

OPTIMIZATION OF PID CONTROLLERS

OF CASCADED SYSTEMS USING HYBRID

METAHEURISTIC ALGORITHM MODEL

Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY

in

Control & Instrumentation

by

Kumar Ujjwal

(2k23/C&I/04)

Under the Supervision of

Prof. Mini Sreejeth Assistant Prof. Anupama

To the

Department of Electrical Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formely Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-11042, India

May, 2025

i

ACKNOWLEDGEMENTS

I am highly grateful to the Department of Electrical Engineering, Delhi

Technological University (DTU) for providing this opportunity to carry out this

projec work. The constant guidance and encouragement received from my

supervisors Prof. Mini Sreejeth and Assistant Prof. Anupama have been of great help

in carrying out my project work. I also extend my sincere thankfulness to all the

faculty members and the entire staff of Research Laboratory, Electrical Engineering

Department, D.T.U for their continuous support and motivation. Finally, I would like

to express gratefulness to my family and friends for having confidence in me which

encouraged me to pursue Master of Technology at an advanced stage of my

academic career.

Place: New Delhi Kumar Ujjwal

Date: May 2025 (2K23/C&I/04)

 M.Tech. (Control & Instrumentation)

Delhi Technological University

ii

DELHI TECHNOLOGICAL UNIVERSITY
(Formely Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-11042

CANDIDATE’S DECLARATION

I, Kumar Ujjwal, Roll No. 2K23/C&I/04, M.Tech (Control & Instrumentation),

hereby declare that the work which is being presented in the thesis entitled

“optimization of pid controllers of cascaded systems using hybrid metaheuristic

algorithm model” which is submitted by me to the Department of Electrical

Engineering, Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology, is an aunthentic

record of my own work carried out under the supervision of Prof. Mini Sreejeth and

Assistant Prof. Anupama.

Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the thesis and the statement made by the candidate is correct to the best

of our knowledge.

Signature of Supervisor (s) Signature of External Examiner

iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formely Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-11042

CERTIFICATE

We, hereby certify that the Project Dissertation titled “optimization of pid controllers

of cascaded systems using hybrid metaheuristic algorithm model” which is submitted

by Kumar Ujjwal, Roll No. 2K23/C&I/04, Department of Electrical Engineering,

Delhi Technological University, Delhi in partial fulfillment of the requirement for

the award of the degree of Master of Technology is a testimony of the project work

carried out by the student under our supervision. To the best of our awareness this

work has not been submitted in part or full for any Degree or Diploma to this

University or to a different place.

Place: New Delhi Dr. Mini Sreejeth Ms. Anupama

Date: May 2025 (Professor, DTU) (Assistant Professor, DTU)

iv

ABSTRACT

This thesis presents a novel methodology for optimizing a Cascaded Proportional-

Integral-Derivative (PID) controller for a flow-level control system using a hybrid

metaheuristic algorithm approach. The proposed model integrates the Genetic

Algorithm (GA) and Ant Lion Optimizer (ALO) combining the strengths of both the

standalone algorithms. System used is flow-level control system which is a Cascaded

system, known for its effectiveness in improving the disturbance rejection

capabilities and dynamic response of control systems. In this work, the inner loop

regulates the faster flow dynamics, while the outer loop addresses the slower level

dynamics. The hybrid GA-ALO algorithm is designed to capitalize on the global

search capabilities of GA and the exploitation efficiency of ALO, thus overcoming

limitations like premature convergence and slow optimization often associated with

single algorithms. The PID parameters are optimized through a weighted objective

function considering rise time, settling time, overshoot, and integral absolute error

(IAE). This research not only provides an effective control strategy for flow-level

systems but also highlights the potential of hybrid metaheuristic algorithms in

complex control optimization problems.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT i

CANDIDATE DECLARATION ii

CERTIFICATE iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

LIST OF SYMBOLS x

CHAPTER 1 INTRODUCTION 1

1.1. Introduction 1

1.2. Literature Review 1

1.3. Related Work 2

 1.3.1. Traditional Methods 2

 1.3.2. Metaheuristic Algorithms 3

1.4. Summary of Work 4

1.5. Outline of Dissertation 5

1.6. Conclusion 6

CHAPTER 2 METHODOLOGY 7

2.1. Introduction 7

2.2. Optimization Techniques 7

 2.2.1. Genetic Algorithm 8

 2.2.2. Ant Lion Optimizer 10

 2.2.3. Hybrid Genetic Algorithm – Ant Lion Optimizer 13

2.3. Performance Metrics 16

2.4. Conclusion 17

CHAPTER 3 SYSTEM DESCRIPTION 18

3.1. Introduction 18

3.2. System Design 18

vi

 3.2.1. Flow Process Loop 20

 3.2.2. Level Process Loop 21

 3.2.3. Hardware Setup 21

 3.2.4. Mathematical Modeling 22

3.3. System Dynamics 23

3.4. Optimization Algorithm Parameters 24

3.5. Conclusion 26

CHAPTER 4 RESULTS AND DISCUSSION 27

4.1. Introduction 27

4.2. Simulation Setup 27

4.3. Performance Analysis 27

 4.3.1. Rise Time 30

 4.3.2. Settling Time 30

 4.3.3. Maximum Overshoot 31

 4.3.4. Integral of Absolute Error 31

4.4. Disturbances Handling 32

4.5. Optimized PID Parameters 32

4.6. Hardware Output Analysis 33

4.7. Conclusion 35

CHAPTER 5 CONCLUSION AND FUTURE SCOPE 36

5.1. Conclusion 36

5.2. Future Scope 36

REFERENCES 38

APPENDIX I 42

LIST OF PUBLICATIONS 56

vii

LIST OF FIGURES

Figure No. Description Page No.

2.1 Flowchart of G.A Algorithm 10

2.2 Flowchart of A.L.O Algorithm 12

2.3 Flowchart of Hybrid G.A - A.L.O

Algorithm

15

3.1 Block Diagram of Cascaded Flow–

Level System

20

3.2 Experimental Architecture of Hardware

System

22

4.1 System Response with Optimized PID

Gains using G.A

28

4.2 System Response with Optimized PID

Gains using A.L.O

29

4.3 System Response with Optimized PID

Gains using Hybrid G.A – A.L.O

29

4.4 Comparison of System Response using

G.A, A.L.O and Hybrid G.A – A.L.O

30

4.5 System Response with Delayed

Disturbance at t = 40 seconds

32

4.6 Hardware System Response of G.A –

A.L.O based PID controller

34

viii

LIST OF TABLES

Table No. Description Page No.

2.1 Difference Between I.S.E, I.T.A.E,

and I.A.E

17

3.1 Parameter Values of Flow-Level

Control System

24

3.2 Parameter Values of G.A

Algorithm

25

3.3 Parameter Values of A.L.O

Algorithm

25

4.1 Performance Analysis of G.A,

A.L.O, and G.A-A.L.O Algorithms

28

ix

LIST OF ABBREVIATIONS

GA Genetic Algorithm

ALO Ant Lion Optimizer

GA-ALO Hybrid Genetic Algorithm-Ant Lion Optimizer

PID Proportional-Integral-Derivative (Controller)

IAE Integral of Absolute Error

ISE Integral of Squared Error

ITAE Integral of Time Absolute Error

Tr Rise Time

Ts Settling Time

Mp Maximum Overshoot

Ess Steady-State Error

x

LIST OF SYMBOLS

Gf Transfer function of the flow process

Af Flow process gain

τf Flow process time constant

Tf Flow process delay

Gl Transfer function of the level process

Al Level process gain

τl Level process time constant

GF Flow sensor transfer function

AF Flow sensor gain

τF Flow sensor time constant

GL Level sensor transfer function

AL Level sensor gain

τL Level sensor time constant

Gr ON/OFF controller transfer function

Kr ON/OFF controller gain

GPID PID controller transfer function

Kp Proportional gain

Ki Integral gain

Kd Derivative gain

Tinner Inner-loop (flow control) transfer function

Touter Outer-loop (level control) transfer function

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

 This chapter introduces the importance of flow-level control in modern control

industries like HVAC, chemical plants, etc. It will give a brief overview of the

PID controllers for effective control in these industries. A detailed literature

review is presented covering the traditional tuning methods like Cohen-Coon and

Ziegler-Nichols outlining its limitations towards dealing with the complex and

non-linear systems. Afterwards, the chapters explores the emergence and

innovation of metaheuristic algorithms such Genetic Algorithm, Particle Swarm,

Grey Wolf Optimizer, etc. which offer robust and adaptive tuning of the PID

controller. A hybrid model of GA-ALO is also discussed for the PID controller.

Finally, the structure of the dissertation is presented, providing a roadmap for the

subsequent chapters on methodology, system modeling, simulation results, and

practical implementation.

1.2 Literature Review

 Industrial processes depend fundamentally on precise flow-level rate

management. Manufacturing facilities alongside petroleum operations and water

purification sectors together with Heating Ventilation and Air Conditioning

systems require exact flow-level rate controls for maintaining operational

smoothness and industry efficiency. Chemical facilities attain correct reaction

results through the utilization of precise flow control to combine various reactants

which assists in reducing operational danger from adverse events [1]. Thermal

comfort performance and levels of energy efficiency are decided through the

installation of flow-level rate controls in HVAC systems [2]. Flow-level rate

control systems assist water treatment facilities to allocate resources in a fair

manner and enhance energy efficiency utilization in operations [3]. Having the

required tank levels and flow rates is critical in order to attain operational

efficiency, safety, product quality, and energy conservation [4].

 Finding proper flow-level rate control is a challenging problem primarily due to

the complexities of the system. There are nonlinear characteristics present in these

systems preventing the response prediction using simple linear mathematical

models. Disturbances outside the system from input supply variations and

environmental factors along with varying levels of demand have significant

2

effects on system performance. System delays from sensors to actuators with

measurement of response time and actuator’s response time reduce traditional

control methods' effectiveness when it comes to maintaining desired performance.

Handling of these complications requires feedback control systems that integrate

the Proportional-Integral-Derivative (PID) controller as their most well-

established and efficient solution [5]. The PID controller operates by adjusting the

system's input based on its three variable parameters. The proportional term

detects current errors, the derivative term forecasts future error trends to minimize

oscillations and improve system’s stability, and the integral term eliminates

steady-state discrepancies. Control components synchronize to achieve precise

and adaptive system control under challenging conditions.

