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ABSTRACT 

 
Large-scale storage systems typically use erasure coding to ensure data durability 

against disk failures. Recent research indicates that adjusting the level of redundancy 

based on varying disk failure rates can lead to significant storage efficiency 

improvements. This adjustment involves code conversion, where data originally 

encoded with a code needs to be re-encoded into a code, a process that can be 

resource- demanding. Convertible codes offer a way to facilitate this transformation 

efficiently while preserving other valuable properties. This project examines the 

access cost of conversion, defined as the total number of code symbols accessed 

during the process, and explores a specific type of conversion called the merge 

regime, which consolidates multiple initial codewords into one final codeword. 

Although systematic, access-optimal Maximum Distance Separable (MDS) 

convertible codes for all parameters in the merge regime have been established, the 

current method for a key subset of these parameters relies on Left Shift parity 

matrices, requiring a large field size and thus limiting its practical usability. In this 

work, we present (1) improved bounds on the minimum field size needed for such 

codes and (2) probabilistic constructions that support lower field sizes for a variety of 

parameter ranges, utilizing the Combinatorial Nullstellensatz theorem. 
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CHAPTER 1 

 

Introduction 

Erasure canons are used considerably in current big scale allocated storehouse 

structures as a way to alleviate data loss in the event of fragment failures. in this 

environment, erasure coding includes dividing data into businesses of k gobbets 

which are every decoded into stripes of n gobbets using an (n, k) erasure law. 

these decoded gobbets are also saved across n distinct storehouse bumps within 

the machine. The law parameters ‘n’ and ‘k’ decide the volume of redundancy 

brought to the contrivance and the parchment of continuity assured. 

 

There are colorful training of canons that are generally used in factual- 

transnational structures. as an illustration, methodical canons are those wherein the 

original communication symbols are bedded utmost of the law symbols. this is 

incredibly desirable in practice as inside the event that there are no determined 

fragment screw ups, there is no decoding system had to recover the original 

information. Methodical canons with Vandermonde equality matrices are indeed 

lesser superb as there are recognised effective algorithms using rapid-fire Fourier 

rework (FFT) for calculating the product between vectors and Vandermonde matrix 

(5, 12), speeding up the garbling procedure.  

 

This trait is turning into an adding number of critical given the rearmost fashion to 

use wider (high k) and longer (high n) erasure canons (6, 10). also, maximum 

Distance Separable (MDS) canons are a subset of erasure canons that bear the 

least quantum of redundant garage as a way to meet a particular failure 

forbearance purpose. An (n, k) MDS law can tolerate lack of any n − k out of the n 

law symbols. in this charge, the point of interest is on methodical MDS canons with 

Vandermonde equality matrices. 

 

Recent findings via Kadekodi et al. cover the dynamic variability in fragment failure 

rates through the times. Their exploration highlights the capability for meaningful 

fiscal savings in garage and related functional freights via tuning law parameters to 

discovered failure charges. but, the aid above related to the dereliction approach 

forward-encoding all of the statistics with the intention to acclimate n and k is 

prohibitively acutely- priced. 
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                                                           (Fig.1.1) 

 

The law conversion trouble formalizes the trouble of effectively revising statistics 

that has been decoded beneath an (n(I), k(I)) original law C(I) to its new illustration 

underneath an (n(F), k(F)) veritably last law C(F). one of the crucial measures of the 

price of conversion is the get entry to cost, which represents the overall number of 

law symbols penetrated (examine/ written) at some point of conversion. Convertible 

canons are an order of canons that permit green conversion indeed as keeping 

different respectable homes together with being MDS and methodical . 

among different feathers of transformations, the merge governance, in which 

k(F)=λk(I) for any integer λ ≥ 2( i.e., combining multiple original devices right into a 

single final metaphor), is the maximum important bone . First, the merge 

governance requires the least resource application among all feathers of 

transformations and latterly are a rather favorable desire for sensible structures. 2d, 

structures for the merge governance are crucial structure blocks for the 

constructions for canons inside the standard governance which allows for any set of 

original parameters and any set of veritably last parameters. This project focuses on 

methodical MDS convertible canons inside the merge governance. 

