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Integrative Computational Framework for Dopamine D3 
receptor-Targeted Drug Discovery: Bridging Genetic 

Variability, Structural Dynamics, and Machine Learning 
 

AKSHAY HATWAL 
 

ABSTRACT 
 
Aim: The Dopamine D3 receptor (D3R), a G-protein coupled receptor predominantly expressed in 
the limbic system, plays a pivotal role in modulating reward, cognition, and emotional behaviors, and 
is implicated in neuropsychiatric and neurodegenerative disorders such as Parkinson’s disease and 
schizophrenia. Given its therapeutic relevance, this study presents an integrated computational 
framework to elucidate the structural and functional consequences of D3R mutations, their impact on 
ligand binding, and the application of advanced machine learning for drug discovery. Evolutionary 
conservation analysis using ConSurf identified functionally critical regions within D3R, while 
PredictSNP predicted deleterious effects for 73 out of 405 single amino acid variants, with a majority 
located in highly conserved regions. To further probe the dynamic consequences of mutation, 
molecular dynamics (MD) simulations were performed for the Wild-type and selected variants 
(P344T, L60P) over 100 ns. A cascade neural network-based quantitative structure-activity 
relationship (QSAR) model was developed and trained on a large, chemically diverse dataset. The 
model utilized a two-stage architecture with uncertainty estimation and active learning, leveraging 
molecular fingerprints and 2D/3D descriptors. Performance evaluation demonstrated robust 
classification of high- and low-affinity ligands, with high ROC-AUC (0.888), average precision 
(0.916), and strong rank correlation (Spearman 0.780). The model’s precision-recall and ROC curves 
indicated high discriminative power, while confusion matrix analysis revealed a conservative bias, 
minimizing false positives at the cost of some false negatives-a trade-off often desirable in early-stage 
drug discovery. 

Results and Conclusion: The study identified 73 deleterious D3R variants, predominantly in 
conserved regions, correlating with reduced dopamine binding affinity and altered receptor dynamics. 
Molecular docking and MD simulations confirmed that mutations in critical regions impair function, 
while those in variable regions are generally tolerated. The cascade neural network QSAR model 
achieved high accuracy (79.7%), precision (91.6%), and ROC-AUC (0.888), effectively 
distinguishing high- and low-affinity ligands. Misclassifications were mainly confined to borderline 
cases, indicating robust model calibration. This integrative computational approach provides a 
powerful platform for D3R-targeted drug discovery, supporting the rational design and prioritization 
of novel therapeutics for neuropsychiatric and neurodegenerative disorders, with future work focusing 
on model interpretability and experimental validation. 

 

 
 

 
 
 
 
 
 

 



v 
 

 

ACKNOWLEDGEMENT 

 

First of all, I would like to extend my heartfelt gratitude to my supervisor, Prof. Pravir Kumar, for 

their constant support and encouragement throughout the course of my research. Their expertise and 

constant constructive feedback have always been invaluable to me in learning and understanding new 

yet difficult things. They have always been an inspiration to me in pursuing my research and future 

goals. I would also like to thank Mrs. Neetu Rani, Ms. Mehar Sahu, Mr. Rahul Tripathi, Ms. Shrutikriti 

Vashishth, Ms. Shefali Kardam and each and every member of the Molecular Neuroscience and 

Functional Genomics laboratory for always helping and guiding me through each up and down which 

has come along the way and giving me an environment where I can learn and grow as a person. 

 I am also sincerely grateful to the faculty and non-faculty staff of the Department of Biotechnology, 

Delhi Technological University for providing me an academic environment which is coupled with 

theoretical as well as practical aspects of academia and providing me every necessary help and 

resource to carry out my work. A special thanks to Mr. Jitender Singh, Mr. C.B. Singh, Mr. Lalit, Mr. 

Jaspreet, and Mr. Rajesh for their technical assistance and guidance through the project. 

Finally, I would like to whole-heartedly thank my family and friends for always being my constant 

support and well-wishers. Their presence and belief in me have always been a source of motivation 

and strength, their contribution in my life can’t be put into words. 

Thank you all for your valuable contributions and sacrifices which made this project a success. 

 

 

 

 

                                                                                                                             Akshay Hatwal 

23/BIO/07 

 
 
 
 
 

 

 



vi 
 

 

TABLE OF CONTENTS 
 

 
Title               Page No.      
Declaration ii 

   Supervisors certificate iii 

Abstract iv 

Acknowledgements v 

Table of Content vi-vii 

List of Tables   viii 

List of Figures ix 

List of Symbols and Abbreviations x 
 

CHAPTER 1: INTRODUCTION 1 
 

CHAPTER 2: LITERATURE REVIEW 
 

3 

    2.1. Dopamine D3 receptor – Structure, Function, and Disease Relevance   3 

2.1.1. Structural and Functional Characteristics 3 

2.1.2. Role in Neurodegenerative and Neuropsychiatric Disorders 3  

2.1.3. D3R as a Drug Target 3 
 

2.2. Advances in Structural Biology and Computational Modeling     3 

2.2.1. Structure Analysis of D3R 3 

2.2.2. Integrative Computational Approaches 3 
 
2.3. Quantitative Structure-Activity Relationship (QSAR)      4 

2.3.1. QSAR: Principle and Evolution  4 

2.3.2. Machine Learning in QSAR  4 

2.3.3. Cascade Neural Network QSAR Model  4 
 

2.4 Virtual Screening Cascades and Integrative Pipelines                            4 

2.4.1. QSAR: Principle and Evolution  4 

2.4.2. Machine Learning in QSAR  4 

2.4.3. Cascade Neural Network QSAR Model  5 
 

2.5 Advantages and Limitations of Cascade Neural Network Models                    5 
 

 



vii 
 

 

