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Abstract

In this project, I explored a new and more efficient way to summarize videos

by focusing on the most important moments—what we call keyshots. Instead of

relying on the usual complex models like bi-directional LSTMs with attention,

which are not only difficult to implement but also require a lot of computational

resources, I took a different route. I designed a simpler model based on a soft

self-attention mechanism that’s much easier to work with and faster to train.

What makes this approach stand out is that it processes the entire video

sequence in just one forward and one backward pass during training. That

means it’s not only lightweight but also well-suited for real-world applications

where speed and efficiency matter. The self-attention mechanism allows the

model to understand the importance of each frame in the context of the whole

video—without needing any complex recurrence.

I tested this method on two popular video summarization datasets, TvSum

and SumMe, and was excited to see that it outperformed many of the existing

state-of-the-art techniques. This showed me that a simpler, more streamlined

approach can still deliver powerful results. It was a rewarding experience to

challenge the norm and come up with a solution that’s both practical and effective.
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Chapter 1

INTRODUCTION

1.1 Introduction to video summarization

The proliferation of personal videos, educational lectures, video diaries, social

media messages, and other video content has led to video becoming the dominant

medium for information exchange. According to the Cisco Visual Networking

Index: Forecast and Methodology, 2016–2021, video was projected to constitute

approximately 80

Video summarization refers to the process of condensing a video sequence

into a more compact form while preserving its essential informational content.

This can be achieved either through the extraction of representative still frames,

commonly referred to as keyframes, or by generating a shorter video sequence

composed of selected segments, known as keyshots or dynamic summaries. This

process is conceptually analogous to lossy video compression, where individual

frames serve as the basic units of reduction. In the present work, I concen-

trate specifically on keyshot-based video summarization. Video summarization

presents an inherently complex challenge, even for human observers. To deter-

mine the most significant segments within a video, one must view the entire

content and subsequently select portions based on the desired summary length.

Ideally, keyshots should comprise segments that are both highly representative

of the source video and mutually diverse in content. Several existing methods

approach this problem by formulating it as a clustering task, using cost functions

that emphasize representativeness and diversity. However, accurately defining the

degree to which selected keyshots represent the original content and differ from

one another is particularly challenging, as it must align with the viewer’s percep-

tion of informational relevance. Conventional techniques attempt to approximate

this by analyzing motion features, computing distances between color histograms,
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Figure 1.1: Each output from self-attention is influenced by a unique weight on
every input feature. The weights allow us to calculate a weighted average of the
input data which we then send to a neural network to measure how important
each frame is.

measuring image entropy, or utilizing features derived from 2D/3D convolutional

neural networks (CNNs) to assess semantic similarity. Despite their sophistica-

tion, these approaches fall short of fully capturing the contextual information

embedded within video sequences.

To achieve automated summarization that approaches the quality of human-

generated summaries, it is imperative that machines learn from human behavior.

This can be effectively accomplished through behavioral cloning or supervised

learning methodologies, allowing models to mimic human decision-making in the

summarization process. Early approaches to video summarization predominantly

relied on unsupervised methods, utilizing low-level spatio-temporal features in

conjunction with dimensionality reduction and clustering techniques. The effec-

tiveness of these methods hinges on the ability to define appropriate distance or

cost functions that measure the similarity between candidate keyshots or frames

and the original video content. However, as previously discussed, accurately cap-

turing such relationships is a highly non-trivial task. Moreover, these methods

inherently introduce bias based on the nature of the features employed—whether

semantic, structural, or pixel-level—thereby limiting their generalizability and

performance.
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In contrast, supervised learning-based models offer a more robust alternative

by learning a mapping that generates summaries resembling those produced by

human annotators. This approach bypasses the need to manually define heuristic

distance functions and instead leverages annotated data to guide the learning pro-

cess. Currently, two publicly available datasets—TvSum and SumMe—provide

such annotated video summaries, each labeled by approximately 15 to 20 users.

Notably, these annotations exhibit significant variability, with inter-annotator

consistency reflected in a pairwise F-score of approximately 0.34. This low agree-

ment highlights the inherently subjective nature of video summarization.