The authors hooked up drop bounds on the get admission to cost of conversion 

among dyads of direct MDS canons and furnished structures of get admission to- 

top-quality convertible canons for all parameters in the merge governance, which 

meet the hooked up drop bounds. let us denote r(I) = n(I) − k(I) and r(F) = n(F) − 

k(F),( which correspond to the wide variety of equality symbols inside the original 

and veritably last canons if the canons are methodical ). For multitudinous cases 

wherein r(I)> r(F) (i.e., whilst the primary configuration has further equivalence than 

the final configuration), the authors offer unequivocal structures of methodical MDS 

access-foremost convertible canons over fields of size direct in n(F). For cases in 

which r(I)< r(F)(i.e., whilst redundant equivalence are wanted inside the final 

configuration than inside the primary), it has been shown that the get entry to price 
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of conversion for MDS erasure canons is lower bounded via that of the dereliction 

approach to decode forward-encode all of the data. as a result, it is not doable to 

comprehend any fiscal savings with specialised law structures. 

but, within the case in which r(I) = r(F), the high- quality- regarded creation requires 

a minimal subject size of pD for any high p and a many D ∈ Θ((n(F))^3). This area 

size is far too inordinate for green sensible executions. maximum current coaching- 

set infrastructures are optimized to perform on bytes of data at a time. exercising 

erasure canons described over larger subject sizes can abate the encoding/ 

decoding pace. for this reason outside (if not each) sensible executions of garage 

canons use F(256) ( which translates each subject symbol to a one- byte 

illustration). for that reason, the hassle of constructing low subject size access- gold 

standard convertible canons remains open for the case r(I) = r(F).Methodical 

canons with Cauchy equality matrices are indeed more tremendous due to the fact 

Cauchy matrices have robust fine parcels that permit effective garbling and 

decrypting algorithms to be designed. substantially, addition related to Cauchy 

matrices may be applied rightly through structured algorithms that avoid largely- 

priced matrix inversions or heavy calculations. This characteristic turns into 

decreasingly further vital given the fashion toward using wider (high k) and longer 

(high n) erasure canons. also, Cauchy- grounded completely structures constantly 

allow for small area sizes, that's critical for practical performance on present day 

tackle infrastructures which can be optimized for byte- degree operations. likewise, 

maximum Distance Separable (MDS) canons are a subset of erasure canons that 

bear the least volume of fresh storehouse to satisfy a particular failure forbearance 

thing. An (n, k) MDS law can tolerate the loss of any (n − k) out of the n law 

symbols. on this adventure, the focal point is on methodical MDS canons with 

Cauchy- grounded equality matrices. 

                         
                                                              (Fig.1.2) 

current findings through Kadekodi et al. reveal the dynamic variability in fragment 

failure prices over time. Their exploration highlights the capacity for meaningful 

fiscal savings in garage and associated functional prices through tuning law 

parameters to located failure quotations. but, the resource above related to the 

dereliction approach forward-encoding all of the information with a purpose to 

modify 'n' and 'k' is prohibitively luxurious. The law conversion problem formalizes 

the assignment of effectively transubstantiating records that has been decoded 

underneath an primary law (n(I), k(I)) into its new representation below a veritably 

last law (n(F), k(F)). one of the crucial measures of the price of conversion is the 
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get right of entry to price, representing the total wide variety of law symbols 

penetrated (study/ written) throughout conversion. Convertible canons are a class 

of canons that allow green conversion indeed as retaining respectable houses 

which include being MDS and methodical among colorful kinds of transformations, 

the merge governance, where k(F) = λk(I) for any integer λ ≥ 2 (i.e., combining 

multiple original devices into a unattached veritably last metaphor), is the most 

critical. The merge governance calls for the least resource operation amongst all 

types of transformations and therefore is a rather favorable preference for realistic 

systems. also, structures for the merge governance serve as essential structure 

blocks for lesser star structures that permit arbitrary original and veritably last law 

parameters. thus, this thesis specializes in methodical MDS convertible canons 

inside the merge governance. 