CHAPTER 3: METHODS 6 

3.1. Overview 6 

3.2. Curation of Data 6 

3.3. Predicting Conserved Regions of D3R Structure Using ConSurf 8 

3.4. Inducing Mutations 8 

3.5. Deleterious Mutation Prediction 8 

3.6. Molecular Docking 8 

3.7. Molecular Dynamics Simulation 9 

3.8. Cascade Neural Network QSAR Model 11 
 

CHAPTER 4: RESULTS   16  

4.1. Prediction of Deleterious Mutations                                                               16        

4.2. Molecular Docking Results 16 

4.3.  Molecular Dynamics Simulation Analysis 18  

4.4. Cascade Neural Network QSAR Model 20 

 

CHAPTER 5: CONCLUSION  25 

 

CHAPTER 6: REFERENCES  26 
 
            Plagiarism Verification . 28 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



viii 
 

 

List of Tables 
 
 

TABLE - I Snippet of PubChem API for Ligand 
Data Extraction 

17 

TABLE -II Snippet of ZINC API for CNS Drug 
Dataset 

17 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ix 
 

 

List of Figures 
 

Figure No. Title Page No. 
Fig. 1 Structure of Dopamine D3 Receptor 6 
Fig. 2 Snippet of PubChem API for Ligand 

Data Extraction 
7 

Fig. 3 Snippet of ZINC API for CNS Drug 
Dataset 

7 

Fig. 4 Visualization of Predicted Conserved 
and Variable Regions in D3R 

8 

Fig. 5 Protein System in Molecular Dynamics 
Simulation (GROMACS) 

9 

Fig. 6 Primary Classifier Architecture of the 
Cascade Neural Network 

12 

Fig. 7 Secondary Classifier Architecture of 
the Cascade Neural Network 

12 

Fig. 8 Uncertainty Estimator in Cascade 
Neural Network 

13 

Fig. 9 Active Learning Sampler Workflow 13 
Fig. 10 Feature Extraction Using RDKit 14 
Fig. 11 Deleterious Mutation Mapping on D3R 

Structure 
15 

Fig. 12 Wild-type D3R Docked with Dopamine 15 
Fig. 13 Locations of Variants with 

Similar/Improved Binding Affinity 
17 

Fig. 14 MD Simulation Results: RMSD, 
Radius of Gyration, Minimum 
Distance, and Hydrogen Bonds 

17 

Fig. 15 Precision-Recall Curve (AUPRC) for 
QSAR Model 

20 

Fig. 16 Prediction Score Histogram and ROC 
Curve 

21 

Fig. 17 Confusion Matrix for Model 
Performance 

21 

Fig. 18 Ranking Correlation 
(Spearman/Kendall) between 
Experimental and Predicted Affinity 

23 

 
 
 
 
 
 
 



x 
 

 

List of Symbols and Abbreviations 
 

Symbol/Abbreviation Description 
D3R Dopamine D3 Receptor 
GPCR G Protein-Coupled Receptor 
CNS Central Nervous System 
MD Molecular Dynamics 
QSAR Quantitative Structure-Activity Relationship 
SMILES Simplified Molecular Input Line Entry System 
PDB Protein Data Bank 
nsSNP Non-synonymous Single Nucleotide Polymorphism 
RMSD Root Mean Square Deviation 
Rg Radius of Gyration 
AUPRC Area Under Precision-Recall Curve 
ROC Receiver Operating Characteristic 
AUC Area Under Curve 
ADMET Absorption, Distribution, Metabolism, Excretion, 

Toxicity 
BBB Blood-Brain Barrier 
API Application Programming Interface 
PDB Protein Data Bank 
NVT Constant Volume and Temperature Ensemble 
NPT Constant Pressure and Temperature Ensemble 
PME Particle Mesh Ewald 
LINCS Linear Constraint Solver 
V-rescale Velocity-rescale Thermostat 
AdamW Adaptive Moment Estimation with Weight Decay 
PR Precision-Recall 



1 
 

 

 
1. INTRODUCTION 

 
 
 
The D3 receptor is found in the limbic system and concentrated in the nucleus accumbens and the 
islands of Calleja[1]. These distributions are relevant due to its critical role in the regulation of reward 
and reinforcement-related behaviors and locomotion. Encoded by the DRD3 gene, DRD3 is made up 
of 400 amino acid residues. As it plays an important role in cognition and behavior, D3 receptor is 
involved in the pathogenesis of neuropsychiatric and neurodegenerative disorders, which makes it an 
important therapeutic target[2]. Accili et al. in 1996, started a major study to examine the role of the 
D3 receptor by generating mice with a mutated DRD3 gene, by inserting a premature stop codon to 
eliminate receptor expression. Homozygous mice (lacking D3 receptors) showed no notable 
developmental abnormalities. Furthermore, they showed behavioral changes, supporting the role of 
D3R in modulating anxiety and depression. The findings identified that D3R is a potential therapeutic 
target for developing antidepressant drugs.  
Further supporting this role, a study by J. H. Seo and E. V. Kuzhikandathil (2015) explored the impact 
of stress on D3R function. Mice that were exposed to excess restraint stress and social isolation 
developed anxiety and depression-like behaviors in adulthood[3]. Administering a D3 receptor 
antagonist, SB277011, during the stress period prevented the development of these behaviors, pointing 
towards the therapeutic potential of modulating D3R activity to mitigate stress-induced psychiatric 
conditions. Polymorphisms in the DRD3 gene have also been suspected to be linked with cognitive 
abnormalities and anxiety levels in Parkinson’s disease (PD) patients[4]. Few genotypes were found 
to predispose individuals to abnormal cognitive function or higher levels of anxiety, while others 
appeared to reduce these symptoms. These findings emphasize the importance of understanding 
genetic variability in DRD3 and its influence on phenotypes, particularly in neurodegenerative 
disorders like PD. Structural changes in the D3 receptor significantly affect its function. For instance, 
D3R also participates in autophagy regulation[1].  
Gene knockdown studies in HeLa cells revealed that the reduced D3 receptor expression diminished 
autophagic flux, highlighting its importance in maintaining cellular homeostasis. This finding 
identified D3R as a promising therapeutic target for neurodegenerative diseases, where dysregulated 
autophagy is a contributing factor. In this study, we aimed to comprehensively evaluate the structural 
and functional implications of the D3 receptor. We analyzed the impact of deleterious single amino 
acid mutations in D3R identified from databases such as UniProt.  
By using advanced computational tools, we investigated how these mutations influence the receptor’s 
stability, ligand-binding affinity, and signaling capacity. These insights not only improve the 
understanding of these molecular interactions underlying D3 receptor dysfunction but also provide 
indications for identifying novel therapeutic interventions targeting D3R in psychiatric and 
neurodegenerative disorders.  
It is important to do this structural analysis to better understand this receptor before constructing the 
cascade neural network (CNN). Various parameters are to be calculated to validate this model before 
docking. The screened drugs will be compared with the Wild-type, with dopamine, its natural ligand.  
 