Given this subjectivity, designing a universal metric for clustering video frames

into keyshots in a way that aligns with human judgment is particularly challeng-

ing. On this basis, I adopt a supervised learning approach in our work, as it

offers a more viable path toward generating high-quality, human-like video sum-

maries. Contemporary state-of-the-art approaches to video summarization pre-

dominantly utilize recurrent encoder-decoder architectures, typically employing

bidirectional Long Short-Term Memory (LSTM) networks [14] or Gated Recur-

rent Units (GRUs) [6], often enhanced with soft attention mechanisms [4]. While

these models have demonstrated considerable success in various sequence mod-

eling tasks—such as machine translation and image/video captioning—they are

computationally intensive, particularly in their bidirectional configurations.

There was a recent innovation by Vaswani et al. [34], switching sequence-to-

sequence modeling to an attention-only approach, with no reliance on recurrent

structures. On the basis of this idea, I propose VASNet, a model using only at-

tention and designed for creating video summaries using keyshot data. I evaluate

the results of VASNet on TvSum and SumMe datasets.

Because of its approach, VASNet can train and infer data without depending

on a sequential order. Instead, it uses basic matrix and vector methods which

makes it possible to process sequences with any length using just a forward and

backward pass. This framework computes the weighted average of input fea-

tures with weights generated using a self-attention method to estimate a frame’s

importance. An illustration of how the model works is shown in Fig. 1.

I believe that VASNet’s flexible design makes it suitable for other tasks that

involve sequences changing into sequences.

The key contributions of this work are as follows:

1. I introduce a novel approach to sequence-to-sequence transformation for

video summarization, based solely on a soft self-attention mechanism. In

3



contrast to existing methods, our model eliminates the need for complex

LSTM/GRU-based encoder-decoder architectures.

2. I empirically demonstrate that recurrent neural networks can be effectively

replaced by a simpler attention-based mechanism for the task of video sum-

marization, without compromising performance.

1.2 Related Work

People working on video summarization have quickly chosen to use new deep

learning techniques, paying special attention to encoder-decoder structures cou-

pled with attention mechanisms. This chapter highlights several important meth-

ods related to what I am doing.

Team Zhang et al. were the first to introduce LSTM networks for video sum-

marization. Their method effectively summarizes videos by paying attention to

all kinds of time differences in each frame. In addition, they use the determinan-

tal point process which naturally promotes selecting diverse subsets, to make the

summarization results better.

With this in mind, Ji et al. [15] added a deep attention network using a

bidirectional LSTM to extract contextual data from various video frames. Au-

thors Mahasseni et al. [23] suggested a novel adversarial network to minimize the

difference between the original video and its summary. Their approach depends

on a GAN to study the distribution of keyframes and produce coherent video

summaries.

In this work [42], the authors addressed unsupervised video summarization by

designing a deep processing network following an encoder-decoder model, trained

by reinforcement learning. By introducing a new reward that and considers di-

versity as well as being representative, their approach provides excellent perfor-

mance.

In addition, a hierarchical LSTM was designed by Zhang et al. [41] to manage

the temporal relationships in video data. Because of the segmentation type, their

model struggles to capture the structural organization of video scenes. Many

researchers have found that using side texts like titles, descriptions and comments

with visual aspects improves the results of video summarization. Rochan et al.

[29] suggested using deep learning for video summarization, allowing summaries

to be learned from single data without video.

Yuan et al. [39] presented a model that combines images and their related
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meanings to improve how image summaries are created. Furthermore, Wei et al.

[35] designed a framework for supervised learning that used manually prepared

textual descriptions as its reference. They built their method using an LSTM

encoder-decoder architecture which competes favorably with other approaches.

Still, the method’s success depends on the completeness of the annotations which

might take a lot of effort to prepare.

Fei et al. [9] suggested adding memories of each frame to a representation,

where the memories are predicted by separate models described in [16] and [8].

It is intended to maintain from memory the frames that provide both clear visual

information and stand out in the mind.

At the same time, other scientists have devoted their attention to methods

that do not involve supervision. In this case, the authors take features from video

frames, arrange the frames by their similarity and choose the most important ones

by removing those that are redundant. This method gives us a weight map from

the similarity graph which makes cluster inference easier.

Unlike other studies, Otani et al. [26] focused on deep features that reflect

things like the main objects, what actions are involved and what scenes appear.

They take features from every part of the video and clustering algorithms let

them quickly and precisely identify and explain what is most important.