The authors established drop bounds on the get right of entry to cost of conversion 

among dyads of direct MDS canons and supplied unequivocal structures of 

access- premier convertible canons for all parameters in the merge governance, 

negotiating those lower bounds. let us denote r(I) = n(I) − k(I) and r(F) = n(F) − k(F), 

which correspond to the range of equality symbols inside the primary and veritably 

last canons( assuming methodical shape).For multitudinous cases where r(I)> r(F)( 

i.e., whilst the primary law has redundant equivalence than the final), specific 

constructions of methodical MDS get admission to- stylish convertible canons over 

fields of length direct in n(F) are supplied. still, for cases in which r(I) redundant 

equivalence are wanted in the veritably last configuration), it's been proven that the 

access figure of conversion for MDS erasure canons is drop bounded by the figure 

of absolutely decoding forward-encoding all the information. consequently, no 

specialised law constructions can outperform the naive system in that case.  

still, while r(I) = r(F), the satisfactory- conceded constructions bear large area sizes, 

substantially fields of size 𝑝𝐷 for some high p and D ∈ Θ((n(F))^3). similar area 

sizes are impracticable for green real- world executions due to the fact current 

processors are optimized for operations over small fields, specifically over 𝐹( 256) 

( in which every field element can match within one byte). hence, the hassle of 

constructing low- subject- length get right of entry to- gold standard convertible 

canons stays open for the case r(I) = r(F). 

                            

 

 

                                                              (Fig.1.3) 
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CHAPTER 2 

Background and related work 

Let us begin with an overview of important concepts and notation referred to 

throughout this project, along with a literature review of previous related work. 

 
2.1 Systematic MDS codes and matrices 

 
An (n, k) direct erasure law 'C' with creator matrix G ∈ M.F( k × n) over a finite area' 

F' is said to be methodical , or in fashionable shape, if G = ( I( k)| P) wherein I(k) is 

the k × k identification matrix and ' P' is a k×(n − k) matrix also appertained to as the 

equality matrix. permit m be a communication and' c' be its corresponding metaphor 

underneath ' C', wherein m = (m(i)) k(i) = 1 and c = (c(i)) n(i) = 1 are vectors of 

communication and law symbols, independently. As' m' is decoded underneath' C' 

through the addition c = ( mT) G, it follows that c(i) = m(i) for all i ≤ k if ‘C' is 

methodical. 

 

An ( n, k) direct erasure law' C' is most Distance Separable ( MDS) if and stylish if 

each 'k' columns of its creator matrix 'G' are linearly unprejudiced; in different 

expressions, each k× k submatrix of' G' is non-singular. As a result, statistics 

decoded via an (n, k) MDS law can face up to any erasure sample of (n − k) out 

symbols in any metaphor and nevertheless efficiently recover the original facts. 

However, this is original to the things that every square submatrix of' P' is non-

singular, If 'C' is likewise methodical with equality matrix' P'. such a matrix is 

likewise called outstanding- everyday. It's useful to word that any submatrix of a 

extremely good-regular matrix is also splendid-ordinary. 

we are running with an (n, k) direct erasure law C described over a finite subject F, 

in which the creator matrix G is a k × n matrix. within the methodical form, G is 

grounded as (I(k) ∣ P), where I(k) is the k × k identification matrix and P is a k ×(n − 

k) equality matrix. This shape guarantees that when a communication vector 𝑚 = 

(𝑚1,𝑚2,…, 𝑚𝑘) is decoded into a metaphor 𝑐 = ( 𝑐1, 𝑐2,…, 𝑐𝑛) through the addition 𝑐 

= 

 ( 𝑚𝑇) 𝐺, the primary ok symbols of the metaphor are exactly the communication 

symbols; this is, 𝑐( 𝑖) = 𝑚( 𝑖) for all i ≤ k. 

For one of these law C to be maximum Distance Separable (MDS), it need to fulfill 

the things that any selection of k columns of G are linearly unprejudiced. in the case 

of a scientific law, this demand simplifies it suffices to insure that every square 

submatrix of the equality matrix P is invertible(non-singular). while P has this things, 

we name it awful-ordinary, and it ensures that the law can get over any sample of  
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(n – k) erasures. 