The whole process of structural investigation will validate the structure that will further be used to 
support the validation of the neural network[5]. 
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If the correct structure is selected, it is expected to behave in the same way as a natural ligand-receptor 
interaction and show strong interaction without mutation and be unaffected. 
If mutations are introduced in the structure, such testing will make the structure more reliable. The 
proposed CNN model classifies the provided drug SMILES dataset into two classes - 0 and 1.  
Class 0 contains SMILES that have low probability of being a high affinity with the receptor. Class 1 
contains molecules having a high probability of strong interaction. The model is trained with 15,000 
molecules curated from PubChem using their API. A classification-type model is chosen because of 
the lack of a bigger and experimentally validated affinity dataset for the Dopamine D3 receptor. A 
larger and more niche dataset will be needed to explicitly predict the binding affinity of molecules and 
the D3 receptor. 
This computational pipeline is adaptable to other protein-ligand systems and supports virtual 
screening, lead optimization, and candidate prioritization for experimental validation. The findings 
highlight the significance of integrating structural biology, mutational analysis, and machine learning 
to accelerate the discovery of selective D3R modulators. Future directions include expanding curated 
datasets, enhancing model interpretability through explainable AI, and bridging computational 
predictions with experimental validation to ensure clinical translatability. This approach advances 
precision medicine by elucidating the interplay between genetic variability, receptor function, and 
drug response in neuropsychiatric and neurodegenerative diseases. 
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2. LITERATURE REVIEW 
 
 
 

2.1 Dopamine D3 receptor - structure, function, and disease relevance 
 

2.1.1 Structural and functional characteristics 
Dopamine D3 receptor is a GPCR (G-protein coupled receptor) with high affinity towards dopamine, 
which is approximately 420 times that of the D2 receptor. It is primarily localized in the nucleus 
accumbens and other regions (e.g., D1R, D2R, A2aR). 
The ability of D3R to form heteromers with other receptors like D1R, D2R, and A2aR further 
diversifies its signaling pathways and pharmacological significance[6]. 
 
2.1.2  Role in Neurodegenerative and Neuropsychiatric Disorders 
 
D3R involvement in neurodegenerative diseases is multidimensional. For example, its neurotrophic 
and neuroprotective effects help in regulating dopaminergic neuron homeostasis and preventing 
neurodegeneration. Abnormal D3R signaling has been involved in Parkinson's disease, essential 
tremors, schizophrenia, addiction, and disorders related to mood. 
Knockout mice studies showed that the dysfunction in D3R due to mutation did not affect the growth 
or physiological characteristics of the mice; however, it made the mice more prone to anxiety and 
depression. This also supports the relevance of D3R in psychiatric disorders and as a therapeutic target 
for antidepressant drugs. 
 
2.1.3  D3R as a drug target 
 
D3R-selective antagonists and agonists have long been considered as therapeutic agents for treating 
Parkinson's disease, schizophrenia, and drug addiction. The similarity with D2R and D4R makes it 
harder to deal with as a therapeutic target, which is why while building the neural network, it was 
made sure that the model learns patterns of features specific to high binding drugs[7]. 
 
2.2  Advances in structural biology and computational modeling 
 
2.2.1  Structure Analysis of D3R 
 
Recent improvements in cryo-EM, crystallography, and computational modeling have provided us 
with atomic-level insights into D3 receptor structure and dynamics. These studies show the importance 
of conserved regions and effects of mutation in the receptor-ligand interaction. 
 
 
2.2.2  Integrative Computational Approaches 
 
Head compound identification and drug discovery is revolutionized by integrating structural biology, 
cheminformatics, and machine learning. Molecular docking, molecular dynamics, and virtual 
screening help researchers explore large libraries and datasets of potential drug candidates by 
computationally calculating and predicting interaction of target protein and drug candidate rather than 



4 
 

 

random guesswork or laborious work that has to be done in vitro and in vivo. It is a standard approach 
in early-stage drug discovery. 
 
2.3 Quantitative Structure-Activity Relationship (QSAR) 
 
2.3.1  QSAR: Principle and Evolution 
 
QSAR models are used to predict the biological activity of compounds based on their chemical 
features while using statistical and machine learning algorithms to correlate molecular features and 
their biological outcomes. The integration of machine learning has increased the efficiency and 
accuracy of traditional QSAR-based drug discovery. 
 
2.3.2  Machine Learning in QSAR 
 
Deep neural networks, random forest, and combined model methods have become a norm in modern 
QSAR modeling. It enables us to extract complex, non-linear correlations from multidimensional 
chemical data. Integration of three-dimensional descriptors and multi-instance learning boosted the 
accuracy of activity prediction. 
 
