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ABSTRACT 

 

Early and correct diagnosis is crucial to improve the survival rate of brain cancer 

patients. Conventional machine learning classifiers and qualitative radiological 

assessments are two instances of traditional diagnostic methods that often encounter 

feature extraction difficulty, possess excessive false positive/negative rates, and cannot 

deal with intricate spatial and morphological patterns of medical images. This research 

presents a radiomic strategy combining deep learning with other MRI image-based 

brain tumour detection methods to overcome these challenges. Our model integrates a 

strong feature extraction autoencoder with a gradient-boosting machine for 

classification. MRI images were preprocessed with picture scaling, normalization, and 

data augmentation from the Brain Cancer Detection MRI Images dataset to enhance 

the model’s generalization. The Hybrid Autoencoder + GBM model outperformed 

standalone models with 96.8% accuracy, 97.4% precision, 96.2% recall, and 96.8% 

F1-score.ROC curve studies also validated its effectiveness, demonstrating almost 

perfect classification with an AUC of 0.99. The proposed hybrid model significantly 

reduces misclassification errors compared to convolutional neural networks (CNNs), 

GBM classifiers, and standalone autoencoders. These findings show how hybrid 

models and deep learning based on radiomics can enhance cancer diagnosis to the level 

where they can serve as a reliable alternative to traditional methods.   
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CHAPTER 1 
 

 

 

INTRODUCTION 

 

 
Cancer is one of the deadliest illnesses in the world and a major contributor to death 

rates. Skin cancer, ovarian cancer, brain cancer, lung cancer, and more than 200 other 

types of cancer are all possible: prostate, breast, and colon cancers, as well as leukemia 

and other malignancies [1][2]. A higher risk of getting cancer is associated with both 

environmental (such as chemicals, alcohol, tobacco smoke, and radiation) and genetic 

(such as genetic mutations and autoimmune disorders) variables. The body’s abnormal 

cells multiply and spread out of control in cancer, a complicated and multidimensional 

collection of disorders. Millions of individuals worldwide struggle with this severe 

health problem, which also significantly raises the expense of healthcare worldwide 

[3]. To reduce the morbidity and mortality linked to cancer, effective detection and 

treatment are essential. Since there are several varieties of cancer, each has distinct 

traits and behaviours. As a result, cancer diagnosis and treatment need a sophisticated, 

customized approach that addresses the disease’s heterogeneity [4]. Among these, 

brain cancer—particularly malignant brain tumours—presents a significant diagnostic 

challenge due to the complexity of the brain’s structure and the subtlety of early-stage 

symptoms. Brain tumours can lead to severe neurological impairment and are 

associated with high mortality rates if not detected early. 

1.1. Overview 

Significant progress has been made in the early diagnosis of cancer development as a 

result of advancements in medical technology, study, and awareness. However, 

conventional medical picture interpretation often depends on radiologists’ .  

Radiomics is a new approach to quantitative image analysis that can improve accuracy 

and reliability by eliminating subjective and qualitative evaluations. This method was 

described as extracting high throughput features from medical images by[5] in 2012. 

Radiomics can extract ROIs and volume-of-interest (VOIs) from imaging data by 

combining specific imaging modalities with automated or semi-automatic algorithms. 

These characteristics primarily fall into four types: morphological, first-level, second-

level, and textural [6]. It is possible to evaluate correlations between these features and 

clinically significant outcomes to anticipate endpoints for certain cancers. Modern 

imaging modalities in radiomics, including mammography, CT, US, and PET-CT, 

have mostly supplanted their predecessors. However, the variability brought about by 

variations in imaging protocols, scanners, segmentation strategies, and dataset 

heterogeneity is a significant drawback of radionics. These variations can impact 

feature reproducibility, model generalizability, and the precise interpretation of 

intricate patterns in sizable datasets.  

Over the past few decades, machine learning (ML) has emerged as a potentially game-
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changing strategy for deciphering intricate patterns in massive datasets, significantly 

advancing healthcare automation in the detection and prediction of cancer. Medical 

image segmentation, the analysis of enormous collections of many positions, including 

digital histopathology slides, complex genetic profile interpretation, and others may 

now be automated because to machine learning’s computing capacity and adaptability 

[7]. 

Integrating ML techniques into radiomics has created novel opportunities for 

predictive modeling in cancer diagnosis and prognosis. Machine learning algorithms 

can examine intricate and high-dimensional radiomic information, discern significant 

patterns, and construct reliable models capable of predicting cancer kinds, stages, 

treatment responses, or patient survival outcomes. By analyzing historical data, these 

models can assist doctors in making objective, data-driven judgments. Combinations 

of machine learning algorithms with radiomics data have been utilized in recent years 

to forecast prognostic information for patients with a variety of malignancies, 

including colorectal cancer [8], small cell lung cancer [9], and melanoma [10].  

The main reason radiomics are used is to support personalized medicine by fitting 

treatments and procedures to each unique patient. The use of SVMs, CNNs, gradient 

boosting and random forests in supervised and deep Learning has helped to improve 

both diagnostic accuracy and reproducibility [11].   

It combines an unsupervised feature extractor with a classifier to develop a dependable 

non-invasive imaging-based prediction mode for cancer. This method attempts to 

improve accurate predictions and how they work generally by dealing with the 

difficulties created by many and repeated features in radionics data. When put against 

classic models, the hybrid approach performs better in many other types of imaging. 

Further progress in personalized cancer diagnostics is possible because retrieved latent 

characteristics give insights into the clinical significance of radiomic patterns. 

The key contributions of this research include: 

• To introduce a novel fusion of autoencoder-based unsupervised feature extraction 

with GBM classification to handle high-dimensional and redundant radiomics features 

effectively.  

• The goal is to demonstrate superior diagnostic accuracy and model generalizability 

compared to conventional ML models for use with various medical imaging 

modalities.  

• To establish meaningful correlations between latent radiomic features and clinical 

outcomes, offering valuable insights into the potential biological relevance of these 

patterns for personalized cancer diagnosis.  

The remaining chapters will be structured as follows: Chapter 2 delves into the 

associated work, which involves studying the literature for our suggested approach and 

identifying any gaps in the research. A brief overview of the proposed sections 

provides models. The recommended approach is described in Section 4, which 
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comprises a dataset description, preprocessing, segmentation, and model. The 

experiment is detailed, the findings are analyzed, and comparisons are made in Chapter 

4. The study’s findings and recommendations for the future are presented in Chapter 

5. 

1.2. Problem Statement 

The diagnosis of brain cancer remains a significant clinical challenge due to the 

complexity of the brain’s anatomy, the variability in tumour morphology, and the 

often-subtle nature of early symptoms. Traditional diagnostic practices rely heavily on 

qualitative image interpretation by radiologists, which is inherently subjective and 

limited in its ability to capture high-dimensional radiological patterns. Although 

conventional machine learning approaches have been introduced to automate and 

enhance diagnosis, they often fall short in accurately distinguishing between malignant 

and non-cancerous tissues, particularly when dealing with redundant and complex 

radiomic data. 

Moreover, many existing models either rely on handcrafted feature extraction 

techniques that may overlook deep structural characteristics, or they employ deep 

learning models that, while powerful, tend to be opaque and require vast amounts of 

labeled data for effective training. Standalone classifiers like CNNs and GBM have 

demonstrated limited performance due to issues such as overfitting, reduced 

interpretability, and inadequate feature representation in high-dimensional medical 

imaging contexts. 

This research addresses the need for a more robust and interpretable diagnostic 

framework by introducing a hybrid model that combines the unsupervised deep feature 

learning capabilities of an autoencoder with the classification strength of a Gradient 

Boosting Machine. The goal is to enhance feature extraction from MRI images while 

maintaining high classification accuracy, thereby reducing misclassification rates and 

improving diagnostic reliability. This study seeks to fill critical gaps in the current 

state of brain tumour detection by providing a scalable and generalizable solution that 

better aligns with the demands of clinical application in oncology. 

 

1.3. Motivation 

Brain cancer remains a serious and often deadly illness that attacks the brain and spinal 

cord. Since malignant brain tumours are often discovered late and because diagnosis 

is limited, patients generally do not recover well. Central nervous system tumours are 

now a growing cause of sickness and death due to cancer on a worldwide scale. 