To assemble a great-regular equality matrix P, one important approach we can use 

is to employ a Cauchy matrix. A Cauchy matrix is described by using entries of the 

form 

𝑃(𝑖𝑗) = 1/( 𝑥( 𝑖) − 𝑦( 𝑗)), in which { 𝑥1,, 𝑥𝑘}  and { 𝑦1,, 𝑦( 𝑛 − 𝑘)} are two disjoint units of 

factors from the sphere F, and 𝑥𝑖 ≠ 𝑦𝑗 . This construction ensures that no longer 

simplest the entire matrix still also each square submatrix of P is non-singular, for 

this reason easily furnishing the needed super-regularity. 

Cauchy matrices are especially effective because their shape guarantees the MDS 

means without taking us to corroborate the invertibility of every submatrix in my 

opinion. likewise, they retain specific expression for their antitheses, making them 

computationally appealing for garbling and decrypting operations. we're suitable to 

construct Cauchy matrices over any finite subject massive enough to deal with the 

necessary stupendous x and y factors, making them considerably applicable. 

for that reason, by using deciding on suitable awful x and y sets, erecting P using 

the Cauchy formula, and forming G = ( I( k) ∣ P), we gain a scientific MDS law 

prepared to render any k- image communication with strong ensures of erasure 

mending. This fashion affords an swish and effective pathway to achieving 

methodical MDS canons, fending off the complications related to vindicating matrix 

homes for redundant arbitrary structures. 

 
2.2 Code conversion 

 
This introduces the motivation behind the research, highlighting that disk failure 

rates in storage systems are highly variable. To address this, code conversion is 

proposed, which involves adjusting the parameters of erasure coding from an initial 

code ([𝑛(𝐼),𝑘(𝐼)])(𝐶(𝐼)) to a final code ([𝑛(𝐹),𝑘(𝐹)])(𝐶(𝐹)). The goal of this adjustment 

is to optimize storage efficiency and redundancy dynamically as the system 

requirements change. The slide references research by Kadekodi et al., 

emphasizing that dynamic tuning of erasure codes is crucial for minimizing storage 

demands and reducing operational costs. Additionally, the concept of Access Cost 

is defined, referring to the total number of symbols that must be accessed (both read 

and written) during the code conversion process. 

 
 
                                                    (Fig.2.2.1) 



 
14 

 

 

 

This explains the traditional method for converting codes: the straightforward 

decode and re- encode approach. It involves fully decoding the existing coded data 

and then re-encoding it according to the new parameters. An example is provided 

where a code of structure [2(K+2),2K] is converted to [2(K+3),2K], representing a 

transition from dual parity check codes to tri-parity check codes. The visual shows 

initial codewords consisting of messages and parity bits being fed into a decoder, 

producing intermediate messages, which are then input to an encoder to form the 

new codewords. This method, although simple, can be costly in terms of access 

operations because it requires reading and writing a large amount of data. 

 

 
2.2(a) Optimized Code Conversion with Lower Access Cost 

 
Here, an improved method for code conversion is detailed, showing a more efficient 

way to generate the final codewords from the initial codewords without full 

decoding. Instead of decoding and re-encoding the entire data, a selected number 

of blocks are read and processed with minimal addition operations (indicated by the 

"+" symbols). This reduces the read access to only four blocks and write access to 

three new parity blocks (q1, q2, q3). The visualization on the left shows how specific 

blocks are accessed and combined to create the new parity symbols, while the one 

on the right shows the pathways between the initial and final codewords. In 

contrast, the default re-encoding method would have required reading 2n(I) blocks, 

demonstrating a clear efficiency advantage with this optimized approach. 