1.2.1 Attention Techniques

Bahdanau et al. [4] suggested that attention in neural networks should be valued

as an important structure for machine translation. Neural models are able to

recognize based on their approach which areas of a sequence matter most for the

desired outcome. Besides the other factors in the model, these weights called

attention weights are also trained automatically during the chosen training task.

Hard attention and soft attention are the main categories into which most

attention mechanisms can be divided. Hard attention forces the model to choose

exactly what to attend to by using a series of two-part binary masks. In contrast,

Xu et al. [37] used this technique to develop image caption generation models.

Even so,Using stochastic sampling to train hard attention produces functions that

can’t be learned with back propagation. Therefore, the REINFORCE algorithm

[36] which applies reinforcement learning, is often selected to train these mod-

els. The authors Mnih et al. [24] interpret this design as introducing a policy

that controls attention for reinforcement learning. Like the other methods, our

approach does not use hard attention. As an alternative, soft attention produces
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attention weights that are smooth and differentiable, expressed as probabilities.

For this reason, backpropagation can be used across the whole network. Combin-

ing soft attention with LSTM networks is typical in many sequence-to-sequence

applications, like machine translation, creating image and video descriptions and

neural memories [22, 37, 38, 11]. Typically, soft mechanisms in attention handle

each attention weight by fusing the current input with the existing encoder or

decoder output. It is possible to check all incoming information at any step or

just the information connected to the area at hand. For this situation, the model

only considers one part of the sequence at any given time. It investigates how

each component in the sequence relates to other components. Reading, orga-

nizing thoughts into files and building general diagrams for sequences are well

managed by self-attention, as research has shown [5, 27, 20]. It’s beneficial that

the components of the sequence are all worked on with simple matrix operations,

so no intermediate data is necessary to look at.

1.3 Model Architecture

A common strategy for supervised video summarization and related sequence-to-

sequence transformation tasks involves the use of encoder-decoder architectures

based on Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU)

networks, typically augmented with attention mechanisms. To better capture

temporal dependencies, particularly those involving future frames that influence

keyshot selection, unidirectional LSTMs are often replaced with bidirectional

LSTM (BiLSTM) networks.

In contrast, the approach proposed in this work does not rely on recurrent

neural networks (RNNs) or specialized constructs such as BiLSTM to model non-

causal dependencies. Instead, it leverages the inherent non-sequential nature of

the attention mechanism, which provides unrestricted access to all positions in the

input sequence. This allows the model to simultaneously consider past and future

frames. Furthermore, the attention window can be easily modified—for instance,

to be asymmetric, dilated, or to exclude the current time step—depending on

specific task requirements.

Traditional encoder-decoder models suffer from a notable limitation: the en-

coder compresses the entire input sequence into a fixed-length hidden represen-

tation, which can lead to substantial information loss, particularly in the case

of longer sequences. The proposed attention-based model mitigates this issue by
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directly attending to the full input sequence at each step, thereby removing the

need for intermediate compression and preserving a higher degree of contextual

information.

The architecture introduced in this study entirely replaces the conventional

LSTM-based encoder-decoder framework with a soft self-attention mechanism,

followed by a two-layer fully connected network tasked with regressing frame-

level importance scores. The model receives as input a sequence

A common strategy for supervised video summarization and related sequence-

to-sequence transformation tasks involves the use of encoder-decoder architec-

tures based on Long Short-Term Memory (LSTM) or Gated Recurrent Unit

(GRU) networks, typically augmented with attention mechanisms. To better

capture temporal dependencies, particularly those involving future frames that

influence keyshot selection, unidirectional LSTMs are often replaced with bidi-

rectional LSTM (BiLSTM) networks.

In contrast, the approach proposed in this work does not rely on recurrent

neural networks (RNNs) or specialized constructs such as BiLSTM to model non-

causal dependencies. Instead, it leverages the inherent non-sequential nature of

the attention mechanism, which provides unrestricted access to all positions in the

input sequence. This allows the model to simultaneously consider past and future

frames. Furthermore, the attention window can be easily modified—for instance,

to be asymmetric, dilated, or to exclude the current time step—depending on

specific task requirements.

Traditional encoder-decoder models suffer from a notable limitation: the en-

coder compresses the entire input sequence into a fixed-length hidden represen-

tation, which can lead to substantial information loss, particularly in the case

of longer sequences. The proposed attention-based model mitigates this issue by

directly attending to the full input sequence at each step, thereby removing the

need for intermediate compression and preserving a higher degree of contextual

information.