Although medical imaging technology is growing quickly, using radiologists to 

manually assess images still presents with major problems — it is subjective, results 

in diverse observations, takes more time and has a hard time detecting complicated 

tumours in the images. Because brain tumours have unique structures and complex 

spatial locations, it is more difficult to find them.  

It is often not possible to tell the difference between a malignant tumour and healthy 
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tissue using regular MRI analysis at the first stage. In many cases, the first symptoms 

are unclear and mild, so doctors may not evaluate patients until later. This points out 

that we need to develop early, accurate and automatic tools to help doctors make 

judgments and increase patient outcomes. Under these circumstances, radiomics 

becomes an important method to automate the identification of many quantitative traits 

from pictures in medical scans.  

Radiomics helps to link medical imaging with personalized medicine by changing 

images into data that can be analyzed. Even so, radiomic data is often packed with 

redundant information which creates issues with choice of features, understanding 

models and their general application. Even though Support Vector Machines, Decision 

Trees and Random Forests work well in several domains, they don’t perform well with 

these complex, multidimensional datasets. They tend to fit poorly to new data and 

usually do not work well in different patient settings. 

Even so, while CNNs have done incredibly well with image classification, their use in 

medical imaging is restricted by some issues. Since CNNs are not easy to interpret, 

they do not fit well in clinical settings where it’s necessary to clearly and transparently 

explain model decisions. Moreover, CNNs need large sets of labeled information 

which are typically limited in medical fields.  

Because of these major limitations, this research hopes to use hybrid solutions that 

blend the strong learning of deep models with the advantages of explaining and 

surviving in machine learning. More precisely, the study reveals how unsupervised 

deep features obtained from a convolutional autoencoder can be combined with a 

Gradient Boosting Machine (GBM) to improve the accuracy of classification. Using 

an autoencoder, the system finds important features hidden in tumor images which the 

GBM classifier applies to accurately separate malignant images from benign ones.  

As compared to CNNs, GBM and autoencoders, the hybrid model showed greater 

accuracy, precision, recall, F1-score and AUC scores in assessing classification tasks. 

More precisely, the model was able to achieve a very high accuracy of 96.8% and an 

AUC score of 0.99. In addition to achieving high numbers, the hybrid model reduced 

the risks of classifying someone with cancer when they are cancer-free and vice versa, 

compared to other models.  

Besides aiming for better technological performance, this work is also inspired by the 

need to achieve patient benefits. Using a model that is both accurate and easy to 

understand, oncologists and radiologists can make better choices, speed up the 

diagnosis process, select proper treatments and improve patient care. The approach 

used in this paper may open doors for more personalized ways to diagnose people with 

brain tumors.  

The main objective is to help advance computer aided-diagnosis tools by showing the 

benefits of adding radiomics with new learning techniques which allows us to identify 

brain cancer in its early stages when treatment is easiest. 
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1.4. Objectives 

This research aims to design and prove the reliability, scalability and clarity of a 

diagnostic model to detect brain cancer in MRI images. Because accuracy in medicine 

is important and we depend more on data for medical choices, using systems that use 

both deep learning and machine learning is crucial. The aim of this study is to satisfy 

that need by blending a convolutional autoencoder to find hidden patterns with the 

highly accurate predictions of a GBM.  

Brain tumour diagnosis through imaging remains a major challenge due to the 

complexity of brain tissue structures, the subtlety of tumour indicators in early stages, 

and the limitations of human visual interpretation. As such, this research aims not only 

to improve classification performance but also to enhance the clinical utility of 

artificial intelligence in radiology through a methodologically sound, evidence-based 

approach. 

The specific objectives of this research are outlined below: 

1. To Develop a Hybrid Radiomics-Informed Diagnostic Framework 

• Design a hybrid architecture that integrates a convolutional autoencoder 

for deep, unsupervised radiomic feature extraction with a Gradient 

Boosting Machine classifier to distinguish between malignant and non-

cancerous MRI brain scans.  

• Ensure that the architecture is modular, interpretable, and adaptable to 

potential future extensions or deployments in varied clinical settings. 

2. To Address Challenges of High-Dimensional and Redundant Data 

• Tackle the inherent complexity of radiomics data—characterized by its 

high dimensionality and feature redundancy—by enabling 

dimensionality reduction through latent space encoding.  

• Enhance the signal-to-noise ratio by eliminating irrelevant or less 

significant features and focusing only on those that carry discriminative 

power for tumour classification. 

3. To Improve Diagnostic Accuracy, Generalizability, and Robustness 

• Achieve higher classification metrics (accuracy, precision, recall, F1- 

score, and ROC-AUC) as compared to traditional machine learning 

classifiers and standalone deep learning models.  

• Test the robustness of the hybrid model against overfitting and ensure 

its performance across different patient subsets using cross-validation 

techniques. 
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4. To Compare Model Performance Against Baseline Algorithms 

• Implement baseline models including standalone GBM, CNN, and 

Autoencoder, and compare their diagnostic capabilities against the 

proposed hybrid model. 

• Present a detailed performance analysis through confusion matrices, 

ROC curves, and metric-based evaluation to establish the superiority of 

the hybrid approach.  

5. To Reduce False Positives and False Negatives in Diagnosis 

• Significantly reduce Type I and Type II classification errors, which are 

critical in the medical domain due to their potential to result in either 

unnecessary treatment or missed diagnoses. 

• Establish the model’s reliability by demonstrating a near-perfect balance 

between sensitivity and specificity. 

6. To Establish Clinical Relevance and Translational Value  

•  Demonstrate how extracted latent features correlate with known 

radiological patterns, thereby providing insights into potential biological 

relevance. 

•  Ensure that the proposed model is not only technically sound but also 

clinically interpretable and actionable, enhancing its suitability for 

integration into computer-aided diagnostic (CAD) systems.  

7. To Contribute to the Advancement of Personalized and Predictive 

Oncology  

• Support the broader vision of personalized medicine by offering a tool 

that can be adapted to individual patient data for tailored diagnosis.  

• Lay the groundwork for future extensions where similar models can be 

applied to other types of cancers or integrated with genomic, 

histopathological, or clinical data for multi-modal analysis. 
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CHAPTER 2 
 

 

 

LITERATURE REVIEW 

 
The integration of radiomics with machine learning (ML) and deep learning (DL) 

methodologies has become increasingly prominent in the field of medical 

imaging, particularly for cancer diagnosis and prognosis. A review of recent 

studies reveals a significant evolution in techniques, data usage, and model 

architectures aimed at improving diagnostic accuracy, especially for complex and 

heterogeneous cancers like brain tumours. 

1. Radiomics in Medical Imaging Radiomics, introduced in 2012, offers a 

systematic approach to extracting a large number of quantitative features from medical 

images, including morphological, first-order, second-order, and textural descriptors. 

These features are critical for capturing the subtle patterns within tumours that are 

often overlooked by traditional imaging analysis. Radiomics has demonstrated 

potential in predicting treatment outcomes, tumour grade, and survival rates across 

various cancer types. However, challenges such as feature redundancy, variations in 

imaging protocols, and lack of standardization still limit its clinical adoption.[6]  

2. Traditional Machine Learning Techniques in Radiomics A variety of ML 

methods have been applied to look at radiomics data for identifying cancer. 

Researchers have demonstrated good results with decision trees (DT), random forests 

(RF), support vector machines (SVM) and logistic regression (LR). In terms of breast 

cancer detection, DT and RF displayed accuracies of 96% and 95% when supported 

by the right radiomic features. At times, these models operate poorly in complex input 

spaces, as their data is small and may be biased [12].  

3. Deep Learning Approaches and Limitations CNNs have been especially 

recognized for their capacity to pick out different levels of detail from raw images. 

These CNNs can accurately detect cancers of the pancreas and brain. Still, because 

radiomics systems cannot be easily interpreted, use large unclear datasets and cannot 

describe radiomic features, they are not suitable for clinical environments where being 

clear and transparent matters [24]. 