 However, the effectiveness of PID controllers heavily depends on the tuning of

their parameters (Kp, Ki, Kd). Poorly tuned controllers can result in sluggish

response, high overshoot, instability, or poor disturbance rejection. Traditional

PID tuning methods such as Ziegler-Nichols [6] and Cohen-Coon [7] provided

simple heuristic techniques based on process reaction curves but often fail to

optimally tune complex nonlinear or time-delay systems.

 Recent research highlights the adoption of metaheuristic algorithms — nature-

inspired optimization techniques — to solve complex control problems.

Techniques like Genetic Algorithm (GA) [8], Ant Lion Optimizer (ALO) [9],

Particle Swarm Optimization (PSO) [10], and Grey Wolf Optimizer (GWO) [11]

have proven effective in tuning PID controllers by efficiently searching large,

complex solution spaces where conventional methods are inadequate.

Hybridization of algorithms, combining the strengths of two or more

metaheuristic methods, is increasingly recognized as a powerful approach. This

has motivated the current research toward developing a hybrid GA-ALO model

for cascade PID control optimization.

1.3 Related Work

1.3.1 Traditional Methods

 Flow – level control systems within modern control industries like chemical

processing, HVAC and water treatment industries highly depend on PID

controllers because of their simplicity and reliable capabilities to manage flow and

level rates to maintain different pressures and temperatures [12]. With the use of

traditional PID tuning methods, such as Cohen-Coon and Ziegler-Nichols, have

been widely adopted to address these challenges. The Cohen-Coon method is

particularly effective for systems with significant time delays, a common

characteristic in flow-level control processes [13]. By analyzing the process

reaction curve generated from a step input, this method estimates key parameters

3

such as time constant, dead time, and process gain. These estimates serve as the

basis for calculating initial PID gains, providing a reliable starting point for

systems with delays, such as those found in chemical flow regulation.

 The Ziegler-Nichols approach, however, is usually used on systems with

oscillatory responses [14]. It consists of two forms: the open-loop technique,

which calculates the ultimate gain and time constant from the process reaction

curve, and the closed-loop technique, which consists of tuning the system until

there are sustained oscillations and then determining the ultimate gain and

oscillation period. This technique has found successful application in water

treatment and chemical processing, where stability and low oscillations are

essential for efficient flow-level control.

 Though both Cohen-Coon and Ziegler-Nichols methods are used extensively,

they are empirically approximated and might not provide the best PID parameters

for processes with intricate dynamics, e.g., nonlinear or highly changing

processes. In a bid to overcome such limitations, sophisticated tuning techniques

have been developed that combine the conventional methods with evolutionary

optimization methods such as Particle Swarm Optimization (P.S.O), Genetic

Algorithms (G.A), and Grey Wolf Optimizer (G.W.O).

1.3.2 Metaheuristic Algorithms

 With increasing complexity in industrial processes, the limitation of

conventional PID tuning approaches has become more conspicuous [15]. Old

methods such as Ziegler-Nichols and Cohen-Coon, though significant in the past,

rely on empirical guidelines and plain linear models. Under conditions with load

variability and external disturbances, there is a need for more advanced and

adaptive techniques in order to perform optimal PID tuning. Thus, metaheuristic

algorithms have emerged to tune PID controllers [16].

 One of the first metaheuristic methods ever used to tune a PID is the Genetic

Algorithm (GA) [17], based on the natural selection and evolution principles. GA

works by evolving a population of candidate PID parameter sets using selection,

crossover, and mutation. Research has demonstrated that PID controllers tuned

with GA perform better than those tuned with classical techniques in terms of

lower overshoot, faster settling times, and improved disturbance rejection.

 After GA, other metaheuristic algorithms like Particle Swarm Optimization

(PSO) [18], Ant Colony Optimization (ACO) [19], and Simulated Annealing (SA)

[20] were also implemented successfully for PID tuning. Recent advances had

resulted in newer metaheuristics like the Ant Lion Optimizer (ALO) [21], Grey

Wolf Optimizer (GWO) [22], and Whale Optimization Algorithm (WOA) [23],

each of which introduced distinct search abilities. These algorithms provided

4

better-balanced trade-offs between exploration (sampling new areas) and

exploitation (improving known good solutions), which are essential for efficient

and robust PID tuning.

The wide use of metaheuristics in PID tuning can be attributed to several factors:

 Flexibility: They do not require prior knowledge about the system model.

 Global Search Capability: They can escape local minima and find globally

optimal parameters.

 Robustness: They perform consistently across a variety of systems, including

nonlinear, time-delayed, and uncertain systems.

 Multi-Objective Optimization: Some metaheuristics can optimize multiple

performance criteria simultaneously (e.g., minimizing rise time, settling time, and

overshoot together).

 Moreover, the trend of hybrid metaheuristic algorithms combines the

strengths of two or more algorithms. For instance, combining GA’s global search

capabilities with ALO’s fast convergence has led to superior PID tuning outcomes

which is better than the individual algorithms.

1.4 Summary of Work

 This research work introduces a novel hybrid optimization model for effective

tuning of cascade PID controllers using Genetic Algorithm (GA) and Ant Lion

Optimizer (ALO). Following is the summary of the work done for optimization of

PID controller:

 A MATLAB simulation model was developed to closely replicate a real-world

flow-level system. It incorporates actuator dynamics (pump and valve behavior),

process delays, and external disturbances. The model ensures realistic evaluation

of the control automation system.

 Independent applications of Genetic Algorithm (GA) and Ant Lion Optimizer

(ALO) were used to optimize PID parameters. Performance of individual GA and

ALO methods was compared on the basis of important parameters such as Integral

of Absolute Error (IAE), settling time, and overshoot. Output of the both the

algorithms assists in determining the baseline of the strengths and limitations of

the individual algorithms.

 The hybrid model combines the global search strength of GA with the fast local

convergence of ALO.

5

 The tuned controllers were evaluated based on dynamic response metrics such as

Integral of Absolute Error, Settling Time, Maximum Overshoot, and Disturbance

rejection.

 In summary, the hybrid GA-ALO model constitutes an effective and handy

solution to PID tuning in sophisticated industrial processes. Through the synergy

of the strengths of two well-known metaheuristic algorithms, this contribution

provides improved control performance, robustness, and adaptability, which

significantly contributes to the development of intelligent control systems in

modern automation industries.

1.5 Outline of Dissertation

 This dissertation is systematically structured into five main chapters, each

chapter describing the objectives, methodology, results, and future directions of

the research.

 Chapter 1 (Introduction):

 This chapter presents the relevance of flow-level control systems in industrial

processes, addressing their difficulties and the necessity for improved PID

controller tuning techniques. A comprehensive literature review is given,

including both conventional PID tuning techniques like Ziegler-Nichols and

Cohen-Coon, and the advancement of metaheuristic algorithms.

 Chapter 2 (Methodology):

 The chapter addresses the optimization methods used in tuning the cascaded

systems' PID controllers. It describes the operation principles of the Genetic

Algorithm (GA) and the Ant Lion Optimizer (ALO), with their respective

strengths. Subsequently, writing on the design and implementation of the hybrid

GA-ALO model. Additionally, the chapter explains the choice of performance

indicators, with the focus placed on using Integral of Absolute Error (IAE) [24]

instead of its alternatives ISE [25] and ITAE [26] for the purpose of robust

performance evaluation.

 Chapter 3 (System Description):

 This chapter explains the flow-level control system, modeled in detail such as

the flow process loop and the level process loop. It derives the necessary transfer

functions for the processes, sensors, and PID controllers, and discusses system

dynamics, including considerations of process delays and external disturbances.

The complete cascade control system model is formulated, forming the basis for

simulation and optimization studies.

6

 Chapter 4 (Results and Discussion):

 This chapter provides the simulation setup and a detailed analysis of the results

obtained through GA, ALO, and Hybrid GA-ALO optimization methods.

Comparative studies are conducted based on rise time, settling time, maximum

overshoot, and IAE performance metrics. Additionally, hardware output results

are discussed, validating the simulation results and demonstrating the

effectiveness of the proposed hybrid model under real-world conditions.

 Chapter 5 (Conclusions and Future Work):

 The final chapter concludes the study by summarizing key findings. It

highlights the practical contributions of the research to modern control industrial

applications and suggests future directions.

1.6 Conclusion

 In conclusion this chapter has briefly reviewed both the traditional and new

metaheuristic algorithm methods for PID tuning. It highlighted the limitations of

traditional tuning techniques like Ziegler-Nichols and Cohen Coon methods when

applied to complex and non-linear systems. Whereas, the evolution of

metaheuristic algorithms have many advantages in terms of fast and robust tuning

of the PID controller. The chapter introduced the hybrid GA-ALO model as a

powerful optimization approach, combining GA's global search strength with

ALO's local refinement capabilities.

.

7

CHAPTER 2

METHODOLOGY

2.1 Introduction

 This chapter focuses on advanced optimization techniques for tuning of cascade

PID controllers. It begins by discussing the limitations of traditional tuning

methods in handling complex control systems especially those with non linear

behavior. To address these challenges, the chapter introduces three metaheuristic

algorithms - Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and a hybrid

GA-ALO algorithm. Each algorithm is described in detail, including its operation

and flowchart representation. The chapter also discusses the principal time-

domain performance measures used to analyze controller performance, including

rise time, settling time, percent overshoot, and steady-state error. Particular

consideration is provided to the Integral of Absolute Error (IAE) as the

performance index to be optimized. A clear understanding of the hybrid

metaheuristic algorithm will be established by the end of this chapter.

2.2 Optimization Techniques

 Optimization methods are crucial to PID controller parameter fine-tuning to

provide optimal dynamic performance in control systems. Tuning the PID

parameters in complicated systems like cascaded control structures with process

delays and external disturbances are particularly challenging. Classical

techniques, such as manual tuning or basic analytical methods, tend to be

incapable of fulfilling the performance levels for such systems because they

cannot handle effectively the nonlinearities, time delays, and external disturbances

characteristic of real-world problems.

 Under such circumstances, advanced optimization methods have come to the

forefront due to their capacity for exploring broad solution spaces and adaptively

determining the optimum set of PID parameters. These include metaheuristic

algorithms that imitate biological processes. This research utilizes three such

algorithms, including Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and a

hybrid GA-ALO, to optimize the PID parameters of cascade control systems.