2.3.3  Cascade Neural Network QSAR Model  
Cascade neural network represents a self organising  and provides an incremental learning architecture 
that aggregates hidden neurons during training which enables the model to  adapt with the complexity 
of the data.  This approach eliminates the requirement of predefined network size reduced overfitting 
and accelerates convergence which makes it particularly suitable for big datasets typically found in 
drug Discovery  ( reference).  Cascade models exhibit superior performance in screening and 
predicting drug target interaction integrated with heterogeneous molecular features (e.g., fingerprints, 
2D/3D descriptors). 
 
2.4 Virtual Screening Cascades and integrative pipelines  
 
2.4.1 Virtual screening  
 
Virtual screening pipelines is an aggregation of multiple computational models that helps and 
prioritize drug candidates experimental testing.  it effectively reduces attrition rates and experimental 
cost.  These pipelines combine molecular Docking, molecular simulation, QSAR models, ADMET 
prediction, and toxicity screening, enabling a thorough  evaluation of candidate molecules  before in 
vivo and in vitro experiments[8].  
 
2.4.2 Application to D3R drug Discovery 
 
The virtual screening pipeline both models of both Wild-type and mutant receptor enabling the 
identification of optimum binding affinity selectivity and safety profiles.  The selection of cascade 
neural network QSAR models  increases the predictive accuracy and efficiency of the pipeline which 
supports the discovery of novel modulators of Dopamine D3 receptor psychiatric and 
neurodegenerative diseases. 
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2.4.3  Importance of structure files  
 
A holistic analysis of D3 receptor structure helps in defining specific characters that lies  within the 
binding pocket of the target receptor.  The use of  experimentally determined  data such as binding 
affinity and structure activity relationship is very important for benchmarking model performance and 
ensuring translational relevance.  
 
2.4.4 Advantages and limitations of cascade neural network models 
 
5.1 Advantages 
 
adaptive complexity - The ability of cascade models to dynamically adjust network size which 
prevents overfitting or underfitting. fast convergence -  Incremental learning accelerates model 
training and enhances robustness to local minima. Integration of Diverse Features: Capable of 
processing heterogeneous molecular descriptors, improving prediction accuracy. Superior 
Performance: Demonstrated higher accuracy in drug–target interaction prediction and virtual 
screening compared to traditional methods.  
 
5.2 Limitations 
 
Cascade neural networks, like other deep learning models, can be less interpretable than linear models 
or decision trees. Data Requirements: Require sufficient, high-quality data for optimal performance; 
performance may degrade with sparse or noisy datasets. Computational Resources: Although more 
efficient than some deep learning architectures, cascade models still demand significant computational 
power for large-scale screening34. 
The convergence of structural biology, machine learning, and integrative computational pipelines is 
accelerating the discovery of novel therapeutics targeting the Dopamine D3 receptor. Cascade neural 
network QSAR models, validated using high-quality structural files and experimental data, offer a 
powerful framework for virtual screening and lead optimization. As data availability and 
computational methods continue to advance, these approaches will enable more precise, efficient, and 
personalized drug discovery for neuropsychiatric and neurodegenerative diseases. Expanding 
structural and functional datasets for D3R and its variants. 
Developing interpretable machine learning models to enhance trust and transparency in 
predictions.Integrating multi-omics and systems biology data for holistic target validation and drug 
repurposing. Bridging the gap between computational predictions and experimental validation to 
ensure clinical translatability. 
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Fig. 1. Structure of Dopamine D3 
receptor 

3. METHODS 
 

 
 
3.1 Overview 
 

This study is focused on understanding the structural aspects of D3 receptor and validating the 
available structural file to create a better platform for the validation of neural network which are used 
to classify between binding affinity molecules and low binding affinity molecules. While diving into 
the structural analysis of  Dopamine D3 receptor, the effects of mutation on the binding affinity 
between dopamine and D3 receptor was also explored. This is a type of model that can be implemented 
for different target proteins and their set of ligands. the acquisition of data set required the use of APIs 
provided by databases such as PubChem and ZINC. these APIs were used to extract SMILES of 
ligands  With their experimentally validated binding affinity towards the D3 receptor,  in the same 
way these datasets can be  acquired  for any target protein that is present in the database.  This also 
proposes a universally applicable cascade neural network model that can be used in drug discovery 
application in other diseases and disorders. we have developed a  general model that classifies between 
high winding and low binding affinity which do not take account of the  variants of the protein that 
are present in nature.  It is proven  in the earlier studies that certain nsSNP mutations can affect   the  
symptoms  by either escalating them or protecting against them,  which makes it important for the 
researchers to integrate the data screening drugs for therapeutics.  
 
3.2 Curation of data 
 

Data from various databases was curated from UniProt, PubChem, ZINC databases. APIs 
provided by the respective database was used to extract datasets - D3 protein structure, 
Variant position and substitution, experimentally validated ligand SMILES and their binding 
affinity with D3 receptor.  

(a) The structure of D3 receptor and information about 405 single amino acid substitution 
caused by ns-SNP was downloaded from UniProt (UniProt ID: P35462)[9].  
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Fig. 2. Snippet of pubchem API 

Fig. 3. Snippet of ZINC API. 

(b) A dataset of SMILES of compounds with their binding affinity was extracted from 
PubChem using the API provided by PubChem[10]. 
 

 
 
 
 

 
(c) A dataset of CNS labeled drugs was also extracted using the API of ZINC[11] database 

as a test dataset (Fig. 3.).  
 