4. Hybrid Models for Enhanced Diagnostic Performance Recent trends in 

cancer imaging have explored the fusion of unsupervised learning for feature 

extraction with robust ML classifiers. Hybrid models that combine deep autoencoders 

with gradient boosting frameworks have shown enhanced performance by leveraging 

the representational power of deep networks and the interpretability of tree-based 

models. Such architectures are better equipped to manage redundant and complex 

feature spaces while maintaining diagnostic precision. In my study, the hybrid 

Autoencoder + GBM model achieved superior metrics (Accuracy: 96.8%, AUC: 0.99) 
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over individual models, affirming the benefits of this approach. 

5. Limitations in Current Research Despite progress, several limitations 

persist in the literature:  

• Many studies rely on small sample sizes without external validation, reducing 

the generalizability of their findings. 

• Feature interpretability is often neglected, with limited correlation between 

extracted features and clinical significance. 

• Traditional methods do not fully exploit deep latent features, and deep models 

are rarely optimized for radiomics data specifically.  

Table 1 summarizes recent studies on ML and DL techniques in radiomics for cancer 

diagnosis. It outlines each study’s purpose, methodology, dataset, key findings, and 

limitations. 

Table 1. Summary of Recent Studies on ML and DL Techniques in Radiomics for 

Cancer Diagnosis 

Ref. Purpose Methodology Dataset Findings Limitation 

[12] Machine 

learning models 

can guide the 

evaluation of 

DCE-MRI 

radiomics 

features-based 

cancer patients 

with 

histological 

complete 

response to 

neoadjuvant 

chemotherapy. 

Radiomics features 

were extracted and 

corrected, followed 

by training Machine 

learning algorithms 

using five types of 

machine learning: 

k-nearest 

neighbours, logistic 

regression, decision 

trees, random 

forests, and extreme 

gradient boosting. 

Leave-Group-Out 

Cross-Validation 

and performance 

metrics like AUC 

and accuracy. 

DCE-MRI 

data from 55 

breast cancer 

patients (18 

pCR, 37 

non-pCR). 

DT and RF 

obtained the best 

results; DT had 

96% accuracy and 

an AUC of 0.94, 

while RF had 95% 

accuracy and an 

AUC of 0.98. XGB 

did better than LR 

and k-NN, which 

had lower measures 

The short 

sample size 

and absence of 

external 

validation 

impact 

generalizability 

[13] To examine 

how alternative 

feature 

selection 

approaches, ML 

classifiers, and 

radiomic 

feature sources 

affect clinically 

Employed 10 

feature selection 

techniques and 4 

ML classifiers to 

1246 radiomic 

features from bi-

parametric MRI 

(T2w & ADC) and 

assessed model 

Two 

multicentric 

datasets: - 

Dataset 1: 

465 patients 

- Dataset 2: 

204 patients 

Boruta + Boosted 

GLM performed 

best internally 

(AUC=0.71, 

F1=0.76) and L1-

lasso + Boosted 

GLM best 

externally 

(AUC=0.71, 

Model 

performance 

declined in 

external 

validation 

(notably lower 

F1 score); 

combining 

T2w and ADC 
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significant 

prostate cancer 

(csPCa) model 

diagnosis 

performance. 

performance using 

nested cross-

validation and 

external validation 

using 7 metrics. 

F1=0.47), and 

ADC-derived 

features 

outperformed T2w 

and combined 

features in 

predictive power. 

functionalities 

did not 

enhance 

results, and the 

study did not 

investigate 

deep learning 

or hybrid 

feature 

engineering 

approaches. 

[14] To assess and 

contrast the 

effectiveness of 

machine 

learning 

techniques for 

radiomics-based 

cancer 

prognostic 

prediction 

Radiomic 

characteristics were 

extracted from 

NSCLC patients’ 

CT images, and 

DT, a 70:30 split 

between DL-ANNs, 

BT, RF, SVM, and 

GLM, were all 

cross-validated and 

used to classify 

survival outcomes 

at 1, 3, 5, and 7 

years. 

422 NSCLC 

patients from 

Archives of 

Cancer 

Imaging 

(TCIA); 

large tumour 

volumes 

delineated 

for feature 

extraction 

RF (AUC=0.938) 

and BT 

(AUC=0.912) 

outperformed other 

models; DL-ANN 

underperformed; 

radiomics useful in 

supporting 

treatment planning 

A short sample 

size combined 

with 

significant 

input 

parameters 

may impact the 

prediction 

performance of 

neural 

networks for 

radionics data. 

[15] To identify pre-

diagnostic 

pancreatic 

ductal 

adenocarcinoma 

(PDAC) using 

radiomics-based 

ML models and 

compare 

radiologists’ 

performance. 

CT volumetric 

pancreatic 

segmentation, 

extraction of 88 

radiomic features, 

LASSO feature 

selection, 4 ML 

classifiers (KNN, 

SVM, RF, XGB), 

two radiologists’ 

comparison. 

155 PDAC 

pre-

diagnostic 

patients and 

265 controls; 

training (292 

CTs) and test 

(128 CTs); 

verified on 

independent 

internal 

(n=176) and 

NIH dataset 

(n=80). 

SVM fared best 

(AUC=0.98, 

Accuracy=92.2%, 

Specificity=90.3%); 

ML models 

surpassed 

radiologists 

(AUC=0.66). 

Generalized SVM 

performance across 

datasets 

The 

retrospective 

technique and 

small, younger 

validation 

cohorts hinder 

generalizability 

due to 

selection bias. 

Imaging 

parameters and 

radiomic 

feature 

interpretability 

were not 

examined. 

[16] To evaluate and 

compare 

radionics-based 

machine 

learning models 

with DWI, 

DCE, and MRI 

with 

multiparametric 

Developed 

Gaussian SVM 

models using five-

fold cross-

validation after 

extracting 

radiomics features 

from DCE and 

DWI MRI and 

 93 

patients from 

two 

institutions 

with 104 

breast 

lesions (46 

malignant, 

58 benign) 

With 81.7% 

diagnostic 

accuracy, the DWI 

model’s AUC is 

0.79, the DCE 

model’s is 0.83, and 

the combined 

model’s is 0.85. 

Low sample 

size hindered 

external model 

validation. 

Despite grey 

level and pixel 

threshold 

modifications, 

sub-centimeter 
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features to 

improve breast 

cancer detection 

choosing the best 

features for each 

modality 

between 

2011 and 

2020 

lesions may 

cause partial 

volume effects. 

 

2.1. Research Gap 

Existing studies on radionics-based Machine learning models often have problems, 

like not having enough data to work with, lack of external validation, over-reliance on 

traditional feature selection methods, and issues with high-dimensional and redundant 

data. Additionally, many models lack interpretability and overlook the biological 

relevance of extracted features. The current research applies a hybrid approach to fill 

these gaps in the framework, combining unsupervised deep feature extraction using 

autoencoders with GBM classification. Compared to traditional models, this approach 

enhances predictive accuracy, improves generalizability, and provides deeper insights 

into the clinical significance of radiomic patterns, leading to more robust and 

interpretable cancer diagnostics. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 
MRI scans must detect brain tumours accurately for early diagnosis and therapy. 

Traditional diagnosis requires radiologists to manually assess images, which is 

time-consuming and error-prone. Predictive radiomics modeling automates 

tumour identification and enhances diagnostic accuracy with machine and deep 

learning. This study uses Kaggle brain tumour MRI images labeled malignant or 

non-cancerous. We construct an efficient classification model using an 

autoencoder for deep feature extraction and a Gradient Boosting Machine for 

robust classification. Images are scaled, normalized, and augmented to increase 

model performance and generalizability. To outperform standalone autoencoders, 

CNNs, and GBM classifiers, our hybrid model integrates deep learning using 

classification and feature extraction through machine learning. We evaluate 

models for brain tumour detection by measuring their F1-score, recall, accuracy, 

and precision. One of the suggested algorithms framework for predictive 

modeling in radiomics for cancer diagnosis is illustrated in Table 1. 

 

 

Figure 1: Flowchart of the proposed hybrid model for brain cancer detection 
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The above illustration presents the process of the proposed hybrid brain cancer 

detection model. First, the process uses input MRI Images, then goes on to 

preprocess them by scaling and augmentation. Features from the autoencoder and 

radiomic data are used, then classified by a Gradient Boosting Machine to give 

the final result for tumour detection. 