 The Genetic Algorithm (GA) is one of the most well-known evolutionary

optimization methods that mimics natural selection. Through operations like

selection, crossover, and mutation, GA searches through a large population of

potential solutions and evolves toward the optimal set of PID parameters. With its

8

capability to solve complex, nonlinear optimization problems, GA can be applied

to systems with numerous interacting components and disturbances [27].

 However, the Ant Lion Optimizer (ALO) is a swarm metaheuristic that draws

inspiration from ant lion hunting behavior. ALO performs well in searching the

problem's solution space by balancing exploration with exploitation, thus being

good at escaping local minima and providing a global search for optimal

solutions. Such a property is particularly useful in tuning PID controllers for

systems with time delays and changing external conditions [28].

 The hybrid GA-ALO method uses the strengths of both algorithms and benefits

from the global search capabilities of GA and the efficient local search

mechanisms of ALO. With the combination of the two methods, the hybrid

scheme is intended to leverage the strengths of both algorithms to produce quicker

convergence and improved solutions for optimizing the cascade PID controllers.

By implementing such metaheuristic algorithms in a cascade PID control system,

this research aims to illustrate how higher-level optimization methods offer better

performance than traditional approaches. The outcomes emphasize their promise

in enhancing the stability, transient behavior, and robustness of control systems,

especially in difficult real-world applications that include delays and disturbances.

Each optimization techniques are outlined shortly below:

2.2.1 Genetic Algorithm (GA)

 Genetic Algorithm (GA) is a search and optimization method which is

commonly used to solve complex problems where the traditional approach may

find it difficult. GAs is based in Darwin's survival of the fittest theory such that

more superior solutions are provided with greater opportunities to generate

offspring in the subsequent generation.

 The normal operation of a GA, as illustrated by the flowchart, consists of

several significant steps, each playing a role in seeking the optimum solution:

1. Begin

 The algorithm starts by initializing all necessary parameters such as population

size, crossover rate, mutation rate, and termination conditions.

2. Initial Population

 The first step after initialization is generating the initial population. This

population consists of a set of randomly created individuals, where diversity of the

initial population is crucial for effective exploration of the search space.

9

3. Calculate the Fitness Value

 Each individual is evaluated using a fitness function designed specifically for

the problem. The fitness function measures how "good" an individual is compared

to others. Higher fitness values indicate better solutions.

4. Selection

 In the selection phase, individuals are chosen to reproduce based on their fitness

values. There are various selection strategies, such as roulette wheel selection,

tournament selection, or rank selection. Generally, individuals with higher fitness

have a greater chance of being selected, ensuring that good traits are carried

forward.

5. Crossover

 After selection, the crossover operation is performed. This process combines

the genetic information of two parent individuals to produce one or more

offspring. The goal is to create new individuals that inherit the strengths of their

parents, potentially leading to better solutions. Crossover can occur in several

ways, such as single-point, two-point, or uniform crossover.

6. Mutation

 To maintain genetic diversity within the population and avoid premature

convergence, mutation is applied. Mutation introduces random small changes to

individuals, which helps the algorithm explore new parts of the search space.

Typically, mutation occurs with a low probability to balance exploration and

exploitation.

7. Is Termination Criteria Satisfied?

 After mutation, the algorithm checks if the termination condition is met.

Termination criteria can include reaching a maximum number of generations,

achieving a predefined fitness value, or observing no significant improvement over

a number of generations.

 If the termination condition is satisfied, the algorithm proceeds to the end.

 If not satisfied, the cycle repeats, starting again from calculating fitness values for

the new generation.

8. End

 Once the termination condition is met, the algorithm stops. The best individual

solution found during the process is the optimal value for the system.

10

 Figure 2.1: Flowchart of G.A Algorithm

 Figure 2.1 illustrates the flowchart of GA Algorithm. In brief, Genetic

Algorithms are a strong and versatile approach to optimizing problems by

simulating nature's evolutionary processes. Because they can solve complex,

multimodal, and high-dimensional search spaces, they are highly sought after in

numerous real-world applications.

2.2.2 Ant Lion Optimizer (ALO)

 The Ant Lion Optimizer (ALO) is a population-based metaheuristic algorithm

motivated by natural ant lion's hunting mechanism. Ants are used to symbolize

candidate solutions searching the solution space within ALO, whereas ant lions

serve as navigators that lead ants towards improved solutions. The algorithm

optimizes exploration and exploitation, thus becoming much efficient for solving

intricate optimization problems in fields ranging from engineering design,

machine learning, operational research etc.

 The working process of ALO, as depicted in the flowchart, follows a structured

series of steps:

11

1. Start

 The algorithm initializes all necessary parameters, such as the size of the ant

and ant lion populations, the maximum number of iterations, and the boundaries

of the search space.

2. Initialize Population of Ants and Ant lions

 At the beginning, two separate populations are randomly created: one for ants

(candidate solutions) and another for ant lions (potential traps or guides). Each

individual’s position within the search space is randomly assigned within

specified limits.

3. Evaluate Fitness of Ants and Ant lions

 Each ant and ant lion's fitness is evaluated using a predefined objective

function. The fitness value measures the quality of a solution, determining how

close it is to the optimal answer. High-performing solutions are crucial for guiding

the search process.

4. For Each Ant

Several operations are performed for each ant during every iteration:

 Select an Ant lion: An ant lion is selected based on a roulette wheel selection

strategy, which gives higher probability to better ant lions, ensuring strong

solutions influence the ants.

 Update Ant Position: Each ant simulates a random walk influenced by the

selected ant lion, representing exploration within the search space.

 Apply Boundary Checks: After movement, boundary checks are applied to

ensure ants remain within the valid limits of the search space.

 Evaluate New Ant Fitness: The fitness of each updated ant is re-evaluated to

measure improvement.

5. Update Ant lions (Replace if Ants are Better)

 If an ant discovers a solution better than its corresponding ant lion, it replaces

the ant lion’s position. This strategy ensures that the ant lions continuously

improve over time, promoting the evolution of better solutions.

6. Decrease Search Radius (Adaptive Random Walk)

 As the algorithm proceeds, the randomness in ant movement is gradually

decreased. This converging of the search radius helps shift the algorithm from

broad exploration in early stages to fine exploitation near promising solutions

later.

7. Check Termination Criterion

12

 Common criteria include reaching a maximum number of iterations or

achieving an acceptable fitness value.

 If the termination condition is not satisfied, the process loops back, continuing

the optimization.

 If satisfied, the algorithm proceeds to the stop phase.

8. Stop

 Once the termination condition is met, the algorithm stops and it produces the

best solutions from the search space.

 Figure 2.2: Flowchart of A.L.O Algorithm

13

 Figure 2.2 illustrates the ALO algorithm flowchart. In brief, Ant Lion

Optimizer (ALO) is a compact metaheuristic algorithm that mimics the hunting

behavior of ant lions. ALO achieves a balance between exploration and

exploitation, enabling it to explore far in the solution space as well as to fine-tune

solutions precisely. The simplicity of ALO, as well as its robustness and excellent

performance, makes it a suitable method to solve engineering, machine learning,

and other complex optimization problems, thus an efficient optimization tool.

2.2.3 Hybrid Genetic Algorithm – Ant Lion Optimizer (GA-ALO)

 Genetic Algorithms (GA) and Ant Lion Optimizers (ALO) both have powerful

optimization problem-solving capability, but with a set of limitations as well. GA

works very well with global exploration and diversity preservation in the search

space but is sluggish when converging close to the optimal solution. Conversely,

ALO is optimal in exploring local search spaces for fine-tuning solutions but is

very likely to be trapped in local minima if the initial population is weak and not

diverse.

 In order to overcome the above individual limitations, the hybrid GA-ALO

model is presented. The hybrid process, as shown in the flowchart, consists of the

following principal steps:

1. Start:

 The algorithm starts by setting the initial parameters, such as the PID controller

bounds, GA population size, and fitness evaluation settings.

2. Initialize PID Bounds and GA Population

 An initial population for the Genetic Algorithm is randomly generated within

defined PID parameter bounds. This population represents a diverse set of

candidate solutions for the problem at hand.

3. Evaluate Fitness of GA Individuals

 Each individual in the GA population is evaluated using a predefined fitness

function. The fitness value reflects how well the individual solves the

optimization problem.

4. Apply Genetic Algorithm

Standard GA operations are performed:

 Selection: High-performing individuals are selected based on their fitness.

 Crossover: Selected individuals are paired, and their genetic material is

recombined to produce new offspring.

14

 Mutation: Small random changes are introduced in the offspring to maintain

genetic diversity.

5. Sort Population by Fitness

 After GA operations, the population is sorted based on fitness values, ensuring

the best solutions are easily identified.

6. Use GA Offspring as ALO Ants

 The offspring generated by GA are then used as the initial population of ants

for the ALO phase. This step ensures that ALO starts with a high-quality and

diverse set of solutions.

7. Initialize ALO Ant lions (Best GA Individuals)

 The best individuals from the GA phase are selected to act as ant lions in the

ALO phase. These act as strong guides for the ants during the local search.

8. Apply ALO Algorithm

ALO operations are carried out, focusing on exploitation:

 ALO Random Walk: Ants perform a random walk influenced by the ant lions.

 Fitness Evaluation: Updated positions are evaluated for fitness.

 Update Elite Ant lion: The best solution (elite) is tracked and updated.

 Replace Worst if Improved: If a newly found solution is better, it replaces the

worst-performing ant lion.

9. Check Termination Criteria

 The algorithm checks if the stopping conditions are met, such as reaching the

maximum number of iterations or achieving a desired fitness level.

 If the termination criteria are not met, the process continues.

 If met, the algorithm proceeds to the final step.

10. End

 The algorithm concludes by returning the best solution found through the

combined exploration and exploitation processes.

15

 Figure 2.3: Flowchart of Hybrid G.A – A.L.O Algorithm

 Figure 2.3 shows the flowchart of hybrid GA-ALO algorithm. The hybrid GA-

ALO model offers a comprehensive and effective optimization strategy by

combining the strengths of both Genetic Algorithm (GA) and Ant Lion Optimizer

(ALO). GA is responsible for providing broad exploration of the search space,

16

ensuring that a wide range of potential solutions. While, ALO takes over to

intensively exploit the best solutions through the search space. This combination

leads to faster convergence toward optimal solutions and achieves higher-quality

results compared to using GA or ALO individually. The hybrid model thus

provides a balanced process for optimization of PID controller.

