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ABSTRACT 

 

 

This thesis presents a novel methodology for optimizing a Cascaded Proportional-

Integral-Derivative (PID) controller for a flow-level control system using a hybrid 

metaheuristic algorithm approach. The proposed model integrates the Genetic 

Algorithm (GA) and Ant Lion Optimizer (ALO) combining the strengths of both the 

standalone algorithms. System used is flow-level control system which is a Cascaded 

system, known for its effectiveness in improving the disturbance rejection 

capabilities and dynamic response of control systems. In this work, the inner loop 

regulates the faster flow dynamics, while the outer loop addresses the slower level 

dynamics. The hybrid GA-ALO algorithm is designed to capitalize on the global 

search capabilities of GA and the exploitation efficiency of ALO, thus overcoming 

limitations like premature convergence and slow optimization often associated with 

single algorithms. The PID parameters are optimized through a weighted objective 

function considering rise time, settling time, overshoot, and integral absolute error 

(IAE). This research not only provides an effective control strategy for flow-level 

systems but also highlights the potential of hybrid metaheuristic algorithms in 

complex control optimization problems. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Introduction 

    This chapter introduces the importance of flow-level control in modern control 

industries like HVAC, chemical plants, etc. It will give a brief overview of the 

PID controllers for effective control in these industries. A detailed literature 

review is presented covering the traditional tuning methods like Cohen-Coon and 

Ziegler-Nichols outlining its limitations towards dealing with the complex and 

non-linear systems. Afterwards, the chapters explores the emergence and 

innovation of metaheuristic algorithms such Genetic Algorithm, Particle Swarm, 

Grey Wolf Optimizer, etc. which offer robust and adaptive tuning of the PID 

controller. A hybrid model of GA-ALO is also discussed for the PID controller. 

Finally, the structure of the dissertation is presented, providing a roadmap for the 

subsequent chapters on methodology, system modeling, simulation results, and 

practical implementation. 

 

1.2 Literature Review 

    Industrial processes depend fundamentally on precise flow-level rate 

management. Manufacturing facilities alongside petroleum operations and water 

purification sectors together with Heating Ventilation and Air Conditioning 

systems require exact flow-level rate controls for maintaining operational 

smoothness and industry efficiency. Chemical facilities attain correct reaction 

results through the utilization of precise flow control to combine various reactants 

which assists in reducing operational danger from adverse events [1]. Thermal 

comfort performance and levels of energy efficiency are decided through the 

installation of flow-level rate controls in HVAC systems [2]. Flow-level rate 

control systems assist water treatment facilities to allocate resources in a fair 

manner and enhance energy efficiency utilization in operations [3]. Having the 

required tank levels and flow rates is critical in order to attain operational 

efficiency, safety, product quality, and energy conservation [4].  

    Finding proper flow-level rate control is a challenging problem primarily due to 

the complexities of the system. There are nonlinear characteristics present in these 

systems preventing the response prediction using simple linear mathematical 

models. Disturbances outside the system from input supply variations and 

environmental factors along with varying levels of demand have significant 
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effects on system performance. System delays from sensors to actuators with 

measurement of response time and actuator’s response time reduce traditional 

control methods' effectiveness when it comes to maintaining desired performance. 

Handling of these complications requires feedback control systems that integrate 

the Proportional-Integral-Derivative (PID) controller as their most well-

established and efficient solution [5]. The PID controller operates by adjusting the 

system's input based on its three variable parameters. The proportional term 

detects current errors, the derivative term forecasts future error trends to minimize 

oscillations and improve system’s stability, and the integral term eliminates 

steady-state discrepancies. Control components synchronize to achieve precise 

and adaptive system control under challenging conditions. 

    However, the effectiveness of PID controllers heavily depends on the tuning of 

their parameters (Kp, Ki, Kd). Poorly tuned controllers can result in sluggish 

response, high overshoot, instability, or poor disturbance rejection. Traditional 

PID tuning methods such as Ziegler-Nichols [6] and Cohen-Coon [7] provided 

simple heuristic techniques based on process reaction curves but often fail to 

optimally tune complex nonlinear or time-delay systems. 

    Recent research highlights the adoption of metaheuristic algorithms — nature-

inspired optimization techniques — to solve complex control problems. 

Techniques like Genetic Algorithm (GA) [8], Ant Lion Optimizer (ALO) [9], 

Particle Swarm Optimization (PSO) [10], and Grey Wolf Optimizer (GWO) [11] 

have proven effective in tuning PID controllers by efficiently searching large, 

complex solution spaces where conventional methods are inadequate. 

Hybridization of algorithms, combining the strengths of two or more 

metaheuristic methods, is increasingly recognized as a powerful approach. This 

has motivated the current research toward developing a hybrid GA-ALO model 

for cascade PID control optimization. 

1.3 Related Work 

1.3.1 Traditional Methods 

    Flow – level control systems within modern control industries like chemical 

processing, HVAC and water treatment industries highly depend on PID 

controllers because of their simplicity and reliable capabilities to manage flow and 

level rates to maintain different pressures and temperatures [12]. With the use of 

traditional PID tuning methods, such as Cohen-Coon and Ziegler-Nichols, have 

been widely adopted to address these challenges. The Cohen-Coon method is 

particularly effective for systems with significant time delays, a common 

characteristic in flow-level control processes [13]. By analyzing the process 

reaction curve generated from a step input, this method estimates key parameters 
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such as time constant, dead time, and process gain. These estimates serve as the 

basis for calculating initial PID gains, providing a reliable starting point for 

systems with delays, such as those found in chemical flow regulation. 

    The Ziegler-Nichols approach, however, is usually used on systems with 

oscillatory responses [14]. It consists of two forms: the open-loop technique, 

which calculates the ultimate gain and time constant from the process reaction 

curve, and the closed-loop technique, which consists of tuning the system until 

there are sustained oscillations and then determining the ultimate gain and 

oscillation period. This technique has found successful application in water 

treatment and chemical processing, where stability and low oscillations are 

essential for efficient flow-level control. 

    Though both Cohen-Coon and Ziegler-Nichols methods are used extensively, 

they are empirically approximated and might not provide the best PID parameters 

for processes with intricate dynamics, e.g., nonlinear or highly changing 

processes. In a bid to overcome such limitations, sophisticated tuning techniques 

have been developed that combine the conventional methods with evolutionary 

optimization methods such as Particle Swarm Optimization (P.S.O), Genetic 

Algorithms (G.A), and Grey Wolf Optimizer (G.W.O). 

1.3.2 Metaheuristic Algorithms 

    With increasing complexity in industrial processes, the limitation of 

conventional PID tuning approaches has become more conspicuous [15]. Old 

methods such as Ziegler-Nichols and Cohen-Coon, though significant in the past, 

rely on empirical guidelines and plain linear models. Under conditions with load 

variability and external disturbances, there is a need for more advanced and 

adaptive techniques in order to perform optimal PID tuning. Thus, metaheuristic 

algorithms have emerged to tune PID controllers [16]. 

    One of the first metaheuristic methods ever used to tune a PID is the Genetic 

Algorithm (GA) [17], based on the natural selection and evolution principles. GA 

works by evolving a population of candidate PID parameter sets using selection, 

crossover, and mutation. Research has demonstrated that PID controllers tuned 

with GA perform better than those tuned with classical techniques in terms of 

lower overshoot, faster settling times, and improved disturbance rejection.  

    After GA, other metaheuristic algorithms like Particle Swarm Optimization 

(PSO) [18], Ant Colony Optimization (ACO) [19], and Simulated Annealing (SA) 

[20] were also implemented successfully for PID tuning. Recent advances had 

resulted in newer metaheuristics like the Ant Lion Optimizer (ALO) [21], Grey 

Wolf Optimizer (GWO) [22], and Whale Optimization Algorithm (WOA) [23], 

each of which introduced distinct search abilities. These algorithms provided 
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better-balanced trade-offs between exploration (sampling new areas) and 

exploitation (improving known good solutions), which are essential for efficient 

and robust PID tuning. 

The wide use of metaheuristics in PID tuning can be attributed to several factors: 

 Flexibility: They do not require prior knowledge about the system model. 

 Global Search Capability: They can escape local minima and find globally 

optimal parameters. 

 Robustness: They perform consistently across a variety of systems, including 

nonlinear, time-delayed, and uncertain systems. 

 Multi-Objective Optimization: Some metaheuristics can optimize multiple 

performance criteria simultaneously (e.g., minimizing rise time, settling time, and 

overshoot together). 