 

 

3.1. Dataset Description 

For this research, the primary source of data was the Brain Cancer Detection MRI 

Images dataset obtained from the open-source platform Kaggle. The dataset consists 

of a total of 800 MRI images, specifically curated to support binary classification tasks 

related to brain tumour detection. Out of these 800 samples, 408 MRI scans correspond 

to normal (non-cancerous) brain images, and 392 scans depict abnormal (malignant 

tumour) brain conditions. This nearly balanced distribution between the two classes 

ensures that the learning algorithm can effectively discriminate between tumour-

present and tumour-absent conditions without significant bias toward either class.  

The dataset was selected due to its relevance, accessibility, and pre-labeling, which 

makes it suitable for supervised learning tasks. Each image was captured through 

Magnetic Resonance Imaging (MRI), which is widely recognized as the gold standard 

in brain imaging due to its high spatial resolution and ability to capture intricate 

structural details of soft tissues. The availability of both normal and abnormal cases 

allows the model to learn distinguishing radiomic patterns—both subtle and overt—

that differentiate healthy brain structures from those impacted by malignancy.  

The images within the dataset are stored in standard image formats (PNG or JPG) and 

exhibit variation in resolution and orientation, mimicking the diversity found in real-

world clinical imaging environments. This variability was intentionally retained in the 

early stages to ensure that the model would generalize well under heterogeneous input 

conditions, a critical requirement for any computer-aided diagnostic system intended 

for clinical deployment.  

The dataset encompasses several MRI slices from different individuals, covering a 

variety of tumour types, locations, and intensities. This diversity allows for the 

extraction of rich radiomic features during the preprocessing and encoding phases. 

However, the absence of patient-specific metadata such as age, tumour type, or grade 

also highlights the need for future datasets that integrate multi-modal clinical data to 

further refine prediction accuracy.  

To ensure the ethical use of data and compliance with research standards, it is 

important to note that all MRI scans in the dataset are anonymized and publicly 

available for academic use under open-source licensing. No personally identifiable 

patient information is included, making the dataset suitable for use in medical AI 

research without additional privacy concerns.  

The selection of this dataset aligns with the study’s goal to develop a generalizable and 
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robust diagnostic framework for brain cancer detection using radiomics-based 

features. By choosing a well-curated dataset of manageable size, the study ensures a 

balance between computational feasibility and statistical significance, which is 

essential for model validation and reproducibility.  

The data collected serves as the foundational input for the entire machine learning 

pipeline—starting from preprocessing and augmentation, followed by unsupervised 

feature extraction through a convolutional autoencoder, and finally leading to 

classification using a Gradient Boosting Machine (GBM). The careful curation and 

balanced nature of the dataset thus play a crucial role in the success of the proposed 

hybrid diagnostic model.  

Brain Tumour and Healthy MRI images are provided (Figure 2). The images have to 

be preprocessed as they are PNG or JPG and of varying resolutions for homogenizing 

the data. Image labelling by category produces well-structured data suitable for 

supervised learning. To prevent class bias, the data is weighted to train the model 

equally. Grayscale images highlight structural information required for tumour 

detection. Adding metadata such as image size and capture conditions enables 

comprehensive data analysis and preparation. 

 

 

Figure 2: Sample of dataset 

 

3.2. Handling Data Imbalance 

The Brain Cancer Detection MRI Images dataset for this study is bias, with some 

tumour types or grades appearing less than others. Since there are more majority 

samples than minority ones, the classifier may favor them, meaning it learns to 

recognize more common types of tumours more easily, something critical for accurate 

cancer diagnosis. 
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This was solved by rotating, flipping and scaling preprocessed images to generate new 

examples of minority examples. As a result, the data was kept balanced and the model 

became better at classifying tumours of different types. The model was also modified 

so that more importance was given to the misclassification of rare groups, improving 

both its sensitivity and impartiality. 

3.3. Data Preprocessing 

3.3.1. Image Resizing and Normalization 

Images were reduced to 128x128 pixels for all binary patterns to reflect the structures 

without compromising the efficiency. Resizing helps to lower the resource use without 

affecting the main aspects needed for classification [19]. Intensity data in pixels were 

normalized by diving them by 255 to maintain stability in gradient calculations while 

back-propagating [20].  

Image Resizing  

All MRI images were scaled down to 128 pixels on each side. The decision was based 

on finding equilibrium between using computational resources wisely and having 

detailed anatomical representation. Richer-detail pictures take up much more memory 

and require more processing power when training your model. Conversely, 

excessively down-sampling the images could result in the loss of diagnostically 

significant features such as tumour boundaries, morphological textures, and structural 

irregularities. The chosen resolution of 128 × 128 ensures that:  

• The model receives standardized inputs across the dataset, preventing the model 

from learning inconsistencies due to size variation.  

• The convolutional layers in the autoencoder architecture can efficiently extract 

hierarchical features without becoming computationally prohibitive.  

• Spatial integrity of tumour-related features—such as irregular contours or 

lesion densities—is largely preserved.  

For resizing, bilinear interpolation was used to maintain a smooth intensity gradient 

and minimize information loss. This interpolation method was chosen over nearest-

neighbor or bicubic methods to ensure that tissue boundaries and subtle transitions 

remained clear, particularly for small or early-stage tumours that are often hard to 

distinguish. 

Image Normalization 

Following resizing, each image underwent pixel intensity normalization to a standard 

range of [0, 1]. Originally, the grayscale intensity values in MRI images span from 0 

to 255. Normalization was performed using min-max scaling, achieved by dividing 

each pixel value by 255: 
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Normalized pixel = 
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑝𝑖𝑥𝑒𝑙

255
 (1) 

 

This transformation is crucial for the following reasons: 

• It ensures faster convergence during neural network training by stabilizing the 

gradients.  

• It reduces the variance in feature distribution, making the learning process less 

sensitive to initialization and learning rate choices.  

• It allows the model to treat features with equal weight, preventing dominance 

by high-intensity regions.  

• It improves the compatibility of inputs with activation functions (like ReLU or 

sigmoid), which assume bounded inputs for effective backpropagation.  

Normalization is especially important in medical imaging, where lighting conditions 

and scanner settings may vary across datasets. Standardizing image intensity mitigates 

the risk of learning spurious correlations related to imaging artifacts rather than actual 

pathology.  

Benefits and Impact on Model Performance  

Because of resizing and normalization, the resulting hybrid Autoencoder + GBM 

model boosts its performance, stability and general ability. With the sizes of the images 

downsized, the encoder layers can concentrate on gaining meaningful low- and mid-

level features and normalization ensures they are learned in a stable mathematical 

setting. As all the training data is consistent, the representations in the latent space are 

better, leading to better performance from the GBM classifier which requires feature 

scaling.  

Besides, preparing data in this way is crucial for making the research reproducible. 

The model will work with any input image after the image is resized and normalized, 

preserving the diagnostic value for every case. 

3.3.2. Label Encoding 

Each tissue type in the study was given an integer code instead of a category name. 

Now, the model could read class labels in numbers, making it possible for the model 

to do multi-class classification which is common in machine learning applications 

[21].  

Before machine learning algorithms use classification data, label encoding helps 

ensure the categories are understood by changing them into a numerical format 

understood by the algorithm. This study considers binary brain cancer diagnosis as the 

target, using the categories ‘normal’ for no cancer and ‘abnormal’ for cancer or 
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malignancy. MRI scans organized by different labels are provided in separate folders 

within the dataset found on Kaggle.  

Every category was assigned a number by systematically label encoding the data. The 

transformation was as follows: 

• Normal (non-cancerous) MRI images were assigned the label 0  

• Abnormal (cancerous) MRI images were assigned the label 1  

This encoding is especially important for machine learning algorithms that require 

numerical labels for classification, such as the Gradient Boosting Machine (GBM) 

used in this research. GBM operates by learning patterns in the feature space to predict 

the probability or likelihood of a given image belonging to one of the two classes. 

Without converting the categorical class labels into integers, these algorithms would 

not be able to interpret or optimize the loss function during training.  