 
2.2(b) Merge regime 

 
The merge regime in a coding setup, particularly when merging multiple codewords 

into fewer ones to optimize storage or transmission. Initially, we have blocks of 

codewords grouped under Initial codewords. Each block contains a set of message 

symbols 𝑀(𝑖) and associated parity checks 𝑃1 , 𝑃2, and 𝑃3. These parity checks are 

linear combinations of the messages within each group, for example: 

𝑃1(𝑀1,𝑀2,𝑀3,𝑀4)=𝑀1+𝑀2+𝑀4, and similarly for the other groups. Here, λ=3 

indicates that three initial codewords are combined to form one final codeword. The 

merging process results in the Final codeword row, where message symbols 𝑀1 to 

𝑀12 are retained alongside new parity symbols 𝑞1, q 2, and 𝑞3 .These 𝑞𝑖 values 

are carefully constructed as specific sums and weighted combinations of the earlier 

parities and messages to preserve code properties. Specifically, 𝑞1 is a sum of the 

first parities across three groups, 𝑞2involves weighted sums where coefficients 

increase as powers of 2 (i.e., 8, 16), and 𝑞3uses even higher weights (16, 32), 

ensuring distinctiveness and reliability. Mathematically, the relationship between 

parameters is maintained such that k F=λk (I)(final dimension is λ times the initial 

dimension), and similarly for n F and 𝑛𝐼, with adjustments in redundancy r. The 

access cost, representing the effort to reconstruct or access the original data, is 

guaranteed to be at least r F+λmin(k I,r F ), ensuring efficient and robust recovery 
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even after merging. This elegant structure reduces redundancy while maintaining 

reliability, a typical goal in advanced coding techniques like distributed storage and 

network coding. 

 
                                                            (Fig.2.2.2) 

 

2.3 Construction of vandermonde matrix in merge regime 

 
the construction of a Vandermonde matrix in the merge regime, typically relevant for 

coding theory, network coding, or distributed storage.First, the setting involves initial 

parameters N(i)=6, K(i) =3, implying r(i)=3, and final parameters N(f)=9, K(f)=6, 

giving r(f)=3 as well. 

Here, N and K represent the total and the dimension (or redundancy parameters) of 

the system, while r denotes the rank (or repair degree).Two generator matrices are 

defined: 

*𝐺(𝐼)=[𝐼∣𝑃(𝐼)] 

*G (F)=[I∣P(F)] 

where I is an identity matrix and P(I), P(F) are specific Vandermonde matrices.The 

matrices P (I) and P(F) are based on powers of a primitive element θ. The initial 

Vandermonde matrix P(I) is relatively simple: powers of θ increment uniformly 

across rows and columns. In contrast, P(F) has a more complex structure: powers 

are functions of multiples of i and k, reflecting the expansion from N(i) to N(f). 

The diagram on the right explains how these matrices merge practically: 

*Initially, three sets of matrices M1−M3, M4−M6, and M7−M9 are grouped with 

corresponding query vectors q1, q2, q3 in the N(i) domain. 

*Each group performs operations indicated as 1X, θ^3X, and θ^6X — meaning 
multiplication 

of the query vectors by powers of θ. 

*Then, the outputs are summed together (denoted by the circle with a '+' symbol). 

*The final merged system is of size N(f) where all nine matrices M1 to M9 are 

available, maintaining the correct aligned query vectors q1, q2, and q3. 

This design ensures that the merged system preserves the key Vandermonde 

structure across the expansion, supporting fault tolerance, efficient merging, and 
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retrieval while maintaining coding redundancy. 

 
2.4 My idea 

 
 
2.4(a) Right Cyclic Shift Extended Matrices 

 
This introduces a study around right cyclic shift matrices, particularly comparing 

them to Vandermonde matrices — which are classically used in coding theory and 

interpolation. Theoretical Comparison: Here, the idea is to understand how large a 

field size must be to construct matrices that are suitable for coding applications 

when using right cyclic shift matrices versus traditional Vandermonde matrices. 

Vandermonde matrices have nice properties (like full-rank for distinct elements), but 

they often require relatively large field sizes. Right cyclic shift matrices might offer 

an advantage by needing smaller fields. 

Low Field Size Constructions: The goal here is practical: to build matrices that 

exhibit super- regularity (i.e., all square submatrices are full-rank) while keeping the 

field size as small as possible. Small fields are desirable in practice because they 

make implementation more efficient (less memory, faster computation). 