    Moreover, the trend of hybrid metaheuristic algorithms combines the 

strengths of two or more algorithms. For instance, combining GA’s global search 

capabilities with ALO’s fast convergence has led to superior PID tuning outcomes 

which is better than the individual algorithms.  

1.4 Summary of Work 

   This research work introduces a novel hybrid optimization model for effective 

tuning of cascade PID controllers using Genetic Algorithm (GA) and Ant Lion 

Optimizer (ALO). Following is the summary of the work done for optimization of 

PID controller: 

 A MATLAB simulation model was developed to closely replicate a real-world 

flow-level system. It incorporates actuator dynamics (pump and valve behavior), 

process delays, and external disturbances. The model ensures realistic evaluation 

of the control automation system. 

 Independent applications of Genetic Algorithm (GA) and Ant Lion Optimizer 

(ALO) were used to optimize PID parameters. Performance of individual GA and 

ALO methods was compared on the basis of important parameters such as Integral 

of Absolute Error (IAE), settling time, and overshoot. Output of the both the 

algorithms assists in determining the baseline of the strengths and limitations of 

the individual algorithms. 

 The hybrid model combines the global search strength of GA with the fast local 

convergence of ALO. 
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 The tuned controllers were evaluated based on dynamic response metrics such as 

Integral of Absolute Error, Settling Time, Maximum Overshoot, and Disturbance 

rejection. 

    In summary, the hybrid GA-ALO model constitutes an effective and handy 

solution to PID tuning in sophisticated industrial processes. Through the synergy 

of the strengths of two well-known metaheuristic algorithms, this contribution 

provides improved control performance, robustness, and adaptability, which 

significantly contributes to the development of intelligent control systems in 

modern automation industries. 

1.5 Outline of Dissertation 

    This dissertation is systematically structured into five main chapters, each 

chapter describing the objectives, methodology, results, and future directions of 

the research. 

 Chapter 1 (Introduction): 

    This chapter presents the relevance of flow-level control systems in industrial 

processes, addressing their difficulties and the necessity for improved PID 

controller tuning techniques. A comprehensive literature review is given, 

including both conventional PID tuning techniques like Ziegler-Nichols and 

Cohen-Coon, and the advancement of metaheuristic algorithms. 

 Chapter 2 (Methodology): 

    The chapter addresses the optimization methods used in tuning the cascaded 

systems' PID controllers. It describes the operation principles of the Genetic 

Algorithm (GA) and the Ant Lion Optimizer (ALO), with their respective 

strengths. Subsequently, writing on the design and implementation of the hybrid 

GA-ALO model. Additionally, the chapter explains the choice of performance 

indicators, with the focus placed on using Integral of Absolute Error (IAE) [24] 

instead of its alternatives ISE [25] and ITAE [26] for the purpose of robust 

performance evaluation. 

 Chapter 3 (System Description): 

    This chapter explains the flow-level control system, modeled in detail such as 

the flow process loop and the level process loop. It derives the necessary transfer 

functions for the processes, sensors, and PID controllers, and discusses system 

dynamics, including considerations of process delays and external disturbances. 

The complete cascade control system model is formulated, forming the basis for 

simulation and optimization studies. 
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 Chapter 4 (Results and Discussion): 

    This chapter provides the simulation setup and a detailed analysis of the results 

obtained through GA, ALO, and Hybrid GA-ALO optimization methods. 

Comparative studies are conducted based on rise time, settling time, maximum 

overshoot, and IAE performance metrics. Additionally, hardware output results 

are discussed, validating the simulation results and demonstrating the 

effectiveness of the proposed hybrid model under real-world conditions. 

 Chapter 5 (Conclusions and Future Work): 

    The final chapter concludes the study by summarizing key findings. It 

highlights the practical contributions of the research to modern control industrial 

applications and suggests future directions. 

1.6 Conclusion  

    In conclusion this chapter has briefly reviewed both the traditional and new 

metaheuristic algorithm methods for PID tuning. It highlighted the limitations of 

traditional tuning techniques like Ziegler-Nichols and Cohen Coon methods when 

applied to complex and non-linear systems. Whereas, the evolution of 

metaheuristic algorithms have many advantages in terms of fast and robust tuning 

of the PID controller. The chapter introduced the hybrid GA-ALO model as a 

powerful optimization approach, combining GA's global search strength with 

ALO's local refinement capabilities. 

. 
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CHAPTER 2 

METHODOLOGY 
 

 

2.1 Introduction 
 

    This chapter focuses on advanced optimization techniques for tuning of cascade 

PID controllers. It begins by discussing the limitations of traditional tuning 

methods in handling complex control systems especially those with non linear 

behavior. To address these challenges, the chapter introduces three metaheuristic 

algorithms - Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and a hybrid 

GA-ALO algorithm. Each algorithm is described in detail, including its operation 

and flowchart representation. The chapter also discusses the principal time-

domain performance measures used to analyze controller performance, including 

rise time, settling time, percent overshoot, and steady-state error. Particular 

consideration is provided to the Integral of Absolute Error (IAE) as the 

performance index to be optimized. A clear understanding of the hybrid 

metaheuristic algorithm will be established by the end of this chapter. 

2.2 Optimization Techniques 

    Optimization methods are crucial to PID controller parameter fine-tuning to 

provide optimal dynamic performance in control systems. Tuning the PID 

parameters in complicated systems like cascaded control structures with process 

delays and external disturbances are particularly challenging. Classical 

techniques, such as manual tuning or basic analytical methods, tend to be 

incapable of fulfilling the performance levels for such systems because they 

cannot handle effectively the nonlinearities, time delays, and external disturbances 

characteristic of real-world problems.  

    Under such circumstances, advanced optimization methods have come to the 

forefront due to their capacity for exploring broad solution spaces and adaptively 

determining the optimum set of PID parameters. These include metaheuristic 

algorithms that imitate biological processes. This research utilizes three such 

algorithms, including Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and a 

hybrid GA-ALO, to optimize the PID parameters of cascade control systems.  

    The Genetic Algorithm (GA) is one of the most well-known evolutionary 

optimization methods that mimics natural selection. Through operations like 

selection, crossover, and mutation, GA searches through a large population of 

potential solutions and evolves toward the optimal set of PID parameters. With its 
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capability to solve complex, nonlinear optimization problems, GA can be applied 

to systems with numerous interacting components and disturbances [27].  

    However, the Ant Lion Optimizer (ALO) is a swarm metaheuristic that draws 

inspiration from ant lion hunting behavior. ALO performs well in searching the 

problem's solution space by balancing exploration with exploitation, thus being 

good at escaping local minima and providing a global search for optimal 

solutions. Such a property is particularly useful in tuning PID controllers for 

systems with time delays and changing external conditions [28].  

    The hybrid GA-ALO method uses the strengths of both algorithms and benefits 

from the global search capabilities of GA and the efficient local search 

mechanisms of ALO. With the combination of the two methods, the hybrid 

scheme is intended to leverage the strengths of both algorithms to produce quicker 

convergence and improved solutions for optimizing the cascade PID controllers. 

By implementing such metaheuristic algorithms in a cascade PID control system, 

this research aims to illustrate how higher-level optimization methods offer better 

performance than traditional approaches. The outcomes emphasize their promise 

in enhancing the stability, transient behavior, and robustness of control systems, 

especially in difficult real-world applications that include delays and disturbances. 

Each optimization techniques are outlined shortly below: 

2.2.1 Genetic Algorithm (GA) 

    Genetic Algorithm (GA) is a search and optimization method which is 

commonly used to solve complex problems where the traditional approach may 

find it difficult. GAs is based in Darwin's survival of the fittest theory such that 

more superior solutions are provided with greater opportunities to generate 

offspring in the subsequent generation.  

    The normal operation of a GA, as illustrated by the flowchart, consists of 

several significant steps, each playing a role in seeking the optimum solution: 

1. Begin 

    The algorithm starts by initializing all necessary parameters such as population 

size, crossover rate, mutation rate, and termination conditions. 

2. Initial Population 

    The first step after initialization is generating the initial population. This 

population consists of a set of randomly created individuals, where diversity of the 

initial population is crucial for effective exploration of the search space. 
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3. Calculate the Fitness Value 

    Each individual is evaluated using a fitness function designed specifically for 

the problem. The fitness function measures how "good" an individual is compared 

to others. Higher fitness values indicate better solutions.  

4. Selection 

    In the selection phase, individuals are chosen to reproduce based on their fitness 

values. There are various selection strategies, such as roulette wheel selection, 

tournament selection, or rank selection. Generally, individuals with higher fitness 

have a greater chance of being selected, ensuring that good traits are carried 

forward. 