The choice of binary encoding (0 and 1) also aligns with the mathematical structure of 

most classification models. For instance:  

• A popular loss function for binary classification tasks is binary cross-entropy 

loss, which performs well when the target values are in the 0/1 format. 

• Probabilistic outputs generated by the GBM classifier can be thresholded (e.g., 

≥ 0.5 as class 1 and 0.5 as class 0) to make discrete predictions, a process that 

would be infeasible with string-based or nominal labels.  

The label encoding process was implemented using standard Python-based 

preprocessing techniques with libraries such as pandas and sklearn. The structure of 

the dataset—organized into directory folders named “normal” and “tumour”—allowed 

for automatic assignment of numeric labels during data loading using custom data 

loaders.  

This simple yet effective approach ensures:  

• Consistency across training and validation sets  

• Correct association between images and their respective labels  

• Minimal risk of encoding error, as it avoids manual entry  

When the labels are encoded, they join the image data in moving through the hybrid 

model and their job is to guide the classification task’s training. Number codes are 

used to determine the main evaluation measurements of accuracy, precision, recall and 

F1-score, so their performance can be fairly measured.  

Integer-based encoding also allows for the construction of a confusion matrix and the 

plotting of a ROC curve which are essential for the analysis presented in Chapter 4. 

You cannot do these analyses or make sense of them without a numeric target variable.  
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In conclusion, label encoding is a foundational preprocessing operation that bridges 

the gap between raw categorical annotations and machine-compatible numerical 

representation. It ensures seamless integration of the target labels into the machine 

learning pipeline, laying the groundwork for accurate model training, validation, and 

inference in binary brain tumour classification.  

3.3.3. Data Augmentation  

The problem of dataset imbalance has been resolved. To boost the model’s accuracy, 

data augmentation methods are used robustly. Zoom up to 20%, shear transformation 

up to 0.2, width and height changes up to 20%, random rotation up to 20 degrees, and 

horizontal flipping were the augmentation techniques employed. It is generally known 

that augmentation strategies enhance the model’s generalization in medical imaging 

applications [22].  

When the data available is restricted, using data augmentation is essential to improve 

the stability, usefulness and prediction power of medical models by improving 

machine learning input. With 800 brain MRI images, the study data included 

approximately equal numbers of normal and abnormal cases, though the size remains 

fairly low for training neural networks. Hence, methods to grow the dataset artificially, 

avoid too much fitting to the data and improve the model on new data were 

implemented.  

Data augmentation involves the systematic transformation of existing images to 

generate new, yet realistic, training samples while preserving their essential semantic 

content. For this study, several well-established augmentation techniques were 

applied, each carefully selected based on their relevance to radiological imaging, 

ability to preserve diagnostic features, and contribution to model diversity. 

Implemented Augmentation Techniques  

1. Random Rotation (up to 20°) Brain MRIs may appear at slight angular variations 

based on patient positioning or scanner orientation. Applying random rotations 

helps the model become invariant to such variations and improves feature learning 

across different viewing angles.  

2. Width and Height Shifting (up to 20%) Small translations in image positioning 

simulate variability due to scanning protocols. This transformation teaches the 

model to remain sensitive to tumour patterns even if the lesion appears slightly 

displaced in the image frame.  

3. Shear Transformations (up to 0.2) Shearing distorts the image by shifting one axis, 

which helps in making the model more robust to structural deformations or natural 

anatomical distortions that may occur due to tumours pushing on nearby tissue.  

4. Zoom Range (up to 20%) Zooming in or out introduces scale variability and helps 

the model learn tumour features at multiple resolutions. This is especially 

important in identifying both small and large lesions effectively.  
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5. Horizontal Flipping Given the bilateral symmetry of the brain, horizontal flipping 

is a valid augmentation strategy. It enables the model to identify tumours that may 

appear on either hemisphere without developing a positional bias.  

All these transformations were applied dynamically using a real-time image generator 

during training, ensuring that the model was exposed to a diverse and continuously 

varying input space. The transformations were implemented using the 

ImageDataGenerator class from the Keras deep learning framework, which efficiently 

applies augmentation to each mini-batch of images during the training loop without 

altering the original dataset.  

Mathematical Foundation and Impact  

Data augmentation helps in increasing the effective size of the dataset and introduces 

controlled noise into the training process. Instead of learning particular pixel 

configurations, this enables the model to learn more universal and invariant feature 

representations. In deep learning terminology, this helps reduce overfitting, improve 

training stability, and enhance the transferability of learned features.  

Moreover, given that the convolutional autoencoder component of the model is highly 

sensitive to spatial patterns and textures, augmentation ensures that the model does not 

become over-reliant on fixed positional cues. It allows the encoder to develop a more 

holistic understanding of tumour-related radiomic features, regardless of their scale, 

location, or orientation. 

Clinical Justification  

In real-world clinical practice, brain MRIs may exhibit subtle differences due to 

machine type, technician handling, patient movement, or institutional protocols. 

Training a model on a non-augmented dataset limits its exposure to this variability, 

which can compromise performance when deployed in real scenarios. By integrating 

these augmentation techniques, the proposed model better reflects the diversity 

encountered in clinical datasets, thereby increasing its diagnostic reliability.  

3.4. Model Building  

Radiomic cancer detection uses medical imaging data to identify malignant and non-

cancerous situations. Complex medical image spatial and morphological patterns are 

difficult to capture using traditional feature engineering methods. We use a deep 

learning-based autoencoder for feature extraction and a GBM for classification to 

solve this. This hybrid technique achieves reliable feature learning and classification 

accuracy.  

3.4.1. Autoencoder  

Autoencoders, which are neural networks taught to recreate their input, were initially 

shown in [17]. Their main objective is to create an unsupervised ”informative” data 

representation that can be applied to many jobs, such as extracting and grouping 
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features. Autoencoders do this by putting raw data into an area with fewer dimensions. 

This lets them find important features that show how the data is organized.  

The problem, as formally defined in [18], is to learn functions A : Rn → Rp (encoder)  

B : Rp → Rn that minimize the expected reconstruction loss:  

arg min
𝐴,𝐵

𝐸 [Δ(𝑥, 𝐵 ∘ 𝐴(𝑥))] (2) 

 

where E the expectation across the distribution x△ is calculated, and the distance 

between the output of the decoder and the input of the device is calculated. The 

objective is to minimize the extent of the discrepancy between the original input and 

the reconstructed output due to reconstruction B(A(x)). 

Reconstruction loss is usually calculated using the ℓ2-norm, which measures the 

squared Euclidean distance between input and rebuilding. In this context, represents 

the original input space, whereas represents the latent (encoded) space, typically 

chosen such that, often selected to reduce dimensionality and enhance feature 

extraction.  

Encoding is the first step of an autoencoder, which involves reducing the raw data into 

a concealed, lower-dimensional model. Decoding is the second step, restoring the 

original data from the compressed form. Reconstruction accuracy is used to quantify 

its performance, and it is trained via backpropagation to reduce the input-output 

difference. As shown in Figure 3, the fundamental framework.  

 

Figure 3: The basic structure of an autoencoder network 

3.4.2. Gradient Boosting Machine (GBM) 

As part of gradient boosting, multiple weak prediction models are built and then 

combined to make predictions in classification and regression situations. The approach 

allows optimizing any differentiable loss function which makes it better than previous 

boosting methods and adds new steps to the model.  

Working on Gradient Boosting  
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Sequential Learning Process  

In the ensemble, several trees were trained with the task of spotting and correcting the 

errors of the preceding tree. To train Tree 1 on the first iteration, we use the original 

data along with the right labels. Econometric models estimate the residuals by 

comparing real values with what was predicted.  

Residuals Calculation  

Using the feature matrix and the Tree 1 residuals as labels, Tree 2 is trained in the 

second iteration. In other words, Tree 2 has been trained to predict Tree 1’s errors. For 

every tree in the ensemble, this procedure is repeated. Training a new tree to predict 

the residual errors from the one before the shrinkage.  

The learning rate η, which may be anything between 0 and 1, is multiplied by the 

predictions made by each tree once it has been trained. This avoids overfitting by 

guaranteeing that each tree has less effect on the finished model. After every tree has 

been trained, predictions are generated by adding each tree’s contributions together. 