 
 
 
 
 
 
 
 

 

 
 

This dataset contained 20,000 compounds that were labeled as CNS-active drugs, these 
are compounds that have the ability to cross the Blood Brain Barrier(BBB). The dataset 
needs no filtering as the dataset contains CNS-active drugs and have all the properties 
like molecular weight between 200 - 450 Da, lipophilicity, BBB permeability, CYP450 
inhibition, etc. making them suitable for this screening. 
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Fig. 4. Visualization of predicted conserved region (maroon) and 
variable region in (green) 

3.3 Predicting conserved regions of d3r structure using ConSurf 
 

Consurf was used to predict the evolutionary conserved region of Dopamine D3 receptor. These 
regions are responsible for propagation of these nsSNPs to the future generations. 
 

 
 

 

 

3.4 Inducing mutations 
 
Mutations were introduced using PyMOL software and exported in PDB format for docking analysis. 
When mutations were induced in the Wild-type protein, it shows small structural changes which were 
expected for this study. This facilitated structural and functional study of the DRD3 receptor. 
 

3.5 Deleterious mutation prediction 
 
PredictSNP was used to predict the impact of single amino acid mutations in the Dopamine D3 
receptor (Fig. 1.). It combines results for tools such as SIFT, PhD-SNP, PolyPhen2, MAPP, 
PANTHER and Snap shows increased accuracy in its prediction. It provided a probability score on 
whether the variant is deleterious or neutral. 73 variants were screened on the basis of their highly 
deleterious predicted nature. 

 

3.6  Molecular docking 
 
AutoDock Vina was used to predict the binding affinity of Dopamine D3 receptor with its natural 
ligand Dopamine (DrugBank Accession Number DB00988). Mutation Wizard of PyMOL was used 
to induce mutations in the Wild-type Dopamine D3 receptor and prepare the 73 variants. Rigid protein 
docking was performed against Dopamine having five rotatable bonds. The protein being rigid may 
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Fig. 5. Showing protein system in MD simulation using 
GROMACS 

not show the full extent of the effects of the mutations on its structure but it will give us indications 
on effects of mutation on the structure of the Wild-type protein. The Wild-type Dopamine D3 receptor 
and the 73 variants were docked against Dopamine. Docking simulations were performed with the 
following parameters: the grid center was set to coordinates X = 4.33, Y = 3.5, Z =-4.44,  and the grid 
size was 22 × 30 × 26 ˚ A³ with a grid space of 0.375 ˚ A. Exhaustiveness was set to 32, and the 
docking was executed using 8 CPU threads. The docking was performed in a parallel fashion with a 
random seed of 638513881. 
 

3.7 Molecular Dynamics Simulations 
 
3.7.1  System Preparation & Feature Extraction 
  

● Protein Structure Preparation: 
The initial structure (wild1.pdb) was processed using gmx pdb2gmx to generate 
topology and coordinate files. The OPLS-AA force field was chosen for the protein, 
and the SPCE water model was used for solvation. Hydrogens were added, and 
disulfide bonds were automatically detected and linked1. 

● Box Definition: 
The processed protein was placed in a triclinic box with at least 1.0 nm distance from 
the protein to the box edge using gmx editconf1. 

● Solvation: 
The system was solvated with SPC/E water molecules using gmx solvate, resulting in 
a realistic aqueous environment1. 

● Ion Addition: 
The solvated system was neutralized and brought to physiological ionic strength by 
replacing water molecules with Cl⁻ ions using gmx genion. 
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3.7.2  Energy Minimization, Equilibration, Production MD Simulation   

● Energy minimization was performed using the steepest descent algorithm (integrator = steep) 
until the maximum force fell below 1000 kJ/mol/nm, as specified in the ions.mdp file3. 

● NVT Equilibration (Constant Volume & Temperature) - To stabilize temperature and relax 
solvent around the protein. 

● Integrator: md (leap-frog) 
● Duration: 100 ps (or as specified) 
● Temperature coupling: V-rescale thermostat at 300 K 
● Position restraints applied to heavy atoms of the protein 
● No pressure coupling5 

● NPT Equilibration (Constant Pressure & Temperature) - To stabilize system pressure and 
density. 

● Settings: 
● Integrator: md 
● Duration: 100 ps (or as specified) 
● Temperature coupling: V-rescale thermostat at 300 K 
● Pressure coupling: C-rescale (or Parrinello-Rahman) at 1 bar 
● Position restraints maintained 
● System allowed to adjust box dimensions to achieve target pressure4 

● Production MD Simulation - 100 ns (50,000,000 steps with 2 fs timestep) 
● Settings: 

● Integrator: md (leap-frog) 
● Periodic boundary conditions: xyz 
● Electrostatics: Particle Mesh Ewald (PME) 
● Cutoff scheme: Verlet 
● Temperature coupling: V-rescale at 300 K 
● Pressure coupling: Parrinello-Rahman or C-rescale at 1 bar 
● Constraints: LINCS for bonds involving hydrogens 
● Trajectory output: Coordinates, velocities, energies, and logs saved at defined 

intervals245 
●  Trajectory Analysis - After 100 ns of simulation, trajectory and energy files were analyzed 

for: 
● Structural Stability: 

● RMSD (Root Mean Square Deviation) to assess global conformational changes. 
● Radius of gyration for compactness. 
● Minimum distance between protein and ligand or within protein domains. 