5. Crossover 

     After selection, the crossover operation is performed. This process combines 

the genetic information of two parent individuals to produce one or more 

offspring. The goal is to create new individuals that inherit the strengths of their 

parents, potentially leading to better solutions. Crossover can occur in several 

ways, such as single-point, two-point, or uniform crossover. 

6. Mutation 

    To maintain genetic diversity within the population and avoid premature 

convergence, mutation is applied. Mutation introduces random small changes to 

individuals, which helps the algorithm explore new parts of the search space. 

Typically, mutation occurs with a low probability to balance exploration and 

exploitation. 

7. Is Termination Criteria Satisfied? 

    After mutation, the algorithm checks if the termination condition is met. 

Termination criteria can include reaching a maximum number of generations, 

achieving a predefined fitness value, or observing no significant improvement over 

a number of generations. 

 If the termination condition is satisfied, the algorithm proceeds to the end. 

 If not satisfied, the cycle repeats, starting again from calculating fitness values for 

the new generation. 

8. End 

    Once the termination condition is met, the algorithm stops. The best individual 

solution found during the process is the optimal value for the system. 
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     Figure 2.1: Flowchart of G.A Algorithm 

    Figure 2.1 illustrates the flowchart of GA Algorithm. In brief, Genetic 

Algorithms are a strong and versatile approach to optimizing problems by 

simulating nature's evolutionary processes. Because they can solve complex, 

multimodal, and high-dimensional search spaces, they are highly sought after in 

numerous real-world applications. 

2.2.2 Ant Lion Optimizer (ALO) 

    The Ant Lion Optimizer (ALO) is a population-based metaheuristic algorithm 

motivated by natural ant lion's hunting mechanism. Ants are used to symbolize 

candidate solutions searching the solution space within ALO, whereas ant lions 

serve as navigators that lead ants towards improved solutions. The algorithm 

optimizes exploration and exploitation, thus becoming much efficient for solving 

intricate optimization problems in fields ranging from engineering design, 

machine learning, operational research etc. 

    The working process of ALO, as depicted in the flowchart, follows a structured 

series of steps: 



11 

1. Start 

     The algorithm initializes all necessary parameters, such as the size of the ant 

and ant lion populations, the maximum number of iterations, and the boundaries 

of the search space. 

2. Initialize Population of Ants and Ant lions 

     At the beginning, two separate populations are randomly created: one for ants 

(candidate solutions) and another for ant lions (potential traps or guides). Each 

individual’s position within the search space is randomly assigned within 

specified limits. 

3. Evaluate Fitness of Ants and Ant lions 

    Each ant and ant lion's fitness is evaluated using a predefined objective 

function. The fitness value measures the quality of a solution, determining how 

close it is to the optimal answer. High-performing solutions are crucial for guiding 

the search process. 

4. For Each Ant 

Several operations are performed for each ant during every iteration: 

 Select an Ant lion: An ant lion is selected based on a roulette wheel selection 

strategy, which gives higher probability to better ant lions, ensuring strong 

solutions influence the ants. 

 Update Ant Position: Each ant simulates a random walk influenced by the 

selected ant lion, representing exploration within the search space. 

 Apply Boundary Checks: After movement, boundary checks are applied to 

ensure ants remain within the valid limits of the search space. 

 Evaluate New Ant Fitness: The fitness of each updated ant is re-evaluated to 

measure improvement. 

5. Update Ant lions (Replace if Ants are Better) 

     If an ant discovers a solution better than its corresponding ant lion, it replaces 

the ant lion’s position. This strategy ensures that the ant lions continuously 

improve over time, promoting the evolution of better solutions. 

6. Decrease Search Radius (Adaptive Random Walk) 

    As the algorithm proceeds, the randomness in ant movement is gradually 

decreased. This converging of the search radius helps shift the algorithm from 

broad exploration in early stages to fine exploitation near promising solutions 

later. 

7. Check Termination Criterion 
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    Common criteria include reaching a maximum number of iterations or 

achieving an acceptable fitness value. 

 If the termination condition is not satisfied, the process loops back, continuing 

the optimization. 

 If satisfied, the algorithm proceeds to the stop phase. 

8. Stop 

     Once the termination condition is met, the algorithm stops and it produces the 

best solutions from the search space. 

 

     Figure 2.2: Flowchart of A.L.O Algorithm 
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    Figure 2.2 illustrates the ALO algorithm flowchart. In brief, Ant Lion 

Optimizer (ALO) is a compact metaheuristic algorithm that mimics the hunting 

behavior of ant lions. ALO achieves a balance between exploration and 

exploitation, enabling it to explore far in the solution space as well as to fine-tune 

solutions precisely. The simplicity of ALO, as well as its robustness and excellent 

performance, makes it a suitable method to solve engineering, machine learning, 

and other complex optimization problems, thus an efficient optimization tool. 

2.2.3 Hybrid Genetic Algorithm – Ant Lion Optimizer (GA-ALO) 

    Genetic Algorithms (GA) and Ant Lion Optimizers (ALO) both have powerful 

optimization problem-solving capability, but with a set of limitations as well. GA 

works very well with global exploration and diversity preservation in the search 

space but is sluggish when converging close to the optimal solution. Conversely, 

ALO is optimal in exploring local search spaces for fine-tuning solutions but is 

very likely to be trapped in local minima if the initial population is weak and not 

diverse. 

    In order to overcome the above individual limitations, the hybrid GA-ALO 

model is presented. The hybrid process, as shown in the flowchart, consists of the 

following principal steps: 

1. Start: 

    The algorithm starts by setting the initial parameters, such as the PID controller 

bounds, GA population size, and fitness evaluation settings. 

2. Initialize PID Bounds and GA Population 

    An initial population for the Genetic Algorithm is randomly generated within  

defined PID parameter bounds. This population represents a diverse set of 

candidate solutions for the problem at hand. 

3. Evaluate Fitness of GA Individuals 

    Each individual in the GA population is evaluated using a predefined fitness 

function. The fitness value reflects how well the individual solves the 

optimization problem. 

4. Apply Genetic Algorithm 

Standard GA operations are performed: 

 Selection: High-performing individuals are selected based on their fitness. 

 Crossover: Selected individuals are paired, and their genetic material is 

recombined to produce new offspring. 
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 Mutation: Small random changes are introduced in the offspring to maintain 

genetic diversity. 

5. Sort Population by Fitness 

     After GA operations, the population is sorted based on fitness values, ensuring 

the best solutions are easily identified. 

6. Use GA Offspring as ALO Ants 

     The offspring generated by GA are then used as the initial population of ants 

for the ALO phase. This step ensures that ALO starts with a high-quality and 

diverse set of solutions. 

7. Initialize ALO Ant lions (Best GA Individuals) 

     The best individuals from the GA phase are selected to act as ant lions in the 

ALO phase. These act as strong guides for the ants during the local search. 

8. Apply ALO Algorithm 

ALO operations are carried out, focusing on exploitation: 

 ALO Random Walk: Ants perform a random walk influenced by the ant lions. 

 Fitness Evaluation: Updated positions are evaluated for fitness. 

 Update Elite Ant lion: The best solution (elite) is tracked and updated. 

 Replace Worst if Improved: If a newly found solution is better, it replaces the 

worst-performing ant lion. 

9. Check Termination Criteria 

     The algorithm checks if the stopping conditions are met, such as reaching the 

maximum number of iterations or achieving a desired fitness level. 

 If the termination criteria are not met, the process continues. 

 If met, the algorithm proceeds to the final step. 

10. End 

     The algorithm concludes by returning the best solution found through the 

combined exploration and exploitation processes. 
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     Figure 2.3: Flowchart of Hybrid G.A – A.L.O Algorithm 

    Figure 2.3 shows the flowchart of hybrid GA-ALO algorithm. The hybrid GA-

ALO model offers a comprehensive and effective optimization strategy by 

combining the strengths of both Genetic Algorithm (GA) and Ant Lion Optimizer 

(ALO). GA is responsible for providing broad exploration of the search space, 
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ensuring that a wide range of potential solutions. While, ALO takes over to 

intensively exploit the best solutions through the search space. This combination 

leads to faster convergence toward optimal solutions and achieves higher-quality 

results compared to using GA or ALO individually. The hybrid model thus 

provides a balanced process for optimization of PID controller. 