The following formula provides the final prediction: 

𝑦(𝑝𝑟𝑒𝑑) =  𝑦1 +  𝜂𝑟1 +  𝜂𝑟2 +  … +  𝜂𝑟𝑁 (3) 

 

where the residuals (errors) that each tree predicts are denoted by r1,r2,r3,....rN. Figure 

4 shows the architecture of Gradient Boosted Trees, illustrating the sequential process 

of training weak learners on residuals and combining their outputs to improve model 

accuracy. 

 

Figure 4: Gradient Boosted Trees 
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3.4.3. Auto-encoder for feature extraction 

Autoencoder neural networks extract features and reduce dimensionality for 

unsupervised learning. The Autoencoder in this model uses convolutional layers to 

encode and decode. The encoder gradually reduces spatial dimensions to extract high-

level features from medical images while keeping radiomic information. The decoder 

reconstructs the image, retaining the most essential information in latent space. This 

method teaches intrinsic patterns like tumour morphology and texture, making 

extracted features more classifiable[23].  

Feature extraction is a critical step in any computer vision-based diagnostic 

framework, particularly in medical imaging, where the goal is to capture latent spatial 

and morphological patterns that distinguish pathological conditions from normal 

anatomy. In this research, a convolutional autoencoder was employed as the 

foundational feature extractor for brain tumour detection from MRI images. The 

autoencoder serves as an unsupervised deep learning model that learns compact and 

meaningful representations of input images by compressing and reconstructing them, 

capturing high-level features in the process. 

Concept and Architecture of Autoencoders  

An autoencoder is a type of artificial neural network composed of two main 

components:  

Encoder: This sub-network compresses the high-dimensional input data (MRI image) 

into a lower-dimensional latent space representation. It progressively reduces spatial 

dimensions while preserving essential structural features. 

Decoder: This sub-network attempts to reconstruct the original input image from the 

encoded latent representation. The model learns to minimize the difference between 

the input and its reconstruction using a reconstruction loss function, typically Mean 

Squared Error (MSE).  

Learning a set of weights that enables the network to reconstruct the input as precisely 

as feasible is the autoencoder’s overarching training goal: 

min
𝜃

 𝐸𝑥∼𝔻[|𝑥 − �̂�|2
2] (4) 

 

where x is the original image, xˆ is the reconstructed output, and θ are the encoder and 

decoder networks’ trainable parameters.  

In this work, the convolutional variant of the autoencoder was used due to its ability 

to retain spatial hierarchies in image data. The encoder was constructed with a series 

of convolutional layers followed by pooling layers, which progressively down-sample 

the feature maps and encode only the most salient patterns. The decoder used up-

sampling and deconvolution (transposed convolution) layers to restore the image to its 

original dimensions.  
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Latent Space Representation 

The central utility of the autoencoder in this study is the extraction of features from 

the latent space bottleneck, which is a compressed vector representation capturing the 

most meaningful information from the original image. These latent features serve as a 

high-level abstraction of the MRI image, encapsulating radiomic patterns such as 

tumour edges, irregular textures, and density variations that may not be evident in raw 

pixel data.  

This encoded vector is flattened and passed as input to the Gradient Boosting Machine 

(GBM) classifier. The dimensionality reduction inherent in the autoencoder ensures 

that the classifier is trained on informative, non-redundant features, thereby improving 

classification performance and preventing overfitting. 

Advantages of Using Autoencoders in Radiomics  

1. Unsupervised Learning of Complex Patterns: The autoencoder requires no label 

information during training. It learns meaningful representations from the image 

data alone, making it ideal for capturing underlying structures within both tumour 

and normal tissues.  

2. Dimensionality Reduction: Medical image-based radiomic data is by its very 

nature high-dimensional. The encoder compresses this information into a smaller, 

information-rich vector, reducing computational complexity for subsequent 

classification.  

3. Robustness to Noise and Artifacts: During reconstruction, the autoencoder filters 

out irrelevant variations and noise, focusing on the core patterns that are critical 

for tumour detection. This improves model resilience in clinical settings where 

images may have noise due to patient movement or scanner variations. 

4. Feature Generalization: The acquired characteristics are not restricted to a single 

classification task. They are transferable and can be adapted for other downstream 

applications, such as tumour segmentation or subtype classification.  

Training Details and Parameters  

The autoencoder was trained using the Adam optimizer with a learning rate fine-tuned 

for stable convergence. Batch normalization layers were introduced after each 

convolutional block to stabilize learning and accelerate training. ReLU was used as 

the activation function in intermediate layers to introduce non-linearity, while a 

sigmoid activation was applied to the final output layer to normalize pixel values 

between 0 and 1, aligning with the preprocessed image range.  

To prevent overfitting, dropout layers were added between dense layers, and early 

stopping was implemented during training based on validation reconstruction loss.  
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Role in the Hybrid Architecture  

The convolutional autoencoder acts as the feature extraction backbone of the proposed 

hybrid model. Its ability to transform complex brain MRI data into a compact and 

informative latent space enables the GBM classifier to operate efficiently and 

effectively. The combined model architecture—autoencoder for feature extraction 

followed by GBM for classification—strikes a balance between the deep 

representation power of neural networks and the decision tree robustness and 

interpretability of ensemble learning.  

This synergy directly contributed to the superior performance metrics achieved by the 

model, including accuracy (96.8%), precision (97.4%), recall (96.2%), and an almost 

perfect AUC score (0.99). The autoencoder’s ability to learn non-linear spatial 

relationships in tumour morphology proved instrumental in differentiating subtle 

pathological changes from normal variations.  

3.4.4. Classification using Gradient Boosting Machine (GBM)  

The Autoencoder flattens radiomic data and sends it to a GBM classifier. GBM 

sequentially creates weak decision trees to improve classification performance by 

minimizing mistakes. GBM improves prediction accuracy and handles complicated 

feature interactions while being computationally inexpensive. GBM uses autoencoder-

extracted deep features to categorize radiomic cancer pictures as malignant or non-

cancerous. This data-driven radiomic cancer detection method uses deep feature 

extraction with autoencoders and robust classification using GBM to improve 

diagnostic accuracy.  

Once high-level radiomic features are extracted from the latent space of the 

convolutional autoencoder, the next essential step is classification. For this, the study 

employs a Gradient Boosting Machine (GBM), known for its superior performance in 

structured data classification tasks. GBM was selected based on its ability to handle 

non-linear feature interactions, reduce bias and variance, and offer greater 

interpretability compared to conventional deep learning classifiers such as CNNs.  

Why GBM?  

Gradient Boosting Machines operate by building an ensemble of weak learners—

typically shallow decision trees—in a sequential manner. Each successive tree is 

trained to correct the errors (residuals) made by the previous one. This iterative 

refinement process significantly boosts the model’s predictive accuracy and reduces 

overfitting tendencies when hyperparameters are tuned appropriately.  

In the context of this study, GBM was chosen for the following reasons:  

• When working with reduced-dimensional, tabular feature vectors, such those 

generated by the autoencoder’s latent layer, it is incredibly efficient. 

• It supports weighted learning, allowing it to better handle misclassified 
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examples.  

• It is less prone to overfitting than deep networks, especially on small-to 

moderate datasets like the 800-image MRI dataset used in this study.  

• GBM offers better interpretability through feature importance scores, making it 

suitable for clinical research where transparency is important. 

Mathematical Foundation of GBM  

Given a set of training instances,  

{(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  

(5) 

  

where xi represents the input (latent features) and yi ∈ {0,1} is the binary class 

label (normal or tumour), the GBM attempts to model a function F(x) that 

minimizes a differentiable loss function L(y,F(x)), such as binary cross entropy.  

The model is built in a stage-wise fashion:  

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) (6) 

 

Where:  

• hm(x) is a weak learner (typically a decision tree) trained on the negative 

gradient (residuals) of the loss function.  

• 𝛾𝑚 is the step size or learning rate that scales the contribution of each tree.  

• Fm(x) After m iterations it is the updated model.  

Each new tree focuses on the residual errors of the existing ensemble, gradually 

improving the model’s performance on difficult samples.  