● Intermolecular Interactions: 
● Number of hydrogen bonds over time to assess structural integrity and 

interactions. 
● Comparative Analysis: 

● Wild-type (yellow), P344T (green), and L60P (purple) were compared across 
all metrics to evaluate the effect of mutations on stability and dynamics (as 
shown in your previous graph analysis). 
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3.8  Cascade Neural Network QSAR Model 
 
Cascade Neural Network QSAR Model Development ligand dataset were curated from PubChem and 
ZINC using their APIs which were focused on compounds with experimentally validated binding 
affinity data with D3R.The dataset included both known D3R ligands and CNS-active drugs (from 
ZINC), ensuring chemical diversity and relevance to blood-brain barrier permeability. each molecule 

was featurized using ECP4 fingerprints (1024 bits) for capturing molecular topology[16], 2D 
descriptors  (e.g., molecular weight, logP, H-bond donors/acceptors, rotatable bonds, aromatic 
rings)and 3D descriptors (24 features capturing conformer statistics, surface area, TPSA, and ring 
system properties). Model training and architecture focuses on  EnhancedBindingClassifier neural 
networks consisting of several fully connected layers (1030→512→256→128→1)[13], with batch 
normalization and dropout for regularization[14]. A deeper variant DeeperMisclassificationModel, 

includes additional layers and units for improved learning of complex patterns.  
The model was trained on the balanced binarized dataset (high-affinity vs. low-affinity, thresholded 
at pChEMBL ≥ 7.0 or 8.0) using binary cross-entropy loss and the AdamW optimizer with dynamic 
learning rate. Early stopping was introduced based on validation AUC to prevent overfitting. 
Model performance was evaluated using F1-score, ROC-AUC, balanced accuracy, and average 
precision. Threshold optimization was performed using youden's J statistics to maximize sensitivity 
and specificity. Misclassified molecules. This pipeline is versatile and can be applied to any protein 
ligand systems if binding data is available. If the ligand-protein interaction data is integrated in this 
model it will most likely increase the classification ability of the model.  
The implemented model uses a two-stage cascade neural network architecture with three primary 
components: 

● Primary Classifier: Initial classification network 
● Uncertainty Estimator: Network determining prediction confidence 
● Secondary Classifier: Specialized network for borderline cases 

This design follows similar principles to other two-stage ensemble models in biomedical applications, 
like the one used for melanoma classification where multiple networks work in concert to produce 
higher-quality predictions. 
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Fig. 6. Primary Classifier  

Fig. 7. Secondary Classifier 

1.Primary Classifier 
The first stage consists of a neural network that processes molecular fingerprints: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

This network has four main fully-connected layers (1024→512→256→128→1) with batch 
normalization, ReLU activation, and dropout regularization (0.3) between layers. This 
architecture allows for progressively abstracting features from molecular representations while 
mitigating overfitting through regularization techniques. 
 
 
2. Secondary Classifier 

This classifier has a slightly different architecture (1024→512→256→1) and is specifically designed 
to handle borderline cases where the primary classifier shows uncertainty. By focusing on difficult 
cases, the secondary classifier can develop specialized feature recognition capabilities. 
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Fig. 8. Uncertainty estimatior  

Fig. 9. ActiveLearningSampler 

Uncertainty Estimation and Cascading Mechanism is a key innovation in this model is the explicit uncertainty 
estimation component. 

 

 

 
This uncertainty estimator determines which samples should be passed to the secondary classifier, 
creating the cascading effect. The forward method implements this logic. 
This approach resembles ensemble learning methods like those described in biomedical applications 
but differs in that it selectively applies the secondary classifier only to uncertain cases rather than 
combining all predictions. The threshold values (0.4 and 0.6) identify cases where the model is neither 
confident of a positive nor a negative prediction. 
 
3. Active Learning Integration 

The model incorporates active learning strategies to efficiently identify the most informative samples 
for labeling during training. This approach is particularly valuable in drug discovery where labeled 
data can be expensive and time-consuming to obtain. 
The ActiveLearningSampler class implements two uncertainty sampling strategies: 

1. Margin-based sampling: Selects samples with the smallest margin between the most likely and 
second most likely class predictions 

2. Entropy-based sampling: Selects samples with the highest predictive entropy. 

 

 

Custom Loss Function 

The model employs a custom loss function specifically designed for pharmaceutical applications. This 
loss function builds upon the standard BCEWithLogitsLoss (Binary Cross Entropy with Logits) but 
adds an additional penalty for false negatives. In drug discovery, missing an active compound (false 
negative) is typically more costly than incorrectly flagging an inactive compound (false positive), as 
promising drug candidates should not be overlooked. 
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Fig. 10. Feature extraction using Rdkit 

4. Molecular Feature Extraction 
 
The model utilizes advanced molecular feature extraction techniques from RDKit. 

 
 
 
 
 
This function extracts several types of molecular descriptors: 

1. Conformer analysis: Generates and analyzes 3D conformers of molecules 
2. Shape descriptors: Calculates principal moments and plane of best fit 
3. Quantum chemical features: Computes Gasteiger partial charges 
4. Solvent accessibility: Determines molecular surface areas accessible to solvent 

The model also utilizes Morgan fingerprints, which are circular topological fingerprints that capture 
local molecular substructures. These binary representations encode presence or absence of specific 
molecular substructures and are widely used in cheminformatics for similarity searching and machine 
learning. 
The training pipeline implements a multi-cycle approach with active learning integration. This 
approach follows an iterative process where: 

1. The model is trained on available labeled data 
2. Uncertain samples are identified using active learning 
3. These samples would typically be labeled (in a real-world scenario) 
4. The model is retrained with the augmented dataset 

This cycle repeats, progressively improving the model's performance by focusing on the most 
informative samples. 
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Fig. 11. (left) Dopamine D3 receptor structure colored green as highly variable and maroon as 
highly conserved regions with highlighted (red dots) with amino acid position of deleterious 
mutation predicted. 

Fig. 12.  Wild-type receptor docked with dopamine for structure validation 
and analyzed for binding with activating residues critical to D3 receptor 

function.

4. RESULTS 
 
 
 

4.1  Prediction of Deleterious Mutation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Out of 405 variants, 73 variants were predicted to be deleterious (more than 86 percent probability ) 
by PredictSNP.  The relation between positions of conserved amino acid residues (conservation scores 
8-9) and deleterious amino acids  indicates that these sites are functionally or structurally important 
as the functionally relevant residues also fall in these regions. 50 of these variants fall in highly 
conserved regions (score 9-8), this shows that amino acid residues falling in this region are conserved 
so that the protein can function properly and pass down through generations. 