2.3 Performance Metrics 

    In order to analyze the performance of a controller and to direct the process of 

optimization, some of the most important time-domain performance measures are 

generally taken into consideration. These measures assist in defining the 

performance of the control system in terms of efficiency, effectiveness, and 

stability in meeting the output specifications. The principal measures are Rise 

Time (Tr), Settling Time (Ts), Maximum Overshoot (Mp), Steady-State Error 

(Ess), and the Integral of Absolute Error (IAE). Each of these, in combination, 

gives a complete view of system behavior and is crucial for validation that the 

control design satisfies performance requirements.  

Rise Time (Tr) is the time taken for the system response to change from 10% to 

90% of the final steady-state value.  

Settling Time (Ts) is the time period in which the output of the system gets 

stabilized to a specified limit (normally within 2% or 5%) of the final value 

without oscillation beyond that limit.  

Maximum Overshoot (Mp) is the amount by which the system response 

overshoots the desired final value, as a percentage of that value. Steady-State 

Error (ESS) is the difference between the output required and the output obtained 

when the system settles. 

Steady-State Error (Ess) measures the difference between the desired output and 

the actual output after the system has settled.  

    Considering all these matrics, it allows for a balanced controller design that 

emphasizes a fast response, minimal overshoot, stability, and robustness to 

disturbances. Optimization based on these performance metrics is essential for 

achieving high-performance control systems in practical applications. 

    While choosing cost function for minimization of the error, it is important to 

know which performance index will work best with the given system. Integral 

performance indices are crucial for objective evaluation of control system 

performance. Three popular indices are shown in Table 2.1. 
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Table 2.1: Difference between I.S.E, I.T.A.E, and I.A.E 

Metric Definition Characteristics 

ISE  
(Integral of Squared Error) 

ISE = ∫  
T

0

e2(t)dt 
Penalizes larger errors more 
heavily due to the squaring. 

ITAE  
(Integral of Time-weighted 

Absolute Error) 
ITAE = ∫  t

T

0

|e(t)|dt 
Penalizes errors that persist 
longer, encouraging faster 
settling. 

IAE  
(Integral of Absolute Error) IAE = ∫  

T

0

|e(t)|dt 
Measures the total absolute 
error over time. 

In this study, IAE is selected because: 

 IAE penalizes all errors equally, avoiding excessive sensitivity to large initial 

transients, as seen with ISE, or prolonged minor errors, as emphasized by ITAE. 

This characteristic ensures consistent control performance across a wide range of 

operating conditions, making it ideal for real-world systems.  

 IAE is computationally simple to implement, which is beneficial for real-time 

applications.  

 IAE also promotes smoother control actions, avoiding the aggressive responses 

that might result from minimizing ISE, and preventing noise amplification. 

In the event of a sudden disturbance, minimizing IAE leads to a steady correction 

of the error without overreacting. Unlike ISE, might cause excessive control 

effort, or ITAE, which could overly prioritize late-stage errors. 

2.5 Conclusion 

    This chapter outlined the methodology for optimizing cascade PID controllers 

using Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and their 

hybridization. The combined approach leverages the global search strength of GA 

and the local exploitation ability of ALO, ensuring robust and efficient controller 

tuning. Controller performance is evaluated based on key dynamic metrics, 

including rise time, settling time, overshoot, and steady-state error, with a 

particular focus on minimizing the Integral of Absolute Error (IAE). The choice 

of IAE provides balanced penalization across errors, promoting stable, fast, and 

reliable system responses. The hybrid optimization strategy developed ensures 

adaptability and robustness under varying operating conditions and disturbances.  
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CHAPTER 3 

SYSTEM DESCRIPTION 
 

 

3.1 Introduction 

    This chapter describes the design and application of a cascade control system 

for liquid level control in a process tank. The system employs a master-slave 

strategy with an inner loop controlling the flow rate and an outer loop controlling 

the tank level. This configuration provides faster response time and disturbance 

rejection than single-loop control. The chapter encompasses system design, block 

diagrams, and hardware configuration with sensors, pumps, and valves. First-

order transfer functions are utilized to model flow and level processes 

mathematically to represent system dynamics. Three optimization techniques - 

Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and hybrid GA-ALO for 

the tuning of PID controllers are proposed. Their parameters and MATLAB 

programming are explained for effective controller design. In general, this chapter 

gives an overall framework for modeling, regulation, and optimization of a 

cascaded flow-level control system, applicable to industrial process control 

problems. 

3.2 System Design 

    Cascade systems are a type of control systems in which two or more loops are 

used for improving performance of control systems. In this main loop or outer 

loop controls the main process of the system whereas the secondary loop or inner 

loop is used for controlling intermediate variable of the system. Figure 3.1 shows 

the block diagram of the hardware system used for the research and below are the 

descriptions of each and every block of the hardware system. 

1. ON-OFF Controller (Gr): 

    The level error is first processed by an ON-OFF controller, represented by 

block Gr. This component provides a basic level of control, often used for 

switching actions such as enabling or disabling the main PID loop or providing an 

initial control action. 

2. PID Controller (Gs): 

     The signal from the ON-OFF controller is then fed into the PID controller 

(Gs). This controller calculates a continuous control signal based on proportional 

(P), integral (I), and derivative (D) terms, ensuring smoother and more accurate 

control compared to the ON-OFF method. The PID controller processes 

deviations and generates a flow rate setpoint to correct the error. 
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3. Flow Process (Gf): 

    The output of the PID controller acts as a command signal for the flow process, 

represented by Gf. This block simulates the dynamics of the fluid flow system—

such as the behavior of pumps, valves, and pipes—which directly affect the 

inflow to the tank. 

4. Disturbance Input: 

     An external disturbance enters the system after the flow process block. This 

could represent environmental changes, valve position shifts, or pressure 

fluctuations. The disturbance impacts the final output and must be counteracted by 

the control loops. 

5. Level Process (Gl): 

    The combined result of the flow input and disturbances is passed to the level 

process block (Gl). This block models the tank level dynamics, where the flow 

influences the rise or fall of the liquid level. The output of this block is the actual 

tank level, which is the final controlled variable. 

Feedback Mechanisms 

To maintain control, the system incorporates two critical feedback loops: 

 Flow Sensor Feedback (GF): 

    A flow sensor measures the actual flow rate and provides feedback to the PID 

controller. This helps the controller compare the desired and actual flow rates, 

allowing for rapid correction of discrepancies. 

 Level Sensor Feedback (GL): 

    A level sensor measures the tank level and sends it back to the comparator at 

the input. This enables the continuous calculation of the level error and ensures 

that the system adjusts in real time to maintain the setpoint. 

    In summary, this cascade control block diagram shows how an inner flow 

control loop supports the outer level control loop, with the combination of 

sensors, controllers, and process models working together to achieve precise and 

stable regulation of a two-variable system. Figure 4 shows the block diagram of a 

cascaded flow-level control system. 
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     Figure 3.1: Block Diagram of Cascaded Flow- Level System 

3.2.1 Flow Process Loop 

    In industrial automation, flow control involves regulating the flow rate of a 

fluid (liquid or gas) through a pipeline or system. In the current study, the flow 

process loop is designed as the inner loop of the cascade control structure. 

    The objective of the inner flow control loop is to ensure that the desired flow 

set-point, provided by the outer level controller, is accurately achieved by 

controlling the speed of a pump. The flow process dynamics are typically first-

order with a time delay due to actuator dynamics, piping resistance, and flow 

sensor response time. The flow process is represented by the following first-order 

transfer function with delay: 

Gf(s) =
Af

τfs+1
. e−tfs                                                                                             (3.1) 

where: 

 Af = Flow process gain 

 τf = Flow process time constant 

 tf = Flow process delay 

These parameters define how the flow rate responds to changes in the pump 

speed. 
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3.2.2 Level Process Loop 

    The level control system forms the outer loop of the cascade structure. Its 

purpose is to maintain the liquid level within a process tank at a desired set-point, 

despite variations in inflow or outflow. The level process is inherently slower 

compared to the flow process, as tank levels change gradually in response to flow 

variations. The level dynamics are also modeled as a first-order system: 

Gl(s) =
Al

τls+1
                                                                                                       (3.2) 

where: 

 Al = Level process gain 

 τl  = Level process time constant 

Thus, the level process is much slower and more inertial compared to the fast-

responding flow process. 

3.2.3 Hardware Setup 

    The hardware setup system used for flow-level control is a cascaded control 

system which is used to regulate the liquid level in a process tank by controlling 

the inflow rate. This system uses a inner cascade PID control strategy, where the 

inner loop governs the flow rate and the outer loop maintains the level set-point. 