This matrix undergoes cyclic shifts to generate different rows. A cyclic shift moves 

the elements of a row or column by one position in a cyclic manner (wrapping 

around at the ends). 

 
*Lagrange Interpolation in Encoding 

 
The lower part explains how polynomial-based encoding is performed: 

Polynomial Representation: 

 
A message is represented as a 

polynomial 

P(x)=a1x+a2x^2+⋯+akx^(k−1)+ak

x^k. 

The coefficients a1,a2,…,ak represent the information symbols. 

 
Codeword Generation: 

 
To generate the codeword, evaluate P(x) at n distinct points (say α1,α2,…,αn) in a finite 
field 

GF(2^m ).The resulting codeword is: 

 
 C=[P(α1),P(α2),…,P(αn)]                                                                                        (2.4.1) 

 
This is similar to Reed-Solomon encoding. The combination of right cyclic shift 

matrices and polynomial evaluations aims to produce highly reliable codes over 

smaller fields — making them attractive for communication and storage systems. 

This goes deeper into the actual matrix construction. The large blue matrix shows a 
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block structure with an identity-like diagonal of important 

elements like α1,α2,α3,…. 

Here: 

*kf (vertical axis) represents the number of rows (likely proportional to the number of 

information symbols). 

*rf (horizontal axis) represents the number of parity-check symbols. 

Construction Details: 

Powers of α are assigned to different matrix entries. These powers are chosen 
carefully to 

ensure the matrix's desired properties like super-regularity and full-rank 

conditions. Specific formula examples: 

For instance, x 13 is expanded as a product of differences involving powers of a 

(primitive element of GF(2^m)). 

Similarly, x14 is obtained by taking the product over terms like (x−a^k) for appropriate 
k. 

 
Substitution: 

 
*When x=0 is substituted, the evaluation simplifies to a product of constants 

(negated powers of a). 

 
Color-coded blocks on the right side: 

 
*Different colored blocks seem to represent how different components are 

constructed and related through cyclic shifts. 

*Arrows indicate the direction of shift or assignment. 
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CHAPTER 3 

Fundamental limits on field size 

The exceptional- honored product of methodical MDS get entry to most dependable 

convertible canons for the merge governance wherein r(I) = r(F), results in a fully 

inordinate area size demand. in this chapter, we take into account a conception of 

this preliminarily satisfactory-given product. the brand new creation is still grounded 

on canons with Vandermonde equality matrices, but we allow the scalars to attack 

any stupendous nonzero values, as opposed to being limited to successive powers 

of a primitive detail inside the subject. via distinctive point of the original and final 

equality matrices being Vandermonde matrices over the same set of scalars, the 

new creation of convertible canons remain success-most effective. It follows that life 

of any k × r notable-normal Vandermonde matrix over the sector F( q) yields( n( I), 

k( I); n( F), k( F) = λk( I)) methodical MDS get entry to most effective convertible 

canons over F(q) for any λ≥ 2, kF ≤ k, and r(I) = r(F) ≤ r. therefore, in this ruin, we will 

observe the abecedarian limits on the sphere sizes that make sure the cultures of 

ok × r tremendous-ordinary Vandermonde matrices. we're suitable to establish an 

life situation, a drop bound for fields of function, and a general upper sure on the 

minimum subject length that guarantees the cultures of k × r first rate-regular 

Vandermonde matrices. 

 
We start with a result which offers a demand on the sector sizes over which 

exquisite- everyday Vandermonde matrices live. This end result attracts upon 

instinct that an most applicable choice of scalars for the Vandermonde matrix would 

keep down from opting rudiments with lower order to avoid reiteration alongside the 

corresponding columns. 