 

4.2 Docking results  
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 TABLE I  
Mutations showing weakest binding affinity 
with dopamine 

 
The best pose of Dopamine and Dopamine D3 receptor aligns with the structural and function studies 
conducted with Asp110, Val111, Ser192, Ser193, His349, Val189 being key players in ligand binding 
and activation of the receptor. This also validated the selection of grid parameters for this molecular 
docking.  Docking studies using AutoDock Vina assessed the impact of these mutations on dopamine 
binding affinity. The Wild-type D3R showed a binding affinity of -5.757 kcal/mol with dopamine. 
Several variants, such as V334M, L109R, K326E, and L60P (TABLE I), exhibited significantly 
reduced binding affinity (e.g., L109R: -3.979 kcal/mol), indicating impaired receptor function. In 
contrast, variants like P344T, W370C, I382T, and P380S (TABLE II) maintained or even improved 
binding affinity, suggesting minimal structural disruption. This aligns with their location in more 
exposed or less functionally critical regions of the protein. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These findings underscore that mutations in conserved regions often lead to functional impairment, 
while those in variable regions may be tolerated. The results highlight the importance of genetic 
variability in D3R function and its implications for drug response and precision medicine. 
The change in interaction after mutation can also be featurized, which can be integrated to the ML 
model to further increase its accuracy in class prediction of predicting the binding affinity explicitly. 
Wild-type dopamine D3 and two variants were further analyzed using molecular dynamic simulations. 
 
 
 
 
 
 
 
 

TABLE II  
Variants showing similar binding 
affinity with dopamine 
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Fig. 13.  (a) and (b) show the locations of variants exhibiting similar or increased 
binding affinity (white), with the binding site (blue sphere).  

Fig. 14. The MD simulation results are visualized in the figurex , which compares wild-type (yellow) 
and mutant (green-P344T  , purple- L60P) D3R complexes over 100 ns for several structural metrics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Molecular Dynamics (MD) Simulation Analysis 
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In these four panels, the behavior of three protein systems is compared over a 100 ns molecular 
dynamics (MD) simulation: 

● Yellow: Wild-type protein 
● Green: P344T 
● Purple: L60P 

a) RMSD (Root Mean Square Deviation) 

● Description: RMSD measures the average deviation of atomic positions from the initial 
structure, indicating overall structural stability. 

● Interpretation: 
● Wildtype (Yellow): Shows the highest RMSD, rising above 1.0 nm and not stabilizing, 

indicating significant structural fluctuations or instability. 
● P344T (Green): Intermediate RMSD (~0.6 nm), more stable than wildtype but less so 

than L60P. 
● L60P (Purple): Lowest RMSD (~0.5 nm), suggesting the highest structural stability 

among the three. 

b) Radius of Gyration 

● Description: This measures the compactness of the protein structure. 
● Interpretation: 

● Wildtype (Yellow): Highest radius of gyration (~3.2 nm), indicating a more expanded, 
less compact structure. 

● P344T (Green): Intermediate compactness (~2.4 nm). 
● L60P (Purple): Most compact (~2.2 nm), suggesting L60P folds into a tighter structure. 

c) Minimum Distance 

● Description: The minimum distance between protein and ligand or between domains, 
reflecting close contacts. 

● Interpretation: 
● All three systems fluctuate around similar values (0.15 -- 0.19 nm), but L60P (purple) 

and P344T (green) show slightly lower and more stable minimum distances, suggesting 
more persistent close contacts compared to wildtype. 

d) Hydrogen Bonds 

● Description: Number of hydrogen bonds, a key indicator of structural integrity and 
intermolecular interactions. 
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● Interpretation: 
● Wildtype (Yellow): Fewer hydrogen bonds overall, with values mostly below 10. 
● P344T (Green): Highest and most variable hydrogen bond count, peaking above 12, 

suggesting increased interaction potential or structural rigidity. 
● L60P (Purple): Intermediate hydrogen bond count, more stable than wildtype but less 

than P344T. 

 
a) RMSD (Root Mean Square Deviation) 
The Wild-type (yellow) shows the highest RMSD, indicating greater conformational flexibility or less 
stability over time. 
 
Mutants (green, purple) display lower RMSD values, suggesting that certain mutations may stabilize 
the structure or restrict its flexibility. 
 
b) Radius of Gyration 
The Wild-type consistently exhibits a larger radius of gyration, reflecting a more expanded structure. 
 
Mutants show lower and more stable values, pointing to increased compactness, which may affect 
ligand accessibility and receptor function. 
 
c) Minimum Distance 
The minimum distance between key structural elements fluctuates similarly across all variants, but the 
Wild-type maintains slightly higher average distances, again reflecting greater flexibility. 
 
d) Hydrogen Bonds 
The Wild-type forms more hydrogen bonds on average, which may contribute to its dynamic stability. 
 
Mutants show fewer hydrogen bonds, possibly indicating altered intra-protein interactions due to 
mutation-induced structural changes. 
 
MD simulations confirm that deleterious mutations can significantly alter the structural dynamics of 
D3R. While some mutations stabilize the receptor (lower RMSD and Rg), this may come at the cost 
of functional flexibility, potentially impairing ligand binding or signaling. Conversely, Wild-type D3R 
maintains a balance between stability and flexibility, essential for optimal function. 
 

4.4  Cascade Neural Network QSAR Model 

 
Excellent classification and ranking was observed with  High AUCs for both ROC and PR curves, 
with well-separated prediction scores for each class. Model is well-calibrated: Most predictions are 
confidently assigned to the correct class. 
Strong monotonic relationship between predicted and experimental rankings. Misclassifications occur 
primarily in the overlap region of the prediction score histogram. 
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Fig 15. AUPRC (Area Under Precision-Recall Curve): 0.916. 