The system works as the master-slave loop working where the master loop is the 

outer loop that is the level control loop and the slave loop is the inner loop that is 

the flow control of the system. This arrangement ensures faster response and 

improved disturbance rejection compared to single-loop control systems. The 

outer loop is responsible for keeping the liquid level at the desired value. A 

pressure transducer installed around the process tank continuously measures the 

actual level of the tank. This measurement is compared with the user’s set-point, 

generating a level error between the set-point and the measured output. Figure 3.2 

shows the hardware setup of flow-level cascaded control system. 

    The controller produces an error and determines the optimal flow rate needed to 

correct the level divergence which become the set-point for the in inner flow 

control loop. In the inner loop, a flow rate sensor measures the actual inflow. The 

inner-loop PID controller compares this measurement with the desired flow rate 

set by the outer loop. Based on the flow error, it adjusts the speed of the pump 

using a control signal. The variable speed pump then regulates the water supply to 

the tank accordingly. The system includes a proportional solenoid drain valve to 

manage controlled outflow and manual drain valves for maintenance purposes. 
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The sump tank collects drained fluid, completing the circulation. This cascade 

control setup effectively handles dynamic changes and disturbances, making it 

suitable for studying real-time control applications in industries like water 

treatment, process control, and chemical plants. Figure 3.2 shows the real world 

flow-level control hardware system used for the research. 

 

 

     Figure 3.2: Experimental Architecture of Hardware System 

3.2.4 Mathematical Modeling 

    Accurate mathematical modeling is critical for designing and optimizing 

control systems. The flow-level cascaded control system can be described through 

a series of transfer functions for each component. Flow and Level process transfer 

functions are already mentioned above. Rests of the system component’s transfer 

function are mentioned below:  

1. Flow Sensor Transfer Function (GF): 

     The Flow Sensor’s transfer function is modeled as a first-order system with a 

gain AF  and a time constant τF. It is expressed as: 

GF(s) =
AF

τFs+1
                                                                                                    (3.3) 

2. Level Sensor Transfer Function (GL): 

     The Level Sensor’s transfer function is modeled as a first-order system with a 

gain AL  and a time constant τL. It is expressed as: 
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GL(s) =
AL

τLs+1
                                                                                               (3.4) 

3. ON/OFF Controller Transfer Function (Gr): 

     ON/OFF controller representing the controller’s gain with u(t) representing 

step function showing switching behavior. It is expressed as: 

 Gr(s) =  Kr ∗ u(t)                                                                                             (3.5) 

4. PID Controller Transfer Function: 

The PID controller’s equation is expressed as: 

GPID = Kp +
Ki

s
+ Kds                                                                                        (3.6) 

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, 

respectively. 

3.3 System Dynamics 

1. Inner-Loop (Flow Control) Transfer Function (Tinner): 

    The inner flow control loop is the product of the PID controller and the flow 

process with flow sensor in negative feedback to both of them. This is expressed 

as:  

      Tinner =
Gpid∗Gf

1+GF  ∗ Gpid ∗ Gf 

                                                                                     (3.7) 

2. Outer-Loop (Level Control) Transfer Function: 

    The disturbance transfer function Gd is summed up with the open-loop system 

Gopen. The closed-loop transfer function is computed by taking the feedback of the 

open-loop system and disturbance and it is expressed as: 

Touter =
 Gr ∗  Tinner ∗ Gl

1+ Gr ∗  Tinner ∗ Gl ∗ GL
                                                                              (3.8) 

     As the process’s time constant is generally very high as compared to sensor’s 

time constant (τsensor ≪ τprocess). Therefore, GF = GL = 1 is reasonable for most 

systems because sensors are faster than processes. Now, Equation 3.7 and 3.8 can 

be expressed respectively as: 

 Tinner =
Gpid∗Gf

1+Gpid∗Gf  

                                                                                             (3.9) 
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Touter =
 Gr ∗  Tinner ∗ Gl

1+ Gr ∗  Tinner ∗ Gl 
                                                                                 (3.10) 

     Table 3.1 summarizes the value of parameters used in the real system. The 

overall system becomes a cascade of two feedback loops, enabling faster 

correction of disturbances. 

Table 3.1: Parameter Values of Flow-Level Control System 

S. No. Description Parameter Value(units) 

1 Flow Process Gain Af 50 

2 Flow Process Time Delay tf 1 second 

3 Flow Process Time Constant τf 30 seconds 

4 Level Process Gain Al 0.13  

5 Level Process Time Constant τl 3 seconds 

6 On/Off Controller Gain Kr 5 

3.4 Optimization Algorithm Parameters 

Three optimization strategies were implemented to tune the PID controllers: 

 Genetic Algorithm (GA) 

 Ant Lion Optimizer (ALO) 

 Hybrid GA-ALO 

    The parameters for each algorithm were carefully selected based on trial-and-

error and literature review. Table 3.2 and Table 3.3 summarize the value of 

parameters used in the Genetic Algorithm Code & Ant Lion Optimizer 

respectively. 
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Table 3.2: Parameter Values of G.A Algorithm 

S.No. Parameter Value 

1 Size of Population 25 

2 No. of Generations 100 

3 Elitism Factor 1 

4 Mutation  0.4 

5 Crossover  0.8 

6 Search Range 0 - 100 

Table 3.3: Parameter Values of A.L.O Algorithm 

S.No. Parameter Value 

1 Maximum Iterations 100 

2 Population Size 25 

3 Random Walk Ratio Adaptive 

4 Elitism Factor 1 

5 Search Range 0 - 100 

    MATLAB Coding which provides MATLAB implementations of advanced 

optimization algorithms. Genetic Algorithm Code includes MATLAB scripts for 

selection, crossover, and mutation processes used to evolve solutions. Ant Lion 

Optimizer Code features MATLAB functions that simulate the hunting 

mechanism of ant lions through random walks and adaptive search. GA-ALO 

Hybrid Algorithm Code integrates both GA and ALO techniques in MATLAB, 

using GA for global exploration and ALO for local exploitation. These MATLAB 

codes (refer to Appendix I) are structured for modularity, allowing easy 

customization and application to various optimization problems in engineering 

problems.  
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3.5 Conclusion 

    This chapter presented a detailed summary of the cascade control system 

designed to regulate the liquid level and flow in a process tank using a master-

slave PID control structure. The inner loop focused on controlling the flow rate, 

while the outer loop managed the tank level. Mathematical modeling of each 

component was discussed through first-order transfer functions, capturing the 

system's dynamic behavior accurately. Optimization algorithms, including 

Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and a hybrid GA-ALO, 

were introduced to fine-tune the PID parameters for the flow control of the 

cascaded system. These algorithms were implemented in MATLAB, enabling 

precise controller tuning for improved system stability and accuracy.  
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CHAPTER 4 

RESULTS AND DISCUSSION 
 

 

4.1 Introduction 
 

     This chapter presents the performance analysis of the hardware setup using the 

three optimization techniques: Genetic Algorithm (GA), Ant Lion Optimizer 

(ALO), and a Hybrid GA-ALO method. A MATLAB Simulink model was 

developed to evaluate system performance. Key performance metrics such as rise 

time, settling time, maximum overshoot, and Integral of Absolute Error (IAE) are 

analyzed for each optimization algorithms. Further, a hardware implementation 

using an HMI-enabled setup demonstrates the real-time efficiency and robustness 

of the optimized controllers. This chapter highlights the comparative performance 

and effectiveness of the hybrid optimization technique in improving system 

response and reliability. 

4.2 Simulation Setup 

     To validate the performance of the cascade PID controllers tuned by different 

optimization techniques, a MATLAB simulation model was developed. 

The system configuration includes: 

 Inner Loop: Flow control loop with flow process transfer function along with PID 

controller. 

 Outer Loop: Level control loop with level process transfer function along with 

ON-OFF controller. 

 Disturbances: External disturbances are applied to test robustness. 

 Time Delay Handling: Flow process delay handled using Pade approximation. 