Training GBM on Encoded MRI Features  

The GBM classifier in this research was trained on the compressed feature vectors 

obtained from the encoder output of the autoencoder. These features capture high-

level structural and textural information critical for distinguishing normal and 

tumour-containing brain scans.  

The training pipeline involved:  

• Splitting the encoded dataset into training and validation subsets using stratified 

k-fold cross-validation (typically 80:20).  
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• Optimizing hyperparameters such as the number of estimators (trees), learning 

rate, tree depth, and subsampling rate using grid search. 

• Evaluating performance using key classification metrics—accuracy, precision, 

recall, F1-score, and area under the ROC curve (AUC). 

Performance Outcomes  

The GBM classifier, when combined with the autoencoder-extracted features, 

delivered state-of-the-art classification performance:  

• Accuracy: 96.8%  

• Precision: 97.4%  

• Recall: 96.2%  

• F1-score: 96.5%  

• AUC: 0.99  

This performance clearly outstripped other tested models, including:  

• CNN trained directly on raw images  

• GBM trained on manually extracted radiomic features  

• Standalone autoencoder classifier (decoder-less)  

These results confirm that the hybrid pipeline of unsupervised deep feature 

extraction followed by gradient-boosted classification significantly enhances both 

the accuracy and clinical relevance of tumour detection in brain MRI scans.  

Interpretability and Clinical Relevance  

A main benefit of GBM is that it creates feature importance scores that help us see 

which latent features play the biggest role in the classification. This aspect fits 

with the importance of openness in medical artificial intelligence. With future 

updates, we may connect feature importance to recognized radiomic markers or 

parts of the anatomy to provide more useful clinical findings..  

3.5. Performance Metrics  

Determining the effectiveness of a machine learning model involves things apart 

from only checking its accuracy. Correctly measuring the performance of a model 

is vital in brain cancer detection, because medical specialists depend greatly on 

the diagnosis. A model that gets the right answer most of the time—even if it is 

very accurate—can still be confusing in fields such as brain MRI classification, 

because there are far more normal images than images with cancer. 
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Therefore, we have used a range of measures to determine how the model performs 

in diagnosing the disease. These assessment measures are accuracy, precision, 

recall, F1-score, specificity, the confusion matrix and ROC curve (AUC-ROC). 

Every metric contributes unique knowledge about how the model works and their 

combined use strengthens the way the model is examined.  

3.6. Algorithm 

Table 3 contains the proposed Hybrid Autoencoder and ABM Algorithm: 
 

Table 2: Hybrid Autoencoder and GBM Algorithm 

Algorithm 1 Brain Tumour Detection using Autoencoder and GBM 

1: Input: MRI Image Dataset D 

2: Output: Classification of MRI scans as Malignant or Non-Cancerous 

3: Step 1: Data Preprocessing 

4: Resize all images to 128 × 128 pixels 

5: Normalize pixel values to the range [0, 1] by dividing by 255 

6: Convert images to grayscale to highlight structural details 

7: Encode labels numerically (Malignant = 1, non-cancerous = 0) 

8: Apply Data Augmentation: type Random rotations, width/height shift, shear 

transformations, zoom, horizontal flip 

9: Step 2: Feature Extraction using Autoencoder 

10: Construct a Convolutional Autoencoder: 

11: Encoder: Convolutional layers extract spatial features 

12: Latent Space: Dimensionality reduction for feature representation 

13: Decoder: Reconstructs images to preserve essential features 

14: Extract deep features from latent space representation 

15: Step 3: Classification using GBM 

16: Flatten extracted features to 1D vector 

17: Train the GBM classifier with extracted features and corresponding labels 

18: Optimize GBM hyperparameters to improve classification performance 

19: Step 4: Performance Evaluation 

20: Compute evaluation metrics: 

21: Step 5: Model Testing and Validation 

22: Apply the trained GBM model to test the data 

23: Evaluate classification performance using test metrics 

24: Analyze misclassified images and adjust model hyperparameters if necessary 

25: End Algorithm 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 
To classify brain cancers using radiomic features from MRI data, Autoencoder, 

GBM, Convolutional Neural Network (CNN), and Hybrid Autoencoder + GBM 

were evaluated. These models are assessed using confusion matrices, and the 

ROC, reliability, specificity, memory, and F1-score are the receiver operating 

characteristics. Furthermore, predictions show how well each model can 

distinguish between tumours and non-tumours. Each approach’s benefits and 

drawbacks are examined to evaluate its potential for diagnosis.  

The images depict confusion matrices of four models of radiomic cancer diagnosis 

on a brain tumour data set: Hybrid Autoencoder + GBM, Autoencoder, GBM and 

CNN (Figure 5-8). The Hybrid Autoencoder + GBM model (Figure 5) produces 

two false positives and three false negatives and distinguishes 78 healthy cases 

and 77 tumour cases with high precision. While the autoencoder model (Figure 6) 

is very effective at classifying healthy cases, it correctly classifies 99; it does not 

recognize tumours, correctly classifying 52 as healthy and 5 as tumours. With 73 

of the healthy cases and 74 of the tumour cases correctly classified, the GBM 

model is fairly good (Figure 7). However, it exhibits relatively higher 

misclassification rates, resulting in 6 false positives and 7 false negatives. Lastly, 

with 86 tumour cases identified correctly and merely five false negatives, the 

performance of the CNN model in detecting tumours is high (Figure 8). Its 

precision in healthy cases is somewhat reduced, though, with 3 false positives and 

66 accurately identified cases. Although the Autoencoder and GBM models 

predict slightly less accurately, they are still very accurate. The highest-

performing model in classification is the Hybrid Autoencoder + GBM model, 

followed by the CNN model. 
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Figure 5: Confusion Matrix for Hybrid Autoencoder + GBM 

 

 

Figure 6: Confusion Matrix for Autoencoder 
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Figure 7: Confusion Matrix for GBM 

 

 

Figure 8: Confusion Matrix for CNN 
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Figure 9:  ROC Curve for Hybrid Autoencoder + GBM 

 

 

 

 

Figure 10: ROC Curve for Autoencoder 
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Figure 11: ROC Curve for GBM 

 

 

Figure 12: ROC Curve for CNN 

Figures 9-12 illustrate the ROC curves of four brain tumour classification 

methods. This includes the Autoencoder, GBM, CNN, and hybrid Autoencoder + 

GBM. The best model is the Hybrid Autoencoder + GBM (Figure 9). It 

distinguishes virtually flawlessly with an AUC of 0.99. Despite the hybrid model, 

the autoencoder model (Figure 10) offers good classification skills with an AUC 

of 0.945. Figure 11 displays the GBM model, which ranks lower but succeeds 

with 0.921 AUC. The CNN model (Figure 12) has strong discriminating power 

with an AUC of 0.955. CNN and hybrid autoencoder + GBM models outperform 

Autoencoder and GBM models in tumour classification. Using metrics like recall, 

accuracy, precision, and F1-Score, the bar chart compares four models—

Autoencoder, GBM, CNN, and Hybrid Autoencoder + GBM for identifying brain 

tumours (Figure 13). The Hybrid Autoencoder + GBM model dominates 

accuracy, precision, recall, and F1-score. It gets 0.968, 0.974, and 0.962. The CNN 

model ranks second in classification with 0.965 precision, 0.963 accuracy, and 
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0.950 F1-score. Precision, recall, and F1-score are lower with the Autoencoder 

model. The GBM model has the lowest accuracy, precision, recall, and F1 score, 

yet it is still effective. The Hybrid Autoencoder + GBM model outperforms the 

competition, even though CNN also has respectable predictive capability. 

 

Figure 13: Performance Metrics 

 

Table 3: Visualization of Predictions 
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As indicated in the images in Table 4, the Hybrid Autoencoder + GBM model is 

highly accurate and robust in identifying brain tumours from MRI information. 