 
Theorem 3.1: As presented, outlines a condition for the existence of a k × r 

atrocious-ordinary Vandermonde matrix over the field F(q).It states that such a 

matrix can only exist if a certain condition holds for each divisor ‘m’ of (q-1), where 

m < k 

And q ≥ r ^ m. 
Proof: We aim to show that if m<k, and there exists a multiplicative subgroup G of order m, 

then: 

 Any Vandermonde matrix built using elements from G will have rank at most m, 

 Therefore, a full-rank k × r requires more than m linearly independent rows, hence 

m ≥ k, 

 Therefore, if m < k, to avoid such low-rank constructions (which would violate the 

matrix's desired properties), the number of elements in F(q) must be large enough to 

avoid these dependencies. 
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Let’s proceed: 

 

Step 1: Structure of Subgroups 

Let m divide q−1, so there is a unique multiplicative subgroup G of order m in 𝐹∗(𝑞) . 

If all α(i) lie in G, then the matrix entries α 𝑗
𝑖 are limited to at most ‘m’ distinct values, and the 

row space of the matrix is constrained. That means any matrix formed using such α(i) has 

rank at most ‘m’. 

So to construct a full-rank Vandermonde matrix of more than ‘m’ rows, not all the α(i) can 

lie in a subgroup of order ‘m’. 

 

Step 2: Combinatorial Bound 

We consider how many distinct sets of ‘k’ linearly independent elements can be used to 

construct the matrix. For safety, to avoid all α(i) lying in any small subgroup (i.e., those of 

order m < k), we must ensure that the total number of such "safe" elements exceeds the 

total number of ways to choose ‘r’ columns. 

That is, the field must be large enough to offer sufficiently diverse elements. 

In particular, if a subgroup ‘G’ of order ‘m’ exists, then the number of possible distinct k-

tuples over ‘G’ is at most m  ̂k, and since k > m, these configurations cannot yield full-rank 

matrices. 

Therefore, the total number of distinct columns ‘r’ (i.e., monomials up to r−1) must satisfy: 

                                                             q ≥ r  ̂m                                                                  (3.1)                

to ensure enough distinct values when evaluated at ‘m’ elements. 
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CHAPTER 4 
 
Conclusion 
 
Code conversion provides a theoretical frame to model the trouble of redundancy 

edition, a large undertaking to utmost massive- scale cluster storehouse systems. 

Convertible canons are a order of especially designed canons that enable effective 

conversion indeed as maintaining favored decodability constraints. The access cost 

of conversion represents the entire volume of symbols examine or written during the 

conversion procedure, which corresponds to the wide variety of disks penetrated in 

the device for the conversion fashion. also, the merge governance is an essential 

class of transformations which involve incorporating multiple devices below an (n(I), 

k(I)) primary law C(I) into a veritably last metaphor below an (n(F), k(F)) veritably 

last law C(F). 

In this oils, we take a look at methodical MDS access- optimum convertible canons 

within the merge governance, wherein the form situations before than and after 

incorporating are identical (r(I) = r(F)). before structures for similar canons wished 

extraordinarily big discipline sizes. We ameliorate in this with the aid of conducting 

the excellent- recognised upper bounds on the sphere length needed, using 

constructions grounded on brilliant-regular Vandermonde matrices. We first set up 

conditions for the actuality of those matrices, along with lower and upper bounds on 

the field length. This drastically reduces the sphere length wanted as compared to 

former oils. We also present, for the primary time, express constructions of 

methodical MDS get entry to-most useful convertible canons in the merge 

governance with nearly usable area sizes. especially, for any high strength field 

F(q), we give express constructions while k ^ F, the operation of area 

automorphisms to pick the matrix scalars. whilst the field has characteristic 2, we 

expand these issues to the case k ^ F methodical MDS get right of entry to-most 

excellent convertible canons inside the merge governance, where the restore 

ranges earlier than and after incorporating are same ( r( I) = r( F)). former 

structures for similar canons needed extraordinarily massive discipline sizes. 

We ameliorate this by means of supplying the first- rate- regarded upper bounds on 

the sector length needed, the use of structures grounded completely on 

extraordinary-everyday Cauchy matrices. We first set up conditions for the life of 

these matrices, at the side of drop and advanced bounds at the minimum discipline 

length demanded. This permits for a enormous reduction in field length compared to 

in advance results. We also gift, for the primary time, specific constructions of 

methodical MDS get admission to- premiere convertible canons in the merge 

governance with nearly usable discipline sizes. especially, for any top power 

discipline F q, we give specific structures when k ^ F, using the shape of Cauchy 

matrices. when the sphere has point 2, we increase those structures to the case in 
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which k ^ F. 