2.3 Performance Metrics

 In order to analyze the performance of a controller and to direct the process of

optimization, some of the most important time-domain performance measures are

generally taken into consideration. These measures assist in defining the

performance of the control system in terms of efficiency, effectiveness, and

stability in meeting the output specifications. The principal measures are Rise

Time (Tr), Settling Time (Ts), Maximum Overshoot (Mp), Steady-State Error

(Ess), and the Integral of Absolute Error (IAE). Each of these, in combination,

gives a complete view of system behavior and is crucial for validation that the

control design satisfies performance requirements.

Rise Time (Tr) is the time taken for the system response to change from 10% to

90% of the final steady-state value.

Settling Time (Ts) is the time period in which the output of the system gets

stabilized to a specified limit (normally within 2% or 5%) of the final value

without oscillation beyond that limit.

Maximum Overshoot (Mp) is the amount by which the system response

overshoots the desired final value, as a percentage of that value. Steady-State

Error (ESS) is the difference between the output required and the output obtained

when the system settles.

Steady-State Error (Ess) measures the difference between the desired output and

the actual output after the system has settled.

 Considering all these matrics, it allows for a balanced controller design that

emphasizes a fast response, minimal overshoot, stability, and robustness to

disturbances. Optimization based on these performance metrics is essential for

achieving high-performance control systems in practical applications.

 While choosing cost function for minimization of the error, it is important to

know which performance index will work best with the given system. Integral

performance indices are crucial for objective evaluation of control system

performance. Three popular indices are shown in Table 2.1.

17

Table 2.1: Difference between I.S.E, I.T.A.E, and I.A.E

Metric Definition Characteristics

ISE
(Integral of Squared Error)

ISE = ∫  
T

0

e2(t)dt
Penalizes larger errors more
heavily due to the squaring.

ITAE
(Integral of Time-weighted

Absolute Error)
ITAE = ∫  t

T

0

|e(t)|dt
Penalizes errors that persist
longer, encouraging faster
settling.

IAE
(Integral of Absolute Error) IAE = ∫  

T

0

|e(t)|dt
Measures the total absolute
error over time.

In this study, IAE is selected because:

 IAE penalizes all errors equally, avoiding excessive sensitivity to large initial

transients, as seen with ISE, or prolonged minor errors, as emphasized by ITAE.

This characteristic ensures consistent control performance across a wide range of

operating conditions, making it ideal for real-world systems.

 IAE is computationally simple to implement, which is beneficial for real-time

applications.

 IAE also promotes smoother control actions, avoiding the aggressive responses

that might result from minimizing ISE, and preventing noise amplification.

In the event of a sudden disturbance, minimizing IAE leads to a steady correction

of the error without overreacting. Unlike ISE, might cause excessive control

effort, or ITAE, which could overly prioritize late-stage errors.

2.5 Conclusion

 This chapter outlined the methodology for optimizing cascade PID controllers

using Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and their

hybridization. The combined approach leverages the global search strength of GA

and the local exploitation ability of ALO, ensuring robust and efficient controller

tuning. Controller performance is evaluated based on key dynamic metrics,

including rise time, settling time, overshoot, and steady-state error, with a

particular focus on minimizing the Integral of Absolute Error (IAE). The choice

of IAE provides balanced penalization across errors, promoting stable, fast, and

reliable system responses. The hybrid optimization strategy developed ensures

adaptability and robustness under varying operating conditions and disturbances.

18

CHAPTER 3

SYSTEM DESCRIPTION

3.1 Introduction

 This chapter describes the design and application of a cascade control system

for liquid level control in a process tank. The system employs a master-slave

strategy with an inner loop controlling the flow rate and an outer loop controlling

the tank level. This configuration provides faster response time and disturbance

rejection than single-loop control. The chapter encompasses system design, block

diagrams, and hardware configuration with sensors, pumps, and valves. First-

order transfer functions are utilized to model flow and level processes

mathematically to represent system dynamics. Three optimization techniques -

Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and hybrid GA-ALO for

the tuning of PID controllers are proposed. Their parameters and MATLAB

programming are explained for effective controller design. In general, this chapter

gives an overall framework for modeling, regulation, and optimization of a

cascaded flow-level control system, applicable to industrial process control

problems.

3.2 System Design

 Cascade systems are a type of control systems in which two or more loops are

used for improving performance of control systems. In this main loop or outer

loop controls the main process of the system whereas the secondary loop or inner

loop is used for controlling intermediate variable of the system. Figure 3.1 shows

the block diagram of the hardware system used for the research and below are the

descriptions of each and every block of the hardware system.

1. ON-OFF Controller (Gr):

 The level error is first processed by an ON-OFF controller, represented by

block Gr. This component provides a basic level of control, often used for

switching actions such as enabling or disabling the main PID loop or providing an

initial control action.

2. PID Controller (Gs):

 The signal from the ON-OFF controller is then fed into the PID controller

(Gs). This controller calculates a continuous control signal based on proportional

(P), integral (I), and derivative (D) terms, ensuring smoother and more accurate

control compared to the ON-OFF method. The PID controller processes

deviations and generates a flow rate setpoint to correct the error.

19

3. Flow Process (Gf):

 The output of the PID controller acts as a command signal for the flow process,

represented by Gf. This block simulates the dynamics of the fluid flow system—

such as the behavior of pumps, valves, and pipes—which directly affect the

inflow to the tank.

4. Disturbance Input:

 An external disturbance enters the system after the flow process block. This

could represent environmental changes, valve position shifts, or pressure

fluctuations. The disturbance impacts the final output and must be counteracted by

the control loops.

5. Level Process (Gl):

 The combined result of the flow input and disturbances is passed to the level

process block (Gl). This block models the tank level dynamics, where the flow

influences the rise or fall of the liquid level. The output of this block is the actual

tank level, which is the final controlled variable.

Feedback Mechanisms

To maintain control, the system incorporates two critical feedback loops:

 Flow Sensor Feedback (GF):

 A flow sensor measures the actual flow rate and provides feedback to the PID

controller. This helps the controller compare the desired and actual flow rates,

allowing for rapid correction of discrepancies.

 Level Sensor Feedback (GL):

 A level sensor measures the tank level and sends it back to the comparator at

the input. This enables the continuous calculation of the level error and ensures

that the system adjusts in real time to maintain the setpoint.

 In summary, this cascade control block diagram shows how an inner flow

control loop supports the outer level control loop, with the combination of

sensors, controllers, and process models working together to achieve precise and

stable regulation of a two-variable system. Figure 4 shows the block diagram of a

cascaded flow-level control system.

20

 Figure 3.1: Block Diagram of Cascaded Flow- Level System

3.2.1 Flow Process Loop

 In industrial automation, flow control involves regulating the flow rate of a

fluid (liquid or gas) through a pipeline or system. In the current study, the flow

process loop is designed as the inner loop of the cascade control structure.

 The objective of the inner flow control loop is to ensure that the desired flow

set-point, provided by the outer level controller, is accurately achieved by

controlling the speed of a pump. The flow process dynamics are typically first-

order with a time delay due to actuator dynamics, piping resistance, and flow

sensor response time. The flow process is represented by the following first-order

transfer function with delay:

Gf(s) =
Af

τfs+1
. e−tfs (3.1)

where:

 Af = Flow process gain

 τf = Flow process time constant

 tf = Flow process delay

These parameters define how the flow rate responds to changes in the pump

speed.

21

3.2.2 Level Process Loop

 The level control system forms the outer loop of the cascade structure. Its

purpose is to maintain the liquid level within a process tank at a desired set-point,

despite variations in inflow or outflow. The level process is inherently slower

compared to the flow process, as tank levels change gradually in response to flow

variations. The level dynamics are also modeled as a first-order system:

Gl(s) =
Al

τls+1
 (3.2)

where:

 Al = Level process gain

 τl = Level process time constant

Thus, the level process is much slower and more inertial compared to the fast-

responding flow process.

3.2.3 Hardware Setup

 The hardware setup system used for flow-level control is a cascaded control

system which is used to regulate the liquid level in a process tank by controlling

the inflow rate. This system uses a inner cascade PID control strategy, where the

inner loop governs the flow rate and the outer loop maintains the level set-point.

The system works as the master-slave loop working where the master loop is the

outer loop that is the level control loop and the slave loop is the inner loop that is

the flow control of the system. This arrangement ensures faster response and

improved disturbance rejection compared to single-loop control systems. The

outer loop is responsible for keeping the liquid level at the desired value. A

pressure transducer installed around the process tank continuously measures the

actual level of the tank. This measurement is compared with the user’s set-point,

generating a level error between the set-point and the measured output. Figure 3.2

shows the hardware setup of flow-level cascaded control system.

 The controller produces an error and determines the optimal flow rate needed to

correct the level divergence which become the set-point for the in inner flow

control loop. In the inner loop, a flow rate sensor measures the actual inflow. The

inner-loop PID controller compares this measurement with the desired flow rate

set by the outer loop. Based on the flow error, it adjusts the speed of the pump

using a control signal. The variable speed pump then regulates the water supply to

the tank accordingly. The system includes a proportional solenoid drain valve to

manage controlled outflow and manual drain valves for maintenance purposes.

22

The sump tank collects drained fluid, completing the circulation. This cascade

control setup effectively handles dynamic changes and disturbances, making it

suitable for studying real-time control applications in industries like water

treatment, process control, and chemical plants. Figure 3.2 shows the real world

flow-level control hardware system used for the research.

 Figure 3.2: Experimental Architecture of Hardware System

3.2.4 Mathematical Modeling

 Accurate mathematical modeling is critical for designing and optimizing

control systems. The flow-level cascaded control system can be described through

a series of transfer functions for each component. Flow and Level process transfer

functions are already mentioned above. Rests of the system component’s transfer

function are mentioned below:

1. Flow Sensor Transfer Function (GF):

 The Flow Sensor’s transfer function is modeled as a first-order system with a

gain AF and a time constant τF. It is expressed as:

GF(s) =
AF

τFs+1
 (3.3)

2. Level Sensor Transfer Function (GL):

 The Level Sensor’s transfer function is modeled as a first-order system with a

gain AL and a time constant τL. It is expressed as:

23

GL(s) =
AL

τLs+1
 (3.4)

3. ON/OFF Controller Transfer Function (Gr):

 ON/OFF controller representing the controller’s gain with u(t) representing

step function showing switching behavior. It is expressed as:

 Gr(s) = Kr ∗ u(t) (3.5)

4. PID Controller Transfer Function:

The PID controller’s equation is expressed as:

GPID = Kp +
Ki

s
+ Kds (3.6)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains,

respectively.