The model provides proper localization by focusing on tumour areas with red 

borders, distinguishing normal from pathological brain structures. By leveraging 

the strong classification ability of GBM and feature extraction from the 

Autoencoder, this combined method enhances detection accuracy compared to 

traditional models like CNN or standalone Autoencoders. The results eliminate 

false positives and false negatives through distinct segregation between tumour 

and non-tumour cases. Additionally, illustrating the accuracy of the model’s 

tumour classification with minimal false positives are its superior precision 

(0.974) and recall (0.962). Due to its high F1-score (0.968), which maintains a 

balance between sensitivity and specificity, the Hybrid Autoencoder + GBM is a 

reliable and efficient brain tumour diagnosis method.  

Table 4: Comparing the hybrid model against more recent deep learning 

Ref. Model Accuracy Precision Recall F1-

Score 

 Hybrid Auto-

encoder & GBM 

96.80 97.40 96.20 96.80 

[24] Xception 95.6 95.7 95.9 95.8 

[24] InceptionResNetV2 96.3 96.2 96.6 96.4 

[24] ResNet50 96.5 96.6 96.8 96.7 

 

The table 5 shows the performance of the four models—Hybrid Autoencoder + 

GBM, Xception, InceptionResNetV2, and ResNet50—did at finding brain cancer 

by comparing their accuracy, precision, recall, and F1-score. The Hybrid 

Autoencoder + GBM model is the most accurate, with an accuracy rate of 96.8%, 

which is better than the other deep learning architectures. It also has the highest 

precision (97.4%) and F1-score (96.8%), which shows that it can classify things 

well overall and balance performance between accuracy and recall. It has a recall 

rate of 96.2%, which is a little lower than ResNet50’s 96.8%, but it’s still quite 

good.  

ResNet50 is the best of the baseline models, with an accuracy of 96.5%, a 

precision of 96.6%, a recall of 96.8%, and an F1-score of 96.7%. 

InceptionResNetV2 and Xception are very close behind. The little variations in 

the measures show that typical CNN architectures work well, but the hybrid 

technique that combines autoencoder-based feature extraction with gradient 

boosting classification works even better. These findings show that combining 
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radiomic-informed latent features with a GBM classifier may improve the ability 

to find brain tumours more than using CNN models alone. The higher accuracy 

and F1-score show that the hybrid model lowers the number of false positives 

while keeping sensitivity balanced, which is very important in medical diagnosis. 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE SCOPE 

 

 
Brain cancer remains one of the most challenging and life-threatening forms of 

cancer due to its anatomical complexity, non-specific symptoms, and the often-

late stage at which it is diagnosed. Traditional diagnostic techniques, although 

widely practiced, suffer from multiple limitations such as subjectivity, inter-

observer variability, and restricted ability to analyze high-dimensional medical 

imaging data. With the growing emphasis on data-driven healthcare and 

personalized medicine, there is a pressing need for accurate, interpretable, and 

automated diagnostic models that can support radiologists in early and reliable 

tumour detection.  

This research presented a radiomics-informed hybrid diagnostic model that 

combines the strengths of unsupervised deep learning and robust machine learning 

classifiers. Specifically, a convolutional autoencoder was employed to extract 

meaningful latent features from MRI images, while a Gradient Boosting Machine 

(GBM) classifier was utilized for final classification. This hybrid architecture 

effectively handled the challenges associated with high-dimensional radiomics 

data, reducing redundancy while preserving crucial diagnostic information.  

The model was trained and validated on a balanced dataset of 800 brain MRI 

images comprising 408 normal and 392 abnormal (tumour-present) scans. 

Through comprehensive preprocessing steps—including image normalization, 

resizing, gray-scale transformation, and data augmentation—the dataset was 

prepared for optimal training performance. The hybrid Autoencoder + GBM 

model consistently outperformed traditional approaches such as standalone GBM, 

CNN, and Autoencoder models across key performance metrics. It achieved an 

accuracy of 96.8%, precision of 97.4%, recall of 96.2%, and an AUC score of 

0.99, confirming its superior diagnostic capability.  

In addition to its classification performance, the model demonstrated strong 

generalizability, reducing both false positives and false negatives—two critical 

factors in medical diagnosis. Moreover, by leveraging interpretable machine 

learning components like GBM, the framework aligns well with the clinical 

demand for transparency and explanation in AI-driven decision support systems. 

The outcome of this study not only validates the effectiveness of hybrid models 

in radiomics-based cancer detection but also underscores their potential as a 

reliable clinical aid. The ability to establish meaningful correlations between deep 

latent features and clinical outcomes makes this model a strong candidate for 

future integration into computer-aided diagnostic (CAD) systems. 
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5.1. Future Work  

While the proposed model has shown promising results, several avenues for 

further research and development remain open. Expanding upon this foundational 

work can enhance its clinical applicability, scalability, and overall robustness.  

1. Integration with Multi-modal Data This study focused exclusively on radiomics 

features derived from 2D MRI images. Future research can extend the 

framework to incorporate multi-modal data, including genomic profiles, 

histopathology slides, patient demographics, and clinical biomarkers. 

Integrating such heterogeneous data could enhance predictive power and 

support personalized diagnostic pathways. 

2. Application to 3D Volumetric Imaging Medical imaging increasingly relies on 

3D volumetric scans (e.g., 3D MRI, CT). Transitioning the current model to 

handle volumetric data using 3D autoencoders and spatially-aware classifiers 

could provide more comprehensive insights into tumour morphology and 

spread.  

3. Real-time Deployment and Clinical Validation A critical step forward is the 

deployment and validation of the model in real clinical environments. 

Collaborations with hospitals and diagnostic labs can help test the model on 

prospective, real-world datasets, assess its utility in real-time diagnostic 

workflows, and identify operational bottlenecks.  

4. Enhancing Model Explainability While GBM offers better interpretability 

compared to black-box deep networks, further enhancements can be introduced 

using explainable AI (XAI) techniques such as SHAP values, Grad-CAM 

visualizations, or attention-based mechanisms. These tools can provide 

clinicians with clearer justifications for each prediction, thereby increasing 

trust in the model’s outputs.  

5. Optimization of Computational Efficiency Although the current model is 

computationally efficient compared to complex CNNs, future work may 

explore model compression techniques such as pruning, quantization, or 

knowledge distillation to enable deployment on low-resource hardware or 

mobile diagnostic tools. 

6. Cross-Cancer Generalization Given the versatility of radiomics and 

autoencoder-based architectures, the model can be adapted and retrained for 

other types of cancers such as lung, prostate, or liver cancers. This 

generalization could lead to the creation of a unified AI framework for multi-

cancer detection using a shared architecture.  

7. Incorporation of Federated Learning To address data privacy concerns and 

facilitate collaborative learning across multiple healthcare institutions, the 
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model could be restructured within a federated learning paradigm. This would 

allow decentralized model training without direct sharing of patient data, 

enabling broader adoption while ensuring compliance with data protection 

regulations. 

 

5.2. Clinical Applicability & Real-World Validation  

While the proposed hybrid autoencoder and Gradient Boosting Machine (GBM) 

model demonstrates high accuracy on publically available datasets, its 

effectiveness in the real-world clinical environment remains to be validated. 

Integration of Artificial Intelligence models into clinical work flows requires 

careful consideration of factors. To facilitate clinical adoption, the model should 

be tested on independent, multi-centre clinical datasets to assess its robustness and 

generalizability beyond control research environment. [25]  

5.3. Final Thoughts  

This research reinforces the potential of hybrid AI systems in medical imaging 

and diagnostics. By combining the latent feature learning capacity of deep 

learning with the structured decision-making of ensemble methods, the proposed 

framework stands as a significant step forward in the domain of brain cancer 

detection. Continued development and clinical integration of such models could 

lead to earlier diagnoses, improved treatment planning, and ultimately, better 

outcomes for patients affected by one of the most critical forms of cancer. 
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this submission is likely AI generated, scores below the 20% threshold are not 
surfaced because they have a higher likelihood of false positives.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions 
about a student’s work. We encourage you to learn more about Turnitin’s AI detection 
capabilities before using the tool.

Disclaimer
Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify 
writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for 
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any 
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?
The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin’s AI writing 
detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was 
likely revised using an AI-paraphrase tool or word spinner.
 
False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.
 
AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the 
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).
 
The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor 
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted 
assignment in accordance with their school's policies.

What does 'qualifying text' mean?
Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a 
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be 
highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.
 
Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the 
percentage shown.
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