Software Tools: MATLAB 2023a (Simulink) 

4.3 Performance Analysis 

     The cascade PID control system was simulated using three different 

optimization strategies: Genetic Algorithm (GA), Ant Lion Optimizer (ALO), and 

the Hybrid GA-ALO model. Table V shows the performance analysis of G.A, 

A.L.O, and G.A-A.L.O. The performance of the system was evaluated based on 

key dynamic response parameters including rise time, settling time, maximum 

overshoot, and Integral of Absolute Error (IAE). Table 4.1 summarizes the values 

obtained from the unit step system’s response by using G.A, G.W.O, and G.A-

G.W.O hybrid optimization algorithms to tune PID controller. 
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Table 4.1: Performance Analysis of G.A, A.L.O, And G.A-A.L.O  

S.No. Parameter G.A A.L.O G.A – A.L.O 

1 Rise Time (s) 1.66 1.25 1.32 

2 Settling Time (s) 7.14 6.84 4.75 

3 Maximum Overshoot 1.13 1.14 1.07 

4 Best Function f(x) 2.023 1.827 1.201 

    Figure 4.1, 4.2, and 4.3 shows the system response with optimized PID gains 

using G.A, A.L.O, and hybrid G.A-A.L.O respectively. 

 

 

     Figure 4.1: System Response with Optimized PID Gains using G.A 
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     Figure 4.2: System Response with Optimized PID Gains using A.L.O 

 

     Figure 4.3: System Response with Optimized PID Gains using Hybrid G.A – 

A.L.O 

    Figure 9 shows the comparison of system response with optimized PID gains using  

G.A, A.L.O, and G.A – A.L.O. 



30 

 

     Figure 4.4: Comparison of System Response with Optimized PID Gains using 

G.A, A.L.O, and G.A - A.L.O 

4.3.1 Rise Time 

    Rise Time is the time taken for the system output to rise from 10% to 90% of 

the desired final value. 

Observations: 

 GA achieved a rise time of 1.66 seconds. 

 ALO provided a slightly faster rise at 1.25 seconds. 

 The Hybrid GA-ALO method resulted in a rise time of 1.32 seconds. 

    Although ALO showed the fastest rise, the Hybrid GA-ALO achieved a more 

balanced rise time with better stability, preventing aggressive responses that could 

cause overshoot. 

4.3.2 Settling Time 

     Settling Time is the duration required for the system to settle within a specified 

tolerance band (typically ±2%) around the final value. 
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Observations: 

 GA tuned system settled in 7.14 seconds. 

 ALO tuned system settled in 6.84 seconds. 

 The Hybrid GA-ALO method resulted in the shortest settling time of 4.75 

seconds. 

    The hybrid approach significantly reduced the settling time by approximately 

33% compared to GA alone, enabling faster stabilization and quicker response to 

changes. 

4.3.3 Maximum Overshoot 

    Maximum Overshoot measures how much the system output exceeds the final 

desired value, typically expressed as a percentage. 

Observations: 

 GA-based system showed a 13% overshoot. 

 ALO-based system showed a slightly higher 14% overshoot. 

 The Hybrid GA-ALO based system achieved only 7% overshoot. 

     Lower overshoot achieved by the hybrid technique ensures better system safety 

and avoids unnecessary actuator stress, making it more suitable for sensitive 

industrial applications. 

4.3.4 Integral of Absolute Error (IAE) 

    Integral of Absolute Error (IAE) quantifies the total accumulated absolute error 

over time, serving as the primary performance index in this study. 

Observations: 

 GA achieved an IAE of 2.023. 

 ALO achieved an IAE of 1.827. 

 The Hybrid GA-ALO achieved the lowest IAE of 1.201. 

    A lower IAE value implies that the system had a smaller cumulative error, 

ensuring better tracking of the desired set-point and greater overall efficiency. 



32 

4.4 Disturbance Handling 

     Effective and robust disturbance handling will ensure a system to be in stable 

state for proper functioning of the industry. In the figure 4.5, a disturbance is 

introduced at t = 40 seconds which is making the response to deviate from desired 

output. The fast recovery and minimal steady-state error suggest the robustness 

property of a well-tuned PID controller. 

     Here, the PID controller is tuned using a GA-ALO hybrid model method. It 

is combining the properties of Genetic Algorithm (GA) and Ant Lion 

Optimizer (ALO). GA works in global exploration by mimicking natural 

selection, while ALO refines the search with local exploitation which is inspired 

by ant hunting behavior. This hybrid model approach provides a balanced search 

strategy, improving convergence speed and accuracy in finding optimal PID 

parameters. Figure 10 shows the system response with delayed disturbance at t = 

40 seconds. 

 

     Figure 4.5: System Response with Delayed Disturbance at t = 40 seconds 

    PID controller effectively suppresses the disturbance's impact by damping of 

oscillations and returning the response to desired set-point ensuring robust system 

performance under dynamic conditions. 

4.5 Optimized PID Parameters 

The final optimized PID gains for the Hybrid GA-ALO tuned controller were: 

 Kp = 3.0285 
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 Ki = 6.6348 

 Kd = 0.14194 

     These gains provided optimal performance in both steady-state accuracy and 

transient response. 

4.6 Hardware Output Analysis 

     Cascade control is a widely used strategy for improving the performance of 

systems with interacting dynamics. In a cascade control structure, two or more 

control loops are nested. The primary controller regulates the main process 

variable (e.g., tank level), while the secondary controller handles a faster, related 

inner loop (e.g., flow rate). In this particular setup shown: 

 The Level Process serves as the primary loop, responsible for maintaining the 

water level in a tank. 

 The Flow Process operates in the secondary loop, regulating the flow rate of 

water into the tank. 

 The output of the level controller acts as the set point for the flow controller, 

creating a dynamic hierarchy where fast flow adjustments ensure stable level 

control. 

    This cascade arrangement enables faster disturbance rejection, especially for 

disturbances affecting the inner loop, and results in improved overall system 

responsiveness and stability. 

    For visual interaction and control through Human Machine Interface (HMI) 

provided by LabVIEW software is used for communication between hardware 

setup and software system. Figure 4.6 shows Hardware system response of G.A – 

A.L.O based PID controller through LabView software. Key features on the 

interface include: 

 SP_L (Set Point – Level): Represents the desired tank level. In the current setup, 

it is set to 15. 

 MV_L (Measured Value – Level): Indicates the actual water level in the tank, 

updated in real time. 

 PID PAR_LEVEL & PID PAR_FLOW: Sections displaying the current PID 

tuning parameters for level and flow controllers respectively. 

 Flow PID Controller Parameters: Tuned to P = 3.02, I = 6.63, D = 0.14, these 

values are critical for fine control and are a product of hybrid optimization. 

The center graph on the HMI displays the real-time response of the system: 
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 The level and flow trends show how the system responds to setpoint changes or 

external disturbances. 

 The oscillatory patterns visible in the graph are expected during tuning but 

should dampen as the controller stabilizes the process. 

 A well-tuned cascade system should exhibit minimal steady-state error and 

smooth transition dynamics. 

    The lower-left section of the interface provides error feedback, offering insights 

into how well the controllers are performing. Any persistent or large error signals 

indicate the need for re-tuning or adjusting system parameters. 

    On the right side of the HMI, a process flow diagram illustrates the operational 

status of equipment such as: 

 Pump status, 

 Valve position, 

 Tank level, and 

 Flow direction. 

This graphical feedback improves system understanding, enhances operator 

interaction, and enables better decision-making during tests or real-time 

operations.  

 

     Figure 4.6: Hardware System Response of G.A – A.L.O based PID controller 
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Hardware Output Highlights: 

 Stable Level Maintenance: Smooth flow-level regulation without major spikes. 

 Disturbance Rejection: Fast recovery and minimal deviation under disturbance. 

 Low Overshoot: Reduced chances of spillover or undershoot in fluid systems. 

4.7 Conclusion 

    The hardware and simulation results verify the superior-performance quality of 

Hybrid GA-ALO optimized PID controller compared to standalone GA and ALO 

approaches. Salient achievements from the study are a 33% decrease in settling 

time, 50% reduced overshoot, and the minimum IAE. The hybrid model also 

showed strong disturbance rejection capability and quicker recovery in simulated 

and actual hardware. These conclusions confirm the Hybrid GA-ALO method as 

an efficient and effective approach for tuning PID controllers in dynamic flow-

level control problems.  
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 
 

 

 

5.1 Conclusion 

    This research work focused on the design, optimization, and evaluation of the 

PID controller for a flow-level control system using a hybrid metaheuristic 

algorithm combining Genetic Algorithm (GA) and Ant Lion Optimizer (ALO). 

The major contributions of the study include: 

 Development of an accurate mathematical model for the flow-level system 

incorporating actuator dynamics, process delays, and disturbances. 

 Application and comparison of standalone GA, ALO, and the proposed hybrid 

GA-ALO optimization techniques for PID tuning. 

 Comprehensive performance evaluation based on key dynamic response 

parameters such as rise time, settling time, maximum overshoot, and IAE. 