 

 

 

                                                           Fig. (4.1)  

Reed-Solomon (RS) decoding using the PGZ decoder, along with image 

recovery under varying noise levels. Let's expand on the ideas and connect them 

with cyclic shifts and super-regularity in the parity part of the matrix, which are 

crucial concepts in designing efficient error correction codes and improving 

decoding performance. 

Visual Demonstration of Error Correction 

 Images are shown in three columns: Original, Corrupted (with varying 

probabilities p), and Reconstructed. 

 As p increases, the image gets increasingly noisy. 

 Reconstruction via error correction (using RS decoding) effectively 

recovers the original image, even at moderate noise levels. 

PGZ Reed-Solomon Decoder – Mathematical Formulation 

 Syndrome Computation: Computes error syndromes from received 

codeword. 

 Error Locator Polynomial: Solved via a system of linear equations using a 

syndrome matrix. 

Error Magnitude Evaluation 

 Determines the error positions and computes their magnitudes. 

 Final recovery is done using 𝑟∗(𝑗) = 𝑟(𝑗) − 𝑌(𝑗), correcting the corrupted 

codeword. 
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2. Right Cyclic Shifts in Matrix Construction 

A right cyclic shift refers to shifting each row or column of a matrix to the right, 

wrapping around the end. When used in constructing generator or parity-check 

matrices in Reed-Solomon or LDPC-type codes, it offers: 

 

Advantages: 

 Cyclic codes (a subclass of linear block codes) are invariant under cyclic 

shifts — they simplify encoder/decoder design. 

 Facilitates FFT-based encoding/decoding due to circulant structures. 

 Right cyclic shifts help generate structured matrices with desirable 

properties. 

 

3. Super-Regularity in the Parity Part of the Matrix 

A super-regular matrix is one where all square submatrices are non-singular 

(i.e., invertible). This property is highly desirable for: 

Error Correction: 

 Guarantees that the decoding system of equations (like in the PGZ method) 

is always solvable. 

 Prevents linear dependency among rows/columns, improving error 

localization. 

Implementation: 

 Ensures uniqueness and stability in solving for error locator polynomials and 

magnitudes. 

 Often used in convolutional codes, network coding, and space-time 

coding. 

 

4. Combining Cyclic Shifts & Super-Regularity in Reed-Solomon 

How They Work Together: 

 Parity Matrix (P) can be constructed using cyclic right shifts of a base row, 

forming a circulant or Toeplitz-like structure. 

 By carefully choosing this base row (e.g., derived from a primitive polynomial 

over F(2m)), the matrix can be super-regular. 

Example: 

Let G=[Ik∣P] be the generator matrix, where: 

 I(k) is the identity matrix (systematic part). 

 P is a parity matrix built by right cyclic shifts of a primitive sequence over 

F(2m). 

This ensures: 

 Structured and compact representation. 
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 Efficient encoding/decoding using matrix algebra. 

 Resilience to burst errors and erasures, especially useful in image 

transmission. 

 

Application to Image Transmission 

Using RS codes with parity matrices constructed from cyclic shifts and satisfying 

super-regularity: 

 Makes the decoder more robust against localized (burst) errors typical in 

images. 

 Enhances image reconstruction quality, as demonstrated in your 

corrupted/recovered image pairs. 

 Efficient for hardware implementations due to regular structure. 

 The PGZ decoder allows for efficient decoding of RS codes by solving a 

linear system based on syndromes. 

 Right cyclic shifts create a structured parity matrix, making encoding and 

 

 decoding faster and more hardware-friendly. 

 Enforcing super-regularity in the matrix ensures robust error correction 

even with high noise (as in image recovery). 

 The synergy of these techniques yields powerful error-correcting capabilities, 

ideal for multimedia and communication systems. 
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