The architecture introduced in this study entirely replaces the conventional

LSTM-based encoder-decoder framework with a soft self-attention mechanism,

followed by a two-layer fully connected network tasked with regressing frame-level

importance scores. The model receives as input a sequence X = (x0, . . . , xN),

where each x ∈ RD represents a feature vector extracted from individual video

frames via a convolutional neural network (CNN). It outputs a corresponding

sequence Y = (y0, . . . , yN), where each y ∈ [0, 1), indicating the importance score

of each frame. A detailed illustration of the model architecture is provided in
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Figure 1.2: Diagram of VASNet network attending sample xt .

Figure 1.1.

Unnormalized self-attention weights et,i are computed as an alignment score

between the input feature xt and each input sequence encoding xi, following the

formulation proposed by Luong et al. [?]:

et,i = s[(Uxi)
T (V xt)], t ∈ [0, N), i ∈ [0, N) (1.1)

Here, N denotes the number of video frames, and U and V are learnable weight

matrices jointly trained with other network parameters. The scalar s serves as

a scaling factor to mitigate the magnitude of the dot product (Uxi)
T (V xt). In

our implementation, we set s to a constant value of 0.06, based on empirical

tuning. The overall performance impact of this scaling was found to be negligible.

Alternatively, the attention vector can also be computed via an additive function,

as proposed by Bahdanau et al. [?]:

et,i = M tanh(Uxi + V xt) (1.2)

where M is an additional trainable weight matrix. While both additive

and multiplicative attention yield comparable performance, the latter offers su-

perior computational efficiency due to its formulation as a matrix multiplica-

8



tion—making it highly parallelizable.

The unnormalized attention scores et,i are subsequently converted into atten-

tion weights αt using the softmax function:

αt,i =
exp(et,i)∑N

k=1 exp(et,k)
(1.3)

The attention weights αt represent a probability distribution over the input

features, indicating their relative importance in computing the frame-level rele-

vance score at time step t.

Next, a linear transformation C is applied to each input vector xi, yielding

transformed features bi:

bi = Cxi (1.4)

A context vector ct is then computed by taking the weighted sum of the

transformed inputs bi, using the attention weights αt,i:

ct =
N∑
i=1

αt,ibi, ct ∈ RD (1.5)

This context vector ct is passed through a single-layer, fully connected network

with linear activation. A residual connection is added, followed by dropout and

layer normalization. The final transformed representation kt is given by:

kt = norm(dropout(Wct + xt)) (1.6)

1.3.1 Frame Scores to Keyshot Summaries

The model produces importance scores for each frame, which enable the identifi-

cation of keyshots. Following the method proposed by Zhang et al., this process

involves two main steps. First, the scenes are segmented to identify candidate

keyshot sections. Then, a subset of these keyshots is selected to maximize the

total importance of the frames, while ensuring that the combined duration of the

selected segments does not exceed 15% of the entire video length, as recommended

in [3].

Scene boundaries are detected using the Kernel Temporal Segmentation (KTS)

algorithm, described in [2]. For each detected shot i ∈ K, where K is the set

of all shots, the importance score si of the shot is calculated by averaging the

9



Figure 1.3: Temporal segmentation with KTS.

frame-level importance scores within that shot:

si =
1

|Fi|
∑
f∈Fi

sf

where Fi represents the set of frames belonging to shot i, and sf denotes the

importance score of frame f .

si =
1

li

li∑
a=1

yi,a (1.7)

where yi,a denotes the importance score of the a-th frame within shot i, and

li is the duration (in frames) of the i-th shot.

To select keyshots, a 0/1 knapsack algorithm is employed to maximize the

sum of selected segment scores while respecting the length constraint:

max
K∑
i=1

uisi s.t.
K∑
i=1

uili ≤ L, ui ∈ {0, 1} (1.8)

Keyshots for which ui = 1 are concatenated to form the final video summary.

For evaluation purposes, a binary summary vector is constructed, wherein each

frame in a selected shot is marked with ui = 1.

1.3.2 Model Training

We train our model using the ADAM optimizer [?] with a learning rate of 5×10−5.