3.3 System Dynamics

1. Inner-Loop (Flow Control) Transfer Function (Tinner):

 The inner flow control loop is the product of the PID controller and the flow

process with flow sensor in negative feedback to both of them. This is expressed

as:

 Tinner =
Gpid∗Gf

1+GF ∗ Gpid ∗ Gf

 (3.7)

2. Outer-Loop (Level Control) Transfer Function:

 The disturbance transfer function Gd is summed up with the open-loop system

Gopen. The closed-loop transfer function is computed by taking the feedback of the

open-loop system and disturbance and it is expressed as:

Touter =
 Gr ∗ Tinner ∗ Gl

1+ Gr ∗ Tinner ∗ Gl ∗ GL
 (3.8)

 As the process’s time constant is generally very high as compared to sensor’s

time constant (τsensor ≪ τprocess). Therefore, GF = GL = 1 is reasonable for most

systems because sensors are faster than processes. Now, Equation 3.7 and 3.8 can

be expressed respectively as:

 Tinner =
Gpid∗Gf

1+Gpid∗Gf

 (3.9)

24

Touter =
 Gr ∗ Tinner ∗ Gl

1+ Gr ∗ Tinner ∗ Gl
 (3.10)

 Table 3.1 summarizes the value of parameters used in the real system. The

overall system becomes a cascade of two feedback loops, enabling faster

correction of disturbances.

Table 3.1: Parameter Values of Flow-Level Control System

S. No. Description Parameter Value(units)

1 Flow Process Gain Af 50

2 Flow Process Time Delay tf 1 second

3 Flow Process Time Constant τf 30 seconds

4 Level Process Gain Al 0.13

5 Level Process Time Constant τl 3 seconds

6 On/Off Controller Gain Kr 5

3.4 Optimization Algorithm Parameters

Three optimization strategies were implemented to tune the PID controllers:

 Genetic Algorithm (GA)

 Ant Lion Optimizer (ALO)

 Hybrid GA-ALO

 The parameters for each algorithm were carefully selected based on trial-and-

error and literature review. Table 3.2 and Table 3.3 summarize the value of

parameters used in the Genetic Algorithm Code & Ant Lion Optimizer

respectively.

25

Table 3.2: Parameter Values of G.A Algorithm

S.No. Parameter Value

1 Size of Population 25

2 No. of Generations 100

3 Elitism Factor 1

4 Mutation 0.4

5 Crossover 0.8

6 Search Range 0 - 100

Table 3.3: Parameter Values of A.L.O Algorithm

S.No. Parameter Value

1 Maximum Iterations 100

2 Population Size 25

3 Random Walk Ratio Adaptive

4 Elitism Factor 1

5 Search Range 0 - 100

 MATLAB Coding which provides MATLAB implementations of advanced

optimization algorithms. Genetic Algorithm Code includes MATLAB scripts for

selection, crossover, and mutation processes used to evolve solutions. Ant Lion

Optimizer Code features MATLAB functions that simulate the hunting

mechanism of ant lions through random walks and adaptive search. GA-ALO

Hybrid Algorithm Code integrates both GA and ALO techniques in MATLAB,

using GA for global exploration and ALO for local exploitation. These MATLAB

codes (refer to Appendix I) are structured for modularity, allowing easy

customization and application to various optimization problems in engineering

problems.

26

3.5 Conclusion

 This chapter presented a detailed summary of the cascade control system

designed to regulate the liquid level and flow in a process tank using a master-

slave PID control structure. The inner loop focused on controlling the flow rate,

while the outer loop managed the tank level. Mathematical modeling of each

component was discussed through first-order transfer functions, capturing the

system's dynamic behavior accurately. Optimization algorithms, including

Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and a hybrid GA-ALO,

were introduced to fine-tune the PID parameters for the flow control of the

cascaded system. These algorithms were implemented in MATLAB, enabling

precise controller tuning for improved system stability and accuracy.

27

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

 This chapter presents the performance analysis of the hardware setup using the

three optimization techniques: Genetic Algorithm (GA), Ant Lion Optimizer

(ALO), and a Hybrid GA-ALO method. A MATLAB Simulink model was

developed to evaluate system performance. Key performance metrics such as rise

time, settling time, maximum overshoot, and Integral of Absolute Error (IAE) are

analyzed for each optimization algorithms. Further, a hardware implementation

using an HMI-enabled setup demonstrates the real-time efficiency and robustness

of the optimized controllers. This chapter highlights the comparative performance

and effectiveness of the hybrid optimization technique in improving system

response and reliability.

4.2 Simulation Setup

 To validate the performance of the cascade PID controllers tuned by different

optimization techniques, a MATLAB simulation model was developed.

The system configuration includes:

 Inner Loop: Flow control loop with flow process transfer function along with PID

controller.

 Outer Loop: Level control loop with level process transfer function along with

ON-OFF controller.

 Disturbances: External disturbances are applied to test robustness.

 Time Delay Handling: Flow process delay handled using Pade approximation.

Software Tools: MATLAB 2023a (Simulink)

4.3 Performance Analysis

 The cascade PID control system was simulated using three different

optimization strategies: Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and

the Hybrid GA-ALO model. Table V shows the performance analysis of G.A,

A.L.O, and G.A-A.L.O. The performance of the system was evaluated based on

key dynamic response parameters including rise time, settling time, maximum

overshoot, and Integral of Absolute Error (IAE). Table 4.1 summarizes the values

obtained from the unit step system’s response by using G.A, G.W.O, and G.A-

G.W.O hybrid optimization algorithms to tune PID controller.

28

Table 4.1: Performance Analysis of G.A, A.L.O, And G.A-A.L.O

S.No. Parameter G.A A.L.O G.A – A.L.O

1 Rise Time (s) 1.66 1.25 1.32

2 Settling Time (s) 7.14 6.84 4.75

3 Maximum Overshoot 1.13 1.14 1.07

4 Best Function f(x) 2.023 1.827 1.201

 Figure 4.1, 4.2, and 4.3 shows the system response with optimized PID gains

using G.A, A.L.O, and hybrid G.A-A.L.O respectively.

 Figure 4.1: System Response with Optimized PID Gains using G.A

29

 Figure 4.2: System Response with Optimized PID Gains using A.L.O

 Figure 4.3: System Response with Optimized PID Gains using Hybrid G.A –

A.L.O

 Figure 9 shows the comparison of system response with optimized PID gains using

G.A, A.L.O, and G.A – A.L.O.

30

 Figure 4.4: Comparison of System Response with Optimized PID Gains using

G.A, A.L.O, and G.A - A.L.O

4.3.1 Rise Time

 Rise Time is the time taken for the system output to rise from 10% to 90% of

the desired final value.

Observations:

 GA achieved a rise time of 1.66 seconds.

 ALO provided a slightly faster rise at 1.25 seconds.

 The Hybrid GA-ALO method resulted in a rise time of 1.32 seconds.

 Although ALO showed the fastest rise, the Hybrid GA-ALO achieved a more

balanced rise time with better stability, preventing aggressive responses that could

cause overshoot.

4.3.2 Settling Time

 Settling Time is the duration required for the system to settle within a specified

tolerance band (typically ±2%) around the final value.

31

Observations:

 GA tuned system settled in 7.14 seconds.

 ALO tuned system settled in 6.84 seconds.

 The Hybrid GA-ALO method resulted in the shortest settling time of 4.75

seconds.

 The hybrid approach significantly reduced the settling time by approximately

33% compared to GA alone, enabling faster stabilization and quicker response to

changes.

4.3.3 Maximum Overshoot

 Maximum Overshoot measures how much the system output exceeds the final

desired value, typically expressed as a percentage.

Observations:

 GA-based system showed a 13% overshoot.

 ALO-based system showed a slightly higher 14% overshoot.

 The Hybrid GA-ALO based system achieved only 7% overshoot.

 Lower overshoot achieved by the hybrid technique ensures better system safety

and avoids unnecessary actuator stress, making it more suitable for sensitive

industrial applications.

4.3.4 Integral of Absolute Error (IAE)

 Integral of Absolute Error (IAE) quantifies the total accumulated absolute error

over time, serving as the primary performance index in this study.

Observations:

 GA achieved an IAE of 2.023.

 ALO achieved an IAE of 1.827.

 The Hybrid GA-ALO achieved the lowest IAE of 1.201.

 A lower IAE value implies that the system had a smaller cumulative error,

ensuring better tracking of the desired set-point and greater overall efficiency.

32

4.4 Disturbance Handling

 Effective and robust disturbance handling will ensure a system to be in stable

state for proper functioning of the industry. In the figure 4.5, a disturbance is

introduced at t = 40 seconds which is making the response to deviate from desired

output. The fast recovery and minimal steady-state error suggest the robustness

property of a well-tuned PID controller.

 Here, the PID controller is tuned using a GA-ALO hybrid model method. It

is combining the properties of Genetic Algorithm (GA) and Ant Lion

Optimizer (ALO). GA works in global exploration by mimicking natural

selection, while ALO refines the search with local exploitation which is inspired

by ant hunting behavior. This hybrid model approach provides a balanced search

strategy, improving convergence speed and accuracy in finding optimal PID

parameters. Figure 10 shows the system response with delayed disturbance at t =

40 seconds.

 Figure 4.5: System Response with Delayed Disturbance at t = 40 seconds

 PID controller effectively suppresses the disturbance's impact by damping of

oscillations and returning the response to desired set-point ensuring robust system

performance under dynamic conditions.

4.5 Optimized PID Parameters

The final optimized PID gains for the Hybrid GA-ALO tuned controller were:

 Kp = 3.0285

33

 Ki = 6.6348

 Kd = 0.14194

 These gains provided optimal performance in both steady-state accuracy and

transient response.