 Successful real-time validation of the optimized controller using a physical 

hardware setup. 

Key Outcomes: 

 The hybrid GA-ALO approach achieved faster system stabilization with reduced 

overshoot and improved robustness compared to individual methods. 

 The hybrid algorithm minimized the IAE, ensuring better tracking performance. 

 Hardware testing confirmed the real-world applicability and effectiveness of the 

proposed control strategy. 

    Thus, the hybrid metaheuristic based optimization approach proved to be a 

powerful tool for enhancing cascade PID controller performance in complex, real-

world process systems. 

5.2 Future Scope 

    Although the proposed hybrid GA-ALO based cascade PID controller achieved 

significant improvements, several avenues for future research exist: 

 Extension to Fractional-Order PID Controllers: 

Future work could explore fractional-order PID (FOPID) controllers to achieve 

even finer control over system dynamics. 
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 Application to MIMO Systems: 

The developed approach can be extended to Multi-Input Multi-Output (MIMO) 

systems, which are common in chemical plants and aerospace systems. 

 Real-Time Implementation Using Embedded Systems: 

The control strategy can be deployed on embedded platforms (like Arduino, 

Raspberry Pi, or industrial PLCs) for real-world industrial automation 

applications. 

 Hybridization with Other Algorithms: 

Further hybrid combinations involving Differential Evolution (DE), or Whale 

Optimization Algorithm (WOA) can be explored to enhance performance. 

    By pursuing these directions, the robustness, efficiency, and applicability of 

cascade PID control strategies can be advanced further, making them even more 

suitable for next-generation smart industries. 
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APPENDIX I 
 

 

MATLAB codes for different algorithms as explained in section 3.4 are as follows: 

1. Genetic Algorithm Code: 

clc; clear; close all; 

 

%% System Parameters 

Af = 50; tau_f = 30; td_f = 1;    % Flow Process parameters 

Al = 0.13; tau_l = 3;             % Level Process parameters 

Ad = 1; tau_d = 10;               % Disturbance parameters 

Gr = 5;                           % ON/OFF Controller gain 

 

%% GA Parameters 

numGenerations = 100;              

populationSize = 25;                  

crossoverProbability = 0.8;        

mutationProbability = 0.4;         

elitism = 1;                                % Elitism Factor 

searchRange = [0 100];             % Search Range for PID gains 

 

%% Transfer Functions 

s = tf('s');  % Laplace variable 

 

% Flow process with delay approximation 

Gp_delay = (Af * (1 - td_f * s)) / ((tau_f * s + 1) * (td_f * s + 1)); 

 

% Level process 

Gl = Al / (tau_l * s + 1); 

 

% Disturbance transfer function 

Gd = Ad / (tau_d * s + 1); 
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% Combined Plant 

plant_combined = Gl * Gp_delay; 

 

%% Objective Function for GA 

fitnessFunc = @(x) PID_Performance_Modified(x, plant_combined, Gd); 

 

opts = optimoptions('ga', ... 

    'PopulationSize', populationSize, ... 

    'MaxGenerations', numGenerations, ... 

    'CrossoverFraction', crossoverProbability, ... 

    'MutationFcn', {@mutationuniform, mutationProbability}, ... 

    'EliteCount', elitism, ... 

    'Display', 'iter'); 

 

lb = [searchRange(1) searchRange(1) searchRange(1)];  % [Kp, Ki, Kd] lower 

bounds 

ub = [searchRange(2) searchRange(2) searchRange(2)];  % [Kp, Ki, Kd] upper 

bounds 

 

% Perform GA optimization 

[optimal_PID, fval] = ga(fitnessFunc, 3, [], [], [], [], lb, ub, [], opts); 

 

%% Display the optimized PID gains 

disp('Optimized PID Gains:'); 

disp(['Kp = ', num2str(optimal_PID(1))]); 

disp(['Ki = ', num2str(optimal_PID(2))]); 

disp(['Kd = ', num2str(optimal_PID(3))]); 

 

%% Evaluate the system with the optimized PID gains 

Kp_opt = optimal_PID(1); 

Ki_opt = optimal_PID(2); 
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Kd_opt = optimal_PID(3); 

 

% Create the PID controller with the optimized gains 

PID = Kp_opt + Ki_opt / s + Kd_opt * s; 

 

% Full forward path: Gr -> PID -> Plant 

Gforward = Gr * PID * Gp_delay; 

 

% First feedback (flow sensor Gp_delay itself) 

G1 = feedback(Gforward, Gp_delay); 

 

% Disturbance addition 

GwithDisturbance = G1 + Gd; 

 

% Passing through level process 

Gfinal_forward = GwithDisturbance * Gv; 

 

% Second feedback (level sensor Gv itself) 

Goverall = feedback(Gfinal_forward, Gv); 

 

%% Plot the system step response 

t = 0:0.1:40;  % Simulation time 

step(Goverall, t); 

title('System Response with Optimized PID Gains (GA)'); 

xlabel('Time (s)'); 

ylabel('Output'); 

grid on; 

 

%% --- Objective Function Definition --- 

function cost = PID_Performance_Modified(pid_params, plant, Gd) 

    Kp = pid_params(1); 

    Ki = pid_params(2); 
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    Kd = pid_params(3); 

     

    % Create PID controller 

    s = tf('s'); 

    PID = Kp + Ki/s + Kd*s; 

     

    % Full open-loop with PID 

    openLoop = PID * plant; 

     

    % Feedback loop for plant 

    closedLoop_plant = feedback(openLoop, plant); 

     

    % Disturbance effect addition 

    GwithDisturbance = closedLoop_plant + Gd; 

     

    % Final output considering disturbance 

    T_cl = feedback(GwithDisturbance, plant); 

 

    % Simulation time 

    t = 0:0.1:100; 

     

    % Step response 

    [y, ~] = step(T_cl, t); 

     

    % Compute absolute error assuming setpoint = 1 

    error = abs(y - 1); 

     

    % Integral of Absolute Error (IAE) as cost 

    IAE = trapz(t, error); 

        cost = IAE;  % minimize this 

end 
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2. Ant Lion Optimizer Code: 

clc; 

clear;  

close all; 

 

%% System Parameters 

Af = 50; tau_f = 30; td_f = 1;    % Flow Process parameters 

Al = 0.13; tau_l = 3;                  % Level Process parameters 

Ad = 1; tau_d = 10;                   % Disturbance parameters 

Gr = 5;                                       % ON/OFF Controller gain 

 

%% Transfer Functions 

s = tf('s'); 

Gv = Al / (tau_l * s + 1);  % Level process 

Gp_delay = (Af * (1 - 0.5 * s)) / ((tau_f * s + 1) * (0.5 * s + 1)); % Flow process with 

delay approximation 

Gd = Ad / (tau_d * s + 1);  % Disturbance 

plant_combined = Gv * Gp_delay; 

 

%% ALO Parameters (Ant Lion Optimizer Settings) 

nPop = 25;               % S.No.2: Population Size 

MaxIter = 100;           % S.No.1: Maximum Iterations 

dim = 3;                 % PID controller:  

lb = [0 0 0];            % Lower bounds 

ub = [100 100 100];      % Search Range (0–100) 

 

% Initialize ants and ant lions 

ants = rand(nPop, dim) .* (ub - lb) + lb; 

ant lions = ants; 

 

% Evaluate initial fitness 
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fitness = arrayfun(@(i) PID_Performance_Modified(ants(i, :), plant_combined, Gd), 

1:nPop)'; 

ant lion_fitness = fitness; 

 

% Identify elite 

[elite_fitness, elite_index] = min(ant lion_fitness); 

elite = ant lions(elite_index, :);  % S.No.4: Elitism Factor = 1 

 

% Main ALO Loop 

for iter = 1:MaxIter 

    ants_new = zeros(nPop, dim); 

     

    for i = 1:nPop 

        % Roulette wheel selection 

        idx = RouletteWheelSelection(1./(ant lion_fitness + 1e-8)); 

        selected_ant lion = ant lions(idx, :); 

 

        RW_1 = RandomWalk(selected_ant lion, lb, ub, iter, MaxIter); 

        RW_2 = RandomWalk(elite, lb, ub, iter, MaxIter); 

 

        ants_new(i, :) = mean([RW_1; RW_2], 1); 

    end 

 

    % Keep within bounds 

    ants_new = max(ants_new, lb); 

    ants_new = min(ants_new, ub); 

 