This small learning rate is necessary because each training batch consists of a full

video, so the batch size is just one. To help prevent overfitting, we apply 50%

dropout and use L2 regularization with a weight of 10−5. Training is carried out

for 200 epochs, and we select the model that performs best on the validation set

based on the F-score.
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1.3.3 Computation Complexity

At every iteration, the self-attention mechanism performs the same set of oper-

ations for each input feature N , each distinguished by their dimension D. As a

result, the computational complexity is

O(N2D).

However, when recurrent layers are introduced, the situation changes. Recurrent

layers perform

O(N)

sequential operations, each having a complexity of

O(ND2).

Therefore, self-attention becomes computationally more efficient when the se-

quence length N is smaller than the feature dimension D. For longer video

sequences, a local attention mechanism is more efficient than a global one.

1.4 Evaluation

1.4.1 Datasets Overview

We ran our experiments on all the datasets used by the previous works: TVSum,

SumMe, OVP and YouTube. OVP and YouTube are only used to boost the train-

ing set. Differently, TVSum and SumMe are measured as evaluation baselines,

since they provide the only public data with exact keyshot-level annotations for

video summarization. Yet, assuming you are working with deep learning, these

datasets are too small to be effective. Details about the main traits of each

dataset can be found in Table

In the TVSum dataset, each video frame is assigned an importance score,

giving us fine-grained information about which moments matter most. SumMe,

on the other hand, takes a simpler approach by marking only the key segments as

important. For the OVP and YouTube datasets, the annotations are provided as

keyframes. To use them consistently with our method, we convert those keyframes

into frame-level scores and binary keyshot summaries.

11



Dataset Videos
User

annotations
Annotation

type
Video length (sec)

Min Max Avg
SumMe 25 15-18 keyshots 32 324 146

TvSum 50 20 frame-level
importance

scores
83 647 235

OVP 50 5 keyframes 46 209 98
YouTube 39 5 keyframes 9 572 196

Table 1.1: A quick look at the main traits and features of the TvSum and SumMe
datasets.

1.4.2 Ground Truth Preparation

For training, the model used the scores of each frame and to evaluate results,

binary summaries of keyshot scenes were used. Summary data contains both

types of annotations—keyshot-level and frame-level—with the frame-level scores

forming an average of all the user-created scores per keyshot. In the case of

TVSum data, I implemented the keyshot extraction method introduced in Section

3.1.

Unlike other datasets, the OVP and YouTube datasets provide annotations as

keyframes rather than keyshots. I firstly broke up the videos into shots with the

KTS algorithm. After that, I found the frames featuring keyframes and made sure

the generated summary was no longer than intended using the Knapsack algo-

rithm. Each keyshot’s score was worked out by dividing the number of keyframes

it had by its total frame count.

I used the same data used in the work done by Zhou et al. and Zhang et al. to

keep the results comparable. All four datasets here contain CNN-based feature

vectors, scene edges, scores for each frame and binary keyshot labels. From the

1024 dimensions in the GoogLeNet pool5 layer (which was trained on ImageNet),

I extracted my feature vectors.

For evaluation purposes, I used a 5-fold cross-validation strategy on both the

standard and random addition versions of the protocol suggested in previous

research. Under the canonical way, five different folds were produced for the

TVSum and SumMe datasets, using 80% for training and 20% for testing. Same

as in the regular setting, I employed an 80/20 split but added extra data from

the other datasets. For example, while training on SumMe under the augmented

setting, the training set included all samples from TVSum, OVP, and YouTube

along with 80
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Chapter 2

LITERATURE REVIEW

The field of video summarization has evolved significantly over the past decade,

transitioning from traditional feature-based approaches to sophisticated deep

learning architectures. This section provides a comprehensive analysis of ex-

isting methodologies, datasets, and evaluation metrics in video summarization

research.

2.1 Evolution of Video Summarization Techniques

Early video summarization approaches relied heavily on unsupervised techniques

utilizing low-level visual features. The work of De Avila et al. [7] introduced

VSUMM, a static video summarization method based on color histograms and

k-means clustering. While computationally efficient, such methods often failed to

capture semantic content. Gygli et al. [12,13] advanced the field by introducing

submodular optimization frameworks that balanced representativeness and diver-

sity in summary selection. These methods demonstrated improved performance

but remained limited by their dependence on handcrafted features.