4.6 Hardware Output Analysis

 Cascade control is a widely used strategy for improving the performance of

systems with interacting dynamics. In a cascade control structure, two or more

control loops are nested. The primary controller regulates the main process

variable (e.g., tank level), while the secondary controller handles a faster, related

inner loop (e.g., flow rate). In this particular setup shown:

 The Level Process serves as the primary loop, responsible for maintaining the

water level in a tank.

 The Flow Process operates in the secondary loop, regulating the flow rate of

water into the tank.

 The output of the level controller acts as the set point for the flow controller,

creating a dynamic hierarchy where fast flow adjustments ensure stable level

control.

 This cascade arrangement enables faster disturbance rejection, especially for

disturbances affecting the inner loop, and results in improved overall system

responsiveness and stability.

 For visual interaction and control through Human Machine Interface (HMI)

provided by LabVIEW software is used for communication between hardware

setup and software system. Figure 4.6 shows Hardware system response of G.A –

A.L.O based PID controller through LabView software. Key features on the

interface include:

 SP_L (Set Point – Level): Represents the desired tank level. In the current setup,

it is set to 15.

 MV_L (Measured Value – Level): Indicates the actual water level in the tank,

updated in real time.

 PID PAR_LEVEL & PID PAR_FLOW: Sections displaying the current PID

tuning parameters for level and flow controllers respectively.

 Flow PID Controller Parameters: Tuned to P = 3.02, I = 6.63, D = 0.14, these

values are critical for fine control and are a product of hybrid optimization.

The center graph on the HMI displays the real-time response of the system:

34

 The level and flow trends show how the system responds to setpoint changes or

external disturbances.

 The oscillatory patterns visible in the graph are expected during tuning but

should dampen as the controller stabilizes the process.

 A well-tuned cascade system should exhibit minimal steady-state error and

smooth transition dynamics.

 The lower-left section of the interface provides error feedback, offering insights

into how well the controllers are performing. Any persistent or large error signals

indicate the need for re-tuning or adjusting system parameters.

 On the right side of the HMI, a process flow diagram illustrates the operational

status of equipment such as:

 Pump status,

 Valve position,

 Tank level, and

 Flow direction.

This graphical feedback improves system understanding, enhances operator

interaction, and enables better decision-making during tests or real-time

operations.

 Figure 4.6: Hardware System Response of G.A – A.L.O based PID controller

35

Hardware Output Highlights:

 Stable Level Maintenance: Smooth flow-level regulation without major spikes.

 Disturbance Rejection: Fast recovery and minimal deviation under disturbance.

 Low Overshoot: Reduced chances of spillover or undershoot in fluid systems.

4.7 Conclusion

 The hardware and simulation results verify the superior-performance quality of

Hybrid GA-ALO optimized PID controller compared to standalone GA and ALO

approaches. Salient achievements from the study are a 33% decrease in settling

time, 50% reduced overshoot, and the minimum IAE. The hybrid model also

showed strong disturbance rejection capability and quicker recovery in simulated

and actual hardware. These conclusions confirm the Hybrid GA-ALO method as

an efficient and effective approach for tuning PID controllers in dynamic flow-

level control problems.

36

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

 This research work focused on the design, optimization, and evaluation of the

PID controller for a flow-level control system using a hybrid metaheuristic

algorithm combining Genetic Algorithm (GA) and Ant Lion Optimizer (ALO).

The major contributions of the study include:

 Development of an accurate mathematical model for the flow-level system

incorporating actuator dynamics, process delays, and disturbances.

 Application and comparison of standalone GA, ALO, and the proposed hybrid

GA-ALO optimization techniques for PID tuning.

 Comprehensive performance evaluation based on key dynamic response

parameters such as rise time, settling time, maximum overshoot, and IAE.

 Successful real-time validation of the optimized controller using a physical

hardware setup.

Key Outcomes:

 The hybrid GA-ALO approach achieved faster system stabilization with reduced

overshoot and improved robustness compared to individual methods.

 The hybrid algorithm minimized the IAE, ensuring better tracking performance.

 Hardware testing confirmed the real-world applicability and effectiveness of the

proposed control strategy.

 Thus, the hybrid metaheuristic based optimization approach proved to be a

powerful tool for enhancing cascade PID controller performance in complex, real-

world process systems.

5.2 Future Scope

 Although the proposed hybrid GA-ALO based cascade PID controller achieved

significant improvements, several avenues for future research exist:

 Extension to Fractional-Order PID Controllers:

Future work could explore fractional-order PID (FOPID) controllers to achieve

even finer control over system dynamics.

37

 Application to MIMO Systems:

The developed approach can be extended to Multi-Input Multi-Output (MIMO)

systems, which are common in chemical plants and aerospace systems.

 Real-Time Implementation Using Embedded Systems:

The control strategy can be deployed on embedded platforms (like Arduino,

Raspberry Pi, or industrial PLCs) for real-world industrial automation

applications.

 Hybridization with Other Algorithms:

Further hybrid combinations involving Differential Evolution (DE), or Whale

Optimization Algorithm (WOA) can be explored to enhance performance.

 By pursuing these directions, the robustness, efficiency, and applicability of

cascade PID control strategies can be advanced further, making them even more

suitable for next-generation smart industries.

38

REFERENCES

[1] P. Bellini, D. Cenni, N. Mitolo, P. Nesi, G. Pantaleo, and M. Soderi, "High

level control of chemical plant by industry 4.0 solutions," Comput. Chem.

Eng., vol. 159, p. 107591, Mar. 2022, doi:

https://doi.org/10.1016/j.compchemeng.2021.107591.

[2] S. Liu, Y. Long, L. Xie and A. M. Bayen, "Cooperative control of air flow for

HVAC systems," 2013 IEEE International Conference on Automation

Science and Engineering (CASE), Madison, WI, USA, 2013, pp. 422-427,

doi: 10.1109/CoASE.2013.6654001.

[3] H. T. Do, N. V. Bach, L. V. Nguyen, H. T. Tran, and M. T. Nguyen, “A

design of higher-level control based genetic algorithms for wastewater

treatment plants,” Engineering Science and Technology, an International

Journal, vol. 24, no. 4, pp. 872–878, Feb. 2021, doi:

https://doi.org/10.1016/j.jestch.2021.01.004.

[4] L. A. Cantera-Cantera, M. C. Maya-Rodríguez, S. I. Palomino-Resendiz, and

L. Luna, “Level and Flow Systems Identification of an Industrial Processes

Module by LSOD Method for PID Controllers Design,” Results in

Engineering, pp. 104347–104347, Feb. 2025, doi:

https://doi.org/10.1016/j.rineng.2025.104347.

[5] K. H. Ang, G. Chong and Y. Li, "PID control system analysis, design, and

technology," in IEEE Transactions on Control Systems Technology, vol. 13,

no. 4, pp. 559-576, July 2005, doi: 10.1109/TCST.2005.847331..

[6] N. Allu and A. Toding, "Tuning with Ziegler Nichols Method for Design PID

Controller At Rotate Speed DC Motor," in IOP Conference Series: Materials

Science and Engineering, vol. 846, p. 012046, 2020. doi: 10.1088/1757-

899X/846/1/012046.

[7] A. R. Utami, R. J. Yuniar, A. Giyantara, and A. D. Saputra, “Cohen-Coon

PID Tuning Method for Self-Balancing Robot,” Nov. 2022, doi:

https://doi.org/10.1109/isesd56103.2022.9980830.

[8] Jayachitra and V. Rajendran, "Genetic Algorithm Based PID Controller

Tuning Approach for Continuous Stirred Tank Reactor," Advances in

Artificial Intelligence, vol. 2014, pp. 1-8, Dec. 2014. doi:

10.1155/2014/791230.

39

[9] R. Pradhan, S. K. Majhi, J. K. Pradhan, and B. B. Pati, “Optimal fractional

order PID controller design using Ant Lion Optimizer,” Ain Shams

Engineering Journal, vol. 11, no. 2, pp. 281–291, Jun. 2020, doi:

https://doi.org/10.1016/j.asej.2019.10.005.

[10] M. I. Solihin, L. F. Tack, and L. K. Moey, "Tuning of PID Controller Using

Particle Swarm Optimization (PSO)," Int. J. Adv. Sci. Eng. Inf. Technol., vol.

1, no. 4, 2011. doi: 10.18517/ijaseit.1.4.93.

[11] P. Dutta and S. K. Nayak, “Grey Wolf Optimizer Based PID Controller for

Speed Control of BLDC Motor,” Journal of Electrical Engineering &

Technology, vol. 16, no. 2, pp. 955–961, Jan. 2021, doi:

https://doi.org/10.1007/s42835-021-00660-5.

[12] H. O. Bansal, R. Sharma, and P. R. Shreeraman, “PID Controller Tuning

Techniques: A Review,” Journal of Control Engineering and Technology, vol.

2, no. 4, 2012.

[13] R. Utami, R. J. Yuniar, A. Giyantara and A. D. Saputra, "Cohen-Coon PID

Tuning Method for Self-Balancing Robot," 2022 International Symposium on

Electronics and Smart Devices (ISESD), Bandung, Indonesia, 2022, pp. 1-5,

doi: 10.1109/ISESD56103.2022.9980830.

[14] T. Yucelen, O. Kaymakci, and S. Kurtulan, "Self-Tuning PID Controller

Using Ziegler-Nichols Method for Programmable Logic Controllers,"

Proceedings of the 2006 IEEE/ASME International Conference on

Mechatronic and Embedded Systems and Applications, 2006, pp. 24-28, doi:

10.3182/20060830-2-SF-4903.00003.

[15] D. Asante, G. Nuel, A. Adam, and R. Hoover, "Limitations of Traditional PID

Tuning Methods in BLDC Motor Control," Apr. 2025.

[16] S. B. Joseph, E. G. Dada, A. Abidemi, D. O. Oyewola, and B. M. Khammas,

"Metaheuristic algorithms for PID controller parameters tuning: Review,

approaches and open problems," Comput. Chem. Eng., vol. 162, p. 107803,

May 2022. doi: 10.1016/j.compchemeng.2022.107803.

[17] S. Inthiyaz, R. Nalli, T. Rakesh, K. Subbarao, S. H. Ahammad and V. Rajesh,

"GA based PID controller: Design and Optimization," 2021 6th International

Conference on Inventive Computation Technologies (ICICT), Coimbatore,

India, 2021, pp. 285-289, doi: 10.1109/ICICT50816.2021.9358640.