 
The precision-recall (PR) curve is an essential tool for evaluating the performance of classification 
models, especially in situations where the classes are imbalanced or when the positive class is rare 
and of critical interest-such as in drug discovery, medical diagnostics, or fraud detection. 
 

 
 
 
The curve shows that the model maintains high precision across a wide range of recall values. This 
indicates strong performance, especially in identifying high-affinity molecules even if the dataset is 
imbalanced. 
 

2. Prediction Score Histogram by True Class and ROC curve 
 

● Blue (True Positive Class): Concentrated at higher predicted probabilities, showing the model 
assigns high scores to actual high-affinity molecules. 

● Orange (True Negative Class): Concentrated at lower predicted probabilities, indicating low 
scores for actual negatives. 

● Overlap: The middle region, where the two distributions overlap, corresponds to the area where 
most misclassifications (false positives and false negatives) occur. 
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Fig. 16. Prediction Score Histogram by True Class and ROC curve 

Fig. 17. ROC curve 

 
 

 
 
A prediction score histogram by true class is a visualization that shows the distribution of model-
predicted probabilities (or scores) for each actual class label in your dataset (e.g., high vs. low binding 
affinity). This plot is crucial for understanding and diagnosing the behavior of classification models, 
especially in scientific and drug discovery contexts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 
 

 

Fig. 18. Confusion Matrix 

 
The ROC curve is well above the diagonal, confirming strong discriminative ability. The model 
performs much better than random guessing, with a high true positive rate and low false positive rate 
across thresholds. 
 
3. Confusion matrix  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The confusion matrix at a threshold of 0.57 shows that out of 1,200 molecules, the cascade neural 
network model correctly classified 408 low-affinity (true negatives) and 549 high-affinity (true 
positives) compounds, while misclassifying 50 low-affinity compounds as high-affinity (false 
positives) and 193 high-affinity compounds as low-affinity (false negatives). This results in an overall 
accuracy of about 79.7%, with high precision (91.6%) indicating that most predicted actives are truly 
active, and good specificity (89.1%) showing effective filtering of inactives.  
However, the recall (74%) reveals that about a quarter of actual high-affinity molecules are missed, 
suggesting the model is conservative in its predictions-favoring fewer false positives at the cost of 
more false negatives. This balance is often desirable in drug discovery to minimize wasted resources 
on false leads, but may require further tuning if maximizing the identification of all true actives is 
critical. 
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Fig. 18. Ranking Correlation 

4. Ranking Correlation (Spearman/Kendall) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Scatter plot of experimental vs. model ranks. The positive trend indicates a strong monotonic 
relationship between predicted and experimental rankings. This supports the high Spearman (0.780) 
and Kendall (0.565) rank correlation coefficients reported, demonstrating the model's effectiveness at 
ranking molecules by affinity. Excellent classification and ranking: High AUCs for both ROC and PR 
curves, with well-separated prediction scores for each class. Model is well-calibrated: Most 
predictions are confidently assigned to the correct class.Strong monotonic relationship between 
predicted and experimental rankings. Misclassifications occur primarily in the overlap region of the 
prediction score histogram. 
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5. CONCLUSION AND FUTURE ASPECTS 
 
 
 
This research presents an integrated computational framework for investigating the structural and 
functional implications of the Dopamine D3 receptor (D3R), with a focus on mutation impact, ligand 
binding, and machine learning-based drug discovery. The study systematically combined evolutionary 
conservation analysis, deleterious mutation prediction, molecular docking, molecular dynamics (MD) 
simulations, and advanced QSAR modeling using cascade neural networks to address challenges in 
D3R-targeted drug discovery. Conservation analysis and mutation prediction revealed that deleterious 
variants are predominantly located in highly conserved regions of D3R, which are critical for receptor 
stability and function. Docking studies demonstrated that mutations in these regions often lead to 
reduced binding affinity for dopamine, while mutations in more variable regions are generally 
tolerated. MD simulations confirmed that such mutations can alter receptor dynamics, with some 
stabilizing the structure but potentially impairing functional flexibility. 
The cascade neural network QSAR model, trained on a large and chemically diverse dataset, achieved 
robust performance in classifying high- and low-affinity ligands. The model demonstrated high 
accuracy, precision, recall, ROC-AUC (0.888), and average precision (AUPRC 0.916), as visualized 
in the included ROC and precision-recall curves. Prediction score histograms and rank correlation 
plots further validated the model’s ability to distinguish and rank ligand affinities effectively. 
Misclassifications were mainly observed in molecules with borderline prediction scores, highlighting 
areas for further model refinement.The developed pipeline is adaptable and can be applied to other 
protein-ligand systems, provided sufficient binding data is available. The approach supports virtual 
screening, lead optimization, and the identification of candidate molecules for experimental 
validation, thereby accelerating the early stages of drug discovery. Given the involvement of D3R in 
neuropsychiatric and neurodegenerative disorders, this work advances the understanding of how 
genetic variability influences drug response and receptor function. 
The framework supports the rational design of selective D3R modulators, with potential applications 
in treating conditions such as Parkinson’s disease, schizophrenia, and depression. 
While cascade neural networks offer high predictive power, their interpretability remains limited 
compared to simpler models. Future work should focus on integrating explainable AI techniques to 
enhance model transparency. The accuracy of machine learning models depends on the quality and 
quantity of available data. Expanding curated datasets, especially for rare variants and experimentally 
validated affinities, will further improve model reliability. Bridging computational predictions with 
experimental assays remains essential to ensure clinical translatability. The pipeline should be 
iteratively refined with feedback from in vitro and in vivo studies. Incorporating multi-omics data and 
systems biology approaches could provide a more holistic understanding of D3R function and its role 
in disease. 
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