The advent of deep learning brought transformative changes to video summa-

rization. Zhang et al. pioneered the use of LSTM networks for sequence model-

ing in summarization tasks, introducing the dppLSTM model [40] that combined

recurrent networks with determinantal point processes for diverse subset selec-

tion. This work established the encoder-decoder paradigm that would dominate

subsequent research. Ji et al. [15] enhanced this approach through attention

mechanisms, enabling the model to focus on relevant temporal contexts during

summary generation.
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2.2 Attention Mechanisms in Video Processing

Attention mechanisms have become fundamental to modern video understanding

systems. The seminal work of Bahdanau et al. [4] introduced neural attention

for machine translation, demonstrating its effectiveness in sequence-to-sequence

tasks. This inspired adaptations for visual domains, with Xu et al. applying

attention to image captioning and Ji et al. [15] extending it to video summariza-

tion.

Recent developments have seen attention mechanisms evolve beyond sim-

ple additive or multiplicative forms. Vaswani et al.’s Transformer architecture

demonstrated that attention alone could outperform recurrent networks in many

sequence modeling tasks. This inspired hybrid approaches like those of Fei et

al. [9], who combined attention with memory networks for improved summary

quality. The current state-of-the-art incorporates self-attention mechanisms that

model relationships between all frames simultaneously, as demonstrated by Lin

et al. [20] in their structured sentence embedding work.

2.3 Evaluation Methodologies and Datasets

The field has standardized around several benchmark datasets with distinct char-

acteristics. TvSum [32] provides frame-level importance scores across 50 diverse

videos, while SumMe offers keyshot annotations for 25 videos. These datasets

present complementary challenges: TvSum’s fine-grained scores enable precise

training but may introduce annotation noise, while SumMe’s keyshot annota-

tions better reflect real-world summarization tasks but with sparser supervision.

Evaluation metrics have similarly evolved. Early work relied on precision/recall

measures against keyframe annotations. Modern approaches use the F-score met-

ric proposed by Zhang et al. [40], which measures overlap between predicted and

ground truth keyshots. Recent work by Lin [19] has adapted ROUGE metrics

from text summarization for video evaluation, though these remain less commonly

used due to their computational complexity.

2.4 Current Challenges and Research Gaps

Despite significant progress, several challenges remain unresolved. The subjectiv-

ity of video summarization, evidenced by low inter-annotator agreement (typically

F-scores of 0.3-0.4), makes it difficult to establish definitive ground truth. Most

14



current methods, including state-of-the-art approaches like SUM-GAN [23] and

DR-DSN [42], require extensive labeled data for training but generalize poorly

across domains.

Computational efficiency presents another major challenge. While LSTM-

based models achieve strong performance, their sequential nature limits par-

allelization and makes real-time processing difficult. The recent shift toward

attention-based models like VASNet addresses some of these limitations but in-

troduces new challenges in managing quadratic memory requirements for long

sequences.
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Chapter 3

METHODOLOGY

3.1 System Architecture Overview

The proposed VASNet architecture employs a purely attention-based approach to

video summarization, eliminating all recurrent components. As shown in Figure

1.1, the system processes an input sequence of the characteristics of the frame X

= (x1,..., xN) through three primary components:

1. Feature Extraction Layer: Utilizes a pretrained CNN (GoogLeNet) to ex-

tract 1024-dimensional feature vectors from each video frame

2. Self-Attention Mechanism: Computes frame-to-frame attention weights us-

ing scaled dot-product attention

3. Regression Network: A fully connected two-layer network that predicts

frame-level importance scores

3.2 Detailed Component Design

3.2.1 Feature Processing Pipeline

Input videos are first segmented into frames at 2fps. Each frame passes through

a GoogLeNet model pretrained on ImageNet, with features extracted from the

pool5 layer. These features undergo L2 normalization and dimensionality reduc-

tion (1024D → 512D) via a learned linear projection:

x′
i = Wproj · xi + bproj (3.1)

where Wproj ∈ R512×1024 and bproj ∈ R512 are learnable parameters.

16



3.2.2 Attention Mechanism Implementation

The scaled dot-product attention follows the formulation:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3.2)

The scaling factor 1/dk prevents the gradient from vanishing in softmax.

Multi-head attention (4 heads) allows the model to jointly attend to informa-

tion from different representation subspaces.

