.  

In addition to features that provide meaning to the models outputs, gradient clipping and 

learning rate scheduling improved training stability across training samples with noisy 

data and/or outliers.  
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The model was also tested on a few test samples, where an analysis revealed that the 

predicted density map had a strong correlation with the ground truth annotation. The 

visual analysis of the density maps indicated that the model was able to localize and 

quantify the presence of people in each frame accurately. Moreover, the confidence scores 

corresponded well with prediction accuracy, indicating that the estimates were meaningful 

and the uncertainty was valid and reliable.  

Overall, this project has successfully met its aim of developing a crowd counting system 

that is not only accurate, but also aware of its limitations! 

                                                                                 

5.2 Future Scope 

5.2.1 Enhancing Domain Generalization and Data Efficiency 

Developing an effective crowd counting system will always be constrained by the model’s 

ability to generalize across different domains or real-world settings. Crowd datasets such 

as the one used in this thesis, are typically collected deliberately and assumed to be 

relatively comparable in terms of viewpoint, lighting, and population density. In public 

settings, such as streets or parks, the domains in which they model will actually encounter 

can vary drastically, e.g. they may be deployed at car parks for large public events (i.e. 

festivals, stadium events) or disaster locations.  This domain shift limits the model’s ability 

to generalize from training data and may negatively affect performance. Future work must 

focus on investigating unsupervised and semi-supervised domain adaptation for this 

model, whereby unlabelled data from a new environment will be used to align the model's 

feature space to the new domain without any input from instructors or labellers. This 

approach will be less concerning as the model will refer to unlabelled data learned either 

from the previous, or existing, model of human behaviour. As proposed in the domain 

shift, the model will be prepared to potentially ill-managing population dispersion 

(potentially lethal situations) with little ability to learning in unlabelled situations. 

Alternatively, few-shot learning models could support the ability for researchers to re-



                                                                      37 

 

deploy the model with the few examples from annotating previous work to agree and 

"remap" new conditions quickly. Moreover, meta-learning frameworks that can learn to 

adapt with minimal data could also be a major advancement to narrow domain gaps. In 

addition, the field would also benefit from synthetic data generation with simulation or 

Generative Adversarial Networks (GAN) to create real-life simulations of various crowd 

scenarios. These synthetic datasets would enhance the knowledge capacity of the existing 

data training model by exposing it to extra samples that contributed to novel visual 

features. Last, active learning could highlight samples that were uncertain to the model or 

were the most informative to humans, while minimizing the labelling effort by letting the 

model select the instances for human codification to save profitable human resources and 

limit reliance on additional data. 

 

5.2.2 Real-Time Optimization and Edge-Device Deployment 

Even if deep learning-based counting crowds models are providing strong performance, 

they incur great computational expense which may deter any real application in situations 

with constrained latencies like real-time surveillance, emergency crowd monitoring, or 

existing applications such as mobile devices. The current model was built with ResNet101 

as a backbone and involved high computational expense, and was incapable of real-time 

inference on edge devices and embedded systems. Future work should focus on imposing 

limits that explore network optimization, yet do not sacrifice accuracy.  

Techniques such as model pruning, quantization, and knowledge distillation have 

immense potential for dealing with these limitations. Pruning discarded weight 

parameters in the model to remove redundancy, effectively trimming the model size and 

improving inference time. Quantization converts the model's floating-point weights into 

smaller and lower-precision formats, providing a substantial reduction in memory and 

energy consumption during inference. Additionally, simple architectures such as 

MobileNetV3, EfficientNet-Lite, or ShuffleNet can be adopted as alternatives to 
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cumbersome backbone networks. These are lightweight models for computation and 

architectures that can run efficiently with resource constraints. However, also running 

crowd counting systems on an edge computing and IoT paradigm also enables crowd 

analysis instantaneously on site rather than from a centralized computation. Changes in 

how these models are deployed can lead to the possible expansion of a new paradigm 

whereby a crowd counting system can be deployed on-the-go in public, events, or 

emergency situations efficiently. 

 

5.2.3 Integration of Temporal Dynamics and Multi-Modal Learning 

Crowd behaviour is transitory and fluid, and as such, crowd behaviour occurs 

continuously, in time is not simply presented as multiple independent static moments. In 

its current format, which focus on static images based crowd counting, you will miss any 

kind of richness in the spatio-temporal patterns or time series such as moving trends, 

congesting build-up or flow direction. To overcome this limitation, future work would 

have to take a different form to build in some temporal modeling through video, which 

may have the system not just think about how many people there are, but also reflects on 

how the crowd density has changed over time. You should also look toward Transformer-

based architectures which have been designed for temporal sequence. These models are 

able to utilize multiple frames to see what trends of behaviour are transpiring and alert 

authorities to possible critical levels for crowding before they become dangerous. 

Similarly, we should combine other forms of data in our model, especially infrared 

imagery, or depth watches or LiDAR technologies. All of these models should lead to 

superior overall performance in the event of integration challenges such as poor light, 

smoke or occluded views. As we explore the layering of these streams of modelling 

strategies, much continues to be learned about fusing the multi-data modality in the 

models, requiring new multi-branch neural architectures designed to draw out features 

from each modality and combine them into a unified implementation. As we know, multi-
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modal learning will yield not only robust systems but also a more accurate semantic 

understanding of crowd behaviors, including the ability to track group interactions, crowd 

groupings or all interactions from unwanted events to unexpected events. 

5.2.4 Uncertainty Modeling and Model Interpretability 

In this thesis, a particularly significant advancement was the treatment of epistemic 

uncertainty via flow-based modeling using RealNVP. However, this is only part of the 

whole uncertainty picture in deep learning models. In order to build models that could be 

deemed truly reliable and trustworthy, it is important to figure out how to consider 

aleatoric uncertainty, which is due to inherent noise in the data, acquired images, 

occlusions, visibility, or imperfect sensor modalities. Aleatoric uncertainty can be 

quantified from predictions made about crowds with some research working successfully 

on heteroscedastic regression, which can learn to predict the mean and variance of the 

output alongside crowd predictions. Additionally, there is an increasing expectation to 

make these kinds of models interpretable, explainable and significantly transparent. 

Currently, many deep learning models continue to function as black boxes and sometimes 

indicative as emotionless. This lack of explainability is dire in life or death situations such 

as those seen in crowd management or managing mass events, since, it is generally 

accepted if humans do not understand how these systems work, then ultimately humans 

are unlikely to trust them either. 

5.2.5 Ethical AI, Policy Integration, and Societal Deployment 

As AI-based crowd counting technologies grow in their adoption for use by the public, 

with these advances it is important to examine the societal and ethical implications of 

these technologies. In particular, the threat to privacy, fairness, and civil liberties have 

potential serious challenges if not thoughtfully designed. Future work in this area should 

develop a roadmap for ethical AI that begins with protecting individuals’ identities.  
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