    % Evaluate new ants 

    for i = 1:nPop 

        f = PID_Performance_Modified(ants_new(i, :), plant_combined, Gd); 

        if f < ant lion_fitness(i) 

            ant lions(i, :) = ants_new(i, :); 
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            ant lion_fitness(i) = f; 

        end 

        if f < elite_fitness 

            elite = ants_new(i, :); 

            elite_fitness = f; 

        end 

    end 

 

    fprintf('Iteration %d: Best IAE = %.4f\n', iter, elite_fitness); 

end 

 

%% Display Results 

Kp = elite(1); Ki = elite(2); Kd = elite(3); 

disp('Optimized PID Gains using ALO:'); 

disp(['Kp = ', num2str(Kp)]); 

disp(['Ki = ', num2str(Ki)]); 

disp(['Kd = ', num2str(Kd)]); 

 

PID = Kp + Ki/s + Kd*s; 

closedLoop = feedback(PID * plant_combined + Gd, 1); 

t = 0:0.1:40; 

step(closedLoop, t); 

title('System Response with Optimized PID Gains (ALO)'); 

xlabel('Time (s)'); ylabel('Output'); grid on; 

 

%% Functions 

function cost = PID_Performance_Modified(pid_params, plant, Gd) 

    Kp = pid_params(1); Ki = pid_params(2); Kd = pid_params(3); 

    s = tf('s'); 

    PID = Kp + Ki/s + Kd*s; 

    T_cl = feedback(PID * plant + Gd, 1); 

    t = 0:0.1:100; 
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    [y, ~] = step(T_cl, t); 

    error = abs(y - 1); 

    cost = trapz(t, error); 

end 

 

function idx = RouletteWheelSelection(prob) 

    prob = prob / sum(prob); 

    cumProb = cumsum(prob); 

    r = rand(); 

    idx = find(r <= cumProb, 1, 'first'); 

end 

 

function RW = RandomWalk(center, lb, ub, iter, max_iter) 

    dim = length(center); 

    steps = max_iter; 

    walk = cumsum(2 * (rand(steps, dim) > 0.5) - 1); 

    walk = (walk - min(walk)) ./ (max(walk) - min(walk) + eps); 

    lower = lb + (center - lb) * (iter / max_iter); 

    upper = ub - (ub - center) * (iter / max_iter); 

    idx = round(linspace(1, steps, 1)); 

    RW = lower + walk(idx, :) .* (upper - lower); 

end 
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3. GA-ALO Hybrid Algorithm Code: 

clc;  

clear;  

close all; 

 

%% --- System Parameters --- 

Af = 50; tau_f = 30; td_f = 1;    % Flow process 

Al = 0.13; tau_l = 3;                  % Level process 

Ad = 1; tau_d = 10;                   % Disturbance 

Gr = 5;                                       % ON/OFF Controller gain 

 

%% --- Transfer Functions --- 

s = tf('s'); 

Gl = Al / (tau_l * s + 1); 

Gp_delay = (Af * (1 - 0.5 * s)) / ((tau_f * s + 1) * (0.5 * s + 1)); 

Gd = Ad / (tau_d * s + 1); 

plant_combined = Gl * Gp_delay; 

 

popSize = 25; 

maxGAgen = 100; 

dim = 3; 

lb = [0 0 0]; 

ub = [100 100 100];  % Updated range 

 

fitnessFunc = @(x) PID_Performance_Modified(x, plant_combined, Gd, 'IAE'); 

 

global ga_final_population; 

ga_final_population = []; 

 

opts = optimoptions('ga', ... 

    'Display', 'iter', ... 
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    'PopulationSize', popSize, ... 

    'MaxGenerations', maxGAgen, ... 

    'CrossoverFraction', 0.8, ... 

    'MutationFcn', {@mutationuniform, 0.4}, ... 

    'EliteCount', 1, ... 

    'OutputFcn', @savePopulation); 

 

[ga_best_sol, ga_best_val] = ga(fitnessFunc, dim, [], [], [], [], lb, ub, [], opts); 

 

fprintf('\n--- GA Completed ---\n'); 

global ga_final_population; 

ga_pop = ga_final_population; 

 

%% --- ALO Parameters Table --- 

% S.No. Parameter             Value 

% 1     Maximum Iterations    100 

% 2     Population Size       25 

% 3     Random Walk Ratio     Adaptive 

% 4     Elitism Factor        1 

% 5     Search Range          [0, 100] 

 

nPop = popSize; 

MaxALOIter = 100; 

ants = ga_pop; 

ant lions = ants; 

 

fitness = arrayfun(@(i) PID_Performance_Modified(ants(i, :), plant_combined, Gd, 

'IAE'), 1:nPop)'; 

ant lion_fitness = fitness; 

 

[elite_fitness, elite_index] = min(ant lion_fitness); 

elite = ant lions(elite_index, :); 
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%% --- ALO Main Loop --- 

for iter = 1:MaxALOIter 

    ants_new = zeros(nPop, dim); 

 

    for i = 1:nPop 

        idx = RouletteWheelSelection(1 ./ (ant lion_fitness + 1e-8)); 

        selected_ant lion = ant lions(idx, :); 

 

        RW_1 = RandomWalk(selected_ant lion, lb, ub, iter, MaxALOIter); 

        RW_2 = RandomWalk(elite, lb, ub, iter, MaxALOIter); 

 

        ants_new(i, :) = mean([RW_1; RW_2], 1); 

    end 

 

    ants_new = max(ants_new, lb); 

    ants_new = min(ants_new, ub); 

 

    for i = 1:nPop 

        f = PID_Performance_Modified(ants_new(i, :), plant_combined, Gd, 'IAE'); 

        if f < ant lion_fitness(i) 

            ant lions(i, :) = ants_new(i, :); 

            ant lion_fitness(i) = f; 

        end 

        if f < elite_fitness 

            elite = ants_new(i, :); 

            elite_fitness = f; 

        end 

    end 

 

    fprintf('Hybrid Iter %d: Best IAE = %.4f\n', iter, elite_fitness); 

end 
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%% --- Final PID and Plot --- 

Kp = elite(1); Ki = elite(2); Kd = elite(3); 

disp('Optimized PID Gains using Hybrid GA-ALO (IAE):'); 

disp(['Kp = ', num2str(Kp)]); 

disp(['Ki = ', num2str(Ki)]); 

disp(['Kd = ', num2str(Kd)]); 

 

PID = Kp + Ki/s + Kd*s; 

closedLoop = feedback(PID * plant_combined + Gd, 1); 

t = 0:0.1:100; 

 

step(closedLoop, t); 

title('System Response with Optimized PID Gains (Hybrid GA-ALO - IAE)'); 

xlabel('Time (s)'); 

ylabel('Output'); 

grid on; 

 

%% --- Supporting Functions --- 

 

function cost = PID_Performance_Modified(pid_params, plant, Gd, mode) 

    if nargin < 4 

        mode = 'IAE'; 

    end 

    Kp = pid_params(1); Ki = pid_params(2); Kd = pid_params(3); 

    s = tf('s'); 

    PID = Kp + Ki/s + Kd*s; 

    T_cl = feedback(PID * plant + Gd, 1); 

    t = 0:0.1:100; 

    [y, ~] = step(T_cl, t); 

    error = y - 1; 
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    switch mode 

        case 'ISE' 

            cost = trapz(t, error.^2); 

        case 'IAE' 

            cost = trapz(t, abs(error)); 

        case 'ITAE' 

            cost = trapz(t, t .* abs(error)); 

        otherwise 

            error('Invalid mode'); 

    end 

end 

 

function idx = RouletteWheelSelection(prob) 

    prob = prob / sum(prob); 

    cumProb = cumsum(prob); 

    r = rand(); 

    idx = find(r <= cumProb, 1, 'first'); 

end 

 

function RW = RandomWalk(center, lb, ub, iter, max_iter) 

    dim = length(center); 

    steps = max_iter; 

    walk = cumsum(2 * (rand(steps, dim) > 0.5) - 1); 

    for d = 1:dim 

        walk(:, d) = (walk(:, d) - min(walk(:, d))) ./ (max(walk(:, d)) - min(walk(:, d)) + 

eps); 

    end 

    lower = lb + (center - lb) * (iter / max_iter); 

    upper = ub - (ub - center) * (iter / max_iter); 

    RW = lower + walk(end, :) .* (upper - lower); 

end 
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function [state, options, optchanged] = savePopulation(options, state, flag) 

    global ga_final_population; 

    optchanged = false; 

    if strcmp(flag, 'done') 

        ga_final_population = state.Population; 

    end 

end 
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