3.3 Training Protocol

The model trains end-to-end using the following configuration:

1. Optimization: Adam optimizer (β1 = 0.9, β2 = 0.999) with learning rate

5× 10−5

2. Regularization: Dropout (p = 0.5) and L2 weight decay (λ = 10−5)

3. Batch Processing: Full video sequences (batch size=1) with dynamic

padding

4. Loss Function: The difference between the predicted values and the real

values was measured by using mean squared error.

Training proceeds for 200 epochs with early stopping based on validation F-score.

The learning rate follows a cosine decay schedule with warmup over the first 10

epochs.
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Chapter 4

RESULTS and DISCUSSION

4.1 Experiments and Results

The performance of the proposed VASNet model on the TvSum and SumMe

datasets, in comparison with recent state-of-the-art methods, is presented in Ta-

ble 3. To better understand how well the models capture user preferences, we

also report human performance. This is measured as the average pairwise F-score

between each user-generated summary and the ground truth summary. Table 2

provides a comparison between this human performance and the F-scores com-

puted among the individual user summaries.

Dataset Pairwise F score
Among users Training GT w.r.t.
annotations users annotations

(human performance)
SumMe 31.1 64.2
TvSum 53.8 63.7

Table 4.1: The average pairwise F-scores were computed to evaluate both the
consistency among user-generated summaries and the level of agreement between
the ground truth (GT) and each individual user summary.

Interestingly, human performance scores are generally higher than the pair-

wise F-scores among user summaries. This discrepancy is likely due to how the

ground truth summaries are generated. Specifically, the ground truth is formed

by averaging all user summaries and then converting the result into keyshots

aligned with scene change-points. These keyshots tend to be longer and have

more mutual overlap compared to the more discrete user-generated segments.

For instance, on the TvSum dataset, we observe a pairwise F-score of 53.8,

which is noticeably higher than the F-score of 36 reported by the original dataset

18



Figure 4.1: Performance gains achieved by VASNet in comparison to both existing
state-of-the-art approaches and human-level performance.

authors [32]. This difference arises from our evaluation protocol: we transform

each user summary into keyshots using the KTS algorithm, restrict their total

duration to 15

2*Method SumMe TvSum
Canonical Augmented Canonical Augmented

dppLSTM [40] 38.6 42.9 54.7 59.6
M-AVS [15] 44.4 46.1 61.0 61.8
DR-DSNsup [42] 42.1 43.9 58.1 59.8
SUM-GANsup [23] 41.7 43.6 56.3 61.2
SASUMsup [35] 45.3 - 58.2 -
Human 64.2 - 63.7 -
VASNet(proposed method) 49.71 51.09 61.42 62.37

Table 4.2: The VASNet model is assessed against leading techniques when mea-
sured through basic and extra evaluation criteria. The results for human perfor-
mance are also reported, showing the average F-score between the ground truth
and those who participated in the writing of summaries.

As shown in Table 3, our model outperforms all previous methods in both

canonical and augmented evaluation settings. On the TvSum dataset, VASNet

improves upon previous best results by 0.7

Figure 5 offers a visual representation of these improvements. The larger

performance gains on the SumMe dataset suggest that our attention mechanism

is particularly effective at extracting meaningful information from the ground

truth annotations. In contrast, the more modest improvements on TvSum can

be attributed to the dataset’s nature: most existing models already perform close
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to human level, leaving limited room for further enhancement.

Moreover, TvSum videos tend to be longer, as indicated in Table 1. Since

our model employs global attention, it must attend to every frame during each

prediction step. In lengthy videos, many frames—especially those far removed

in time—may offer limited contextual relevance, yet they are still considered by

the attention mechanism. This leads to increased variability in attention weights,

potentially undermining prediction accuracy.
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Figure 4.2: The relationship between the VASNet results and the true importance
scores was studied for videos number 10 and 11 from the TvSum dataset.

4.2 Quantitative Results

I compared the predicted scores and what was actually important by showing an

example from the TvSum dataset. Figure 6 shows what I looked at for videos 10

and 11. Since these videos have previously been studied, we were able to directly

compare them and gain useful insights [42]. Strong visual agreement between the

predicted and true scores suggests that the proposed model works well.

In addition to comparing the scores, I studied how well the final binary keyshot

summaries agreed with the ground truth annotations. Figure 7 shows how the

predicted results correspond to the real ones; predicted keyshots are shown as

light blue rectangles over the ground truth as gray lines. The study found that

predicted keyshots closely match the noticeable peaks in the ground truth and

ensure a solid coverage over the video time, supporting the quality of the resultant

videos.