40

[18] Akihiro Oi et al., "Development of PSO-based PID tuning method," 2008

International Conference on Control, Automation and Systems, Seoul, Korea

(South), 2008, pp. 1917-1920, doi: 10.1109/ICCAS.2008.4694410.

[19] G. Asante, S. Adam, A. Andrewson, and R. Hoover, "Application of Ant

Colony Optimization (ACO) for PID Tuning in BLDC Motors," Apr. 2025.

[20] L. F. Fraga-Gonzalez, R. Q. Fuentes-Aguilar, A. García-González, and G.

Sanchez-Ante, "Adaptive simulated annealing for tuning PID controllers," AI

Commun., vol. 30, no. 4, pp. 1–16, Aug. 2017. doi: 10.3233/AIC-170741.

[21] R. Pradhan, S. K. Majhi, J. K. Pradhan, and B. B. Pati, "Ant lion optimizer

tuned PID controller based on Bode ideal transfer function for automobile

cruise control system," Comput. Chem. Eng., vol. 111, pp. 98–114, Mar.

2018. doi: 10.1016/j.compchemeng.2018.01.003.

[22] K. R. Das, D. Das and J. Das, "Optimal tuning of PID controller using GWO

algorithm for speed control in DC motor," 2015 International Conference on

Soft Computing Techniques and Implementations (ICSCTI), Faridabad, India,

2015, pp. 108-112, doi: 10.1109/ICSCTI.2015.7489575.

[23] U. K. U. Zaman, K. Naveed, and A. A. Kumar, "Tuning of PID Controller

Using Whale Optimization Algorithm for Different Systems," in Proc. 2021

Int. Conf. Digital Futures and Transformative Technologies (ICoDT2), May

2021. doi: 10.1109/ICoDT252288.2021.9441526.

[24] S. M. H. Mousakazemi, "Comparison of the error-integral performance

indexes in a GA-tuned PID controlling system of a PWR-type nuclear reactor

point-kinetics model," Ann. Nucl. Energy, vol. 151, p. 107004, Dec. 2020.

doi: 10.1016/j.anucene.2020.107004.

[25] M. Sharaf and A. A. A. El-Gammal, "An integral squared error -ISE optimal

parameters tuning of modified PID controller for industrial PMDC motor

based on Particle Swarm Optimization-PSO," 2009 IEEE 6th International

Power Electronics and Motion Control Conference, Wuhan, China, 2009, pp.

1953-1959, doi: 10.1109/IPEMC.2009.5157716.

[26] D. Maiti, A. Acharya, M. Chakraborty, A. Konar, and R. Janarthanan,

"Tuning PID and PIλDδ Controllers using the Integral Time Absolute Error

Criterion," in Proc. 2008 International Conference on Intelligent and

Advanced Systems (ICIAS), Dec. 2008. doi: 10.1109/ICIAFS.2008.4783932.

41

[27] X. Wang, Y. Hong, and H. Ji, "Distributed Optimization for a Class of

Nonlinear Multiagent Systems With Disturbance Rejection," IEEE Trans.

Cybern., vol. 46, no. 7, pp. 1–1, Aug. 2015. doi:

10.1109/TCYB.2015.2453167.

[28] L. Eriksson and M. Johansson, "PID Controller Tuning Rules for Varying

Time-Delay Systems," in Proc. 2007 American Control Conference (ACC),

New York, NY, USA, Aug. 2007. doi: 10.1109/ACC.2007.4282655.

42

APPENDIX I

MATLAB codes for different algorithms as explained in section 3.4 are as follows:

1. Genetic Algorithm Code:

clc; clear; close all;

%% System Parameters

Af = 50; tau_f = 30; td_f = 1; % Flow Process parameters

Al = 0.13; tau_l = 3; % Level Process parameters

Ad = 1; tau_d = 10; % Disturbance parameters

Gr = 5; % ON/OFF Controller gain

%% GA Parameters

numGenerations = 100;

populationSize = 25;

crossoverProbability = 0.8;

mutationProbability = 0.4;

elitism = 1; % Elitism Factor

searchRange = [0 100]; % Search Range for PID gains

%% Transfer Functions

s = tf('s'); % Laplace variable

% Flow process with delay approximation

Gp_delay = (Af * (1 - td_f * s)) / ((tau_f * s + 1) * (td_f * s + 1));

% Level process

Gl = Al / (tau_l * s + 1);

% Disturbance transfer function

Gd = Ad / (tau_d * s + 1);

43

% Combined Plant

plant_combined = Gl * Gp_delay;

%% Objective Function for GA

fitnessFunc = @(x) PID_Performance_Modified(x, plant_combined, Gd);

opts = optimoptions('ga', ...

 'PopulationSize', populationSize, ...

 'MaxGenerations', numGenerations, ...

 'CrossoverFraction', crossoverProbability, ...

 'MutationFcn', {@mutationuniform, mutationProbability}, ...

 'EliteCount', elitism, ...

 'Display', 'iter');

lb = [searchRange(1) searchRange(1) searchRange(1)]; % [Kp, Ki, Kd] lower

bounds

ub = [searchRange(2) searchRange(2) searchRange(2)]; % [Kp, Ki, Kd] upper

bounds

% Perform GA optimization

[optimal_PID, fval] = ga(fitnessFunc, 3, [], [], [], [], lb, ub, [], opts);

%% Display the optimized PID gains

disp('Optimized PID Gains:');

disp(['Kp = ', num2str(optimal_PID(1))]);

disp(['Ki = ', num2str(optimal_PID(2))]);

disp(['Kd = ', num2str(optimal_PID(3))]);

%% Evaluate the system with the optimized PID gains

Kp_opt = optimal_PID(1);

Ki_opt = optimal_PID(2);

44

Kd_opt = optimal_PID(3);

% Create the PID controller with the optimized gains

PID = Kp_opt + Ki_opt / s + Kd_opt * s;

% Full forward path: Gr -> PID -> Plant

Gforward = Gr * PID * Gp_delay;

% First feedback (flow sensor Gp_delay itself)

G1 = feedback(Gforward, Gp_delay);

% Disturbance addition

GwithDisturbance = G1 + Gd;

% Passing through level process

Gfinal_forward = GwithDisturbance * Gv;

% Second feedback (level sensor Gv itself)

Goverall = feedback(Gfinal_forward, Gv);

%% Plot the system step response

t = 0:0.1:40; % Simulation time

step(Goverall, t);

title('System Response with Optimized PID Gains (GA)');

xlabel('Time (s)');

ylabel('Output');

grid on;

%% --- Objective Function Definition ---

function cost = PID_Performance_Modified(pid_params, plant, Gd)

 Kp = pid_params(1);

 Ki = pid_params(2);

45

 Kd = pid_params(3);

 % Create PID controller

 s = tf('s');

 PID = Kp + Ki/s + Kd*s;

 % Full open-loop with PID

 openLoop = PID * plant;

 % Feedback loop for plant

 closedLoop_plant = feedback(openLoop, plant);

 % Disturbance effect addition

 GwithDisturbance = closedLoop_plant + Gd;

 % Final output considering disturbance

 T_cl = feedback(GwithDisturbance, plant);

 % Simulation time

 t = 0:0.1:100;

 % Step response

 [y, ~] = step(T_cl, t);

 % Compute absolute error assuming setpoint = 1

 error = abs(y - 1);

 % Integral of Absolute Error (IAE) as cost

 IAE = trapz(t, error);

 cost = IAE; % minimize this

end

46

2. Ant Lion Optimizer Code:

clc;

clear;

close all;

%% System Parameters

Af = 50; tau_f = 30; td_f = 1; % Flow Process parameters

Al = 0.13; tau_l = 3; % Level Process parameters

Ad = 1; tau_d = 10; % Disturbance parameters

Gr = 5; % ON/OFF Controller gain

%% Transfer Functions

s = tf('s');

Gv = Al / (tau_l * s + 1); % Level process

Gp_delay = (Af * (1 - 0.5 * s)) / ((tau_f * s + 1) * (0.5 * s + 1)); % Flow process with

delay approximation

Gd = Ad / (tau_d * s + 1); % Disturbance

plant_combined = Gv * Gp_delay;

%% ALO Parameters (Ant Lion Optimizer Settings)

nPop = 25; % S.No.2: Population Size

MaxIter = 100; % S.No.1: Maximum Iterations

dim = 3; % PID controller:

lb = [0 0 0]; % Lower bounds

ub = [100 100 100]; % Search Range (0–100)

% Initialize ants and ant lions

ants = rand(nPop, dim) .* (ub - lb) + lb;

ant lions = ants;

% Evaluate initial fitness

47

fitness = arrayfun(@(i) PID_Performance_Modified(ants(i, :), plant_combined, Gd),

1:nPop)';

ant lion_fitness = fitness;

% Identify elite

[elite_fitness, elite_index] = min(ant lion_fitness);

elite = ant lions(elite_index, :); % S.No.4: Elitism Factor = 1

% Main ALO Loop

for iter = 1:MaxIter

 ants_new = zeros(nPop, dim);

 for i = 1:nPop

 % Roulette wheel selection

 idx = RouletteWheelSelection(1./(ant lion_fitness + 1e-8));

 selected_ant lion = ant lions(idx, :);

 RW_1 = RandomWalk(selected_ant lion, lb, ub, iter, MaxIter);

 RW_2 = RandomWalk(elite, lb, ub, iter, MaxIter);

 ants_new(i, :) = mean([RW_1; RW_2], 1);

 end

 % Keep within bounds

 ants_new = max(ants_new, lb);

 ants_new = min(ants_new, ub);

 % Evaluate new ants

 for i = 1:nPop

 f = PID_Performance_Modified(ants_new(i, :), plant_combined, Gd);

 if f < ant lion_fitness(i)

 ant lions(i, :) = ants_new(i, :);

48

 ant lion_fitness(i) = f;

 end

 if f < elite_fitness

 elite = ants_new(i, :);

 elite_fitness = f;

 end

 end

 fprintf('Iteration %d: Best IAE = %.4f\n', iter, elite_fitness);

end

%% Display Results

Kp = elite(1); Ki = elite(2); Kd = elite(3);

disp('Optimized PID Gains using ALO:');

disp(['Kp = ', num2str(Kp)]);

disp(['Ki = ', num2str(Ki)]);

disp(['Kd = ', num2str(Kd)]);