I looked at the attention weights generated during the evaluation of TvSum

video 7, illustrated as a confusion matrix in Figure 8 to learn more about how the

model functions. As a result of this analysis, the attention mechanism pays most

attention to image frames with very high or very low importance, centered around

frames 80 (low) and 190 (low) and 95 (high) and 150 (high). Consequently, the

system can now link each frame to others that hold a similar level of importance.

You can notice interest changes happening precisely at the gray lines on the

confusion matrix that are the scene change points. These events were found using

the KTS algorithm, but never appeared in any stage of learning, inferencing or

creating the ground truth. It seems that the network is gaining the ability to

spot scene boundaries without explicit instructions, just by looking at the visual

scene and its importance.

Based on these results, I think the model could be used for scene segmenta-

tion, eliminating the requirement for post-processing by KTS. This area will be

carefully studied in future work.
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Figure 4.3: Ground truth frame-level importance scores (in gray), VASNet-
generated summary segments (in blue), and associated keyframes for TvSum
test video 7.

Figure 4.4: The attention weights for video 7 of TvSum (for test split 2) are
shown and at the bottom you can see the frame-level importance scores that the
algorithm used as ground truth. A horizontal and vertical green line is used to
mark one scene in relation to another screen. The data has been normalized so
that the attention values appear in the range from 0 to 1 and the video frames
are shown at 2 per second.
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Chapter 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

I introduce here a unique deep neural network for creating keyshot-based videos.

this method uses only soft, self-attention for summarization. Unlike traditional

LSTM-based encoder-decoder models are used as one example of these approaches.

The transformation between sequences in my network is done without recurrence.

I make it clear that, within the problem of supervised keyshot video summariza-

tion, the model achieves better results than the leading state-of-the-art systems

on TvSum and SumMe. datasets. One important benefit of my method is that

it is simple. This model is not restricted only although it is a lighter approach

than LSTM-based, it is still quite easy to implement. Because encoder-decoder

methods are used, it can be adapted for use in embedded systems. on zwykle

on low-power platforms. A single global self-attention layer is added to the stan-

dard architecture then two fully connected layers. I was deliberate in choosing a

minimal design by not including positional en’s Using coding and complex atten-

tion networks helps build a good basis for self-attention- based on creating short

videos that give an overview. I think that adding local attention mechanisms

would benefit my approach. Working on positional encodings could lead to even

greater performance gains, I think. we plan to further look into these extensions

in future work.
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5.2 Future Scope

While the proposed self-attention-based model for video summarization demon-

strates strong performance and architectural simplicity, there are several promis-

ing directions to explore for future improvement and application:

Incorporation of Positional Encoding As the current model omits positional

information, integrating positional encoding could help the network better un-

derstand temporal relationships between frames. This addition may enhance the

model’s ability to preserve video structure and improve summary coherence.

Local Attention Mechanisms The use of global attention may introduce noise,

particularly in longer videos. Exploring local or hierarchical attention mecha-

nisms could allow the model to focus more effectively on contextually relevant

frames and reduce unnecessary attention drift.

Multi-modal Inputs Integrating additional modalities such as audio cues, mo-

tion features, or textual metadata (e.g., speech transcripts or video descriptions)

could enrich the summarization process and lead to more semantically meaningful

summaries.

Unsupervised and Semi-supervised Learning The current model is trained in a

supervised setting. Extending it to unsupervised or semi-supervised frameworks

could make it more applicable in real-world scenarios where annotated data is

limited or unavailable.

Real-time and Streaming Summarization Optimizing the model for real-time

summarization would expand its utility in applications like live video analysis,

surveillance, and mobile streaming platforms. Techniques such as frame-by-frame

incremental attention updates could be explored.

Generalization to Diverse Video Domains Future work can test the model’s

performance on a wider variety of video genres (e.g., sports, news, educational

content) and benchmark datasets to assess its generalizability and robustness.

Scene Segmentation as a Byproduct Preliminary results suggest that the

model’s attention transitions correlate with scene changes. This opens up the

possibility of extending the model to perform scene segmentation directly, poten-

tially eliminating the need for external segmentation tools like KTS.

Model Compression and Deployment Further investigation into model prun-

ing, quantization, or knowledge distillation can make the model even more effi-

cient for deployment on edge devices and low-power environments.
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