PID = Kp + Ki/s + Kd*s;

closedLoop = feedback(PID * plant_combined + Gd, 1);

t = 0:0.1:40;

step(closedLoop, t);

title('System Response with Optimized PID Gains (ALO)');

xlabel('Time (s)'); ylabel('Output'); grid on;

%% Functions

function cost = PID_Performance_Modified(pid_params, plant, Gd)

 Kp = pid_params(1); Ki = pid_params(2); Kd = pid_params(3);

 s = tf('s');

 PID = Kp + Ki/s + Kd*s;

 T_cl = feedback(PID * plant + Gd, 1);

 t = 0:0.1:100;

49

 [y, ~] = step(T_cl, t);

 error = abs(y - 1);

 cost = trapz(t, error);

end

function idx = RouletteWheelSelection(prob)

 prob = prob / sum(prob);

 cumProb = cumsum(prob);

 r = rand();

 idx = find(r <= cumProb, 1, 'first');

end

function RW = RandomWalk(center, lb, ub, iter, max_iter)

 dim = length(center);

 steps = max_iter;

 walk = cumsum(2 * (rand(steps, dim) > 0.5) - 1);

 walk = (walk - min(walk)) ./ (max(walk) - min(walk) + eps);

 lower = lb + (center - lb) * (iter / max_iter);

 upper = ub - (ub - center) * (iter / max_iter);

 idx = round(linspace(1, steps, 1));

 RW = lower + walk(idx, :) .* (upper - lower);

end

50

3. GA-ALO Hybrid Algorithm Code:

clc;

clear;

close all;

%% --- System Parameters ---

Af = 50; tau_f = 30; td_f = 1; % Flow process

Al = 0.13; tau_l = 3; % Level process

Ad = 1; tau_d = 10; % Disturbance

Gr = 5; % ON/OFF Controller gain

%% --- Transfer Functions ---

s = tf('s');

Gl = Al / (tau_l * s + 1);

Gp_delay = (Af * (1 - 0.5 * s)) / ((tau_f * s + 1) * (0.5 * s + 1));

Gd = Ad / (tau_d * s + 1);

plant_combined = Gl * Gp_delay;

popSize = 25;

maxGAgen = 100;

dim = 3;

lb = [0 0 0];

ub = [100 100 100]; % Updated range

fitnessFunc = @(x) PID_Performance_Modified(x, plant_combined, Gd, 'IAE');

global ga_final_population;

ga_final_population = [];

opts = optimoptions('ga', ...

 'Display', 'iter', ...

51

 'PopulationSize', popSize, ...

 'MaxGenerations', maxGAgen, ...

 'CrossoverFraction', 0.8, ...

 'MutationFcn', {@mutationuniform, 0.4}, ...

 'EliteCount', 1, ...

 'OutputFcn', @savePopulation);

[ga_best_sol, ga_best_val] = ga(fitnessFunc, dim, [], [], [], [], lb, ub, [], opts);

fprintf('\n--- GA Completed ---\n');

global ga_final_population;

ga_pop = ga_final_population;

%% --- ALO Parameters Table ---

% S.No. Parameter Value

% 1 Maximum Iterations 100

% 2 Population Size 25

% 3 Random Walk Ratio Adaptive

% 4 Elitism Factor 1

% 5 Search Range [0, 100]

nPop = popSize;

MaxALOIter = 100;

ants = ga_pop;

ant lions = ants;

fitness = arrayfun(@(i) PID_Performance_Modified(ants(i, :), plant_combined, Gd,

'IAE'), 1:nPop)';

ant lion_fitness = fitness;

[elite_fitness, elite_index] = min(ant lion_fitness);

elite = ant lions(elite_index, :);

52

%% --- ALO Main Loop ---

for iter = 1:MaxALOIter

 ants_new = zeros(nPop, dim);

 for i = 1:nPop

 idx = RouletteWheelSelection(1 ./ (ant lion_fitness + 1e-8));

 selected_ant lion = ant lions(idx, :);

 RW_1 = RandomWalk(selected_ant lion, lb, ub, iter, MaxALOIter);

 RW_2 = RandomWalk(elite, lb, ub, iter, MaxALOIter);

 ants_new(i, :) = mean([RW_1; RW_2], 1);

 end

 ants_new = max(ants_new, lb);

 ants_new = min(ants_new, ub);

 for i = 1:nPop

 f = PID_Performance_Modified(ants_new(i, :), plant_combined, Gd, 'IAE');

 if f < ant lion_fitness(i)

 ant lions(i, :) = ants_new(i, :);

 ant lion_fitness(i) = f;

 end

 if f < elite_fitness

 elite = ants_new(i, :);

 elite_fitness = f;

 end

 end

 fprintf('Hybrid Iter %d: Best IAE = %.4f\n', iter, elite_fitness);

end

53

%% --- Final PID and Plot ---

Kp = elite(1); Ki = elite(2); Kd = elite(3);

disp('Optimized PID Gains using Hybrid GA-ALO (IAE):');

disp(['Kp = ', num2str(Kp)]);

disp(['Ki = ', num2str(Ki)]);

disp(['Kd = ', num2str(Kd)]);

PID = Kp + Ki/s + Kd*s;

closedLoop = feedback(PID * plant_combined + Gd, 1);

t = 0:0.1:100;

step(closedLoop, t);

title('System Response with Optimized PID Gains (Hybrid GA-ALO - IAE)');

xlabel('Time (s)');

ylabel('Output');

grid on;

%% --- Supporting Functions ---

function cost = PID_Performance_Modified(pid_params, plant, Gd, mode)

 if nargin < 4

 mode = 'IAE';

 end

 Kp = pid_params(1); Ki = pid_params(2); Kd = pid_params(3);

 s = tf('s');

 PID = Kp + Ki/s + Kd*s;

 T_cl = feedback(PID * plant + Gd, 1);

 t = 0:0.1:100;

 [y, ~] = step(T_cl, t);

 error = y - 1;

54

 switch mode

 case 'ISE'

 cost = trapz(t, error.^2);

 case 'IAE'

 cost = trapz(t, abs(error));

 case 'ITAE'

 cost = trapz(t, t .* abs(error));

 otherwise

 error('Invalid mode');

 end

end

function idx = RouletteWheelSelection(prob)

 prob = prob / sum(prob);

 cumProb = cumsum(prob);

 r = rand();

 idx = find(r <= cumProb, 1, 'first');

end

function RW = RandomWalk(center, lb, ub, iter, max_iter)

 dim = length(center);

 steps = max_iter;

 walk = cumsum(2 * (rand(steps, dim) > 0.5) - 1);

 for d = 1:dim

 walk(:, d) = (walk(:, d) - min(walk(:, d))) ./ (max(walk(:, d)) - min(walk(:, d)) +

eps);

 end

 lower = lb + (center - lb) * (iter / max_iter);

 upper = ub - (ub - center) * (iter / max_iter);

 RW = lower + walk(end, :) .* (upper - lower);

end

55

function [state, options, optchanged] = savePopulation(options, state, flag)

 global ga_final_population;

 optchanged = false;

 if strcmp(flag, 'done')

 ga_final_population = state.Population;

 end

end

56

LIST OF PUBLICATIONS

1. K. Ujjwal, M. Sreejeth, and Anupama, "Performance Optimization of PID

Controllers in Flow-rate Control Systems Using Hybrid Algorithm Model

(Genetic Algorithm - Grey Wolf Optimizer)," in Proc. 7th Int. Conf. Energy,

Power and Environ. (ICEPE), Sohra (Cherrapunjee), India, May 2025.

[Presented and to be Published]

2. K. Ujjwal, M. Sreejeth, and Anupama, "Robust PID Controller Design for

Cascade Systems Using Hybrid Genetic Algorithm & Ant Lion Optimizer

Model," in Proc. 1st Int. Conf. Power Intell. Control Syst. (PICS), Hamirpur,

India, Jul. 2025. [Accepted and to be Published]

57

CERTIFICATE OF IEEE CONFERENCE - PAPER 1

(Scopus Indexed)

58

ACCEPTANCE OF SPRINGER CONFERENCE - PAPER 2

(Scopus Indexed)

59

PLAGIARISM REPORT

	Control & Instrumentation
	CANDIDATE’S DECLARATION
	CHAPTER 1
	INTRODUCTION
	1.1 Introduction
	This chapter introduces the importance of flow-level control in modern control industries like HVAC, chemical plants, etc. It will give a brief overview of the PID controllers for effective control in these industries. A detailed literature review...
	1.2 Literature Review
	1.3 Related Work
	1.3.1 Traditional Methods
	1.3.2 Metaheuristic Algorithms

	1.4 Summary of Work
	1.5 Outline of Dissertation

	CHAPTER 2
	METHODOLOGY
	2.1 Introduction
	2.2 Optimization Techniques
	2.2.1 Genetic Algorithm (GA)
	2.2.2 Ant Lion Optimizer (ALO)
	2.2.3 Hybrid Genetic Algorithm – Ant Lion Optimizer (GA-ALO)

	2.3 Performance Metrics

	CHAPTER 3
	SYSTEM DESCRIPTION
	This chapter describes the design and application of a cascade control system for liquid level control in a process tank. The system employs a master-slave strategy with an inner loop controlling the flow rate and an outer loop controlling the tan...
	3.2 System Design
	Feedback Mechanisms

	3.2.1 Flow Process Loop
	3.2.2 Level Process Loop
	3.2.4 Mathematical Modeling
	3.3 System Dynamics
	2. Outer-Loop (Level Control) Transfer Function:

	3.4 Optimization Algorithm Parameters

	CHAPTER 4
	RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Simulation Setup
	Figure 4.1, 4.2, and 4.3 shows the system response with optimized PID gains using G.A, A.L.O, and hybrid G.A-A.L.O respectively.
	4.3.1 Rise Time
	4.3.2 Settling Time
	4.3.3 Maximum Overshoot
	4.3.4 Integral of Absolute Error (IAE)

	4.4 Disturbance Handling
	4.5 Optimized PID Parameters
	4.6 Hardware Output Analysis
	4.7 Conclusion

	CHAPTER 5
	CONCLUSION AND FUTURE SCOPE
	5.1 Conclusion
	5.2 Future Scope

	APPENDIX I

